Double Precision Complex Numbers#
Sage supports arithmetic using double-precision complex numbers. A
double-precision complex number is a complex number x + I*y
with
\(x\), \(y\) 64-bit (8 byte) floating point numbers (double precision).
The field ComplexDoubleField
implements the field
of all double-precision complex numbers. You can refer to this
field by the shorthand CDF. Elements of this field are of type
ComplexDoubleElement
. If \(x\) and \(y\) are coercible to
doubles, you can create a complex double element using
ComplexDoubleElement(x,y)
. You can coerce more
general objects \(z\) to complex doubles by typing either
ComplexDoubleField(x)
or CDF(x)
.
EXAMPLES:
sage: ComplexDoubleField()
Complex Double Field
sage: CDF
Complex Double Field
sage: type(CDF.0)
<class 'sage.rings.complex_double.ComplexDoubleElement'>
sage: ComplexDoubleElement(sqrt(2),3)
1.4142135623730951 + 3.0*I
sage: parent(CDF(-2))
Complex Double Field
sage: CC == CDF
False
sage: CDF is ComplexDoubleField() # CDF is the shorthand
True
sage: CDF == ComplexDoubleField()
True
The underlying arithmetic of complex numbers is implemented using functions and macros in GSL (the GNU Scientific Library), and should be very fast. Also, all standard complex trig functions, log, exponents, etc., are implemented using GSL, and are also robust and fast. Several other special functions, e.g. eta, gamma, incomplete gamma, etc., are implemented using the PARI C library.
AUTHORS:
William Stein (2006-09): first version
Travis Scrimshaw (2012-10-18): Added doctests to get full coverage
Jeroen Demeyer (2013-02-27): fixed all PARI calls (trac ticket #14082)
Vincent Klein (2017-11-15) : add __mpc__() to class ComplexDoubleElement. ComplexDoubleElement constructor support and gmpy2.mpc parameter.
- class sage.rings.complex_double.ComplexDoubleElement#
Bases:
FieldElement
An approximation to a complex number using double precision floating point numbers. Answers derived from calculations with such approximations may differ from what they would be if those calculations were performed with true complex numbers. This is due to the rounding errors inherent to finite precision calculations.
- abs()#
This function returns the magnitude \(|z|\) of the complex number \(z\).
See also
EXAMPLES:
sage: CDF(2,3).abs() 3.605551275463989
- abs2()#
This function returns the squared magnitude \(|z|^2\) of the complex number \(z\), otherwise known as the complex norm.
See also
EXAMPLES:
sage: CDF(2,3).abs2() 13.0
- agm(right, algorithm='optimal')#
Return the Arithmetic-Geometric Mean (AGM) of
self
andright
.INPUT:
right
(complex) – another complex numberalgorithm
(string, default"optimal"
) – the algorithm to use (see below).
OUTPUT:
(complex) A value of the AGM of self and right. Note that this is a multi-valued function, and the algorithm used affects the value returned, as follows:
'pari'
: Call the pari:agm function from the pari library.'optimal'
: Use the AGM sequence such that at each stage \((a,b)\) is replaced by \((a_1,b_1)=((a+b)/2,\pm\sqrt{ab})\) where the sign is chosen so that \(|a_1-b_1| \leq |a_1+b_1|\), or equivalently \(\Re(b_1/a_1) \geq 0\). The resulting limit is maximal among all possible values.'principal'
: Use the AGM sequence such that at each stage \((a,b)\) is replaced by \((a_1,b_1)=((a+b)/2,\pm\sqrt{ab})\) where the sign is chosen so that \(\Re(b_1/a_1) \geq 0\) (the so-called principal branch of the square root).
See Wikipedia article Arithmetic-geometric mean
EXAMPLES:
sage: i = CDF(I) sage: (1+i).agm(2-i) # rel tol 1e-15 1.6278054848727064 + 0.1368275483973686*I
An example to show that the returned value depends on the algorithm parameter:
sage: a = CDF(-0.95,-0.65) sage: b = CDF(0.683,0.747) sage: a.agm(b, algorithm='optimal') -0.3715916523517613 + 0.31989466020683*I sage: a.agm(b, algorithm='principal') # rel tol 1e-15 0.33817546298618006 - 0.013532696956540503*I sage: a.agm(b, algorithm='pari') -0.37159165235176134 + 0.31989466020683005*I
Some degenerate cases:
sage: CDF(0).agm(a) 0.0 sage: a.agm(0) 0.0 sage: a.agm(-a) 0.0
- algdep(n)#
Returns a polynomial of degree at most \(n\) which is approximately satisfied by this complex number. Note that the returned polynomial need not be irreducible, and indeed usually won’t be if \(z\) is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM: Uses the PARI C-library algdep command.
