Continued fractions#
A continued fraction is a representation of a real number in terms of a sequence of integers denoted \([a_0; a_1, a_2, \ldots]\). The well known decimal expansion is another way of representing a real number by a sequence of integers. The value of a continued fraction is defined recursively as:
In this expansion, all coefficients \(a_n\) are integers and only the value \(a_0\) may be non positive. Note that \(a_0\) is nothing else but the floor (this remark provides a way to build the continued fraction expansion from a given real number). As examples
It is quite remarkable that
any real number admits a unique continued fraction expansion
finite expansions correspond to rationals
ultimately periodic expansions correspond to quadratic numbers (ie numbers of the form \(a + b \sqrt{D}\) with \(a\) and \(b\) rationals and \(D\) square free positive integer)
two real numbers \(x\) and \(y\) have the same tail (up to a shift) in their continued fraction expansion if and only if there are integers \(a,b,c,d\) with \(|ad - bc| = 1\) and such that \(y = (ax + b) / (cx + d)\).
Moreover, the rational numbers obtained by truncation of the expansion of a real number gives its so-called best approximations. For more informations on continued fractions, you may have a look at Wikipedia article Continued_fraction.
EXAMPLES:
If you want to create the continued fraction of some real number you may either
use its method continued_fraction (if it exists) or call
continued_fraction()
:
sage: (13/27).continued_fraction()
[0; 2, 13]
sage: 0 + 1/(2 + 1/13)
13/27
sage: continued_fraction(22/45)
[0; 2, 22]
sage: 0 + 1/(2 + 1/22)
22/45
sage: continued_fraction(pi)
[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]
sage: continued_fraction_list(pi, nterms=5)
[3, 7, 15, 1, 292]
sage: K.<cbrt5> = NumberField(x^3 - 5, embedding=1.709)
sage: continued_fraction(cbrt5)
[1; 1, 2, 2, 4, 3, 3, 1, 5, 1, 1, 4, 10, 17, 1, 14, 1, 1, 3052, 1, ...]
It is also possible to create a continued fraction from a list of partial quotients:
sage: continued_fraction([-3,1,2,3,4,1,2])
[-3; 1, 2, 3, 4, 1, 2]
Even infinite:
sage: w = words.ThueMorseWord([1,2])
sage: w
word: 1221211221121221211212211221211221121221...
sage: continued_fraction(w)
[1; 2, 2, 1, 2, 1, 1, 2, 2, 1...]
To go back and forth between the value (as a real number) and the partial
quotients (seen as a finite or infinite list) you can use the methods
quotients
and value
:
sage: cf = (13/27).continued_fraction()
sage: cf.quotients()
[0, 2, 13]
sage: cf.value()
13/27
sage: cf = continued_fraction(pi)
sage: cf.quotients()
lazy list [3, 7, 15, ...]
sage: cf.value()
pi
sage: w = words.FibonacciWord([1,2])
sage: cf = continued_fraction(w)
sage: cf.quotients()
word: 1211212112112121121211211212112112121121...
sage: v = cf.value()
sage: v
1.387954587967143?
sage: v.n(digits=100)
1.387954587967142336919313859873185477878152452498532271894917289826418577622648932169885237034242967
sage: v.continued_fraction()
[1; 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2...]
Recall that quadratic numbers correspond to ultimately periodic continued fractions. For them special methods give access to preperiod and period:
sage: K.<sqrt2> = QuadraticField(2)
sage: cf = continued_fraction(sqrt2); cf
[1; (2)*]
sage: cf.value()
sqrt2
sage: cf.preperiod()
(1,)
sage: cf.period()
(2,)
sage: cf = (3*sqrt2 + 1/2).continued_fraction(); cf
[4; (1, 2, 1, 7)*]
sage: cf = continued_fraction([(1,2,3),(1,4)]); cf
[1; 2, 3, (1, 4)*]
sage: cf.value()
-2/23*sqrt2 + 36/23
On the following we can remark how the tail may change even in the same quadratic field:
sage: for i in range(20): print(continued_fraction(i*sqrt2))
[0]
[1; (2)*]
[2; (1, 4)*]
[4; (4, 8)*]
[5; (1, 1, 1, 10)*]
[7; (14)*]
...
