Univariate polynomial base class#
AUTHORS:
William Stein: first version
Martin Albrecht: added singular coercion
Robert Bradshaw: moved Polynomial_generic_dense to Cython
Miguel Marco: implemented resultant in the case where PARI fails
Simon King: used a faster way of conversion from the base ring
Kwankyu Lee (2013-06-02): enhanced
quo_rem()
Julian Rueth (2012-05-25,2014-05-09): fixed is_squarefree() for imperfect fields, fixed division without remainder over QQbar; added
_cache_key
for polynomials with unhashable coefficientsSimon King (2013-10): implemented copying of
PolynomialBaseringInjection
Bruno Grenet (2014-07-13): enhanced
quo_rem()
Kiran Kedlaya (2016-03): added root counting
Edgar Costa (2017-07): added rational reconstruction
Kiran Kedlaya (2017-09): added reciprocal transform, trace polynomial
David Zureick-Brown (2017-09): added is_weil_polynomial
Sebastian Oehms (2018-10): made
roots()
andfactor()
work over more cases of proper integral domains (see trac ticket #26421)
- class sage.rings.polynomial.polynomial_element.ConstantPolynomialSection#
Bases:
Map
This class is used for conversion from a polynomial ring to its base ring.
Since trac ticket #9944, it calls the
constant_coefficient
method, which can be optimized for a particular polynomial type.EXAMPLES:
sage: P0.<y_1> = GF(3)[] sage: P1.<y_2,y_1,y_0> = GF(3)[] sage: P0(-y_1) # indirect doctest 2*y_1 sage: phi = GF(3).convert_map_from(P0); phi Generic map: From: Univariate Polynomial Ring in y_1 over Finite Field of size 3 To: Finite Field of size 3 sage: type(phi) <class 'sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'> sage: phi(P0.one()) 1 sage: phi(y_1) Traceback (most recent call last): ... TypeError: not a constant polynomial
- class sage.rings.polynomial.polynomial_element.Polynomial#
Bases:
CommutativeAlgebraElement
A polynomial.
EXAMPLES:
sage: R.<y> = QQ['y'] sage: S.<x> = R['x'] sage: S Univariate Polynomial Ring in x over Univariate Polynomial Ring in y over Rational Field sage: f = x*y; f y*x sage: type(f) <class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'> sage: p = (y+1)^10; p(1) 1024
- _add_(right)#
Add two polynomials.
EXAMPLES:
sage: R = ZZ['x'] sage: p = R([1,2,3,4]) sage: q = R([4,-3,2,-1]) sage: p + q # indirect doctest 3*x^3 + 5*x^2 - x + 5
- _sub_(other)#
Default implementation of subtraction using addition and negation.
- _lmul_(left)#
Multiply self on the left by a scalar.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = (x^3 + x + 5) sage: f._lmul_(7) 7*x^3 + 7*x + 35 sage: 7*f 7*x^3 + 7*x + 35
- _rmul_(right)#
Multiply self on the right by a scalar.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = (x^3 + x + 5) sage: f._rmul_(7) 7*x^3 + 7*x + 35 sage: f*7 7*x^3 + 7*x + 35
- _mul_(right)#
EXAMPLES:
sage: R.<x> = ZZ[] sage: (x - 4)*(x^2 - 8*x + 16) x^3 - 12*x^2 + 48*x - 64 sage: C.<t> = PowerSeriesRing(ZZ) sage: D.<s> = PolynomialRing(C) sage: z = (1 + O(t)) + t*s^2 sage: z*z t^2*s^4 + (2*t + O(t^2))*s^2 + 1 + O(t) ## More examples from trac 2943, added by Kiran S. Kedlaya 2 Dec 09 sage: C.<t> = PowerSeriesRing(Integers()) sage: D.<s> = PolynomialRing(C) sage: z = 1 + (t + O(t^2))*s + (t^2 + O(t^3))*s^2 sage: z*z (t^4 + O(t^5))*s^4 + (2*t^3 + O(t^4))*s^3 + (3*t^2 + O(t^3))*s^2 + (2*t + O(t^2))*s + 1
- _mul_trunc_(right, n)#
Return the truncated multiplication of two polynomials up to
n
.This is the default implementation that does the multiplication and then truncate! There are custom implementations in several subclasses:
EXAMPLES:
sage: R = QQ['x']['y'] sage: y = R.gen() sage: x = R.base_ring().gen() sage: p1 = 1 - x*y + 2*y**3 sage: p2 = -1/3 + y**5 sage: p1._mul_trunc_(p2, 5) -2/3*y^3 + 1/3*x*y - 1/3
Todo
implement a generic truncated Karatsuba and use it here.
- adams_operator(n, monic=False)#
Return the polynomial whose roots are the \(n\)-th power of the roots of this.
INPUT:
\(n\) – an integer
monic
– boolean (defaultFalse
) if set toTrue
, force the output to be monic
EXAMPLES:
sage: f = cyclotomic_polynomial(30) sage: f.adams_operator(7)==f True sage: f.adams_operator(6) == cyclotomic_polynomial(5)**2 True sage: f.adams_operator(10) == cyclotomic_polynomial(3)**4 True sage: f.adams_operator(15) == cyclotomic_polynomial(2)**8 True sage: f.adams_operator(30) == cyclotomic_polynomial(1)**8 True sage: x = polygen(QQ) sage: f = x^2-2*x+2 sage: f.adams_operator(10) x^2 + 1024
When f is monic the output will have leading coefficient \(\pm1\) depending on the degree, but we can force it to be monic:
sage: R.<a,b,c> = ZZ[] sage: x = polygen(R) sage: f = (x-a)*(x-b)*(x-c) sage: f.adams_operator(3).factor() (-1) * (x - c^3) * (x - b^3) * (x - a^3) sage: f.adams_operator(3,monic=True).factor() (x - c^3) * (x - b^3) * (x - a^3)
- add_bigoh(prec)#
Return the power series of precision at most prec got by adding \(O(q^\text{prec})\) to self, where q is its variable.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = 1 + 4*x + x^3 sage: f.add_bigoh(7) 1 + 4*x + x^3 + O(x^7) sage: f.add_bigoh(2) 1 + 4*x + O(x^2) sage: f.add_bigoh(2).parent() Power Series Ring in x over Integer Ring
- all_roots_in_interval(a=None, b=None)#
Return True if the roots of this polynomial are all real and contained in the given interval.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: pol = (x-1)^2 * (x-2)^2 * (x-3) sage: pol.all_roots_in_interval(1, 3) True sage: pol.all_roots_in_interval(1.01, 3) False sage: pol = chebyshev_T(5,x) sage: pol.all_roots_in_interval(-1,1) True sage: pol = chebyshev_T(5,x/2) sage: pol.all_roots_in_interval(-1,1) False sage: pol.all_roots_in_interval() True
- any_root(ring=None, degree=None, assume_squarefree=False)#
Return a root of this polynomial in the given ring.
INPUT:
ring
– The ring in which a root is sought. By default this is the coefficient ring.degree
(None or nonzero integer) – Used for polynomials over finite fields. Return a root of degreeabs(degree)
over the ground field. If negative, also assumes that all factors of this polynomial are of degreeabs(degree)
. If None, returns a root of minimal degree contained within the given ring.assume_squarefree
(bool) – Used for polynomials over finite fields. If True, this polynomial is assumed to be squarefree.
EXAMPLES:
sage: R.<x> = GF(11)[] sage: f = 7*x^7 + 8*x^6 + 4*x^5 + x^4 + 6*x^3 + 10*x^2 + 8*x + 5 sage: f.any_root() 2 sage: f.factor() (7) * (x + 9) * (x^6 + 10*x^4 + 6*x^3 + 5*x^2 + 2*x + 2) sage: f = x^6 + 10*x^4 + 6*x^3 + 5*x^2 + 2*x + 2 sage: f.any_root(GF(11^6, 'a')) a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a sage: sorted(f.roots(GF(11^6, 'a'))) [(10*a^5 + 2*a^4 + 8*a^3 + 9*a^2 + a, 1), (a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a, 1), (9*a^5 + 5*a^4 + 10*a^3 + 8*a^2 + 3*a + 1, 1), (2*a^5 + 8*a^4 + 3*a^3 + 6*a + 2, 1), (a^5 + 3*a^4 + 8*a^3 + 2*a^2 + 3*a + 4, 1), (10*a^5 + 3*a^4 + 8*a^3 + a^2 + 10*a + 4, 1)] sage: f.any_root(GF(11^6, 'a')) a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a sage: g = (x-1)*(x^2 + 3*x + 9) * (x^5 + 5*x^4 + 8*x^3 + 5*x^2 + 3*x + 5) sage: g.any_root(ring=GF(11^10, 'b'), degree=1) 1 sage: g.any_root(ring=GF(11^10, 'b'), degree=2) 5*b^9 + 4*b^7 + 4*b^6 + 8*b^5 + 10*b^2 + 10*b + 5 sage: g.any_root(ring=GF(11^10, 'b'), degree=5) 5*b^9 + b^8 + 3*b^7 + 2*b^6 + b^5 + 4*b^4 + 3*b^3 + 7*b^2 + 10*b
- args()#
Return the generator of this polynomial ring, which is the (only) argument used when calling self.
EXAMPLES:
sage: R.<x> = QQ[] sage: x.args() (x,)
A constant polynomial has no variables, but still takes a single argument.
sage: R(2).args() (x,)
- base_extend(R)#
Return a copy of this polynomial but with coefficients in R, if there is a natural map from coefficient ring of self to R.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^3 - 17*x + 3 sage: f.base_extend(GF(7)) Traceback (most recent call last): ... TypeError: no such base extension sage: f.change_ring(GF(7)) x^3 + 4*x + 3
- base_ring()#
Return the base ring of the parent of self.
EXAMPLES:
sage: R.<x> = ZZ[] sage: x.base_ring() Integer Ring sage: (2*x+3).base_ring() Integer Ring
- change_ring(R)#
Return a copy of this polynomial but with coefficients in
R
, if at all possible.INPUT:
R
- a ring or morphism.
EXAMPLES:
sage: K.<z> = CyclotomicField(3) sage: f = K.defining_polynomial() sage: f.change_ring(GF(7)) x^2 + x + 1
sage: K.<z> = CyclotomicField(3) sage: R.<x> = K[] sage: f = x^2 + z sage: f.change_ring(K.embeddings(CC)[1]) x^2 - 0.500000000000000 - 0.866025403784438*I
sage: R.<x> = QQ[] sage: f = x^2 + 1 sage: f.change_ring(QQ.embeddings(CC)[0]) x^2 + 1.00000000000000
- change_variable_name(var)#
Return a new polynomial over the same base ring but in a different variable.
EXAMPLES:
sage: x = polygen(QQ,'x') sage: f = -2/7*x^3 + (2/3)*x - 19/993; f -2/7*x^3 + 2/3*x - 19/993 sage: f.change_variable_name('theta') -2/7*theta^3 + 2/3*theta - 19/993
- coefficients(sparse=True)#
Return the coefficients of the monomials appearing in self. If
sparse=True
(the default), it returns only the non-zero coefficients. Otherwise, it returns the same value asself.list()
. (In this case, it may be slightly faster to invokeself.list()
directly.)EXAMPLES:
sage: _.<x> = PolynomialRing(ZZ) sage: f = x^4+2*x^2+1 sage: f.coefficients() [1, 2, 1] sage: f.coefficients(sparse=False) [1, 0, 2, 0, 1]
- complex_roots()#
Return the complex roots of this polynomial, without multiplicities.
Calls self.roots(ring=CC), unless this is a polynomial with floating-point coefficients, in which case it is uses the appropriate precision from the input coefficients.
EXAMPLES:
sage: x = polygen(ZZ) sage: (x^3 - 1).complex_roots() # note: low order bits slightly different on ppc. [1.00000000000000, -0.500000000000000 - 0.86602540378443...*I, -0.500000000000000 + 0.86602540378443...*I]
- compose_power(k, algorithm=None, monic=False)#
Return the \(k\)-th iterate of the composed product of this polynomial with itself.
INPUT:
\(k\) – a non-negative integer
algorithm
–None
(default),"resultant"
or"BFSS"
. Seecomposed_op()
monic
-False
(default) orTrue
. Seecomposed_op()
OUTPUT:
The polynomial of degree \(d^k\) where \(d\) is the degree, whose roots are all \(k\)-fold products of roots of this polynomial. That is, \(f*f*\dots*f\) where this is \(f\) and \(f*f=\) f.composed_op(f,operator.mul).
EXAMPLES:
sage: R.<a,b,c> = ZZ[] sage: x = polygen(R) sage: f = (x-a)*(x-b)*(x-c) sage: f.compose_power(2).factor() (x - c^2) * (x - b^2) * (x - a^2) * (x - b*c)^2 * (x - a*c)^2 * (x - a*b)^2 sage: x = polygen(QQ) sage: f = x^2-2*x+2 sage: f2 = f.compose_power(2); f2 x^4 - 4*x^3 + 8*x^2 - 16*x + 16 sage: f2 == f.composed_op(f,operator.mul) True sage: f3 = f.compose_power(3); f3 x^8 - 8*x^7 + 32*x^6 - 64*x^5 + 128*x^4 - 512*x^3 + 2048*x^2 - 4096*x + 4096 sage: f3 == f2.composed_op(f,operator.mul) True sage: f4 = f.compose_power(4) sage: f4 == f3.composed_op(f,operator.mul) True
- compose_trunc(other, n)#
Return the composition of
self
andother
, truncated to \(O(x^n)\).This method currently works for some specific coefficient rings only.
EXAMPLES:
sage: Pol.<x> = CBF[] sage: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120).compose_trunc(1 + x, 2) ([2.708333333333333 +/- ...e-16])*x + [2.71666666666667 +/- ...e-15] sage: Pol.<x> = QQ['y'][] sage: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120).compose_trunc(1 + x, 2) Traceback (most recent call last): ... NotImplementedError: truncated composition is not implemented for this subclass of polynomials
- composed_op(p1, p2, op, algorithm=None, monic=False)#
Return the composed sum, difference, product or quotient of this polynomial with another one.
In the case of two monic polynomials \(p_1\) and \(p_2\) over an integral domain, the composed sum, difference, etc. are given by
\[\prod_{p_1(a)=p_2(b)=0}(x - (a \ast b)), \qquad \ast ∈ \{ +, -, ×, / \}\]where the roots \(a\) and \(b\) are to be considered in the algebraic closure of the fraction field of the coefficients and counted with multiplicities. If the polynomials are not monic this quantity is multiplied by \(\\alpha_1^{deg(p_2)} \\alpha_2^{deg(p_1)}\) where \(\\alpha_1\) and \(\\alpha_2\) are the leading coefficients of \(p_1\) and \(p_2\) respectively.
INPUT:
p2
– univariate polynomial belonging to the same polynomial ring as this polynomialop
–operator.OP
whereOP=add
orsub
ormul
ortruediv
.algorithm
– can be “resultant” or “BFSS”; by default the former is used when the polynomials have few nonzero coefficients and small degrees or if the base ring is not \(\ZZ\) or \(\QQ\). Otherwise the latter is used.monic
– whether to return a monic polynomial. IfTrue
the coefficients of the result belong to the fraction field of the coefficients.
ALGORITHM:
The computation is straightforward using resultants. Indeed for the composed sum it would be \(Res_y(p1(x-y), p2(y))\). However, the method from [BFSS2006] using series expansions is asymptotically much faster.
Note that the algorithm
BFSS
with polynomials with coefficients in \(\ZZ\) needs to perform operations over \(\QQ\).Todo
The [BFSS2006] algorithm has been implemented here only in the case of polynomials over rationals. For other rings of zero characteristic (or if the characteristic is larger than the product of the degrees), one needs to implement a generic method
_exp_series
. In the general case of non-zero characteristic there is an alternative algorithm in the same paper.The Newton series computation can be done much more efficiently! See [BFSS2006].
EXAMPLES:
sage: x = polygen(ZZ) sage: p1 = x^2 - 1 sage: p2 = x^4 - 1 sage: p1.composed_op(p2, operator.add) x^8 - 4*x^6 + 4*x^4 - 16*x^2 sage: p1.composed_op(p2, operator.mul) x^8 - 2*x^4 + 1 sage: p1.composed_op(p2, operator.truediv) x^8 - 2*x^4 + 1
This function works over any field. However for base rings other than \(\ZZ\) and \(\QQ\) only the resultant algorithm is available:
sage: x = polygen(QQbar) sage: p1 = x**2 - AA(2).sqrt() sage: p2 = x**3 - AA(3).sqrt() sage: r1 = p1.roots(multiplicities=False) sage: r2 = p2.roots(multiplicities=False) sage: p = p1.composed_op(p2, operator.add) sage: p x^6 - 4.242640687119285?*x^4 - 3.464101615137755?*x^3 + 6*x^2 - 14.69693845669907?*x + 0.1715728752538099? sage: all(p(x+y).is_zero() for x in r1 for y in r2) True sage: x = polygen(GF(2)) sage: p1 = x**2 + x - 1 sage: p2 = x**3 + x - 1 sage: p_add = p1.composed_op(p2, operator.add) sage: p_add x^6 + x^5 + x^3 + x^2 + 1 sage: p_mul = p1.composed_op(p2, operator.mul) sage: p_mul x^6 + x^4 + x^2 + x + 1 sage: p_div = p1.composed_op(p2, operator.truediv) sage: p_div x^6 + x^5 + x^4 + x^2 + 1 sage: K = GF(2**6, 'a') sage: r1 = p1.roots(K, multiplicities=False) sage: r2 = p2.roots(K, multiplicities=False) sage: all(p_add(x1+x2).is_zero() for x1 in r1 for x2 in r2) True sage: all(p_mul(x1*x2).is_zero() for x1 in r1 for x2 in r2) True sage: all(p_div(x1/x2).is_zero() for x1 in r1 for x2 in r2) True
- constant_coefficient()#
Return the constant coefficient of this polynomial.
