Hypergeometric motives#
This is largely a port of the corresponding package in Magma. One important conventional difference: the motivic parameter \(t\) has been replaced with \(1/t\) to match the classical literature on hypergeometric series. (E.g., see [BeukersHeckman])
The computation of Euler factors is currently only supported for primes \(p\) of good reduction. That is, it is required that \(v_p(t) = v_p(t-1) = 0\).
AUTHORS:
Frédéric Chapoton
Kiran S. Kedlaya
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
sage: H = Hyp(cyclotomic=([30], [1,2,3,5]))
sage: H.alpha_beta()
([1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30],
[0, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 4/5])
sage: H.M_value() == 30**30 / (15**15 * 10**10 * 6**6)
True
sage: H.euler_factor(2, 7)
T^8 + T^5 + T^3 + 1
REFERENCES:
- class sage.modular.hypergeometric_motive.HypergeometricData(cyclotomic=None, alpha_beta=None, gamma_list=None)#
Bases:
object
Creation of hypergeometric motives.
INPUT:
three possibilities are offered, each describing a quotient of products of cyclotomic polynomials.
cyclotomic
– a pair of lists of nonnegative integers, each integer \(k\) represents a cyclotomic polynomial \(\Phi_k\)alpha_beta
– a pair of lists of rationals, each rational represents a root of unitygamma_list
– a pair of lists of nonnegative integers, each integer \(n\) represents a polynomial \(x^n - 1\)
In the last case, it is also allowed to send just one list of signed integers where signs indicate to which part the integer belongs to.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([2],[1])) Hypergeometric data for [1/2] and [0] sage: Hyp(alpha_beta=([1/2],[0])) Hypergeometric data for [1/2] and [0] sage: Hyp(alpha_beta=([1/5,2/5,3/5,4/5],[0,0,0,0])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] sage: Hyp(gamma_list=([5],[1,1,1,1,1])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] sage: Hyp(gamma_list=([5,-1,-1,-1,-1,-1])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
- H_value(p, f, t, ring=None)#
Return the trace of the Frobenius, computed in terms of Gauss sums using the hypergeometric trace formula.
INPUT:
\(p\) – a prime number
\(f\) – an integer such that \(q = p^f\)
\(t\) – a rational parameter
ring
– optional (defaultUniversalCyclotomicfield
)
The ring could be also
ComplexField(n)
orQQbar
.OUTPUT:
an integer
Warning
This is apparently working correctly as can be tested using ComplexField(70) as value ring.
Using instead UniversalCyclotomicfield, this is much slower than the \(p\)-adic version
padic_H_value()
.EXAMPLES:
With values in the UniversalCyclotomicField (slow):
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: [H.H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.H_value(7,i,-1) for i in range(1,3)] # not tested [0, -476] sage: [H.H_value(11,i,-1) for i in range(1,3)] # not tested [0, -4972] sage: [H.H_value(13,i,-1) for i in range(1,3)] # not tested [-84, -1420]
With values in ComplexField:
sage: [H.H_value(5,i,-1, ComplexField(60)) for i in range(1,3)] [-4, 276]
Check issue from trac ticket #28404:
sage: H1 = Hyp(cyclotomic=([1,1,1],[6,2])) sage: H2 = Hyp(cyclotomic=([6,2],[1,1,1])) sage: [H1.H_value(5,1,i) for i in range(2,5)] [1, -4, -4] sage: [H2.H_value(5,1,QQ(i)) for i in range(2,5)] [-4, 1, -4]
REFERENCES:
[BeCoMe] (Theorem 1.3)
- M_value()#
Return the \(M\) coefficient that appears in the trace formula.
OUTPUT:
a rational
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) sage: H.M_value() 729/4096 sage: Hyp(alpha_beta=(([1/2,1/2,1/2,1/2],[0,0,0,0]))).M_value() 256 sage: Hyp(cyclotomic=([5],[1,1,1,1])).M_value() 3125
- alpha()#
Return the first tuple of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).alpha() [1/2]
- alpha_beta()#
Return the pair of lists of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).alpha_beta() ([1/2], [0])
- beta()#
Return the second tuple of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).beta() [0]
- canonical_scheme(t=None)#
Return the canonical scheme.