[24; (24, 48)*]
[25; (2, 5, 6, 5, 2, 50)*]
[26; (1, 6, 1, 2, 3, 2, 26, 2, 3, 2, 1, 6, 1, 52)*]
Nevertheless, the tail is preserved under invertible integer homographies:
sage: apply_homography = lambda m,z: (m[0,0]*z + m[0,1]) / (m[1,0]*z + m[1,1])
sage: m1 = SL2Z([60,13,83,18])
sage: m2 = SL2Z([27,80,28,83])
sage: a = sqrt2/3
sage: a.continued_fraction()
[0; 2, (8, 4)*]
sage: b = apply_homography(m1, a)
sage: b.continued_fraction()
[0; 1, 2, 1, 1, 1, 1, 6, (8, 4)*]
sage: c = apply_homography(m2, a)
sage: c.continued_fraction()
[0; 1, 26, 1, 2, 2, (8, 4)*]
sage: d = apply_homography(m1**2*m2**3, a)
sage: d.continued_fraction()
[0; 1, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 5, 26, 1, 2, 1, 26, 1, 2, 1, 26, 1, 2, 2, (8, 4)*]
Todo
Improve numerical approximation (the method
_mpfr_()
is quite slow compared to the same method for an element of a number field)Make a class for generalized continued fractions of the form \(a_0 + b_0/(a_1 + b_1/(...))\) (the standard continued fractions are when all \(b_n= 1\) while the Hirzebruch-Jung continued fractions are the one for which \(b_n = -1\) for all \(n\)). See Wikipedia article Generalized_continued_fraction.
look at the function ContinuedFractionApproximationOfRoot in GAP
AUTHORS:
Vincent Delecroix (2014): cleaning, refactorisation, documentation from the old implementation in
contfrac
(trac ticket #14567).
- class sage.rings.continued_fraction.ContinuedFraction_base#
Bases:
SageObject
Base class for (standard) continued fractions.
If you want to implement your own continued fraction, simply derived from this class and implement the following methods:
def quotient(self, n)
: return then
-th quotient ofself
as a Sage integerdef length(self)
: the number of partial quotients ofself
as a Sage integer orInfinity
.
and optionally:
def value(self)
: return the value ofself
(an exact real number)
This base class will provide:
computation of convergents in
convergent()
,numerator()
anddenominator()
comparison with other continued fractions (see
__richcmp__()
)accurate numerical approximations
_mpfr_()
All other methods, in particular the ones involving binary operations like sum or product, rely on the optional method
value()
(and not on convergents) and may fail at execution if it is not implemented.- additive_order()#
Return the additive order of this continued fraction, which we defined to be the additive order of its value.
EXAMPLES:
sage: continued_fraction(-1).additive_order() +Infinity sage: continued_fraction(0).additive_order() 1
- apply_homography(a, b, c, d, forward_value=False)#
Return the continued fraction of \((ax + b)/(cx + d)\).
This is computed using Gosper’s algorithm, see
continued_fraction_gosper
.INPUT:
a, b, c, d
– integersforward_value
– boolean (default:False
) whether the returned continued fraction is given the symbolic value of \((a x + b)/(cx + d)\) and not only the list of partial quotients obtained from Gosper’s algorithm.
EXAMPLES:
sage: (5 * 13/6 - 2) / (3 * 13/6 - 4) 53/15 sage: continued_fraction(13/6).apply_homography(5, -2, 3, -4).value() 53/15
We demonstrate now the effect of the optional argument
forward_value
:sage: cf = continued_fraction(pi) sage: h1 = cf.apply_homography(35, -27, 12, -5) sage: h1 [2; 1, 1, 6, 3, 1, 2, 1, 5, 3, 1, 1, 1, 1, 9, 12, 1, 1, 1, 3...] sage: h1.value() 2.536941776086946? sage: h2 = cf.apply_homography(35, -27, 12, -5, forward_value=True) sage: h2 [2; 1, 1, 6, 3, 1, 2, 1, 5, 3, 1, 1, 1, 1, 9, 12, 1, 1, 1, 3...] sage: h2.value() (35*pi - 27)/(12*pi - 5)
REFERENCES:
- ceil()#
Return the ceil of
self
.EXAMPLES:
sage: cf = continued_fraction([2,1,3,4]) sage: cf.ceil() 3
- convergent(n)#
Return the
n
-th partial convergent to self.EXAMPLES:
sage: a = continued_fraction(pi); a [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: a.convergent(3) 355/113 sage: a.convergent(15) 411557987/131002976
- convergents()#
Return the list of partial convergents of
self
.If
self
is an infinite continued fraction, then the object returned is alazy_list_generic
which behave like an infinite list.EXAMPLES:
sage: a = continued_fraction(23/157); a [0; 6, 1, 4, 1, 3] sage: a.convergents() [0, 1/6, 1/7, 5/34, 6/41, 23/157]
Todo
Add an example with infinite list.