EXAMPLES:
sage: z = (1/2)*(1 + RDF(sqrt(3)) *CDF.0); z # abs tol 1e-16 0.5 + 0.8660254037844387*I sage: p = z.algdep(5); p x^2 - x + 1 sage: abs(z^2 - z + 1) < 1e-14 True
sage: CDF(0,2).algdep(10) x^2 + 4 sage: CDF(1,5).algdep(2) x^2 - 2*x + 26
- arccos()#
This function returns the complex arccosine of the complex number \(z\), \({\rm arccos}(z)\). The branch cuts are on the real axis, less than -1 and greater than 1.
EXAMPLES:
sage: CDF(1,1).arccos() 0.9045568943023814 - 1.0612750619050357*I
- arccosh()#
This function returns the complex hyperbolic arccosine of the complex number \(z\), \({\rm arccosh}(z)\). The branch cut is on the real axis, less than 1.
EXAMPLES:
sage: CDF(1,1).arccosh() 1.0612750619050357 + 0.9045568943023814*I
- arccot()#
This function returns the complex arccotangent of the complex number \(z\), \({\rm arccot}(z) = {\rm arctan}(1/z).\)
EXAMPLES:
sage: CDF(1,1).arccot() # rel tol 1e-15 0.5535743588970452 - 0.4023594781085251*I
- arccoth()#
This function returns the complex hyperbolic arccotangent of the complex number \(z\), \({\rm arccoth}(z) = {\rm arctanh(1/z)}\).
EXAMPLES:
sage: CDF(1,1).arccoth() # rel tol 1e-15 0.4023594781085251 - 0.5535743588970452*I
- arccsc()#
This function returns the complex arccosecant of the complex number \(z\), \({\rm arccsc}(z) = {\rm arcsin}(1/z)\).
EXAMPLES:
sage: CDF(1,1).arccsc() # rel tol 1e-15 0.45227844715119064 - 0.5306375309525178*I
- arccsch()#
This function returns the complex hyperbolic arccosecant of the complex number \(z\), \({\rm arccsch}(z) = {\rm arcsin}(1/z)\).
EXAMPLES:
sage: CDF(1,1).arccsch() # rel tol 1e-15 0.5306375309525178 - 0.45227844715119064*I
- arcsec()#
This function returns the complex arcsecant of the complex number \(z\), \({\rm arcsec}(z) = {\rm arccos}(1/z)\).
EXAMPLES:
sage: CDF(1,1).arcsec() # rel tol 1e-15 1.118517879643706 + 0.5306375309525178*I
- arcsech()#
This function returns the complex hyperbolic arcsecant of the complex number \(z\), \({\rm arcsech}(z) = {\rm arccosh}(1/z)\).
EXAMPLES:
sage: CDF(1,1).arcsech() # rel tol 1e-15 0.5306375309525176 - 1.118517879643706*I
- arcsin()#
This function returns the complex arcsine of the complex number \(z\), \({\rm arcsin}(z)\). The branch cuts are on the real axis, less than -1 and greater than 1.
EXAMPLES:
sage: CDF(1,1).arcsin() 0.6662394324925152 + 1.0612750619050357*I
- arcsinh()#
This function returns the complex hyperbolic arcsine of the complex number \(z\), \({\rm arcsinh}(z)\). The branch cuts are on the imaginary axis, below \(-i\) and above \(i\).
EXAMPLES:
sage: CDF(1,1).arcsinh() 1.0612750619050357 + 0.6662394324925152*I
- arctan()#
This function returns the complex arctangent of the complex number \(z\), \({\rm arctan}(z)\). The branch cuts are on the imaginary axis, below \(-i\) and above \(i\).
