
Elliptic curves
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Elliptic curve constructor 1

2 Construct elliptic curves as Jacobians 19

3 Points on elliptic curves 23

4 Elliptic curves over a general ring 59

5 Elliptic curves over a general field 89

6 Elliptic curves over finite fields 111

7 Formal groups of elliptic curves 133

8 Elliptic-curve morphisms 141

9 Isomorphisms between Weierstrass models of elliptic curves 149

10 Isogenies 153

11 √élu algorithm for elliptic-curve isogenies 175

12 Composite morphisms of elliptic curves 183

13 Scalar-multiplication morphisms of elliptic curves 191

14 Frobenius isogenies of elliptic curves 197

15 Isogenies of small prime degree 203

16 Elliptic curves over number fields 231

17 To be sorted 593

18 Hyperelliptic curves 607

19 Indices and Tables 707

Bibliography 709

Python Module Index 711

Index 713

i

ii

CHAPTER

ONE

ELLIPTIC CURVE CONSTRUCTOR

AUTHORS:

• William Stein (2005): Initial version

• John Cremona (2008-01): EllipticCurve(j) fixed for all cases

class sage.schemes.elliptic_curves.constructor.EllipticCurveFactory

Bases: UniqueFactory

Construct an elliptic curve.

In Sage, an elliptic curve is always specified by (the coefficients of) a long Weierstrass equation

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6.

INPUT:

There are several ways to construct an elliptic curve:

• EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given 𝑎-invariants. The invariants are coerced
into a common parent. If all are integers, they are coerced into the rational numbers.

• EllipticCurve([a4,a6]): Same as above, but 𝑎1 = 𝑎2 = 𝑎3 = 0.

• EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given
label. The label is a string, such as "11a" or "37b2". The letters in the label must be lower case (Cremona’s
new labeling).

• EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over 𝑅 with given 𝑎-invariants.
Here 𝑅 can be an arbitrary commutative ring, although most functionality is only implemented over fields.

• EllipticCurve(j=j0) or EllipticCurve_from_j(j0): Return an elliptic curve with 𝑗-invariant j0.

• EllipticCurve(polynomial): Read off the 𝑎-invariants from the polynomial coefficients, see
EllipticCurve_from_Weierstrass_polynomial().

• EllipticCurve(cubic, point): The elliptic curve defined by a plane cubic (homogeneous polynomial
in three variables), with a rational point.

Instead of giving the coefficients as a list of length 2 or 5, one can also give a tuple.

EXAMPLES:

We illustrate creating elliptic curves:

sage: EllipticCurve([0,0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

We create a curve from a Cremona label:

1

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Elliptic curves, Release 9.8

sage: EllipticCurve('37b2')
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field
sage: EllipticCurve('5077a')
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: EllipticCurve('389a')
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

Old Cremona labels are allowed:

sage: EllipticCurve('2400FF')
Elliptic Curve defined by y^2 = x^3 + x^2 + 2*x + 8 over Rational Field

Unicode labels are allowed:

sage: EllipticCurve(u'389a')
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

We create curves over a finite field as follows:

sage: EllipticCurve([GF(5)(0),0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
sage: EllipticCurve(GF(5), [0, 0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

Elliptic curves over Z/𝑁Z with 𝑁 prime are of type “elliptic curve over a finite field”:

sage: F = Zmod(101)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_
→˓with_category'>
sage: E.category()
Category of schemes over Ring of integers modulo 101

In contrast, elliptic curves over Z/𝑁Z with 𝑁 composite are of type “generic elliptic curve”:

sage: F = Zmod(95)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category
→˓'>
sage: E.category()
Category of schemes over Ring of integers modulo 95

The following is a curve over the complex numbers:

sage: E = EllipticCurve(CC, [0,0,1,-1,0])
sage: E
Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x␣
→˓over Complex Field with 53 bits of precision

(continues on next page)

2 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.j_invariant()
2988.97297297297

We can also create elliptic curves by giving the Weierstrass equation:

sage: R2.<x,y> = PolynomialRing(QQ,2)
sage: EllipticCurve(y^2 + y - (x^3 + x - 9))
Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field

sage: R.<x,y> = GF(5)[]
sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x)
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5

We can also create elliptic curves by giving a smooth plane cubic with a rational point:

sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: F = x^3+y^3+30*z^3
sage: P = [1,-1,0]
sage: EllipticCurve(F,P)
Elliptic Curve defined by y^2 - 270*y = x^3 - 24300 over Rational Field

We can explicitly specify the 𝑗-invariant:

sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 = x^3 - x over Rational Field
1728
'32a2'

sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
2

See trac ticket #6657

sage: EllipticCurve(GF(144169),j=1728)
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169

Elliptic curves over the same ring with the same Weierstrass coefficients are identical, even when they are con-
structed in different ways (see trac ticket #11474):

sage: EllipticCurve('11a3') is EllipticCurve(QQ, [0, -1, 1, 0, 0])
True

By default, when a rational value of 𝑗 is given, the constructed curve is a minimal twist (minimal conductor for
curves with that 𝑗-invariant). This can be changed by setting the optional parameter minimal_twist, which is
True by default, to False:

sage: EllipticCurve(j=100)
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: E =EllipticCurve(j=100); E
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: E.conductor()
33129800

(continues on next page)

3

https://trac.sagemath.org/6657
https://trac.sagemath.org/11474

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.j_invariant()
100
sage: E =EllipticCurve(j=100, minimal_twist=False); E
Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field
sage: E.conductor()
298168200
sage: E.j_invariant()
100

Without this option, constructing the curve could take a long time since both 𝑗 and 𝑗 − 1728 have to be factored
to compute the minimal twist (see trac ticket #13100):

sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False)
sage: E.j_invariant() == 2^256+1
True

create_key_and_extra_args(x=None, y=None, j=None, minimal_twist=True, **kwds)
Return a UniqueFactory key and possibly extra parameters.

INPUT:

See the documentation for EllipticCurveFactory.

OUTPUT:

A pair (key, extra_args):

• key has the form (𝑅, (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6)), representing a ring and the Weierstrass coefficients of an
elliptic curve over that ring;

• extra_args is a dictionary containing additional data to be inserted into the elliptic curve structure.