- denominator(n)#
Return the denominator of the
n
-th partial convergent ofself
.EXAMPLES:
sage: c = continued_fraction(pi); c [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: c.denominator(0) 1 sage: c.denominator(12) 25510582 sage: c.denominator(152) 1255341492699841451528811722575401081588363886480089431843026103930863337221076748
- floor()#
Return the floor of
self
.EXAMPLES:
sage: cf = continued_fraction([2,1,2,3]) sage: cf.floor() 2
- is_minus_one()#
Test whether
self
is minus one.EXAMPLES:
sage: continued_fraction(-1).is_minus_one() True sage: continued_fraction(1).is_minus_one() False sage: continued_fraction(0).is_minus_one() False sage: continued_fraction(-2).is_minus_one() False sage: continued_fraction([-1,1]).is_minus_one() False
- is_one()#
Test whether
self
is one.EXAMPLES:
sage: continued_fraction(1).is_one() True sage: continued_fraction(5/4).is_one() False sage: continued_fraction(0).is_one() False sage: continued_fraction(pi).is_one() False
- is_zero()#
Test whether
self
is zero.EXAMPLES:
sage: continued_fraction(0).is_zero() True sage: continued_fraction((0,1)).is_zero() False sage: continued_fraction(-1/2).is_zero() False sage: continued_fraction(pi).is_zero() False
- multiplicative_order()#
Return the multiplicative order of this continued fraction, which we defined to be the multiplicative order of its value.
EXAMPLES:
sage: continued_fraction(-1).multiplicative_order() 2 sage: continued_fraction(1).multiplicative_order() 1 sage: continued_fraction(pi).multiplicative_order() +Infinity
- n(prec=None, digits=None, algorithm=None)#
Return a numerical approximation of this continued fraction with
prec
bits (or decimaldigits
) of precision.INPUT:
prec
– precision in bitsdigits
– precision in decimal digits (only used ifprec
is not given)algorithm
– ignored for continued fractions
If neither
prec
nordigits
is given, the default precision is 53 bits (roughly 16 digits).EXAMPLES:
sage: w = words.FibonacciWord([1,3]) sage: cf = continued_fraction(w) sage: cf [1; 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3...] sage: cf.numerical_approx(prec=53) 1.28102513329557
The method \(n\) is a shortcut to this one:
sage: cf.n(digits=25) 1.281025133295569815552930 sage: cf.n(digits=33) 1.28102513329556981555293038097590
- numerator(n)#
Return the numerator of the \(n\)-th partial convergent of
self
.EXAMPLES:
sage: c = continued_fraction(pi); c [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: c.numerator(0) 3 sage: c.numerator(12) 80143857 sage: c.numerator(152) 3943771611212266962743738812600748213157266596588744951727393497446921245353005283
- numerical_approx(prec=None, digits=None, algorithm=None)#
Return a numerical approximation of this continued fraction with
prec
bits (or decimaldigits
) of precision.INPUT:
prec
– precision in bitsdigits
– precision in decimal digits (only used ifprec
is not given)algorithm
– ignored for continued fractions
If neither
prec
nordigits
is given, the default precision is 53 bits (roughly 16 digits).EXAMPLES:
sage: w = words.FibonacciWord([1,3]) sage: cf = continued_fraction(w) sage: cf [1; 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3...] sage: cf.numerical_approx(prec=53) 1.28102513329557
The method \(n\) is a shortcut to this one:
sage: cf.n(digits=25) 1.281025133295569815552930 sage: cf.n(digits=33) 1.28102513329556981555293038097590
- p(n)#
Return the numerator of the \(n\)-th partial convergent of
self
.EXAMPLES:
sage: c = continued_fraction(pi); c [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: c.numerator(0) 3 sage: c.numerator(12) 80143857 sage: c.numerator(152) 3943771611212266962743738812600748213157266596588744951727393497446921245353005283
- q(n)#
Return the denominator of the
n
-th partial convergent ofself
.EXAMPLES:
sage: c = continued_fraction(pi); c [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: c.denominator(0) 1 sage: c.denominator(12) 25510582 sage: c.denominator(152) 1255341492699841451528811722575401081588363886480089431843026103930863337221076748
- quotients()#
Return the list of partial quotients of
self
.If
self
is an infinite continued fraction, then the object returned is alazy_list_generic
which behaves like an infinite list.EXAMPLES:
sage: a = continued_fraction(23/157); a [0; 6, 1, 4, 1, 3] sage: a.quotients() [0, 6, 1, 4, 1, 3]
Todo
Add an example with infinite list.