OUTPUT: element of base ring
EXAMPLES:
sage: R.<x> = QQ[] sage: f = -2*x^3 + 2*x - 1/3 sage: f.constant_coefficient() -1/3
- content_ideal()#
Return the content ideal of this polynomial, defined as the ideal generated by its coefficients.
EXAMPLES:
sage: R.<x> = IntegerModRing(4)[] sage: f = x^4 + 3*x^2 + 2 sage: f.content_ideal() Ideal (2, 3, 1) of Ring of integers modulo 4
When the base ring is a gcd ring, the content as a ring element is the generator of the content ideal:
sage: R.<x> = ZZ[] sage: f = 2*x^3 - 4*x^2 + 6*x - 10 sage: f.content_ideal().gen() 2
- cyclotomic_part()#
Return the product of the irreducible factors of this polynomial which are cyclotomic polynomials.
The algorithm assumes that the polynomial has rational coefficients.
EXAMPLES:
sage: P.<x> = PolynomialRing(Integers()) sage: pol = 2*(x^4 + 1) sage: pol.cyclotomic_part() x^4 + 1 sage: pol = x^4 + 2 sage: pol.cyclotomic_part() 1 sage: pol = (x^4 + 1)^2 * (x^4 + 2) sage: pol.cyclotomic_part() x^8 + 2*x^4 + 1 sage: P.<x> = PolynomialRing(QQ) sage: pol = (x^4 + 1)^2 * (x^4 + 2) sage: pol.cyclotomic_part() x^8 + 2*x^4 + 1 sage: pol = (x - 1) * x * (x + 2) sage: pol.cyclotomic_part() x - 1
- degree(gen=None)#
Return the degree of this polynomial. The zero polynomial has degree -1.
EXAMPLES:
sage: x = ZZ['x'].0 sage: f = x^93 + 2*x + 1 sage: f.degree() 93 sage: x = PolynomialRing(QQ, 'x', sparse=True).0 sage: f = x^100000 sage: f.degree() 100000
sage: x = QQ['x'].0 sage: f = 2006*x^2006 - x^2 + 3 sage: f.degree() 2006 sage: f = 0*x sage: f.degree() -1 sage: f = x + 33 sage: f.degree() 1
AUTHORS:
Naqi Jaffery (2006-01-24): examples
- denominator()#
Return a denominator of self.
First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.
Note that some subclasses may implement their own denominator function. For example, see
sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
Warning
This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.
EXAMPLES:
First we compute the denominator of a polynomial with integer coefficients, which is of course 1.
sage: R.<x> = ZZ[] sage: f = x^3 + 17*x + 1 sage: f.denominator() 1
Next we compute the denominator of a polynomial with rational coefficients.
sage: R.<x> = PolynomialRing(QQ) sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f 1/17*x^19 - 2/3*x + 1/3 sage: f.denominator() 51
Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.
sage: R.<x> = RR[] sage: f = x + RR('0.3'); f x + 0.300000000000000 sage: f.denominator() 1.00000000000000
Check that the denominator is an element over the base whenever the base has no denominator function. This closes trac ticket #9063.
sage: R.<a> = GF(5)[] sage: x = R(0) sage: x.denominator() 1 sage: type(x.denominator()) <class 'sage.rings.finite_rings.integer_mod.IntegerMod_int'> sage: isinstance(x.numerator() / x.denominator(), Polynomial) True sage: isinstance(x.numerator() / R(1), Polynomial) False
- derivative(*args)#
The formal derivative of this polynomial, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.
See also
_derivative()
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: g = -x^4 + x^2/2 - x sage: g.derivative() -4*x^3 + x - 1 sage: g.derivative(x) -4*x^3 + x - 1 sage: g.derivative(x, x) -12*x^2 + 1 sage: g.derivative(x, 2) -12*x^2 + 1
sage: R.<t> = PolynomialRing(ZZ) sage: S.<x> = PolynomialRing(R) sage: f = t^3*x^2 + t^4*x^3 sage: f.derivative() 3*t^4*x^2 + 2*t^3*x sage: f.derivative(x) 3*t^4*x^2 + 2*t^3*x sage: f.derivative(t) 4*t^3*x^3 + 3*t^2*x^2
- dict()#
Return a sparse dictionary representation of this univariate polynomial.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^3 + -1/7*x + 13 sage: f.dict() {0: 13, 1: -1/7, 3: 1}
- diff(*args)#
The formal derivative of this polynomial, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.
See also
_derivative()
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: g = -x^4 + x^2/2 - x sage: g.derivative() -4*x^3 + x - 1 sage: g.derivative(x) -4*x^3 + x - 1 sage: g.derivative(x, x) -12*x^2 + 1 sage: g.derivative(x, 2) -12*x^2 + 1
sage: R.<t> = PolynomialRing(ZZ) sage: S.<x> = PolynomialRing(R) sage: f = t^3*x^2 + t^4*x^3 sage: f.derivative() 3*t^4*x^2 + 2*t^3*x sage: f.derivative(x) 3*t^4*x^2 + 2*t^3*x sage: f.derivative(t) 4*t^3*x^3 + 3*t^2*x^2
- differentiate(*args)#
The formal derivative of this polynomial, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.
See also
_derivative()
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: g = -x^4 + x^2/2 - x sage: g.derivative() -4*x^3 + x - 1 sage: g.derivative(x) -4*x^3 + x - 1 sage: g.derivative(x, x) -12*x^2 + 1 sage: g.derivative(x, 2) -12*x^2 + 1
sage: R.<t> = PolynomialRing(ZZ) sage: S.<x> = PolynomialRing(R) sage: f = t^3*x^2 + t^4*x^3 sage: f.derivative() 3*t^4*x^2 + 2*t^3*x sage: f.derivative(x) 3*t^4*x^2 + 2*t^3*x sage: f.derivative(t) 4*t^3*x^3 + 3*t^2*x^2
- discriminant()#
Return the discriminant of
self
.The discriminant is
\[R_n := a_n^{2 n-2} \prod_{1<i<j<n} (r_i-r_j)^2,\]where \(n\) is the degree of self, \(a_n\) is the leading coefficient of self and the roots of self are \(r_1, \ldots, r_n\).
OUTPUT: An element of the base ring of the polynomial ring.
ALGORITHM:
Uses the identity \(R_n(f) := (-1)^{n (n-1)/2} R(f, f') a_n^{n-k-2}\), where \(n\) is the degree of self, \(a_n\) is the leading coefficient of self, \(f'\) is the derivative of \(f\), and \(k\) is the degree of \(f'\). Calls
resultant()
.EXAMPLES:
In the case of elliptic curves in special form, the discriminant is easy to calculate:
sage: R.<x> = QQ[] sage: f = x^3 + x + 1 sage: d = f.discriminant(); d -31 sage: d.parent() is QQ True sage: EllipticCurve([1, 1]).discriminant()/16 -31
sage: R.<x> = QQ[] sage: f = 2*x^3 + x + 1 sage: d = f.discriminant(); d -116
We can compute discriminants over univariate and multivariate polynomial rings:
sage: R.<a> = QQ[] sage: S.<x> = R[] sage: f = a*x + x + a + 1 sage: d = f.discriminant(); d 1 sage: d.parent() is R True
sage: R.<a, b> = QQ[] sage: S.<x> = R[] sage: f = x^2 + a + b sage: d = f.discriminant(); d -4*a - 4*b sage: d.parent() is R True
- dispersion(other=None)#
Compute the dispersion of a pair of polynomials.
The dispersion of \(f\) and \(g\) is the largest nonnegative integer \(n\) such that \(f(x + n)\) and \(g(x)\) have a nonconstant common factor.
When
other
isNone
, compute the auto-dispersion ofself
, i.e., its dispersion with itself.See also
EXAMPLES:
sage: Pol.<x> = QQ[] sage: x.dispersion(x + 1) 1 sage: (x + 1).dispersion(x) -Infinity sage: Pol.<x> = QQbar[] sage: pol = Pol([sqrt(5), 1, 3/2]) sage: pol.dispersion() 0 sage: (pol*pol(x+3)).dispersion() 3
- dispersion_set(other=None)#
Compute the dispersion set of two polynomials.
The dispersion set of \(f\) and \(g\) is the set of nonnegative integers \(n\) such that \(f(x + n)\) and \(g(x)\) have a nonconstant common factor.
When
other
isNone
, compute the auto-dispersion set ofself
, i.e., its dispersion set with itself.ALGORITHM:
See Section 4 of Man & Wright [MW1994].
See also
EXAMPLES:
sage: Pol.<x> = QQ[] sage: x.dispersion_set(x + 1) [1] sage: (x + 1).dispersion_set(x) [] sage: pol = x^3 + x - 7 sage: (pol*pol(x+3)^2).dispersion_set() [0, 3]
- divides(p)#
Return \(True\) if this polynomial divides \(p\).
This method is only implemented for polynomials over an integral domain.
EXAMPLES:
sage: R.<x> = ZZ[] sage: (2*x + 1).divides(4*x**2 - 1) True sage: (2*x + 1).divides(4*x**2 + 1) False sage: (2*x + 1).divides(R(0)) True sage: R(0).divides(2*x + 1) False sage: R(0).divides(R(0)) True sage: S.<y> = R[] sage: p = x * y**2 + (2*x + 1) * y + x + 1 sage: q = (x + 1) * y + (3*x + 2) sage: q.divides(p) False sage: q.divides(p * q) True sage: R.<x> = Zmod(6)[] sage: p = 4*x + 3 sage: q = 5*x**2 + x + 2 sage: p.divides(q) Traceback (most recent call last): ... NotImplementedError: divisibility test only implemented for polynomials over an integral domain
- euclidean_degree()#
Return the degree of this element as an element of an Euclidean domain.
If this polynomial is defined over a field, this is simply its
degree()
.EXAMPLES:
sage: R.<x> = QQ[] sage: x.euclidean_degree() 1 sage: R.<x> = ZZ[] sage: x.euclidean_degree() Traceback (most recent call last): ... NotImplementedError
- exponents()#
Return the exponents of the monomials appearing in
self
.EXAMPLES:
sage: _.<x> = PolynomialRing(ZZ) sage: f = x^4+2*x^2+1 sage: f.exponents() [0, 2, 4]
- factor(**kwargs)#
Return the factorization of
self
over its base ring.INPUT:
kwargs
– any keyword arguments are passed to the method_factor_univariate_polynomial()
of the base ring if it defines such a method.
OUTPUT:
A factorization of
self
over its parent into a unit and irreducible factors. If the parent is a polynomial ring over a field, these factors are monic.
EXAMPLES:
Factorization is implemented over various rings. Over \(\QQ\):
sage: x = QQ['x'].0 sage: f = (x^3 - 1)^2 sage: f.factor() (x - 1)^2 * (x^2 + x + 1)^2
Since \(\QQ\) is a field, the irreducible factors are monic:
sage: f = 10*x^5 - 1 sage: f.factor() (10) * (x^5 - 1/10) sage: f = 10*x^5 - 10 sage: f.factor() (10) * (x - 1) * (x^4 + x^3 + x^2 + x + 1)
Over \(\ZZ\) the irreducible factors need not be monic:
sage: x = ZZ['x'].0 sage: f = 10*x^5 - 1 sage: f.factor() 10*x^5 - 1
We factor a non-monic polynomial over a finite field of 25 elements:
sage: k.<a> = GF(25) sage: R.<x> = k[] sage: f = 2*x^10 + 2*x + 2*a sage: F = f.factor(); F (2) * (x + a + 2) * (x^2 + 3*x + 4*a + 4) * (x^2 + (a + 1)*x + a + 2) * (x^5 + (3*a + 4)*x^4 + (3*a + 3)*x^3 + 2*a*x^2 + (3*a + 1)*x + 3*a + 1)
Notice that the unit factor is included when we multiply \(F\) back out:
sage: expand(F) 2*x^10 + 2*x + 2*a
A new ring. In the example below, we set the special method
_factor_univariate_polynomial()
in the base ring which is called to factor univariate polynomials. This facility can be used to easily extend polynomial factorization to work over new rings you introduce:sage: R.<x> = PolynomialRing(IntegerModRing(4),implementation="NTL") sage: (x^2).factor() Traceback (most recent call last): ... NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented sage: R.base_ring()._factor_univariate_polynomial = lambda f: f.change_ring(ZZ).factor() sage: (x^2).factor() x^2 sage: del R.base_ring()._factor_univariate_polynomial # clean up
Arbitrary precision real and complex factorization:
sage: R.<x> = RealField(100)[] sage: F = factor(x^2-3); F (x - 1.7320508075688772935274463415) * (x + 1.7320508075688772935274463415) sage: expand(F) x^2 - 3.0000000000000000000000000000 sage: factor(x^2 + 1) x^2 + 1.0000000000000000000000000000 sage: R.<x> = ComplexField(100)[] sage: F = factor(x^2+3); F (x - 1.7320508075688772935274463415*I) * (x + 1.7320508075688772935274463415*I) sage: expand(F) x^2 + 3.0000000000000000000000000000 sage: factor(x^2+1) (x - I) * (x + I) sage: f = R(I) * (x^2 + 1) ; f I*x^2 + I sage: F = factor(f); F (1.0000000000000000000000000000*I) * (x - I) * (x + I) sage: expand(F) I*x^2 + I
Over a number field:
sage: K.<z> = CyclotomicField(15) sage: x = polygen(K) sage: ((x^3 + z*x + 1)^3*(x - z)).factor() (x - z) * (x^3 + z*x + 1)^3 sage: cyclotomic_polynomial(12).change_ring(K).factor() (x^2 - z^5 - 1) * (x^2 + z^5) sage: ((x^3 + z*x + 1)^3*(x/(z+2) - 1/3)).factor() (-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4 - 21/331*z^3 + 41/331*z^2 - 82/331*z + 165/331) * (x - 1/3*z - 2/3) * (x^3 + z*x + 1)^3
Over a relative number field:
sage: x = polygen(QQ) sage: K.<z> = CyclotomicField(3) sage: L.<a> = K.extension(x^3 - 2) sage: t = polygen(L, 't') sage: f = (t^3 + t + a)*(t^5 + t + z); f t^8 + t^6 + a*t^5 + t^4 + z*t^3 + t^2 + (a + z)*t + z*a sage: f.factor() (t^3 + t + a) * (t^5 + t + z)
Over the real double field:
sage: R.<x> = RDF[] sage: (-2*x^2 - 1).factor() (-2.0) * (x^2 + 0.5000000000000001) sage: (-2*x^2 - 1).factor().expand() -2.0*x^2 - 1.0000000000000002 sage: f = (x - 1)^3 sage: f.factor() # abs tol 2e-5 (x - 1.0000065719436413) * (x^2 - 1.9999934280563585*x + 0.9999934280995487)
The above output is incorrect because it relies on the
roots()
method, which does not detect that all the roots are real:sage: f.roots() # abs tol 2e-5 [(1.0000065719436413, 1)]
Over the complex double field the factors are approximate and therefore occur with multiplicity 1:
sage: R.<x> = CDF[] sage: f = (x^2 + 2*R(I))^3 sage: F = f.factor() sage: F # abs tol 3e-5 (x - 1.0000138879287663 + 1.0000013435286879*I) * (x - 0.9999942196864997 + 0.9999873009803959*I) * (x - 0.9999918923847313 + 1.0000113554909125*I) * (x + 0.9999908759550227 - 1.0000069659624138*I) * (x + 0.9999985293216753 - 0.9999886153831807*I) * (x + 1.0000105947233 - 1.0000044186544053*I) sage: [f(t[0][0]).abs() for t in F] # abs tol 1e-13 [1.979365054e-14, 1.97936298566e-14, 1.97936990747e-14, 3.6812407475e-14, 3.65211563729e-14, 3.65220890052e-14]
Factoring polynomials over \(\ZZ/n\ZZ\) for composite \(n\) is not implemented:
sage: R.<x> = PolynomialRing(Integers(35)) sage: f = (x^2+2*x+2)*(x^2+3*x+9) sage: f.factor() Traceback (most recent call last): ... NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented
Factoring polynomials over the algebraic numbers (see trac ticket #8544):
sage: R.<x> = QQbar[] sage: (x^8-1).factor() (x - 1) * (x - 0.7071067811865475? - 0.7071067811865475?*I) * (x - 0.7071067811865475? + 0.7071067811865475?*I) * (x - I) * (x + I) * (x + 0.7071067811865475? - 0.7071067811865475?*I) * (x + 0.7071067811865475? + 0.7071067811865475?*I) * (x + 1)
Factoring polynomials over the algebraic reals (see trac ticket #8544):
sage: R.<x> = AA[] sage: (x^8+1).factor() (x^2 - 1.847759065022574?*x + 1.000000000000000?) * (x^2 - 0.7653668647301795?*x + 1.000000000000000?) * (x^2 + 0.7653668647301795?*x + 1.000000000000000?) * (x^2 + 1.847759065022574?*x + 1.000000000000000?)
- gcd(other)#
Return a greatest common divisor of this polynomial and
other
.INPUT:
other
– a polynomial in the same ring as this polynomial
OUTPUT:
A greatest common divisor as a polynomial in the same ring as this polynomial. If the base ring is a field, the return value is a monic polynomial.
Note
The actual algorithm for computing greatest common divisors depends on the base ring underlying the polynomial ring. If the base ring defines a method
_gcd_univariate_polynomial
, then this method will be called (see examples below).EXAMPLES:
sage: R.<x> = QQ[] sage: (2*x^2).gcd(2*x) x sage: R.zero().gcd(0) 0 sage: (2*x).gcd(0) x
One can easily add gcd functionality to new rings by providing a method
_gcd_univariate_polynomial
:sage: O = ZZ[-sqrt(5)] sage: R.<x> = O[] sage: a = O.1 sage: p = x + a sage: q = x^2 - 5 sage: p.gcd(q) Traceback (most recent call last): ... NotImplementedError: Order in Number Field in a with defining polynomial x^2 - 5 with a = -2.236067977499790? does not provide a gcd implementation for univariate polynomials sage: S.<x> = O.number_field()[] sage: O._gcd_univariate_polynomial = lambda f,g : R(S(f).gcd(S(g))) sage: p.gcd(q) x + a sage: del O._gcd_univariate_polynomial
Use multivariate implementation for polynomials over polynomials rings:
sage: R.<x> = ZZ[] sage: S.<y> = R[] sage: T.<z> = S[] sage: r = 2*x*y + z sage: p = r * (3*x*y*z - 1) sage: q = r * (x + y + z - 2) sage: p.gcd(q) z + 2*x*y sage: R.<x> = QQ[] sage: S.<y> = R[] sage: r = 2*x*y + 1 sage: p = r * (x - 1/2 * y) sage: q = r * (x*y^2 - x + 1/3) sage: p.gcd(q) 2*x*y + 1
- global_height(prec=None)#
Return the (projective) global height of the polynomial.