This is a scheme that contains this hypergeometric motive in its cohomology.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[4])) sage: H.gamma_list() [-1, 2, 3, -4] sage: H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4) sage: H = Hyp(gamma_list=[-2, 3, 4, -5]) sage: H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)
REFERENCES:
[Kat1991], section 5.4
- cyclotomic_data()#
Return the pair of tuples of indices of cyclotomic polynomials.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).cyclotomic_data() ([2], [1])
- defining_polynomials()#
Return the pair of products of cyclotomic polynomials.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).defining_polynomials() (x^2 + 1, x^2 - 2*x + 1)
- degree()#
Return the degree.
This is the sum of the Hodge numbers.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).degree() 1 sage: Hyp(gamma_list=([2,2,4],[8])).degree() 4 sage: Hyp(cyclotomic=([5,6],[1,1,2,2,3])).degree() 6 sage: Hyp(cyclotomic=([3,8],[1,1,1,2,6])).degree() 6 sage: Hyp(cyclotomic=([3,3],[2,2,4])).degree() 4
- euler_factor(t, p, cache_p=False)#
Return the Euler factor of the motive \(H_t\) at prime \(p\).
INPUT:
\(t\) – rational number, not 0 or 1
\(p\) – prime number of good reduction
OUTPUT:
a polynomial
See [Benasque2009] for explicit examples of Euler factors.
For odd weight, the sign of the functional equation is +1. For even weight, the sign is computed by a recipe found in 11.1 of [Watkins].
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: H.euler_factor(-1, 5) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: H.weight(), H.degree() (1, 2) sage: t = 189/125 sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] [11*T^2 + 4*T + 1, 13*T^2 + 1, 17*T^2 + 1, 19*T^2 + 1, 23*T^2 + 8*T + 1, 29*T^2 + 2*T + 1] sage: H = Hyp(cyclotomic=([6,2],[1,1,1])) sage: H.weight(), H.degree() (2, 3) sage: [H.euler_factor(1/4,p) for p in [5,7,11,13,17,19]] [125*T^3 + 20*T^2 + 4*T + 1, 343*T^3 - 42*T^2 - 6*T + 1, -1331*T^3 - 22*T^2 + 2*T + 1, -2197*T^3 - 156*T^2 + 12*T + 1, 4913*T^3 + 323*T^2 + 19*T + 1, 6859*T^3 - 57*T^2 - 3*T + 1] sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12],[0,1/2,1/2,1/2])) sage: H.weight(), H.degree() (2, 4) sage: t = -5 sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] [-14641*T^4 - 1210*T^3 + 10*T + 1, -28561*T^4 - 2704*T^3 + 16*T + 1, -83521*T^4 - 4046*T^3 + 14*T + 1, 130321*T^4 + 14440*T^3 + 969*T^2 + 40*T + 1, 279841*T^4 - 25392*T^3 + 1242*T^2 - 48*T + 1, 707281*T^4 - 7569*T^3 + 696*T^2 - 9*T + 1]
This is an example of higher degree:
sage: H = Hyp(cyclotomic=([11], [7, 12])) sage: H.euler_factor(2, 13) 371293*T^10 - 85683*T^9 + 26364*T^8 + 1352*T^7 - 65*T^6 + 394*T^5 - 5*T^4 + 8*T^3 + 12*T^2 - 3*T + 1 sage: H.euler_factor(2, 19) # long time 2476099*T^10 - 651605*T^9 + 233206*T^8 - 77254*T^7 + 20349*T^6 - 4611*T^5 + 1071*T^4 - 214*T^3 + 34*T^2 - 5*T + 1
REFERENCES:
- gamma_array()#
Return the dictionary \(\{v: \gamma_v\}\) for the expression
\[\prod_v (T^v - 1)^{\gamma_v}\]EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).gamma_array() {1: -2, 2: 1} sage: Hyp(cyclotomic=([6,2],[1,1,1])).gamma_array() {1: -3, 3: -1, 6: 1}
- gamma_list()#
Return a list of integers describing the \(x^n - 1\) factors.