EXAMPLES:

sage: EllipticCurve.create_key_and_extra_args(j=8000)
((Rational Field, (0, 1, 0, -3, 1)), {})

When constructing a curve over Q from a Cremona or LMFDB label, the invariants from the database are
returned as extra_args:

sage: key, data = EllipticCurve.create_key_and_extra_args('389.a1')
sage: key
(Rational Field, (0, 1, 1, -2, 0))
sage: data['conductor']
389
sage: data['cremona_label']
'389a1'
sage: data['lmfdb_label']
'389.a1'
sage: data['rank']
2
sage: data['torsion_order']
1

User-specified keywords are also included in extra_args:

4 Chapter 1. Elliptic curve constructor

https://trac.sagemath.org/13100

Elliptic curves, Release 9.8

sage: key, data = EllipticCurve.create_key_and_extra_args((0, 0, 1, -23737,␣
→˓960366), rank=4)
sage: data['rank']
4

Furthermore, keywords takes precedence over data from the database, which can be used to specify an
alternative set of generators for the Mordell-Weil group:

sage: key, data = EllipticCurve.create_key_and_extra_args('5077a1', gens=[[1, -
→˓1], [-2, 3], [4, -7]])
sage: data['gens']
[[1, -1], [-2, 3], [4, -7]]
sage: E = EllipticCurve.create_object(0, key, **data)
sage: E.gens()
[(-2 : 3 : 1), (1 : -1 : 1), (4 : -7 : 1)]

Note that elliptic curves are equal if and only they have the same base ring and Weierstrass equation; the
data in extra_args do not influence comparison of elliptic curves. A consequence of this is that passing
keyword arguments only works when constructing an elliptic curve the first time:

sage: E = EllipticCurve('433a1', gens=[[-1, 1], [3, 4]])
sage: E.gens()
[(-1 : 1 : 1), (3 : 4 : 1)]
sage: E = EllipticCurve('433a1', gens=[[-1, 0], [0, 1]])
sage: E.gens()
[(-1 : 1 : 1), (3 : 4 : 1)]

Warning: Manually specifying extra data is almost never necessary and is not guaranteed to have any
effect, as the above example shows. Almost no checking is done, so specifying incorrect data may lead
to wrong results of computations instead of errors or warnings.

create_object(version, key, **kwds)
Create an object from a UniqueFactory key.

EXAMPLES:

sage: E = EllipticCurve.create_object(0, (GF(3), (1, 2, 0, 1, 2)))
sage: type(E)
<class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_
→˓field_with_category'>

Note: Keyword arguments are currently only passed to the constructor for elliptic curves over Q; elliptic
curves over other fields do not support them.

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_Weierstrass_polynomial(f)
Return the elliptic curve defined by a cubic in (long) Weierstrass form.

INPUT:

• f – a inhomogeneous cubic polynomial in long Weierstrass form.

OUTPUT:

5

Elliptic curves, Release 9.8

The elliptic curve defined by it.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = y^2 + 1*x*y + 3*y - (x^3 + 2*x^2 + 4*x + 6)
sage: EllipticCurve(f)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 6 over Rational␣
→˓Field
sage: EllipticCurve(f).a_invariants()
(1, 2, 3, 4, 6)

The polynomial ring may have extra variables as long as they do not occur in the polynomial itself:

sage: R.<x,y,z,w> = QQ[]
sage: EllipticCurve(-y^2 + x^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: EllipticCurve(-x^2 + y^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: EllipticCurve(-w^2 + z^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_c4c6(c4, c6)
Return an elliptic curve with given 𝑐4 and 𝑐6 invariants.

EXAMPLES:

sage: E = EllipticCurve_from_c4c6(17, -2005)
sage: E
Elliptic Curve defined by y^2 = x^3 - 17/48*x + 2005/864 over Rational Field
sage: E.c_invariants()
(17, -2005)

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_cubic(F, P=None, morphism=True)
Construct an elliptic curve from a ternary cubic with a rational point.

If you just want the Weierstrass form and are not interested in the morphism then it is easier to use the function
Jacobian() instead. If there is a rational point on the given cubic, this function will construct the same elliptic
curve but you do not have to supply the point P.

INPUT:

• F – a homogeneous cubic in three variables with rational coefficients, as a polynomial ring element, defining
a smooth plane cubic curve 𝐶.

• P – a 3-tuple (𝑥, 𝑦, 𝑧) defining a projective point on 𝐶, or None. If None then a rational flex will be used
as a base point if one exists, otherwise an error will be raised.

• morphism – boolean (default: True). If True returns a birational isomorphism from 𝐶 to a Weierstrass
elliptic curve 𝐸, otherwise just returns 𝐸.

OUTPUT:

Either (when morphism``=``False) an elliptic curve𝐸 in long Weierstrass form isomorphic to the plane cubic
curve 𝐶 defined by the equation 𝐹 = 0.

Or (when morphism=True), a birational isomorphism from 𝐶 to the elliptic curve𝐸. If the given point is a flex,
this is a linear isomorphism.

6 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

Note: The function Jacobian() may be used instead. It constructs the same elliptic curve (which is in all
cases the Jacobian of (𝐹 = 0)) and needs no base point to be provided, but also returns no isomorphism since
in general there is none: the plane cubic is only isomorphic to its Jacobian when it has a rational point.

Note: When morphism=True, a birational isomorphism between the curve 𝐹 = 0 and the Weierstrass curve is
returned. If the point happens to be a flex, then this is a linear isomorphism. The morphism does not necessarily
take the given point 𝑃 to the point at infinity on 𝐸, since we always use a rational flex on 𝐶 as base-point when
one exists.

EXAMPLES:

First we find that the Fermat cubic is isomorphic to the curve with Cremona label 27a1:

sage: R.<x,y,z> = QQ[]
sage: cubic = x^3+y^3+z^3
sage: P = [1,-1,0]
sage: E = EllipticCurve_from_cubic(cubic, P, morphism=False); E
Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
sage: E.cremona_label()
'27a1'
sage: EllipticCurve_from_cubic(cubic, [0,1,-1], morphism=False).cremona_label()
'27a1'
sage: EllipticCurve_from_cubic(cubic, [1,0,-1], morphism=False).cremona_label()
'27a1'

Next we find the minimal model and conductor of the Jacobian of the Selmer curve:

sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+b^3+60*c^3
sage: P = [1,-1,0]
sage: E = EllipticCurve_from_cubic(cubic, P, morphism=False); E
Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
sage: E.minimal_model()
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
sage: E.conductor()
24300

We can also get the birational isomorphism to and from the Weierstrass form. We start with an example where
P is a flex and the equivalence is a linear isomorphism:

sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True)
sage: f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
To: Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
Defn: Defined on coordinates by sending (a : b : c) to