This returns the absolute logarithmic height of the coefficients thought of as a projective point.
INPUT:
prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f = 3*x^3 + 2*x^2 + x sage: exp(f.global_height()) 3.00000000000000
Scaling should not change the result:
sage: R.<x> = PolynomialRing(QQ) sage: f = 1/25*x^2 + 25/3*x + 1 sage: f.global_height() 6.43775164973640 sage: g = 100 * f sage: g.global_height() 6.43775164973640
sage: R.<x> = PolynomialRing(QQbar) sage: f = QQbar(i)*x^2 + 3*x sage: f.global_height() 1.09861228866811
sage: R.<x> = PolynomialRing(QQ) sage: K.<k> = NumberField(x^2 + 5) sage: T.<t> = PolynomialRing(K) sage: f = 1/1331 * t^2 + 5 * t + 7 sage: f.global_height() 9.13959596745043
sage: R.<x> = QQ[] sage: f = 1/123*x^2 + 12 sage: f.global_height(prec=2) 8.0
sage: R.<x> = QQ[] sage: f = 0*x sage: f.global_height() 0.000000000000000
- gradient()#
Return a list of the partial derivative of
self
with respect to the variable of this univariate polynomial.There is only one partial derivative.
EXAMPLES:
sage: P.<x> = QQ[] sage: f = x^2 + (2/3)*x + 1 sage: f.gradient() [2*x + 2/3] sage: f = P(1) sage: f.gradient() [0]
- hamming_weight()#
Return the number of non-zero coefficients of
self
.Also called weight, Hamming weight or sparsity.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = x^3 - x sage: f.number_of_terms() 2 sage: R(0).number_of_terms() 0 sage: f = (x+1)^100 sage: f.number_of_terms() 101 sage: S = GF(5)['y'] sage: S(f).number_of_terms() 5 sage: cyclotomic_polynomial(105).number_of_terms() 33
The method
hamming_weight()
is an alias:sage: f.hamming_weight() 101
- has_cyclotomic_factor()#
Return True if the given polynomial has a nontrivial cyclotomic factor.
The algorithm assumes that the polynomial has rational coefficients.
If the polynomial is known to be irreducible, it may be slightly more efficient to call \(is_cyclotomic\) instead.
EXAMPLES:
sage: pol.<x> = PolynomialRing(Rationals()) sage: u = x^5-1; u.has_cyclotomic_factor() True sage: u = x^5-2; u.has_cyclotomic_factor() False sage: u = pol(cyclotomic_polynomial(7)) * pol.random_element() #random sage: u.has_cyclotomic_factor() # random True
- homogenize(var='h')#
Return the homogenization of this polynomial.
The polynomial itself is returned if it is homogeneous already. Otherwise, its monomials are multiplied with the smallest powers of
var
such that they all have the same total degree.INPUT:
var
– a variable in the polynomial ring (as a string, an element of the ring, or0
) or a name for a new variable (default:'h'
)
OUTPUT:
If
var
specifies the variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variablevar
.EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^2 + 1 sage: f.homogenize() x^2 + h^2
The parameter
var
can be used to specify the name of the variable:sage: g = f.homogenize('z'); g x^2 + z^2 sage: g.parent() Multivariate Polynomial Ring in x, z over Rational Field
However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:
sage: f = x^2 sage: g = f.homogenize('z'); g x^2 sage: g.parent() Univariate Polynomial Ring in x over Rational Field
For compatibility with the multivariate case, if
var
specifies the variable of the polynomial ring, then the monomials are multiplied with the smallest powers ofvar
such that the result is homogeneous; in other words, we end up with a monomial whose leading coefficient is the sum of the coefficients of the polynomial:sage: f = x^2 + x + 1 sage: f.homogenize('x') 3*x^2
In positive characteristic, the degree can drop in this case:
sage: R.<x> = GF(2)[] sage: f = x + 1 sage: f.homogenize(x) 0
For compatibility with the multivariate case, the parameter
var
can also be 0 to specify the variable in the polynomial ring:sage: R.<x> = QQ[] sage: f = x^2 + x + 1 sage: f.homogenize(0) 3*x^2
- integral(var=None)#
Return the integral of this polynomial.
By default, the integration variable is the variable of the polynomial.
Otherwise, the integration variable is the optional parameter
var
Note
The integral is always chosen so that the constant term is 0.
EXAMPLES:
sage: R.<x> = ZZ[] sage: R(0).integral() 0 sage: f = R(2).integral(); f 2*x
Note that the integral lives over the fraction field of the scalar coefficients:
sage: f.parent() Univariate Polynomial Ring in x over Rational Field sage: R(0).integral().parent() Univariate Polynomial Ring in x over Rational Field sage: f = x^3 + x - 2 sage: g = f.integral(); g 1/4*x^4 + 1/2*x^2 - 2*x sage: g.parent() Univariate Polynomial Ring in x over Rational Field
This shows that the issue at trac ticket #7711 is resolved:
sage: P.<x,z> = PolynomialRing(GF(2147483647)) sage: Q.<y> = PolynomialRing(P) sage: p=x+y+z sage: p.integral() -1073741823*y^2 + (x + z)*y sage: P.<x,z> = PolynomialRing(GF(next_prime(2147483647))) sage: Q.<y> = PolynomialRing(P) sage: p=x+y+z sage: p.integral() 1073741830*y^2 + (x + z)*y
A truly convoluted example:
sage: A.<a1, a2> = PolynomialRing(ZZ) sage: B.<b> = PolynomialRing(A) sage: C.<c> = PowerSeriesRing(B) sage: R.<x> = PolynomialRing(C) sage: f = a2*x^2 + c*x - a1*b sage: f.parent() Univariate Polynomial Ring in x over Power Series Ring in c over Univariate Polynomial Ring in b over Multivariate Polynomial Ring in a1, a2 over Integer Ring sage: f.integral() 1/3*a2*x^3 + 1/2*c*x^2 - a1*b*x sage: f.integral().parent() Univariate Polynomial Ring in x over Power Series Ring in c over Univariate Polynomial Ring in b over Multivariate Polynomial Ring in a1, a2 over Rational Field sage: g = 3*a2*x^2 + 2*c*x - a1*b sage: g.integral() a2*x^3 + c*x^2 - a1*b*x sage: g.integral().parent() Univariate Polynomial Ring in x over Power Series Ring in c over Univariate Polynomial Ring in b over Multivariate Polynomial Ring in a1, a2 over Rational Field
Integration with respect to a variable in the base ring:
sage: R.<x> = QQ[] sage: t = PolynomialRing(R,'t').gen() sage: f = x*t +5*t^2 sage: f.integral(x) 5*x*t^2 + 1/2*x^2*t
- inverse_mod(a, m)#
Inverts the polynomial a with respect to m, or raises a ValueError if no such inverse exists. The parameter m may be either a single polynomial or an ideal (for consistency with inverse_mod in other rings).
See also
If you are only interested in the inverse modulo a monomial \(x^k\) then you might use the specialized method
inverse_series_trunc()
which is much faster.EXAMPLES:
sage: S.<t> = QQ[] sage: f = inverse_mod(t^2 + 1, t^3 + 1); f -1/2*t^2 - 1/2*t + 1/2 sage: f * (t^2 + 1) % (t^3 + 1) 1 sage: f = t.inverse_mod((t+1)^7); f -t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7 sage: (f * t) + (t+1)^7 1 sage: t.inverse_mod(S.ideal((t + 1)^7)) == f True
This also works over inexact rings, but note that due to rounding error the product may not always exactly equal the constant polynomial 1 and have extra terms with coefficients close to zero.
sage: R.<x> = RDF[] sage: epsilon = RDF(1).ulp()*50 # Allow an error of up to 50 ulp sage: f = inverse_mod(x^2 + 1, x^5 + x + 1); f # abs tol 1e-14 0.4*x^4 - 0.2*x^3 - 0.4*x^2 + 0.2*x + 0.8 sage: poly = f * (x^2 + 1) % (x^5 + x + 1) sage: # Remove noisy zero terms: sage: parent(poly)([ 0.0 if abs(c)<=epsilon else c for c in poly.coefficients(sparse=False) ]) 1.0 sage: f = inverse_mod(x^3 - x + 1, x - 2); f 0.14285714285714285 sage: f * (x^3 - x + 1) % (x - 2) 1.0 sage: g = 5*x^3+x-7; m = x^4-12*x+13; f = inverse_mod(g, m); f -0.0319636125...*x^3 - 0.0383269759...*x^2 - 0.0463050900...*x + 0.346479687... sage: poly = f*g % m sage: # Remove noisy zero terms: sage: parent(poly)([ 0.0 if abs(c)<=epsilon else c for c in poly.coefficients(sparse=False) ]) # abs tol 1e-14 1.0000000000000004
ALGORITHM: Solve the system as + mt = 1, returning s as the inverse of a mod m.
Uses the Euclidean algorithm for exact rings, and solves a linear system for the coefficients of s and t for inexact rings (as the Euclidean algorithm may not converge in that case).
AUTHORS:
Robert Bradshaw (2007-05-31)
- inverse_of_unit()#
EXAMPLES:
sage: R.<x> = QQ[] sage: f = x - 90283 sage: f.inverse_of_unit() Traceback (most recent call last): ... ArithmeticError: x - 90283 is not a unit in Univariate Polynomial Ring in x over Rational Field sage: f = R(-90283); g = f.inverse_of_unit(); g -1/90283 sage: parent(g) Univariate Polynomial Ring in x over Rational Field
- inverse_series_trunc(prec)#
Return a polynomial approximation of precision
prec
of the inverse series of this polynomial.See also
The method
inverse_mod()
allows more generally to invert this polynomial with respect to any ideal.EXAMPLES:
sage: x = polygen(ZZ) sage: s = (1+x).inverse_series_trunc(5) sage: s x^4 - x^3 + x^2 - x + 1 sage: s * (1+x) x^5 + 1
Note that the constant coefficient needs to be a unit:
sage: ZZx.<x> = ZZ[] sage: ZZxy.<y> = ZZx[] sage: (1+x + y**2).inverse_series_trunc(4) Traceback (most recent call last): ... ValueError: constant term x + 1 is not a unit sage: (1+x + y**2).change_ring(ZZx.fraction_field()).inverse_series_trunc(4) (-1/(x^2 + 2*x + 1))*y^2 + 1/(x + 1)
The method works over any polynomial ring:
sage: R = Zmod(4) sage: Rx.<x> = R[] sage: Rxy.<y> = Rx[] sage: p = 1 + (1+2*x)*y + x**2*y**4 sage: q = p.inverse_series_trunc(10) sage: (p*q).truncate(11) (2*x^4 + 3*x^2 + 3)*y^10 + 1
Even noncommutative ones:
sage: M = MatrixSpace(ZZ,2) sage: x = polygen(M) sage: p = M([1,2,3,4])*x^3 + M([-1,0,0,1])*x^2 + M([1,3,-1,0])*x + M.one() sage: q = p.inverse_series_trunc(5) sage: (p*q).truncate(5) == M.one() True sage: q = p.inverse_series_trunc(13) sage: (p*q).truncate(13) == M.one() True
AUTHORS:
David Harvey (2006-09-09): Newton’s method implementation for power series
Vincent Delecroix (2014-2015): move the implementation directly in polynomial
- is_constant()#
Return True if this is a constant polynomial.
OUTPUT:
bool
- True if and only if this polynomial is constant
EXAMPLES:
sage: R.<x> = ZZ[] sage: x.is_constant() False sage: R(2).is_constant() True sage: R(0).is_constant() True
- is_cyclotomic(certificate=False, algorithm='pari')#
Test if this polynomial is a cyclotomic polynomial.
A cyclotomic polynomial is a monic, irreducible polynomial such that all roots are roots of unity.
By default the answer is a boolean. But if
certificate
isTrue
, the result is a non-negative integer: it is0
ifself
is not cyclotomic, and a positive integern
ifself
is the \(n\)-th cyclotomic polynomial.INPUT:
certificate
– boolean, default toFalse
. Only works withalgorithm
set to “pari”.algorithm
– either “pari” or “sage” (default is “pari”)
ALGORITHM:
The native algorithm implemented in Sage uses the first algorithm of [BD1989]. The algorithm in pari (using pari:poliscyclo) is more subtle since it does compute the inverse of the Euler \(\phi\) function to determine the \(n\) such that the polynomial is the \(n\)-th cyclotomic polynomial.
EXAMPLES:
Quick tests:
sage: P.<x> = ZZ['x'] sage: (x - 1).is_cyclotomic() True sage: (x + 1).is_cyclotomic() True sage: (x^2 - 1).is_cyclotomic() False sage: (x^2 + x + 1).is_cyclotomic(certificate=True) 3 sage: (x^2 + 2*x + 1).is_cyclotomic(certificate=True) 0
Test first 100 cyclotomic polynomials:
sage: all(cyclotomic_polynomial(i).is_cyclotomic() for i in range(1,101)) True
Some more tests:
sage: (x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="pari") False sage: (x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="sage") False sage: (x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="pari") True sage: (x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="sage") True sage: y = polygen(QQ) sage: (y/2 - 1/2).is_cyclotomic() False sage: (2*(y/2 - 1/2)).is_cyclotomic() True
Invalid arguments:
sage: (x - 3).is_cyclotomic(algorithm="sage", certificate=True) Traceback (most recent call last): ... ValueError: no implementation of the certificate within Sage
Test using other rings:
sage: z = polygen(GF(5)) sage: (z - 1).is_cyclotomic() Traceback (most recent call last): ... NotImplementedError: not implemented in non-zero characteristic
- is_cyclotomic_product()#
Test whether this polynomial is a product of cyclotomic polynomials.
This method simply calls the function pari:poliscycloprod from the Pari library.
EXAMPLES:
sage: x = polygen(ZZ) sage: (x^5 - 1).is_cyclotomic_product() True sage: (x^5 + x^4 - x^2 + 1).is_cyclotomic_product() False sage: p = prod(cyclotomic_polynomial(i) for i in [2,5,7,12]) sage: p.is_cyclotomic_product() True sage: (x^5 - 1/3).is_cyclotomic_product() False sage: x = polygen(Zmod(5)) sage: (x-1).is_cyclotomic_product() Traceback (most recent call last): ... NotImplementedError: not implemented in non-zero characteristic
- is_gen()#
Return True if this polynomial is the distinguished generator of the parent polynomial ring.
EXAMPLES:
sage: R.<x> = QQ[] sage: R(1).is_gen() False sage: R(x).is_gen() True
Important - this function doesn’t return True if self equals the generator; it returns True if self is the generator.
sage: f = R([0,1]); f x sage: f.is_gen() False sage: f is x False sage: f == x True
- is_homogeneous()#
Return
True
if this polynomial is homogeneous.EXAMPLES:
sage: P.<x> = PolynomialRing(QQ) sage: x.is_homogeneous() True sage: P(0).is_homogeneous() True sage: (x+1).is_homogeneous() False
- is_irreducible()#
Return whether this polynomial is irreducible.
EXAMPLES:
sage: R.<x> = ZZ[] sage: (x^3 + 1).is_irreducible() False sage: (x^2 - 1).is_irreducible() False sage: (x^3 + 2).is_irreducible() True sage: R(0).is_irreducible() False
The base ring does matter: for example, \(2x\) is irreducible as a polynomial in \(\QQ[x]\), but not in \(\ZZ[x]\):
sage: R.<x> = ZZ[] sage: R(2*x).is_irreducible() False sage: R.<x> = QQ[] sage: R(2*x).is_irreducible() True
- is_monic()#
Returns True if this polynomial is monic. The zero polynomial is by definition not monic.
EXAMPLES:
sage: x = QQ['x'].0 sage: f = x + 33 sage: f.is_monic() True sage: f = 0*x sage: f.is_monic() False sage: f = 3*x^3 + x^4 + x^2 sage: f.is_monic() True sage: f = 2*x^2 + x^3 + 56*x^5 sage: f.is_monic() False
AUTHORS:
Naqi Jaffery (2006-01-24): examples
- is_monomial()#
Return True if self is a monomial, i.e., a power of the generator.
EXAMPLES:
sage: R.<x> = QQ[] sage: x.is_monomial() True sage: (x+1).is_monomial() False sage: (x^2).is_monomial() True sage: R(1).is_monomial() True
The coefficient must be 1:
sage: (2*x^5).is_monomial() False
To allow a non-1 leading coefficient, use is_term():
sage: (2*x^5).is_term() True
Warning
The definition of is_monomial in Sage up to 4.7.1 was the same as is_term, i.e., it allowed a coefficient not equal to 1.
- is_nilpotent()#
Return True if this polynomial is nilpotent.
EXAMPLES:
sage: R = Integers(12) sage: S.<x> = R[] sage: f = 5 + 6*x sage: f.is_nilpotent() False sage: f = 6 + 6*x^2 sage: f.is_nilpotent() True sage: f^2 0
EXERCISE (Atiyah-McDonald, Ch 1): Let \(A[x]\) be a polynomial ring in one variable. Then \(f=\sum a_i x^i \in A[x]\) is nilpotent if and only if every \(a_i\) is nilpotent.
- is_one()#
Test whether this polynomial is 1.