EXAMPLES:
sage: CDF(1,1).arctan() 1.0172219678978514 + 0.4023594781085251*I
- arctanh()#
This function returns the complex hyperbolic arctangent of the complex number \(z\), \({\rm arctanh} (z)\). The branch cuts are on the real axis, less than -1 and greater than 1.
EXAMPLES:
sage: CDF(1,1).arctanh() 0.4023594781085251 + 1.0172219678978514*I
- arg()#
This function returns the argument of
self
, the complex number \(z\), denoted by \(\arg(z)\), where \(-\pi < \arg(z) <= \pi\).EXAMPLES:
sage: CDF(1,0).arg() 0.0 sage: CDF(0,1).arg() 1.5707963267948966 sage: CDF(0,-1).arg() -1.5707963267948966 sage: CDF(-1,0).arg() 3.141592653589793
- argument()#
This function returns the argument of the
self
, the complex number \(z\), in the interval \(-\pi < arg(z) \leq \pi\).EXAMPLES:
sage: CDF(6).argument() 0.0 sage: CDF(i).argument() 1.5707963267948966 sage: CDF(-1).argument() 3.141592653589793 sage: CDF(-1 - 0.000001*i).argument() -3.1415916535897934
- conj()#
This function returns the complex conjugate of the complex number \(z\):
\[\overline{z} = x - i y.\]EXAMPLES:
sage: z = CDF(2,3); z.conj() 2.0 - 3.0*I
- conjugate()#
This function returns the complex conjugate of the complex number \(z\):
\[\overline{z} = x - i y.\]EXAMPLES:
sage: z = CDF(2,3); z.conjugate() 2.0 - 3.0*I
- cos()#
This function returns the complex cosine of the complex number \(z\):
\[\cos(z) = \frac{e^{iz} + e^{-iz}}{2}\]EXAMPLES:
sage: CDF(1,1).cos() # abs tol 1e-16 0.8337300251311491 - 0.9888977057628651*I
- cosh()#
This function returns the complex hyperbolic cosine of the complex number \(z\):
\[\cosh(z) = \frac{e^z + e^{-z}}{2}.\]EXAMPLES:
sage: CDF(1,1).cosh() # abs tol 1e-16 0.8337300251311491 + 0.9888977057628651*I
- cot()#
This function returns the complex cotangent of the complex number \(z\):
\[\cot(z) = \frac{1}{\tan(z)}.\]EXAMPLES:
sage: CDF(1,1).cot() # rel tol 1e-15 0.21762156185440268 - 0.8680141428959249*I
- coth()#
This function returns the complex hyperbolic cotangent of the complex number \(z\):
\[\coth(z) = \frac{1}{\tanh(z)}.\]EXAMPLES:
sage: CDF(1,1).coth() # rel tol 1e-15 0.8680141428959249 - 0.21762156185440268*I
- csc()#
This function returns the complex cosecant of the complex number \(z\):
\[\csc(z) = \frac{1}{\sin(z)}.\]EXAMPLES:
sage: CDF(1,1).csc() # rel tol 1e-15 0.6215180171704284 - 0.30393100162842646*I
- csch()#
This function returns the complex hyperbolic cosecant of the complex number \(z\):
\[{\rm csch}(z) = \frac{1}{{\rm sinh}(z)}.\]EXAMPLES:
sage: CDF(1,1).csch() # rel tol 1e-15 0.30393100162842646 - 0.6215180171704284*I
- dilog()#
Returns the principal branch of the dilogarithm of \(x\), i.e., analytic continuation of the power series
\[\log_2(x) = \sum_{n \ge 1} x^n / n^2.\]EXAMPLES:
sage: CDF(1,2).dilog() -0.059474798673809476 + 2.0726479717747566*I sage: CDF(10000000,10000000).dilog() -134.411774490731 + 38.79396299904504*I
- eta(omit_frac=0)#
Return the value of the Dedekind \(\eta\) function on self.
INPUT:
self
- element of the upper half plane (if not, raises a ValueError).omit_frac
- (bool, default:False
), ifTrue
, omit the \(e^{\pi i z / 12}\) factor.
OUTPUT: a complex double number
ALGORITHM: Uses the PARI C library.
