Elementare Algebra und Analysis#

Sage kann viele zur elementaren Algebra und Analysis gehörende Probleme lösen. Zum Beispiel: Lösungen von Gleichungen finden, Differentiation, Integration, und Laplace-Transformationen berechnen. Lesen Sie die Sage Constructions Dokumentation um weitere Beispiele zu finden.

Lösen von Gleichungen#

Gleichungen exakt lösen#

Die solve Funktion löst Gleichungen. Legen Sie zunächst Variablen an, bevor Sie diese benutzen; Die Argumente von solve sind eine Gleichung (oder ein System von Gleichungen) zusammen mit den Variablen, nach welchen Sie auflösen möchten:

sage: x = var('x')
sage: solve(x^2 + 3*x + 2, x)
[x == -2, x == -1]

Sie können eine Gleichung nach einer Variablen, in Abhängigkeit von den anderen, auflösen:

sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]

Sie können auch nach mehreren Variablen auflösen:

sage: x, y = var('x, y')
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]

Das folgende Beispiel, in dem Sage benutzt wird um ein System von nichtlinearen Gleichungen zu lösen, stammt von Jason Grout. Zunächst lösen wir das System symbolisch:

sage: var('x y p q')
(x, y, p, q)
sage: eq1 = p+q==9
sage: eq2 = q*y+p*x==-6
sage: eq3 = q*y^2+p*x^2==24
sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]

Um eine numerische Approximation der Lösungen zu erhalten können Sie stattdessen wie folgt vorgehen:

sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True)
sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
 [1.0000000, 8.0000000, 3.5497035, -1.1937129]]

(Die Funktion n gibt eine numerische Approximation zurück, ihr Argument ist die Anzahl der Bits an Genauigkeit.)

Gleichungen numerisch lösen#

Oftmals kann solve keine exakte Lösung der angegebenen Gleichung bzw. Gleichungen finden. Wenn dies passiert können Sie find_root verwenden um eine numerische Approximation zu finden. Beispielsweise gibt solve bei folgender Gleichung nichts brauchbares zurück:

sage: theta = var('theta')
sage: solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]

Wir können jedoch find_root verwenden um eine Lösung der obigen Gleichung im Bereich \(0 < \phi < \pi/2\) zu finden:

sage: phi = var('phi')
sage: find_root(cos(phi)==sin(phi),0,pi/2)
0.785398163397448...

Differentiation, Integration, etc.#

Sage weiß wie man viele Funktionen differenziert und integriert. Zum Beispiel können Sie folgendes eingeben um \(\sin(u)\) nach \(u\) abzuleiten:

sage: u = var('u')
sage: diff(sin(u), u)
cos(u)

Um die vierte Ableitung \(\sin(x^2)\) zu berechnen:

sage: diff(sin(x^2), x, 4)
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)

Um die partiellen Ableitungen von \(x^2+17y^2\) nach \(x\) beziehungsweise \(y\) zu berechnen:

sage: x, y = var('x,y')
sage: f = x^2 + 17*y^2
sage: f.diff(x)
2*x
sage: f.diff(y)
34*y

Wir machen weiter mit Integralen, sowohl bestimmt als auch unbestimmt. Die Berechnung von \(\int x\sin(x^2)\, dx\) und \(\int_0^1 \frac{x}{x^2+1}\, dx\):

sage: integral(x*sin(x^2), x)
-1/2*cos(x^2)
sage: integral(x/(x^2+1), x, 0, 1)
1/2*log(2)

Die Partialbruchzerlegung von \(\frac{1}{x^2-1}\):

sage: f = 1/((1+x)*(x-1))
sage: f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)

Lösen von Differentialgleichungen#

Sie können Sage verwenden um gewöhnliche Differentialgleichungen zu berechnen. Die Gleichung \(x'+x-1=0\) berechnen Sie wie folgt:

sage: t = var('t')    # definiere die Variable t
sage: x = function('x')(t)   # definiere x als Funktion dieser Variablen
sage: DE = diff(x, t) + x - 1
sage: desolve(DE, [x,t])
(_C + e^t)*e^(-t)

Dies benutzt Sages Schnittstelle zu Maxima [Max], daher kann sich die Ausgabe ein wenig von anderen Ausgaben in Sage unterscheiden. In diesem Fall wird mitgeteilt, dass \(x(t) = e^{-t}(e^{t}+c)\) die allgemeine Lösung der Differentialgleichung ist.

