Constructors for certain modular abelian varieties#
AUTHORS:
William Stein (2007-03)
- sage.modular.abvar.constructor.AbelianVariety(X)#
Create the abelian variety corresponding to the given defining data.
INPUT:
X
- an integer, string, newform, modsym space, congruence subgroup or tuple of congruence subgroups
OUTPUT: a modular abelian variety
EXAMPLES:
sage: AbelianVariety(Gamma0(37)) Abelian variety J0(37) of dimension 2 sage: AbelianVariety('37a') Newform abelian subvariety 37a of dimension 1 of J0(37) sage: AbelianVariety(Newform('37a')) Newform abelian subvariety 37a of dimension 1 of J0(37) sage: AbelianVariety(ModularSymbols(37).cuspidal_submodule()) Abelian variety J0(37) of dimension 2 sage: AbelianVariety((Gamma0(37), Gamma0(11))) Abelian variety J0(37) x J0(11) of dimension 3 sage: AbelianVariety(37) Abelian variety J0(37) of dimension 2 sage: AbelianVariety([1,2,3]) Traceback (most recent call last): ... TypeError: X must be an integer, string, newform, modsym space, congruence subgroup or tuple of congruence subgroups
- sage.modular.abvar.constructor.J0(N)#
Return the Jacobian \(J_0(N)\) of the modular curve \(X_0(N)\).
EXAMPLES:
sage: J0(389) Abelian variety J0(389) of dimension 32
The result is cached:
sage: J0(33) is J0(33) True
- sage.modular.abvar.constructor.J1(N)#
Return the Jacobian \(J_1(N)\) of the modular curve \(X_1(N)\).
EXAMPLES:
sage: J1(389) Abelian variety J1(389) of dimension 6112
- sage.modular.abvar.constructor.JH(N, H)#
Return the Jacobian \(J_H(N)\) of the modular curve \(X_H(N)\).
EXAMPLES:
sage: JH(389,[16]) Abelian variety JH(389,[16]) of dimension 64