Spaces of distributions for Pollack-Stevens modular symbols#
The Pollack-Stevens version of modular symbols take values on a \(\Sigma_0(N)\)-module which can be either a symmetric power of the standard representation of GL2, or a finite approximation module to the module of overconvergent distributions.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import Symk
sage: S = Symk(6); S
Sym^6 Q^2
sage: v = S(list(range(7))); v
(0, 1, 2, 3, 4, 5, 6)
sage: v.act_right([1,2,3,4])
(18432, 27136, 39936, 58752, 86400, 127008, 186624)
sage: S = Symk(4,Zp(5)); S
Sym^4 Z_5^2
sage: S([1,2,3,4,5])
(1 + O(5^20), 2 + O(5^20), 3 + O(5^20), 4 + O(5^20), 5 + O(5^21))
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions
sage: D = OverconvergentDistributions(3, 11, 5); D
Space of 11-adic distributions with k=3 action and precision cap 5
sage: D([1,2,3,4,5])
(1 + O(11^5), 2 + O(11^4), 3 + O(11^3), 4 + O(11^2), 5 + O(11))
- class sage.modular.pollack_stevens.distributions.OverconvergentDistributions_abstract(k, p=None, prec_cap=None, base=None, character=None, adjuster=None, act_on_left=False, dettwist=None, act_padic=False, implementation=None)#
Bases:
Module
Parent object for distributions. Not to be used directly, see derived classes
Symk_class
andOverconvergentDistributions_class
.INPUT:
k
– integer; \(k\) is the usual modular forms weight minus 2p
– None or primeprec_cap
– None or positive integerbase
– None or the base ring over which to construct the distributionscharacter
– None or Dirichlet characteradjuster
– None or a way to specify the action among different conventionsact_on_left
– bool (default: False)dettwist
– None or integer (twist by determinant). Ignored for Symk spacesact_padic
– bool (default: False) If true, will allow action by \(p\)-adic matrices.implementation
– string (default: None) Either automatic (if None), ‘vector’ or ‘long’.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions sage: OverconvergentDistributions(2, 17, 100) Space of 17-adic distributions with k=2 action and precision cap 100 sage: D = OverconvergentDistributions(2, 3, 5); D Space of 3-adic distributions with k=2 action and precision cap 5 sage: type(D) <class 'sage.modular.pollack_stevens.distributions.OverconvergentDistributions_class_with_category'>
- acting_matrix(g, M)#
Return the matrix for the action of \(g\) on
self
, truncated to the first \(M\) moments.EXAMPLES:
sage: V = Symk(3) sage: from sage.modular.pollack_stevens.sigma0 import Sigma0 sage: V.acting_matrix(Sigma0(1)([3,4,0,1]), 4) [27 36 48 64] [ 0 9 24 48] [ 0 0 3 12] [ 0 0 0 1] sage: from sage.modular.btquotients.pautomorphicform import _btquot_adjuster sage: V = Symk(3, adjuster = _btquot_adjuster()) sage: from sage.modular.pollack_stevens.sigma0 import Sigma0 sage: V.acting_matrix(Sigma0(1)([3,4,0,1]), 4) [ 1 4 16 64] [ 0 3 24 144] [ 0 0 9 108] [ 0 0 0 27]
- approx_module(M=None)#
Return the \(M\)-th approximation module, or if \(M\) is not specified, return the largest approximation module.
INPUT:
M
– None or nonnegative integer that is at most the precision cap
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions sage: D = OverconvergentDistributions(0, 5, 10) sage: D.approx_module() Ambient free module of rank 10 over the principal ideal domain 5-adic Ring with capped absolute precision 10 sage: D.approx_module(1) Ambient free module of rank 1 over the principal ideal domain 5-adic Ring with capped absolute precision 10 sage: D.approx_module(0) Ambient free module of rank 0 over the principal ideal domain 5-adic Ring with capped absolute precision 10
Note that
M
must be at most the precision cap, and must be nonnegative:sage: D.approx_module(11) Traceback (most recent call last): ... ValueError: M (=11) must be less than or equal to the precision cap (=10) sage: D.approx_module(-1) Traceback (most recent call last): ... ValueError: rank (=-1) must be nonnegative
- basis(M=None)#
Return a basis for this space of distributions.