EXAMPLES:
sage: R.<x> = QQ[] sage: (x-3).is_one() False sage: R(1).is_one() True sage: R2.<y> = R[] sage: R2(x).is_one() False sage: R2(1).is_one() True sage: R2(-1).is_one() False
- is_primitive(n=None, n_prime_divs=None)#
Return
True
if the polynomial is primitive.The semantics of “primitive” depend on the polynomial coefficients.
(field theory) A polynomial of degree \(m\) over a finite field \(\GF{q}\) is primitive if it is irreducible and its root in \(\GF{q^m}\) generates the multiplicative group \(\GF{q^m}^*\).
(ring theory) A polynomial over a ring is primitive if its coefficients generate the unit ideal.
Calling \(is_primitive\) on a polynomial over an infinite field will raise an error.
The additional inputs to this function are to speed up computation for field semantics (see note).
INPUT:
n
(default:None
) - if provided, should equal \(q-1\) whereself.parent()
is the field with \(q\) elements; otherwise it will be computed.n_prime_divs
(default:None
) - if provided, should be a list of the prime divisors ofn
; otherwise it will be computed.
Note
Computation of the prime divisors of
n
can dominate the running time of this method, so performing this computation externally (e.g.pdivs=n.prime_divisors()
) is a good idea for repeated calls to is_primitive for polynomials of the same degree.Results may be incorrect if the wrong
n
and/or factorization are provided.EXAMPLES:
Field semantics examples. :: sage: R.<x> = GF(2)['x'] sage: f = x^4+x^3+x^2+x+1 sage: f.is_irreducible(), f.is_primitive() (True, False) sage: f = x^3+x+1 sage: f.is_irreducible(), f.is_primitive() (True, True) sage: R.<x> = GF(3)[] sage: f = x^3-x+1 sage: f.is_irreducible(), f.is_primitive() (True, True) sage: f = x^2+1 sage: f.is_irreducible(), f.is_primitive() (True, False) sage: R.<x> = GF(5)[] sage: f = x^2+x+1 sage: f.is_primitive() False sage: f = x^2-x+2 sage: f.is_primitive() True sage: x=polygen(QQ); f=x^2+1 sage: f.is_primitive() Traceback (most recent call last): ... NotImplementedError: is_primitive() not defined for polynomials over infinite fields. Ring semantics examples. :: sage: x=polygen(ZZ) sage: f = 5*x^2+2 sage: f.is_primitive() True sage: f = 5*x^2+5 sage: f.is_primitive() False sage: K=NumberField(x^2+5,'a') sage: R=K.ring_of_integers() sage: a=R.gen(1) sage: a^2 -5 sage: f=a*x+2 sage: f.is_primitive() True sage: f=(1+a)*x+2 sage: f.is_primitive() False sage: x = polygen(Integers(10)) sage: f = 5*x^2+2 sage: #f.is_primitive() #BUG:: elsewhere in Sage, should return True sage: f=4*x^2+2 sage: #f.is_primitive() #BUG:: elsewhere in Sage, should return False
- is_real_rooted()#
Return True if the roots of this polynomial are all real.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: pol = chebyshev_T(5, x) sage: pol.is_real_rooted() True sage: pol = x^2 + 1 sage: pol.is_real_rooted() False
- is_square(root=False)#
Return whether or not polynomial is square.
If the optional argument
root
is set toTrue
, then also returns the square root (orNone
, if the polynomial is not square).INPUT:
root
- whether or not to also return a square root (default:False
)
OUTPUT:
bool
- whether or not a squareroot
- (optional) an actual square root if found, andNone
otherwise.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: (x^2 + 2*x + 1).is_square() True sage: (x^4 + 2*x^3 - x^2 - 2*x + 1).is_square(root=True) (True, x^2 + x - 1) sage: f = 12*(x+1)^2 * (x+3)^2 sage: f.is_square() False sage: f.is_square(root=True) (False, None) sage: h = f/3; h 4*x^4 + 32*x^3 + 88*x^2 + 96*x + 36 sage: h.is_square(root=True) (True, 2*x^2 + 8*x + 6) sage: S.<y> = PolynomialRing(RR) sage: g = 12*(y+1)^2 * (y+3)^2 sage: g.is_square() True
- is_squarefree()#
Return False if this polynomial is not square-free, i.e., if there is a non-unit \(g\) in the polynomial ring such that \(g^2\) divides
self
.Warning
This method is not consistent with
squarefree_decomposition()
since the latter does not factor the content of a polynomial. See the examples below.EXAMPLES:
sage: R.<x> = QQ[] sage: f = (x-1)*(x-2)*(x^2-5)*(x^17-3); f x^21 - 3*x^20 - 3*x^19 + 15*x^18 - 10*x^17 - 3*x^4 + 9*x^3 + 9*x^2 - 45*x + 30 sage: f.is_squarefree() True sage: (f*(x^2-5)).is_squarefree() False
A generic implementation is available, which relies on gcd computations:
sage: R.<x> = ZZ[] sage: (2*x).is_squarefree() True sage: (4*x).is_squarefree() False sage: (2*x^2).is_squarefree() False sage: R(0).is_squarefree() False sage: S.<y> = QQ[] sage: R.<x> = S[] sage: (2*x*y).is_squarefree() True sage: (2*x*y^2).is_squarefree() False
In positive characteristic, we compute the square-free decomposition or a full factorization, depending on which is available:
sage: K.<t> = FunctionField(GF(3)) sage: R.<x> = K[] sage: (x^3-x).is_squarefree() True sage: (x^3-1).is_squarefree() False sage: (x^3+t).is_squarefree() True sage: (x^3+t^3).is_squarefree() False
In the following example, \(t^2\) is a unit in the base field:
sage: R(t^2).is_squarefree() True
This method is not consistent with
squarefree_decomposition()
:sage: R.<x> = ZZ[] sage: f = 4 * x sage: f.is_squarefree() False sage: f.squarefree_decomposition() (4) * x
If you want this method equally not to consider the content, you can remove it as in the following example:
sage: c = f.content() sage: (f/c).is_squarefree() True
If the base ring is not an integral domain, the question is not mathematically well-defined:
sage: R.<x> = IntegerModRing(9)[] sage: pol = (x + 3)*(x + 6); pol x^2 sage: pol.is_squarefree() Traceback (most recent call last): ... TypeError: is_squarefree() is not defined for polynomials over Ring of integers modulo 9
- is_term()#
Return
True
if this polynomial is a nonzero element of the base ring times a power of the variable.EXAMPLES:
sage: R.<x> = QQ[] sage: x.is_term() True sage: R(0).is_term() False sage: R(1).is_term() True sage: (3*x^5).is_term() True sage: (1+3*x^5).is_term() False
To require that the coefficient is 1, use
is_monomial()
instead:sage: (3*x^5).is_monomial() False
- is_unit()#
Return True if this polynomial is a unit.
EXAMPLES:
sage: a = Integers(90384098234^3) sage: b = a(2*191*236607587) sage: b.is_nilpotent() True sage: R.<x> = a[] sage: f = 3 + b*x + b^2*x^2 sage: f.is_unit() True sage: f = 3 + b*x + b^2*x^2 + 17*x^3 sage: f.is_unit() False
EXERCISE (Atiyah-McDonald, Ch 1): Let \(A[x]\) be a polynomial ring in one variable. Then \(f=\sum a_i x^i \in A[x]\) is a unit if and only if \(a_0\) is a unit and \(a_1,\ldots, a_n\) are nilpotent.
- is_weil_polynomial(return_q=False)#
Return True if this is a Weil polynomial.
This polynomial must have rational or integer coefficients.
INPUT:
self
– polynomial with rational or integer coefficientsreturn_q
– (defaultFalse
) ifTrue
, return a second value \(q\)which is the prime power with respect to which this is \(q\)-Weil, or 0 if there is no such value.
EXAMPLES:
sage: polRing.<x> = PolynomialRing(Rationals()) sage: P0 = x^4 + 5*x^3 + 15*x^2 + 25*x + 25 sage: P1 = x^4 + 25*x^3 + 15*x^2 + 5*x + 25 sage: P2 = x^4 + 5*x^3 + 25*x^2 + 25*x + 25 sage: P0.is_weil_polynomial(return_q=True) (True, 5) sage: P0.is_weil_polynomial(return_q=False) True sage: P1.is_weil_polynomial(return_q=True) (False, 0) sage: P1.is_weil_polynomial(return_q=False) False sage: P2.is_weil_polynomial() False
See also
Polynomial rings have a method \(weil_polynomials\) to compute sets of Weil polynomials. This computation uses the iterator
sage.rings.polynomial.weil.weil_polynomials.WeilPolynomials
.AUTHORS:
David Zureick-Brown (2017-10-01)
- is_zero()#
Test whether this polynomial is zero.
EXAMPLES:
sage: R = GF(2)['x']['y'] sage: R([0,1]).is_zero() False sage: R([0]).is_zero() True sage: R([-1]).is_zero() False
- lc()#
Return the leading coefficient of this polynomial.
OUTPUT: element of the base ring This method is same as
leading_coefficient()
.EXAMPLES:
sage: R.<x> = QQ[] sage: f = (-2/5)*x^3 + 2*x - 1/3 sage: f.lc() -2/5
- lcm(other)#
Let f and g be two polynomials. Then this function returns the monic least common multiple of f and g.
- leading_coefficient()#
Return the leading coefficient of this polynomial.
OUTPUT: element of the base ring
EXAMPLES:
sage: R.<x> = QQ[] sage: f = (-2/5)*x^3 + 2*x - 1/3 sage: f.leading_coefficient() -2/5
- list(copy=True)#
Return a new copy of the list of the underlying elements of
self
.EXAMPLES:
sage: R.<x> = QQ[] sage: f = (-2/5)*x^3 + 2*x - 1/3 sage: v = f.list(); v [-1/3, 2, 0, -2/5]
Note that v is a list, it is mutable, and each call to the list method returns a new list:
sage: type(v) <... 'list'> sage: v[0] = 5 sage: f.list() [-1/3, 2, 0, -2/5]
Here is an example with a generic polynomial ring:
sage: R.<x> = QQ[] sage: S.<y> = R[] sage: f = y^3 + x*y -3*x; f y^3 + x*y - 3*x sage: type(f) <class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'> sage: v = f.list(); v [-3*x, x, 0, 1] sage: v[0] = 10 sage: f.list() [-3*x, x, 0, 1]
- lm()#
Return the leading monomial of this polynomial.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = (-2/5)*x^3 + 2*x - 1/3 sage: f.lm() x^3 sage: R(5).lm() 1 sage: R(0).lm() 0 sage: R(0).lm().parent() is R True
- local_height(v, prec=None)#
Return the maximum of the local height of the coefficients of this polynomial.
INPUT:
v
– a prime or prime ideal of the base ring.prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f = 1/1331*x^2 + 1/4000*x sage: f.local_height(1331) 7.19368581839511
sage: R.<x> = QQ[] sage: K.<k> = NumberField(x^2 - 5) sage: T.<t> = K[] sage: I = K.ideal(3) sage: f = 1/3*t^2 + 3 sage: f.local_height(I) 1.09861228866811
sage: R.<x> = QQ[] sage: f = 1/2*x^2 + 2 sage: f.local_height(2, prec=2) 0.75
- local_height_arch(i, prec=None)#
Return the maximum of the local height at the
i
-th infinite place of the coefficients of this polynomial.INPUT:
i
– an integer.prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f = 210*x^2 sage: f.local_height_arch(0) 5.34710753071747
sage: R.<x> = QQ[] sage: K.<k> = NumberField(x^2 - 5) sage: T.<t> = K[] sage: f = 1/2*t^2 + 3 sage: f.local_height_arch(1, prec=52) 1.09861228866811
sage: R.<x> = QQ[] sage: f = 1/2*x^2 + 3 sage: f.local_height_arch(0, prec=2) 1.0
- lt()#
Return the leading term of this polynomial.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = (-2/5)*x^3 + 2*x - 1/3 sage: f.lt() -2/5*x^3 sage: R(5).lt() 5 sage: R(0).lt() 0 sage: R(0).lt().parent() is R True
- map_coefficients(f, new_base_ring=None)#
Return the polynomial obtained by applying
f
to the non-zero coefficients ofself
.If
f
is asage.categories.map.Map
, then the resulting polynomial will be defined over the codomain off
. Otherwise, the resulting polynomial will be over the same ring as self. Setnew_base_ring
to override this behaviour.INPUT:
f
– a callable that will be applied to the coefficients of self.new_base_ring
(optional) – if given, the resulting polynomial will be defined over this ring.
EXAMPLES:
sage: R.<x> = SR[] sage: f = (1+I)*x^2 + 3*x - I sage: f.map_coefficients(lambda z: z.conjugate()) (-I + 1)*x^2 + 3*x + I sage: R.<x> = ZZ[] sage: f = x^2 + 2 sage: f.map_coefficients(lambda a: a + 42) 43*x^2 + 44 sage: R.<x> = PolynomialRing(SR, sparse=True) sage: f = (1+I)*x^(2^32) - I sage: f.map_coefficients(lambda z: z.conjugate()) (-I + 1)*x^4294967296 + I sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: f = x^(2^32) + 2 sage: f.map_coefficients(lambda a: a + 42) 43*x^4294967296 + 44
Examples with different base ring:
sage: R.<x> = ZZ[] sage: k = GF(2) sage: residue = lambda x: k(x) sage: f = 4*x^2+x+3 sage: g = f.map_coefficients(residue); g x + 1 sage: g.parent() Univariate Polynomial Ring in x over Integer Ring sage: g = f.map_coefficients(residue, new_base_ring = k); g x + 1 sage: g.parent() Univariate Polynomial Ring in x over Finite Field of size 2 (using GF2X) sage: residue = k.coerce_map_from(ZZ) sage: g = f.map_coefficients(residue); g x + 1 sage: g.parent() Univariate Polynomial Ring in x over Finite Field of size 2 (using GF2X)
- mod(other)#
Remainder of division of self by other.
EXAMPLES:
sage: R.<x> = ZZ[] sage: x % (x+1) -1 sage: (x^3 + x - 1) % (x^2 - 1) 2*x - 1
- monic()#
Return this polynomial divided by its leading coefficient. Does not change this polynomial.
EXAMPLES:
sage: x = QQ['x'].0 sage: f = 2*x^2 + x^3 + 56*x^5 sage: f.monic() x^5 + 1/56*x^3 + 1/28*x^2 sage: f = (1/4)*x^2 + 3*x + 1 sage: f.monic() x^2 + 12*x + 4
The following happens because \(f = 0\) cannot be made into a monic polynomial
sage: f = 0*x sage: f.monic() Traceback (most recent call last): ... ZeroDivisionError: rational division by zero
Notice that the monic version of a polynomial over the integers is defined over the rationals.
sage: x = ZZ['x'].0 sage: f = 3*x^19 + x^2 - 37 sage: g = f.monic(); g x^19 + 1/3*x^2 - 37/3 sage: g.parent() Univariate Polynomial Ring in x over Rational Field
AUTHORS:
Naqi Jaffery (2006-01-24): examples
- monomial_coefficient(m)#
Return the coefficient in the base ring of the monomial
m
inself
, wherem
must have the same parent asself
.INPUT:
m
- a monomial
OUTPUT:
Coefficient in base ring.
EXAMPLES:
sage: P.<x> = QQ[] The parent of the return is a member of the base ring. sage: f = 2 * x sage: c = f.monomial_coefficient(x); c 2 sage: c.parent() Rational Field sage: f = x^9 - 1/2*x^2 + 7*x + 5/11 sage: f.monomial_coefficient(x^9) 1 sage: f.monomial_coefficient(x^2) -1/2 sage: f.monomial_coefficient(x) 7 sage: f.monomial_coefficient(x^0) 5/11 sage: f.monomial_coefficient(x^3) 0
- monomials()#
Return the list of the monomials in
self
in a decreasing order of their degrees.EXAMPLES:
sage: P.<x> = QQ[] sage: f = x^2 + (2/3)*x + 1 sage: f.monomials() [x^2, x, 1] sage: f = P(3/2) sage: f.monomials() [1] sage: f = P(0) sage: f.monomials() [] sage: f = x sage: f.monomials() [x] sage: f = - 1/2*x^2 + x^9 + 7*x + 5/11 sage: f.monomials() [x^9, x^2, x, 1] sage: x = var('x') sage: K.<rho> = NumberField(x**2 + 1) sage: R.<y> = QQ[] sage: p = rho*y sage: p.monomials() [y]
- multiplication_trunc(other, n)#
Truncated multiplication
EXAMPLES:
sage: R.<x> = ZZ[] sage: (x^10 + 5*x^5 + x^2 - 3).multiplication_trunc(x^7 - 3*x^3 + 1, 11) x^10 + x^9 - 15*x^8 - 3*x^7 + 2*x^5 + 9*x^3 + x^2 - 3
Check that coercion is working:
sage: R2 = QQ['x'] sage: x2 = R2.gen() sage: p1 = (x^3 + 1).multiplication_trunc(x2^3 - 2, 5); p1 -x^3 - 2 sage: p2 = (x2^3 + 1).multiplication_trunc(x^3 - 2, 5); p2 -x^3 - 2 sage: parent(p1) == parent(p2) == R2 True
- newton_raphson(n, x0)#
Return a list of n iterative approximations to a root of this polynomial, computed using the Newton-Raphson method.
The Newton-Raphson method is an iterative root-finding algorithm. For f(x) a polynomial, as is the case here, this is essentially the same as Horner’s method.
INPUT:
n
- an integer (=the number of iterations),x0
- an initial guess x0.
OUTPUT: A list of numbers hopefully approximating a root of f(x)=0.
If one of the iterates is a critical point of f then a ZeroDivisionError exception is raised.
EXAMPLES:
sage: x = PolynomialRing(RealField(), 'x').gen() sage: f = x^2 - 2 sage: f.newton_raphson(4, 1) [1.50000000000000, 1.41666666666667, 1.41421568627451, 1.41421356237469]
AUTHORS:
David Joyner and William Stein (2005-11-28)
- newton_slopes(p, lengths=False)#
Return the \(p\)-adic slopes of the Newton polygon of self, when this makes sense.
