Discrete valuations on function fields#
AUTHORS:
Julian Rüth (2016-10-16): initial version
EXAMPLES:
We can create classical valuations that correspond to finite and infinite places on a rational function field:
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v
(x - 1)-adic valuation
sage: v = K.valuation(x^2 + 1); v
(x^2 + 1)-adic valuation
sage: v = K.valuation(1/x); v
Valuation at the infinite place
Note that we can also specify valuations which do not correspond to a place of the function field:
sage: R.<x> = QQ[]
sage: w = valuations.GaussValuation(R, QQ.valuation(2))
sage: v = K.valuation(w); v
2-adic valuation
Valuations on a rational function field can then be extended to finite extensions:
sage: v = K.valuation(x - 1); v
(x - 1)-adic valuation
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: w = v.extensions(L); w
[[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation]
REFERENCES:
An overview of some computational tools relating to valuations on function fields can be found in Section 4.6 of [Rüt2014]. Most of this was originally developed for number fields in [Mac1936I] and [Mac1936II].
- class sage.rings.function_field.function_field_valuation.ClassicalFunctionFieldValuation_base(parent)#
Bases:
DiscreteFunctionFieldValuation_base
Base class for discrete valuations on rational function fields that come from points on the projective line.
- class sage.rings.function_field.function_field_valuation.DiscreteFunctionFieldValuation_base(parent)#
Bases:
DiscreteValuation
Base class for discrete valuations on function fields.
- extensions(L)#
Return the extensions of this valuation to
L
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - x) sage: v.extensions(L) [(x)-adic valuation]
- class sage.rings.function_field.function_field_valuation.FiniteRationalFunctionFieldValuation(parent, base_valuation)#
Bases:
InducedRationalFunctionFieldValuation_base
,ClassicalFunctionFieldValuation_base
,RationalFunctionFieldValuation_base
Valuation of a finite place of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x + 1); v # indirect doctest (x + 1)-adic valuation
A finite place with residual degree:
sage: w = K.valuation(x^2 + 1); w (x^2 + 1)-adic valuation
A finite place with ramification:
sage: K.<t> = FunctionField(GF(3)) sage: L.<x> = FunctionField(K) sage: u = L.valuation(x^3 - t); u (x^3 + 2*t)-adic valuation
A finite place with residual degree and ramification:
sage: q = L.valuation(x^6 - t); q (x^6 + 2*t)-adic valuation
- class sage.rings.function_field.function_field_valuation.FunctionFieldExtensionMappedValuation(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)#
Bases:
FunctionFieldMappedValuationRelative_base
A valuation on a finite extensions of function fields \(L=K[y]/(G)\) where \(K\) is another function field which redirects to another
base_valuation
on an isomorphism function field \(M=K[y]/(H)\).The isomorphisms must be trivial on
K
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + y + x^3) sage: v = K.valuation(1/x) sage: w = v.extension(L) sage: w(x) -1 sage: w(y) -3/2 sage: w.uniformizer() 1/x^2*y
- restriction(ring)#
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + y + x^3) sage: v = K.valuation(1/x) sage: w = v.extension(L) sage: w.restriction(K) is v True
- class sage.rings.function_field.function_field_valuation.FunctionFieldFromLimitValuation(parent, approximant, G, approximants)#
Bases:
FiniteExtensionFromLimitValuation
,DiscreteFunctionFieldValuation_base
A valuation on a finite extensions of function fields \(L=K[y]/(G)\) where \(K\) is another function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - (x^2 + x + 1)) sage: v = K.valuation(x - 1) # indirect doctest sage: w = v.extension(L); w (x - 1)-adic valuation
- scale(scalar)#
Return this valuation scaled by
scalar
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - (x^2 + x + 1)) sage: v = K.valuation(x - 1) # indirect doctest sage: w = v.extension(L) sage: 3*w 3 * (x - 1)-adic valuation
- class sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuationRelative_base(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)#
Bases:
FunctionFieldMappedValuation_base
A valuation on a function field which relies on a
base_valuation
on an isomorphic function field and which is such that the map from and to the other function field is the identity on the constant field.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: v = K.valuation(1/x); v Valuation at the infinite place
- restriction(ring)#
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: K.valuation(1/x).restriction(GF(2)) Trivial valuation on Finite Field of size 2
- class sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuation_base(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)#
Bases:
FunctionFieldValuation_base
,MappedValuation_base
A valuation on a function field which relies on a
base_valuation
on an isomorphic function field.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: v = K.valuation(1/x); v Valuation at the infinite place
- is_discrete_valuation()#
Return whether this is a discrete valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - x^4 - 1) sage: v = K.valuation(1/x) sage: w0,w1 = v.extensions(L) sage: w0.is_discrete_valuation() True
- scale(scalar)#
Return this valuation scaled by
scalar
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + y + x^3) sage: v = K.valuation(1/x) sage: w = v.extension(L) sage: 3*w 3 * (x)-adic valuation (in Rational function field in x over Finite Field of size 2 after x |--> 1/x)
- class sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory#
Bases:
UniqueFactory
Create a valuation on
domain
corresponding toprime
.INPUT:
domain
– a function fieldprime
– a place of the function field, a valuation on a subring, or a valuation on another function field together with information for isomorphisms to and from that function field
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(1); v # indirect doctest (x - 1)-adic valuation sage: v(x) 0 sage: v(x - 1) 1
See
sage.rings.function_field.function_field.FunctionField.valuation()
for further examples.- create_key_and_extra_args(domain, prime)#
Create a unique key which identifies the valuation given by
prime
ondomain
.