(-c : 3*a : 1/180*a + 1/180*b)

sage: finv = f.inverse(); finv
Scheme morphism:
From: Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field

(continues on next page)

7

Elliptic curves, Release 9.8

(continued from previous page)

To: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
Defn: Defined on coordinates by sending (x : y : z) to

(1/3*y : -1/3*y + 180*z : -x)

Scheme morphism:
From: Elliptic Curve defined by y^2 + 2*x*y + 20*y = x^3 - x^2 - 20*x - 400/3

over Rational Field
To: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
a^3 + b^3 + 60*c^3
Defn: Defined on coordinates by sending (x : y : z) to

(x + y + 20*z : -x - y : -x)

We verify that 𝑓 maps the chosen point 𝑃 = (1,−1, 0) on the cubic to the origin of the elliptic curve:

sage: f([1,-1,0])
(0 : 1 : 0)
sage: finv([0,1,0])
(-1 : 1 : 0)

To verify the output, we plug in the polynomials to check that this indeed transforms the cubic into Weierstrass
form:

sage: cubic(finv.defining_polynomials()) * finv.post_rescaling()
-x^3 + y^2*z - 540*y*z^2 + 97200*z^3

sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
a^3 + b^3 + 60*c^3

If the given point is not a flex and the cubic has no rational flexes, then the cubic can not be transformed to a Weier-
strass equation by a linear transformation. The general birational transformation is still a birational isomorphism,
but is quadratic:

sage: R.<x,y,z> = QQ[]
sage: cubic = x^2*y + 4*x*y^2 + x^2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
sage: f = EllipticCurve_from_cubic(cubic, [1,-1,1], morphism=True); f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by x^2*y + 4*x*y^2 + x^

→˓2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
To: Elliptic Curve defined by y^2 + 7560/19*x*y + 552960000000/2352637*y = x^3 -

→˓ 3445200/133*x^2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to

(2527/17280*x^2 + 133/2160*x*y + 133/108000*y^2 + 133/2880*x*z + 931/
→˓18000*y*z - 3857/48000*z^2 : -6859/288*x^2 + 323/36*x*y + 359/1800*y^2 + 551/
→˓48*x*z + 2813/300*y*z + 24389/800*z^2 : -2352637/99532800000*x^2 - 2352637/
→˓124416000000*x*y - 2352637/622080000000*y^2 + 2352637/82944000000*x*z + 2352637/
→˓207360000000*y*z - 2352637/276480000000*z^2)

Note that the morphism returned cannot be evaluated directly at the given point P=(1:-1:1) since the polyno-
mials defining it all vanish there:

sage: f([1,-1,1])
Traceback (most recent call last):

(continues on next page)

8 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

(continued from previous page)

...
ValueError: [0, 0, 0] does not define a valid point since all entries are 0

Using the group law on the codomain elliptic curve, which has rank 1 and full 2-torsion, and the inverse mor-
phism, we can find many points on the cubic. First we find the preimages of multiples of the generator:

sage: E = f.codomain()
sage: E.label()
'720e2'
sage: E.rank()
1
sage: R = E.gens()[0]; R
(-17280000/2527 : 9331200000/6859 : 1)
sage: finv = f.inverse()
sage: [finv(k*R) for k in range(1,10)]
[(-4 : 1 : 0),
(-1 : 4 : 1),
(-20 : -55/76 : 1),
(319/399 : -11339/7539 : 1),
(159919/14360 : -4078139/1327840 : 1),
(-27809119/63578639 : 1856146436/3425378659 : 1),
(-510646582340/56909753439 : 424000923715/30153806197284 : 1),
(-56686114363679/4050436059492161 : -2433034816977728281/1072927821085503881 : 1),
(650589589099815846721/72056273157352822480 : -347376189546061993109881/
→˓194127383495944026752320 : 1)]

The elliptic curve also has torsion, which we can map back:

sage: E.torsion_points()
[(-144000000/17689 : 3533760000000/2352637 : 1),
(-92160000/17689 : 2162073600000/2352637 : 1),
(-5760000/17689 : -124070400000/2352637 : 1),
(0 : 1 : 0)]
sage: [finv(Q) for Q in E.torsion_points() if Q]
[(9 : -9/4 : 1), (-9 : 0 : 1), (0 : 1 : 0)]

In this example, the given point P is not a flex but the cubic does have a rational flex, (-4:0:1). We return a
linear isomorphism which maps this flex to the point at infinity on the Weierstrass model:

sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+7*b^3+64*c^3
sage: P = [2,2,-1]
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True)
sage: E = f.codomain(); E
Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational Field
sage: E.minimal_model()
Elliptic Curve defined by y^2 + y = x^3 - 331 over Rational Field

sage: f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + 7*b^3 + 64*c^3
To: Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational␣

→˓Field
(continues on next page)

9

Elliptic curves, Release 9.8

(continued from previous page)

Defn: Defined on coordinates by sending (a : b : c) to
(b : -48*a : -1/5376*a - 1/1344*c)

sage: finv = f.inverse(); finv
Scheme morphism:
From: Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational␣

→˓Field
To: Projective Plane Curve over Rational Field defined by a^3 + 7*b^3 + 64*c^3
Defn: Defined on coordinates by sending (x : y : z) to

(-1/48*y : x : 1/192*y - 1344*z)

sage: cubic(finv.defining_polynomials()) * finv.post_rescaling()
-x^3 + y^2*z - 258048*y*z^2 + 22196256768*z^3

sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
a^3 + 7*b^3 + 64*c^3

sage: f(P)
(5376 : -258048 : 1)
sage: f([-4,0,1])
(0 : 1 : 0)

It is possible to not provide a base point P provided that the cubic has a rational flex. In this case the flexes will
be found and one will be used as a base point:

sage: R.<x,y,z> = QQ[]
sage: cubic = x^3+y^3+z^3
sage: f = EllipticCurve_from_cubic(cubic, morphism=True)
sage: f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
To: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to

(y : -3*x : -1/3*x - 1/3*z)

An error will be raised if no point is given and there are no rational flexes:

sage: R.<x,y,z> = QQ[]
sage: cubic = 3*x^3+4*y^3+5*z^3
sage: EllipticCurve_from_cubic(cubic)
Traceback (most recent call last):
...
ValueError: A point must be given when the cubic has no rational flexes

