Generalized functions#
Sage implements several generalized functions (also known as distributions) such as Dirac delta, Heaviside step functions. These generalized functions can be manipulated within Sage like any other symbolic functions.
AUTHORS:
Golam Mortuza Hossain (2009-06-26): initial version
EXAMPLES:
Dirac delta function:
sage: dirac_delta(x)
dirac_delta(x)
Heaviside step function:
sage: heaviside(x)
heaviside(x)
Unit step function:
sage: unit_step(x)
unit_step(x)
Signum (sgn) function:
sage: sgn(x)
sgn(x)
Kronecker delta function:
sage: m,n=var('m,n')
sage: kronecker_delta(m,n)
kronecker_delta(m, n)
- class sage.functions.generalized.FunctionDiracDelta#
Bases:
BuiltinFunction
The Dirac delta (generalized) function,
(dirac_delta(x)
).INPUT:
x
- a real number or a symbolic expression
DEFINITION:
Dirac delta function
, is defined in Sage as: for real andIts alternate definition with respect to an arbitrary test function
isEXAMPLES:
sage: dirac_delta(1) 0 sage: dirac_delta(0) dirac_delta(0) sage: dirac_delta(x) dirac_delta(x) sage: integrate(dirac_delta(x), x, -1, 1, algorithm='sympy') 1
REFERENCES:
- class sage.functions.generalized.FunctionHeaviside#
Bases:
GinacFunction
The Heaviside step function,
(heaviside(x)
).INPUT:
x
- a real number or a symbolic expression
DEFINITION:
The Heaviside step function,
is defined in Sage as: for and forSee also
EXAMPLES:
sage: heaviside(-1) 0 sage: heaviside(1) 1 sage: heaviside(0) heaviside(0) sage: heaviside(x) heaviside(x) sage: heaviside(-1/2) 0 sage: heaviside(exp(-1000000000000000000000)) 1
REFERENCES:
- class sage.functions.generalized.FunctionKroneckerDelta#
Bases:
BuiltinFunction
The Kronecker delta function
(kronecker_delta(m, n)
).INPUT:
m
- a number or a symbolic expressionn
- a number or a symbolic expression
DEFINITION:
Kronecker delta function
is defined as: for and forEXAMPLES:
sage: kronecker_delta(1,2) 0 sage: kronecker_delta(1,1) 1 sage: m,n=var('m,n') sage: kronecker_delta(m,n) kronecker_delta(m, n)
REFERENCES:
- class sage.functions.generalized.FunctionSignum#
Bases:
BuiltinFunction
The signum or sgn function
(sgn(x)
).INPUT:
x
- a real number or a symbolic expression
DEFINITION:
The sgn function,
is defined as: for , for and forEXAMPLES:
sage: sgn(-1) -1 sage: sgn(1) 1 sage: sgn(0) 0 sage: sgn(x) sgn(x)
We can also use
sign
:sage: sign(1) 1 sage: sign(0) 0 sage: a = AA(-5).nth_root(7) sage: sign(a) -1
REFERENCES:
- class sage.functions.generalized.FunctionUnitStep#
Bases:
GinacFunction
The unit step function,
(unit_step(x)
).INPUT:
x
- a real number or a symbolic expression
DEFINITION:
The unit step function,
is defined in Sage as: for and forSee also
EXAMPLES:
sage: unit_step(-1) 0 sage: unit_step(1) 1 sage: unit_step(0) 1 sage: unit_step(x) unit_step(x) sage: unit_step(-exp(-10000000000000000000)) 0