INPUT:
M
– (Default: None) If not None, specifies theM
-th approximation module, in case that this makes sense.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7, 4); D Space of 7-adic distributions with k=0 action and precision cap 4 sage: D.basis() [(1 + O(7^4), O(7^3), O(7^2), O(7)), (O(7^4), 1 + O(7^3), O(7^2), O(7)), (O(7^4), O(7^3), 1 + O(7^2), O(7)), (O(7^4), O(7^3), O(7^2), 1 + O(7))] sage: D.basis(2) [(1 + O(7^2), O(7)), (O(7^2), 1 + O(7))] sage: D = Symk(3, base=QQ); D Sym^3 Q^2 sage: D.basis() [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)] sage: D.basis(2) Traceback (most recent call last): ... ValueError: Sym^k objects do not support approximation modules
- clear_cache()#
Clear some caches that are created only for speed purposes.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7, 10) sage: D.clear_cache()
- lift(p=None, M=None, new_base_ring=None)#
Return distribution space that contains lifts with given
p
, precision capM
, and base ringnew_base_ring
.INPUT:
p
– prime or NoneM
– nonnegative integer or Nonenew_base_ring
– ring or None
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = Symk(0, Qp(7)); D Sym^0 Q_7^2 sage: D.lift(M=20) Space of 7-adic distributions with k=0 action and precision cap 20 sage: D.lift(p=7, M=10) Space of 7-adic distributions with k=0 action and precision cap 10 sage: D.lift(p=7, M=10, new_base_ring=QpCR(7,15)).base_ring() 7-adic Field with capped relative precision 15
- precision_cap()#
Return the precision cap on distributions.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7, 10); D Space of 7-adic distributions with k=0 action and precision cap 10 sage: D.precision_cap() 10 sage: D = Symk(389, base=QQ); D Sym^389 Q^2 sage: D.precision_cap() 390
- prime()#
Return prime \(p\) such that this is a space of \(p\)-adic distributions.
In case this space is Symk of a non-padic field, we return 0.
OUTPUT:
a prime or 0
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7); D Space of 7-adic distributions with k=0 action and precision cap 20 sage: D.prime() 7 sage: D = Symk(4, base=GF(7)); D Sym^4 (Finite Field of size 7)^2 sage: D.prime() 0
But Symk of a \(p\)-adic field does work:
sage: D = Symk(4, base=Qp(7)); D Sym^4 Q_7^2 sage: D.prime() 7 sage: D.is_symk() True
- random_element(M=None, **args)#
Return a random element of the \(M\)-th approximation module with non-negative valuation.
INPUT:
M
– None or a nonnegative integer
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions sage: D = OverconvergentDistributions(0, 5, 10) sage: D.random_element() (..., ..., ..., ..., ..., ..., ..., ..., ..., ...) sage: D.random_element(0) () sage: D.random_element(5) (..., ..., ..., ..., ...) sage: D.random_element(-1) Traceback (most recent call last): ... ValueError: rank (=-1) must be nonnegative sage: D.random_element(11) Traceback (most recent call last): ... ValueError: M (=11) must be less than or equal to the precision cap (=10)
- weight()#
Return the weight of this distribution space. The standard caveat applies, namely that the weight of \(Sym^k\) is defined to be \(k\), not \(k+2\).
OUTPUT:
nonnegative integer
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7); D Space of 7-adic distributions with k=0 action and precision cap 20 sage: D.weight() 0 sage: OverconvergentDistributions(389, 7).weight() 389
- class sage.modular.pollack_stevens.distributions.OverconvergentDistributions_class(k, p=None, prec_cap=None, base=None, character=None, adjuster=None, act_on_left=False, dettwist=None, act_padic=False, implementation=None)#
Bases:
OverconvergentDistributions_abstract
The class of overconvergent distributions
This class represents the module of finite approximation modules, which are finite-dimensional spaces with a \(\Sigma_0(N)\) action which approximate the module of overconvergent distributions. There is a specialization map to the finite-dimensional Symk module as well.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions sage: D = OverconvergentDistributions(0, 5, 10) sage: TestSuite(D).run()
- change_ring(new_base_ring)#
Return space of distributions like this one, but with the base ring changed.
INPUT: a ring over which the distribution can be coerced.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7, 4); D Space of 7-adic distributions with k=0 action and precision cap 4 sage: D.base_ring() 7-adic Ring with capped absolute precision 4 sage: D2 = D.change_ring(QpCR(7)); D2 Space of 7-adic distributions with k=0 action and precision cap 4 sage: D2.base_ring() 7-adic Field with capped relative precision 20
- is_symk()#
Whether or not this distributions space is \(Sym^k(R)\) for some ring \(R\).
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(4, 17, 10); D Space of 17-adic distributions with k=4 action and precision cap 10 sage: D.is_symk() False sage: D = Symk(4); D Sym^4 Q^2 sage: D.is_symk() True sage: D = Symk(4, base=GF(7)); D Sym^4 (Finite Field of size 7)^2 sage: D.is_symk() True
- specialize(new_base_ring=None)#
Return distribution space got by specializing to \(Sym^k\), over the
new_base_ring
. Ifnew_base_ring
is not given, use currentbase_ring
.EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7, 4); D Space of 7-adic distributions with k=0 action and precision cap 4 sage: D.is_symk() False sage: D2 = D.specialize(); D2 Sym^0 Z_7^2 sage: D2.is_symk() True sage: D2 = D.specialize(QQ); D2 Sym^0 Q^2
- class sage.modular.pollack_stevens.distributions.OverconvergentDistributions_factory#
Bases:
UniqueFactory
Create a space of distributions.