An example over a finite field, using a flex:

sage: K = GF(17)
sage: R.<x,y,z> = K[]
sage: cubic = 2*x^3+3*y^3+4*z^3
sage: EllipticCurve_from_cubic(cubic,[0,3,1])
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 17 defined by 2*x^3 + 3*y^

→˓3 + 4*z^3
(continues on next page)

10 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

(continued from previous page)

To: Elliptic Curve defined by y^2 + 16*y = x^3 + 11 over Finite Field of size 17
Defn: Defined on coordinates by sending (x : y : z) to

(-x : 4*y : 4*y + 5*z)

An example in characteristic 3:

sage: K = GF(3)
sage: R.<x,y,z> = K[]
sage: cubic = x^3+y^3+z^3+x*y*z
sage: EllipticCurve_from_cubic(cubic,[0,1,-1])
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 3 defined by x^3 + y^3 +␣

→˓x*y*z + z^3
To: Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Finite Field of size 3
Defn: Defined on coordinates by sending (x : y : z) to

(y + z : -y : x)

An example over a number field, using a non-flex and where there are no rational flexes:

sage: K.<a> = QuadraticField(-3)
sage: R.<x,y,z> = K[]
sage: cubic = 2*x^3+3*y^3+5*z^3
sage: EllipticCurve_from_cubic(cubic,[1,1,-1])
Scheme morphism:
From: Projective Plane Curve over Number Field in a with defining polynomial x^2␣

→˓+ 3 with a = 1.732050807568878?*I defined by 2*x^3 + 3*y^3 + 5*z^3
To: Elliptic Curve defined by y^2 + 1754460/2053*x*y + 5226454388736000/

→˓8653002877*y = x^3 + (-652253285700/4214809)*x^2 over Number Field in a with␣
→˓defining polynomial x^2 + 3 with a = 1.732050807568878?*I
Defn: Defined on coordinates by sending (x : y : z) to

(-16424/127575*x^2 - 231989/680400*x*y - 14371/64800*y^2 - 26689/81648*x*z -
→˓ 10265/27216*y*z - 2053/163296*z^2 : 24496/315*x^2 + 119243/840*x*y + 4837/80*y^2␣
→˓+ 67259/504*x*z + 25507/168*y*z + 5135/1008*z^2 : 8653002877/2099914709760000*x^2␣
→˓+ 8653002877/699971569920000*x*y + 8653002877/933295426560000*y^2 + 8653002877/
→˓419982941952000*x*z + 8653002877/279988627968000*y*z + 8653002877/
→˓335986353561600*z^2)

An example over a function field, using a non-flex:

sage: K.<t> = FunctionField(QQ)
sage: R.<x,y,z> = K[]
sage: cubic = x^3+t*y^3+(1+t)*z^3
sage: EllipticCurve_from_cubic(cubic,[1,1,-1], morphism=False)
Elliptic Curve defined by y^2 + ((162*t^6+486*t^5+810*t^4+810*t^3+486*t^2+162*t)/(t^
→˓6+12*t^5-3*t^4-20*t^3-3*t^2+12*t+1))*x*y + ((314928*t^14+4094064*t^13+23462136*t^
→˓12+78102144*t^11+167561379*t^10+243026001*t^9+243026001*t^8+167561379*t^
→˓7+78102144*t^6+23462136*t^5+4094064*t^4+314928*t^3)/(t^14+40*t^13+577*t^12+3524*t^
→˓11+8075*t^10+5288*t^9-8661*t^8-17688*t^7-8661*t^6+5288*t^5+8075*t^4+3524*t^
→˓3+577*t^2+40*t+1))*y = x^3 + ((2187*t^12+13122*t^11-17496*t^10-207765*t^9-
→˓516132*t^8-673596*t^7-516132*t^6-207765*t^5-17496*t^4+13122*t^3+2187*t^2)/(t^
→˓12+24*t^11+138*t^10-112*t^9-477*t^8+72*t^7+708*t^6+72*t^5-477*t^4-112*t^3+138*t^
→˓2+24*t+1))*x^2 over Rational function field in t over Rational Field

11

Elliptic curves, Release 9.8

sage.schemes.elliptic_curves.constructor.EllipticCurve_from_j(j, minimal_twist=True)
Return an elliptic curve with given 𝑗-invariant.

INPUT:

• j – an element of some field.

• minimal_twist (boolean, default True) – If True and j is in Q, the curve returned is a minimal twist, i.e.
has minimal conductor; when there is more than one curve with minimal conductor, the curve returned is
the one whose label comes first if the curves are in the CremonaDatabase, otherwise the one whose minimal
a-invariants are first lexicographically. If 𝑗 is not in Q this parameter is ignored.

OUTPUT:

An elliptic curve with 𝑗-invariant 𝑗.

EXAMPLES:

sage: E = EllipticCurve_from_j(0); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 + y = x^3 over Rational Field
0
'27a3'

sage: E = EllipticCurve_from_j(1728); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 = x^3 - x over Rational Field
1728
'32a2'

sage: E = EllipticCurve_from_j(1); E; E.j_invariant()
Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field
1

The minimal_twist parameter (ignored except over Q and True by default) controls whether or not a minimal
twist is computed:

sage: EllipticCurve_from_j(100)
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: _.conductor()
33129800
sage: EllipticCurve_from_j(100, minimal_twist=False)
Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field
sage: _.conductor()
298168200

Since computing the minimal twist requires factoring both 𝑗 and 𝑗 − 1728 the following example would take a
long time without setting minimal_twist to False:

sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False)
sage: E.j_invariant() == 2^256+1
True

sage.schemes.elliptic_curves.constructor.EllipticCurves_with_good_reduction_outside_S(S=[],
proof=None,
ver-
bose=False)

Return a sorted list of all elliptic curves defined over 𝑄 with good reduction outside the set 𝑆 of primes.

INPUT:

12 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

• S – list of primes (default: empty list)

• proof – boolean (default True): the MW basis for auxiliary curves will be computed with this proof flag

• verbose – boolean (default False): if True, some details of the computation will be output

Note: Proof flag: The algorithm used requires determining all S-integral points on several auxiliary curves,
which in turn requires the computation of their generators. This is not always possible (even in theory) using
current knowledge.

The value of this flag is passed to the function which computes generators of various auxiliary elliptic curves, in
order to find their S-integral points. Set to False if the default (True) causes warning messages, but note that
you can then not rely on the set of curves returned being complete.

