Dynamical systems on projective schemes#
A dynamical system of projective schemes determined by homogeneous polynomials functions that define what the morphism does on points in the ambient projective space.
The main constructor functions are given by DynamicalSystem
and
DynamicalSystem_projective
. The constructors function can take either
polynomials or a morphism from which to construct a dynamical system.
If the domain is not specified, it is constructed. However, if you plan on
working with points or subvarieties in the domain, it recommended to specify
the domain.
The initialization checks are always performed by the constructor functions. It is possible, but not recommended, to skip these checks by calling the class initialization directly.
AUTHORS:
David Kohel, William Stein
William Stein (2006-02-11): fixed bug where P(0,0,0) was allowed as a projective point.
Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
Ben Hutz (2013-03) iteration functionality and new directory structure for affine/projective, height functionality
Brian Stout, Ben Hutz (Nov 2013) - added minimal model functionality
Dillon Rose (2014-01): Speed enhancements
Ben Hutz (2015-11): iteration of subschemes
Ben Hutz (2017-7): relocate code and create class
- class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective(polys, domain)#
Bases:
SchemeMorphism_polynomial_projective_space
,DynamicalSystem
A dynamical system of projective schemes determined by homogeneous polynomials that define what the morphism does on points in the ambient projective space.
Warning
You should not create objects of this class directly because no type or consistency checking is performed. The preferred method to construct such dynamical systems is to use
DynamicalSystem_projective()
functionINPUT:
morphism_or_polys
– a SchemeMorphism, a polynomial, a rational function, or a list or tuple of homogeneous polynomials.domain
– optional projective space or projective subscheme.names
– optional tuple of strings to be used as coordinate names for a projective space that is constructed; defaults to'X','Y'
.The following combinations of
morphism_or_polys
anddomain
are meaningful:morphism_or_polys
is a SchemeMorphism;domain
is ignored in this case.morphism_or_polys
is a list of homogeneous polynomials that define a rational endomorphism ofdomain
.morphism_or_polys
is a list of homogeneous polynomials anddomain
is unspecified;domain
is then taken to be the projective space of appropriate dimension over the common base ring, if one exists, of the elements ofmorphism_or_polys
.morphism_or_polys
is a single polynomial or rational function;domain
is ignored and taken to be a 1-dimensional projective space over the base ring ofmorphism_or_polys
with coordinate names given bynames
.
OUTPUT:
DynamicalSystem_projective
.EXAMPLES:
sage: P1.<x,y> = ProjectiveSpace(QQ,1) sage: DynamicalSystem_projective([y, 2*x]) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (y : 2*x)
We can define dynamical systems on \(P^1\) by giving a polynomial or rational function:
sage: R.<t> = QQ[] sage: DynamicalSystem_projective(t^2 - 3) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 - 3*Y^2 : Y^2) sage: DynamicalSystem_projective(1/t^2) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (Y^2 : X^2)
sage: R.<x> = PolynomialRing(QQ,1) sage: DynamicalSystem_projective(x^2, names=['a','b']) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (a : b) to (a^2 : b^2)
Symbolic Ring elements are not allowed:
sage: x,y = var('x,y') sage: DynamicalSystem_projective([x^2,y^2]) Traceback (most recent call last): ... ValueError: [x^2, y^2] must be elements of a polynomial ring
sage: R.<x> = PolynomialRing(QQ,1) sage: DynamicalSystem_projective(x^2) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 : Y^2)
sage: R.<t> = PolynomialRing(QQ) sage: P.<x,y,z> = ProjectiveSpace(R, 2) sage: X = P.subscheme([x]) sage: DynamicalSystem_projective([x^2, t*y^2, x*z], domain=X) Dynamical System of Closed subscheme of Projective Space of dimension 2 over Univariate Polynomial Ring in t over Rational Field defined by: x Defn: Defined on coordinates by sending (x : y : z) to (x^2 : t*y^2 : x*z)
When elements of the quotient ring are used, they are reduced:
sage: P.<x,y,z> = ProjectiveSpace(CC, 2) sage: X = P.subscheme([x-y]) sage: u,v,w = X.coordinate_ring().gens() sage: DynamicalSystem_projective([u^2, v^2, w*u], domain=X) Dynamical System of Closed subscheme of Projective Space of dimension 2 over Complex Field with 53 bits of precision defined by: x - y Defn: Defined on coordinates by sending (x : y : z) to (y^2 : y^2 : y*z)
We can also compute the forward image of subschemes through elimination. In particular, let \(X = V(h_1,\ldots, h_t)\) and define the ideal \(I = (h_1,\ldots,h_t,y_0-f_0(\bar{x}), \ldots, y_n-f_n(\bar{x}))\). Then the elimination ideal \(I_{n+1} = I \cap K[y_0,\ldots,y_n]\) is a homogeneous ideal and \(f(X) = V(I_{n+1})\):
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, x^2]) sage: X = P.subscheme(y-z) sage: f(f(f(X))) Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: y - z
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, (x-2*w)^2, x^2]) sage: f(P.subscheme([x,y,z])) Closed subscheme of Projective Space of dimension 3 over Rational Field defined by: w, y, x
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ) sage: DynamicalSystem_projective([x^2*u, y^2*w, z^2*u, w^2, u^2], domain=T) Dynamical System of Product of projective spaces P^2 x P^1 over Rational Field Defn: Defined by sending (x : y : z , w : u) to (x^2*u : y^2*w : z^2*u , w^2 : u^2).
sage: K.<v> = QuadraticField(-7) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem([x^3 + v*x*y^2, y^3]) sage: fbar = f.change_ring(QQbar) sage: fbar.is_postcritically_finite() False
- affine_preperiodic_model(m, n, return_conjugation=False)#
Return a dynamical system conjugate to this one with affine (n, m) preperiodic points.
If the base ring of this dynamical system is finite, there may not be a model with affine preperiodic points, in which case a ValueError is thrown.
INPUT:
m
– the preperiod of the preperiodic points to make affine.n
– the period of the preperiodic points to make affine.return_conjugation
– (default:False
) IfTrue
, return a tuple(g, phi)
whereg
is a model with affine (n, m) preperiodic points andphi
is the matrix that movesf
tog
.
OUTPUT: a dynamical system conjugate to this one.
EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: g = f.affine_preperiodic_model(0, 1); g Dynamical System of Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x : y : z) to (-x^2 : -2*x^2 + 2*x*y - y^2 : 2*x^2 - 2*x*y + 2*y^2 + 2*y*z + z^2)
We can check that
g
has affine fixed points:sage: g.periodic_points(1) [(-1 : -1 : 1), (-1/2 : -1 : 1), (-1/2 : -1/2 : 1), (-1/3 : -2/3 : 1), (0 : -1 : 1), (0 : -1/2 : 1), (0 : 0 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(GF(9), 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: f.affine_preperiodic_model(0, 1) Dynamical System of Projective Space of dimension 2 over Finite Field in z2 of size 3^2 Defn: Defined on coordinates by sending (x : y : z) to ((-z2)*x^2 : z2*x^2 + (-z2)*x*y + (-z2)*y^2 : (-z2)*x^2 + z2*x*y + (z2 + 1)*y^2 - y*z + z^2)
sage: R.<c> = GF(3)[] sage: P.<x,y,z> = ProjectiveSpace(R, 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: f.affine_preperiodic_model(0, 1) # long time Dynamical System of Projective Space of dimension 2 over Univariate Polynomial Ring in c over Finite Field of size 3 Defn: Defined on coordinates by sending (x : y : z) to (2*c^3*x^2 : c^3*x^2 + 2*c^3*x*y + 2*c^3*y^2 : 2*c^3*x^2 + c^3*x*y + (c^3 + c^2)*y^2 + 2*c^2*y*z + c^2*z^2)
sage: K.<k> = CyclotomicField(3) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([x^2 + k*x*y + y^2, z^2, y^2]) sage: f.affine_preperiodic_model(1, 1) Dynamical System of Projective Space of dimension 2 over Cyclotomic Field of order 3 and degree 2 Defn: Defined on coordinates by sending (x : y : z) to (-y^2 : x^2 : x^2 + (-k)*x*z + z^2)
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: g, mat = f.affine_preperiodic_model(0, 1, return_conjugation=True) sage: g == f.conjugate(mat) True
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: X = P.subscheme(2*y - z) sage: f = DynamicalSystem_projective([x^2 + y^2, z^2 + y^2, z^2], domain=X) sage: f.affine_preperiodic_model(0, 1) Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 2*y - z Defn: Defined on coordinates by sending (x : y : z) to (-x^2 - y^2 : y^2 : x^2 + z^2)
- all_minimal_models(return_transformation=False, prime_list=None, algorithm=None, check_minimal=True)#
Determine a representative in each \(SL(2,\ZZ)\)-orbit of this map.
This can be done either with the Bruin-Molnar algorithm or the Hutz-Stoll algorithm. The Hutz-Stoll algorithm requires the map to have minimal resultant and then finds representatives in orbits with minimal resultant. The Bruin-Molnar algorithm finds representatives with the same resultant (up to sign) of the given map.
Bruin-Molnar does not work for polynomials and is more efficient for large primes.
INPUT:
return_transformation
– (default:False
) boolean; this signals a return of the \(PGL_2\) transformation to conjugate this map to the calculated modelsprime_list
– (optional) a list of primes, in case one only wants to determine minimality at those specific primesalgorithm
– (optional) string; can be one of the following:if not specified, properties of the map are utilized to choose
check_minimal
– (optional) boolean; to first check if the map is minimal and if not, compute a minimal model before computing for orbit representatives
OUTPUT:
A list of pairs \((F,m)\), where \(F\) is dynamical system on the projective line and \(m\) is the associated \(PGL(2,\QQ)\) element. Or just a list of dynamical systems if not returning the conjugation.
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([2*x^2, 3*y^2]) sage: f.all_minimal_models() [Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 : y^2)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: c = 2*3^6 sage: f = DynamicalSystem([x^3 - c^2*y^3, x*y^2]) sage: len(f.all_minimal_models(algorithm='HS')) 14 sage: len(f.all_minimal_models(prime_list=[2], algorithm='HS')) 2
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([237568*x^3 + 1204224*x^2*y + 2032560*x*y^2 ....: + 1142289*y^3, -131072*x^3 - 663552*x^2*y - 1118464*x*y^2 ....: - 627664*y^3]) sage: len(f.all_minimal_models(algorithm='BM')) 2
REFERENCES:
- arakelov_zhang_pairing(g, **kwds)#
Return an estimate of the Arakelov-Zhang pairing of the rational maps
self
andg
on \(\mathbb{P}^1\) over a number field.The Arakelov-Zhang pairing was introduced by Petsche, Szpiro, and Tucker in 2012, which measures the dynamical closeness of two rational maps. They prove inter alia that if one takes a sequence of small points for one map (for example, preperiodic points for
self
) and measure their dynamical height with respect to the other map (say,g
), then the values of the height will tend to the value of the Arakelov-Zhang pairing.The Arakelov-Zhang pairing involves mutual energy integrals between dynamical measures, which are in the case of polynomials, the equilibrium measures of the associated Julia sets at each place. As a result, these pairings are very difficult to compute exactly via analytic methods. We use a discrete approximation to these energy integrals.
ALGORITHM:
We select periodic points of order \(n\), or
n
-th preimages of a specified starting value given byf_starting_point
andg_starting_point
. At the archimedean places and the places of bad reduction of the two maps, we compute the discrete approximations to the energy integrals involved using these points.INPUT:
g
- a rational map of \(\mathbb{P}^1\) given as a projective morphism.g
andself
should have the same field of definition.
kwds:
n
- (default: 5) a positive integer Order of periodic points to use or preimages to take if starting points are specified.f_starting_point
- (optional, default:None
) value in the base number field or None. Iff_starting_point
is None, we solve for points of periodn
forself
. Otherwise, we taken
-th preimages of the point given byf_starting_point
underf
on the affine line.g_starting_point
- (optional, default:None
) value in the base number field or None. Ifg_starting_point
is None, we solve for points of periodn
forg
. Otherwise, we taken
-th preimages of the point given byg_starting_point
underg
on the affine line.check_primes_of_bad_reduction
- (optional, default:False
) boolean. Passed to theprimes_of_bad_reduction
function forself
andg
.prec
- (optional, default:RealField
default) default precision for RealField values which are returned.noise_multiplier
- (default: 2) a real number. Discriminant terms involved in the computation at the archimedean places are often not needed, particularly if the capacity of the Julia sets is 1, and introduce a lot of error. By a well-known result of Mahler (see also M. Baker, “”A lower bound for averages of dynamical Green’s functions”) such error (for a set of \(N\) points) is on the order of \(\log(N)/N\) after our normalization. We check if the value of the archimedean discriminant terms is within2*noise_multiplier
of \(\log(N)/N\). If so, we discard it. In practice this greatly improves the accuracy of the estimate of the pairing. If desired,noise_multiplier
can be set to 0, and no terms will be ignored.
OUTPUT:
a real number estimating the Arakelov-Zhang pairing of the two rational maps.
EXAMPLES:
sage: K.<k> = CyclotomicField(3) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 + (2*k + 2)*y^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: pairingval = f.arakelov_zhang_pairing(g, n=5); pairingval 0.409598197761958
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 4*y^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: pairingval = f.arakelov_zhang_pairing(g, n=6); pairingval 0.750178391443644 sage: # Compare to the exact value: sage: dynheight = f.canonical_height(P(0, 1)); dynheight 0.75017839144364417318023000563 sage: dynheight - pairingval 0.000000000000000
Notice that if we set the noise_multiplier to 0, the accuracy is diminished:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 4*y^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: pairingval = f.arakelov_zhang_pairing(g, n=6, noise_multiplier=0) sage: pairingval 0.650660018921632 sage: dynheight = f.canonical_height(P(0, 1)); dynheight 0.75017839144364417318023000563 sage: pairingval - dynheight -0.0995183725220122
We compute the example of Prop. 18(d) from Petsche, Szpiro and Tucker:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([y^2 - (y - x)^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: f.arakelov_zhang_pairing(g) 0.326954667248466 sage: # Correct value should be = 0.323067... sage: f.arakelov_zhang_pairing(g, n=9) 0.323091061918965 sage: _ - 0.323067 0.0000240619189654789
Also from Prop. 18 of Petsche, Szpiro and Tucker, includes places of bad reduction:
sage: R.<z> = PolynomialRing(ZZ) sage: K.<b> = NumberField(z^3 - 11) sage: P.<x,y> = ProjectiveSpace(K,1) sage: a = 7/(b - 1) sage: f = DynamicalSystem_projective([a*y^2 - (a*y - x)^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: # If all archimedean absolute values of a have modulus > 2, sage: # then the pairing should be h(a). sage: f.arakelov_zhang_pairing(g, n=6) 1.93846423207664 sage: _ - a.global_height() -0.00744591697867292
- automorphism_group(**kwds)#
Calculates the subgroup of \(PGL2\) that is the automorphism group of this dynamical system.
The automorphism group is the set of \(PGL(2)\) elements that fixes this map under conjugation.
INPUT:
The following keywords are used in most cases:
num_cpus
– (default: 2) the number of threads to use. Setting to a larger number can greatly speed up this function.
The following keywords are used only when the dimension of the domain is 1 and the base ring is the rationals, but ignored in all other cases:
starting_prime
– (default: 5) the first prime to use for CRTalgorithm
– (optional) can be one of the following:'CRT'
- Chinese Remainder Theorem'fixed_points'
- fixed points algorithm
return_functions
– (default:False
) boolean;True
returns elements as linear fractional transformations andFalse
returns elements as \(PGL2\) matricesiso_type
– (default:False
) boolean;True
returns the isomorphism type of the automorphism group
OUTPUT: a list of elements in the automorphism group
AUTHORS:
Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray
Modified by Joao Alberto de Faria, Ben Hutz, Bianca Thompson
REFERENCES:
EXAMPLES:
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2-y^2, x*y]) sage: f.automorphism_group(return_functions=True) [x, -x]
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 5*x*y + 5*y^2, 5*x^2 + 5*x*y + y^2]) sage: f.automorphism_group() [ [1 0] [0 2] [0 1], [2 0] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem([x^3, y^3, z^3]) sage: len(f.automorphism_group()) 24
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2-2*x*y-2*y^2, -2*x^2-2*x*y+y^2]) sage: f.automorphism_group(return_functions=True) [x, 1/x, -x - 1, -x/(x + 1), (-x - 1)/x, -1/(x + 1)]
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([3*x^2*y - y^3, x^3 - 3*x*y^2]) sage: lst, label = f.automorphism_group(algorithm='CRT', return_functions=True, iso_type=True) sage: sorted(lst), label ([-1/x, 1/x, (-x - 1)/(x - 1), (-x + 1)/(x + 1), (x - 1)/(x + 1), (x + 1)/(x - 1), -x, x], 'Dihedral of order 8')
sage: A.<z> = AffineSpace(QQ, 1) sage: f = DynamicalSystem_affine([1/z^3]) sage: F = f.homogenize(1) sage: F.automorphism_group() [ [1 0] [0 2] [-1 0] [ 0 -2] [0 1], [2 0], [ 0 1], [ 2 0] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x**2 + x*z, y**2, z**2]) sage: f.automorphism_group() [ [1 0 0] [0 1 0] [0 0 1] ]
sage: K.<w> = CyclotomicField(3) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: D6 = DynamicalSystem_projective([y^2,x^2]) sage: sorted(D6.automorphism_group()) [ [-w - 1 0] [ 0 -w - 1] [w 0] [0 w] [0 1] [1 0] [ 0 1], [ 1 0], [0 1], [1 0], [1 0], [0 1] ]
- canonical_height(P, **kwds)#
Evaluate the (absolute) canonical height of
P
with respect to this dynamical system.Must be over number field or order of a number field. Specify either the number of terms of the series to evaluate or the error bound required.
ALGORITHM:
The sum of the Green’s function at the archimedean places and the places of bad reduction.