- create_key_and_extra_args_from_place(domain, generator)#
Create a unique key which identifies the valuation at the place specified by
generator
.
- create_key_and_extra_args_from_valuation(domain, valuation)#
Create a unique key which identifies the valuation which extends
valuation
.
- create_key_and_extra_args_from_valuation_on_isomorphic_field(domain, valuation, to_valuation_domain, from_valuation_domain)#
Create a unique key which identifies the valuation which is
valuation
after mapping throughto_valuation_domain
.
- create_object(version, key, **extra_args)#
Create the valuation specified by
key
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<x> = QQ[] sage: w = valuations.GaussValuation(R, QQ.valuation(2)) sage: v = K.valuation(w); v # indirect doctest 2-adic valuation
- class sage.rings.function_field.function_field_valuation.FunctionFieldValuation_base(parent)#
Bases:
DiscretePseudoValuation
Abstract base class for any discrete (pseudo-)valuation on a function field.
- class sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base(parent, base_valuation)#
Bases:
FunctionFieldValuation_base
Base class for function field valuation induced by a valuation on the underlying polynomial ring.
- extensions(L)#
Return all extensions of this valuation to
L
which has a larger constant field than the domain of this valuation.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x^2 + 1) sage: L.<x> = FunctionField(GaussianIntegers().fraction_field()) sage: v.extensions(L) # indirect doctest [(x - I)-adic valuation, (x + I)-adic valuation]
- lift(F)#
Return a lift of
F
to the domain of this valuation such thatreduce()
returns the original element.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x) sage: v.lift(0) 0 sage: v.lift(1) 1
- reduce(f)#
Return the reduction of
f
inresidue_ring()
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x^2 + 1) sage: v.reduce(x) u1
- residue_ring()#
Return the residue field of this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).residue_ring() Rational Field
- restriction(ring)#
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).restriction(QQ) Trivial valuation on Rational Field
- simplify(f, error=None, force=False)#
Return a simplified version of
f
.Produce an element which differs from
f
by an element of valuation strictly greater than the valuation off
(or strictly greater thanerror
if set.)If
force
is not set, then expensive simplifications may be avoided.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(2) sage: f = (x + 1)/(x - 1)
As the coefficients of this fraction are small, we do not simplify as this could be very costly in some cases:
sage: v.simplify(f) (x + 1)/(x - 1)
However, simplification can be forced:
sage: v.simplify(f, force=True) 3
- uniformizer()#
Return a uniformizing element for this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).uniformizer() x
- value_group()#
Return the value group of this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).value_group() Additive Abelian Group generated by 1
- class sage.rings.function_field.function_field_valuation.InfiniteRationalFunctionFieldValuation(parent)#
Bases:
FunctionFieldMappedValuationRelative_base
,RationalFunctionFieldValuation_base
,ClassicalFunctionFieldValuation_base
Valuation of the infinite place of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(1/x) # indirect doctest
- class sage.rings.function_field.function_field_valuation.NonClassicalRationalFunctionFieldValuation(parent, base_valuation)#
Bases:
InducedRationalFunctionFieldValuation_base
,RationalFunctionFieldValuation_base
Valuation induced by a valuation on the underlying polynomial ring which is non-classical.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = GaussValuation(QQ['x'], QQ.valuation(2)) sage: w = K.valuation(v); w # indirect doctest 2-adic valuation
- residue_ring()#
Return the residue field of this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = valuations.GaussValuation(QQ['x'], QQ.valuation(2)) sage: w = K.valuation(v) sage: w.residue_ring() Rational function field in x over Finite Field of size 2 sage: R.<x> = QQ[] sage: vv = v.augmentation(x, 1) sage: w = K.valuation(vv) sage: w.residue_ring() Rational function field in x over Finite Field of size 2 sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + 2*x) sage: w.extension(L).residue_ring() Function field in u2 defined by u2^2 + x
- class sage.rings.function_field.function_field_valuation.RationalFunctionFieldMappedValuation(parent, base_valuation, to_base_valuation_doain, from_base_valuation_domain)#
Bases:
FunctionFieldMappedValuationRelative_base
,RationalFunctionFieldValuation_base
Valuation on a rational function field that is implemented after a map to an isomorphic rational function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<x> = QQ[] sage: w = GaussValuation(R, QQ.valuation(2)).augmentation(x, 1) sage: w = K.valuation(w) sage: v = K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()]))); v Valuation on rational function field induced by [ Gauss valuation induced by 2-adic valuation, v(x) = 1 ] (in Rational function field in x over Rational Field after x |--> 1/x)
- class sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base(parent)#
Bases:
FunctionFieldValuation_base
Base class for valuations on rational function fields.
- element_with_valuation(s)#
Return an element with valuation
s
.EXAMPLES:
sage: K.<a> = NumberField(x^3+6) sage: v = K.valuation(2) sage: R.<x> = K[] sage: w = GaussValuation(R, v).augmentation(x, 1/123) sage: K.<x> = FunctionField(K) sage: w = w.extension(K) sage: w.element_with_valuation(122/123) 2/x sage: w.element_with_valuation(1) 2