INPUT:
k
– nonnegative integerp
– prime number or Noneprec_cap
– positive integer or Nonebase
– ring or Nonecharacter
– a Dirichlet character or Noneadjuster
– None or callable that turns 2 x 2 matrices into a 4-tupleact_on_left
– bool (default: False)dettwist
– integer or None (interpreted as 0)act_padic
– whether monoid should allow \(p\)-adic coefficientsimplementation
– string (default: None). Either None (for automatic), ‘long’, or ‘vector’
EXAMPLES:
sage: D = OverconvergentDistributions(3, 11, 20) sage: D Space of 11-adic distributions with k=3 action and precision cap 20 sage: v = D([1,0,0,0,0]) sage: v.act_right([2,1,0,1]) (8 + O(11^5), 4 + O(11^4), 2 + O(11^3), 1 + O(11^2), 6 + O(11))
sage: D = OverconvergentDistributions(3, 11, 20, dettwist=1) sage: v = D([1,0,0,0,0]) sage: v.act_right([2,1,0,1]) (5 + 11 + O(11^5), 8 + O(11^4), 4 + O(11^3), 2 + O(11^2), 1 + O(11))
- create_key(k, p=None, prec_cap=None, base=None, character=None, adjuster=None, act_on_left=False, dettwist=None, act_padic=False, implementation=None)#
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions sage: OverconvergentDistributions(20, 3, 10) # indirect doctest Space of 3-adic distributions with k=20 action and precision cap 10 sage: TestSuite(OverconvergentDistributions).run()
- create_object(version, key)#
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: OverconvergentDistributions(0, 7, 5) # indirect doctest Space of 7-adic distributions with k=0 action and precision cap 5
- class sage.modular.pollack_stevens.distributions.Symk_class(k, base, character, adjuster, act_on_left, dettwist, act_padic, implementation)#
Bases:
OverconvergentDistributions_abstract
EXAMPLES:
sage: D = sage.modular.pollack_stevens.distributions.Symk(4); D Sym^4 Q^2 sage: TestSuite(D).run() # indirect doctest
- base_extend(new_base_ring)#
Extend scalars to a new base ring.
EXAMPLES:
sage: Symk(3).base_extend(Qp(3)) Sym^3 Q_3^2
- change_ring(new_base_ring)#
Return a Symk with the same \(k\) but a different base ring.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(0, 7, 4); D Space of 7-adic distributions with k=0 action and precision cap 4 sage: D.base_ring() 7-adic Ring with capped absolute precision 4 sage: D2 = D.change_ring(QpCR(7)); D2 Space of 7-adic distributions with k=0 action and precision cap 4 sage: D2.base_ring() 7-adic Field with capped relative precision 20
- is_symk()#
Whether or not this distributions space is \(Sym^k(R)\) for some ring \(R\).
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import OverconvergentDistributions, Symk sage: D = OverconvergentDistributions(4, 17, 10); D Space of 17-adic distributions with k=4 action and precision cap 10 sage: D.is_symk() False sage: D = Symk(4); D Sym^4 Q^2 sage: D.is_symk() True sage: D = Symk(4, base=GF(7)); D Sym^4 (Finite Field of size 7)^2 sage: D.is_symk() True
- class sage.modular.pollack_stevens.distributions.Symk_factory#
Bases:
UniqueFactory
Create the space of polynomial distributions of degree \(k\) (stored as a sequence of \(k + 1\) moments).
INPUT:
k
- (integer): the degree (degree \(k\) corresponds to weight \(k + 2\) modular forms)base
- (ring, default None): the base ring (None is interpreted as \(\QQ\))character
- (Dirichlet character or None, default None) the characteradjuster
- (None or a callable that turns \(2 \times 2\) matrices into a 4-tuple, default None)act_on_left
- (boolean, default False) whether to have the group acting on the left rather than the right.dettwist
(integer or None) – power of determinant to twist by
EXAMPLES:
sage: D = Symk(4) sage: loads(dumps(D)) is D True sage: loads(dumps(D)) == D True sage: from sage.modular.pollack_stevens.distributions import Symk sage: Symk(5) Sym^5 Q^2 sage: Symk(5, RR) Sym^5 (Real Field with 53 bits of precision)^2 sage: Symk(5, oo.parent()) # don't do this Sym^5 (The Infinity Ring)^2 sage: Symk(5, act_on_left = True) Sym^5 Q^2
The
dettwist
attribute:sage: V = Symk(6) sage: v = V([1,0,0,0,0,0,0]) sage: v.act_right([2,1,0,1]) (64, 32, 16, 8, 4, 2, 1) sage: V = Symk(6, dettwist=-1) sage: v = V([1,0,0,0,0,0,0]) sage: v.act_right([2,1,0,1]) (32, 16, 8, 4, 2, 1, 1/2)
- create_key(k, base=None, character=None, adjuster=None, act_on_left=False, dettwist=None, act_padic=False, implementation=None)#
Sanitize input.
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import Symk sage: Symk(6) # indirect doctest Sym^6 Q^2 sage: V = Symk(6, Qp(7)) sage: TestSuite(V).run()
- create_object(version, key)#
EXAMPLES:
sage: from sage.modular.pollack_stevens.distributions import Symk sage: Symk(6) # indirect doctest Sym^6 Q^2