If function is defined over \(\QQ\) uses Wells’ Algorithm, which allows us to not have to factor the resultant.
INPUT:
P
– a projective point
kwds:
badprimes
– (optional) a list of primes of bad reductionN
– (default: 10) positive integer. number of terms of the series to use in the local green functionsprec
– (default: 100) positive integer, float point or \(p\)-adic precisionerror_bound
– (optional) a positive real number
OUTPUT: a real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, 2*x*y]); sage: f.canonical_height(P.point([5,4]), error_bound=0.001) 2.1970553519503404898926835324 sage: f.canonical_height(P.point([2,1]), error_bound=0.001) 1.0984430632822307984974382955
Notice that preperiodic points may not return exactly 0:
sage: R.<X> = PolynomialRing(QQ) sage: K.<a> = NumberField(X^2 + X - 1) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2-2*y^2, y^2]) sage: Q = P.point([a,1]) sage: f.canonical_height(Q, error_bound=0.000001) # Answer only within error_bound of 0 5.7364919788790160119266380480e-8 sage: f.nth_iterate(Q,2) == Q # but it is indeed preperiodic True
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: X = P.subscheme(x^2-y^2); sage: f = DynamicalSystem_projective([x^2,y^2, 4*z^2], domain=X); sage: Q = X([4,4,1]) sage: f.canonical_height(Q, badprimes=[2]) 0.0013538030870311431824555314882
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: X = P.subscheme(x^2-y^2); sage: f = DynamicalSystem_projective([x^2,y^2, 30*z^2], domain=X) sage: Q = X([4, 4, 1]) sage: f.canonical_height(Q, badprimes=[2,3,5], prec=200) 2.7054056208276961889784303469356774912979228770208655455481
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([1000*x^2-29*y^2, 1000*y^2]) sage: Q = P(-1/4, 1) sage: f.canonical_height(Q, error_bound=0.01) 3.7996079979254623065837411853
sage: RSA768 = 123018668453011775513049495838496272077285356959533479219732245215\ ....: 1726400507263657518745202199786469389956474942774063845925192557326303453731548\ ....: 2685079170261221429134616704292143116022212404792747377940806653514195974598569\ ....: 02143413 sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([RSA768*x^2 + y^2, x*y]) sage: Q = P(RSA768,1) sage: f.canonical_height(Q, error_bound=0.00000000000000001) 931.18256422718241278672729195
sage: P.<x,y>=ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([2*( -2*x^3 + 3*(x^2*y)) + 3*y^3,3*y^3]) sage: f.canonical_height(P(1,0)) 0.00000000000000000000000000000
- conjugate(M, adjugate=False, normalize=False)#
Conjugate this dynamical system by
M
, i.e. \(M^{-1} \circ f \circ M\).If possible the new map will be defined over the same space. Otherwise, will try to coerce to the base ring of
M
.INPUT:
M
– a square invertible matrixadjugate
– (default:False
) boolean, also classically called adjoint, takes a square matrixM
and finds the transpose of its cofactor matrix. Used for conjugation in place of inverse when specified'True'
. Functionality is the same in projective space.normalize
– (default:False
) boolean, if normalize is'True'
, then the functionnormalize_coordinates
is called.
OUTPUT: a dynamical system
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.conjugate(matrix([[1,2], [0,1]])) Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (x^2 + 4*x*y + 3*y^2 : y^2)
sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2+1) sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^3+y^3, y^3]) sage: f.conjugate(matrix([[i,0], [0,-i]])) Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (-x^3 + y^3 : -y^3)
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2+y^2 ,y^2, y*z]) sage: f.conjugate(matrix([[1,2,3], [0,1,2], [0,0,1]])) Dynamical System of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x : y : z) to (x^2 + 4*x*y + 3*y^2 + 6*x*z + 9*y*z + 7*z^2 : y^2 + 2*y*z : y*z + 2*z^2)
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.conjugate(matrix([[2,0], [0,1/2]])) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 + 1/8*y^2 : 1/2*y^2)
sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2+1) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([1/3*x^2+1/2*y^2, y^2]) sage: f.conjugate(matrix([[i,0], [0,-i]])) Dynamical System of Projective Space of dimension 1 over Number Field in i with defining polynomial x^2 + 1 Defn: Defined on coordinates by sending (x : y) to ((1/3*i)*x^2 + (1/2*i)*y^2 : (-i)*y^2)
Todo
Use the left and right action functionality to replace the code below with #return DynamicalSystem_projective(M.inverse()*self*M, domain=self.codomain()) once there is a function to pass to the smallest field of definition.
- critical_height(**kwds)#
Compute the critical height of this dynamical system.
The critical height is defined by J. Silverman as the sum of the canonical heights of the critical points. This must be dimension 1 and defined over a number field or number field order.
The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.
INPUT:
kwds:
badprimes
– (optional) a list of primes of bad reductionN
– (default: 10) positive integer; number of terms of the series to use in the local green functionsprec
– (default: 100) positive integer, float point or \(p\)-adic precisionerror_bound
– (optional) a positive real numberuse_algebraic_closure
– boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.
OUTPUT: real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3+7*y^3, 11*y^3]) sage: f.critical_height() 1.1989273321156851418802151128
sage: K.<w> = QuadraticField(2) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2+w*y^2, y^2]) sage: f.critical_height() 0.16090842452312941163719755472
Postcritically finite maps have critical height 0:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3-3/4*x*y^2 + 3/4*y^3, y^3]) sage: f.critical_height(error_bound=0.0001) 0.00000000000000000000000000000
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3+3*x*y^2, y^3]) sage: f.critical_height(use_algebraic_closure=False) 0.000023477016733897112886491967991 sage: f.critical_height() 0.000023477016733897112886491967991
- critical_point_portrait(check=True, use_algebraic_closure=True)#
If this dynamical system is post-critically finite, return its critical point portrait.
This is the directed graph of iterates starting with the critical points. Must be dimension 1. If
check
isTrue
, then the map is first checked to see if it is postcritically finite.The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.
INPUT:
check
– boolean (default: True)use_algebraic_closure
– boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.
OUTPUT: a digraph
EXAMPLES:
sage: R.<z> = QQ[] sage: K.<v> = NumberField(z^6 + 2*z^5 + 2*z^4 + 2*z^3 + z^2 + 1) sage: PS.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2+v*y^2, y^2]) sage: f.critical_point_portrait(check=False) # long time Looped digraph on 6 vertices
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^5 + 5/4*x*y^4, y^5]) sage: f.critical_point_portrait(check=False) Looped digraph on 5 vertices
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + 2*y^2, y^2]) sage: f.critical_point_portrait() Traceback (most recent call last): ... TypeError: map must be post-critically finite
sage: R.<t> = QQ[] sage: K.<v> = NumberField(t^3 + 2*t^2 + t + 1) sage: phi = K.embeddings(QQbar)[0] sage: P.<x, y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 + v*y^2, y^2]) sage: f.change_ring(phi).critical_point_portrait() Looped digraph on 4 vertices
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4]) sage: f.critical_point_portrait(use_algebraic_closure=False) #long time Looped digraph on 6 vertices
sage: P.<x,y> = ProjectiveSpace(QQbar,1) sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4]) sage: f.critical_point_portrait() #long time Looped digraph on 6 vertices
sage: P.<x,y> = ProjectiveSpace(GF(3),1) sage: f = DynamicalSystem_projective([x^2 + x*y - y^2, x*y]) sage: f.critical_point_portrait(use_algebraic_closure=False) Looped digraph on 6 vertices sage: f.critical_point_portrait() #long time Looped digraph on 6 vertices
- critical_points(R=None)#
Return the critical points of this dynamical system defined over the ring
R
or the base ring of this map.Must be dimension 1.
INPUT:
R
– (optional) a ring
OUTPUT: a list of projective space points defined over
R
EXAMPLES:
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3-2*x*y^2 + 2*y^3, y^3]) sage: f.critical_points() [(1 : 0)] sage: K.<w> = QuadraticField(6) sage: f.critical_points(K) [(-1/3*w : 1), (1/3*w : 1), (1 : 0)]
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([2*x^2-y^2, x*y]) sage: f.critical_points(QQbar) [(-0.7071067811865475?*I : 1), (0.7071067811865475?*I : 1)]
- critical_subscheme()#
Return the critical subscheme of this dynamical system.
OUTPUT: projective subscheme
EXAMPLES:
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3-2*x*y^2 + 2*y^3, y^3]) sage: f.critical_subscheme() Closed subscheme of Projective Space of dimension 1 over Rational Field defined by: 9*x^2*y^2 - 6*y^4
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([2*x^2-y^2, x*y]) sage: f.critical_subscheme() Closed subscheme of Projective Space of dimension 1 over Rational Field defined by: 4*x^2 + 2*y^2
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([2*x^2-y^2, x*y, z^2]) sage: f.critical_subscheme() Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 8*x^2*z + 4*y^2*z
sage: P.<x,y,z,w> = ProjectiveSpace(GF(81),3) sage: g = DynamicalSystem_projective([x^3+y^3, y^3+z^3, z^3+x^3, w^3]) sage: g.critical_subscheme() Closed subscheme of Projective Space of dimension 3 over Finite Field in z4 of size 3^4 defined by: 0
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2,x*y]) sage: f.critical_subscheme() Traceback (most recent call last): ... TypeError: the function is not a morphism
- degree_sequence(iterates=2)#
Return sequence of degrees of normalized iterates starting with the degree of this dynamical system.
INPUT:
iterates
– (default: 2) positive integerOUTPUT: list of integers
EXAMPLES:
sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([Z^2, X*Y, Y^2]) sage: f.degree_sequence(15) [2, 3, 5, 8, 11, 17, 24, 31, 45, 56, 68, 91, 93, 184, 275]
sage: F.<t> = PolynomialRing(QQ) sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2) sage: f = DynamicalSystem_projective([Y*Z, X*Y, Y^2 + t*X*Z]) sage: f.degree_sequence(5) [2, 3, 5, 8, 13]
sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([X^2, Y^2, Z^2]) sage: f.degree_sequence(10) [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
sage: P2.<X,Y,Z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem_projective([X*Y, Y*Z+Z^2, Z^2]) sage: f.degree_sequence(10) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
- dehomogenize(n)#
Return the standard dehomogenization at the
n[0]
coordinate for the domain and then[1]
coordinate for the codomain.Note that the new function is defined over the fraction field of the base ring of this map.
INPUT:
n
– a tuple of nonnegative integers; ifn
is an integer, then the two values of the tuple are assumed to be the same
OUTPUT:
If the dehomogenizing indices are the same for the domain and codomain, then a
DynamicalSystem_affine
given by dehomogenizing the source and target of \(self\) with respect to the given indices is returned. If the dehomogenizing indices for the domain and codomain are different then the resulting affine patches are different and a scheme morphism is returned.EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.dehomogenize(0) Dynamical System of Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (y) to (y^2/(y^2 + 1)) sage: f.dehomogenize((0, 1)) Scheme morphism: From: Affine Space of dimension 1 over Integer Ring To: Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (y) to ((y^2 + 1)/y^2)
- dynamical_degree(N=3, prec=53)#
Return an approximation to the dynamical degree of this dynamical system. The dynamical degree is defined as \(\lim_{n \to \infty} \sqrt[n]{\deg(f^n)}\).
INPUT:
N
– (default: 3) positive integer, iterate to use for approximationprec
– (default: 53) positive integer, real precision to use when computing root
OUTPUT: real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + (x*y), y^2]) sage: f.dynamical_degree() 2.00000000000000
sage: P2.<X,Y,Z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem_projective([X*Y, Y*Z+Z^2, Z^2]) sage: f.dynamical_degree(N=5, prec=100) 1.4309690811052555010452244131
- dynatomic_polynomial(period)#
For a dynamical system of \(\mathbb{P}^1\) compute the dynatomic polynomial.
The dynatomic polynomial is the analog of the cyclotomic polynomial and its roots are the points of formal period \(period\). If possible the division is done in the coordinate ring of this map and a polynomial is returned. In rings where that is not possible, a
FractionField
element will be returned. In certain cases, when the conversion back to a polynomial fails, aSymbolRing
element will be returned.ALGORITHM:
For a positive integer \(n\), let \([F_n,G_n]\) be the coordinates of the \(nth\) iterate of \(f\). Then construct
\[\Phi^{\ast}_n(f)(x,y) = \sum_{d \mid n} (yF_d(x,y) - xG_d(x,y))^{\mu(n/d)},\]where \(\mu\) is the Möbius function.
For a pair \([m,n]\), let \(f^m = [F_m,G_m]\). Compute
\[\Phi^{\ast}_{m,n}(f)(x,y) = \Phi^{\ast}_n(f)(F_m,G_m) / \Phi^{\ast}_n(f)(F_{m-1},G_{m-1})\]REFERENCES:
INPUT:
period
– a positive integer or a list/tuple \([m,n]\) where \(m\) is the preperiod and \(n\) is the period
OUTPUT:
If possible, a two variable polynomial in the coordinate ring of this map. Otherwise a fraction field element of the coordinate ring of this map. Or, a
SymbolicRing
element.Todo
Do the division when the base ring is \(p\)-adic so that the output is a polynomial.
Convert back to a polynomial when the base ring is a function field (not over \(\QQ\) or \(F_p\)).
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.dynatomic_polynomial(2) x^2 + x*y + 2*y^2
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.dynatomic_polynomial(4) 2*x^12 + 18*x^10*y^2 + 57*x^8*y^4 + 79*x^6*y^6 + 48*x^4*y^8 + 12*x^2*y^10 + y^12
sage: P.<x,y> = ProjectiveSpace(CC,1) sage: f = DynamicalSystem_projective([x^2 + y^2, 3*x*y]) sage: f.dynatomic_polynomial(3) 13.0000000000000*x^6 + 117.000000000000*x^4*y^2 + 78.0000000000000*x^2*y^4 + y^6
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - 10/9*y^2, y^2]) sage: f.dynatomic_polynomial([2,1]) x^4*y^2 - 11/9*x^2*y^4 - 80/81*y^6
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2]) sage: f.dynatomic_polynomial([2,3]) x^12 - 95/8*x^10*y^2 + 13799/256*x^8*y^4 - 119953/1024*x^6*y^6 + 8198847/65536*x^4*y^8 - 31492431/524288*x^2*y^10 + 172692729/16777216*y^12
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.dynatomic_polynomial([1,2]) x^2 - x*y
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 - y^3, 3*x*y^2]) sage: f.dynatomic_polynomial([0,4])==f.dynatomic_polynomial(4) True
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y, z^2]) sage: f.dynatomic_polynomial(2) Traceback (most recent call last): ... TypeError: does not make sense in dimension >1
sage: P.<x,y> = ProjectiveSpace(Qp(5),1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.dynatomic_polynomial(2) (x^4*y + (2 + O(5^20))*x^2*y^3 - x*y^4 + (2 + O(5^20))*y^5)/(x^2*y - x*y^2 + y^3)
sage: L.<t> = PolynomialRing(QQ) sage: P.<x,y> = ProjectiveSpace(L,1) sage: f = DynamicalSystem_projective([x^2 + t*y^2, y^2]) sage: f.dynatomic_polynomial(2) x^2 + x*y + (t + 1)*y^2
sage: K.<c> = PolynomialRing(ZZ) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2]) sage: f.dynatomic_polynomial([1, 2]) x^2 - x*y + (c + 1)*y^2
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.dynatomic_polynomial(2) x^2 + x*y + 2*y^2 sage: R.<X> = PolynomialRing(QQ) sage: K.<c> = NumberField(X^2 + X + 2) sage: PP = P.change_ring(K) sage: ff = f.change_ring(K) sage: p = PP((c, 1)) sage: ff(ff(p)) == p True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.dynatomic_polynomial([2, 2]) x^4 + 4*x^2*y^2 + y^4 sage: R.<X> = PolynomialRing(QQ) sage: K.<c> = NumberField(X^4 + 4*X^2 + 1) sage: PP = P.change_ring(K) sage: ff = f.change_ring(K) sage: p = PP((c, 1)) sage: ff.nth_iterate(p, 4) == ff.nth_iterate(p, 2) True
sage: P.<x,y> = ProjectiveSpace(CC, 1) sage: f = DynamicalSystem_projective([x^2 - CC.0/3*y^2, y^2]) sage: f.dynatomic_polynomial(2) (x^4*y + (-0.666666666666667*I)*x^2*y^3 - x*y^4 + (-0.111111111111111 - 0.333333333333333*I)*y^5)/(x^2*y - x*y^2 + (-0.333333333333333*I)*y^3)
sage: P.<x,y> = ProjectiveSpace(CC, 1) sage: f = DynamicalSystem_projective([x^2-CC.0/5*y^2, y^2]) sage: f.dynatomic_polynomial(2) x^2 + x*y + (1.00000000000000 - 0.200000000000000*I)*y^2
sage: L.<t> = PolynomialRing(QuadraticField(2).maximal_order()) sage: P.<x, y> = ProjectiveSpace(L.fraction_field() , 1) sage: f = DynamicalSystem_projective([x^2 + (t^2 + 1)*y^2 , y^2]) sage: f.dynatomic_polynomial(2) x^2 + x*y + (t^2 + 2)*y^2
sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^2 - 5*y^2, y^2]) sage: f.dynatomic_polynomial([3,0 ]) 0
- green_function(P, v, **kwds)#
Evaluate the local Green’s function at the place
v
forP
withN
terms of the series or to within a given error bound.Must be over a number field or order of a number field. Note that this is the absolute local Green’s function so is scaled by the degree of the base field.
Use
v=0
for the archimedean place over \(\QQ\) or field embedding. Non-archimedean places are prime ideals for number fields or primes over \(\QQ\).ALGORITHM:
See Exercise 5.29 and Figure 5.6 of [Sil2007].