- sign()#
Return the sign of
self
as an Integer.The sign is defined to be
0
ifself
is0
,1
ifself
is positive and-1
ifself
is negative.EXAMPLES:
sage: continued_fraction(tan(pi/7)).sign() 1 sage: continued_fraction(-34/2115).sign() -1 sage: continued_fraction([0]).sign() 0
- str(nterms=10, unicode=False, join=True)#
Return a string representing this continued fraction.
INPUT:
nterms
– the maximum number of terms to useunicode
– (defaultFalse
) whether to use unicode characterjoin
– (defaultTrue
) ifFalse
instead of returning a string return a list of string, each of them representing a line
EXAMPLES:
sage: print(continued_fraction(pi).str()) 1 3 + ---------------------------------------------------- 1 7 + ----------------------------------------------- 1 15 + ----------------------------------------- 1 1 + ------------------------------------ 1 292 + ----------------------------- 1 1 + ------------------------ 1 1 + ------------------- 1 1 + -------------- 1 2 + --------- 1 + ... sage: print(continued_fraction(pi).str(nterms=1)) 3 + ... sage: print(continued_fraction(pi).str(nterms=2)) 1 3 + --------- 7 + ... sage: print(continued_fraction(243/354).str()) 1 ----------------------- 1 1 + ------------------ 1 2 + ------------- 1 5 + -------- 1 3 + --- 2 sage: continued_fraction(243/354).str(join=False) [' 1 ', '-----------------------', ' 1 ', ' 1 + ------------------', ' 1 ', ' 2 + -------------', ' 1 ', ' 5 + --------', ' 1 ', ' 3 + ---', ' 2 '] sage: print(continued_fraction(243/354).str(unicode=True)) 1 ─────────────────────── 1 1 + ────────────────── 1 2 + ───────────── 1 5 + ──────── 1 3 + ─── 2
- class sage.rings.continued_fraction.ContinuedFraction_infinite(w, value=None, check=True)#
Bases:
ContinuedFraction_base
A continued fraction defined by an infinite sequence of partial quotients.
EXAMPLES:
sage: t = continued_fraction(words.ThueMorseWord([1,2])); t [1; 2, 2, 1, 2, 1, 1, 2, 2, 1...] sage: t.n(digits=100) 1.422388736882785488341547116024565825306879108991711829311892452916456747272565883312455412962072042
We check that comparisons work well:
sage: t > continued_fraction(1) and t < continued_fraction(3/2) True sage: t < continued_fraction(1) or t > continued_fraction(2) False
Can also be called with a
value
option:sage: def f(n): ....: if n % 3 == 2: return 2*(n+1)//3 ....: return 1 sage: w = Word(f, alphabet=NN) sage: w word: 1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,1,1,18,1,1,20,1,1,22,1,1,24,1,1,26,1,... sage: cf = continued_fraction(w, value=e-1) sage: cf [1; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1...]
In that case a small check is done on the input:
sage: cf = continued_fraction(w, value=pi) Traceback (most recent call last): ... ValueError: value evaluates to 3.141592653589794? while the continued fraction evaluates to 1.718281828459046? in Real Interval Field with 53 bits of precision.
- length()#
Return infinity.
EXAMPLES:
sage: w = words.FibonacciWord([3,13]) sage: cf = continued_fraction(w) sage: cf.length() +Infinity
- quotient(n)#
Return the
n
-th partial quotient ofself
.INPUT:
n
– an integer
EXAMPLES:
sage: w = words.FibonacciWord([1,3]) sage: cf = continued_fraction(w) sage: cf.quotient(0) 1 sage: cf.quotient(1) 3 sage: cf.quotient(2) 1
- quotients()#
Return the infinite list from which this continued fraction was built.