The \(\eta\) function is
\[\eta(z) = e^{\pi i z / 12} \prod_{n=1}^{\infty} (1 - e^{2\pi inz})\]EXAMPLES:
We compute a few values of
eta()
:sage: CDF(0,1).eta() 0.7682254223260566 sage: CDF(1,1).eta() 0.7420487758365647 + 0.1988313702299107*I sage: CDF(25,1).eta() 0.7420487758365647 + 0.1988313702299107*I
eta()
works even if the inputs are large:sage: CDF(0, 10^15).eta() 0.0 sage: CDF(10^15, 0.1).eta() # abs tol 1e-10 -0.115342592727 - 0.19977923088*I
We compute a few values of
eta()
, but with the fractional power of \(e\) omitted:sage: CDF(0,1).eta(True) 0.9981290699259585
We compute
eta()
to low precision directly from the definition:sage: z = CDF(1,1); z.eta() 0.7420487758365647 + 0.1988313702299107*I sage: i = CDF(0,1); pi = CDF(pi) sage: exp(pi * i * z / 12) * prod([1-exp(2*pi*i*n*z) for n in range(1,10)]) 0.7420487758365647 + 0.19883137022991068*I
The optional argument allows us to omit the fractional part:
sage: z.eta(omit_frac=True) 0.9981290699259585 sage: pi = CDF(pi) sage: prod([1-exp(2*pi*i*n*z) for n in range(1,10)]) # abs tol 1e-12 0.998129069926 + 4.59084695545e-19*I
We illustrate what happens when \(z\) is not in the upper half plane:
sage: z = CDF(1) sage: z.eta() Traceback (most recent call last): ... ValueError: value must be in the upper half plane
You can also use functional notation:
sage: z = CDF(1,1) sage: eta(z) 0.7420487758365647 + 0.1988313702299107*I
- exp()#
This function returns the complex exponential of the complex number \(z\), \(\exp(z)\).
EXAMPLES:
sage: CDF(1,1).exp() # abs tol 4e-16 1.4686939399158851 + 2.2873552871788423*I
We numerically verify a famous identity to the precision of a double:
sage: z = CDF(0, 2*pi); z 6.283185307179586*I sage: exp(z) # rel tol 1e-4 1.0 - 2.4492935982947064e-16*I
- gamma()#
Return the gamma function \(\Gamma(z)\) evaluated at
self
, the complex number \(z\).EXAMPLES:
sage: CDF(5,0).gamma() 24.0 sage: CDF(1,1).gamma() 0.49801566811835607 - 0.15494982830181067*I sage: CDF(0).gamma() Infinity sage: CDF(-1,0).gamma() Infinity
- gamma_inc(t)#
Return the incomplete gamma function evaluated at this complex number.
EXAMPLES:
sage: CDF(1,1).gamma_inc(CDF(2,3)) 0.0020969148636468277 - 0.059981913655449706*I sage: CDF(1,1).gamma_inc(5) -0.001378130936215849 + 0.006519820023119819*I sage: CDF(2,0).gamma_inc(CDF(1,1)) 0.7070920963459381 - 0.4203536409598115*I
- imag()#
Return the imaginary part of this complex double.
EXAMPLES:
sage: a = CDF(3,-2) sage: a.imag() -2.0 sage: a.imag_part() -2.0
- imag_part()#
Return the imaginary part of this complex double.
EXAMPLES:
sage: a = CDF(3,-2) sage: a.imag() -2.0 sage: a.imag_part() -2.0
- is_NaN()#
Check if
self
is not-a-number.EXAMPLES:
sage: CDF(1, 2).is_NaN() False sage: CDF(NaN).is_NaN() True sage: (1/CDF(0, 0)).is_NaN() True
- is_infinity()#
Check if
self
is \(\infty\).EXAMPLES:
sage: CDF(1, 2).is_infinity() False sage: CDF(0, oo).is_infinity() True
- is_integer()#
Returns True if this number is a integer
EXAMPLES:
sage: CDF(0.5).is_integer() False sage: CDF(I).is_integer() False sage: CDF(2).is_integer() True
- is_negative_infinity()#
Check if
self
is \(-\infty\).EXAMPLES:
sage: CDF(1, 2).is_negative_infinity() False sage: CDF(-oo, 0).is_negative_infinity() True sage: CDF(0, -oo).is_negative_infinity() False
- is_positive_infinity()#
Check if
self
is \(+\infty\).EXAMPLES:
sage: CDF(1, 2).is_positive_infinity() False sage: CDF(oo, 0).is_positive_infinity() True sage: CDF(0, oo).is_positive_infinity() False
- is_square()#
This function always returns
True
as \(\CC\) is algebraically closed.EXAMPLES:
sage: CDF(-1).is_square() True
- log(base=None)#
This function returns the complex natural logarithm to the given base of the complex number \(z\), \(\log(z)\). The branch cut is the negative real axis.