INPUT:
P
– a projective pointv
– non-negative integer. a place, use0
for the archimedean place
kwds:
N
– (optional - default: 10) positive integer. number of terms of the series to useprec
– (default: 100) positive integer, float point or \(p\)-adic precisionerror_bound
– (optional) a positive real number
OUTPUT: a real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2, x*y]); sage: Q = P(5, 1) sage: f.green_function(Q, 0, N=30) 1.6460930159932946233759277576
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2, x*y]); sage: Q = P(5, 1) sage: f.green_function(Q, 0, N=200, prec=200) 1.6460930160038721802875250367738355497198064992657997569827
sage: K.<w> = QuadraticField(3) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([17*x^2+1/7*y^2, 17*w*x*y]) sage: f.green_function(P.point([w, 2], False), K.places()[1]) 1.7236334013785676107373093775 sage: f.green_function(P([2, 1]), K.ideal(7), N=7) 0.48647753726382832627633818586 sage: f.green_function(P([w, 1]), K.ideal(17), error_bound=0.001) -0.70813041039490996737374178059
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2, x*y]) sage: f.green_function(P.point([5,2], False), 0, N=30) 1.7315451844777407992085512000 sage: f.green_function(P.point([2,1], False), 0, N=30) 0.86577259223181088325226209926 sage: f.green_function(P.point([1,1], False), 0, N=30) 0.43288629610862338612700146098
- height_difference_bound(prec=None)#
Return an upper bound on the different between the canonical height of a point with respect to this dynamical system and the absolute height of the point.
This map must be a morphism.
ALGORITHM:
Uses a Nullstellensatz argument to compute the constant. For details: see [Hutz2015].
INPUT:
prec
– (default:RealField
default) positive integer, float point precision
OUTPUT: a real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.height_difference_bound() 1.38629436111989 sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem_projective([4*x^2 + 100*y^2, 210*x*y, 10000*z^2]) sage: f.height_difference_bound() 10.3089526606443
A number field example:
sage: R.<x> = QQ[] sage: K.<c> = NumberField(x^3 - 2) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([1/(c+1)*x^2 + c*y^2, 210*x*y, 10000*z^2]) sage: f.height_difference_bound() 11.3683039374269
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2) sage: f = DynamicalSystem_projective([x^2, QQbar(sqrt(-1))*y^2, QQbar(sqrt(3))*z^2]) sage: f.height_difference_bound() 2.89037175789616
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([5*x^2 + 3*x*y , y^2 + 3*x^2]) sage: f.height_difference_bound(prec=100) 5.3375380797013179737224159274
- is_PGL_minimal(prime_list=None)#
Check if this dynamical system is a minimal model in its conjugacy class.
See [BM2012] and [Mol2015] for a description of the algorithm. For polynomial maps it uses [HS2018].
INPUT:
prime_list
– (optional) list of primes to check minimality
OUTPUT: boolean
EXAMPLES:
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([X^2+3*Y^2, X*Y]) sage: f.is_PGL_minimal() True
sage: PS.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y]) sage: f.is_PGL_minimal() False
sage: PS.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, y^2]) sage: f.is_PGL_minimal() False
- is_dynamical_belyi_map()#
Return if this dynamical system is a dynamical Belyi map.
We define a dynamical Belyi map to be a map conjugate to a dynamical system \(f: \mathbb{P}^1 \to \mathbb{P}^1\) where the branch points are contained in \(\{0, 1, \infty \}\) and the postcritical set is contained in \(\{0, 1, \infty \}\).
Output: Boolean
EXAMPLES:
sage: P.<x,y>=ProjectiveSpace(QQ, 1) sage: f=DynamicalSystem_projective([-2*x^3 - 9*x^2*y - 12*x*y^2 - 6*y^3, y^3]) sage: f.is_dynamical_belyi_map() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([5*x^7 - 7*x^6*y, -7*x*y^6 + 5*y^7]) sage: f.is_dynamical_belyi_map() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2,y^2]) sage: f.is_dynamical_belyi_map() False
sage: F = QuadraticField(-7) sage: P.<x,y> = ProjectiveSpace(F, 1) sage: f = DynamicalSystem_projective([5*x^7 - 7*x^6*y, -7*x*y^6 + 5*y^7]) sage: f.is_dynamical_belyi_map() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([2*x^3 + 3*x^2*y - 3*x*y^2 + 2*y^3, x^3 + y^3]) sage: f.is_dynamical_belyi_map() False
sage: R.<t> = PolynomialRing(QQ) sage: N.<c> = NumberField(t^3 - 2) sage: P.<x,y> = ProjectiveSpace(N, 1) sage: f=DynamicalSystem_projective([x^2 + c*y^2, x*y]) sage: f.is_dynamical_belyi_map() False
sage: P.<x,y> = ProjectiveSpace(GF(7), 1) sage: f = DynamicalSystem_projective([x^3 + 6*y^3, y^3]) sage: f.is_dynamical_belyi_map() False
- is_postcritically_finite(err=0.01, use_algebraic_closure=True)#
Determine if this dynamical system is post-critically finite.
Only for endomorphisms of \(\mathbb{P}^1\). It checks if each critical point is preperiodic. The optional parameter
err
is passed intois_preperiodic()
as part of the preperiodic check.The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.
INPUT:
err
– (default: 0.01) positive real numberuse_algebraic_closure
– boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.
OUTPUT: boolean
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.is_postcritically_finite() True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3- y^3, y^3]) sage: f.is_postcritically_finite() False
sage: R.<z> = QQ[] sage: K.<v> = NumberField(z^8 + 3*z^6 + 3*z^4 + z^2 + 1) sage: PS.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^3+v*y^3, y^3]) sage: f.is_postcritically_finite() # long time True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2+16*x*y+16*y^2, -3*x^2-4*x*y-4*y^2]) sage: f.is_postcritically_finite() True
sage: K = UniversalCyclotomicField() sage: P.<x,y> = ProjectiveSpace(K,1) sage: F = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P) sage: F.is_postcritically_finite() True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4]) sage: f.is_postcritically_finite(use_algebraic_closure=False) #long time True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^4 - x^2*y^2 + y^4, y^4]) sage: f.is_postcritically_finite(use_algebraic_closure=False) False
sage: P.<x,y> = ProjectiveSpace(QQbar,1) sage: f = DynamicalSystem_projective([x^4 - x^2*y^2, y^4]) sage: f.is_postcritically_finite() False
- minimal_model(return_transformation=False, prime_list=None, algorithm=None, check_primes=True)#
Determine if this dynamical system is minimal.
This dynamical system must be defined over the projective line over the rationals. In particular, determine if this map is affine minimal, which is enough to decide if it is minimal or not. See Proposition 2.10 in [BM2012].
INPUT:
return_transformation
– (default:False
) boolean; this signals a return of the \(PGL_2\) transformation to conjugate this map to the calculated minimal modelprime_list
– (optional) a list of primes, in case one only wants to determine minimality at those specific primesalgorithm
– (optional) string; can be one of the following:check_primes
– (optional) boolean: this signals whether tocheck whether each element in prime_list is a prime
OUTPUT:
a dynamical system on the projective line which is a minimal model of this map
a \(PGL(2,\QQ)\) element which conjugates this map to a minimal model
EXAMPLES:
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([X^2+3*Y^2, X*Y]) sage: f.minimal_model(return_transformation=True) ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 + 3*Y^2 : X*Y) , [1 0] [0 1] )
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([7365/2*X^4 + 6282*X^3*Y + 4023*X^2*Y^2 + 1146*X*Y^3 + 245/2*Y^4, ....: -12329/2*X^4 - 10506*X^3*Y - 6723*X^2*Y^2 - 1914*X*Y^3 - 409/2*Y^4]) sage: f.minimal_model(return_transformation=True) ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (9847*X^4 + 28088*X^3*Y + 30048*X^2*Y^2 + 14288*X*Y^3 + 2548*Y^4 : -12329*X^4 - 35164*X^3*Y - 37614*X^2*Y^2 - 17884*X*Y^3 - 3189*Y^4), [2 1] [0 1] )
sage: PS.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y]) sage: f.minimal_model() Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 + 12*x*y + 42*y^2 : 2*x*y)
sage: PS.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y + 42*y^2]) sage: g,M = f.minimal_model(return_transformation=True, algorithm='BM') sage: f.conjugate(M) == g True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([2*x^2, y^2]) sage: f.minimal_model(return_transformation=True) ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 : y^2) , [1 0] [0 2] ) sage: f.minimal_model(prime_list=[3]) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 : y^2)
REFERENCES:
- multiplier(P, n, check=True)#
Return the multiplier of the point
P
of periodn
with respect to this dynamical system.INPUT:
P
– a point on domain of this mapn
– a positive integer, the period ofP
check
– (default:True
) boolean; verify thatP
has periodn
OUTPUT:
A square matrix of size
self.codomain().dimension_relative()
in thebase_ring
of this dynamical system.EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2,y^2, 4*z^2]); sage: Q = P.point([4,4,1], False); sage: f.multiplier(Q,1) [2 0] [0 2]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([7*x^2 - 28*y^2, 24*x*y]) sage: f.multiplier(P(2,5), 4) [231361/20736]
sage: P.<x,y> = ProjectiveSpace(CC,1) sage: f = DynamicalSystem_projective([x^3 - 25*x*y^2 + 12*y^3, 12*y^3]) sage: f.multiplier(P(1,1), 5) [0.389017489711934]
sage: P.<x,y> = ProjectiveSpace(RR,1) sage: f = DynamicalSystem_projective([x^2-2*y^2, y^2]) sage: f.multiplier(P(2,1), 1) [4.00000000000000]
sage: P.<x,y> = ProjectiveSpace(Qp(13),1) sage: f = DynamicalSystem_projective([x^2-29/16*y^2, y^2]) sage: f.multiplier(P(5,4), 3) [6 + 8*13 + 13^2 + 8*13^3 + 13^4 + 8*13^5 + 13^6 + 8*13^7 + 13^8 + 8*13^9 + 13^10 + 8*13^11 + 13^12 + 8*13^13 + 13^14 + 8*13^15 + 13^16 + 8*13^17 + 13^18 + 8*13^19 + O(13^20)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2-y^2, y^2]) sage: f.multiplier(P(0,1), 1) Traceback (most recent call last): ... ValueError: (0 : 1) is not periodic of period 1
- multiplier_spectra(n, formal=False, type='point', use_algebraic_closure=True, check=True)#
Computes the
n
multiplier spectra of this dynamical system.This is the set of multipliers of all peroidic points of period
n
included with the appropriate multiplicity. User can also specify to compute the formaln
multiplier spectra instead which includes the multipliers of all formal periodic points of periodn
with appropriate multiplicity. The map must be defined over projective space over a number field or finite field.By default, the computations are done over the algebraic closure of the base field. If the map is defined over projective space of dimension 1, the computation can be done over the minimal extension of the base field that contains the periodic points. Otherwise, it will be done over the base ring of the map.
INPUT:
n
– a positive integer, the periodformal
– (default:False
) boolean;True
specifies to find the formaln
multiplier spectra of this map andFalse
specifies to find then
multiplier spectratype
– (default:'point'
) string; either'point'
or'cycle'
depending on whether you compute one multiplier per point or one per cycleuse_algebraic_closure
– boolean (default:True
) – IfTrue
uses the algebraic closure. Using the algebraic closure can sometimes lead to numerical instability and extraneous errors. For most accurate results in dimension 1, set toFalse
. IfFalse
, and the map is defined over projective space of dimension 1, uses the smallest extension of the base field containing all the periodic points. If the map is defined over projective space of dimension greater than 1, then the base ring of the map is used.check
– (defualt:True
) whether to check if the full multiplier spectra was computed. IfFalse
, can lead to mathematically incorrect answers in dimension greater than 1. Ignored ifuse_algebraic_closure
isTrue
or if this dynamical system is defined over projective space of dimension 1.
OUTPUT:
A list of field elements if the domain of the map is projective space of dimension 1. If the domain of the map is projective space of dimension greater than 1, a list of matrices
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2]) sage: sorted(f.multiplier_spectra(2, type='point')) [0, 1, 1, 1, 9] sage: sorted(f.multiplier_spectra(2, type='cycle')) [0, 1, 1, 9]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, z^2, y^2]) sage: f.multiplier_spectra(1) [ [ 2 1 - 1.732050807568878?*I] [ 0 -2], [ 2 1 + 1.732050807568878?*I] [ 0 0] [ 0 0] [ 0 -2], [ 0 -2], [ 0 -2], [ 0 0] [0 0] [ 2 -2] [ 0 -2], [0 0], [ 0 -2] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, z^2, y^2]) sage: f.multiplier_spectra(2, formal=True) [ [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [0 0] [0 0] [0 4], [0 0], [0 0], [0 4], [0 4], [0 0], [0 0], [0 4], [0 0], [0 0], [4 0] [4 0] [4 0] [4 0] [0 4], [0 4], [0 0], [0 0] ]
sage: set_verbose(None) sage: z = QQ['z'].0 sage: K.<w> = NumberField(z^4 - 4*z^2 + 1,'z') sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 - w/4*y^2, y^2]) sage: sorted(f.multiplier_spectra(2, formal=False, type='cycle')) [0, 0.0681483474218635? - 1.930649271699173?*I, 0.0681483474218635? + 1.930649271699173?*I, 5.931851652578137? + 0.?e-49*I]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([4608*x^10 - 2910096*x^9*y + 325988068*x^8*y^2 + 31825198932*x^7*y^3 - 4139806626613*x^6*y^4\ - 44439736715486*x^5*y^5 + 2317935971590902*x^4*y^6 - 15344764859590852*x^3*y^7 + 2561851642765275*x^2*y^8\ + 113578270285012470*x*y^9 - 150049940203963800*y^10, 4608*y^10]) sage: sorted(f.multiplier_spectra(1)) [-119820502365680843999, -7198147681176255644585/256, -3086380435599991/9, -3323781962860268721722583135/35184372088832, -4290991994944936653/2097152, 0, 529278480109921/256, 1061953534167447403/19683, 848446157556848459363/19683, 82911372672808161930567/8192, 3553497751559301575157261317/8192]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 7/4*y^2, y^2]) sage: f.multiplier_spectra(3, formal=True, type='cycle') [1, 1] sage: f.multiplier_spectra(3, formal=True, type='point') [1, 1, 1, 1, 1, 1]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^4 + 3*y^4, 4*x^2*y^2]) sage: f.multiplier_spectra(1, use_algebraic_closure=False) [0, -1, 1/128*a^5 - 13/384*a^4 + 5/96*a^3 + 1/16*a^2 + 43/128*a + 303/128, -1/288*a^5 + 1/96*a^4 + 1/24*a^3 - 1/3*a^2 + 5/32*a - 115/32, -5/1152*a^5 + 3/128*a^4 - 3/32*a^3 + 13/48*a^2 - 63/128*a - 227/128] sage: f.multiplier_spectra(1) [0, -1, 1.951373035591442?, -2.475686517795721? - 0.730035681602057?*I, -2.475686517795721? + 0.730035681602057?*I]
sage: P.<x,y> = ProjectiveSpace(GF(5), 1) sage: f = DynamicalSystem_projective([x^4 + 2*y^4, 4*x^2*y^2]) sage: f.multiplier_spectra(1, use_algebraic_closure=False) [0, 3*a + 3, 2*a + 1, 1, 1] sage: f.multiplier_spectra(1) [0, 2*z2 + 1, 3*z2 + 3, 1, 1]
sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^5 + 3*y^5, 4*x^3*y^2]) sage: f.multiplier_spectra(1) [0, -4.106544657178796?, -7/4, 1.985176555073911?, -3.064315948947558? - 1.150478041113253?*I, -3.064315948947558? + 1.150478041113253?*I]
sage: K = GF(3).algebraic_closure() sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^5 + 2*y^5, 4*x^3*y^2]) sage: f.multiplier_spectra(1) [0, z3 + 2, z3 + 1, z3, 1, 1]
- nth_iterate(P, n, **kwds)#
Return the
n
-th iterate of the pointP
by this dynamical system.If
normalize
isTrue
, then the coordinates are automatically normalized.Todo
Is there a more efficient way to do this?
INPUT:
P
– a point in this map’s domainn
– a positive integer
kwds:
normalize
– (default:False
) boolean
OUTPUT: a point in this map’s codomain
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, 2*y^2]) sage: Q = P(1,1) sage: f.nth_iterate(Q,4) (32768 : 32768)
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, 2*y^2]) sage: Q = P(1,1) sage: f.nth_iterate(Q, 4, normalize=True) (1 : 1)
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2, 2*y^2, z^2-x^2]) sage: Q = P(2,7,1) sage: f.nth_iterate(Q,2) (-16/7 : -2744 : 1)
sage: R.<t> = PolynomialRing(QQ) sage: P.<x,y,z> = ProjectiveSpace(R,2) sage: f = DynamicalSystem_projective([x^2+t*y^2, (2-t)*y^2, z^2]) sage: Q = P(2+t,7,t) sage: f.nth_iterate(Q,2) (t^4 + 2507*t^3 - 6787*t^2 + 10028*t + 16 : -2401*t^3 + 14406*t^2 - 28812*t + 19208 : t^4)
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: X = P.subscheme(x^2-y^2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2], domain=X) sage: f.nth_iterate(X(2,2,3), 3) (256 : 256 : 6561)
sage: K.<c> = FunctionField(QQ) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^3 - 2*x*y^2 - c*y^3, x*y^2]) sage: f.nth_iterate(P(c,1), 2) ((c^6 - 9*c^4 + 25*c^2 - c - 21)/(c^2 - 3) : 1) sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2+3*y^2, 2*y^2,z^2]) sage: f.nth_iterate(P(2, 7, 1), -2) Traceback (most recent call last): ... TypeError: must be a forward orbit
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.nth_iterate(P(0, 1), 3, check=False) (0 : 0) sage: f.nth_iterate(P(0, 1), 3) Traceback (most recent call last): ... ValueError: [0, 0] does not define a point in Projective Space of dimension 1 over Rational Field since all entries are zero
sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.nth_iterate(P(2,1), 3, normalize=False) (134217728 : 524288) sage: f.nth_iterate(P(2,1), 3, normalize=True) (256 : 1)
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem([x+y,y]) sage: Q = (3,1) sage: f.nth_iterate(Q,0) (3 : 1)
- nth_iterate_map(n, normalize=False)#
Return the
n
-th iterate of this dynamical system.ALGORITHM:
Uses a form of successive squaring to reducing computations.