Each integer \(n\) stands for \((x^{|n|} - 1)^{\operatorname{sgn}(n)}\).
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).gamma_list() [-1, -1, 2] sage: Hyp(cyclotomic=([6,2],[1,1,1])).gamma_list() [-1, -1, -1, -3, 6] sage: Hyp(cyclotomic=([3],[4])).gamma_list() [-1, 2, 3, -4]
- gauss_table(p, f, prec)#
Return (and cache) a table of Gauss sums used in the trace formula.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[4])) sage: H.gauss_table(2, 2, 4) (4, [1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3])
- gauss_table_full()#
Return a dict of all stored tables of Gauss sums.
The result is passed by reference, and is an attribute of the class; consequently, modifying the result has global side effects. Use with caution.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[4])) sage: H.euler_factor(2, 7, cache_p=True) 7*T^2 - 3*T + 1 sage: H.gauss_table_full()[(7, 1)] (2, array('l', [-1, -29, -25, -48, -47, -22]))
Clearing cached values:
sage: H = Hyp(cyclotomic=([3],[4])) sage: H.euler_factor(2, 7, cache_p=True) 7*T^2 - 3*T + 1 sage: d = H.gauss_table_full() sage: d.clear() # Delete all entries of this dict sage: H1 = Hyp(cyclotomic=([5],[12])) sage: d1 = H1.gauss_table_full() sage: len(d1.keys()) # No cached values 0
- has_symmetry_at_one()#
If
True
, the motive H(t=1) is a direct sum of two motives.Note that simultaneous exchange of (t,1/t) and (alpha,beta) always gives the same motive.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=[[1/2]*16,[0]*16]).has_symmetry_at_one() True
REFERENCES:
- hodge_function(x)#
Evaluate the Hodge polygon as a function.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10],[3,12])) sage: H.hodge_function(3) 2 sage: H.hodge_function(4) 4
- hodge_numbers()#
Return the Hodge numbers.
See also
degree()
,hodge_polynomial()
,hodge_polygon()
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[6])) sage: H.hodge_numbers() [1, 1] sage: H = Hyp(cyclotomic=([4],[1,2])) sage: H.hodge_numbers() [2] sage: H = Hyp(gamma_list=([8,2,2,2],[6,4,3,1])) sage: H.hodge_numbers() [1, 2, 2, 1] sage: H = Hyp(gamma_list=([5],[1,1,1,1,1])) sage: H.hodge_numbers() [1, 1, 1, 1] sage: H = Hyp(gamma_list=[6,1,-4,-3]) sage: H.hodge_numbers() [1, 1] sage: H = Hyp(gamma_list=[-3]*4 + [1]*12) sage: H.hodge_numbers() [1, 1, 1, 1, 1, 1, 1, 1]
REFERENCES:
- hodge_polygon_vertices()#
Return the vertices of the Hodge polygon.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10],[3,12])) sage: H.hodge_polygon_vertices() [(0, 0), (1, 0), (3, 2), (5, 6), (6, 9)] sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6],[1,1,4,5,9])) sage: H.hodge_polygon_vertices() [(0, 0), (1, 0), (4, 3), (7, 9), (10, 18), (13, 30), (14, 35)]
- hodge_polynomial()#
Return the Hodge polynomial.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10],[3,12])) sage: H.hodge_polynomial() (T^3 + 2*T^2 + 2*T + 1)/T^2 sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6],[1,1,4,5,9])) sage: H.hodge_polynomial() (T^5 + 3*T^4 + 3*T^3 + 3*T^2 + 3*T + 1)/T^2
- is_primitive()#
Return whether this data is primitive.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3],[4])).is_primitive() True sage: Hyp(gamma_list=[-2, 4, 6, -8]).is_primitive() False sage: Hyp(gamma_list=[-3, 6, 9, -12]).is_primitive() False
- padic_H_value(p, f, t, prec=None, cache_p=False)#
Return the \(p\)-adic trace of Frobenius, computed using the Gross-Koblitz formula.
If left unspecified, \(prec\) is set to the minimum \(p\)-adic precision needed to recover the Euler factor.
