Hyperbolic Models#
In this module, a hyperbolic model is a collection of data that allow the user to implement new models of hyperbolic space with minimal effort. The data include facts about the underlying set (such as whether the model is bounded), facts about the metric (such as whether the model is conformal), facts about the isometry group (such as whether it is a linear or projective group), and more. Generally speaking, any data or method that pertains to the model itself – rather than the points, geodesics, or isometries of the model – is implemented in this module.
Abstractly, a model of hyperbolic space is a connected, simply connected manifold equipped with a complete Riemannian metric of constant curvature \(-1\). This module records information sufficient to enable computations in hyperbolic space without explicitly specifying the underlying set or its Riemannian metric. Although, see the SageManifolds project if you would like to take this approach.
This module implements the abstract base class for a model of hyperbolic space of arbitrary dimension. It also contains the implementations of specific models of hyperbolic geometry.
AUTHORS:
Greg Laun (2013): Initial version.
EXAMPLES:
We illustrate how the classes in this module encode data by comparing the upper half plane (UHP), Poincaré disk (PD) and hyperboloid (HM) models. First we create:
sage: U = HyperbolicPlane().UHP()
sage: P = HyperbolicPlane().PD()
sage: H = HyperbolicPlane().HM()
We note that the UHP and PD models are bounded while the HM model is not:
sage: U.is_bounded() and P.is_bounded()
True
sage: H.is_bounded()
False
The isometry groups of UHP and PD are projective, while that of HM is linear:
sage: U.is_isometry_group_projective()
True
sage: H.is_isometry_group_projective()
False
The models are responsible for determining if the coordinates of points and the matrix of linear maps are appropriate for constructing points and isometries in hyperbolic space:
sage: U.point_in_model(2 + I)
True
sage: U.point_in_model(2 - I)
False
sage: U.point_in_model(2)
False
sage: U.boundary_point_in_model(2)
True
- class sage.geometry.hyperbolic_space.hyperbolic_model.HyperbolicModel(space, name, short_name, bounded, conformal, dimension, isometry_group, isometry_group_is_projective)#
Bases:
Parent
,UniqueRepresentation
,BindableClass
Abstract base class for hyperbolic models.
- Element#
alias of
HyperbolicPoint
- bdry_point_test(p)#
Test whether a point is in the model. If the point is in the model, do nothing; otherwise raise a
ValueError
.EXAMPLES:
sage: HyperbolicPlane().UHP().bdry_point_test(2) sage: HyperbolicPlane().UHP().bdry_point_test(1 + I) Traceback (most recent call last): ... ValueError: I + 1 is not a valid boundary point in the UHP model
- boundary_point_in_model(p)#
Return
True
if the point is on the ideal boundary of hyperbolic space andFalse
otherwise.INPUT:
any object that can converted into a complex number
OUTPUT:
boolean
EXAMPLES:
sage: HyperbolicPlane().UHP().boundary_point_in_model(I) False
- dist(a, b)#
Calculate the hyperbolic distance between
a
andb
.INPUT:
a
,b
– a point or geodesic
OUTPUT:
the hyperbolic distance
EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: p1 = UHP.get_point(5 + 7*I) sage: p2 = UHP.get_point(1.0 + I) sage: UHP.dist(p1, p2) 2.23230104635820 sage: PD = HyperbolicPlane().PD() sage: p1 = PD.get_point(0) sage: p2 = PD.get_point(I/2) sage: PD.dist(p1, p2) arccosh(5/3) sage: UHP(p1).dist(UHP(p2)) arccosh(5/3) sage: KM = HyperbolicPlane().KM() sage: p1 = KM.get_point((0, 0)) sage: p2 = KM.get_point((1/2, 1/2)) sage: numerical_approx(KM.dist(p1, p2)) 0.881373587019543 sage: HM = HyperbolicPlane().HM() sage: p1 = HM.get_point((0,0,1)) sage: p2 = HM.get_point((1,0,sqrt(2))) sage: numerical_approx(HM.dist(p1, p2)) 0.881373587019543
Distance between a point and itself is 0:
sage: p = UHP.get_point(47 + I) sage: UHP.dist(p, p) 0
Points on the boundary are infinitely far from interior points:
sage: UHP.get_point(3).dist(UHP.get_point(I)) +Infinity
- get_geodesic(start, end=None, **graphics_options)#
Return a geodesic in the appropriate model.