Todo
This could be improved.
INPUT:
n
– positive integernormalize
– boolean; remove gcd’s during iteration
OUTPUT: a projective dynamical system
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.nth_iterate_map(2) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^4 + 2*x^2*y^2 + 2*y^4 : y^4)
sage: P.<x,y> = ProjectiveSpace(CC,1) sage: f = DynamicalSystem_projective([x^2-y^2, x*y]) sage: f.nth_iterate_map(3) Dynamical System of Projective Space of dimension 1 over Complex Field with 53 bits of precision Defn: Defined on coordinates by sending (x : y) to (x^8 + (-7.00000000000000)*x^6*y^2 + 13.0000000000000*x^4*y^4 + (-7.00000000000000)*x^2*y^6 + y^8 : x^7*y + (-4.00000000000000)*x^5*y^3 + 4.00000000000000*x^3*y^5 - x*y^7)
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2-y^2, x*y, z^2+x^2]) sage: f.nth_iterate_map(2) Dynamical System of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x : y : z) to (x^4 - 3*x^2*y^2 + y^4 : x^3*y - x*y^3 : 2*x^4 - 2*x^2*y^2 + y^4 + 2*x^2*z^2 + z^4)
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: X = P.subscheme(x*z-y^2) sage: f = DynamicalSystem_projective([x^2, x*z, z^2], domain=X) sage: f.nth_iterate_map(2) Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: -y^2 + x*z Defn: Defined on coordinates by sending (x : y : z) to (x^4 : x^2*z^2 : z^4)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([y^2 * z^3, y^3 * z^2, x^5]) sage: f.nth_iterate_map( 5, normalize=True) Dynamical System of Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x : y : z) to (y^202*z^443 : x^140*y^163*z^342 : x^645)
- nth_preimage_tree(Q, n, **kwds)#
Return the
n
-th pre-image tree rooted atQ
.This map must be an endomorphism of the projective line defined over a number field, algebraic field, or finite field.
INPUT:
Q
– a point in the domain of this mapn
– a positive integer, the depth of the pre-image tree
kwds:
return_points
– (default:False
) boolean; ifTrue
, return a list of lists where the indexi
is the level of the tree and the elements of the list at that index are thei
-th preimage points as an algebraic element of the splitting field of the polynomialf^n - Q = 0
numerical
– (default:False
) boolean; calculate pre-images numerically. Note if this is set toTrue
, preimage points are displayed as complex numbersprec
– (default: 100) positive integer; the precision of theComplexField
if we compute the preimage points numericallydisplay_labels
– (default:True
) boolean; whether to display vertex labels. Since labels can be very cluttered, can setdisplay_labels
toFalse
and usereturn_points
to get a hold of the points themselves, either as algebraic or complex numbersdisplay_complex
– (default:False
) boolean; display vertex labels as complex numbers. Note if this option is chosen that we must choose an embedding from the splitting fieldfield_def
of the nth-preimage equation into C. We make the choice of the first embedding returned byfield_def.embeddings(ComplexField())
digits
– a positive integer, the number of decimal digits to display for complex numbers. This only applies ifdisplay_complex
is set toTrue
OUTPUT:
If
return_points
isFalse
, aGraphPlot
object representing then
-th pre-image tree. Ifreturn_points
isTrue
, a tuple(GP, points)
, whereGP
is aGraphPlot
object, andpoints
is a list of lists as described above underreturn_points
.EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: Q = P(0,1) sage: f.nth_preimage_tree(Q, 2) GraphPlot object for Digraph on 7 vertices
sage: P.<x,y> = ProjectiveSpace(GF(3),1) sage: f = DynamicalSystem_projective([x^2 + x*y + y^2, y^2]) sage: Q = P(0,1) sage: f.nth_preimage_tree(Q, 2, return_points=True) (GraphPlot object for Digraph on 4 vertices, [[(0 : 1)], [(1 : 1)], [(0 : 1), (2 : 1)]])
- orbit(P, N, **kwds)#
Return the orbit of the point
P
by this dynamical system.Let \(F\) be this dynamical system. If
N
is an integer return \([P,F(P),\ldots,F^N(P)]\). IfN
is a list or tuple \(N=[m,k]\) return \([F^m(P),\ldots,F^k(P)]\). Automatically normalize the points ifnormalize=True
. Perform the checks on point initialization ifcheck=True
.INPUT:
P
– a point in this dynamical system’s domainn
– a non-negative integer or list or tuple of two non-negative integers
kwds:
check
– (default:True
) booleannormalize
– (default:False
) boolean
OUTPUT: a list of points in this dynamical system’s codomain
EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2+y^2, y^2-z^2, 2*z^2]) sage: f.orbit(P(1,2,1), 3) [(1 : 2 : 1), (5 : 3 : 2), (34 : 5 : 8), (1181 : -39 : 128)]
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2+y^2, y^2-z^2, 2*z^2]) sage: f.orbit(P(1,2,1), [2,4]) [(34 : 5 : 8), (1181 : -39 : 128), (1396282 : -14863 : 32768)]
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: X = P.subscheme(x^2-y^2) sage: f = DynamicalSystem_projective([x^2, y^2, x*z], domain=X) sage: f.orbit(X(2,2,3), 3, normalize=True) [(2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.orbit(P.point([1,2],False), 4, check=False) [(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]
sage: K.<c> = FunctionField(QQ) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2+c*y^2, y^2]) sage: f.orbit(P(0,1), 3) [(0 : 1), (c : 1), (c^2 + c : 1), (c^4 + 2*c^3 + c^2 + c : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2,y^2], domain=P) sage: f.orbit(P.point([1, 2], False), 4, check=False) [(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2, 2*y^2], domain=P) sage: f.orbit(P(2, 1),[-1, 4]) Traceback (most recent call last): ... TypeError: orbit bounds must be non-negative sage: f.orbit(P(2, 1), 0.1) Traceback (most recent call last): ... TypeError: Attempt to coerce non-integral RealNumber to Integer
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.orbit(P(0, 1), 3) Traceback (most recent call last): ... ValueError: [0, 0] does not define a point in Projective Space of dimension 1 over Rational Field since all entries are zero sage: f.orbit(P(0, 1), 3, check=False) [(0 : 1), (0 : 0), (0 : 0), (0 : 0)]
sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.orbit(P(2,1), 3, normalize=False) [(2 : 1), (8 : 2), (512 : 32), (134217728 : 524288)] sage: f.orbit(P(2, 1), 3, normalize=True) [(2 : 1), (4 : 1), (16 : 1), (256 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2, y^2, x*z]) sage: f.orbit((2/3,1/3), 3) [(2/3 : 1/3 : 1), (2/3 : 1/6 : 1), (2/3 : 1/24 : 1), (2/3 : 1/384 : 1)]
- periodic_points(n, minimal=True, formal=False, R=None, algorithm='variety', return_scheme=False)#
Computes the periodic points of period
n
of this dynamical system defined over the ringR
or the base ring of the map.This can be done either by finding the rational points on the variety defining the points of period
n
, or, for finite fields, finding the cycle of appropriate length in the cyclegraph. For small cardinality fields, the cyclegraph algorithm is effective for any map and length cycle, but is slow when the cyclegraph is large. The variety algorithm is good for small period, degree, and dimension, but is slow as the defining equations of the variety get more complicated.For rational maps, where there are potentially infinitely many periodic points of a given period, you must use the
return_scheme
option. Note that this scheme will include the indeterminacy locus.INPUT:
n
- a positive integerminimal
– (default:True
) boolean;True
specifies to find only the periodic points of minimal periodn
andFalse
specifies to find all periodic points of periodn
formal
– (default:False
) boolean;True
specifies to find the formal periodic points only. The formal periodic points are the points in the support of the dynatomic cycle.R
– (optional) a commutative ring. Defaults to the base ring of this map.algorithm
– (default:'variety'
) must be one of the following:'variety'
- find the rational points on the appropriate variety'cyclegraph'
- find the cycles from the cycle graph
return_scheme
– return a subscheme of the ambient space that defines then
th periodic points
OUTPUT:
A list of periodic points of this map or the subscheme defining the periodic points.
EXAMPLES:
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^2 - x*y + y^2, x^2 - y^2 + x*y]) sage: f.periodic_points(1) [(-0.50000000000000000? - 0.866025403784439?*I : 1), (-0.50000000000000000? + 0.866025403784439?*I : 1), (1 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QuadraticField(5,'t'), 2) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - z^2, z^2]) sage: f.periodic_points(2) [(-5/4 : -1 : 1), (-5/4 : -1/2*t + 1/2 : 1), (-5/4 : 0 : 1), (-5/4 : 1/2*t + 1/2 : 1), (-3/4 : -1 : 1), (-3/4 : 0 : 1), (1/4 : -1 : 1), (1/4 : -1/2*t + 1/2 : 1), (1/4 : 0 : 1), (1/4 : 1/2*t + 1/2 : 1), (7/4 : -1 : 1), (7/4 : 0 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2 , z^2]) sage: f.periodic_points(2, formal=True) [(-1/2 : 1 : 0), (-1/2 : 1 : 1)]
sage: w = QQ['w'].0 sage: K = NumberField(w^6 - 3*w^5 + 5*w^4 - 5*w^3 + 5*w^2 - 3*w + 1,'s') sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([x^2 + z^2, y^2 + x^2, z^2 + y^2]) sage: sorted(f.periodic_points(1), key=str) [(-2*s^5 + 4*s^4 - 5*s^3 + 3*s^2 - 4*s : -2*s^5 + 5*s^4 - 7*s^3 + 6*s^2 - 7*s + 3 : 1), (-s^5 + 3*s^4 - 4*s^3 + 4*s^2 - 4*s + 2 : -s^5 + 2*s^4 - 2*s^3 + s^2 - s : 1), (-s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 3*s + 1 : s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 4*s - 1 : 1), (1 : 1 : 1), (2*s^5 - 6*s^4 + 9*s^3 - 8*s^2 + 7*s - 4 : 2*s^5 - 5*s^4 + 7*s^3 - 5*s^2 + 6*s - 2 : 1), (s^5 - 2*s^4 + 2*s^3 + s : s^5 - 3*s^4 + 4*s^3 - 3*s^2 + 2*s - 1 : 1), (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 3*s - 1 : -s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 4*s + 2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - 2*z^2, z^2]) sage: f.periodic_points(2, False) [(-5/4 : -1 : 1), (-5/4 : 2 : 1), (-3/4 : -1 : 1), (-3/4 : 2 : 1), (0 : 1 : 0), (1/4 : -1 : 1), (1/4 : 2 : 1), (1 : 0 : 0), (1 : 1 : 0), (7/4 : -1 : 1), (7/4 : 2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - 2*z^2, z^2]) sage: f.periodic_points(2) [(-5/4 : -1 : 1), (-5/4 : 2 : 1), (1/4 : -1 : 1), (1/4 : 2 : 1)]
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.periodic_points(2, R=QQbar, minimal=False) [(-0.50000000000000000? - 1.322875655532296?*I : 1), (-0.50000000000000000? + 1.322875655532296?*I : 1), (0.50000000000000000? - 0.866025403784439?*I : 1), (0.50000000000000000? + 0.866025403784439?*I : 1), (1 : 0)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*z^2, y^2 - 3/4*z^2, z^2]) sage: f.periodic_points(2, formal=True) [(-1/2 : -1/2 : 1), (-1/2 : 3/2 : 1), (3/2 : -1/2 : 1)]
sage: P.<x,y> = ProjectiveSpace(GF(307), 1) sage: f = DynamicalSystem_projective([x^10 + y^10, y^10]) sage: f.periodic_points(16, minimal=True, algorithm='cyclegraph') [(69 : 1), (185 : 1), (120 : 1), (136 : 1), (97 : 1), (183 : 1), (170 : 1), (105 : 1), (274 : 1), (275 : 1), (154 : 1), (156 : 1), (87 : 1), (95 : 1), (161 : 1), (128 : 1)]
sage: P.<x,y> = ProjectiveSpace(GF(13^2, 't'), 1) sage: f = DynamicalSystem_projective([x^3 + 3*y^3, x^2*y]) sage: f.periodic_points(30, minimal=True, algorithm='cyclegraph') [(t + 3 : 1), (6*t + 6 : 1), (7*t + 1 : 1), (2*t + 8 : 1), (3*t + 4 : 1), (10*t + 12 : 1), (8*t + 10 : 1), (5*t + 11 : 1), (7*t + 4 : 1), (4*t + 8 : 1), (9*t + 1 : 1), (2*t + 2 : 1), (11*t + 9 : 1), (5*t + 7 : 1), (t + 10 : 1), (12*t + 4 : 1), (7*t + 12 : 1), (6*t + 8 : 1), (11*t + 10 : 1), (10*t + 7 : 1), (3*t + 9 : 1), (5*t + 5 : 1), (8*t + 3 : 1), (6*t + 11 : 1), (9*t + 12 : 1), (4*t + 10 : 1), (11*t + 4 : 1), (2*t + 7 : 1), (8*t + 12 : 1), (12*t + 11 : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([3*x^2 + 5*y^2, y^2]) sage: f.periodic_points(2, R=GF(3), minimal=False) [(2 : 1)] sage: f.periodic_points(2, R=GF(7)) []
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, x*y, z^2]) sage: f.periodic_points(1) Traceback (most recent call last): ... TypeError: use return_scheme=True
sage: R.<x> = QQ[] sage: K.<u> = NumberField(x^2 - x + 3) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: X = P.subscheme(2*x - y) sage: f = DynamicalSystem_projective([x^2 - y^2, 2*(x^2 - y^2), y^2 - z^2], domain=X) sage: f.periodic_points(2) [(-1/5*u - 1/5 : -2/5*u - 2/5 : 1), (1/5*u - 2/5 : 2/5*u - 4/5 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - y^2, x^2 - z^2, y^2 - z^2]) sage: f.periodic_points(1) [(-1 : 0 : 1)] sage: f.periodic_points(1, return_scheme=True) Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: -x^3 + x^2*y - y^3 + x*z^2, -x*y^2 + x^2*z - y^2*z + x*z^2, -y^3 + x^2*z + y*z^2 - z^3
sage: P.<x,y>=ProjectiveSpace(GF(3), 1) sage: f = DynamicalSystem_projective([x^2 - 2*y^2, y^2]) sage: f.periodic_points(2, R=GF(3^2,'t')) [(t + 2 : 1), (2*t : 1)]
sage: S.<c> = QQ[] sage: R.<x,y> = PolynomialRing(S, 2) sage: P = ProjectiveSpace(R) sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2]) sage: f.periodic_points(2, return_scheme=True) Closed subscheme of Projective Space of dimension 1 over Univariate Polynomial Ring in c over Rational Field defined by: x^2 + x*y + (c + 1)*y^2
sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem([x^2 - 2*y^2, y^2, z^2]) sage: X = f.periodic_points(2, minimal=False, formal=True, return_scheme=True) sage: len(X.defining_polynomials()) 19
- possible_periods(**kwds)#
Return the set of possible periods for rational periodic points of this dynamical system.
Must be defined over \(\ZZ\) or \(\QQ\).
ALGORITHM:
Calls
self.possible_periods()
modulo all primes of good reduction in rangeprime_bound
. Return the intersection of those lists.INPUT:
kwds:
prime_bound
– (default:[1, 20]
) a list or tuple oftwo positive integers or an integer for the upper bound
bad_primes
– (optional) a list or tuple of integer primes, the primes of bad reductionncpus
– (default: all cpus) number of cpus to use in parallel
OUTPUT: a list of positive integers
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2-29/16*y^2, y^2]) sage: f.possible_periods(ncpus=1) [1, 3]
sage: PS.<x,y> = ProjectiveSpace(1,QQ) sage: f = DynamicalSystem_projective([5*x^3 - 53*x*y^2 + 24*y^3, 24*y^3]) sage: f.possible_periods(prime_bound=[1,5]) Traceback (most recent call last): ... ValueError: no primes of good reduction in that range sage: f.possible_periods(prime_bound=[1,10]) [1, 4, 12] sage: f.possible_periods(prime_bound=[1,20]) [1, 4]
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([2*x^3 - 50*x*z^2 + 24*z^3, ....: 5*y^3 - 53*y*z^2 + 24*z^3, 24*z^3]) sage: f.possible_periods(prime_bound=10) [1, 2, 6, 20, 42, 60, 140, 420] sage: f.possible_periods(prime_bound=20) # long time [1, 20]
- postcritical_set(check=True)#
Return the postcritical set of this dynamical system.
Raises an error if this dynamical system is not postcritically finite.
The postcritical set is union of points which are in the forward orbits of the critical points. In other words, the set of points \(Q\) such that \(f^n(P) = Q\) for some positive integer \(n\) and critical point \(P\), where \(f\) is this map.
Note that the orbit of all critical points is found, even if the critical points are defined in an extension of the base ring of this dynamical system. We extend to the field defined by
f.field_of_definition_critical()
, wheref
is this map.INPUT:
check
– (default:True
) boolean; whether to check if this dynamical system is postcritically finite or not.
OUTPUT: The set of postcritical points.