OUTPUT:
If \(lengths\) is \(False\), a list of rational numbers. If \(lengths\) is \(True\), a list of couples \((s,l)\) where \(s\) is the slope and \(l\) the length of the corresponding segment in the Newton polygon.
EXAMPLES:
sage: x = QQ['x'].0 sage: f = x^3 + 2 sage: f.newton_slopes(2) [1/3, 1/3, 1/3] sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: p = x^5 + 6*x^2 + 4 sage: p.newton_slopes(2) [1/2, 1/2, 1/3, 1/3, 1/3] sage: p.newton_slopes(2, lengths=True) [(1/2, 2), (1/3, 3)] sage: (x^2^100 + 27).newton_slopes(3, lengths=True) [(3/1267650600228229401496703205376, 1267650600228229401496703205376)]
ALGORITHM: Uses PARI if \(lengths\) is \(False\).
- norm(p)#
Return the \(p\)-norm of this polynomial.
DEFINITION: For integer \(p\), the \(p\)-norm of a polynomial is the \(p\)th root of the sum of the \(p\)th powers of the absolute values of the coefficients of the polynomial.
INPUT:
p
- (positive integer or +infinity) the degree of the norm
EXAMPLES:
sage: R.<x> = RR[] sage: f = x^6 + x^2 + -x^4 - 2*x^3 sage: f.norm(2) 2.64575131106459 sage: (sqrt(1^2 + 1^2 + (-1)^2 + (-2)^2)).n() 2.64575131106459
sage: f.norm(1) 5.00000000000000 sage: f.norm(infinity) 2.00000000000000
sage: f.norm(-1) Traceback (most recent call last): ... ValueError: The degree of the norm must be positive
AUTHORS:
Didier Deshommes
William Stein: fix bugs, add definition, etc.
- nth_root(n)#
Return a \(n\)-th root of this polynomial.
This is computed using Newton method in the ring of power series. This method works only when the base ring is an integral domain. Moreover, for polynomial whose coefficient of lower degree is different from 1, the elements of the base ring should have a method
nth_root
implemented.EXAMPLES:
sage: R.<x> = ZZ[] sage: a = 27 * (x+3)**6 * (x+5)**3 sage: a.nth_root(3) 3*x^3 + 33*x^2 + 117*x + 135 sage: b = 25 * (x^2 + x + 1) sage: b.nth_root(2) Traceback (most recent call last): ... ValueError: not a 2nd power sage: R(0).nth_root(3) 0 sage: R.<x> = QQ[] sage: a = 1/4 * (x/7 + 3/2)^2 * (x/2 + 5/3)^4 sage: a.nth_root(2) 1/56*x^3 + 103/336*x^2 + 365/252*x + 25/12 sage: K.<sqrt2> = QuadraticField(2) sage: R.<x> = K[] sage: a = (x + sqrt2)^3 * ((1+sqrt2)*x - 1/sqrt2)^6 sage: b = a.nth_root(3); b (2*sqrt2 + 3)*x^3 + (2*sqrt2 + 2)*x^2 + (-2*sqrt2 - 3/2)*x + 1/2*sqrt2 sage: b^3 == a True sage: R.<x> = QQbar[] sage: p = x**3 + QQbar(2).sqrt() * x - QQbar(3).sqrt() sage: r = (p**5).nth_root(5) sage: r * p[0] == p * r[0] True sage: p = (x+1)^20 + x^20 sage: p.nth_root(20) Traceback (most recent call last): ... ValueError: not a 20th power sage: z = GF(4).gen() sage: R.<x> = GF(4)[] sage: p = z*x**4 + 2*x - 1 sage: r = (p**15).nth_root(15) sage: r * p[0] == p * r[0] True sage: ((x+1)**2).nth_root(2) x + 1 sage: ((x+1)**4).nth_root(4) x + 1 sage: ((x+1)**12).nth_root(12) x + 1 sage: (x^4 + x^3 + 1).nth_root(2) Traceback (most recent call last): ... ValueError: not a 2nd power sage: p = (x+1)^17 + x^17 sage: r = p.nth_root(17) Traceback (most recent call last): ... ValueError: not a 17th power sage: R1.<x> = QQ[] sage: R2.<y> = R1[] sage: R3.<z> = R2[] sage: (((y**2+x)*z^2 + x*y*z + 2*x)**3).nth_root(3) (y^2 + x)*z^2 + x*y*z + 2*x sage: ((x+y+z)**5).nth_root(5) z + y + x
Here we consider a base ring without
nth_root
method. The third example with a non-trivial coefficient of lowest degree raises an error:sage: R.<x> = QQ[] sage: R2 = R.quotient(x**2 + 1) sage: x = R2.gen() sage: R3.<y> = R2[] sage: (y**2 - 2*y + 1).nth_root(2) -y + 1 sage: (y**3).nth_root(3) y sage: (y**2 + x).nth_root(2) Traceback (most recent call last): ... AttributeError: ... has no attribute 'nth_root'
- number_of_real_roots()#
Return the number of real roots of this polynomial, counted without multiplicity.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: pol = (x-1)^2 * (x-2)^2 * (x-3) sage: pol.number_of_real_roots() 3 sage: pol = (x-1)*(x-2)*(x-3) sage: pol2 = pol.change_ring(CC) sage: pol2.number_of_real_roots() 3 sage: R.<x> = PolynomialRing(CC) sage: pol = (x-1)*(x-CC(I)) sage: pol.number_of_real_roots() 1
- number_of_roots_in_interval(a=None, b=None)#
Return the number of roots of this polynomial in the interval [a,b], counted without multiplicity. The endpoints a, b default to -Infinity, Infinity (which are also valid input values).
Calls the PARI routine pari:polsturm.
Note that as of version 2.8, PARI includes the left endpoint of the interval (and no longer uses Sturm’s algorithm on exact inputs). polsturm requires a polynomial with real coefficients; in case PARI returns an error, we try again after taking the GCD of \(self\) with its complex conjugate.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: pol = (x-1)^2 * (x-2)^2 * (x-3) sage: pol.number_of_roots_in_interval(1, 2) 2 sage: pol.number_of_roots_in_interval(1.01, 2) 1 sage: pol.number_of_roots_in_interval(None, 2) 2 sage: pol.number_of_roots_in_interval(1, Infinity) 3 sage: pol.number_of_roots_in_interval() 3 sage: pol = (x-1)*(x-2)*(x-3) sage: pol2 = pol.change_ring(CC) sage: pol2.number_of_roots_in_interval() 3 sage: R.<x> = PolynomialRing(CC) sage: pol = (x-1)*(x-CC(I)) sage: pol.number_of_roots_in_interval(0,2) 1
- number_of_terms()#
Return the number of non-zero coefficients of
self
.Also called weight, Hamming weight or sparsity.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = x^3 - x sage: f.number_of_terms() 2 sage: R(0).number_of_terms() 0 sage: f = (x+1)^100 sage: f.number_of_terms() 101 sage: S = GF(5)['y'] sage: S(f).number_of_terms() 5 sage: cyclotomic_polynomial(105).number_of_terms() 33
The method
hamming_weight()
is an alias:sage: f.hamming_weight() 101
- numerator()#
Return a numerator of self computed as self * self.denominator()
Note that some subclasses may implement its own numerator function. For example, see
sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
Warning
This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.
EXAMPLES:
First we compute the numerator of a polynomial with integer coefficients, which is of course self.
sage: R.<x> = ZZ[] sage: f = x^3 + 17*x + 1 sage: f.numerator() x^3 + 17*x + 1 sage: f == f.numerator() True
Next we compute the numerator of a polynomial with rational coefficients.
sage: R.<x> = PolynomialRing(QQ) sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f 1/17*x^19 - 2/3*x + 1/3 sage: f.numerator() 3*x^19 - 34*x + 17 sage: f == f.numerator() False
We try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.
sage: R.<x> = RR[] sage: f = x + RR('0.3'); f x + 0.300000000000000 sage: f.numerator() x + 0.300000000000000
We check that the computation the numerator and denominator are valid
sage: K=NumberField(symbolic_expression('x^3+2'),'a')['s,t']['x'] sage: f=K.random_element() sage: f.numerator() / f.denominator() == f True sage: R=RR['x'] sage: f=R.random_element() sage: f.numerator() / f.denominator() == f True
- ord(p=None)#
This is the same as the valuation of self at p. See the documentation for
self.valuation
.EXAMPLES:
sage: R.<x> = ZZ[] sage: (x^2+x).ord(x+1) 1
- padded_list(n=None)#
Return list of coefficients of self up to (but not including) \(q^n\).
Includes 0’s in the list on the right so that the list has length \(n\).
INPUT:
n
- (default: None); if given, an integer that is at least 0
EXAMPLES:
sage: x = polygen(QQ) sage: f = 1 + x^3 + 23*x^5 sage: f.padded_list() [1, 0, 0, 1, 0, 23] sage: f.padded_list(10) [1, 0, 0, 1, 0, 23, 0, 0, 0, 0] sage: len(f.padded_list(10)) 10 sage: f.padded_list(3) [1, 0, 0] sage: f.padded_list(0) [] sage: f.padded_list(-1) Traceback (most recent call last): ... ValueError: n must be at least 0
- plot(xmin=None, xmax=None, *args, **kwds)#
Return a plot of this polynomial.
INPUT:
xmin
- floatxmax
- float*args, **kwds
- passed to either plot or point
OUTPUT: returns a graphic object.
EXAMPLES:
sage: x = polygen(GF(389)) sage: plot(x^2 + 1, rgbcolor=(0,0,1)) Graphics object consisting of 1 graphics primitive sage: x = polygen(QQ) sage: plot(x^2 + 1, rgbcolor=(1,0,0)) Graphics object consisting of 1 graphics primitive
- polynomial(var)#
Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.
For univariate polynomials, if var is the generator of the parent ring, we return this polynomial, otherwise raise an error.
EXAMPLES:
sage: R.<x> = QQ[] sage: (x+1).polynomial(x) x + 1
- power_trunc(n, prec)#
Truncated
n
-th power of this polynomial up to precisionprec
INPUT:
n
– (non-negative integer) power to be takenprec
– (integer) the precision
EXAMPLES:
sage: R.<x> = ZZ[] sage: (3*x^2 - 2*x + 1).power_trunc(5, 8) -1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1 sage: ((3*x^2 - 2*x + 1)^5).truncate(8) -1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1 sage: S.<y> = R[] sage: (x+y).power_trunc(5,5) 5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5 sage: ((x+y)^5).truncate(5) 5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5 sage: R.<x> = GF(3)[] sage: p = x^2 - x + 1 sage: q = p.power_trunc(80, 20) sage: q x^19 + x^18 + ... + 2*x^4 + 2*x^3 + x + 1 sage: (p^80).truncate(20) == q True sage: R.<x> = GF(7)[] sage: p = (x^2 + x + 1).power_trunc(2^100, 100) sage: p 2*x^99 + x^98 + x^95 + 2*x^94 + ... + 3*x^2 + 2*x + 1 sage: for i in range(100): ....: q1 = (x^2 + x + 1).power_trunc(2^100 + i, 100) ....: q2 = p * (x^2 + x + 1).power_trunc(i, 100) ....: q2 = q2.truncate(100) ....: assert q1 == q2, "i = {}".format(i)
- prec()#
Return the precision of this polynomial. This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).
EXAMPLES:
sage: x = polygen(ZZ) sage: (x^5 + x + 1).prec() +Infinity sage: x.prec() +Infinity
- pseudo_quo_rem(other)#
Compute the pseudo-division of two polynomials.
INPUT:
other
– a nonzero polynomial
OUTPUT:
\(Q\) and \(R\) such that \(l^{m-n+1} \mathrm{self} = Q \cdot\mathrm{other} + R\) where \(m\) is the degree of this polynomial, \(n\) is the degree of
other
, \(l\) is the leading coefficient ofother
. The result is such that \(\deg(R) < \deg(\mathrm{other})\).ALGORITHM:
Algorithm 3.1.2 in [Coh1993].
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, sparse=True) sage: p = x^4 + 6*x^3 + x^2 - x + 2 sage: q = 2*x^2 - 3*x - 1 sage: (quo,rem)=p.pseudo_quo_rem(q); quo,rem (4*x^2 + 30*x + 51, 175*x + 67) sage: 2^(4-2+1)*p == quo*q + rem True sage: S.<T> = R[] sage: p = (-3*x^2 - x)*T^3 - 3*x*T^2 + (x^2 - x)*T + 2*x^2 + 3*x - 2 sage: q = (-x^2 - 4*x - 5)*T^2 + (6*x^2 + x + 1)*T + 2*x^2 - x sage: quo,rem=p.pseudo_quo_rem(q); quo,rem ((3*x^4 + 13*x^3 + 19*x^2 + 5*x)*T + 18*x^4 + 12*x^3 + 16*x^2 + 16*x, (-113*x^6 - 106*x^5 - 133*x^4 - 101*x^3 - 42*x^2 - 41*x)*T - 34*x^6 + 13*x^5 + 54*x^4 + 126*x^3 + 134*x^2 - 5*x - 50) sage: (-x^2 - 4*x - 5)^(3-2+1) * p == quo*q + rem True
- radical()#
Return the radical of self.
Over a field, this is the product of the distinct irreducible factors of self. (This is also sometimes called the “square-free part” of self, but that term is ambiguous; it is sometimes used to mean the quotient of self by its maximal square factor.)
EXAMPLES:
sage: P.<x> = ZZ[] sage: t = (x^2-x+1)^3 * (3*x-1)^2 sage: t.radical() 3*x^3 - 4*x^2 + 4*x - 1 sage: radical(12 * x^5) 6*x
If self has a factor of multiplicity divisible by the characteristic (see trac ticket #8736):
sage: P.<x> = GF(2)[] sage: (x^3 + x^2).radical() x^2 + x
- rational_reconstruct(*args, **kwds)#
Deprecated: Use
rational_reconstruction()
instead. See trac ticket #12696 for details.
- rational_reconstruction(m, n_deg=None, d_deg=None)#
Return a tuple of two polynomials
(n, d)
whereself * d
is congruent ton
modulom
andn.degree() <= n_deg
andd.degree() <= d_deg
.INPUT:
m
– a univariate polynomialn_deg
– (optional) an integer; the default is \(\lfloor (\deg(m) - 1)/2 \rfloor\)d_deg
– (optional) an integer; the default is \(\lfloor (\deg(m) - 1)/2 \rfloor\)
ALGORITHM:
The algorithm is based on the extended Euclidean algorithm for the polynomial greatest common divisor.
EXAMPLES:
Over \(\QQ[z]\):
sage: z = PolynomialRing(QQ, 'z').gen() sage: p = -z**16 - z**15 - z**14 + z**13 + z**12 + z**11 - z**5 - z**4 - z**3 + z**2 + z + 1 sage: m = z**21 sage: n, d = p.rational_reconstruction(m) sage: print((n ,d)) (z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) sage: print(((p*d - n) % m ).is_zero()) True
Over \(\ZZ[z]\):
sage: z = PolynomialRing(ZZ, 'z').gen() sage: p = -z**16 - z**15 - z**14 + z**13 + z**12 + z**11 - z**5 - z**4 - z**3 + z**2 + z + 1 sage: m = z**21 sage: n, d = p.rational_reconstruction(m) sage: print((n ,d)) (z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) sage: print(((p*d - n) % m ).is_zero()) True
Over an integral domain
d
might not be monic:sage: P = PolynomialRing(ZZ,'x') sage: x = P.gen() sage: p = 7*x^5 - 10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256 sage: m = x^5 sage: n, d = p.rational_reconstruction(m, 3, 2) sage: print((n ,d)) (-32*x^3 + 384*x^2 + 2304*x + 2048, 5*x + 8) sage: print(((p*d - n) % m ).is_zero()) True sage: n, d = p.rational_reconstruction(m, 4, 0) sage: print((n ,d)) (-10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256, 1) sage: print(((p*d - n) % m ).is_zero()) True
Over \(\QQ(t)[z]\):
sage: P = PolynomialRing(QQ, 't') sage: t = P.gen() sage: Pz = PolynomialRing(P.fraction_field(), 'z') sage: z = Pz.gen() sage: # p = (1 + t^2*z + z^4) / (1 - t*z) sage: p = (1 + t^2*z + z^4)*(1 - t*z).inverse_mod(z^9) sage: m = z^9 sage: n, d = p.rational_reconstruction(m) sage: print((n ,d)) (-1/t*z^4 - t*z - 1/t, z - 1/t) sage: print(((p*d - n) % m ).is_zero()) True sage: w = PowerSeriesRing(P.fraction_field(), 'w').gen() sage: n = -10*t^2*z^4 + (-t^2 + t - 1)*z^3 + (-t - 8)*z^2 + z + 2*t^2 - t sage: d = z^4 + (2*t + 4)*z^3 + (-t + 5)*z^2 + (t^2 + 2)*z + t^2 + 2*t + 1 sage: prec = 9 sage: nc, dc = Pz((n.subs(z = w)/d.subs(z = w) + O(w^prec)).list()).rational_reconstruction(z^prec) sage: print( (nc, dc) == (n, d) ) True
Over \(\QQ[t][z]\):
sage: P = PolynomialRing(QQ, 't') sage: t = P.gen() sage: z = PolynomialRing(P, 'z').gen() sage: # p = (1 + t^2*z + z^4) / (1 - t*z) mod z^9 sage: p = (1 + t^2*z + z^4) * sum((t*z)**i for i in range(9)) sage: m = z^9 sage: n, d = p.rational_reconstruction(m,) sage: print((n ,d)) (-z^4 - t^2*z - 1, t*z - 1) sage: print(((p*d - n) % m ).is_zero()) True
Over \(\QQ_5\):
sage: x = PolynomialRing(Qp(5),'x').gen() sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2 sage: m = x^6 sage: n, d = p.rational_reconstruction(m, 3, 2) sage: print(((p*d - n) % m ).is_zero()) True
Can also be used to obtain known Padé approximations:
sage: z = PowerSeriesRing(QQ, 'z').gen() sage: P = PolynomialRing(QQ,'x') sage: x = P.gen() sage: p = P(exp(z).list()) sage: m = x^5 sage: n, d = p.rational_reconstruction(m, 4, 0) sage: print((n ,d)) (1/24*x^4 + 1/6*x^3 + 1/2*x^2 + x + 1, 1) sage: print(((p*d - n) % m ).is_zero()) True sage: m = x^3 sage: n, d = p.rational_reconstruction(m, 1, 1) sage: print((n ,d)) (-x - 2, x - 2) sage: print(((p*d - n) % m ).is_zero()) True sage: p = P(log(1-z).list()) sage: m = x^9 sage: n, d = p.rational_reconstruction(m, 4, 4) sage: print((n ,d)) (25/6*x^4 - 130/3*x^3 + 105*x^2 - 70*x, x^4 - 20*x^3 + 90*x^2 - 140*x + 70) sage: print(((p*d - n) % m ).is_zero()) True sage: p = P(sqrt(1+z).list()) sage: m = x^6 sage: n, d = p.rational_reconstruction(m, 3, 2) sage: print((n ,d)) (1/6*x^3 + 3*x^2 + 8*x + 16/3, x^2 + 16/3*x + 16/3) sage: print(((p*d - n) % m ).is_zero()) True sage: p = P(exp(2*z).list()) sage: m = x^7 sage: n, d = p.rational_reconstruction(m, 3, 3) sage: print((n ,d)) (-x^3 - 6*x^2 - 15*x - 15, x^3 - 6*x^2 + 15*x - 15) sage: print(((p*d - n) % m ).is_zero()) True
Over \(\RR[z]\):
sage: z = PowerSeriesRing(RR, 'z').gen() sage: P = PolynomialRing(RR,'x') sage: x = P.gen() sage: p = P(exp(2*z).list()) sage: m = x^7 sage: n, d = p.rational_reconstruction(m, 3, 3) sage: print((n ,d)) # absolute tolerance 1e-10 (-x^3 - 6.0*x^2 - 15.0*x - 15.0, x^3 - 6.0*x^2 + 15.0*x - 15.0)
- real_roots()#
Return the real roots of this polynomial, without multiplicities.