EXAMPLES:
sage: w = words.FibonacciWord([1,5]) sage: cf = continued_fraction(w) sage: cf.quotients() word: 1511515115115151151511511515115115151151...
- value()#
Return the value of
self
.If this value was provided on initialization, just return this value otherwise return an element of the real lazy field.
EXAMPLES:
sage: def f(n): ....: if n % 3 == 2: return 2*(n+1)//3 ....: return 1 sage: w = Word(f, alphabet=NN) sage: w word: 1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,1,1,18,1,1,20,1,1,22,1,1,24,1,1,26,1,... sage: cf = continued_fraction(w, value=e-1) sage: cf [1; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1...] sage: cf.value() e - 1 sage: w = words.FibonacciWord([2,5]) sage: cf = continued_fraction(w) sage: cf [2; 5, 2, 2, 5, 2, 5, 2, 2, 5, 2, 2, 5, 2, 5, 2, 2, 5, 2, 5...] sage: cf.value() 2.184951302409338?
- class sage.rings.continued_fraction.ContinuedFraction_periodic(x1, x2=None, check=True)#
Bases:
ContinuedFraction_base
Continued fraction associated with rational or quadratic number.
A rational number has a finite continued fraction expansion (or ultimately 0). The one of a quadratic number, ie a number of the form \(a + b \sqrt{D}\) with \(a\) and \(b\) rational, is ultimately periodic.
Note
This class stores a tuple
_x1
for the preperiod and a tuple_x2
for the period. In the purely periodic case_x1
is empty while in the rational case_x2
is the tuple(0,)
.- length()#
Return the number of partial quotients of
self
.EXAMPLES:
sage: continued_fraction(2/5).length() 3 sage: cf = continued_fraction([(0,1),(2,)]); cf [0; 1, (2)*] sage: cf.length() +Infinity
- period()#
Return the periodic part of
self
.EXAMPLES:
sage: K.<sqrt3> = QuadraticField(3) sage: cf = continued_fraction(sqrt3); cf [1; (1, 2)*] sage: cf.period() (1, 2) sage: for k in xsrange(2,40): ....: if not k.is_square(): ....: s = QuadraticField(k).gen() ....: cf = continued_fraction(s) ....: print('%2d %d %s' % (k, len(cf.period()), cf)) 2 1 [1; (2)*] 3 2 [1; (1, 2)*] 5 1 [2; (4)*] 6 2 [2; (2, 4)*] 7 4 [2; (1, 1, 1, 4)*] 8 2 [2; (1, 4)*] 10 1 [3; (6)*] 11 2 [3; (3, 6)*] 12 2 [3; (2, 6)*] 13 5 [3; (1, 1, 1, 1, 6)*] 14 4 [3; (1, 2, 1, 6)*] ... 35 2 [5; (1, 10)*] 37 1 [6; (12)*] 38 2 [6; (6, 12)*] 39 2 [6; (4, 12)*]
- period_length()#
Return the number of partial quotients of the preperiodic part of
self
.EXAMPLES:
sage: continued_fraction(2/5).period_length() 1 sage: cf = continued_fraction([(0,1),(2,)]); cf [0; 1, (2)*] sage: cf.period_length() 1
- preperiod()#
Return the preperiodic part of
self
.EXAMPLES:
sage: K.<sqrt3> = QuadraticField(3) sage: cf = continued_fraction(sqrt3); cf [1; (1, 2)*] sage: cf.preperiod() (1,) sage: cf = continued_fraction(sqrt3/7); cf [0; 4, (24, 8)*] sage: cf.preperiod() (0, 4)
- preperiod_length()#
Return the number of partial quotients of the preperiodic part of
self
.EXAMPLES:
sage: continued_fraction(2/5).preperiod_length() 3 sage: cf = continued_fraction([(0,1),(2,)]); cf [0; 1, (2)*] sage: cf.preperiod_length() 2
- quotient(n)#
Return the
n
-th partial quotient ofself
.EXAMPLES:
sage: cf = continued_fraction([(12,5),(1,3)]) sage: [cf.quotient(i) for i in range(10)] [12, 5, 1, 3, 1, 3, 1, 3, 1, 3]
- value()#
Return the value of
self
as a quadratic number (with square free discriminant).EXAMPLES:
Some purely periodic examples:
sage: cf = continued_fraction([(),(2,)]); cf [(2)*] sage: v = cf.value(); v sqrt2 + 1 sage: v.continued_fraction() [(2)*] sage: cf = continued_fraction([(),(1,2)]); cf [(1, 2)*] sage: v = cf.value(); v 1/2*sqrt3 + 1/2 sage: v.continued_fraction() [(1, 2)*]
The number
sqrt3