EXAMPLES:

sage: EllipticCurves_with_good_reduction_outside_S([])
[]
sage: elist = EllipticCurves_with_good_reduction_outside_S([2])
sage: elist
[Elliptic Curve defined by y^2 = x^3 + 4*x over Rational Field,
Elliptic Curve defined by y^2 = x^3 - x over Rational Field,
...
Elliptic Curve defined by y^2 = x^3 - x^2 - 13*x + 21 over Rational Field]
sage: len(elist)
24
sage: ', '.join(e.label() for e in elist)
'32a1, 32a2, 32a3, 32a4, 64a1, 64a2, 64a3, 64a4, 128a1, 128a2, 128b1, 128b2, 128c1,␣
→˓128c2, 128d1, 128d2, 256a1, 256a2, 256b1, 256b2, 256c1, 256c2, 256d1, 256d2'

Without Proof=False, this example gives two warnings:

sage: elist = EllipticCurves_with_good_reduction_outside_S([11],proof=False) #␣
→˓long time (14s on sage.math, 2011)
sage: len(elist) # long time
12
sage: ', '.join(e.label() for e in elist) # long time
'11a1, 11a2, 11a3, 121a1, 121a2, 121b1, 121b2, 121c1, 121c2, 121d1, 121d2, 121d3'

sage: elist = EllipticCurves_with_good_reduction_outside_S([2,3]) # long time (26s␣
→˓on sage.math, 2011)
sage: len(elist) # long time
752
sage: conds = sorted(set([e.conductor() for e in elist])) # long time
sage: max(conds) # long time
62208
sage: [N.factor() for N in conds] # long time
[2^3 * 3,
3^3,
2^5,
2^2 * 3^2,
2^4 * 3,
2 * 3^3,
2^6,

(continues on next page)

13

Elliptic curves, Release 9.8

(continued from previous page)

2^3 * 3^2,
2^5 * 3,
2^2 * 3^3,
2^7,
2^4 * 3^2,
2 * 3^4,
2^6 * 3,
2^3 * 3^3,
3^5,
2^8,
2^5 * 3^2,
2^2 * 3^4,
2^7 * 3,
2^4 * 3^3,
2 * 3^5,
2^6 * 3^2,
2^3 * 3^4,
2^8 * 3,
2^5 * 3^3,
2^2 * 3^5,
2^7 * 3^2,
2^4 * 3^4,
2^6 * 3^3,
2^3 * 3^5,
2^8 * 3^2,
2^5 * 3^4,
2^7 * 3^3,
2^4 * 3^5,
2^6 * 3^4,
2^8 * 3^3,
2^5 * 3^5,
2^7 * 3^4,
2^6 * 3^5,
2^8 * 3^4,
2^7 * 3^5,
2^8 * 3^5]

sage.schemes.elliptic_curves.constructor.are_projectively_equivalent(P, Q, base_ring)
Test whether P and Q are projectively equivalent.

INPUT:

• P, Q – list/tuple of projective coordinates.

• base_ring – the base ring.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import are_projectively_
→˓equivalent
sage: are_projectively_equivalent([0,1,2,3], [0,1,2,2], base_ring=QQ)

(continues on next page)

14 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

(continued from previous page)

False
sage: are_projectively_equivalent([0,1,2,3], [0,2,4,6], base_ring=QQ)
True

sage.schemes.elliptic_curves.constructor.chord_and_tangent(F, P)
Return the third point of intersection of a cubic with the tangent at one point.

INPUT:

• F – a homogeneous cubic in three variables with rational coefficients, as a polynomial ring element, defining
a smooth plane cubic curve.

• P – a 3-tuple (𝑥, 𝑦, 𝑧) defining a projective point on the curve 𝐹 = 0.

OUTPUT:

A point Q such that F(Q)=0, namely the third point of intersection of the tangent at P with the curve F=0, so Q=P
if and only if P is a flex.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: from sage.schemes.elliptic_curves.constructor import chord_and_tangent
sage: F = x^3+y^3+60*z^3
sage: chord_and_tangent(F, [1,-1,0])
(-1 : 1 : 0)

sage: F = x^3+7*y^3+64*z^3
sage: p0 = [2,2,-1]
sage: p1 = chord_and_tangent(F, p0); p1
(5 : -3 : 1)
sage: p2 = chord_and_tangent(F, p1); p2
(-1265/314 : 183/314 : 1)

sage.schemes.elliptic_curves.constructor.coefficients_from_Weierstrass_polynomial(f)
Return the coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of a cubic in Weierstrass form.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import coefficients_from_
→˓Weierstrass_polynomial
sage: R.<w,z> = QQ[]
sage: coefficients_from_Weierstrass_polynomial(-w^2 + z^3 + 1)
[0, 0, 0, 0, 1]

sage.schemes.elliptic_curves.constructor.coefficients_from_j(j, minimal_twist=True)
Return Weierstrass coefficients (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6) for an elliptic curve with given 𝑗-invariant.

INPUT:

See EllipticCurve_from_j().

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import coefficients_from_j
sage: coefficients_from_j(0)
[0, 0, 1, 0, 0]

(continues on next page)

15

Elliptic curves, Release 9.8

(continued from previous page)

sage: coefficients_from_j(1728)
[0, 0, 0, -1, 0]
sage: coefficients_from_j(1)
[1, 0, 0, 36, 3455]

The minimal_twist parameter (ignored except over Q and True by default) controls whether or not a minimal
twist is computed:

sage: coefficients_from_j(100)
[0, 1, 0, 3392, 307888]
sage: coefficients_from_j(100, minimal_twist=False)
[0, 0, 0, 488400, -530076800]

sage.schemes.elliptic_curves.constructor.projective_point(p)
Return equivalent point with denominators removed

INPUT:

• P, Q – list/tuple of projective coordinates.

OUTPUT:

List of projective coordinates.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import projective_point
sage: projective_point([4/5, 6/5, 8/5])
[2, 3, 4]
sage: F = GF(11)
sage: projective_point([F(4), F(8), F(2)])
[4, 8, 2]

sage.schemes.elliptic_curves.constructor.tangent_at_smooth_point(C, P)
Return the tangent at the smooth point 𝑃 of projective curve 𝐶.

INPUT:

• C – a projective plane curve.

• P – a 3-tuple (𝑥, 𝑦, 𝑧) defining a projective point on 𝐶.