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([x^3 - 3/2* x*y^2, y^3]) sage: f.postcritical_set() [(1/2*a : 1), (-1/2*a : 1), (1 : 0)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([3*x^3 - 9/2* x^2*y+y^3, y^3]) sage: f.postcritical_set(check=False) [(1 : 1), (-1/2 : 1), (1 : 0)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([-4*y^2, 9*x^2 - 12*x*y]) sage: f.postcritical_set() [(1 : 1), (4/3 : 1), (1 : 0), (0 : 1)]
sage: K.<v> = QuadraticField(2) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem([x^2 + (-2)*y^2, y^2]) sage: m = matrix(K, 2, 2, [v, 1, 0, 1]) sage: g = f.conjugate(m) sage: g.postcritical_set() [(-3/2*a : 1), (1/2*a : 1), (1 : 0)]
sage: F.<z> = FiniteField(9) sage: P.<x,y> = ProjectiveSpace(F, 1) sage: f = DynamicalSystem([x^2 + (-2)*y^2, y^2]) sage: m = matrix(F, 2, 2, [z, 1, 0, 1]) sage: g = f.conjugate(m) sage: g.postcritical_set() [(1 : 0), (0 : 1), (a + 2 : 1)]
- preperiodic_points(m, n, **kwds)#
Computes the preperiodic points of period
m, n
of this dynamical system defined over the ringR
or the base ring of the map.This is done by finding the rational points on the variety defining the points of period
m, n
.For rational maps, where there are potentially infinitely many periodic points of a given period, you must use the
return_scheme
option. Note that this scheme will include the indeterminacy locus.INPUT:
n
- a positive integer, the periodm
- a non negative integer, the preperiod
kwds:
minimal
– (default:True
) boolean;True
specifies to find only the preperiodic points of minimal periodm
,``n`` andFalse
specifies to find all preperiodic points of periodm
,n
formal
– (default:False
) boolean;True
specifies to find the formal periodic points only. The formal periodic points are the points in the support of the dynatomic cycle.R
– (default: the base ring of the dynamical system) a commutative ring over which to find the preperiodic pointsreturn_scheme
– (default:False
) boolean; return a subscheme of the ambient space that defines them
,``n`` th preperiodic points
OUTPUT:
A list of preperiodic points of this map or the subscheme defining the preperiodic points.
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.preperiodic_points(0, 1) [(-0.618033988749895? : 1), (1 : 0), (1.618033988749895? : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2]) sage: f.preperiodic_points(1, 3) [(-5/4 : 1), (1/4 : 1), (7/4 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2 , z^2]) sage: f.preperiodic_points(0, 2, formal=True) [(-1/2 : 1 : 0), (-1/2 : 1 : 1)]
sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^2 - x*y + 2*y^2, x^2 - y^2]) sage: f.preperiodic_points(1, 2, minimal=False) [(-3.133185666641252? : 1), (-1 : 1), (-0.3478103847799310? - 1.028852254136693?*I : 1), (-0.3478103847799310? + 1.028852254136693?*I : 1), (0.8165928333206258? - 0.6710067557437100?*I : 1), (0.8165928333206258? + 0.6710067557437100?*I : 1), (1 : 0), (1 : 1), (1.695620769559862? : 1), (3 : 1)]
sage: R.<w> = QQ[] sage: K.<s> = NumberField(w^6 - 3*w^5 + 5*w^4 - 5*w^3 + 5*w^2 - 3*w + 1) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([x^2 + z^2, y^2 + x^2, z^2 + y^2]) sage: sorted(f.preperiodic_points(0, 1), key=str) [(-2*s^5 + 4*s^4 - 5*s^3 + 3*s^2 - 4*s : -2*s^5 + 5*s^4 - 7*s^3 + 6*s^2 - 7*s + 3 : 1), (-s^5 + 3*s^4 - 4*s^3 + 4*s^2 - 4*s + 2 : -s^5 + 2*s^4 - 2*s^3 + s^2 - s : 1), (-s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 3*s + 1 : s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 4*s - 1 : 1), (1 : 1 : 1), (2*s^5 - 6*s^4 + 9*s^3 - 8*s^2 + 7*s - 4 : 2*s^5 - 5*s^4 + 7*s^3 - 5*s^2 + 6*s - 2 : 1), (s^5 - 2*s^4 + 2*s^3 + s : s^5 - 3*s^4 + 4*s^3 - 3*s^2 + 2*s - 1 : 1), (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 3*s - 1 : -s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 4*s + 2 : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 1/4*y^2, y^2]) sage: f.preperiodic_points(1, 1, formal=True) [(-1/2 : 1), (1 : 0)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2]) sage: f.preperiodic_points(0, 2, formal=True) [(-1/2 : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: K.<v> = QuadraticField(5) sage: phi = QQ.embeddings(K)[0] sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.preperiodic_points(1, 1, R=phi) [(-1/2*v - 1/2 : 1), (1/2*v - 1/2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: X = P.subscheme(2*x - y) sage: f = DynamicalSystem_projective([x^2 - y^2, 2*(x^2 - y^2), y^2 - z^2], domain=X) sage: f.preperiodic_points(1, 1) [(-1/4 : -1/2 : 1), (1 : 2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, z^2, y^2]) sage: f.preperiodic_points(1, 1) [(-3/2 : -1 : 1), (-3/2 : 1 : 1), (-1/2 : -1 : 1), (1/2 : -1 : 1), (1/2 : 1 : 1), (3/2 : -1 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: sorted(f.preperiodic_points(2, 1)) [(0 : 2 : 1), (0 : 3 : 1), (1 : 2 : 1), (1 : 3 : 1), (2 : 0 : 1), (2 : 1 : 0), (2 : 1 : 1), (2 : 2 : 1), (2 : 3 : 1), (2 : 4 : 1), (3 : 0 : 1), (3 : 1 : 0), (3 : 1 : 1), (3 : 2 : 1), (3 : 3 : 1), (3 : 4 : 1), (4 : 2 : 1), (4 : 3 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2) sage: f = DynamicalSystem_projective([x^2, x*y, z^2]) sage: f.preperiodic_points(2, 1, return_scheme=True, minimal=False) Closed subscheme of Projective Space of dimension 2 over Finite Field of size 5 defined by: 0, x^8*z^4 - x^4*z^8, x^7*y*z^4 - x^3*y*z^8
When the ring over which to find the preperiodic points is a number field, the ordering of the preperiodic points might depend on the architecture (32 or 64 bits):
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: R.<z> = QQ[] sage: K.<v> = NumberField(z^4 - z^2 - 1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: sorted(f.preperiodic_points(2, 1, R=K), key=str) [(-v : 1), (v : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2, z^2]) sage: f.preperiodic_points(0, 2, formal=True) [(-1/2 : 1 : 0), (-1/2 : 1 : 1)]
sage: S.<c> = QQ[] sage: R.<x,y> = PolynomialRing(S, 2) sage: P = ProjectiveSpace(R) sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2]) sage: f.preperiodic_points(1, 2, return_scheme=True) Closed subscheme of Projective Space of dimension 1 over Univariate Polynomial Ring in c over Rational Field defined by: x^2 - x*y + (c + 1)*y^2
- primes_of_bad_reduction(check=True)#
Determine the primes of bad reduction for this dynamical system.
Must be defined over a number field.
If
check
isTrue
, each prime is verified to be of bad reduction.ALGORITHM:
\(p\) is a prime of bad reduction if and only if the defining polynomials of self have a common zero. Or stated another way, \(p\) is a prime of bad reduction if and only if the radical of the ideal defined by the defining polynomials of self is not \((x_0,x_1,\ldots,x_N)\). This happens if and only if some power of each \(x_i\) is not in the ideal defined by the defining polynomials of self. This last condition is what is checked. The lcm of the coefficients of the monomials \(x_i\) in a Groebner basis is computed. This may return extra primes.
INPUT:
check
– (default:True
) boolean
OUTPUT: a list of primes
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([1/3*x^2+1/2*y^2, y^2]) sage: f.primes_of_bad_reduction() [2, 3]
sage: P.<x,y,z,w> = ProjectiveSpace(QQ,3) sage: f = DynamicalSystem_projective([12*x*z-7*y^2, 31*x^2-y^2, 26*z^2, 3*w^2-z*w]) sage: f.primes_of_bad_reduction() [2, 3, 7, 13, 31]
A number field example:
sage: R.<z> = QQ[] sage: K.<a> = NumberField(z^2 - 2) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([1/3*x^2+1/a*y^2, y^2]) sage: f.primes_of_bad_reduction() [Fractional ideal (a), Fractional ideal (3)]
This is an example where check = False returns extra primes:
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([3*x*y^2 + 7*y^3 - 4*y^2*z + 5*z^3, ....: -5*x^3 + x^2*y + y^3 + 2*x^2*z, ....: -2*x^2*y + x*y^2 + y^3 - 4*y^2*z + x*z^2]) sage: f.primes_of_bad_reduction(False) [2, 5, 37, 2239, 304432717] sage: f.primes_of_bad_reduction() [5, 37, 2239, 304432717]
- ramification_type(R=None, stable=True)#
Return the ramification type of endomorphisms of \(\mathbb{P}^1\).
Only branch points defined over the ring
R
contribute to the ramification type if specified, otherwiseR
is the ring of definition forself
.Note that branch points defined over
R
may not be geometric points if stable not set toTrue
.If
R
is specified,stable
is ignored.If
stable
, then this will return the ramification type over an extension which splits the Galois orbits of critical points.INPUT:
R
– ring or morphism (optional)split
– boolean (optional)
OUTPUT:
list of lists, each term being the list of ramification indices in the pre-images of one critical value
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^4, y^4]) sage: F.ramification_type() [[4], [4]] sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^3, 4*y^3 - 3*x^2*y]) sage: F.ramification_type() [[2], [2], [3]] sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([(x + y)^4, 16*x*y*(x-y)^2]) sage: F.ramification_type() [[2], [2, 2], [4]] sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([(x + y)*(x - y)^3, y*(2*x+y)^3]) sage: F.ramification_type() [[3], [3], [3]] sage: F = DynamicalSystem_projective([x^3-2*x*y^2 + 2*y^3, y^3]) sage: F.ramification_type() [[2], [2], [3]] sage: F.ramification_type(R=F.base_ring()) [[2], [3]]
- reduced_form(**kwds)#
Return reduced form of this dynamical system.
The reduced form is the \(SL(2, \ZZ)\) equivalent morphism obtained by applying the binary form reduction algorithm from Stoll and Cremona [CS2003] to the homogeneous polynomial defining the periodic points (the dynatomic polynomial). The smallest period \(n\) with enough periodic points is used and without roots of too large multiplicity.
This should also minimize the size of the coefficients, but this is not always the case. By default the coefficient minimizing algorithm in [HS2018] is applied.
See
sage.rings.polynomial.multi_polynomial.reduced_form()
for the information on binary form reduction.Implemented by Rebecca Lauren Miller as part of GSOC 2016. Minimal height added by Ben Hutz July 2018.
INPUT:
keywords:
prec
– (default: 300) integer, desired precisionreturn_conjuagtion
– (default:True
) boolean; return an element of \(SL(2, \ZZ)\)error_limit
– (default: 0.000001) a real number, sets the error tolerancesmallest_coeffs
– (default: True), boolean, whether to find the model with smallest coefficientsdynatomic
– (default: True) boolean, to use formal periodic pointsstart_n
– (default: 1), positive integer, firs period to rry to find appropriate binary formemb
– (optional) embedding of based field into CCalgorithm
– (optional) which algorithm to use to find all minimal models. Can be one of the following:check_minimal
– (default: True), boolean, whether to check if this map is a minimal modelsmallest_coeffs
– (default: True), boolean, whether to find the model with smallest coefficients
OUTPUT:
a projective morphism
a matrix
EXAMPLES:
sage: PS.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^3 + x*y^2, y^3]) sage: m = matrix(QQ, 2, 2, [-201221, -1, 1, 0]) sage: f = f.conjugate(m) sage: f.reduced_form(prec=50, smallest_coeffs=False) #needs 2 periodic Traceback (most recent call last): ... ValueError: accuracy of Newton's root not within tolerance(0.000066... > 1e-06), increase precision sage: f.reduced_form(smallest_coeffs=False) ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^3 + x*y^2 : y^3) , [ 0 -1] [ 1 201221] )
sage: PS.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^2+ x*y, y^2]) #needs 3 periodic sage: m = matrix(QQ, 2, 2, [-221, -1, 1, 0]) sage: f = f.conjugate(m) sage: f.reduced_form(prec=200, smallest_coeffs=False) ( Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (-x^2 + x*y - y^2 : -y^2) , [ 0 -1] [ 1 220] )
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^3, y^3]) sage: f.reduced_form(smallest_coeffs=False) ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^3 : y^3) , [1 0] [0 1] )
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([7365*X^4 + 12564*X^3*Y + 8046*X^2*Y^2 + 2292*X*Y^3 + 245*Y^4,\ -12329*X^4 - 21012*X^3*Y - 13446*X^2*Y^2 - 3828*X*Y^3 - 409*Y^4]) sage: f.reduced_form(prec=30, smallest_coeffs=False) Traceback (most recent call last): ... ValueError: accuracy of Newton's root not within tolerance(0.00008... > 1e-06), increase precision sage: f.reduced_form(smallest_coeffs=False) ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (-7*X^4 - 12*X^3*Y - 42*X^2*Y^2 - 12*X*Y^3 - 7*Y^4 : -X^4 - 4*X^3*Y - 6*X^2*Y^2 - 4*X*Y^3 - Y^4), [-1 2] [ 2 -5] )
sage: P.<x,y> = ProjectiveSpace(RR, 1) sage: f = DynamicalSystem_projective([x^4, RR(sqrt(2))*y^4]) sage: m = matrix(RR, 2, 2, [1,12,0,1]) sage: f = f.conjugate(m) sage: g, m = f.reduced_form(smallest_coeffs=False); m [ 1 -12] [ 0 1]
sage: P.<x,y> = ProjectiveSpace(CC, 1) sage: f = DynamicalSystem_projective([x^4, CC(sqrt(-2))*y^4]) sage: m = matrix(CC, 2, 2, [1,12,0,1]) sage: f = f.conjugate(m) sage: g, m = f.reduced_form(smallest_coeffs=False); m [ 1 -12] [ 0 1]
sage: K.<w> = QuadraticField(2) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^3, w*y^3]) sage: m = matrix(K, 2, 2, [1,12,0,1]) sage: f = f.conjugate(m) sage: f.reduced_form(smallest_coeffs=False) ( Dynamical System of Projective Space of dimension 1 over Number Field in w with defining polynomial x^2 - 2 with w = 1.414213562373095? Defn: Defined on coordinates by sending (x : y) to (x^3 : w*y^3) , [ 1 -12] [ 0 1] )
sage: R.<x> = QQ[] sage: K.<w> = NumberField(x^5+x-3, embedding=(x^5+x-3).roots(ring=CC)[0][0]) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([12*x^3, 2334*w*y^3]) sage: m = matrix(K, 2, 2, [-12,1,1,0]) sage: f = f.conjugate(m) sage: f.reduced_form(smallest_coeffs=False) ( Dynamical System of Projective Space of dimension 1 over Number Field in w with defining polynomial x^5 + x - 3 with w = 1.132997565885066? Defn: Defined on coordinates by sending (x : y) to (12*x^3 : (2334*w)*y^3) , [ 0 -1] [ 1 -12] )
sage: P.<x,y> = QQ[] sage: f = DynamicalSystem([-4*y^2, 9*x^2 - 12*x*y]) sage: f.reduced_form() ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 - 2*y^2 : -x^2 - 2*y^2) , [ 2 -2] [ 3 0] )
sage: P.<x,y> = QQ[] sage: f = DynamicalSystem([-2*x^3 - 9*x^2*y - 12*x*y^2 - 6*y^3 , y^3]) sage: f.reduced_form() ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^3 + 3*x^2*y : 3*x*y^2 + y^3) , [-1 -2] [ 1 1] )
sage: P.<x,y> = QQ[] sage: f = DynamicalSystem([4*x^2 - 7*y^2, 4*y^2]) sage: f.reduced_form(start_n=2, dynatomic=False) #long time ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 - x*y - y^2 : y^2) , [ 2 -1] [ 0 2] )
sage: P.<x,y> = QQ[] sage: f = DynamicalSystem([4*x^2 + y^2, 4*y^2]) sage: f.reduced_form() #long time ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 - x*y + y^2 : y^2) , [ 2 -1] [ 0 2] )
- resultant(normalize=False)#
Computes the resultant of the defining polynomials of this dynamical system.
If
normalize
isTrue
, then first normalize the coordinate functions withnormalize_coordinates()
.INPUT:
normalize
– (default:False
) boolean
OUTPUT: an element of the base ring of this map
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2+y^2, 6*y^2]) sage: f.resultant() 36
sage: R.<t> = PolynomialRing(GF(17)) sage: P.<x,y> = ProjectiveSpace(R,1) sage: f = DynamicalSystem_projective([t*x^2+t*y^2, 6*y^2]) sage: f.resultant() 2*t^2
sage: R.<t> = PolynomialRing(GF(17)) sage: P.<x,y,z> = ProjectiveSpace(R,2) sage: f = DynamicalSystem_projective([t*x^2+t*y^2, 6*y^2, 2*t*z^2]) sage: f.resultant() 13*t^8
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: F = DynamicalSystem_projective([x^2+y^2,6*y^2,10*x*z+z^2+y^2]) sage: F.resultant() 1296
sage: R.<t>=PolynomialRing(QQ) sage: s = (t^3+t+1).roots(QQbar)[0][0] sage: P.<x,y>=ProjectiveSpace(QQbar,1) sage: f = DynamicalSystem_projective([s*x^3-13*y^3, y^3-15*y^3]) sage: f.resultant() 871.6925062959149?
- sigma_invariants(n, formal=False, embedding=None, type='point', return_polynomial=False, chow=False, deform=False, check=True)#
Computes the values of the elementary symmetric polynomials evaluated on the
n
multiplier spectra of this dynamical system.The sigma invariants are the symmetric polynomials evaluated on the characteristic polynomial of the multipliers. See [Hutz2019] for the full definition. Spepcifically, this function returns either the following polynomial or its coefficients (with signs appropriately adjusted):
\[\prod_{P \text{ period n}} ( w - c(P,t)),\]where \(c(P,t)\) is the charateristic polynomial (variable \(t\)) of the multiplier at \(P\). Note that in dimension 1, only the coefficients of the constant term is returned.