that appear above is actually internal to the continued fraction. In order to be access it from the console:sage: cf.value().parent().inject_variables() Defining sqrt3 sage: sqrt3 sqrt3 sage: ((sqrt3+1)/2).continued_fraction() [(1, 2)*]
Some ultimately periodic but non periodic examples:
sage: cf = continued_fraction([(1,),(2,)]); cf [1; (2)*] sage: v = cf.value(); v sqrt2 sage: v.continued_fraction() [1; (2)*] sage: cf = continued_fraction([(1,3),(1,2)]); cf [1; 3, (1, 2)*] sage: v = cf.value(); v -sqrt3 + 3 sage: v.continued_fraction() [1; 3, (1, 2)*] sage: cf = continued_fraction([(-5,18), (1,3,1,5)]) sage: cf.value().continued_fraction() == cf True sage: cf = continued_fraction([(-1,),(1,)]) sage: cf.value().continued_fraction() == cf True
- class sage.rings.continued_fraction.ContinuedFraction_real(x)#
Bases:
ContinuedFraction_base
Continued fraction of a real (exact) number.
This class simply wraps a real number into an attribute (that can be accessed through the method
value()
). The number is assumed to be irrational.EXAMPLES:
sage: cf = continued_fraction(pi) sage: cf [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: cf.value() pi sage: cf = continued_fraction(e) sage: cf [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, ...] sage: cf.value() e
- length()#
Return infinity
EXAMPLES:
sage: continued_fraction(pi).length() +Infinity
- quotient(n)#
Return the
n
-th quotient ofself
.EXAMPLES:
sage: cf = continued_fraction(pi) sage: cf.quotient(27) 13 sage: cf.quotient(2552) 152 sage: cf.quotient(10000) # long time 5
The algorithm is not efficient with element of the symbolic ring and, if possible, one can always prefer number fields elements. The reason is that, given a symbolic element
x
, there is no automatic way to evaluate inRIF
an expression of the form(a*x+b)/(c*x+d)
where both the numerator and the denominator are extremely small:sage: a1 = pi sage: c1 = continued_fraction(a1) sage: p0 = c1.numerator(12); q0 = c1.denominator(12) sage: p1 = c1.numerator(13); q1 = c1.denominator(13) sage: num = (q0*a1 - p0); num.n() 1.49011611938477e-8 sage: den = (q1*a1 - p1); den.n() -2.98023223876953e-8 sage: a1 = -num/den sage: RIF(a1) [-infinity .. +infinity]
The same computation with an element of a number field instead of
pi
gives a very satisfactory answer:sage: K.<a2> = NumberField(x^3 - 2, embedding=1.25) sage: c2 = continued_fraction(a2) sage: p0 = c2.numerator(111); q0 = c2.denominator(111) sage: p1 = c2.numerator(112); q1 = c2.denominator(112) sage: num = (q0*a2 - p0); num.n() -4.56719261665907e46 sage: den = (q1*a2 - p1); den.n() -3.65375409332726e47 sage: a2 = -num/den sage: b2 = RIF(a2); b2 1.002685823312715? sage: b2.absolute_diameter() 8.88178419700125e-16
The consequence is that the precision needed with
c1
grows when we compute larger and larger partial quotients:sage: c1.quotient(100) 2 sage: c1._xa.parent() Real Interval Field with 353 bits of precision sage: c1.quotient(200) 3 sage: c1._xa.parent() Real Interval Field with 753 bits of precision sage: c1.quotient(300) 5 sage: c1._xa.parent() Real Interval Field with 1053 bits of precision sage: c2.quotient(200) 6 sage: c2._xa.parent() Real Interval Field with 53 bits of precision sage: c2.quotient(500) 1 sage: c2._xa.parent() Real Interval Field with 53 bits of precision sage: c2.quotient(1000) 1 sage: c2._xa.parent() Real Interval Field with 53 bits of precision
- value()#
Return the value of
self
(the number from which it was built).EXAMPLES:
sage: cf = continued_fraction(e) sage: cf.value() e
- sage.rings.continued_fraction.check_and_reduce_pair(x1, x2=None)#
There are often two ways to represent a given continued fraction. This function makes it canonical.
