q-Numbers#

Note

These are the quantum group q-analogs, not the usual q-analogs typically used in combinatorics (see sage.combinat.q_analogues).

sage.algebras.quantum_groups.q_numbers.q_binomial(n, k, q=None)#

Return the q-binomial coefficient.

Let [n]q! denote the q-factorial of n given by sage.algebras.quantum_groups.q_numbers.q_factorial(). The q-binomial coefficient is defined by

[nk]q=[n]q![nk]q![k]q!.

INPUT:

  • n, k – the nonnegative integers n and k defined above

  • q – (default: qZ[q,q1]) the parameter q (should be invertible)

If q is unspecified, then it is taken to be the generator q for a Laurent polynomial ring over the integers.

Note

This is not the “usual” q-binomial but a variant useful for quantum groups. For the version used in combinatorics, see sage.combinat.q_analogues.

Warning

This method uses division by q-factorials. If [k]q! or [nk]q! are zero-divisors, or division is not implemented in the ring containing q, then it will not work.

EXAMPLES:

sage: from sage.algebras.quantum_groups.q_numbers import q_binomial
sage: q_binomial(2, 1)
q^-1 + q
sage: q_binomial(2, 0)
1
sage: q_binomial(4, 1)
q^-3 + q^-1 + q + q^3
sage: q_binomial(4, 3)
q^-3 + q^-1 + q + q^3
sage.algebras.quantum_groups.q_numbers.q_factorial(n, q=None)#

Return the q-analog of the factorial n!.

The q-factorial is defined by:

[n]q!=[n]q[n1]q[2]q[1]q,

where [n]q denotes the q-integer defined in sage.algebras.quantum_groups.q_numbers.q_int().

INPUT:

  • n – the nonnegative integer n defined above

  • q – (default: qZ[q,q1]) the parameter q (should be invertible)

If q is unspecified, then it defaults to using the generator q for a Laurent polynomial ring over the integers.

Note

This is not the “usual” q-factorial but a variant useful for quantum groups. For the version used in combinatorics, see sage.combinat.q_analogues.

EXAMPLES:

sage: from sage.algebras.quantum_groups.q_numbers import q_factorial
sage: q_factorial(3)
q^-3 + 2*q^-1 + 2*q + q^3
sage: p = LaurentPolynomialRing(QQ, 'q').gen()
sage: q_factorial(3, p)
q^-3 + 2*q^-1 + 2*q + q^3
sage: p = ZZ['p'].gen()
sage: q_factorial(3, p)
(p^6 + 2*p^4 + 2*p^2 + 1)/p^3

The q-analog of n! is only defined for n a nonnegative integer (trac ticket #11411):

sage: q_factorial(-2)
Traceback (most recent call last):
...
ValueError: argument (-2) must be a nonnegative integer
sage.algebras.quantum_groups.q_numbers.q_int(n, q=None)#

Return the q-analog of the nonnegative integer n.

The q-analog of the nonnegative integer n is given by

[n]q=qnqnqq1=qn1+qn3++qn+3+qn+1.

INPUT:

  • n – the nonnegative integer n defined above

  • q – (default: qZ[q,q1]) the parameter q (should be invertible)

If q is unspecified, then it defaults to using the generator q for a Laurent polynomial ring over the integers.

Note

This is not the “usual” q-analog of n (or q-integer) but a variant useful for quantum groups. For the version used in combinatorics, see sage.combinat.q_analogues.

EXAMPLES:

sage: from sage.algebras.quantum_groups.q_numbers import q_int
sage: q_int(2)
q^-1 + q
sage: q_int(3)
q^-2 + 1 + q^2
sage: q_int(5)
q^-4 + q^-2 + 1 + q^2 + q^4
sage: q_int(5, 1)
5