INPUT:
base
- default: \(e\), the base of the natural logarithm
EXAMPLES:
sage: CDF(1,1).log() 0.34657359027997264 + 0.7853981633974483*I
This is the only example different from the GSL:
sage: CDF(0,0).log() -infinity
- log10()#
This function returns the complex base-10 logarithm of the complex number \(z\), \(\log_{10}(z)\).
The branch cut is the negative real axis.
EXAMPLES:
sage: CDF(1,1).log10() 0.15051499783199057 + 0.3410940884604603*I
- log_b(b)#
This function returns the complex base-\(b\) logarithm of the complex number \(z\), \(\log_b(z)\). This quantity is computed as the ratio \(\log(z)/\log(b)\).
The branch cut is the negative real axis.
EXAMPLES:
sage: CDF(1,1).log_b(10) # rel tol 1e-15 0.15051499783199057 + 0.3410940884604603*I
- logabs()#
This function returns the natural logarithm of the magnitude of the complex number \(z\), \(\log|z|\).
This allows for an accurate evaluation of \(\log|z|\) when \(|z|\) is close to \(1\). The direct evaluation of
log(abs(z))
would lead to a loss of precision in this case.EXAMPLES:
sage: CDF(1.1,0.1).logabs() 0.09942542937258267 sage: log(abs(CDF(1.1,0.1))) 0.09942542937258259
sage: log(abs(ComplexField(200)(1.1,0.1))) 0.099425429372582595066319157757531449594489450091985182495705
- norm()#
This function returns the squared magnitude \(|z|^2\) of the complex number \(z\), otherwise known as the complex norm. If \(c = a + bi\) is a complex number, then the norm of \(c\) is defined as the product of \(c\) and its complex conjugate:
\[\text{norm}(c) = \text{norm}(a + bi) = c \cdot \overline{c} = a^2 + b^2.\]The norm of a complex number is different from its absolute value. The absolute value of a complex number is defined to be the square root of its norm. A typical use of the complex norm is in the integral domain \(\ZZ[i]\) of Gaussian integers, where the norm of each Gaussian integer \(c = a + bi\) is defined as its complex norm.
EXAMPLES:
sage: CDF(2,3).norm() 13.0
- nth_root(n, all=False)#
The
n
-th root function.INPUT:
all
– bool (default:False
); ifTrue
, return a list of alln
-th roots.
EXAMPLES:
sage: a = CDF(125) sage: a.nth_root(3) 5.000000000000001 sage: a = CDF(10, 2) sage: [r^5 for r in a.nth_root(5, all=True)] # rel tol 1e-14 [9.999999999999998 + 2.0*I, 9.999999999999993 + 2.000000000000002*I, 9.999999999999996 + 1.9999999999999907*I, 9.999999999999993 + 2.0000000000000004*I, 9.999999999999998 + 1.9999999999999802*I] sage: abs(sum(a.nth_root(111, all=True))) # rel tol 0.1 1.1057313523818259e-13
- prec()#
Returns the precision of this number (to be more similar to
ComplexNumber
). Always returns 53.EXAMPLES:
sage: CDF(0).prec() 53
- real()#
Return the real part of this complex double.
EXAMPLES:
sage: a = CDF(3,-2) sage: a.real() 3.0 sage: a.real_part() 3.0
- real_part()#
Return the real part of this complex double.