OUTPUT:

The linear form defining the tangent at 𝑃 to 𝐶.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: from sage.schemes.elliptic_curves.constructor import tangent_at_smooth_point
sage: C = Curve(x^3+y^3+60*z^3)
sage: tangent_at_smooth_point(C, [1,-1,0])
x + y

sage: K.<t> = FunctionField(QQ)
sage: R.<x,y,z> = K[]
sage: C = Curve(x^3+2*y^3+3*z^3)

(continues on next page)

16 Chapter 1. Elliptic curve constructor

Elliptic curves, Release 9.8

(continued from previous page)

sage: from sage.schemes.elliptic_curves.constructor import tangent_at_smooth_point
sage: tangent_at_smooth_point(C,[1,1,-1])
3*x + 6*y + 9*z

17

Elliptic curves, Release 9.8

18 Chapter 1. Elliptic curve constructor

CHAPTER

TWO

CONSTRUCT ELLIPTIC CURVES AS JACOBIANS

An elliptic curve is a genus one curve with a designated point. The Jacobian of a genus-one curve can be defined as the
set of line bundles on the curve, and is isomorphic to the original genus-one curve. It is also an elliptic curve with the
trivial line bundle as designated point. The utility of this construction is that we can construct elliptic curves without
having to specify which point we take as the origin.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: Jacobian(u^3+v^3+w^3)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: Jacobian(u^4+v^4+w^2)
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field

sage: C = Curve(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: P2.<u,v,w> = ProjectiveSpace(2, QQ)
sage: C = P2.subscheme(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

One can also define Jacobians of varieties that are not genus-one curves. These are not implemented in this module,
but we call the relevant functionality:

sage: R.<x> = PolynomialRing(QQ)
sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560
sage: C = HyperellipticCurve(f)
sage: Jacobian(C)
Jacobian of Hyperelliptic Curve over Rational Field defined
by y^2 = x^5 + 1184*x^3 + 1846*x^2 + 956*x + 560

REFERENCES:

• Wikipedia article Jacobian_variety

sage.schemes.elliptic_curves.jacobian.Jacobian(X, **kwds)
Return the Jacobian.

INPUT:

• X – polynomial, algebraic variety, or anything else that has a Jacobian elliptic curve.

• kwds – optional keyword arguments.

19

https://en.wikipedia.org/wiki/Jacobian_variety

Elliptic curves, Release 9.8

The input X can be one of the following:

• A polynomial, see Jacobian_of_equation() for details.

• A curve, see Jacobian_of_curve() for details.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: Jacobian(u^3+v^3+w^3)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: C = Curve(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: P2.<u,v,w> = ProjectiveSpace(2, QQ)
sage: C = P2.subscheme(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage: Jacobian(C, morphism=True)
Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-u^4*v^4*w - u^4*v*w^4 - u*v^4*w^4 :
1/2*u^6*v^3 - 1/2*u^3*v^6 - 1/2*u^6*w^3 + 1/2*v^6*w^3 + 1/2*u^3*w^6 - 1/2*v^

→˓3*w^6 :
u^3*v^3*w^3)

sage.schemes.elliptic_curves.jacobian.Jacobian_of_curve(curve, morphism=False)
Return the Jacobian of a genus-one curve

INPUT:

• curve – a one-dimensional algebraic variety of genus one.

OUTPUT:

Its Jacobian elliptic curve.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: C = Curve(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field

sage.schemes.elliptic_curves.jacobian.Jacobian_of_equation(polynomial, variables=None,
curve=None)

Construct the Jacobian of a genus-one curve given by a polynomial.

INPUT:

• F – a polynomial defining a plane curve of genus one. May be homogeneous or inhomogeneous.

20 Chapter 2. Construct elliptic curves as Jacobians

Elliptic curves, Release 9.8

• variables – list of two or three variables or None (default). The inhomogeneous or homogeneous coor-
dinates. By default, all variables in the polynomial are used.

• curve – the genus-one curve defined by polynomial or # None (default). If specified, suitable morphism
from the jacobian elliptic curve to the curve is returned.

OUTPUT:

An elliptic curve in short Weierstrass form isomorphic to the curve polynomial=0. If the optional argument
curve is specified, a rational multicover from the Jacobian elliptic curve to the genus-one curve is returned.

EXAMPLES:

sage: R.<a,b,c> = QQ[]
sage: f = a^3+b^3+60*c^3
sage: Jacobian(f)
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
sage: Jacobian(f.subs(c=1))
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field

If we specify the domain curve the birational covering is returned:

sage: h = Jacobian(f, curve=Curve(f)); h
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
To: Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
Defn: Defined on coordinates by sending (a : b : c) to

(-216000*a^4*b^4*c - 12960000*a^4*b*c^4 - 12960000*a*b^4*c^4 :
108000*a^6*b^3 - 108000*a^3*b^6 - 6480000*a^6*c^3 + 6480000*b^6*c^3 +␣

→˓388800000*a^3*c^6 - 388800000*b^3*c^6 :
216000*a^3*b^3*c^3)

sage: h([1,-1,0])
(0 : 1 : 0)

Plugging in the polynomials defining ℎ allows us to verify that it is indeed a rational morphism to the elliptic
curve:

sage: E = h.codomain()
sage: E.defining_polynomial()(h.defining_polynomials()).factor()
(2519424000000000) * c^3 * b^3 * a^3 * (a^3 + b^3 + 60*c^3) *
(a^9*b^6 + a^6*b^9 - 120*a^9*b^3*c^3 + 900*a^6*b^6*c^3 - 120*a^3*b^9*c^3 +
3600*a^9*c^6 + 54000*a^6*b^3*c^6 + 54000*a^3*b^6*c^6 + 3600*b^9*c^6 +
216000*a^6*c^9 - 432000*a^3*b^3*c^9 + 216000*b^6*c^9)

By specifying the variables, we can also construct an elliptic curve over a polynomial ring:

sage: R.<u,v,t> = QQ[]
sage: Jacobian(u^3+v^3+t, variables=[u,v])
Elliptic Curve defined by y^2 = x^3 + (-27/4*t^2) over
Multivariate Polynomial Ring in u, v, t over Rational Field

21

Elliptic curves, Release 9.8

22 Chapter 2. Construct elliptic curves as Jacobians

CHAPTER

THREE

POINTS ON ELLIPTIC CURVES

The base class EllipticCurvePoint_field, derived from AdditiveGroupElement, provides support for points
on elliptic curves defined over general fields. The derived classes EllipticCurvePoint_number_field and
EllipticCurvePoint_finite_field provide further support for point on curves defined over number fields (in-
cluding the rational field Q) and over finite fields.

The class EllipticCurvePoint, which is based on SchemeMorphism_point_projective_ring, currently has
little extra functionality.