EXAMPLES:
sage: HyperbolicPlane().UHP().get_geodesic(I, 2*I) Geodesic in UHP from I to 2*I sage: HyperbolicPlane().PD().get_geodesic(0, I/2) Geodesic in PD from 0 to 1/2*I sage: HyperbolicPlane().KM().get_geodesic((1/2, 1/2), (0,0)) Geodesic in KM from (1/2, 1/2) to (0, 0) sage: HyperbolicPlane().HM().get_geodesic((0,0,1), (1,0, sqrt(2))) Geodesic in HM from (0, 0, 1) to (1, 0, sqrt(2))
- get_isometry(A)#
Return an isometry in
self
from the matrixA
in the isometry group ofself
.EXAMPLES:
sage: HyperbolicPlane().UHP().get_isometry(identity_matrix(2)) Isometry in UHP [1 0] [0 1] sage: HyperbolicPlane().PD().get_isometry(identity_matrix(2)) Isometry in PD [1 0] [0 1] sage: HyperbolicPlane().KM().get_isometry(identity_matrix(3)) Isometry in KM [1 0 0] [0 1 0] [0 0 1] sage: HyperbolicPlane().HM().get_isometry(identity_matrix(3)) Isometry in HM [1 0 0] [0 1 0] [0 0 1]
- get_point(coordinates, is_boundary=None, **graphics_options)#
Return a point in
self
.Automatically determine the type of point to return given either:
the coordinates of a point in the interior or ideal boundary of hyperbolic space, or
a
HyperbolicPoint
object.
INPUT:
a point in hyperbolic space or on the ideal boundary
OUTPUT:
EXAMPLES:
We can create an interior point via the coordinates:
sage: HyperbolicPlane().UHP().get_point(2*I) Point in UHP 2*I
Or we can create a boundary point via the coordinates:
sage: HyperbolicPlane().UHP().get_point(23) Boundary point in UHP 23
However we cannot create points outside of our model:
sage: HyperbolicPlane().UHP().get_point(12 - I) Traceback (most recent call last): ... ValueError: -I + 12 is not a valid point in the UHP model
sage: HyperbolicPlane().UHP().get_point(2 + 3*I) Point in UHP 3*I + 2 sage: HyperbolicPlane().PD().get_point(0) Point in PD 0 sage: HyperbolicPlane().KM().get_point((0,0)) Point in KM (0, 0) sage: HyperbolicPlane().HM().get_point((0,0,1)) Point in HM (0, 0, 1) sage: p = HyperbolicPlane().UHP().get_point(I, color="red") sage: p.graphics_options() {'color': 'red'}
sage: HyperbolicPlane().UHP().get_point(12) Boundary point in UHP 12 sage: HyperbolicPlane().UHP().get_point(infinity) Boundary point in UHP +Infinity sage: HyperbolicPlane().PD().get_point(I) Boundary point in PD I sage: HyperbolicPlane().KM().get_point((0,-1)) Boundary point in KM (0, -1)
- is_bounded()#
Return
True
ifself
is a bounded model.EXAMPLES:
sage: HyperbolicPlane().UHP().is_bounded() True sage: HyperbolicPlane().PD().is_bounded() True sage: HyperbolicPlane().KM().is_bounded() True sage: HyperbolicPlane().HM().is_bounded() False
- is_conformal()#
Return
True
ifself
is a conformal model.EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.is_conformal() True
- is_isometry_group_projective()#
Return
True
if the isometry group ofself
is projective.EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.is_isometry_group_projective() True
- isometry_from_fixed_points(repel, attract)#
Given two fixed points
repel
andattract
as hyperbolic points return a hyperbolic isometry withrepel
as repelling fixed point andattract
as attracting fixed point.EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: PD = HyperbolicPlane().PD() sage: PD.isometry_from_fixed_points(-i, i) Isometry in PD [ 3/4 1/4*I] [-1/4*I 3/4]