Calls self.roots(ring=RR), unless this is a polynomial with floating-point real coefficients, in which case it calls self.roots().
EXAMPLES:
sage: x = polygen(ZZ) sage: (x^2 - x - 1).real_roots() [-0.618033988749895, 1.61803398874989]
- reciprocal_transform(R=1, q=1)#
Transform a general polynomial into a self-reciprocal polynomial.
The input \(Q\) and output \(P\) satisfy the relation
\[P(x) = Q(x + q/x) x^{\deg(Q)} R(x).\]In this relation, \(Q\) has all roots in the real interval \([-2\sqrt{q}, 2\sqrt{q}]\) if and only if \(P\) has all roots on the circle \(|x| = \sqrt{q}\) and \(R\) divides \(x^2-q\).
See also
The inverse operation is
trace_polynomial()
.INPUT:
R
– polynomialq
– scalar (default: \(1\))
EXAMPLES:
sage: pol.<x> = PolynomialRing(Rationals()) sage: u = x^2+x-1 sage: u.reciprocal_transform() x^4 + x^3 + x^2 + x + 1 sage: u.reciprocal_transform(R=x-1) x^5 - 1 sage: u.reciprocal_transform(q=3) x^4 + x^3 + 5*x^2 + 3*x + 9
- resultant(other)#
Return the resultant of
self
andother
.INPUT:
other
– a polynomial
OUTPUT: an element of the base ring of the polynomial ring
ALGORITHM:
Uses PARI’s
polresultant
function. For base rings that are not supported by PARI, the resultant is computed as the determinant of the Sylvester matrix.EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^3 + x + 1; g = x^3 - x - 1 sage: r = f.resultant(g); r -8 sage: r.parent() is QQ True
We can compute resultants over univariate and multivariate polynomial rings:
sage: R.<a> = QQ[] sage: S.<x> = R[] sage: f = x^2 + a; g = x^3 + a sage: r = f.resultant(g); r a^3 + a^2 sage: r.parent() is R True
sage: R.<a, b> = QQ[] sage: S.<x> = R[] sage: f = x^2 + a; g = x^3 + b sage: r = f.resultant(g); r a^3 + b^2 sage: r.parent() is R True
- reverse(degree=None)#
Return polynomial but with the coefficients reversed.
If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary before reversing it. Assuming that the constant coefficient of
self
is nonzero, the reverse polynomial will have the specified degree.EXAMPLES:
sage: R.<x> = ZZ[]; S.<y> = R[] sage: f = y^3 + x*y -3*x; f y^3 + x*y - 3*x sage: f.reverse() -3*x*y^3 + x*y^2 + 1 sage: f.reverse(degree=2) -3*x*y^2 + x*y sage: f.reverse(degree=5) -3*x*y^5 + x*y^4 + y^2
- revert_series(n)#
Return a polynomial
f
such thatf(self(x)) = self(f(x)) = x mod x^n
.Currently, this is only implemented over some coefficient rings.
EXAMPLES:
sage: Pol.<x> = QQ[] sage: (x + x^3/6 + x^5/120).revert_series(6) 3/40*x^5 - 1/6*x^3 + x sage: Pol.<x> = CBF[] sage: (x + x^3/6 + x^5/120).revert_series(6) ([0.075000000000000 +/- ...e-17])*x^5 + ([-0.166666666666667 +/- ...e-16])*x^3 + x sage: Pol.<x> = SR[] sage: x.revert_series(6) Traceback (most recent call last): ... NotImplementedError: only implemented for certain base rings
- root_field(names, check_irreducible=True)#
Return the field generated by the roots of the irreducible polynomial self. The output is either a number field, relative number field, a quotient of a polynomial ring over a field, or the fraction field of the base ring.
EXAMPLES:
sage: R.<x> = QQ['x'] sage: f = x^3 + x + 17 sage: f.root_field('a') Number Field in a with defining polynomial x^3 + x + 17
sage: R.<x> = QQ['x'] sage: f = x - 3 sage: f.root_field('b') Rational Field
sage: R.<x> = ZZ['x'] sage: f = x^3 + x + 17 sage: f.root_field('b') Number Field in b with defining polynomial x^3 + x + 17
sage: y = QQ['x'].0 sage: L.<a> = NumberField(y^3-2) sage: R.<x> = L['x'] sage: f = x^3 + x + 17 sage: f.root_field('c') Number Field in c with defining polynomial x^3 + x + 17 over its base field
sage: R.<x> = PolynomialRing(GF(9,'a')) sage: f = x^3 + x^2 + 8 sage: K.<alpha> = f.root_field(); K Univariate Quotient Polynomial Ring in alpha over Finite Field in a of size 3^2 with modulus x^3 + x^2 + 2 sage: alpha^2 + 1 alpha^2 + 1 sage: alpha^3 + alpha^2 1
sage: R.<x> = QQ[] sage: f = x^2 sage: K.<alpha> = f.root_field() Traceback (most recent call last): ... ValueError: polynomial must be irreducible
- roots(ring=None, multiplicities=True, algorithm=None, **kwds)#
Return the roots of this polynomial (by default, in the base ring of this polynomial).
INPUT:
ring
- the ring to find roots inmultiplicities
- bool (default: True) if True return list of pairs (r, n), where r is the root and n is the multiplicity. If False, just return the unique roots, with no information about multiplicities.algorithm
- the root-finding algorithm to use. We attempt to select a reasonable algorithm by default, but this lets the caller override our choice.
By default, this finds all the roots that lie in the base ring of the polynomial. However, the ring parameter can be used to specify a ring to look for roots in.
If the polynomial and the output ring are both exact (integers, rationals, finite fields, etc.), then the output should always be correct (or raise an exception, if that case is not yet handled).
If the output ring is approximate (floating-point real or complex numbers), then the answer will be estimated numerically, using floating-point arithmetic of at least the precision of the output ring. If the polynomial is ill-conditioned, meaning that a small change in the coefficients of the polynomial will lead to a relatively large change in the location of the roots, this may give poor results. Distinct roots may be returned as multiple roots, multiple roots may be returned as distinct roots, real roots may be lost entirely (because the numerical estimate thinks they are complex roots). Note that polynomials with multiple roots are always ill-conditioned; there’s a footnote at the end of the docstring about this.
If the output ring is a RealIntervalField or ComplexIntervalField of a given precision, then the answer will always be correct (or an exception will be raised, if a case is not implemented). Each root will be contained in one of the returned intervals, and the intervals will be disjoint. (The returned intervals may be of higher precision than the specified output ring.)
At the end of this docstring (after the examples) is a description of all the cases implemented in this function, and the algorithms used. That section also describes the possibilities for “algorithm=”, for the cases where multiple algorithms exist.
EXAMPLES:
sage: x = QQ['x'].0 sage: f = x^3 - 1 sage: f.roots() [(1, 1)] sage: f.roots(ring=CC) # note -- low order bits slightly different on ppc. [(1.00000000000000, 1), (-0.500000000000000 - 0.86602540378443...*I, 1), (-0.500000000000000 + 0.86602540378443...*I, 1)] sage: f = (x^3 - 1)^2 sage: f.roots() [(1, 2)]
sage: f = -19*x + 884736 sage: f.roots() [(884736/19, 1)] sage: (f^20).roots() [(884736/19, 20)]
sage: K.<z> = CyclotomicField(3) sage: f = K.defining_polynomial() sage: f.roots(ring=GF(7)) [(4, 1), (2, 1)] sage: g = f.change_ring(GF(7)) sage: g.roots() [(4, 1), (2, 1)] sage: g.roots(multiplicities=False) [4, 2]
A new ring. In the example below, we add the special method _roots_univariate_polynomial to the base ring, and observe that this method is called instead to find roots of polynomials over this ring. This facility can be used to easily extend root finding to work over new rings you introduce:
sage: R.<x> = QQ[] sage: (x^2 + 1).roots() [] sage: g = lambda f, *args, **kwds: f.change_ring(CDF).roots() sage: QQ._roots_univariate_polynomial = g sage: (x^2 + 1).roots() # abs tol 1e-14 [(2.7755575615628914e-17 - 1.0*I, 1), (0.9999999999999997*I, 1)] sage: del QQ._roots_univariate_polynomial
An example over RR, which illustrates that only the roots in RR are returned:
sage: x = RR['x'].0 sage: f = x^3 -2 sage: f.roots() [(1.25992104989487, 1)] sage: f.factor() (x - 1.25992104989487) * (x^2 + 1.25992104989487*x + 1.58740105196820) sage: x = RealField(100)['x'].0 sage: f = x^3 -2 sage: f.roots() [(1.2599210498948731647672106073, 1)]
sage: x = CC['x'].0 sage: f = x^3 -2 sage: f.roots() [(1.25992104989487, 1), (-0.62996052494743... - 1.09112363597172*I, 1), (-0.62996052494743... + 1.09112363597172*I, 1)] sage: f.roots(algorithm='pari') [(1.25992104989487, 1), (-0.629960524947437 - 1.09112363597172*I, 1), (-0.629960524947437 + 1.09112363597172*I, 1)]
Another example showing that only roots in the base ring are returned:
sage: x = polygen(ZZ) sage: f = (2*x-3) * (x-1) * (x+1) sage: f.roots() [(1, 1), (-1, 1)] sage: f.roots(ring=QQ) [(3/2, 1), (1, 1), (-1, 1)]
An example where we compute the roots lying in a subring of the base ring:
sage: Pols.<n> = QQ[] sage: pol = (n - 1/2)^2*(n - 1)^2*(n-2) sage: pol.roots(ZZ) [(2, 1), (1, 2)]
An example involving large numbers:
sage: x = RR['x'].0 sage: f = x^2 - 1e100 sage: f.roots() [(-1.00000000000000e50, 1), (1.00000000000000e50, 1)] sage: f = x^10 - 2*(5*x-1)^2 sage: f.roots(multiplicities=False) [-1.6772670339941..., 0.19995479628..., 0.20004530611..., 1.5763035161844...]
sage: x = CC['x'].0 sage: i = CC.0 sage: f = (x - 1)*(x - i) sage: f.roots(multiplicities=False) [1.00000000000000, 1.00000000000000*I] sage: g=(x-1.33+1.33*i)*(x-2.66-2.66*i) sage: g.roots(multiplicities=False) [1.33000000000000 - 1.33000000000000*I, 2.66000000000000 + 2.66000000000000*I]
Describing roots using radical expressions:
sage: x = QQ['x'].0 sage: f = x^2 + 2 sage: f.roots(SR) [(-I*sqrt(2), 1), (I*sqrt(2), 1)] sage: f.roots(SR, multiplicities=False) [-I*sqrt(2), I*sqrt(2)]
The roots of some polynomials cannot be described using radical expressions:
sage: (x^5 - x + 1).roots(SR) []
For some other polynomials, no roots can be found at the moment due to the way roots are computed. trac ticket #17516 addresses these defects. Until that gets implemented, one such example is the following:
sage: f = x^6-300*x^5+30361*x^4-1061610*x^3+1141893*x^2-915320*x+101724 sage: f.roots() []
A purely symbolic roots example:
sage: X = var('X') sage: f = expand((X-1)*(X-I)^3*(X^2 - sqrt(2))); f X^6 - (3*I + 1)*X^5 - sqrt(2)*X^4 + (3*I - 3)*X^4 + (3*I + 1)*sqrt(2)*X^3 + (I + 3)*X^3 - (3*I - 3)*sqrt(2)*X^2 - I*X^2 - (I + 3)*sqrt(2)*X + I*sqrt(2) sage: f.roots() [(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
The same operation, performed over a polynomial ring with symbolic coefficients:
sage: X = SR['X'].0 sage: f = (X-1)*(X-I)^3*(X^2 - sqrt(2)); f X^6 + (-3*I - 1)*X^5 + (-sqrt(2) + 3*I - 3)*X^4 + ((3*I + 1)*sqrt(2) + I + 3)*X^3 + (-(3*I - 3)*sqrt(2) - I)*X^2 + (-(I + 3)*sqrt(2))*X + I*sqrt(2) sage: f.roots() [(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)] sage: f.roots(multiplicities=False) [I, -2^(1/4), 2^(1/4), 1]
A couple of examples where the base ring does not have a factorization algorithm (yet). Note that this is currently done via a rather naive enumeration, so could be very slow:
sage: R = Integers(6) sage: S.<x> = R['x'] sage: p = x^2-1 sage: p.roots() Traceback (most recent call last): ... NotImplementedError: root finding with multiplicities for this polynomial not implemented (try the multiplicities=False option) sage: p.roots(multiplicities=False) [5, 1] sage: R = Integers(9) sage: A = PolynomialRing(R, 'y') sage: y = A.gen() sage: f = 10*y^2 - y^3 - 9 sage: f.roots(multiplicities=False) [1, 0, 3, 6]
An example over the complex double field (where root finding is fast, thanks to NumPy):
sage: R.<x> = CDF[] sage: f = R.cyclotomic_polynomial(5); f x^4 + x^3 + x^2 + x + 1.0 sage: f.roots(multiplicities=False) # abs tol 1e-9 [-0.8090169943749469 - 0.5877852522924724*I, -0.8090169943749473 + 0.5877852522924724*I, 0.30901699437494773 - 0.951056516295154*I, 0.30901699437494756 + 0.9510565162951525*I] sage: [z^5 for z in f.roots(multiplicities=False)] # abs tol 2e-14 [0.9999999999999957 - 1.2864981197413038e-15*I, 0.9999999999999976 + 3.062854959141552e-15*I, 1.0000000000000024 + 1.1331077795295987e-15*I, 0.9999999999999953 - 2.0212861992297117e-15*I] sage: f = CDF['x']([1,2,3,4]); f 4.0*x^3 + 3.0*x^2 + 2.0*x + 1.0 sage: r = f.roots(multiplicities=False) sage: [f(a).abs() for a in r] # abs tol 1e-14 [2.574630599127759e-15, 1.457101633618084e-15, 1.1443916996305594e-15]
Another example over RDF:
sage: x = RDF['x'].0 sage: ((x^3 -1)).roots() # abs tol 4e-16 [(1.0000000000000002, 1)] sage: ((x^3 -1)).roots(multiplicities=False) # abs tol 4e-16 [1.0000000000000002]
More examples involving the complex double field:
sage: x = CDF['x'].0 sage: i = CDF.0 sage: f = x^3 + 2*i; f x^3 + 2.0*I sage: f.roots() [(-1.09112363597172... - 0.62996052494743...*I, 1), (...1.25992104989487...*I, 1), (1.09112363597172... - 0.62996052494743...*I, 1)] sage: f.roots(multiplicities=False) [-1.09112363597172... - 0.62996052494743...*I, ...1.25992104989487...*I, 1.09112363597172... - 0.62996052494743...*I] sage: [abs(f(z)) for z in f.roots(multiplicities=False)] # abs tol 1e-14 [8.95090418262362e-16, 8.728374398092689e-16, 1.0235750533041806e-15] sage: f = i*x^3 + 2; f I*x^3 + 2.0 sage: f.roots() [(-1.09112363597172... + 0.62996052494743...*I, 1), (...1.25992104989487...*I, 1), (1.09112363597172... + 0.62996052494743...*I, 1)] sage: abs(f(f.roots()[0][0])) # abs tol 1e-13 1.1102230246251565e-16
Examples using real root isolation:
sage: x = polygen(ZZ) sage: f = x^2 - x - 1 sage: f.roots() [] sage: f.roots(ring=RIF) [(-0.6180339887498948482045868343657?, 1), (1.6180339887498948482045868343657?, 1)] sage: f.roots(ring=RIF, multiplicities=False) [-0.6180339887498948482045868343657?, 1.6180339887498948482045868343657?] sage: f.roots(ring=RealIntervalField(150)) [(-0.6180339887498948482045868343656381177203091798057628621354486227?, 1), (1.618033988749894848204586834365638117720309179805762862135448623?, 1)] sage: f.roots(ring=AA) [(-0.618033988749895?, 1), (1.618033988749895?, 1)] sage: f = f^2 * (x - 1) sage: f.roots(ring=RIF) [(-0.6180339887498948482045868343657?, 2), (1.0000000000000000000000000000000?, 1), (1.6180339887498948482045868343657?, 2)] sage: f.roots(ring=RIF, multiplicities=False) [-0.6180339887498948482045868343657?, 1.0000000000000000000000000000000?, 1.6180339887498948482045868343657?]