The invariants can be computed for points of period
n
or points of formal periodn
. The base ring should be a number field, number field order, or a finite field or a polynomial ring or function field over a number field, number field order, or finite field.The parameter
type
determines if the sigma are computed from the multipliers calculated at one per cycle (with multiplicity) or one per point (with multiplicity). Only implemented for dimension 1. Note that in thecycle
case, a map with a cycle which collapses into multiple smaller cycles, this is still considered one cycle. In other words, if a 4-cycle collapses into a 2-cycle with multiplicity 2, there is only one multiplier used for the doubled 2-cycle when computingn=4
.ALGORITHM:
In dimension 1, we use the Poisson product of the resultant of two polynomials:
\[res(f,g) = \prod_{f(a)=0} g(a).\]In higher dimensions, we use elimination theory (Groebner bases) to compute the equivalent of the Poisson product. Letting \(f\) be the polynomial defining the periodic or formal periodic points and \(g\) the polynomial \(w - F\) for an auxilarly variable \(w\) and \(F\) the characteristic polynomial of the Jacobian matrix of \(f\). Note that if \(f\) is a rational function, we clear denominators for \(g\).
To calculate the full polynomial defining the sigma invariants, we follow the algorithm outlined in section 4 of [Hutz2019]. There are 4 cases:
multipliers and
n
periodic points all distinct – in this case, we can use Proposition 4.1 of [Hutz2019] to compute the sigma invariants.n
periodic points are all distinct, multipliers are repeated – here we can use Proposition 4.2 of [Hutz2019] to compute the sigma invariants. This corresponds tochow=True
.n
periodic points are repeated, multipliers are all distinct – to deal with this case, we deform the map by a formal parameter \(k\). The deformation separates then
periodic points, making them distinct, and we can recover then
periodic points of the original map by specializing \(k\) to 0. This corresponds todeform=True
.n
periodic points are repeated, multipliers are repeated – here we can use both cases 2 and 3 together. This corresponds todeform=True
andchow=True
.
As we do not want to check which case we are in beforehand, we throw a ValueError if the computed polynomial does not have the correct degree.
INPUT:
n
– a positive integer, the periodformal
– (default:False
) boolean;True
specifies to find the values of the elementary symmetric polynomials corresponding to the formaln
multiplier spectra andFalse
specifies to instead find the values corresponding to then
multiplier spectra, which includes the multipliers of all periodic points of periodn
embedding
– (default:None
) must beNone
, passing an embedding is no longer supported, see :trac: \(32205\).type
– (default:'point'
) string; either'point'
or'cycle'
depending on whether you compute with one multiplier per point or one per cycle. Not implemented for dimension greater than 1.return polynomial
– (default:False
) boolean;True
specifies returning the polynomial which generates the sigma invariants, see [Hutz2019] for the full definition. The polynomial is always a multivariate polynomial with variablesw
andt
.chow
– (default:False
) boolean;True
specifies using the Chow algorithm from [Hutz2019] to compute the sigma invariants. While slower, the Chow algorithm does not lose information about multiplicities of the multipliers. In order to accurately compute the sigma polynomial when there is a repeated multiplier,chow
must beTrue
.deform
– (default:False
) boolean;True
specifies first deforming the map so that all periodic points are distinct and then calculating the sigma invariants. In order to accurately calculate the sigma polynomial when there is a periodic point with multiplicity,deform
must beTrue
.check
– (default:True
) boolean; whenTrue
the degree of the sigma polynomial is checked against the expected degree. This is done as the sigma polynomial may drop degree if multiplicities of periodic points or multipliers are not correctly accounted for usingchow
ordeform
.
Warning
Setting
check
toFalse
can lead to mathematically incorrect answers.- OUTPUT: a list of elements in the base ring, unless
return_polynomial
is
True
, in which case a polynomial inw
andt
is returned. The variablet
is the variable of the characteristic polynomials of the multipliers.If this map is defined over \(\mathbb{P}^N\), where \(N > 1\), then the list is the coefficients of \(w\) and \(t\), in lexographical order with \(w > t\).
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + x*y + y^2, y^2 + x*y]) sage: f.sigma_invariants(1) [3, 3, 1]
If
return_polynomial
isTrue
, then following [Hutz2019] we return a two variable polynomial in \(w\) and \(t\):sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 2*y^2, y^2]) sage: poly = f.sigma_invariants(1, return_polynomial=True); poly w^3 - 3*w^2*t + 2*w^2 + 3*w*t^2 - 4*w*t + 8*w - t^3 + 2*t^2 - 8*t
From the full polynomial, we can easily recover the one variable polynomial whose coefficients are symmetric functions in the multipliers, up to sign:
sage: w, t = poly.variables() sage: poly.specialization({w:0}).monic() t^3 - 2*t^2 + 8*t sage: f.sigma_invariants(1) [2, 8, 0]
For dynamical systems on \(\mathbb{P}^N\), where \(N > 1\), the full polynomial is needed to distinguish the conjugacy class. We can, however, still return a list in this case:
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, z^2, y^2]) sage: f.sigma_invariants(1, chow=True) [1, 7, -6, -12, 21, -36, -60, 72, 48, 35, -90, -120, 352, 96, -288, -64, 35, -120, -120, 688, -96, -1056, 320, 384, 0, 21, -90, -60, 672, -384, -1440, 1344, 768, -768, 0, 0, 7, -36, -12, 328, -336, -864, 1472, 384, -1536, 512, 0, 0, 0, 1, -6, 0, 64, -96, -192, 512, 0, -768, 512, 0, 0, 0, 0, 0]
When calculating the sigma invariants for \(\mathbb{P}^N\), with \(N > 1\), the default algorithm loses information about multiplicities. Note that the following call to sigma invariants returns a degree 6 polynomial in \(w\):
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: f.sigma_invariants(1, return_polynomial=True, check=False) w^6 - 6*w^5*t^2 + 8*w^5*t - 4*w^5 + 15*w^4*t^4 - 40*w^4*t^3 + 40*w^4*t^2 - 16*w^4*t - 20*w^3*t^6 + 80*w^3*t^5 - 120*w^3*t^4 + 80*w^3*t^3 - 16*w^3*t^2 + 15*w^2*t^8 - 80*w^2*t^7 + 160*w^2*t^6 - 144*w^2*t^5 + 48*w^2*t^4 - 6*w*t^10 + 40*w*t^9 - 100*w*t^8 + 112*w*t^7 - 48*w*t^6 + t^12 - 8*t^11 + 24*t^10 - 32*t^9 + 16*t^8
Setting
chow
toTrue
, while much slower, accounts correctly for multiplicities. Note that the following returns a degree 7 polynomial in \(w\):sage: f.sigma_invariants(1, return_polynomial=True, chow=True) w^7 - 7*w^6*t^2 + 10*w^6*t - 4*w^6 + 21*w^5*t^4 - 60*w^5*t^3 + 60*w^5*t^2 - 24*w^5*t - 35*w^4*t^6 + 150*w^4*t^5 - 240*w^4*t^4 + 176*w^4*t^3 - 48*w^4*t^2 + 35*w^3*t^8 - 200*w^3*t^7 + 440*w^3*t^6 - 464*w^3*t^5 + 224*w^3*t^4 - 32*w^3*t^3 - 21*w^2*t^10 + 150*w^2*t^9 - 420*w^2*t^8 + 576*w^2*t^7 - 384*w^2*t^6 + 96*w^2*t^5 + 7*w*t^12 - 60*w*t^11 + 204*w*t^10 - 344*w*t^9 + 288*w*t^8 - 96*w*t^7 - t^14 + 10*t^13 - 40*t^12 + 80*t^11 - 80*t^10 + 32*t^9
sage: set_verbose(None) sage: z = QQ['z'].0 sage: K = NumberField(z^4 - 4*z^2 + 1, 'z') sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 - 5/4*y^2, y^2]) sage: f.sigma_invariants(2, formal=False, type='cycle') [13, 11, -25, 0] sage: f.sigma_invariants(2, formal=False, type='point') [12, -2, -36, 25, 0]
check that infinity as part of a longer cycle is handled correctly:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([y^2, x^2]) sage: f.sigma_invariants(2, type='cycle') [12, 48, 64, 0] sage: f.sigma_invariants(2, type='point') [12, 48, 64, 0, 0] sage: f.sigma_invariants(2, type='cycle', formal=True) [0] sage: f.sigma_invariants(2, type='point', formal=True) [0, 0]
sage: K.<w> = QuadraticField(3) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 - w*y^2, (1-w)*x*y]) sage: f.sigma_invariants(2, formal=False, type='cycle') [6*w + 21, 78*w + 159, 210*w + 367, 90*w + 156] sage: f.sigma_invariants(2, formal=False, type='point') [6*w + 24, 96*w + 222, 444*w + 844, 720*w + 1257, 270*w + 468]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([512*x^5 - 378128*x^4*y + 76594292*x^3*y^2 - 4570550136*x^2*y^3 - 2630045017*x*y^4\ + 28193217129*y^5, 512*y^5]) sage: f.sigma_invariants(1) [19575526074450617/1048576, -9078122048145044298567432325/2147483648, -2622661114909099878224381377917540931367/1099511627776, -2622661107937102104196133701280271632423/549755813888, 338523204830161116503153209450763500631714178825448006778305/72057594037927936, 0]
sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2) sage: f = DynamicalSystem([x^2, y^2, z^2]) sage: f.sigma_invariants(1, chow=True, return_polynomial=True) w^7 - 2*w^6*t^2 + w^6 + w^5*t^4 + w^5*t + w^4*t^3 + 2*w^4*t^2 + w^3*t^5 - w^3*t^4 - 2*w^3*t^3 - w^2*t^10 + w^2*t^7 + w^2*t^6 + w^2*t^5 + 2*w*t^12 - w*t^10 + w*t^9 - 2*w*t^8 - w*t^7 - t^14 + 2*t^9
sage: R.<c> = QQ[] sage: Pc.<x,y> = ProjectiveSpace(R, 1) sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2]) sage: f.sigma_invariants(1) [2, 4*c, 0] sage: f.sigma_invariants(2, formal=True, type='point') [8*c + 8, 16*c^2 + 32*c + 16] sage: f.sigma_invariants(2, formal=True, type='cycle') [4*c + 4]
sage: R.<c> = QQ[] sage: P.<x,y> = ProjectiveSpace(R, 1) sage: f = DynamicalSystem([x^2 + c*y^2, y^2]) sage: f.sigma_invariants(1, return_polynomial=True) w^3 + (-3)*w^2*t + 2*w^2 + 3*w*t^2 + (-4)*w*t + 4*c*w - t^3 + 2*t^2 + (-4*c)*t sage: f.sigma_invariants(2, chow=True, formal=True, return_polynomial=True) w^2 + (-2)*w*t + (8*c + 8)*w + t^2 + (-8*c - 8)*t + 16*c^2 + 32*c + 16
sage: R.<c,d> = QQ[] sage: P.<x,y,z> = ProjectiveSpace(R, 2) sage: f = DynamicalSystem([x^2 + c*z^2, y^2 + d*z^2, z^2]) sage: len(dict(f.sigma_invariants(1, return_polynomial=True))) 51
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([x^2 + 3*y^2, x*y]) sage: f.sigma_invariants(1, deform = True, return_polynomial=True) w^3 - 3*w^2*t + 3*w^2 + 3*w*t^2 - 6*w*t + 3*w - t^3 + 3*t^2 - 3*t + 1
doubled fixed point:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2]) sage: f.sigma_invariants(2, formal=True) [2, 1]
doubled 2 cycle:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 5/4*y^2, y^2]) sage: f.sigma_invariants(4, formal=False, type='cycle') [170, 5195, 172700, 968615, 1439066, 638125, 0]
- class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field(polys, domain)#
Bases:
DynamicalSystem_projective
,SchemeMorphism_polynomial_projective_space_field
- all_periodic_points(**kwds)#
Determine the set of rational periodic points for this dynamical system.
The map must be defined over \(\QQ\) and be an endomorphism of projective space. If the map is a polynomial endomorphism of \(\mathbb{P}^1\), i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.
The default parameter values are typically good choices for \(\mathbb{P}^1\). If you are having trouble getting a particular map to finish, try first computing the possible periods, then try various different
lifting_prime
values.ALGORITHM:
Modulo each prime of good reduction \(p\) determine the set of periodic points modulo \(p\). For each cycle modulo \(p\) compute the set of possible periods (\(mrp^e\)). Take the intersection of the list of possible periods modulo several primes of good reduction to get a possible list of minimal periods of rational periodic points. Take each point modulo \(p\) associated to each of these possible periods and try to lift it to a rational point with a combination of \(p\)-adic approximation and the LLL basis reduction algorithm.
See [Hutz2015].
INPUT:
kwds:
R
– (default: domain of dynamical system) the base ring over which the periodic points of the dynamical system are foundprime_bound
– (default:[1,20]
) a pair (list or tuple) of positive integers that represent the limits of primes to use in the reduction step or an integer that represents the upper boundlifting_prime
– (default: 23) a prime integer; argument that specifies modulo which prime to try and perform the liftingperiod_degree_bounds
– (default:[4,4]
) a pair of positive integers (max period, max degree) for which the dynatomic polynomial should be solved foralgorithm
– (optional) specifies which algorithm to use; current options are \(dynatomic\) and \(lifting\); defaults to solving the dynatomic for low periods and degrees and lifts for everything elseperiods
– (optional) a list of positive integers that is the list of possible periodsbad_primes
– (optional) a list or tuple of integer primes; the primes of bad reductionncpus
– (default: all cpus) number of cpus to use in parallel
OUTPUT: a list of rational points in projective space
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2-3/4*y^2, y^2]) sage: sorted(f.all_periodic_points(prime_bound=20, lifting_prime=7)) # long time [(-1/2 : 1), (1 : 0), (3/2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([2*x^3 - 50*x*z^2 + 24*z^3, ....: 5*y^3 - 53*y*z^2 + 24*z^3, 24*z^3]) sage: sorted(f.all_periodic_points(prime_bound=[1,20])) # long time [(-3 : -1 : 1), (-3 : 0 : 1), (-3 : 1 : 1), (-3 : 3 : 1), (-1 : -1 : 1), (-1 : 0 : 1), (-1 : 1 : 1), (-1 : 3 : 1), (0 : 1 : 0), (1 : -1 : 1), (1 : 0 : 0), (1 : 0 : 1), (1 : 1 : 1), (1 : 3 : 1), (3 : -1 : 1), (3 : 0 : 1), (3 : 1 : 1), (3 : 3 : 1), (5 : -1 : 1), (5 : 0 : 1), (5 : 1 : 1), (5 : 3 : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([-5*x^2 + 4*y^2, 4*x*y]) sage: sorted(f.all_periodic_points()) # long time [(-2 : 1), (-2/3 : 1), (2/3 : 1), (1 : 0), (2 : 1)]
sage: R.<x> = QQ[] sage: K.<w> = NumberField(x^2-x+1) sage: P.<u,v> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([u^2 + v^2,v^2]) sage: sorted(f.all_periodic_points()) [(-w + 1 : 1), (w : 1), (1 : 0)]
sage: R.<x> = QQ[] sage: K.<w> = NumberField(x^2-x+1) sage: P.<u,v> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([u^2+v^2,u*v]) sage: f.all_periodic_points() Traceback (most recent call last): ... NotImplementedError: rational periodic points for number fields only implemented for polynomials
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: K.<v> = QuadraticField(5) sage: phi = QQ.embeddings(K)[0] sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: sorted(f.all_periodic_points(R=phi)) [(-1 : 1), (-1/2*v + 1/2 : 1), (0 : 1), (1 : 0), (1/2*v + 1/2 : 1)]
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: f = DynamicalSystem_projective([x^2 - (3/4)*w^2, y^2 - 3/4*w^2, z^2 - 3/4*w^2, w^2]) sage: sorted(f.all_periodic_points(algorithm="dynatomic")) [(-1/2 : -1/2 : -1/2 : 1), (-1/2 : -1/2 : 3/2 : 1), (-1/2 : 3/2 : -1/2 : 1), (-1/2 : 3/2 : 3/2 : 1), (0 : 0 : 1 : 0), (0 : 1 : 0 : 0), (0 : 1 : 1 : 0), (1 : 0 : 0 : 0), (1 : 0 : 1 : 0), (1 : 1 : 0 : 0), (1 : 1 : 1 : 0), (3/2 : -1/2 : -1/2 : 1), (3/2 : -1/2 : 3/2 : 1), (3/2 : 3/2 : -1/2 : 1), (3/2 : 3/2 : 3/2 : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2]) sage: sorted(f.all_periodic_points(period_degree_bounds=[2,2])) [(-1/2 : 1), (1 : 0), (3/2 : 1)]
- all_preperiodic_points(**kwds)#
Determine the set of rational preperiodic points for this dynamical system.
The map must be defined over \(\QQ\) and be an endomorphism of projective space. If the map is a polynomial endomorphism of \(\mathbb{P}^1\), i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.
The default parameter values are typically good choices for \(\mathbb{P}^1\). If you are having trouble getting a particular map to finish, try first computing the possible periods, then try various different values for
lifting_prime
.ALGORITHM:
Determines the list of possible periods.
Determines the rational periodic points from the possible periods.
Determines the rational preperiodic points from the rational periodic points by determining rational preimages.