sage: p, q = PD.get_point(1/2 + I/2), PD.get_point(6/13 + 9/13*I) sage: PD.isometry_from_fixed_points(p, q) Traceback (most recent call last): ... ValueError: fixed points of hyperbolic elements must be ideal sage: p, q = PD.get_point(4/5 + 3/5*I), PD.get_point(-I) sage: PD.isometry_from_fixed_points(p, q) Isometry in PD [ 1/6*I - 2/3 -1/3*I - 1/6] [ 1/3*I - 1/6 -1/6*I - 2/3]
- isometry_in_model(A)#
Return
True
if the input matrix represents an isometry of the given model andFalse
otherwise.INPUT:
a matrix that represents an isometry in the appropriate model
OUTPUT:
boolean
EXAMPLES:
sage: HyperbolicPlane().UHP().isometry_in_model(identity_matrix(2)) True sage: HyperbolicPlane().UHP().isometry_in_model(identity_matrix(3)) False
- isometry_test(A)#
Test whether an isometry
A
is in the model.If the isometry is in the model, do nothing. Otherwise, raise a
ValueError
.EXAMPLES:
sage: HyperbolicPlane().UHP().isometry_test(identity_matrix(2)) sage: HyperbolicPlane().UHP().isometry_test(matrix(2, [I,1,2,1])) Traceback (most recent call last): ... ValueError: [I 1] [2 1] is not a valid isometry in the UHP model
- name()#
Return the name of this model.
EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.name() 'Upper Half Plane Model'
- point_in_model(p)#
Return
True
if the pointp
is in the interior of the given model andFalse
otherwise.INPUT:
any object that can converted into a complex number
OUTPUT:
boolean
EXAMPLES:
sage: HyperbolicPlane().UHP().point_in_model(I) True sage: HyperbolicPlane().UHP().point_in_model(-I) False
- point_test(p)#
Test whether a point is in the model. If the point is in the model, do nothing. Otherwise, raise a
ValueError
.EXAMPLES:
sage: from sage.geometry.hyperbolic_space.hyperbolic_model import HyperbolicModelUHP sage: HyperbolicPlane().UHP().point_test(2 + I) sage: HyperbolicPlane().UHP().point_test(2 - I) Traceback (most recent call last): ... ValueError: -I + 2 is not a valid point in the UHP model
- random_element(**kwargs)#
Return a random point in
self
.The points are uniformly distributed over the rectangle \([-10, 10] \times [0, 10 i]\) in the upper half plane model.
EXAMPLES:
sage: p = HyperbolicPlane().UHP().random_element() sage: bool((p.coordinates().imag()) > 0) True sage: p = HyperbolicPlane().PD().random_element() sage: HyperbolicPlane().PD().point_in_model(p.coordinates()) True sage: p = HyperbolicPlane().KM().random_element() sage: HyperbolicPlane().KM().point_in_model(p.coordinates()) True sage: p = HyperbolicPlane().HM().random_element().coordinates() sage: bool((p[0]**2 + p[1]**2 - p[2]**2 - 1) < 10**-8) True
- random_geodesic(**kwargs)#
Return a random hyperbolic geodesic.
Return the geodesic between two random points.
EXAMPLES:
sage: h = HyperbolicPlane().PD().random_geodesic() sage: all( e.coordinates().abs() <= 1 for e in h.endpoints() ) True
- random_isometry(preserve_orientation=True, **kwargs)#
Return a random isometry in the model of
self
.INPUT:
preserve_orientation
– ifTrue
return an orientation-preserving isometry
OUTPUT:
a hyperbolic isometry
EXAMPLES:
sage: A = HyperbolicPlane().PD().random_isometry() sage: A.preserves_orientation() True sage: B = HyperbolicPlane().PD().random_isometry(preserve_orientation=False) sage: B.preserves_orientation() False
- random_point(**kwargs)#
Return a random point of
self
.The points are uniformly distributed over the rectangle \([-10, 10] \times [0, 10 i]\) in the upper half plane model.