In the very special case of the number \(0\) we return the pair
((0,),(0,))
.
- sage.rings.continued_fraction.continued_fraction(x, value=None)#
Return the continued fraction of
x
.INPUT:
\(x\) – a number or a list of partial quotients (for finite development) or two list of partial quotients (preperiod and period for ultimately periodic development)
EXAMPLES:
A finite continued fraction may be initialized by a number or by its list of partial quotients:
sage: continued_fraction(12/571) [0; 47, 1, 1, 2, 2] sage: continued_fraction([3,2,1,4]) [3; 2, 1, 4]
It can be called with elements defined from symbolic values, in which case the partial quotients are evaluated in a lazy way:
sage: c = continued_fraction(golden_ratio); c [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] sage: c.convergent(12) 377/233 sage: fibonacci(14)/fibonacci(13) 377/233 sage: continued_fraction(pi) [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: c = continued_fraction(pi); c [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] sage: a = c.convergent(3); a 355/113 sage: a.n() 3.14159292035398 sage: pi.n() 3.14159265358979 sage: continued_fraction(sqrt(2)) [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...] sage: continued_fraction(tan(1)) [1; 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, ...] sage: continued_fraction(tanh(1)) [0; 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, ...] sage: continued_fraction(e) [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, ...]
If you want to play with quadratic numbers (such as
golden_ratio
andsqrt(2)
above), it is much more convenient to use number fields as follows since preperiods and periods are computed:sage: K.<sqrt5> = NumberField(x^2-5, embedding=2.23) sage: my_golden_ratio = (1 + sqrt5)/2 sage: cf = continued_fraction((1+sqrt5)/2); cf [(1)*] sage: cf.convergent(12) 377/233 sage: cf.period() (1,) sage: cf = continued_fraction(2/3+sqrt5/5); cf [1; 8, (1, 3, 1, 1, 3, 9)*] sage: cf.preperiod() (1, 8) sage: cf.period() (1, 3, 1, 1, 3, 9) sage: L.<sqrt2> = NumberField(x^2-2, embedding=1.41) sage: cf = continued_fraction(sqrt2); cf [1; (2)*] sage: cf.period() (2,) sage: cf = continued_fraction(sqrt2/3); cf [0; 2, (8, 4)*] sage: cf.period() (8, 4)
It is also possible to go the other way around, build a ultimately periodic continued fraction from its preperiod and its period and get its value back:
sage: cf = continued_fraction([(1,1),(2,8)]); cf [1; 1, (2, 8)*] sage: cf.value() 2/11*sqrt5 + 14/11
It is possible to deal with higher degree number fields but in that case the continued fraction expansion is known to be aperiodic:
sage: K.<a> = NumberField(x^3-2, embedding=1.25) sage: cf = continued_fraction(a); cf [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, ...]
Note that initial rounding can result in incorrect trailing partial quotients:
sage: continued_fraction(RealField(39)(e)) [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 2]
Note the value returned for floating point number is the continued fraction associated to the rational number you obtain with a conversion:
sage: for _ in range(10): ....: x = RR.random_element() ....: cff = continued_fraction(x) ....: cfe = QQ(x).continued_fraction() ....: assert cff == cfe, "%s %s %s"%(x,cff,cfe)
- sage.rings.continued_fraction.continued_fraction_list(x, type='std', partial_convergents=False, bits=None, nterms=None)#
Return the (finite) continued fraction of
x
as a list.The continued fraction expansion of
x
are the coefficients \(a_i\) in\[x = a_0 + 1/(a_1 + 1/(...))\]with \(a_0\) integer and \(a_1\), \(...\) positive integers. The Hirzebruch-Jung continued fraction is the one for which the \(+\) signs are replaced with \(-\) signs
\[x = a_0 - 1/(a_1 - 1/(...))\]See also
INPUT:
x
– exact rational or floating-point number. The number to compute the continued fraction of.type
– either “std” (default) for standard continued fractions or “hj” for Hirzebruch-Jung ones.partial_convergents
– boolean. Whether to return the partial convergents.bits
– an optional integer that specify a precision for the real interval field that is used internally.nterms
– integer. The upper bound on the number of terms in the continued fraction expansion to return.
