TESTS::#

sage.symbolic.integration.external.fricas_integrator(expression, v, a=None, b=None, noPole=True)#

Integration using FriCAS

EXAMPLES:

sage: from sage.symbolic.integration.external import fricas_integrator  # optional - fricas
sage: fricas_integrator(sin(x), x)                                      # optional - fricas
-cos(x)
sage: fricas_integrator(cos(x), x)                                      # optional - fricas
sin(x)
sage: fricas_integrator(1/(x^2-2), x, 0, 1)                             # optional - fricas
-1/8*sqrt(2)*(log(2) - log(-24*sqrt(2) + 34))
sage: fricas_integrator(1/(x^2+6), x, -oo, oo)                          # optional - fricas
1/6*sqrt(6)*pi
sage.symbolic.integration.external.giac_integrator(expression, v, a=None, b=None)#

Integration using Giac

EXAMPLES:

sage: from sage.symbolic.integration.external import giac_integrator
sage: giac_integrator(sin(x), x)
-cos(x)
sage: giac_integrator(1/(x^2+6), x, -oo, oo)
1/6*sqrt(6)*pi
sage.symbolic.integration.external.libgiac_integrator(expression, v, a=None, b=None)#

Integration using libgiac

EXAMPLES:

sage: import sage.libs.giac
...
sage: from sage.symbolic.integration.external import libgiac_integrator
sage: libgiac_integrator(sin(x), x)
-cos(x)
sage: libgiac_integrator(1/(x^2+6), x, -oo, oo)
No checks were made for singular points of antiderivative...
1/6*sqrt(6)*pi
sage.symbolic.integration.external.maxima_integrator(expression, v, a=None, b=None)#

Integration using Maxima

EXAMPLES:

sage: from sage.symbolic.integration.external import maxima_integrator
sage: maxima_integrator(sin(x), x)
-cos(x)
sage: maxima_integrator(cos(x), x)
sin(x)
sage: f(x) = function('f')(x)
sage: maxima_integrator(f(x), x)
integrate(f(x), x)
sage.symbolic.integration.external.mma_free_integrator(expression, v, a=None, b=None)#

Integration using Mathematica’s online integrator

EXAMPLES:

sage: from sage.symbolic.integration.external import mma_free_integrator
sage: mma_free_integrator(sin(x), x) # optional - internet
-cos(x)

A definite integral:

sage: mma_free_integrator(e^(-x), x, a=0, b=oo) # optional - internet
1
sage.symbolic.integration.external.sympy_integrator(expression, v, a=None, b=None)#

Integration using SymPy

EXAMPLES:

sage: from sage.symbolic.integration.external import sympy_integrator
sage: sympy_integrator(sin(x), x)
-cos(x)
sage: sympy_integrator(cos(x), x)
sin(x)