EXAMPLES:
sage: p = HyperbolicPlane().UHP().random_point() sage: bool((p.coordinates().imag()) > 0) True sage: PD = HyperbolicPlane().PD() sage: p = PD.random_point() sage: PD.point_in_model(p.coordinates()) True
- short_name()#
Return the short name of this model.
EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.short_name() 'UHP'
- class sage.geometry.hyperbolic_space.hyperbolic_model.HyperbolicModelHM(space)#
Bases:
HyperbolicModel
Hyperboloid Model.
- boundary_point_in_model(p)#
Return
False
since the Hyperboloid model has no boundary points.EXAMPLES:
sage: HM = HyperbolicPlane().HM() sage: HM.boundary_point_in_model((0,0,1)) False sage: HM.boundary_point_in_model((1,0,sqrt(2))) False sage: HM.boundary_point_in_model((1,2,1)) False
- get_background_graphic(**bdry_options)#
Return a graphic object that makes the model easier to visualize. For the hyperboloid model, the background object is the hyperboloid itself.
EXAMPLES:
sage: H = HyperbolicPlane().HM().get_background_graphic()
- isometry_in_model(A)#
Test that the matrix
A
is in the group \(SO(2,1)^+\).EXAMPLES:
sage: A = diagonal_matrix([1,1,-1]) sage: HyperbolicPlane().HM().isometry_in_model(A) True
- point_in_model(p)#
Check whether a complex number lies in the hyperboloid.
EXAMPLES:
sage: HM = HyperbolicPlane().HM() sage: HM.point_in_model((0,0,1)) True sage: HM.point_in_model((1,0,sqrt(2))) True sage: HM.point_in_model((1,2,1)) False
- class sage.geometry.hyperbolic_space.hyperbolic_model.HyperbolicModelKM(space)#
Bases:
HyperbolicModel
Klein Model.
- boundary_point_in_model(p)#
Check whether a point lies in the unit circle, which corresponds to the ideal boundary of the hyperbolic plane in the Klein model.
EXAMPLES:
sage: KM = HyperbolicPlane().KM() sage: KM.boundary_point_in_model((1, 0)) True sage: KM.boundary_point_in_model((1/2, 1/2)) False sage: KM.boundary_point_in_model((1, .2)) False
- get_background_graphic(**bdry_options)#
Return a graphic object that makes the model easier to visualize.
For the Klein model, the background object is the ideal boundary.
EXAMPLES:
sage: circ = HyperbolicPlane().KM().get_background_graphic()
- isometry_in_model(A)#
Check if the given matrix
A
is in the group \(SO(2,1)\).EXAMPLES:
sage: A = matrix(3, [[1, 0, 0], [0, 17/8, 15/8], [0, 15/8, 17/8]]) sage: HyperbolicPlane().KM().isometry_in_model(A) True
- point_in_model(p)#
Check whether a point lies in the open unit disk.
EXAMPLES:
sage: KM = HyperbolicPlane().KM() sage: KM.point_in_model((1, 0)) False sage: KM.point_in_model((1/2, 1/2)) True sage: KM.point_in_model((1, .2)) False
- class sage.geometry.hyperbolic_space.hyperbolic_model.HyperbolicModelPD(space)#
Bases:
HyperbolicModel
Poincaré Disk Model.
- boundary_point_in_model(p)#
Check whether a complex number lies in the open unit disk.
EXAMPLES:
sage: PD = HyperbolicPlane().PD() sage: PD.boundary_point_in_model(1.00) True sage: PD.boundary_point_in_model(1/2 + I/2) False sage: PD.boundary_point_in_model(1 + .2*I) False
- get_background_graphic(**bdry_options)#
Return a graphic object that makes the model easier to visualize.
For the Poincaré disk, the background object is the ideal boundary.