EXAMPLES:
sage: a = CDF(3,-2) sage: a.real() 3.0 sage: a.real_part() 3.0
- sec()#
This function returns the complex secant of the complex number \(z\):
\[{\rm sec}(z) = \frac{1}{\cos(z)}.\]EXAMPLES:
sage: CDF(1,1).sec() # rel tol 1e-15 0.4983370305551868 + 0.591083841721045*I
- sech()#
This function returns the complex hyperbolic secant of the complex number \(z\):
\[{\rm sech}(z) = \frac{1}{{\rm cosh}(z)}.\]EXAMPLES:
sage: CDF(1,1).sech() # rel tol 1e-15 0.4983370305551868 - 0.591083841721045*I
- sin()#
This function returns the complex sine of the complex number \(z\):
\[\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}.\]EXAMPLES:
sage: CDF(1,1).sin() 1.2984575814159773 + 0.6349639147847361*I
- sinh()#
This function returns the complex hyperbolic sine of the complex number \(z\):
\[\sinh(z) = \frac{e^z - e^{-z}}{2}.\]EXAMPLES:
sage: CDF(1,1).sinh() 0.6349639147847361 + 1.2984575814159773*I
- sqrt(all=False, **kwds)#
The square root function.
INPUT:
all
- bool (default:False
); ifTrue
, return a list of all square roots.
If all is
False
, the branch cut is the negative real axis. The result always lies in the right half of the complex plane.EXAMPLES:
We compute several square roots:
sage: a = CDF(2,3) sage: b = a.sqrt(); b # rel tol 1e-15 1.6741492280355401 + 0.8959774761298381*I sage: b^2 # rel tol 1e-15 2.0 + 3.0*I sage: a^(1/2) # abs tol 1e-16 1.6741492280355401 + 0.895977476129838*I
We compute the square root of -1:
sage: a = CDF(-1) sage: a.sqrt() 1.0*I
We compute all square roots:
sage: CDF(-2).sqrt(all=True) [1.4142135623730951*I, -1.4142135623730951*I] sage: CDF(0).sqrt(all=True) [0.0]
- tan()#
This function returns the complex tangent of the complex number \(z\):
\[\tan(z) = \frac{\sin(z)}{\cos(z)}.\]EXAMPLES:
sage: CDF(1,1).tan() 0.27175258531951174 + 1.0839233273386946*I
- tanh()#
This function returns the complex hyperbolic tangent of the complex number \(z\):
\[\tanh(z) = \frac{\sinh(z)}{\cosh(z)}.\]EXAMPLES:
sage: CDF(1,1).tanh() 1.0839233273386946 + 0.27175258531951174*I
- zeta()#
Return the Riemann zeta function evaluated at this complex number.
EXAMPLES:
sage: z = CDF(1, 1) sage: z.zeta() 0.5821580597520036 - 0.9268485643308071*I sage: zeta(z) 0.5821580597520036 - 0.9268485643308071*I sage: zeta(CDF(1)) Infinity
- sage.rings.complex_double.ComplexDoubleField()#
Returns the field of double precision complex numbers.
EXAMPLES:
sage: ComplexDoubleField() Complex Double Field sage: ComplexDoubleField() is CDF True
- class sage.rings.complex_double.ComplexDoubleField_class#
Bases:
ComplexDoubleField
An approximation to the field of complex numbers using double precision floating point numbers. Answers derived from calculations in this approximation may differ from what they would be if those calculations were performed in the true field of complex numbers. This is due to the rounding errors inherent to finite precision calculations.
ALGORITHM:
Arithmetic is done using GSL (the GNU Scientific Library).
- algebraic_closure()#
Returns the algebraic closure of
self
, i.e., the complex double field.EXAMPLES:
sage: CDF.algebraic_closure() Complex Double Field
- characteristic()#
Return the characteristic of the complex double field, which is 0.
EXAMPLES:
sage: CDF.characteristic() 0
- construction()#
Returns the functorial construction of
self
, namely, algebraic closure of the real double field.EXAMPLES:
sage: c, S = CDF.construction(); S Real Double Field sage: CDF == c(S) True
- gen(n=0)#
Return the generator of the complex double field.
EXAMPLES:
sage: CDF.0 1.0*I sage: CDF.gen(0) 1.0*I
- is_exact()#
Returns whether or not this field is exact, which is always
False
.EXAMPLES:
sage: CDF.is_exact() False
- ngens()#
The number of generators of this complex field as an \(\RR\)-algebra.
There is one generator, namely
sqrt(-1)
.EXAMPLES:
sage: CDF.ngens() 1
- pi()#
Returns \(\pi\) as a double precision complex number.
