Interface to several Rubik’s cube solvers.#
The first is by Michael Reid, and tries to find an optimal solution given the cube’s state, and may take a long time. See http://www.math.ucf.edu/~reid/Rubik/optimal_solver.html
The second is by Eric Dietz, and uses a standard (?) algorithm to solve the cube one level at a time. It is extremely fast, but often returns a far from optimal solution. See https://web.archive.org/web/20121212175710/http://www.wrongway.org/?rubiksource
The third is by Dik Winter and implements Kociemba’s algorithm which finds reasonable solutions relatively quickly, and if it is kept running will eventually find the optimal solution.
AUTHOR:
– Optimal was written by Michael Reid <reid@math.ucf.edu> (2004) – Cubex was written by Eric Dietz <root@wrongway.org> (2003) – Kociemba was written by Dik T. Winter <dik.winter@cwi.nl> (1993) – Initial interface by Robert Bradshaw (2007-08)
- class sage.interfaces.rubik.CubexSolver#
Bases:
object
- format_cube(facets)#
- solve(facets)#
EXAMPLES:
sage: from sage.interfaces.rubik import * # optional - rubiks sage: C = RubiksCube("R U") # optional - rubiks sage: CubexSolver().solve(C.facets()) # optional - rubiks 'R U' sage: C = RubiksCube("R U F L B D") # optional - rubiks sage: sol = CubexSolver().solve(C.facets()); sol # optional - rubiks "U' L' L' U L U' L U D L L D' L' D L' D' L D L' U' L D' L' U L' B' U' L' U B L D L D' U' L' U L B L B' L' U L U' L' F' L' F L' F L F' L' D' L' D D L D' B L B' L B' L B F' L F F B' L F' B D' D' L D B' B' L' D' B U' U' L' B' D' F' F' L D F'" sage: RubiksCube(sol) == C # optional - rubiks True sage: C = RubiksCube("R2 F'") # optional - rubiks sage: CubexSolver().solve(C.facets()) # optional - rubiks "R' R' F'" sage: C = RubiksCube().scramble() # optional - rubiks sage: sol = CubexSolver().solve(C.facets()) # optional - rubiks sage: C == RubiksCube(sol) # optional - rubiks True
- class sage.interfaces.rubik.DikSolver#
Bases:
object
- facet_map = [1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19, 25, 26, 27, 33, 34, 35, 12, 0, 13, 20, 0, 21, 28, 0, 29, 36, 0, 37, 14, 15, 16, 22, 23, 24, 30, 31, 32, 38, 39, 40, 41, 42, 43, 44, 0, 45, 46, 47, 48]#
- format_cube(facets)#
- rot_map = {'B': 'U', 'D': 'B', 'F': 'D', 'L': 'L', 'R': 'R', 'U': 'F'}#
- solve(facets, timeout=10, extra_time=2)#
EXAMPLES:
sage: from sage.interfaces.rubik import * # optional - rubiks sage: C = RubiksCube().move("R U") # optional - rubiks sage: DikSolver().solve(C.facets()) # optional - rubiks 'R U' sage: C = RubiksCube().move("R U F L B D") # optional - rubiks sage: DikSolver().solve(C.facets()) # optional - rubiks 'R U F L B D' sage: C = RubiksCube().move("R2 F'") # optional - rubiks sage: DikSolver().solve(C.facets()) # optional - rubiks "R2 F'"
- class sage.interfaces.rubik.OptimalSolver(verbose=False, wait=True)#
Bases:
object
Interface to Michael Reid’s optimal Rubik’s Cube solver.
- format_cube(facets)#
- ready()#
- solve(facets)#
The initial startup and precomputation are substantial…
Todo
Let it keep searching once it found a solution?
EXAMPLES:
sage: from sage.interfaces.rubik import * # optional - rubiks sage: solver = DikSolver() # optional - rubiks sage: solver = OptimalSolver() # optional - rubiks # long time (28s on sage.math, 2012) Initializing tables... Done. sage: C = RubiksCube("R U") # optional - rubiks sage: solver.solve(C.facets()) # optional - rubiks 'R U' sage: C = RubiksCube("R U F L B D") # optional - rubiks sage: solver.solve(C.facets()) # optional - rubiks 'R U F L B D' sage: C = RubiksCube("R2 D2") # optional - rubiks sage: solver.solve(C.facets()) # optional - rubiks 'R2 D2'
- start()#
- stop()#
- class sage.interfaces.rubik.SingNot(s)#
Bases:
object
This class is to resolve difference between various Singmaster notation.
Case is ignored, and the second and third letters may be swapped.
EXAMPLES:
sage: from sage.interfaces.rubik import SingNot sage: SingNot("acb") == SingNot("ACB") True sage: SingNot("acb") == SingNot("bca") False