If \(cache_p\) is True, then the function caches an intermediate result which depends only on \(p\) and \(f\). This leads to a significant speedup when iterating over \(t\).
INPUT:
\(p\) – a prime number
\(f\) – an integer such that \(q = p^f\)
\(t\) – a rational parameter
prec
– precision (optional)cache_p
- a boolean
OUTPUT:
an integer
EXAMPLES:
From Benasque report [Benasque2009], page 8:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: [H.padic_H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.padic_H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.padic_H_value(7,i,-1) for i in range(1,3)] [0, -476] sage: [H.padic_H_value(11,i,-1) for i in range(1,3)] [0, -4972]
From [Roberts2015] (but note conventions regarding \(t\)):
sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: t = 189/125 sage: H.padic_H_value(13,1,1/t) 0
REFERENCES:
- primitive_data()#
Return a primitive version.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3],[4])) sage: H2 = Hyp(gamma_list=[-2, 4, 6, -8]) sage: H2.primitive_data() == H True
- primitive_index()#
Return the primitive index.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3],[4])).primitive_index() 1 sage: Hyp(gamma_list=[-2, 4, 6, -8]).primitive_index() 2 sage: Hyp(gamma_list=[-3, 6, 9, -12]).primitive_index() 3
- sign(t, p)#
Return the sign of the functional equation for the Euler factor of the motive \(H_t\) at the prime \(p\).
For odd weight, the sign of the functional equation is +1. For even weight, the sign is computed by a recipe found in 11.1 of [Watkins] (when 0 is not in alpha).
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,2],[1,1,1])) sage: H.weight(), H.degree() (2, 3) sage: [H.sign(1/4,p) for p in [5,7,11,13,17,19]] [1, 1, -1, -1, 1, 1] sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12],[0,1/2,1/2,1/2])) sage: H.weight(), H.degree() (2, 4) sage: t = -5 sage: [H.sign(1/t,p) for p in [11,13,17,19,23,29]] [-1, -1, -1, 1, 1, 1]
We check that trac ticket #28404 is fixed:
sage: H = Hyp(cyclotomic=([1,1,1],[6,2])) sage: [H.sign(4,p) for p in [5,7,11,13,17,19]] [1, 1, -1, -1, 1, 1]
- swap_alpha_beta()#
Return the hypergeometric data with
alpha
andbeta
exchanged.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2],[0])) sage: H.swap_alpha_beta() Hypergeometric data for [0] and [1/2]
- trace(p, f, t, prec=None, cache_p=False)#
Return the \(p\)-adic trace of Frobenius, computed using the Gross-Koblitz formula.
If left unspecified, \(prec\) is set to the minimum \(p\)-adic precision needed to recover the Euler factor.
If \(cache_p\) is True, then the function caches an intermediate result which depends only on \(p\) and \(f\). This leads to a significant speedup when iterating over \(t\).
INPUT:
\(p\) – a prime number
\(f\) – an integer such that \(q = p^f\)
\(t\) – a rational parameter
prec
– precision (optional)cache_p
- a boolean
OUTPUT:
an integer
EXAMPLES:
From Benasque report [Benasque2009], page 8:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4,[0]*4)) sage: [H.padic_H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.padic_H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.padic_H_value(7,i,-1) for i in range(1,3)] [0, -476] sage: [H.padic_H_value(11,i,-1) for i in range(1,3)] [0, -4972]
From [Roberts2015] (but note conventions regarding \(t\)):
sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: t = 189/125 sage: H.padic_H_value(13,1,1/t) 0
REFERENCES:
- twist()#
Return the twist of this data.
This is defined by adding \(1/2\) to each rational in \(\alpha\) and \(\beta\).
This is an involution.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2],[0])) sage: H.twist() Hypergeometric data for [0] and [1/2] sage: H.twist().twist() == H True sage: Hyp(cyclotomic=([6],[1,2])).twist().cyclotomic_data() ([3], [1, 2])
- weight()#
Return the motivic weight of this motivic data.