Sie können auch Laplace-Transformationen berechnen: Die Laplace-Transformation von \(t^2e^t -\sin(t)\) wird wie folgt berechnet:

sage: s = var("s")
sage: t = var("t")
sage: f = t^2*exp(t) - sin(t)
sage: f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3

Hier ist ein komplizierteres Beispiel. Die Verschiebung des Gleichgewichts einer verkoppelten Feder, die an der linken Wand befestigt ist,

|------\/\/\/\/\---|Masse1|----\/\/\/\/\/----|Masse2|
         Feder1                  Feder2

wird durch dieses System der Differentialgleichungen zweiter Ordnung modelliert,

\[ \begin{align}\begin{aligned}m_1 x_1'' + (k_1+k_2) x_1 - k_2 x_2 = 0\\m_2 x_2''+ k_2 (x_2-x_1) = 0,\end{aligned}\end{align} \]

wobei \(m_{i}\) die Masse des Objekts i, \(x_{i}\) die Verschiebung des Gleichgewichts der Masse i und \(k_{i}\) die Federkonstante der Feder i ist.

Beispiel: Benutzen Sie Sage um das obige Problem mit folgenden Werten zu lösen: \(m_{1}=2\), \(m_{2}=1\), \(k_{1}=4\), \(k_{2}=2\), \(x_{1}(0)=3\), \(x_{1}'(0)=0\), \(x_{2}(0)=3\), \(x_{2}'(0)=0\).

Lösung: Berechnen Sie die Laplace-Transformierte der ersten Gleichung (mit der Notation \(x=x_{1}\), \(y=x_{2}\)):

sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)")
sage: lde1 = de1.laplace("t","s"); lde1
2*((-%at('diff(x(t),t,1),t = 0))+s^2*'laplace(x(t),t,s)-x(0)*s) -2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s)

Das ist schwierig zu lesen, es besagt jedoch, dass

\[-2x'(0) + 2s^2\cdot X(s) - 2sx(0) - 2Y(s) + 6X(s) = 0\]

(wobei die Laplace-Transformierte der Funktion mit kleinem Anfangsbuchstaben \(x(t)\) die Funktion mit großem Anfangsbuchstaben \(X(s)\) ist). Berechnen Sie die Laplace-Transformierte der zweiten Gleichung:

sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")
sage: lde2 = de2.laplace("t","s"); lde2
(-%at('diff(y(t),t,1),t = 0))+s^2*'laplace(y(t),t,s) +2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s) -y(0)*s

Dies besagt

\[-Y'(0) + s^2Y(s) + 2Y(s) - 2X(s) - sy(0) = 0.\]

Setzen Sie die Anfangsbedingungen für \(x(0)\), \(x'(0)\), \(y(0)\) und \(y'(0)\) ein, und lösen die beiden Gleichungen, die Sie so erhalten:

sage: var('s X Y')
(s, X, Y)
sage: eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s]
sage: solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
  Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]

Berechnen Sie jetzt die inverse Laplace-Transformierte um die Antwort zu erhalten:

sage: var('s t')
(s, t)
sage: inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t)
cos(2*t) + 2*cos(t)
sage: inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
-cos(2*t) + 4*cos(t)

Also ist die Lösung:

\[x_1(t) = \cos(2t) + 2\cos(t), \quad x_2(t) = 4\cos(t) - \cos(2t).\]

Die kann folgenderweise parametrisiert geplottet werden:

sage: t = var('t')
sage: P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),
....:     (t, 0, 2*pi), rgbcolor=hue(0.9))
sage: show(P)

Die einzelnen Komponenten können so geplottet werden:

sage: t = var('t')
sage: p1 = plot(cos(2*t) + 2*cos(t), (t,0, 2*pi), rgbcolor=hue(0.3))
sage: p2 = plot(4*cos(t) - cos(2*t), (t,0, 2*pi), rgbcolor=hue(0.6))
sage: show(p1 + p2)

Um mehr über das Plotten zu erfahren lesen Sie Plotten. Lesen Sie Abschnitt 5.5 von [NagleEtAl2004] um weitere Informationen über Differentialgleichungen zu erhalten.

Das Euler-Verfahren zur Lösung von Systemen von Differentialgleichungen#

Im nächsten Beispiel illustrieren wir das Euler-Verfahren für ODEs erster und zweiter Ordnung. Wir rufen zunächst die grundlegende Idee für Differentialgleichungen erster Ordnung in Erinnerung. Sei ein Anfangswertproblem der Form

\[y'=f(x,y), \quad y(a)=c,\]

gegeben. Wir möchten eine Approximation des Wertes der Lösung bei \(x=b\) mit \(b>a\) finden.