EXAMPLES:

An example over Q:

sage: E = EllipticCurve('389a1')
sage: P = E(-1,1); P
(-1 : 1 : 1)
sage: Q = E(0,-1); Q
(0 : -1 : 1)
sage: P+Q
(4 : 8 : 1)
sage: P-Q
(1 : 0 : 1)
sage: 3*P-5*Q
(328/361 : -2800/6859 : 1)

An example over a number field:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[1,0,0,0,-1])
sage: P = E(0,i); P
(0 : i : 1)
sage: P.order()
+Infinity
sage: 101*P-100*P == P
True

An example over a finite field:

sage: K.<a> = GF((101,3))
sage: E = EllipticCurve(K,[1,0,0,0,-1])
sage: P = E(40*a^2 + 69*a + 84 , 58*a^2 + 73*a + 45)
sage: P.order()
1032210

(continues on next page)

23

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.cardinality()
1032210

Arithmetic with a point over an extension of a finite field:

sage: k.<a> = GF((5,2))
sage: E = EllipticCurve(k,[1,0]); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field in a of size 5^2
sage: P = E([a,2*a+4])
sage: 5*P
(2*a + 3 : 2*a : 1)
sage: P*5
(2*a + 3 : 2*a : 1)
sage: P + P + P + P + P
(2*a + 3 : 2*a : 1)

sage: F = Zmod(3)
sage: E = EllipticCurve(F,[1,0]);
sage: P = E([2,1])
sage: import sys
sage: n = sys.maxsize
sage: P*(n+1)-P*n == P
True

Arithmetic over Z/𝑁Z with composite 𝑁 is supported. When an operation tries to invert a non-invertible element, a
ZeroDivisionError is raised and a factorization of the modulus appears in the error message:

sage: N = 1715761513
sage: E = EllipticCurve(Integers(N),[3,-13])
sage: P = E(2,1)
sage: LCM([2..60])*P
Traceback (most recent call last):
...
ZeroDivisionError: Inverse of 26927 does not exist (characteristic = 1715761513 =␣
→˓26927*63719)

AUTHORS:

• William Stein (2005) – Initial version

• Robert Bradshaw et al. . . .

• John Cremona (Feb 2008) – Point counting and group structure for non-prime fields, Frobenius endomorphism
and order, elliptic logs

• John Cremona (Aug 2008) – Introduced EllipticCurvePoint_number_field class

• Tobias Nagel, Michael Mardaus, John Cremona (Dec 2008) – 𝑝-adic elliptic logarithm over Q

• David Hansen (Jan 2009) – Added weil_pairing function to EllipticCurvePoint_finite_field class

• Mariah Lenox (March 2011) – Added tate_pairing and ate_pairing functions to
EllipticCurvePoint_finite_field class

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint(X, v, check=True)
Bases: SchemeMorphism_point_projective_ring

24 Chapter 3. Points on elliptic curves

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_point.html#sage.schemes.projective.projective_point.SchemeMorphism_point_projective_ring

Elliptic curves, Release 9.8

A point on an elliptic curve.

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field(curve, v, check=True)
Bases: SchemeMorphism_point_abelian_variety_field

A point on an elliptic curve over a field. The point has coordinates in the base field.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E([0,0])
(0 : 0 : 1)
sage: E(0,0) # brackets are optional
(0 : 0 : 1)
sage: E([GF(5)(0), 0]) # entries are coerced
(0 : 0 : 1)

sage: E(0.000, 0)
(0 : 0 : 1)

sage: E(1,0,0)
Traceback (most recent call last):
...
TypeError: Coordinates [1, 0, 0] do not define a point on
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: E = EllipticCurve([0,0,1,-1,0])
sage: S = E(QQ); S
Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

sage: K.<i>=NumberField(x^2+1)
sage: E=EllipticCurve(K,[0,1,0,-160,308])
sage: P=E(26,-120)
sage: Q=E(2+12*i,-36+48*i)
sage: P.order() == Q.order() == 4 # long time (3s)
True
sage: 2*P==2*Q
False

sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,0,t^2])
sage: P=E(0,t)
sage: P,2*P,3*P
((0 : t : 1), (0 : -t : 1), (0 : 1 : 0))

additive_order()

Return the order of this point on the elliptic curve.

If the point is zero, returns 1, otherwise raise a NotImplementedError.

For curves over number fields and finite fields, see below.

Note: additive_order() is a synonym for order()

25

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_point.html#sage.schemes.projective.projective_point.SchemeMorphism_point_abelian_variety_field

Elliptic curves, Release 9.8

EXAMPLES:

sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P=E(t,0)
sage: P.order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over␣
→˓general fields.
sage: E(0).additive_order()
1
sage: E(0).order() == 1
True

ate_pairing(Q, n, k, t, q=None)
Return ate pairing of 𝑛-torsion points 𝑃 = 𝑠𝑒𝑙𝑓 and 𝑄.

Also known as the𝑛-th modified ate pairing. 𝑃 is𝐺𝐹 (𝑞)-rational, and𝑄must be an element of𝐾𝑒𝑟(𝜋−𝑝),
where 𝜋 is the 𝑞-frobenius map (and hence 𝑄 is 𝐺𝐹 (𝑞𝑘)-rational).

INPUT:

• P=self – a point of order 𝑛, in 𝑘𝑒𝑟(𝜋− 1), where 𝜋 is the 𝑞-Frobenius map (e.g., 𝑃 is 𝑞− 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙).

• Q – a point of order 𝑛 in 𝑘𝑒𝑟(𝜋 − 𝑞)

• n – the order of 𝑃 and 𝑄.

• k – the embedding degree.

• t – the trace of Frobenius of the curve over 𝐺𝐹 (𝑞).

• q – (default: None) the size of base field (the “big” field is𝐺𝐹 (𝑞𝑘)). 𝑞 needs to be set only if its value
cannot be deduced.

OUTPUT:

FiniteFieldElement in 𝐺𝐹 (𝑞𝑘) – the ate pairing of 𝑃 and 𝑄.