Examples using complex root isolation:
sage: x = polygen(ZZ) sage: p = x^5 - x - 1 sage: p.roots() [] sage: p.roots(ring=CIF) [(1.167303978261419?, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (-0.764884433600585? + 0.352471546031727?*I, 1), (0.181232444469876? - 1.083954101317711?*I, 1), (0.181232444469876? + 1.083954101317711?*I, 1)] sage: p.roots(ring=ComplexIntervalField(200)) [(1.167303978261418684256045899854842180720560371525489039140082?, 1), (-0.76488443360058472602982318770854173032899665194736756700778? - 0.35247154603172624931794709140258105439420648082424733283770?*I, 1), (-0.76488443360058472602982318770854173032899665194736756700778? + 0.35247154603172624931794709140258105439420648082424733283770?*I, 1), (0.18123244446987538390180023778112063996871646618462304743774? - 1.08395410131771066843034449298076657427364024315511565430114?*I, 1), (0.18123244446987538390180023778112063996871646618462304743774? + 1.08395410131771066843034449298076657427364024315511565430114?*I, 1)] sage: rts = p.roots(ring=QQbar); rts [(1.167303978261419?, 1), (-0.7648844336005847? - 0.3524715460317263?*I, 1), (-0.7648844336005847? + 0.3524715460317263?*I, 1), (0.1812324444698754? - 1.083954101317711?*I, 1), (0.1812324444698754? + 1.083954101317711?*I, 1)] sage: p.roots(ring=AA) [(1.167303978261419?, 1)] sage: p = (x - rts[4][0])^2 * (3*x^2 + x + 1) sage: p.roots(ring=QQbar) [(-0.1666666666666667? - 0.552770798392567?*I, 1), (-0.1666666666666667? + 0.552770798392567?*I, 1), (0.1812324444698754? + 1.083954101317711?*I, 2)] sage: p.roots(ring=CIF) [(-0.1666666666666667? - 0.552770798392567?*I, 1), (-0.1666666666666667? + 0.552770798392567?*I, 1), (0.1812324444698754? + 1.083954101317711?*I, 2)]
In some cases, it is possible to isolate the roots of polynomials over complex ball fields:
sage: Pol.<x> = CBF[] sage: (x^2 + 2).roots(multiplicities=False) [[+/- ...e-19] + [-1.414213562373095 +/- ...e-17]*I, [+/- ...e-19] + [1.414213562373095 +/- ...e-17]*I] sage: (x^3 - 1/2).roots(RBF, multiplicities=False) [[0.7937005259840997 +/- ...e-17]] sage: ((x - 1)^2).roots(multiplicities=False, proof=False) doctest:... UserWarning: roots may have been lost... [[1.00000000000 +/- ...e-12] + [+/- ...e-11]*I, [1.0000000000 +/- ...e-12] + [+/- ...e-12]*I]
Note that coefficients in a number field with defining polynomial \(x^2 + 1\) are considered to be Gaussian rationals (with the generator mapping to +I), if you ask for complex roots.
sage: K.<im> = QuadraticField(-1) sage: y = polygen(K) sage: p = y^4 - 2 - im sage: p.roots(ring=CC) [(-1.2146389322441... - 0.14142505258239...*I, 1), (-0.14142505258239... + 1.2146389322441...*I, 1), (0.14142505258239... - 1.2146389322441...*I, 1), (1.2146389322441... + 0.14142505258239...*I, 1)] sage: p = p^2 * (y^2 - 2) sage: p.roots(ring=CIF) [(-1.414213562373095?, 1), (1.414213562373095?, 1), (-1.214638932244183? - 0.141425052582394?*I, 2), (-0.141425052582394? + 1.214638932244183?*I, 2), (0.141425052582394? - 1.214638932244183?*I, 2), (1.214638932244183? + 0.141425052582394?*I, 2)]
Note that one should not use NumPy when wanting high precision output as it does not support any of the high precision types:
sage: R.<x> = RealField(200)[] sage: f = x^2 - R(pi) sage: f.roots() [(-1.7724538509055160272981674833411451827975494561223871282138, 1), (1.7724538509055160272981674833411451827975494561223871282138, 1)] sage: f.roots(algorithm='numpy') doctest... UserWarning: NumPy does not support arbitrary precision arithmetic. The roots found will likely have less precision than you expect. [(-1.77245385090551..., 1), (1.77245385090551..., 1)]
We can also find roots over number fields:
sage: K.<z> = CyclotomicField(15) sage: R.<x> = PolynomialRing(K) sage: (x^2 + x + 1).roots() [(z^5, 1), (-z^5 - 1, 1)]
There are many combinations of floating-point input and output types that work. (Note that some of them are quite pointless like using
algorithm='numpy'
with high-precision types.)sage: rflds = (RR, RDF, RealField(100)) sage: cflds = (CC, CDF, ComplexField(100)) sage: def cross(a, b): ....: return list(cartesian_product_iterator([a, b])) sage: flds = cross(rflds, rflds) + cross(rflds, cflds) + cross(cflds, cflds) sage: for (fld_in, fld_out) in flds: ....: x = polygen(fld_in) ....: f = x^3 - fld_in(2) ....: x2 = polygen(fld_out) ....: f2 = x2^3 - fld_out(2) ....: for algo in (None, 'pari', 'numpy'): ....: rts = f.roots(ring=fld_out, multiplicities=False) ....: if fld_in == fld_out and algo is None: ....: print("{} {}".format(fld_in, rts)) ....: for rt in rts: ....: assert(abs(f2(rt)) <= 1e-10) ....: assert(rt.parent() == fld_out) Real Field with 53 bits of precision [1.25992104989487] Real Double Field [1.25992104989...] Real Field with 100 bits of precision [1.2599210498948731647672106073] Complex Field with 53 bits of precision [1.25992104989487, -0.62996052494743... - 1.09112363597172*I, -0.62996052494743... + 1.09112363597172*I] Complex Double Field [1.25992104989..., -0.629960524947... - 1.0911236359717...*I, -0.629960524947... + 1.0911236359717...*I] Complex Field with 100 bits of precision [1.2599210498948731647672106073, -0.62996052494743658238360530364 - 1.0911236359717214035600726142*I, -0.62996052494743658238360530364 + 1.0911236359717214035600726142*I]
Note that we can find the roots of a polynomial with algebraic coefficients:
sage: rt2 = sqrt(AA(2)) sage: rt3 = sqrt(AA(3)) sage: x = polygen(AA) sage: f = (x - rt2) * (x - rt3); f x^2 - 3.146264369941973?*x + 2.449489742783178? sage: rts = f.roots(); rts [(1.414213562373095?, 1), (1.732050807568878?, 1)] sage: rts[0][0] == rt2 True sage: f.roots(ring=RealIntervalField(150)) [(1.414213562373095048801688724209698078569671875376948073176679738?, 1), (1.732050807568877293527446341505872366942805253810380628055806980?, 1)]
We can handle polynomials with huge coefficients.
This number doesn’t even fit in an IEEE double-precision float, but RR and CC allow a much larger range of floating-point numbers:
sage: bigc = 2^1500 sage: CDF(bigc) +infinity sage: CC(bigc) 3.50746621104340e451
Polynomials using such large coefficients can’t be handled by numpy, but pari can deal with them:
sage: x = polygen(QQ) sage: p = x + bigc sage: p.roots(ring=RR, algorithm='numpy') Traceback (most recent call last): ... LinAlgError: Array must not contain infs or NaNs sage: p.roots(ring=RR, algorithm='pari') [(-3.50746621104340e451, 1)] sage: p.roots(ring=AA) [(-3.5074662110434039?e451, 1)] sage: p.roots(ring=QQbar) [(-3.5074662110434039?e451, 1)] sage: p = bigc*x + 1 sage: p.roots(ring=RR) [(-2.85106096489671e-452, 1)] sage: p.roots(ring=AA) [(-2.8510609648967059?e-452, 1)] sage: p.roots(ring=QQbar) [(-2.8510609648967059?e-452, 1)] sage: p = x^2 - bigc sage: p.roots(ring=RR) [(-5.92238652153286e225, 1), (5.92238652153286e225, 1)] sage: p.roots(ring=QQbar) [(-5.9223865215328558?e225, 1), (5.9223865215328558?e225, 1)]
Check that trac ticket #30522 is fixed:
sage: PolynomialRing(SR, names="x")("x^2").roots() [(0, 2)]
Check that trac ticket #30523 is fixed:
sage: PolynomialRing(SR, names="x")("x^2 + q").roots() [(-sqrt(-q), 1), (sqrt(-q), 1)]
Algorithms used:
For brevity, we will use RR to mean any RealField of any precision; similarly for RIF, CC, and CIF. Since Sage has no specific implementation of Gaussian rationals (or of number fields with embedding, at all), when we refer to Gaussian rationals below we will accept any number field with defining polynomial \(x^2+1\), mapping the field generator to +I.
We call the base ring of the polynomial K, and the ring given by the ring= argument L. (If ring= is not specified, then L is the same as K.)
If K and L are floating-point (RDF, CDF, RR, or CC), then a floating-point root-finder is used. If L is RDF or CDF then we default to using NumPy’s roots(); otherwise, we use PARI’s polroots(). This choice can be overridden with algorithm=’pari’ or algorithm=’numpy’. If the algorithm is unspecified and NumPy’s roots() algorithm fails, then we fall back to pari (numpy will fail if some coefficient is infinite, for instance).
If L is SR (or one of its subrings), then the roots will be radical expressions, computed as the solutions of a symbolic polynomial expression. At the moment this delegates to
sage.symbolic.expression.Expression.solve()
which in turn uses Maxima to find radical solutions. Some solutions may be lost in this approach. Once trac ticket #17516 gets implemented, all possible radical solutions should become available.If L is AA or RIF, and K is ZZ, QQ, or AA, then the root isolation algorithm sage.rings.polynomial.real_roots.real_roots() is used. (You can call real_roots() directly to get more control than this method gives.)
If L is QQbar or CIF, and K is ZZ, QQ, AA, QQbar, or the Gaussian rationals, then the root isolation algorithm sage.rings.polynomial.complex_roots.complex_roots() is used. (You can call complex_roots() directly to get more control than this method gives.)
If L is AA and K is QQbar or the Gaussian rationals, then complex_roots() is used (as above) to find roots in QQbar, then these roots are filtered to select only the real roots.
If L is floating-point and K is not, then we attempt to change the polynomial ring to L (using .change_ring()) (or, if L is complex and K is not, to the corresponding real field). Then we use either PARI or numpy as specified above.
For all other cases where K is different than L, we attempt to use .change_ring(L). When that fails but L is a subring of K, we also attempt to compute the roots over K and filter the ones belonging to L.
The next method, which is used if K is an integral domain, is to attempt to factor the polynomial. If this succeeds, then for every degree-one factor a*x+b, we add -b/a as a root (as long as this quotient is actually in the desired ring).
If factoring over K is not implemented (or K is not an integral domain), and K is finite, then we find the roots by enumerating all elements of K and checking whether the polynomial evaluates to zero at that value.
Note
We mentioned above that polynomials with multiple roots are always ill-conditioned; if your input is given to n bits of precision, you should not expect more than n/k good bits for a k-fold root. (You can get solutions that make the polynomial evaluate to a number very close to zero; basically the problem is that with a multiple root, there are many such numbers, and it’s difficult to choose between them.)
To see why this is true, consider the naive floating-point error analysis model where you just pretend that all floating-point numbers are somewhat imprecise - a little ‘fuzzy’, if you will. Then the graph of a floating-point polynomial will be a fuzzy line. Consider the graph of \((x-1)^3\); this will be a fuzzy line with a horizontal tangent at \(x=1\), \(y=0\). If the fuzziness extends up and down by about j, then it will extend left and right by about cube_root(j).
- shift(n)#
Return this polynomial multiplied by the power \(x^n\). If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial (since polynomials are immutable).
EXAMPLES:
sage: R.<x> = QQ[] sage: p = x^2 + 2*x + 4 sage: p.shift(0) x^2 + 2*x + 4 sage: p.shift(-1) x + 2 sage: p.shift(-5) 0 sage: p.shift(2) x^4 + 2*x^3 + 4*x^2
One can also use the infix shift operator:
sage: f = x^3 + x sage: f >> 2 x sage: f << 2 x^5 + x^3
AUTHORS:
David Harvey (2006-08-06)
Robert Bradshaw (2007-04-18): Added support for infix operator.
- specialization(D=None, phi=None)#
Specialization of this polynomial.
Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a
SpecializationMorphism
.INPUT:
D
– dictionary (optional)phi
– SpecializationMorphism (optional)
OUTPUT: a new polynomial
EXAMPLES:
sage: R.<c> = PolynomialRing(ZZ) sage: S.<z> = PolynomialRing(R) sage: F = c*z^2 + c^2 sage: F.specialization({c:2}) 2*z^2 + 4
sage: A.<c> = QQ[] sage: R.<x> = Frac(A)[] sage: X = (1 + x/c).specialization({c:20}) sage: X 1/20*x + 1 sage: X.parent() Univariate Polynomial Ring in x over Rational Field
- splitting_field(names=None, map=False, **kwds)#
Compute the absolute splitting field of a given polynomial.
INPUT:
names
– (default:None
) a variable name for the splitting field.map
– (default:False
) also return an embedding ofself
into the resulting field.kwds
– additional keywords depending on the type. Currently, only number fields are implemented. Seesage.rings.number_field.splitting_field.splitting_field()
for the documentation of these keywords.
OUTPUT:
If
map
isFalse
, the splitting field as an absolute field. Ifmap
isTrue
, a tuple(K, phi)
wherephi
is an embedding of the base field ofself
inK
.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: K.<a> = (x^3 + 2).splitting_field(); K Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1 sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K Number Field in a with defining polynomial x^3 - 3*x + 1
Relative situation:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3 + 2) sage: S.<t> = PolynomialRing(K) sage: L.<b> = (t^2 - a).splitting_field() sage: L Number Field in b with defining polynomial t^6 + 2
With
map=True
, we also get the embedding of the base field into the splitting field:sage: L.<b>, phi = (t^2 - a).splitting_field(map=True) sage: phi Ring morphism: From: Number Field in a with defining polynomial x^3 + 2 To: Number Field in b with defining polynomial t^6 + 2 Defn: a |--> b^2
An example over a finite field:
sage: P.<x> = PolynomialRing(GF(7)) sage: t = x^2 + 1 sage: t.splitting_field('b') Finite Field in b of size 7^2 sage: P.<x> = PolynomialRing(GF(7^3, 'a')) sage: t = x^2 + 1 sage: t.splitting_field('b', map=True) (Finite Field in b of size 7^6, Ring morphism: From: Finite Field in a of size 7^3 To: Finite Field in b of size 7^6 Defn: a |--> 2*b^4 + 6*b^3 + 2*b^2 + 3*b + 2)
If the extension is trivial and the generators have the same name, the map will be the identity:
sage: t = 24*x^13 + 2*x^12 + 14 sage: t.splitting_field('a', map=True) (Finite Field in a of size 7^3, Identity endomorphism of Finite Field in a of size 7^3) sage: t = x^56 - 14*x^3 sage: t.splitting_field('b', map=True) (Finite Field in b of size 7^3, Ring morphism: From: Finite Field in a of size 7^3 To: Finite Field in b of size 7^3 Defn: a |--> b)
See also
sage.rings.number_field.splitting_field.splitting_field()
for more examples over number fields
- square()#
Return the square of this polynomial.
Todo
This is just a placeholder; for now it just uses ordinary multiplication. But generally speaking, squaring is faster than ordinary multiplication, and it’s frequently used, so subclasses may choose to provide a specialised squaring routine.
Perhaps this even belongs at a lower level? RingElement or something?
AUTHORS:
David Harvey (2006-09-09)
EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^3 + 1 sage: f.square() x^6 + 2*x^3 + 1 sage: f*f x^6 + 2*x^3 + 1
- squarefree_decomposition()#
Return the square-free decomposition of this polynomial. This is a partial factorization into square-free, coprime polynomials.
EXAMPLES:
sage: x = polygen(QQ) sage: p = 37 * (x-1)^3 * (x-2)^3 * (x-1/3)^7 * (x-3/7) sage: p.squarefree_decomposition() (37*x - 111/7) * (x^2 - 3*x + 2)^3 * (x - 1/3)^7 sage: p = 37 * (x-2/3)^2 sage: p.squarefree_decomposition() (37) * (x - 2/3)^2 sage: x = polygen(GF(3)) sage: x.squarefree_decomposition() x sage: f = QQbar['x'](1) sage: f.squarefree_decomposition() 1
- subresultants(other)#
Return the nonzero subresultant polynomials of
self
andother
.INPUT:
other
– a polynomial
OUTPUT: a list of polynomials in the same ring as
self
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = x^8 + x^6 -3*x^4 -3*x^3 +8*x^2 +2*x -5 sage: g = 3*x^6 +5*x^4 -4*x^2 -9*x +21 sage: f.subresultants(g) [260708, 9326*x - 12300, 169*x^2 + 325*x - 637, 65*x^2 + 125*x - 245, 25*x^4 - 5*x^2 + 15, 15*x^4 - 3*x^2 + 9]
ALGORITHM:
We use the schoolbook algorithm with Lazard’s optimization described in [Duc1998]
REFERENCES:
Wikipedia article Polynomial_greatest_common_divisor#Subresultants
- subs(*x, **kwds)#
Identical to self(*x).