INPUT:
kwds:
R
– (default: domain of dynamical system) the base ring over which the periodic points of the dynamical system are foundprime_bound
– (default:[1, 20]
) a pair (list or tuple) of positive integers that represent the limits of primes to use in the reduction step or an integer that represents the upper boundlifting_prime
– (default: 23) a prime integer; specifies modulo which prime to try and perform the liftingperiods
– (optional) a list of positive integers that is the list of possible periodsbad_primes
– (optional) a list or tuple of integer primes; the primes of bad reductionncpus
– (default: all cpus) number of cpus to use in parallelperiod_degree_bounds
– (default:[4,4]
) a pair of positive integers (max period, max degree) for which the dynatomic polynomial should be solved for when in dimension 1algorithm
– (optional) specifies which algorithm to use; current options are \(dynatomic\) and \(lifting\); defaults to solving the dynatomic for low periods and degrees and lifts for everything else
OUTPUT: a list of rational points in projective space
EXAMPLES:
sage: PS.<x,y> = ProjectiveSpace(1,QQ) sage: f = DynamicalSystem_projective([x^2 -y^2, 3*x*y]) sage: sorted(f.all_preperiodic_points()) [(-2 : 1), (-1 : 1), (-1/2 : 1), (0 : 1), (1/2 : 1), (1 : 0), (1 : 1), (2 : 1)]
sage: PS.<x,y> = ProjectiveSpace(1,QQ) sage: f = DynamicalSystem_projective([5*x^3 - 53*x*y^2 + 24*y^3, 24*y^3]) sage: sorted(f.all_preperiodic_points(prime_bound=10)) [(-1 : 1), (0 : 1), (1 : 0), (1 : 1), (3 : 1)]
sage: PS.<x,y,z> = ProjectiveSpace(2,QQ) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2-2*z^2, z^2]) sage: sorted(f.all_preperiodic_points(prime_bound=[1,8], lifting_prime=7, periods=[2])) # long time [(-5/4 : -2 : 1), (-5/4 : -1 : 1), (-5/4 : 0 : 1), (-5/4 : 1 : 1), (-5/4 : 2 : 1), (-1/4 : -2 : 1), (-1/4 : -1 : 1), (-1/4 : 0 : 1), (-1/4 : 1 : 1), (-1/4 : 2 : 1), (1/4 : -2 : 1), (1/4 : -1 : 1), (1/4 : 0 : 1), (1/4 : 1 : 1), (1/4 : 2 : 1), (5/4 : -2 : 1), (5/4 : -1 : 1), (5/4 : 0 : 1), (5/4 : 1 : 1), (5/4 : 2 : 1)]
sage: K.<w> = QuadraticField(33) sage: PS.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2-71/48*y^2, y^2]) sage: sorted(f.all_preperiodic_points()) # long time [(-1/12*w - 1 : 1), (-1/6*w - 1/4 : 1), (-1/12*w - 1/2 : 1), (-1/6*w + 1/4 : 1), (1/12*w - 1 : 1), (1/12*w - 1/2 : 1), (-1/12*w + 1/2 : 1), (-1/12*w + 1 : 1), (1/6*w - 1/4 : 1), (1/12*w + 1/2 : 1), (1 : 0), (1/6*w + 1/4 : 1), (1/12*w + 1 : 1)]
- all_rational_preimages(points)#
Given a set of rational points in the domain of this dynamical system, return all the rational preimages of those points.
In others words, all the rational points which have some iterate in the set points. This function repeatedly calls
rational_preimages
. If the degree is at least two, by Northocott, this is always a finite set. The map must be defined over number fields and be an endomorphism.INPUT:
points
– a list of rational points in the domain of this map
OUTPUT: a list of rational points in the domain of this map
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([16*x^2 - 29*y^2, 16*y^2]) sage: sorted(f.all_rational_preimages([P(-1,4)])) [(-7/4 : 1), (-5/4 : 1), (-3/4 : 1), (-1/4 : 1), (1/4 : 1), (3/4 : 1), (5/4 : 1), (7/4 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([76*x^2 - 180*x*y + 45*y^2 + 14*x*z + 45*y*z - 90*z^2, 67*x^2 - 180*x*y - 157*x*z + 90*y*z, -90*z^2]) sage: sorted(f.all_rational_preimages([P(-9,-4,1)])) [(-9 : -4 : 1), (0 : -1 : 1), (0 : 0 : 1), (0 : 1 : 1), (0 : 4 : 1), (1 : 0 : 1), (1 : 1 : 1), (1 : 2 : 1), (1 : 3 : 1)]
A non-periodic example
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, 2*x*y]) sage: sorted(f.all_rational_preimages([P(17,15)])) [(1/3 : 1), (3/5 : 1), (5/3 : 1), (3 : 1)]
A number field example:
sage: z = QQ['z'].0 sage: K.<w> = NumberField(z^3 + (z^2)/4 - (41/16)*z + 23/64); sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([16*x^2 - 29*y^2, 16*y^2]) sage: sorted(f.all_rational_preimages([P(16*w^2 - 29,16)]), key=str) [(-w - 1/2 : 1), (-w : 1), (-w^2 + 21/16 : 1), (-w^2 + 29/16 : 1), (-w^2 - w + 25/16 : 1), (-w^2 - w + 33/16 : 1), (w + 1/2 : 1), (w : 1), (w^2 + w - 25/16 : 1), (w^2 + w - 33/16 : 1), (w^2 - 21/16 : 1), (w^2 - 29/16 : 1)]
sage: K.<w> = QuadraticField(3) sage: P.<u,v> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([u^2+v^2, v^2]) sage: f.all_rational_preimages(P(4)) [(-w : 1), (w : 1)]
- conjugating_set(other, R=None, num_cpus=2)#
Return the set of elements in PGL over the base ring that conjugates one dynamical system to the other.
Given two nonconstant rational functions of equal degree, determine if there is a rational element of PGL that conjugates one rational function to another.
The optional argument \(R\) specifies the field of definition of the PGL elements. The set is determined by taking the fixed points of one map and mapping them to permutations of the fixed points of the other map. As conjugacy preserves the multipliers as a set, fixed points are only mapped to fixed points with the same multiplier. If there are not enough fixed points the function compares the mapping between rational preimages of fixed points and the rational preimages of the preimages of fixed points until there are enough points; such that there are \(n+2\) points with all \(n+1\) subsets linearly independent.
Warning
For degree 1 maps that are conjugate, there is a positive dimensional set of conjugations. This function returns only one such element.
ALGORITHM:
Implementing invariant set algorithm from the paper [FMV2014]. Uses the set of \(n\) th preimages of fixed points, as this set is invariant under conjugation to find all elements of PGL that take one set to another. Additionally, keeps track of multiplier information to reduce the necessary combinatorics.
INPUT:
other
– a rational function of same degree as this mapR
– a field or embeddingnum_cpus
– (default: 2) the number of threads to run in parallel. Increasingnum_cpus
can potentially greatly speed up this function.
OUTPUT:
Set of conjugating \(n+1\) by \(n+1\) matrices.
AUTHORS:
Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray [FMV2014].
Implemented by Rebecca Lauren Miller as part of GSOC 2016.
Algorithmic improvement by Alexander Galarraga as part of GSOC 2021.
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 2*y^2, y^2]) sage: m = matrix(QQbar, 2, 2, [-1, 3, 2, 1]) sage: g = f.conjugate(m) sage: f.conjugating_set(g) [ [-1 3] [ 2 1] ]
Increasing
num_cpus
can speed up computation:sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: f = DynamicalSystem_projective([x^2, y^2, z^2, w^2]) sage: len(f.conjugating_set(f, num_cpus=3)) 24
sage: K.<w> = QuadraticField(-1) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: m = matrix(K, 2, 2, [1, 1, 2, 1]) sage: g = f.conjugate(m) sage: sorted(f.conjugating_set(g)) [ [-1 -1] [1 1] [ 2 1], [2 1] ]
sage: K.<i> = QuadraticField(-1) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: D8 = DynamicalSystem_projective([y^3, x^3]) sage: sorted(D8.conjugating_set(D8)) [ [-1 0] [-i 0] [ 0 -1] [ 0 -i] [0 i] [0 1] [i 0] [1 0] [ 0 1], [ 0 1], [ 1 0], [ 1 0], [1 0], [1 0], [0 1], [0 1] ]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: D8 = DynamicalSystem_projective([y^2, x^2]) sage: D8.conjugating_set(D8) Traceback (most recent call last): ... ValueError: no more rational preimages; try extending the base field and trying again
sage: P.<x,y> = ProjectiveSpace(GF(7), 1) sage: D6 = DynamicalSystem_projective([y^2, x^2]) sage: sorted(D6.conjugating_set(D6)) [ [0 1] [0 2] [0 4] [1 0] [2 0] [4 0] [1 0], [1 0], [1 0], [0 1], [0 1], [0 1] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 + x*z, y^2, z^2]) sage: f.conjugating_set(f) [ [1 0 0] [0 1 0] [0 0 1] ]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: R = P.coordinate_ring() sage: f = DynamicalSystem_projective([R(3), R(4)]) sage: g = DynamicalSystem_projective([R(5), R(2)]) sage: m = f.conjugating_set(g)[0] sage: f.conjugate(m) == g True
sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([7*x + 12*y, 8*x]) sage: g = DynamicalSystem_projective([1645*x - 318*y, 8473*x - 1638*y]) sage: m = f.conjugating_set(g)[0] sage: f.conjugate(m) == g True
note that only one possible conjugation is returned:
sage: P.<x,y,z> = ProjectiveSpace(GF(11), 2) sage: f = DynamicalSystem_projective([2*x + 12*y, 11*y+2*z, x+z]) sage: m1 = matrix(GF(11), 3, 3, [1,4,1,0,2,1,1,1,1]) sage: g = f.conjugate(m1) sage: f.conjugating_set(g) [ [ 1 0 0] [ 9 1 4] [ 4 10 8] ]
sage: L.<v> = CyclotomicField(8) sage: P.<x,y,z> = ProjectiveSpace(L, 2) sage: f = DynamicalSystem_projective([2*x + 12*y, 11*y+2*z, x+z]) sage: m1 = matrix(L, 3, 3, [1,4,v^2,0,2,1,1,1,1]) sage: g = f.conjugate(m1) sage: m = f.conjugating_set(g)[0] sage: f.conjugate(m) == g True
- connected_rational_component(P, n=0)#
Computes the connected component of a rational preperiodic point
P
by this dynamical system.Will work for non-preperiodic points if
n
is positive. Otherwise this will not terminate.INPUT:
P
– a rational preperiodic point of this mapn
– (default: 0) integer; maximum distance fromP
to branch out; a value of 0 indicates no bound
OUTPUT:
A list of points connected to
P
up to the specified distance.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<w> = NumberField(x^3+1/4*x^2-41/16*x+23/64) sage: PS.<x,y> = ProjectiveSpace(1,K) sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2]) sage: P = PS([w,1]) sage: sorted(f.connected_rational_component(P), key=str) [(-w - 1/2 : 1), (-w : 1), (-w^2 + 21/16 : 1), (-w^2 + 29/16 : 1), (-w^2 - w + 25/16 : 1), (-w^2 - w + 33/16 : 1), (w + 1/2 : 1), (w : 1), (w^2 + w - 25/16 : 1), (w^2 + w - 33/16 : 1), (w^2 - 21/16 : 1), (w^2 - 29/16 : 1)]
sage: PS.<x,y,z> = ProjectiveSpace(2,QQ) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2-2*z^2, z^2]) sage: P = PS([17/16,7/4,1]) sage: f.connected_rational_component(P,3) [(17/16 : 7/4 : 1), (-47/256 : 17/16 : 1), (-83807/65536 : -223/256 : 1), (-17/16 : -7/4 : 1), (-17/16 : 7/4 : 1), (17/16 : -7/4 : 1), (1386468673/4294967296 : -81343/65536 : 1), (-47/256 : -17/16 : 1), (47/256 : -17/16 : 1), (47/256 : 17/16 : 1), (-1/2 : -1/2 : 1), (-1/2 : 1/2 : 1), (1/2 : -1/2 : 1), (1/2 : 1/2 : 1)]
- is_conjugate(other, R=None, num_cpus=2)#
Return whether two dynamical systems are conjugate over their base ring (by default) or over the ring \(R\) entered as an optional parameter.
ALGORITHM:
Implementing invariant set algorithm from the paper [FMV2014]. Uses the set of \(n\) th preimages of fixed points, as this set is invariant under conjugation to find all elements of PGL that take one set to another. Additionally, keeps track of multiplier information to reduce the necessary combinatorics.
INPUT:
other
– a nonconstant rational function of the same degree as this mapR
– a field or embeddingnum_cpus
– (default: 2) the number of threads to run in parallel. Increasingnum_cpus
can potentially greatly speed up this function.
OUTPUT: boolean
AUTHORS:
Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray [FMV2014].
Implemented by Rebecca Lauren Miller as part of GSOC 2016.
Algorithmic improvement by Alexander Galarraga as part of GSOC 2021.
EXAMPLES:
sage: K.<w> = CyclotomicField(3) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: D8 = DynamicalSystem_projective([y^2, x^2]) sage: D8.is_conjugate(D8) True
We can speed up computation by increasing
num_cpus
:sage: P.<x,y,z,w> = ProjectiveSpace(QQ,3) sage: f = DynamicalSystem_projective([x^2, y^2, z^2, w^2]) sage: f.is_conjugate(f, num_cpus=2) True
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^2 + x*y, y^2]) sage: m = matrix(QQbar, 2, 2, [1, 1, 2, 1]) sage: g = f.conjugate(m) sage: f.is_conjugate(g) True
sage: P.<x,y> = ProjectiveSpace(GF(5), 1) sage: f = DynamicalSystem_projective([x^3 + x*y^2, y^3]) sage: m = matrix(GF(5), 2, 2, [1, 3, 2, 9]) sage: g = f.conjugate(m) sage: f.is_conjugate(g) True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + x*y, y^2]) sage: g = DynamicalSystem_projective([x^3 + x^2*y, y^3]) sage: f.is_conjugate(g) False
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + x*y, y^2]) sage: g = DynamicalSystem_projective([x^2 - 2*y^2, y^2]) sage: f.is_conjugate(g) False
sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([7*x + 12*y, 8*x]) sage: g = DynamicalSystem_projective([1645*x - 318*y, 8473*x - 1638*y]) sage: f.is_conjugate(g) True
conjugation is only checked over the base field by default:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([-3*y^2, 3*x^2]) sage: g = DynamicalSystem_projective([-x^2 - 2*x*y, 2*x*y + y^2]) sage: f.is_conjugate(g), f.is_conjugate(g, R=QQbar) (False, True)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([7*x + 12*y, 8*y+2*z, x+z]) sage: m1 = matrix(QQ, 3, 3, [1,4,1,0,2,1,1,1,1]) sage: g = f.conjugate(m1) sage: f.is_conjugate(g) True
sage: P.<x,y,z> = ProjectiveSpace(GF(7), 2) sage: f = DynamicalSystem_projective([2*x + 12*y, 11*y+2*z, x+z]) sage: m1 = matrix(GF(7), 3, 3, [1,4,1,0,2,1,1,1,1]) sage: g = f.conjugate(m1) sage: f.is_conjugate(g) True
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([2*x^2 + 12*y*x, 11*y*x+2*y^2, x^2+z^2]) sage: m1 = matrix(QQ, 3, 3, [1,4,1,0,2,1,1,1,1]) sage: g = f.conjugate(m1) sage: f.is_conjugate(g) True
- is_newton(return_conjugation=False)#
Return whether
self
is a Newton map.A map \(g\) is Newton if it is conjugate to a map of the form \(f(z) = z - \frac{p(z)}{p'(z)}\) after dehomogenization, where \(p(z)\) is a squarefree polynomial.
INPUT:
return_conjugation
– (default:False
) if the map is Newton andTrue
, then return the conjugation that moves this map to the above form
OUTPUT:
A Boolean. If
return_conjugation
isTrue
, then this also returns the conjugation as a matrix ifself
is Newton orNone
otherwise.The conjugation may be defined over an extension if the map has fixed points not defined over the base field.
EXAMPLES:
sage: A.<z> = AffineSpace(QQ, 1) sage: f = DynamicalSystem_affine([z - (z^2 + 1)/(2*z)]) sage: F = f.homogenize(1) sage: F.is_newton(return_conjugation=True) ( [1 0] True, [0 1] )
sage: A.<z> = AffineSpace(QQ, 1) sage: f = DynamicalSystem_affine([z^2 + 1]) sage: F = f.homogenize(1) sage: F.is_newton() False sage: F.is_newton(return_conjugation=True) (False, None)
sage: PP.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([-4*x^3 - 3*x*y^2, -2*y^3]) sage: F.is_newton(return_conjugation=True)[1] [ 0 1] [-4*a 2*a]
sage: K.<zeta> = CyclotomicField(2*4) sage: A.<z> = AffineSpace(K, 1) sage: f = DynamicalSystem_affine(z-(z^3+zeta*z)/(3*z^2+zeta)) sage: F = f.homogenize(1) sage: F.is_newton() True
- is_polynomial()#
Check to see if the dynamical system has a totally ramified fixed point.
The function must be defined over an absolute number field or a finite field.
OUTPUT: boolean
EXAMPLES:
sage: R.<x> = QQ[] sage: K.<w> = QuadraticField(7) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x**2 + 2*x*y - 5*y**2, 2*x*y]) sage: f.is_polynomial() False
sage: R.<x> = QQ[] sage: K.<w> = QuadraticField(7) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x**2 - 7*x*y, 2*y**2]) sage: m = matrix(K, 2, 2, [w, 1, 0, 1]) sage: f = f.conjugate(m) sage: f.is_polynomial() True
sage: K.<w> = QuadraticField(4/27) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x**3 + w*y^3,x*y**2]) sage: f.is_polynomial() False
sage: K = GF(3**2, prefix='w') sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x**2 + K.gen()*y**2, x*y]) sage: f.is_polynomial() False
sage: PS.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y + 42*y^2]) sage: f.is_polynomial() False
- lift_to_rational_periodic(points_modp, B=None)#
Given a list of points in projective space over \(\GF{p}\), determine if they lift to \(\QQ\)-rational periodic points.
The map must be an endomorphism of projective space defined over \(\QQ\).
ALGORITHM:
Use Hensel lifting to find a \(p\)-adic approximation for that rational point. The accuracy needed is determined by the height bound
B
. Then apply the LLL algorithm to determine if the lift corresponds to a rational point.If the point is a point of high multiplicity (multiplier 1), the procedure can be very slow.