Machen Sie sich anhand der Definition der Ableitung klar, dass

\[y'(x) \approx \frac{y(x+h)-y(x)}{h},\]

wobei \(h>0\) vorgegeben und klein ist. Zusammen mit der Differentialgleichung gibt dies \(f(x,y(x))\approx \frac{y(x+h)-y(x)}{h}\). Jetzt lösen wir nach \(y(x+h)\) auf:

\[y(x+h) \approx y(x) + h\cdot f(x,y(x)).\]

Wenn wir \(h\cdot f(x,y(x))\) den „Korrekturterm“, \(y(x)\) den „alten Wert von \(y\)“ und \(y(x+h)\) den „neuen Wert von \(y\)“ nennen, kann diese Approximation neu ausgedrückt werden als:

\[y_{new} \approx y_{old} + h\cdot f(x,y_{old}).\]

Wenn wir das Intervall von \(a\) bis \(b\) in \(n\) Teilintervalle aufteilen, so dass \(h=\frac{b-a}{n}\) gilt, können wir die Information in folgender Tabelle festhalten.

\(x\)

\(y\)

\(h\cdot f(x,y)\)

\(a\)

\(c\)

\(h\cdot f(a,c)\)

\(a+h\)

\(c+h\cdot f(a,c)\)

\(a+2h\)

\(b=a+nh\)

???

Unser Ziel ist zeilenweise alle leeren Einträge der Tabelle auszufüllen, bis wir den Eintrag ??? erreichen, welcher die Approximation des Euler-Verfahrens für \(y(b)\) ist.

Die Idee für Systeme von ODEs ist ähnlich.

Beispiel: Approximiere \(z(t)\), mit 4 Schritten der

Eulermethode numerisch bei \(t=1\) , wobei \(z''+tz'+z=0\), \(z(0)=1\) und \(z'(0)=0\) ist.

Wir müssen die ODE zweiter Ordnung auf ein System von zwei Differentialgleichungen erster Ordnung reduzieren (wobei \(x=z\), \(y=z'\)) und das Euler-Verfahren anwenden:

sage: t,x,y = PolynomialRing(RealField(10),3,"txy").gens()
sage: f = y; g = -x - y * t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
      t                x            h*f(t,x,y)                y       h*g(t,x,y)
      0                1                  0.00                0           -0.25
    1/4              1.0                -0.062            -0.25           -0.23
    1/2             0.94                 -0.12            -0.48           -0.17
    3/4             0.82                 -0.16            -0.66          -0.081
      1             0.65                 -0.18            -0.74           0.022

Also ist \(z(1)\approx 0.75\).

Wir können auch die Punkte \((x,y)\) plotten um ein ungefähres Bild der Kurve zu erhalten. Die Funktion eulers_method_2x2_plot macht dies; um sie zu benutzen, müssen wir die Funktionen \(f\) und \(g\) definieren, welche ein Argument mit drei Koordinaten (\(t\), \(x\), \(y\)) erwarten.

sage: f = lambda z: z[2]        # f(t,x,y) = y
sage: g = lambda z: -sin(z[1])  # g(t,x,y) = -sin(x)
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)

Zu diesem Zeitpunkt enthält P die beiden Plots P[0] (der Plot von \(x\) nach \(t\)) und P[1] (der Plot von \(y\) nach \(t\)). Wir können beide wie folgt anzeigen:

sage: show(P[0] + P[1])

(Um mehr über das Plotten zu erfahren, lesen Sie Plotten.)

Spezielle Funktionen#

Mehrere orthogonale Polynome und spezielle Funktionen sind implementiert, wobei sowohl PARI [GP] als auch Maxima [Max] verwendet wird. Sie sind in den dazugehörigen Abschnitten („Orthogonal polynomials“ beziehungsweise „Special functions“) des Sage Referenzhandbuchs dokumentiert.

sage: x = polygen(QQ, 'x')
sage: chebyshev_U(2,x)
4*x^2 - 1
sage: bessel_I(1,1).n(250)
0.56515910399248502720769602760986330732889962162109200948029448947925564096
sage: bessel_I(1,1).n()
0.565159103992485
sage: bessel_I(2,1.1).n()
0.167089499251049

Zum jetzigen Zeitpunkt, enthält Sage nur Wrapper-Funktionen für numerische Berechnungen. Um symbolisch zu rechen, rufen Sie die Maxima-Schnittstelle bitte, wie im folgenden Beispiel, direkt auf

sage: maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
sage: maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'