OUTPUT:
A lits of integers, the coefficients in the continued fraction expansion of
x
. Ifpartial_convergents
is set toTrue
, then return a pair containing the coefficient list and the partial convergents list is returned.EXAMPLES:
sage: continued_fraction_list(45/19) [2, 2, 1, 2, 2] sage: 2 + 1/(2 + 1/(1 + 1/(2 + 1/2))) 45/19 sage: continued_fraction_list(45/19,type="hj") [3, 2, 3, 2, 3] sage: 3 - 1/(2 - 1/(3 - 1/(2 - 1/3))) 45/19
Specifying
bits
ornterms
modify the length of the output:sage: continued_fraction_list(e, bits=20) [2, 1, 2, 1, 1, 4, 2] sage: continued_fraction_list(sqrt(2)+sqrt(3), bits=30) [3, 6, 1, 5, 7, 2] sage: continued_fraction_list(pi, bits=53) [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14] sage: continued_fraction_list(log(3/2), nterms=15) [0, 2, 2, 6, 1, 11, 2, 1, 2, 2, 1, 4, 3, 1, 1] sage: continued_fraction_list(tan(sqrt(pi)), nterms=20) [-5, 9, 4, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 4, 3, 1, 63]
When the continued fraction is infinite (ie
x
is an irrational number) and the parametersbits
andnterms
are not specified then a warning is raised:sage: continued_fraction_list(sqrt(2)) doctest:...: UserWarning: the continued fraction of sqrt(2) seems infinite, return only the first 20 terms [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] sage: continued_fraction_list(sqrt(4/19)) doctest:...: UserWarning: the continued fraction of 2*sqrt(1/19) seems infinite, return only the first 20 terms [0, 2, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16]
An examples with the list of partial convergents:
sage: continued_fraction_list(RR(pi), partial_convergents=True) ([3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3], [(3, 1), (22, 7), (333, 106), (355, 113), (103993, 33102), (104348, 33215), (208341, 66317), (312689, 99532), (833719, 265381), (1146408, 364913), (4272943, 1360120), (5419351, 1725033), (80143857, 25510582), (245850922, 78256779)])
- sage.rings.continued_fraction.convergents(x)#
Return the (partial) convergents of the number
x
.EXAMPLES:
sage: from sage.rings.continued_fraction import convergents sage: convergents(143/255) [0, 1, 1/2, 4/7, 5/9, 9/16, 14/25, 23/41, 60/107, 143/255]
- sage.rings.continued_fraction.last_two_convergents(x)#
Given the list
x
that consists of numbers, return the two last convergents \(p_{n-1}, q_{n-1}, p_n, q_n\).This function is principally used to compute the value of a ultimately periodic continued fraction.
OUTPUT: a 4-tuple of Sage integers
EXAMPLES:
sage: from sage.rings.continued_fraction import last_two_convergents sage: last_two_convergents([]) (0, 1, 1, 0) sage: last_two_convergents([0]) (1, 0, 0, 1) sage: last_two_convergents([-1,1,3,2]) (-1, 4, -2, 9)
- sage.rings.continued_fraction.rat_interval_cf_list(r1, r2)#
Return the common prefix of the rationals
r1
andr2
seen as continued fractions.OUTPUT: a list of Sage integers.
EXAMPLES:
sage: from sage.rings.continued_fraction import rat_interval_cf_list sage: rat_interval_cf_list(257/113, 5224/2297) [2, 3, 1, 1, 1, 4] sage: for prec in range(10,54): ....: R = RealIntervalField(prec) ....: for _ in range(100): ....: x = R.random_element() * R.random_element() + R.random_element() / 100 ....: l = x.lower().exact_rational() ....: u = x.upper().exact_rational() ....: if l.floor() != u.floor(): ....: continue ....: cf = rat_interval_cf_list(l,u) ....: a = continued_fraction(cf).value() ....: b = continued_fraction(cf+[1]).value() ....: if a > b: ....: a,b = b,a ....: assert a <= l ....: assert b >= u