INPUT:
points_modp
– a list or tuple of pairs containing a point in projective space over \(\GF{p}\) and the possible periodB
– (optional) a positive integer; the height bound for a rational preperiodic point
OUTPUT: a list of projective points
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.lift_to_rational_periodic([[P(0,1).change_ring(GF(7)), 4]]) [[(0 : 1), 2]]
There may be multiple points in the lift. sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([-5*x^2 + 4*y^2, 4*x*y]) sage: f.lift_to_rational_periodic([[P(1,0).change_ring(GF(3)), 1]]) # long time [[(1 : 0), 1], [(2/3 : 1), 1], [(-2/3 : 1), 1]]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([16*x^2 - 29*y^2, 16*y^2]) sage: f.lift_to_rational_periodic([[P(3,1).change_ring(GF(13)), 3]]) [[(-1/4 : 1), 3]]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([76*x^2 - 180*x*y + 45*y^2 + 14*x*z + 45*y*z - 90*z^2, 67*x^2 - 180*x*y - 157*x*z + 90*y*z, -90*z^2]) sage: f.lift_to_rational_periodic([[P(14,19,1).change_ring(GF(23)), 9]]) # long time [[(-9 : -4 : 1), 9]]
- normal_form(return_conjugation=False)#
Return a normal form in the moduli space of dynamical systems.
Currently implemented only for polynomials. The totally ramified fixed point is moved to infinity and the map is conjugated to the form \(x^n + a_{n-2} x^{n-2} + \cdots + a_{0}\). Note that for finite fields we can only remove the \((n-1)\)-st term when the characteristic does not divide \(n\).
INPUT:
return_conjugation
– (default:False
) boolean; ifTrue
, then return the conjugation element of PGL along with the embedding into the new field
OUTPUT:
(optional) an element of PGL as a matrix
(optional) the field embedding
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 2*x*y - 5*x^2, 2*x*y]) sage: f.normal_form() Traceback (most recent call last): ... NotImplementedError: map is not a polynomial
sage: R.<x> = QQ[] sage: K.<w> = NumberField(x^2 - 5) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 + w*x*y, y^2]) sage: g,m,psi = f.normal_form(return_conjugation = True);m [ 1 -1/2*w] [ 0 1] sage: f.change_ring(psi).conjugate(m) == g True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([13*x^2 + 4*x*y + 3*y^2, 5*y^2]) sage: f.normal_form() Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (5*x^2 + 9*y^2 : 5*y^2)
sage: K = GF(3^3, prefix = 'w') sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^3 + 2*x^2*y + 2*x*y^2 + K.gen()*y^3, y^3]) sage: f.normal_form() Dynamical System of Projective Space of dimension 1 over Finite Field in w3 of size 3^3 Defn: Defined on coordinates by sending (x : y) to (x^3 + x^2*y + x*y^2 + (-w3)*y^3 : y^3)
sage: P.<x,y> = ProjectiveSpace(GF(3),1) sage: f = DynamicalSystem_projective([2*x**3 + x**2*y, y**3]) sage: g,m,psi = f.normal_form(return_conjugation=True); psi Ring morphism: From: Finite Field of size 3 To: Finite Field in z2 of size 3^2 Defn: 1 |--> 1
- potential_good_reduction(prime, return_conjugation=False)#
Return
True
if this dynamical system has potential good reduction atprime
.A dynamical system has good reduction at
prime
if after the coefficients are reduced moduloprime
the degree remains the same. A dynamical system \(f\) has \(\textit{potential}\) good reduction if there exists \(\phi \in PGL(n,\overline{K})\) such that \(\phi^{-1} \circ f \circ \phi\) has good reduction.If this dynamical system \(f\) has potential good reduction at
prime
, a dynamical system \(g = \phi^{-1} \circ f \circ \phi\) which has good reduction atprime
is returned.This dynamical system must have as its domain \(\mathbb{P}^1(K)\), where \(K\) is a number field.
INPUT:
prime
– a prime ideal of the field of definition of the fixed points of the map, or a prime number in \(\QQ\) if the field of definition of the fixed points is \(\QQ\).return_conjugation
– (default:False
) if set toTrue
, the \(PGL_2\) map used to achieve good reduction will be returned
OUTPUT:
A tuple:
- The first element is:
False
if this dynamical system does not have potential good reduction.True
if this dynamical system does have potential good reduction.
- The second element is:
None
if this dynamical system does not have potential good reduction.A dynamical system with good reduction at
prime
otherwise.
- If
return_conjugation
isTrue
, then the tuple will have a third element, which is: None
if this dynamical system does not have potential good reduction.The \(PGL_2\) map used to achieve good reduction otherwise.
- If
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: system = DynamicalSystem_projective([x^2-y^2, 2*x*y]) sage: prime = system.field_of_definition_periodic(1).prime_above(2) sage: new_system = system.potential_good_reduction(prime)[1] sage: new_system Dynamical System of Projective Space of dimension 1 over Number Field in a with defining polynomial x^2 + 1 Defn: Defined on coordinates by sending (x : y) to ((-1/2*a)*x^2 + (-5/2*a)*y^2 : (-a)*x*y + y^2)
Note that this map has good reduction at 2:
sage: new_system.resultant() 1
Using
return_conjugation
, we can get the conjugation that achieves good reduction:sage: conj = system.potential_good_reduction(prime, True)[2]; conj [-1/2*a 1/2] [ 0 1]
We can check that this conjugation achieves good reduction:
sage: system.conjugate(conj).resultant() 1
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: system = DynamicalSystem_projective([3^4*x^3+3*x*y^2+y^3, 3^6*y^3]) sage: prime = system.field_of_definition_periodic(1).prime_above(3) sage: system.potential_good_reduction(prime) (False, None)
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: system = DynamicalSystem_projective([x^5-x*y^4, 5*y^5]) sage: prime = system.field_of_definition_periodic(1).prime_above(5) sage: system.potential_good_reduction(prime) (False, None)
- rational_preperiodic_graph(**kwds)#
Determine the directed graph of the rational preperiodic points for this dynamical system.
The map must be defined over \(\QQ\) and be an endomorphism of projective space. If this map is a polynomial endomorphism of \(\mathbb{P}^1\), i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.
ALGORITHM:
Determines the list of possible periods.
Determines the rational periodic points from the possible periods.
Determines the rational preperiodic points from the rational periodic points by determining rational preimages.
INPUT:
kwds:
prime_bound
– (default:[1, 20]
) a pair (list or tuple) of positive integers that represent the limits of primes to use in the reduction step or an integer that represents the upper boundlifting_prime
– (default: 23) a prime integer; specifies modulo which prime to try and perform the liftingperiods
– (optional) a list of positive integers that is the list of possible periodsbad_primes
– (optional) a list or tuple of integer primes; the primes of bad reductionncpus
– (default: all cpus) number of cpus to use in parallel
OUTPUT:
A digraph representing the orbits of the rational preperiodic points in projective space.
EXAMPLES:
sage: PS.<x,y> = ProjectiveSpace(1,QQ) sage: f = DynamicalSystem_projective([7*x^2 - 28*y^2, 24*x*y]) sage: f.rational_preperiodic_graph() Looped digraph on 12 vertices
sage: PS.<x,y> = ProjectiveSpace(1,QQ) sage: f = DynamicalSystem_projective([-3/2*x^3 +19/6*x*y^2, y^3]) sage: f.rational_preperiodic_graph(prime_bound=[1,8]) Looped digraph on 12 vertices
sage: PS.<x,y,z> = ProjectiveSpace(2,QQ) sage: f = DynamicalSystem_projective([2*x^3 - 50*x*z^2 + 24*z^3, ....: 5*y^3 - 53*y*z^2 + 24*z^3, 24*z^3]) sage: f.rational_preperiodic_graph(prime_bound=[1,11], lifting_prime=13) # long time Looped digraph on 30 vertices
sage: K.<w> = QuadraticField(-3) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.rational_preperiodic_graph() # long time Looped digraph on 5 vertices
- reduce_base_field()#
Return this map defined over the field of definition of the coefficients.
The base field of the map could be strictly larger than the field where all of the coefficients are defined. This function reduces the base field to the minimal possible. This can be done when the base ring is a number field, QQbar, a finite field, or algebraic closure of a finite field.
OUTPUT: A dynamical system
EXAMPLES:
sage: K.<t> = GF(2^3) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2, z^2+z*y]) sage: f.reduce_base_field() Dynamical System of Projective Space of dimension 2 over Finite Field of size 2 Defn: Defined on coordinates by sending (x : y : z) to (x^2 + y^2 : y^2 : y*z + z^2)
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2) sage: f = DynamicalSystem_projective([x^2 + QQbar(sqrt(3))*y^2, y^2, QQbar(sqrt(2))*z^2]) sage: f.reduce_base_field() Dynamical System of Projective Space of dimension 2 over Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = -0.5176380902050415? Defn: Defined on coordinates by sending (x : y : z) to (x^2 + (-a^2 + 2)*y^2 : y^2 : (a^3 - 3*a)*z^2)
sage: R.<x> = QQ[] sage: K.<v> = NumberField(x^3-2, embedding=(x^3-2).roots(ring=CC)[0][0]) sage: R.<x> = QQ[] sage: L.<w> = NumberField(x^6 + 9*x^4 - 4*x^3 + 27*x^2 + 36*x + 31, ....: embedding=(x^6 + 9*x^4 - 4*x^3 + 27*x^2 + 36*x + 31).roots(ring=CC)[0][0]) sage: P.<x,y> = ProjectiveSpace(L,1) sage: f = DynamicalSystem([L(v)*x^2 + y^2, x*y]) sage: f.reduce_base_field().base_ring().is_isomorphic(K) True
sage: K.<v> = CyclotomicField(5) sage: A.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([3*x^2 + y^2, x*y]) sage: f.reduce_base_field() Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (3*x^2 + y^2 : x*y)
- class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field(polys, domain)#
Bases:
DynamicalSystem_projective_field
,SchemeMorphism_polynomial_projective_space_finite_field
- all_periodic_points(**kwds)#
Return a list of all periodic points over a finite field.
INPUT:
keywords:
R
– (default: base ring of dynamical system) the base ring over which the periodic points of the dynamical system are found
OUTPUT: a list of elements which are periodic
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(GF(5^2),1) sage: f = DynamicalSystem_projective([x^2+y^2, x*y]) sage: f.all_periodic_points() [(1 : 0), (z2 + 2 : 1), (4*z2 + 3 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2) sage: f = DynamicalSystem_projective([x^2+y^2+z^2, x*y+x*z, z^2]) sage: f.all_periodic_points() [(1 : 0 : 0), (0 : 0 : 1), (1 : 0 : 1), (2 : 1 : 1), (1 : 4 : 1), (3 : 0 : 1), (0 : 3 : 1)]
sage: P.<x,y>=ProjectiveSpace(GF(3), 1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.all_periodic_points(R=GF(3^2, 't')) [(1 : 0), (0 : 1), (2 : 1), (t : 1), (2*t + 1 : 1)]
- automorphism_group(**kwds)#
Return the subgroup of \(PGL2\) that is the automorphism group of this dynamical system.
The automorphism group is the set of \(PGL2\) elements that fixed the map under conjugation.
For dimension 1, see [FMV2014] for the algorithm.
For dimension greater than 1, we compute the conjugating set of this dynamical system with itself.
INPUT:
The following keywords are used when the dimension of the domain is greater than 1:
num_cpus
– (default: 2) the number of threads to use. Setting to a larger number can greatly speed up this function.
The following keywords are used when the dimension of the domain is 1:
absolute
– (default:False
) boolean; ifTrue
, then return the absolute automorphism group and a field of definitioniso_type
– (default:False
) boolean; ifTrue
, then return the isomorphism type of the automorphism groupreturn_functions
– (default:False
) boolean;True
returns elements as linear fractional transformations andFalse
returns elements as \(PGL2\) matrices
OUTPUT: a list of elements of the automorphism group
AUTHORS:
Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray
Modified by Joao Alberto de Faria, Ben Hutz, Bianca Thompson
EXAMPLES:
sage: R.<x,y> = ProjectiveSpace(GF(7^3,'t'),1) sage: f = DynamicalSystem_projective([x^2-y^2, x*y]) sage: f.automorphism_group() [ [1 0] [6 0] [0 1], [0 1] ]
sage: R.<x,y> = ProjectiveSpace(GF(3^2,'t'),1) sage: f = DynamicalSystem_projective([x^3,y^3]) sage: lst, label = f.automorphism_group(return_functions=True, iso_type=True) # long time sage: sorted(lst, key=str), label # long time ([(2*x + 1)/(x + 1), (2*x + 1)/x, (2*x + 2)/(x + 2), (2*x + 2)/x, (x + 1)/(x + 2), (x + 1)/x, (x + 2)/(x + 1), (x + 2)/x, 1/(x + 1), 1/(x + 2), 1/x, 2*x, 2*x + 1, 2*x + 2, 2*x/(x + 1), 2*x/(x + 2), 2/(x + 1), 2/(x + 2), 2/x, x, x + 1, x + 2, x/(x + 1), x/(x + 2)], 'PGL(2,3)')
sage: R.<x,y> = ProjectiveSpace(GF(2^5,'t'),1) sage: f = DynamicalSystem_projective([x^5,y^5]) sage: f.automorphism_group(return_functions=True, iso_type=True) ([x, 1/x], 'Cyclic of order 2')
sage: R.<x,y> = ProjectiveSpace(GF(3^4,'t'),1) sage: f = DynamicalSystem_projective([x^2+25*x*y+y^2, x*y+3*y^2]) sage: f.automorphism_group(absolute=True) [Univariate Polynomial Ring in w over Finite Field in b of size 3^4, [ [1 0] [0 1] ]]
sage: R.<x,y,z> = ProjectiveSpace(GF(5), 2) sage: f = DynamicalSystem_projective([x^3 + x*z^2, y^3 + y*z^2, z^3]) sage: all([f.conjugate(m) == f for m in f.automorphism_group()]) True
- cyclegraph()#
Return the digraph of all orbits of this dynamical system.
Over a finite field this is a finite graph. For subscheme domains, only points on the subscheme whose image are also on the subscheme are in the digraph.
OUTPUT: a digraph
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(GF(13),1) sage: f = DynamicalSystem_projective([x^2-y^2, y^2]) sage: f.cyclegraph() Looped digraph on 14 vertices
sage: P.<x,y,z> = ProjectiveSpace(GF(3^2,'t'),2) sage: f = DynamicalSystem_projective([x^2+y^2, y^2, z^2+y*z]) sage: f.cyclegraph() Looped digraph on 91 vertices
sage: P.<x,y,z> = ProjectiveSpace(GF(7),2) sage: X = P.subscheme(x^2-y^2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2], domain=X) sage: f.cyclegraph() Looped digraph on 15 vertices
sage: P.<x,y,z> = ProjectiveSpace(GF(3),2) sage: f = DynamicalSystem_projective([x*z-y^2, x^2-y^2, y^2-z^2]) sage: f.cyclegraph() Looped digraph on 13 vertices
sage: P.<x,y,z> = ProjectiveSpace(GF(3),2) sage: X = P.subscheme([x-y]) sage: f = DynamicalSystem_projective([x^2-y^2, x^2-y^2, y^2-z^2], domain=X) sage: f.cyclegraph() Looped digraph on 4 vertices
- is_postcritically_finite(**kwds)#
Every point is postcritically finite in a finite field.
INPUT: None.
kwds
is to parallel the overridden functionOUTPUT: the boolean
True
EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2) sage: f = DynamicalSystem_projective([x^2 + y^2,y^2, z^2 + y*z], domain=P) sage: f.is_postcritically_finite() True
sage: P.<x,y> = ProjectiveSpace(GF(13),1) sage: f = DynamicalSystem_projective([x^4 - x^2*y^2 + y^4, y^4]) sage: f.is_postcritically_finite(use_algebraic_closure=False) True
- orbit_structure(P)#
Return the pair
(m,n)
, wherem
is the preperiod andn
is the period of the pointP
by this dynamical system.Every point is preperiodic over a finite field so every point will be preperiodic.
INPUT:
P
– a point in the domain of this map
OUTPUT: a tuple
(m,n)
of integersEXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2) sage: f = DynamicalSystem_projective([x^2 + y^2,y^2, z^2 + y*z], domain=P) sage: f.orbit_structure(P(2,1,2)) (0, 6)
sage: P.<x,y,z> = ProjectiveSpace(GF(7),2) sage: X = P.subscheme(x^2-y^2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2], domain=X) sage: f.orbit_structure(X(1,1,2)) (0, 2)
sage: P.<x,y> = ProjectiveSpace(GF(13),1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P) sage: f.orbit_structure(P(3,4)) (2, 3)
sage: R.<t> = GF(13^3) sage: P.<x,y> = ProjectiveSpace(R,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P) sage: f.orbit_structure(P(t, 4)) (11, 6)
- possible_periods(return_points=False)#
Return the list of possible minimal periods of a periodic point over \(\QQ\) and (optionally) a point in each cycle.
ALGORITHM:
See [Hutz2009].
INPUT:
return_points
– (default:False
) boolean; ifTrue
, then return the points as well as the possible periods
OUTPUT:
A list of positive integers, or a list of pairs of projective points and periods if
return_points
isTrue
.EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(GF(23),1) sage: f = DynamicalSystem_projective([x^2-2*y^2, y^2]) sage: f.possible_periods() [1, 5, 11, 22, 110]
sage: P.<x,y> = ProjectiveSpace(GF(13),1) sage: f = DynamicalSystem_projective([x^2-y^2, y^2]) sage: sorted(f.possible_periods(True)) [[(0 : 1), 2], [(1 : 0), 1], [(3 : 1), 3], [(3 : 1), 36]]
sage: PS.<x,y,z> = ProjectiveSpace(2,GF(7)) sage: f = DynamicalSystem_projective([-360*x^3 + 760*x*z^2, ....: y^3 - 604*y*z^2 + 240*z^3, 240*z^3]) sage: f.possible_periods() [1, 2, 4, 6, 12, 14, 28, 42, 84]
Todo
do not return duplicate points
improve hash to reduce memory of point-table