EXAMPLES:
With rational inputs:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2],[0])).weight() 0 sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).weight() 1 sage: Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[0,0,1/4,3/4])).weight() 1 sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) sage: H.weight() 1
With cyclotomic inputs:
sage: Hyp(cyclotomic=([6,2],[1,1,1])).weight() 2 sage: Hyp(cyclotomic=([6],[1,2])).weight() 0 sage: Hyp(cyclotomic=([8],[1,2,3])).weight() 0 sage: Hyp(cyclotomic=([5],[1,1,1,1])).weight() 3 sage: Hyp(cyclotomic=([5,6],[1,1,2,2,3])).weight() 1 sage: Hyp(cyclotomic=([3,8],[1,1,1,2,6])).weight() 2 sage: Hyp(cyclotomic=([3,3],[2,2,4])).weight() 1
With gamma list input:
sage: Hyp(gamma_list=([8,2,2,2],[6,4,3,1])).weight() 3
- wild_primes()#
Return the wild primes.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3],[4])).wild_primes() [2, 3] sage: Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6],[1,1,4,5,9])).wild_primes() [2, 3, 5]
- zigzag(x, flip_beta=False)#
Count
alpha
’s at mostx
minusbeta
’s at mostx
.This function is used to compute the weight and the Hodge numbers. With \(flip_beta\) set to True, replace each \(b\) in \(\beta\) with \(1-b\).
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6],[1/8,3/8,5/8,7/8])) sage: [H.zigzag(x) for x in [0, 1/3, 1/2]] [0, 1, 0] sage: H = Hyp(cyclotomic=([5],[1,1,1,1])) sage: [H.zigzag(x) for x in [0,1/6,1/4,1/2,3/4,5/6]] [-4, -4, -3, -2, -1, 0]
- sage.modular.hypergeometric_motive.alpha_to_cyclotomic(alpha)#
Convert from a list of rationals arguments to a list of integers.
The input represents arguments of some roots of unity.
The output represent a product of cyclotomic polynomials with exactly the given roots. Note that the multiplicity of \(r/s\) in the list must be independent of \(r\); otherwise, a
ValueError
will be raised.This is the inverse of
cyclotomic_to_alpha()
.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import alpha_to_cyclotomic sage: alpha_to_cyclotomic([0]) [1] sage: alpha_to_cyclotomic([1/2]) [2] sage: alpha_to_cyclotomic([1/5,2/5,3/5,4/5]) [5] sage: alpha_to_cyclotomic([0, 1/6, 1/3, 1/2, 2/3, 5/6]) [1, 2, 3, 6] sage: alpha_to_cyclotomic([1/3,2/3,1/2]) [2, 3]
- sage.modular.hypergeometric_motive.capital_M(n)#
Auxiliary function, used to describe the canonical scheme.
INPUT:
n
– an integer
OUTPUT:
a rational
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import capital_M sage: [capital_M(i) for i in range(1,8)] [1, 4, 27, 64, 3125, 432, 823543]
- sage.modular.hypergeometric_motive.characteristic_polynomial_from_traces(traces, d, q, i, sign)#
Given a sequence of traces \(t_1, \dots, t_k\), return the corresponding characteristic polynomial with Weil numbers as roots.
The characteristic polynomial is defined by the generating series
\[P(T) = \exp\left(- \sum_{k\geq 1} t_k \frac{T^k}{k}\right)\]and should have the property that reciprocals of all roots have absolute value \(q^{i/2}\).
