Sparse matrices over \(\ZZ/n\ZZ\) for \(n\) small#
This is a compiled implementation of sparse matrices over \(\ZZ/n\ZZ\) for \(n\) small.
Todo
move vectors into a Cython vector class - add _add_ and _mul_ methods.
EXAMPLES:
sage: a = matrix(Integers(37),3,3,range(9),sparse=True); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: type(a)
<class 'sage.matrix.matrix_modn_sparse.Matrix_modn_sparse'>
sage: parent(a)
Full MatrixSpace of 3 by 3 sparse matrices over Ring of integers modulo 37
sage: a^2
[15 18 21]
[ 5 17 29]
[32 16 0]
sage: a+a
[ 0 2 4]
[ 6 8 10]
[12 14 16]
sage: b = a.new_matrix(2,3,range(6)); b
[0 1 2]
[3 4 5]
sage: a*b
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Full MatrixSpace of 3 by 3 sparse matrices over Ring of integers modulo 37' and 'Full MatrixSpace of 2 by 3 sparse matrices over Ring of integers modulo 37'
sage: b*a
[15 18 21]
[ 5 17 29]
sage: TestSuite(a).run()
sage: TestSuite(b).run()
sage: a.echelonize(); a
[ 1 0 36]
[ 0 1 2]
[ 0 0 0]
sage: b.echelonize(); b
[ 1 0 36]
[ 0 1 2]
sage: a.pivots()
(0, 1)
sage: b.pivots()
(0, 1)
sage: a.rank()
2
sage: b.rank()
2
sage: a[2,2] = 5
sage: a.rank()
3
- class sage.matrix.matrix_modn_sparse.Matrix_modn_sparse#
Bases:
Matrix_sparse
Create a sparse matrix over the integers modulo
n
.INPUT:
parent
– a matrix space over the integers modulon
entries
– seematrix()
copy
– ignored (for backwards compatibility)coerce
– if False, assume without checking that the entries lie in the base ring
- density()#
Return the density of self, i.e., the ratio of the number of nonzero entries of self to the total size of self.
EXAMPLES:
sage: A = matrix(QQ,3,3,[0,1,2,3,0,0,6,7,8],sparse=True) sage: A.density() 2/3
Notice that the density parameter does not ensure the density of a matrix; it is only an upper bound.
sage: A = random_matrix(GF(127), 200, 200, density=0.3, sparse=True) sage: density_sum = float(A.density()) sage: total = 1 sage: expected_density = 1.0 - (199/200)^60 sage: expected_density 0.2597... sage: while abs(density_sum/total - expected_density) > 0.001: ....: A = random_matrix(GF(127), 200, 200, density=0.3, sparse=True) ....: density_sum += float(A.density()) ....: total += 1
- determinant(algorithm=None)#
Return the determinant of this matrix.
INPUT:
algorithm
- either"linbox"
(default) or"generic"
.
EXAMPLES:
sage: A = matrix(GF(3), 4, range(16), sparse=True) sage: B = identity_matrix(GF(3), 4, sparse=True) sage: (A + B).det() 2 sage: (A + B).det(algorithm="linbox") 2 sage: (A + B).det(algorithm="generic") 2 sage: (A + B).det(algorithm="hey") Traceback (most recent call last): ... ValueError: no algorithm 'hey' sage: matrix(GF(11), 1, 2, sparse=True).det() Traceback (most recent call last): ... ValueError: self must be a square matrix
- matrix_from_columns(cols)#
Return the matrix constructed from self using columns with indices in the columns list.
EXAMPLES:
sage: M = MatrixSpace(GF(127),3,3,sparse=True) sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 8] sage: A.matrix_from_columns([2,1]) [2 1] [5 4] [8 7]
- matrix_from_rows(rows)#
Return the matrix constructed from self using rows with indices in the rows list.
INPUT:
rows
- list or tuple of row indices
EXAMPLES:
sage: M = MatrixSpace(GF(127),3,3,sparse=True) sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 8] sage: A.matrix_from_rows([2,1]) [6 7 8] [3 4 5]
- p#
- rank(algorithm=None)#
Return the rank of this matrix.
INPUT:
algorithm
- either"linbox"
(only available for matrices over prime fields) or"generic"
EXAMPLES:
sage: A = matrix(GF(127), 2, 2, sparse=True) sage: A[0,0] = 34 sage: A[0,1] = 102 sage: A[1,0] = 55 sage: A[1,1] = 74 sage: A.rank() 2 sage: A._clear_cache() sage: A.rank(algorithm="generic") 2 sage: A._clear_cache() sage: A.rank(algorithm="hey") Traceback (most recent call last): ... ValueError: no algorithm 'hey'
REFERENCES:
Jean-Guillaume Dumas and Gilles Villars. ‘Computing the Rank of Large Sparse Matrices over Finite Fields’. Proc. CASC’2002, The Fifth International Workshop on Computer Algebra in Scientific Computing, Big Yalta, Crimea, Ukraine, 22-27 sept. 2002, Springer-Verlag, http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/POSTSCRIPT/rankjgd.ps
Note
For very sparse matrices Gaussian elimination is faster because it barely has anything to do. If the fill in needs to be considered, ‘Symbolic Reordering’ is usually much faster.
- swap_rows(r1, r2)#
- transpose()#
Return the transpose of self.
EXAMPLES:
sage: A = matrix(GF(127),3,3,[0,1,0,2,0,0,3,0,0],sparse=True) sage: A [0 1 0] [2 0 0] [3 0 0] sage: A.transpose() [0 2 3] [1 0 0] [0 0 0]
.T
is a convenient shortcut for the transpose:sage: A.T [0 2 3] [1 0 0] [0 0 0]