Elements of free modules of finite rank#
The class FiniteRankFreeModuleElement
implements elements of
free modules of finite rank over a commutative ring.
AUTHORS:
Eric Gourgoulhon, Michal Bejger (2014-2015): initial version
Eric Gourgoulhon (2017): class
FiniteRankFreeModuleElement
inherits fromAlternatingContrTensor
REFERENCES:
Chap. 21 of R. Godement : Algebra [God1968]
Chap. 12 of J. M. Lee: Introduction to Smooth Manifolds [Lee2013] (only when the free module is a vector space)
Chap. 2 of B. O’Neill: Semi-Riemannian Geometry [ONe1983]
- class sage.tensor.modules.free_module_element.FiniteRankFreeModuleElement(fmodule, name=None, latex_name=None)#
Bases:
AlternatingContrTensor
Element of a free module of finite rank over a commutative ring.
This is a Sage element class, the corresponding parent class being
FiniteRankFreeModule
.The class
FiniteRankFreeModuleElement
inherits fromAlternatingContrTensor
because the elements of a free module \(M\) of finite rank over a commutative ring \(R\) are identified with tensors of type \((1,0)\) on \(M\) via the canonical map\[\begin{split}\begin{array}{lllllll} \Phi: & M & \longrightarrow & M^{**} & & & \\ & v & \longmapsto & \bar v : & M^* & \longrightarrow & R \\ & & & & a & \longmapsto & a(v) \end{array}\end{split}\]Note that for free modules of finite rank, this map is actually an isomorphism, enabling the canonical identification: \(M^{**}= M\).
INPUT:
fmodule
– free module \(M\) of finite rank over a commutative ring \(R\), as an instance ofFiniteRankFreeModule
name
– (default:None
) name given to the elementlatex_name
– (default:None
) LaTeX symbol to denote the element; if none is provided, the LaTeX symbol is set toname
EXAMPLES:
Let us consider a rank-3 free module \(M\) over \(\ZZ\):
sage: M = FiniteRankFreeModule(ZZ, 3, name='M') sage: e = M.basis('e') ; e Basis (e_0,e_1,e_2) on the Rank-3 free module M over the Integer Ring
There are three ways to construct an element of the free module \(M\): the first one (recommended) is using the free module:
sage: v = M([2,0,-1], basis=e, name='v') ; v Element v of the Rank-3 free module M over the Integer Ring sage: v.display() # expansion on the default basis (e) v = 2 e_0 - e_2 sage: v.parent() is M True
The second way is to construct a tensor of type \((1,0)\) on \(M\) (cf. the canonical identification \(M^{**} = M\) recalled above):
sage: v2 = M.tensor((1,0), name='v') sage: v2[0], v2[2] = 2, -1 ; v2 Element v of the Rank-3 free module M over the Integer Ring sage: v2.display() v = 2 e_0 - e_2 sage: v2 == v True
Finally, the third way is via some linear combination of the basis elements:
sage: v3 = 2*e[0] - e[2] sage: v3.set_name('v') ; v3 # in this case, the name has to be set separately Element v of the Rank-3 free module M over the Integer Ring sage: v3.display() v = 2 e_0 - e_2 sage: v3 == v True
The canonical identification \(M^{**} = M\) is implemented by letting the module elements act on linear forms, providing the same result as the reverse operation (cf. the map \(\Phi\) defined above):
sage: a = M.linear_form(name='a') sage: a[:] = (2, 1, -3) ; a Linear form a on the Rank-3 free module M over the Integer Ring sage: v(a) 7 sage: a(v) 7 sage: a(v) == v(a) True
ARITHMETIC EXAMPLES
Addition:
sage: M = FiniteRankFreeModule(ZZ, 3, name='M') sage: e = M.basis('e') ; e Basis (e_0,e_1,e_2) on the Rank-3 free module M over the Integer Ring sage: a = M([0,1,3], name='a') ; a Element a of the Rank-3 free module M over the Integer Ring sage: a.display() a = e_1 + 3 e_2 sage: b = M([2,-2,1], name='b') ; b Element b of the Rank-3 free module M over the Integer Ring sage: b.display() b = 2 e_0 - 2 e_1 + e_2 sage: s = a + b ; s Element a+b of the Rank-3 free module M over the Integer Ring sage: s.display() a+b = 2 e_0 - e_1 + 4 e_2 sage: all(s[i] == a[i] + b[i] for i in M.irange()) True
Subtraction:
sage: s = a - b ; s Element a-b of the Rank-3 free module M over the Integer Ring sage: s.display() a-b = -2 e_0 + 3 e_1 + 2 e_2 sage: all(s[i] == a[i] - b[i] for i in M.irange()) True
Multiplication by a scalar:
sage: s = 2*a ; s Element of the Rank-3 free module M over the Integer Ring sage: s.display() 2 e_1 + 6 e_2 sage: a.display() a = e_1 + 3 e_2
Tensor product:
sage: s = a*b ; s Type-(2,0) tensor a⊗b on the Rank-3 free module M over the Integer Ring sage: s.symmetries() no symmetry; no antisymmetry sage: s[:] [ 0 0 0] [ 2 -2 1] [ 6 -6 3] sage: s = a*s ; s Type-(3,0) tensor a⊗a⊗b on the Rank-3 free module M over the Integer Ring sage: s[:] [[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [2, -2, 1], [6, -6, 3]], [[0, 0, 0], [6, -6, 3], [18, -18, 9]]]
Exterior product:
sage: s = a.wedge(b) ; s Alternating contravariant tensor a∧b of degree 2 on the Rank-3 free module M over the Integer Ring sage: s.display() a∧b = -2 e_0∧e_1 - 6 e_0∧e_2 + 7 e_1∧e_2