EXAMPLES:
sage: circ = HyperbolicPlane().PD().get_background_graphic()
- isometry_in_model(A)#
Check if the given matrix
A
is in the group \(U(1,1)\).EXAMPLES:
sage: z = [CC.random_element() for k in range(2)]; z.sort(key=abs) sage: A = matrix(2,[z[1], z[0],z[0].conjugate(),z[1].conjugate()]) sage: HyperbolicPlane().PD().isometry_in_model(A) True
- point_in_model(p)#
Check whether a complex number lies in the open unit disk.
EXAMPLES:
sage: PD = HyperbolicPlane().PD() sage: PD.point_in_model(1.00) False sage: PD.point_in_model(1/2 + I/2) True sage: PD.point_in_model(1 + .2*I) False
- class sage.geometry.hyperbolic_space.hyperbolic_model.HyperbolicModelUHP(space)#
Bases:
HyperbolicModel
Upper Half Plane model.
- Element#
alias of
HyperbolicPointUHP
- boundary_point_in_model(p)#
Check whether a complex number is a real number or
\infty
. In theUHP.model_name_name
, this is the ideal boundary of hyperbolic space.EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.boundary_point_in_model(1 + I) False sage: UHP.boundary_point_in_model(infinity) True sage: UHP.boundary_point_in_model(CC(infinity)) True sage: UHP.boundary_point_in_model(RR(infinity)) True sage: UHP.boundary_point_in_model(1) True sage: UHP.boundary_point_in_model(12) True sage: UHP.boundary_point_in_model(1 - I) False sage: UHP.boundary_point_in_model(-2*I) False sage: UHP.boundary_point_in_model(0) True sage: UHP.boundary_point_in_model(I) False
- get_background_graphic(**bdry_options)#
Return a graphic object that makes the model easier to visualize. For the upper half space, the background object is the ideal boundary.
EXAMPLES:
sage: hp = HyperbolicPlane().UHP().get_background_graphic()
- isometry_from_fixed_points(repel, attract)#
Given two fixed points
repel
andattract
as complex numbers return a hyperbolic isometry withrepel
as repelling fixed point andattract
as attracting fixed point.EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.isometry_from_fixed_points(2 + I, 3 + I) Traceback (most recent call last): ... ValueError: fixed points of hyperbolic elements must be ideal sage: UHP.isometry_from_fixed_points(2, 0) Isometry in UHP [ -1 0] [-1/3 -1/3]
- isometry_in_model(A)#
Check that
A
acts as an isometry on the upper half plane. That is,A
must be an invertible \(2 \times 2\) matrix with real entries.EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: A = matrix(2,[1,2,3,4]) sage: UHP.isometry_in_model(A) True sage: B = matrix(2,[I,2,4,1]) sage: UHP.isometry_in_model(B) False
An example of a matrix \(A\) such that \(\det(A) \neq 1\), but the \(A\) acts isometrically:
sage: C = matrix(2,[10,0,0,10]) sage: UHP.isometry_in_model(C) True
- point_in_model(p)#
Check whether a complex number lies in the open upper half plane.
EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() sage: UHP.point_in_model(1 + I) True sage: UHP.point_in_model(infinity) False sage: UHP.point_in_model(CC(infinity)) False sage: UHP.point_in_model(RR(infinity)) False sage: UHP.point_in_model(1) False sage: UHP.point_in_model(12) False sage: UHP.point_in_model(1 - I) False sage: UHP.point_in_model(-2*I) False sage: UHP.point_in_model(I) True sage: UHP.point_in_model(0) # Not interior point False
- random_isometry(preserve_orientation=True, **kwargs)#
Return a random isometry in the Upper Half Plane model.
INPUT:
preserve_orientation
– ifTrue
return an orientation-preserving isometry
OUTPUT:
a hyperbolic isometry
EXAMPLES:
sage: A = HyperbolicPlane().UHP().random_isometry() sage: B = HyperbolicPlane().UHP().random_isometry(preserve_orientation=False) sage: B.preserves_orientation() False
- random_point(**kwargs)#
Return a random point in the upper half plane. The points are uniformly distributed over the rectangle \([-10, 10] \times [0, 10i]\).
EXAMPLES:
sage: p = HyperbolicPlane().UHP().random_point().coordinates() sage: bool((p.imag()) > 0) True