-Numbers#
Note
These are the quantum group sage.combinat.q_analogues
).
- sage.algebras.quantum_groups.q_numbers.q_binomial(n, k, q=None)#
Return the
-binomial coefficient.Let
denote the -factorial of given bysage.algebras.quantum_groups.q_numbers.q_factorial()
. The -binomial coefficient is defined byINPUT:
n, k
– the nonnegative integers and defined aboveq
– (default: ) the parameter (should be invertible)
If
q
is unspecified, then it is taken to be the generator for a Laurent polynomial ring over the integers.Note
This is not the “usual”
-binomial but a variant useful for quantum groups. For the version used in combinatorics, seesage.combinat.q_analogues
.Warning
This method uses division by
-factorials. If or are zero-divisors, or division is not implemented in the ring containing , then it will not work.EXAMPLES:
sage: from sage.algebras.quantum_groups.q_numbers import q_binomial sage: q_binomial(2, 1) q^-1 + q sage: q_binomial(2, 0) 1 sage: q_binomial(4, 1) q^-3 + q^-1 + q + q^3 sage: q_binomial(4, 3) q^-3 + q^-1 + q + q^3
- sage.algebras.quantum_groups.q_numbers.q_factorial(n, q=None)#
Return the
-analog of the factorial .The
-factorial is defined by:where
denotes the -integer defined insage.algebras.quantum_groups.q_numbers.q_int()
.INPUT:
n
– the nonnegative integer defined aboveq
– (default: ) the parameter (should be invertible)
If
q
is unspecified, then it defaults to using the generator for a Laurent polynomial ring over the integers.Note
This is not the “usual”
-factorial but a variant useful for quantum groups. For the version used in combinatorics, seesage.combinat.q_analogues
.EXAMPLES:
sage: from sage.algebras.quantum_groups.q_numbers import q_factorial sage: q_factorial(3) q^-3 + 2*q^-1 + 2*q + q^3 sage: p = LaurentPolynomialRing(QQ, 'q').gen() sage: q_factorial(3, p) q^-3 + 2*q^-1 + 2*q + q^3 sage: p = ZZ['p'].gen() sage: q_factorial(3, p) (p^6 + 2*p^4 + 2*p^2 + 1)/p^3
The
-analog of is only defined for a nonnegative integer (trac ticket #11411):sage: q_factorial(-2) Traceback (most recent call last): ... ValueError: argument (-2) must be a nonnegative integer
- sage.algebras.quantum_groups.q_numbers.q_int(n, q=None)#
Return the
-analog of the nonnegative integer .The
-analog of the nonnegative integer is given byINPUT:
n
– the nonnegative integer defined aboveq
– (default: ) the parameter (should be invertible)
If
q
is unspecified, then it defaults to using the generator for a Laurent polynomial ring over the integers.Note
This is not the “usual”
-analog of (or -integer) but a variant useful for quantum groups. For the version used in combinatorics, seesage.combinat.q_analogues
.EXAMPLES:
sage: from sage.algebras.quantum_groups.q_numbers import q_int sage: q_int(2) q^-1 + q sage: q_int(3) q^-2 + 1 + q^2 sage: q_int(5) q^-4 + q^-2 + 1 + q^2 + q^4 sage: q_int(5, 1) 5