EXAMPLES:
sage: CDF.pi() 3.141592653589793
- prec()#
Return the precision of this complex double field (to be more similar to
ComplexField
). Always returns 53.EXAMPLES:
sage: CDF.prec() 53
- precision()#
Return the precision of this complex double field (to be more similar to
ComplexField
). Always returns 53.EXAMPLES:
sage: CDF.prec() 53
- random_element(xmin=-1, xmax=1, ymin=-1, ymax=1)#
Return a random element of this complex double field with real and imaginary part bounded by
xmin
,xmax
,ymin
,ymax
.EXAMPLES:
sage: CDF.random_element().parent() is CDF True sage: re, im = CDF.random_element() sage: -1 <= re <= 1, -1 <= im <= 1 (True, True) sage: re, im = CDF.random_element(-10,10,-10,10) sage: -10 <= re <= 10, -10 <= im <= 10 (True, True) sage: re, im = CDF.random_element(-10^20,10^20,-2,2) sage: -10^20 <= re <= 10^20, -2 <= im <= 2 (True, True)
- real_double_field()#
The real double field, which you may view as a subfield of this complex double field.
EXAMPLES:
sage: CDF.real_double_field() Real Double Field
- to_prec(prec)#
Returns the complex field to the specified precision. As doubles have fixed precision, this will only return a complex double field if prec is exactly 53.
EXAMPLES:
sage: CDF.to_prec(53) Complex Double Field sage: CDF.to_prec(250) Complex Field with 250 bits of precision
- zeta(n=2)#
Return a primitive \(n\)-th root of unity in this CDF, for \(n \geq 1\).
INPUT:
n
– a positive integer (default: 2)
OUTPUT: a complex \(n\)-th root of unity.
EXAMPLES:
sage: CDF.zeta(7) # rel tol 1e-15 0.6234898018587336 + 0.7818314824680298*I sage: CDF.zeta(1) 1.0 sage: CDF.zeta() -1.0 sage: CDF.zeta() == CDF.zeta(2) True
sage: CDF.zeta(0.5) Traceback (most recent call last): ... ValueError: n must be a positive integer sage: CDF.zeta(0) Traceback (most recent call last): ... ValueError: n must be a positive integer sage: CDF.zeta(-1) Traceback (most recent call last): ... ValueError: n must be a positive integer
- class sage.rings.complex_double.ComplexToCDF#
Bases:
Morphism
Fast morphism for anything such that the elements have attributes
.real
and.imag
(e.g. numpy complex types).EXAMPLES:
sage: import numpy sage: f = CDF.coerce_map_from(numpy.complex_) sage: f(numpy.complex_(I)) 1.0*I sage: f(numpy.complex_(I)).parent() Complex Double Field
- class sage.rings.complex_double.FloatToCDF#
Bases:
Morphism
Fast morphism from anything with a
__float__
method to a CDF element.EXAMPLES:
sage: f = CDF.coerce_map_from(ZZ); f Native morphism: From: Integer Ring To: Complex Double Field sage: f(4) 4.0 sage: f = CDF.coerce_map_from(QQ); f Native morphism: From: Rational Field To: Complex Double Field sage: f(1/2) 0.5 sage: f = CDF.coerce_map_from(int); f Native morphism: From: Set of Python objects of class 'int' To: Complex Double Field sage: f(3r) 3.0 sage: f = CDF.coerce_map_from(float); f Native morphism: From: Set of Python objects of class 'float' To: Complex Double Field sage: f(3.5) 3.5
- sage.rings.complex_double.is_ComplexDoubleElement(x)#
Return
True
ifx
is aComplexDoubleElement
.EXAMPLES:
sage: from sage.rings.complex_double import is_ComplexDoubleElement sage: is_ComplexDoubleElement(0) False sage: is_ComplexDoubleElement(CDF(0)) True
- sage.rings.complex_double.is_ComplexDoubleField(x)#
Return
True
ifx
is the complex double field.This function is deprecated. Use
isinstance()
withComplexDoubleField
instead.EXAMPLES:
sage: from sage.rings.complex_double import is_ComplexDoubleField sage: is_ComplexDoubleField(CDF) doctest:warning... DeprecationWarning: is_ComplexDoubleField is deprecated; use isinstance(..., sage.rings.abc.ComplexDoubleField) instead See https://trac.sagemath.org/32610 for details. True sage: is_ComplexDoubleField(ComplexField(53)) False