INPUT:
traces
– a list of integers \(t_1, \dots, t_k\)d
– the degree of the characteristic polynomialq
– power of a prime numberi
– integer, the weight in the motivic sensesign
– integer, the sign
OUTPUT:
a polynomial
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import characteristic_polynomial_from_traces sage: characteristic_polynomial_from_traces([1, 1], 1, 3, 0, -1) -T + 1 sage: characteristic_polynomial_from_traces([25], 1, 5, 4, -1) -25*T + 1 sage: characteristic_polynomial_from_traces([3], 2, 5, 1, 1) 5*T^2 - 3*T + 1 sage: characteristic_polynomial_from_traces([1], 2, 7, 1, 1) 7*T^2 - T + 1 sage: characteristic_polynomial_from_traces([20], 3, 29, 2, 1) 24389*T^3 - 580*T^2 - 20*T + 1 sage: characteristic_polynomial_from_traces([12], 3, 13, 2, -1) -2197*T^3 + 156*T^2 - 12*T + 1 sage: characteristic_polynomial_from_traces([36,7620], 4, 17, 3, 1) 24137569*T^4 - 176868*T^3 - 3162*T^2 - 36*T + 1 sage: characteristic_polynomial_from_traces([-4,276], 4, 5, 3, 1) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 sage: characteristic_polynomial_from_traces([4,-276], 4, 5, 3, 1) 15625*T^4 - 500*T^3 + 146*T^2 - 4*T + 1 sage: characteristic_polynomial_from_traces([22, 484], 4, 31, 2, -1) -923521*T^4 + 21142*T^3 - 22*T + 1
- sage.modular.hypergeometric_motive.cyclotomic_to_alpha(cyclo)#
Convert a list of indices of cyclotomic polynomials to a list of rational numbers.
The input represents a product of cyclotomic polynomials.
The output is the list of arguments of the roots of the given product of cyclotomic polynomials.
This is the inverse of
alpha_to_cyclotomic()
.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import cyclotomic_to_alpha sage: cyclotomic_to_alpha([1]) [0] sage: cyclotomic_to_alpha([2]) [1/2] sage: cyclotomic_to_alpha([5]) [1/5, 2/5, 3/5, 4/5] sage: cyclotomic_to_alpha([1,2,3,6]) [0, 1/6, 1/3, 1/2, 2/3, 5/6] sage: cyclotomic_to_alpha([2,3]) [1/3, 1/2, 2/3]
- sage.modular.hypergeometric_motive.cyclotomic_to_gamma(cyclo_up, cyclo_down)#
Convert a quotient of products of cyclotomic polynomials to a quotient of products of polynomials \(x^n - 1\).
INPUT:
cyclo_up
– list of indices of cyclotomic polynomials in the numeratorcyclo_down
– list of indices of cyclotomic polynomials in the denominator
OUTPUT:
a dictionary mapping an integer \(n\) to the power of \(x^n - 1\) that appears in the given product
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import cyclotomic_to_gamma sage: cyclotomic_to_gamma([6], [1]) {2: -1, 3: -1, 6: 1}
- sage.modular.hypergeometric_motive.enumerate_hypergeometric_data(d, weight=None)#
Return an iterator over parameters of hypergeometric motives (up to swapping).
INPUT:
d
– the degreeweight
– optional integer, to specify the motivic weight
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import enumerate_hypergeometric_data as enum sage: l = [H for H in enum(6, weight=2) if H.hodge_numbers()[0] == 1] sage: len(l) 112
- sage.modular.hypergeometric_motive.gamma_list_to_cyclotomic(galist)#
Convert a quotient of products of polynomials \(x^n - 1\) to a quotient of products of cyclotomic polynomials.
INPUT:
galist
– a list of integers, where an integer \(n\) represents the power \((x^{|n|} - 1)^{\operatorname{sgn}(n)}\)
OUTPUT:
a pair of list of integers, where \(k\) represents the cyclotomic polynomial \(\Phi_k\)
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import gamma_list_to_cyclotomic sage: gamma_list_to_cyclotomic([-1, -1, 2]) ([2], [1]) sage: gamma_list_to_cyclotomic([-1, -1, -1, -3, 6]) ([2, 6], [1, 1, 1]) sage: gamma_list_to_cyclotomic([-1, 2, 3, -4]) ([3], [4]) sage: gamma_list_to_cyclotomic([8,2,2,2,-6,-4,-3,-1]) ([2, 2, 8], [3, 3, 6])
- sage.modular.hypergeometric_motive.possible_hypergeometric_data(d, weight=None)#
Return the list of possible parameters of hypergeometric motives (up to swapping).
INPUT:
d
– the degreeweight
– optional integer, to specify the motivic weight
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import possible_hypergeometric_data as P sage: [len(P(i,weight=2)) for i in range(1, 7)] [0, 0, 10, 30, 93, 234]