See the docstring for
self.__call__
.EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^3 + x - 3 sage: f.subs(x=5) 127 sage: f.subs(5) 127 sage: f.subs({x:2}) 7 sage: f.subs({}) x^3 + x - 3 sage: f.subs({'x':2}) Traceback (most recent call last): ... TypeError: keys do not match self's parent
- substitute(*x, **kwds)#
Identical to self(*x).
See the docstring for
self.__call__
.EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^3 + x - 3 sage: f.subs(x=5) 127 sage: f.subs(5) 127 sage: f.subs({x:2}) 7 sage: f.subs({}) x^3 + x - 3 sage: f.subs({'x':2}) Traceback (most recent call last): ... TypeError: keys do not match self's parent
- sylvester_matrix(right, variable=None)#
Return the Sylvester matrix of self and right.
Note that the Sylvester matrix is not defined if one of the polynomials is zero.
INPUT:
right: a polynomial in the same ring as self.
variable: optional, included for compatibility with the multivariate case only. The variable of the polynomials.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = (6*x + 47)*(7*x^2 - 2*x + 38) sage: g = (6*x + 47)*(3*x^3 + 2*x + 1) sage: M = f.sylvester_matrix(g) sage: M [ 42 317 134 1786 0 0 0] [ 0 42 317 134 1786 0 0] [ 0 0 42 317 134 1786 0] [ 0 0 0 42 317 134 1786] [ 18 141 12 100 47 0 0] [ 0 18 141 12 100 47 0] [ 0 0 18 141 12 100 47]
If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:
sage: M.determinant() 0
If self and right are polynomials of positive degree, the determinant of the Sylvester matrix is the resultant of the polynomials.:
sage: h1 = R._random_nonzero_element() sage: h2 = R._random_nonzero_element() sage: M1 = h1.sylvester_matrix(h2) sage: M1.determinant() == h1.resultant(h2) True
The rank of the Sylvester matrix is related to the degree of the gcd of self and right:
sage: f.gcd(g).degree() == f.degree() + g.degree() - M.rank() True sage: h1.gcd(h2).degree() == h1.degree() + h2.degree() - M1.rank() True
- symmetric_power(k, monic=False)#
Return the polynomial whose roots are products of \(k\)-th distinct roots of this.
EXAMPLES:
sage: x = polygen(QQ) sage: f = x^4-x+2 sage: [f.symmetric_power(k) for k in range(5)] [x - 1, x^4 - x + 2, x^6 - 2*x^4 - x^3 - 4*x^2 + 8, x^4 - x^3 + 8, x - 2] sage: f = x^5-2*x+2 sage: [f.symmetric_power(k) for k in range(6)] [x - 1, x^5 - 2*x + 2, x^10 + 2*x^8 - 4*x^6 - 8*x^5 - 8*x^4 - 8*x^3 + 16, x^10 + 4*x^7 - 8*x^6 + 16*x^5 - 16*x^4 + 32*x^2 + 64, x^5 + 2*x^4 - 16, x + 2] sage: R.<a,b,c,d> = ZZ[] sage: x = polygen(R) sage: f = (x-a)*(x-b)*(x-c)*(x-d) sage: [f.symmetric_power(k).factor() for k in range(5)] [x - 1, (-x + d) * (-x + c) * (-x + b) * (-x + a), (x - c*d) * (x - b*d) * (x - a*d) * (x - b*c) * (x - a*c) * (x - a*b), (x - b*c*d) * (x - a*c*d) * (x - a*b*d) * (x - a*b*c), x - a*b*c*d]
- trace_polynomial()#
Compute the trace polynomial and cofactor.
The input \(P\) and output \(Q\) satisfy the relation
\[P(x) = Q(x + q/x) x^{\deg(Q)} R(x).\]In this relation, \(Q\) has all roots in the real interval \([-2\sqrt{q}, 2\sqrt{q}]\) if and only if \(P\) has all roots on the circle \(|x| = \sqrt{q}\) and \(R\) divides \(x^2-q\). We thus require that the base ring of this polynomial have a coercion to the real numbers.
See also
The inverse operation is
reciprocal_transform()
.OUTPUT:
Q
– trace polynomialR
– cofactorq
– scaling factor
EXAMPLES:
sage: pol.<x> = PolynomialRing(Rationals()) sage: u = x^5 - 1; u.trace_polynomial() (x^2 + x - 1, x - 1, 1) sage: u = x^4 + x^3 + 5*x^2 + 3*x + 9 sage: u.trace_polynomial() (x^2 + x - 1, 1, 3)
We check that this function works for rings that have a coercion to the reals:
sage: K.<a> = NumberField(x^2-2,embedding=1.4) sage: u = x^4 + a*x^3 + 3*x^2 + 2*a*x + 4 sage: u.trace_polynomial() (x^2 + a*x - 1, 1, 2) sage: (u*(x^2-2)).trace_polynomial() (x^2 + a*x - 1, x^2 - 2, 2) sage: (u*(x^2-2)^2).trace_polynomial() (x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, 1, 2) sage: (u*(x^2-2)^3).trace_polynomial() (x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, x^2 - 2, 2) sage: u = x^4 + a*x^3 + 3*x^2 + 4*a*x + 16 sage: u.trace_polynomial() (x^2 + a*x - 5, 1, 4) sage: (u*(x-2)).trace_polynomial() (x^2 + a*x - 5, x - 2, 4) sage: (u*(x+2)).trace_polynomial() (x^2 + a*x - 5, x + 2, 4)
- truncate(n)#
Return the polynomial of degree ` < n` which is equivalent to self modulo \(x^n\).
EXAMPLES:
sage: R.<x> = ZZ[]; S.<y> = PolynomialRing(R, sparse=True) sage: f = y^3 + x*y -3*x; f y^3 + x*y - 3*x sage: f.truncate(2) x*y - 3*x sage: f.truncate(1) -3*x sage: f.truncate(0) 0
- valuation(p=None)#
If \(f = a_r x^r + a_{r+1}x^{r+1} + \cdots\), with \(a_r\) nonzero, then the valuation of \(f\) is \(r\). The valuation of the zero polynomial is \(\infty\).
If a prime (or non-prime) \(p\) is given, then the valuation is the largest power of \(p\) which divides self.
The valuation at \(\infty\) is -self.degree().
EXAMPLES:
sage: P.<x> = ZZ[] sage: (x^2+x).valuation() 1 sage: (x^2+x).valuation(x+1) 1 sage: (x^2+1).valuation() 0 sage: (x^3+1).valuation(infinity) -3 sage: P(0).valuation() +Infinity
- variable_name()#
Return name of variable used in this polynomial as a string.
OUTPUT: string
EXAMPLES:
sage: R.<t> = QQ[] sage: f = t^3 + 3/2*t + 5 sage: f.variable_name() 't'
- variables()#
Return the tuple of variables occurring in this polynomial.
EXAMPLES:
sage: R.<x> = QQ[] sage: x.variables() (x,)
A constant polynomial has no variables.
sage: R(2).variables() ()
- xgcd(other)#
Return an extended gcd of this polynomial and
other
.INPUT:
other
– a polynomial in the same ring as this polynomial
OUTPUT:
A tuple
(r, s, t)
wherer
is a greatest common divisor of this polynomial andother
, ands
andt
are such thatr = s*self + t*other
holds.Note
The actual algorithm for computing the extended gcd depends on the base ring underlying the polynomial ring. If the base ring defines a method
_xgcd_univariate_polynomial
, then this method will be called (see examples below).EXAMPLES:
sage: R.<x> = QQbar[] sage: (2*x^2).gcd(2*x) x sage: R.zero().gcd(0) 0 sage: (2*x).gcd(0) x
One can easily add xgcd functionality to new rings by providing a method
_xgcd_univariate_polynomial
:sage: R.<x> = QQ[] sage: S.<y> = R[] sage: h1 = y*x sage: h2 = y^2*x^2 sage: h1.xgcd(h2) Traceback (most recent call last): ... NotImplementedError: Univariate Polynomial Ring in x over Rational Field does not provide an xgcd implementation for univariate polynomials sage: T.<x,y> = QQ[] sage: def poor_xgcd(f,g): ....: ret = S(T(f).gcd(g)) ....: if ret == f: return ret,S.one(),S.zero() ....: if ret == g: return ret,S.zero(),S.one() ....: raise NotImplementedError sage: R._xgcd_univariate_polynomial = poor_xgcd sage: h1.xgcd(h2) (x*y, 1, 0) sage: del R._xgcd_univariate_polynomial
- class sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection#
Bases:
Morphism
This class is used for conversion from a ring to a polynomial over that ring.
It calls the _new_constant_poly method on the generator, which should be optimized for a particular polynomial type.
Technically, it should be a method of the polynomial ring, but few polynomial rings are cython classes, and so, as a method of a cython polynomial class, it is faster.
EXAMPLES:
We demonstrate that most polynomial ring classes use polynomial base injection maps for coercion. They are supposed to be the fastest maps for that purpose. See trac ticket #9944.
sage: R.<x> = Qp(3)[] sage: R.coerce_map_from(R.base_ring()) Polynomial base injection morphism: From: 3-adic Field with capped relative precision 20 To: Univariate Polynomial Ring in x over 3-adic Field with capped relative precision 20 sage: R.<x,y> = Qp(3)[] sage: R.coerce_map_from(R.base_ring()) Polynomial base injection morphism: From: 3-adic Field with capped relative precision 20 To: Multivariate Polynomial Ring in x, y over 3-adic Field with capped relative precision 20 sage: R.<x,y> = QQ[] sage: R.coerce_map_from(R.base_ring()) Polynomial base injection morphism: From: Rational Field To: Multivariate Polynomial Ring in x, y over Rational Field sage: R.<x> = QQ[] sage: R.coerce_map_from(R.base_ring()) Polynomial base injection morphism: From: Rational Field To: Univariate Polynomial Ring in x over Rational Field
By trac ticket #9944, there are now only very few exceptions:
sage: PolynomialRing(QQ,names=[]).coerce_map_from(QQ) Call morphism: From: Rational Field To: Multivariate Polynomial Ring in no variables over Rational Field
- is_injective()#
Return whether this morphism is injective.
EXAMPLES:
sage: R.<x> = ZZ[] sage: S.<y> = R[] sage: S.coerce_map_from(R).is_injective() True
Check that trac ticket #23203 has been resolved:
sage: R.is_subring(S) # indirect doctest True
- is_surjective()#
Return whether this morphism is surjective.
EXAMPLES:
sage: R.<x> = ZZ[] sage: R.coerce_map_from(ZZ).is_surjective() False
- section()#
- class sage.rings.polynomial.polynomial_element.Polynomial_generic_dense#
Bases:
Polynomial
A generic dense polynomial.
EXAMPLES:
sage: f = QQ['x']['y'].random_element() sage: loads(f.dumps()) == f True
- constant_coefficient()#
Return the constant coefficient of this polynomial.
- OUTPUT:
element of base ring
EXAMPLES:
sage: R.<t> = QQ[] sage: S.<x> = R[] sage: f = x*t + x + t sage: f.constant_coefficient() t
- degree(gen=None)#
EXAMPLES:
sage: R.<x> = RDF[] sage: f = (1+2*x^7)^5 sage: f.degree() 35
- is_term()#
Return
True
if this polynomial is a nonzero element of the base ring times a power of the variable.EXAMPLES:
sage: R.<x> = SR[] sage: R(0).is_term() False sage: R(1).is_term() True sage: (3*x^5).is_term() True sage: (1+3*x^5).is_term() False
- list(copy=True)#
Return a new copy of the list of the underlying elements of
self
.EXAMPLES:
sage: R.<x> = GF(17)[] sage: f = (1+2*x)^3 + 3*x; f 8*x^3 + 12*x^2 + 9*x + 1 sage: f.list() [1, 9, 12, 8]
- quo_rem(other)#
Return the quotient and remainder of the Euclidean division of
self
andother
.Raises a
ZerodivisionError
ifother
is zero. Raises anArithmeticError
if the division is not exact.EXAMPLES:
sage: P.<x> = QQ[] sage: R.<y> = P[] sage: f = y^10 + R.random_element(9) sage: g = y^5 + R.random_element(4) sage: q, r = f.quo_rem(g) sage: f == q*g + r True sage: g = x*y^5 sage: f.quo_rem(g) Traceback (most recent call last): ... ArithmeticError: division non exact (consider coercing to polynomials over the fraction field) sage: g = 0 sage: f.quo_rem(g) Traceback (most recent call last): ... ZeroDivisionError: division by zero polynomial
Polynomials over noncommutative rings are also allowed (after trac ticket #34733):
sage: HH = QuaternionAlgebra(QQ, -1, -1) sage: P.<x> = HH[] sage: f = P.random_element(5) sage: g = P.random_element((0, 5)) sage: q, r = f.quo_rem(g) sage: f == q*g + r True
- shift(n)#
Return this polynomial multiplied by the power \(x^n\).
If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial.
EXAMPLES:
sage: R.<x> = PolynomialRing(PolynomialRing(QQ,'y'), 'x') sage: p = x^2 + 2*x + 4 sage: type(p) <class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'> sage: p.shift(0) x^2 + 2*x + 4 sage: p.shift(-1) x + 2 sage: p.shift(2) x^4 + 2*x^3 + 4*x^2
AUTHORS:
David Harvey (2006-08-06)
- truncate(n)#
Return the polynomial of degree ` < n` which is equivalent to self modulo \(x^n\).
EXAMPLES:
sage: S.<q> = QQ['t']['q'] sage: f = (1+q^10+q^11+q^12).truncate(11); f q^10 + 1 sage: f = (1+q^10+q^100).truncate(50); f q^10 + 1 sage: f.degree() 10 sage: f = (1+q^10+q^100).truncate(500); f q^100 + q^10 + 1
- class sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact#
Bases:
Polynomial_generic_dense
A dense polynomial over an inexact ring.
AUTHOR:
Xavier Caruso (2013-03)
- degree(secure=False)#
INPUT:
secure – a boolean (default: False)
OUTPUT:
The degree of self.
If
secure
is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raisedIf
secure
is False, the returned value is the largest \(n\) so that the coefficient of \(x^n\) does not compare equal to \(0\).EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.degree() 1 sage: (f-T).degree() 0 sage: (f-T).degree(secure=True) Traceback (most recent call last): ... PrecisionError: the leading coefficient is indistinguishable from 0 sage: x = O(3^5) sage: li = [3^i * x for i in range(0,5)]; li [O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)] sage: f = R(li); f O(3^9)*T^4 + O(3^8)*T^3 + O(3^7)*T^2 + O(3^6)*T + O(3^5) sage: f.degree() -1 sage: f.degree(secure=True) Traceback (most recent call last): ... PrecisionError: the leading coefficient is indistinguishable from 0
AUTHOR:
Xavier Caruso (2013-03)
- prec_degree()#
Return the largest \(n\) so that precision information is stored about the coefficient of \(x^n\).
Always greater than or equal to degree.
EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.degree() 1 sage: f.prec_degree() 1 sage: g = f - T; g O(3^10)*T + 2 + O(3^10) sage: g.degree() 0 sage: g.prec_degree() 1
AUTHOR:
Xavier Caruso (2013-03)
- sage.rings.polynomial.polynomial_element.generic_power_trunc(p, n, prec)#
Generic truncated power algorithm
INPUT:
p
- a polynomialn
- an integer (of typesage.rings.integer.Integer
)prec
- a precision (should fit into a C long)
- sage.rings.polynomial.polynomial_element.is_Polynomial(f)#
Return True if f is of type univariate polynomial.
INPUT:
f
– an object
EXAMPLES:
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial sage: R.<x> = ZZ[] sage: is_Polynomial(x^3 + x + 1) True sage: S.<y> = R[] sage: f = y^3 + x*y -3*x; f y^3 + x*y - 3*x sage: is_Polynomial(f) True
However this function does not return True for genuine multivariate polynomial type objects or symbolic polynomials, since those are not of the same data type as univariate polynomials:
sage: R.<x,y> = QQ[] sage: f = y^3 + x*y -3*x; f y^3 + x*y - 3*x sage: is_Polynomial(f) False sage: var('x,y') (x, y) sage: f = y^3 + x*y -3*x; f y^3 + x*y - 3*x sage: is_Polynomial(f) False
- sage.rings.polynomial.polynomial_element.make_generic_polynomial(parent, coeffs)#
- sage.rings.polynomial.polynomial_element.polynomial_is_variable(x)#
Test whether the given polynomial is a variable of its parent ring.
Implemented for instances of
Polynomial
andMPolynomial
.See also
EXAMPLES:
sage: from sage.rings.polynomial.polynomial_element import polynomial_is_variable sage: R.<x> = QQ[] sage: polynomial_is_variable(x) True sage: polynomial_is_variable(R([0,1])) True sage: polynomial_is_variable(x^2) False sage: polynomial_is_variable(R(42)) False
sage: R.<y,z> = QQ[] sage: polynomial_is_variable(y) True sage: polynomial_is_variable(z) True sage: polynomial_is_variable(y^2) False sage: polynomial_is_variable(y+z) False sage: polynomial_is_variable(R(42)) False
sage: polynomial_is_variable(42) False
- sage.rings.polynomial.polynomial_element.universal_discriminant()#
Return the discriminant of the ‘universal’ univariate polynomial \(a_n x^n + \cdots + a_1 x + a_0\) in \(\ZZ[a_0, \ldots, a_n][x]\).
INPUT:
n
- degree of the polynomial
OUTPUT:
The discriminant as a polynomial in \(n + 1\) variables over \(\ZZ\). The result will be cached, so subsequent computations of discriminants of the same degree will be faster.
EXAMPLES:
sage: from sage.rings.polynomial.polynomial_element import universal_discriminant sage: universal_discriminant(1) 1 sage: universal_discriminant(2) a1^2 - 4*a0*a2 sage: universal_discriminant(3) a1^2*a2^2 - 4*a0*a2^3 - 4*a1^3*a3 + 18*a0*a1*a2*a3 - 27*a0^2*a3^2 sage: universal_discriminant(4).degrees() (3, 4, 4, 4, 3)
See also