EXAMPLES:

An example with embedding degree 6:

sage: p = 7549; A = 0; B = 1; n = 157; k = 6; t = 14
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF((p,k), modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(3050, 5371); Q = EK(6908*a^4, 3231*a^3)
sage: P.ate_pairing(Q, n, k, t)
6708*a^5 + 4230*a^4 + 4350*a^3 + 2064*a^2 + 4022*a + 6733
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Another example with embedding degree 7 and positive trace:

26 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

sage: p = 2213; A = 1; B = 49; n = 1093; k = 7; t = 28
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF((p,k), modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(1583, 1734)
sage: Qx = 1729*a^6+1767*a^5+245*a^4+980*a^3+1592*a^2+1883*a+722
sage: Qy = 1299*a^6+1877*a^5+1030*a^4+1513*a^3+1457*a^2+309*a+1636
sage: Q = EK(Qx, Qy)
sage: P.ate_pairing(Q, n, k, t)
1665*a^6 + 1538*a^5 + 1979*a^4 + 239*a^3 + 2134*a^2 + 2151*a + 654
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Another example with embedding degree 7 and negative trace:

sage: p = 2017; A = 1; B = 30; n = 29; k = 7; t = -70
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF((p,k), modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(369, 716)
sage: Qx = 1226*a^6+1778*a^5+660*a^4+1791*a^3+1750*a^2+867*a+770
sage: Qy = 1764*a^6+198*a^5+1206*a^4+406*a^3+1200*a^2+273*a+1712
sage: Q = EK(Qx, Qy)
sage: P.ate_pairing(Q, n, k, t)
1794*a^6 + 1161*a^5 + 576*a^4 + 488*a^3 + 1950*a^2 + 1905*a + 1315
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Using the same data, we show that the ate pairing is a power of the Tate pairing (see [HSV2006] end of
section 3.1):

sage: c = (k*p^(k-1)).mod(n); T = t - 1
sage: N = gcd(T^k - 1, p^k - 1)
sage: s = Integer(N/n)
sage: L = Integer((T^k - 1)/N)
sage: M = (L*s*c.inverse_mod(n)).mod(n)
sage: P.ate_pairing(Q, n, k, t) == Q.tate_pairing(P, n, k)^M
True

An example where we have to pass the base field size (and we again have agreement with the Tate pairing).
Note that though𝑃𝑥 is not𝐹 -rational, (it is the homomorphic image of an𝐹 -rational point) it is nonetheless
in 𝑘𝑒𝑟(𝜋 − 1), and so is a legitimate input:

sage: q = 2^5; F.<a>=GF(q)
sage: n = 41; k = 4; t = -8
sage: E=EllipticCurve(F,[0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)

(continues on next page)

27

Elliptic curves, Release 9.8

(continued from previous page)

sage: Fx.=GF(q^k)
sage: Ex=EllipticCurve(Fx,[0,0,1,1,1])
sage: phi=Hom(F,Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px=Ex(phi(P.xy()[0]),phi(P.xy()[1]))
sage: Qx = Ex(b^19+b^18+b^16+b^12+b^10+b^9+b^8+b^5+b^3+1, b^18+b^13+b^10+b^8+b^
→˓5+b^4+b^3+b)
sage: Qx = Ex(Qx[0]^q, Qx[1]^q) - Qx # ensure Qx is in ker(pi - q)
sage: Px.ate_pairing(Qx, n, k, t)
Traceback (most recent call last):
...
ValueError: Unexpected field degree: set keyword argument q equal to the size␣
→˓of the base field (big field is GF(q^4)).
sage: Px.ate_pairing(Qx, n, k, t, q)
b^19 + b^18 + b^17 + b^16 + b^15 + b^14 + b^13 + b^12 + b^11 + b^9 + b^8 + b^5␣
→˓+ b^4 + b^2 + b + 1
sage: s = Integer(randrange(1, n))
sage: (s*Px).ate_pairing(Qx, n, k, t, q) == Px.ate_pairing(s*Qx, n, k, t, q)
True
sage: Px.ate_pairing(s*Qx, n, k, t, q) == Px.ate_pairing(Qx, n, k, t, q)^s
True
sage: c = (k*q^(k-1)).mod(n); T = t - 1
sage: N = gcd(T^k - 1, q^k - 1)
sage: s = Integer(N/n)
sage: L = Integer((T^k - 1)/N)
sage: M = (L*s*c.inverse_mod(n)).mod(n)
sage: Px.ate_pairing(Qx, n, k, t, q) == Qx.tate_pairing(Px, n, k, q)^M
True

It is an error if 𝑄 is not in the kernel of 𝜋 − 𝑝, where 𝜋 is the Frobenius automorphism:

sage: p = 29; A = 1; B = 0; n = 5; k = 2; t = 10
sage: F = GF(p); R.<x> = F[]
sage: E = EllipticCurve(F, [A, B]);
sage: K.<a> = GF((p,k), modulus=x^k+2); EK = E.base_extend(K)
sage: P = EK(13, 8); Q = EK(13, 21)
sage: P.ate_pairing(Q, n, k, t)
Traceback (most recent call last):
...
ValueError: Point (13 : 21 : 1) not in Ker(pi - q)

It is also an error if 𝑃 is not in the kernel os 𝜋 − 1:

sage: p = 29; A = 1; B = 0; n = 5; k = 2; t = 10
sage: F = GF(p); R.<x> = F[]
sage: E = EllipticCurve(F, [A, B]);
sage: K.<a> = GF((p,k), modulus=x^k+2); EK = E.base_extend(K)
sage: P = EK(14, 10*a); Q = EK(13, 21)
sage: P.ate_pairing(Q, n, k, t)
Traceback (most recent call last):
...
ValueError: This point (14 : 10*a : 1) is not in Ker(pi - 1)

28 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

Note: First defined in the paper of [HSV2006], the ate pairing can be computationally effective in those
cases when the trace of the curve over the base field is significantly smaller than the expected value. This
implementation is simply Miller’s algorithm followed by a naive exponentiation, and makes no claims
towards efficiency.

AUTHORS:

• Mariah Lenox (2011-03-08)

curve()

Return the curve that this point is on.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: P = E([-1,1])
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

division_points(m, poly_only=False)
Return a list of all points 𝑄 such that 𝑚𝑄 = 𝑃 where 𝑃 = self.

Only points on the elliptic curve containing self and defined over the base field are included.

INPUT:

• m – a positive integer

• poly_only – bool (default: False); if True return polynomial whose roots give all possible 𝑥-
coordinates of 𝑚-th roots of self.

OUTPUT:

(list) – a (possibly empty) list of solutions 𝑄 to 𝑚𝑄 = 𝑃 , where 𝑃 = self.

EXAMPLES:

We find the five 5-torsion points on an elliptic curve:

sage: E = EllipticCurve('11a'); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: P = E(0); P
(0 : 1 : 0)
sage: P.division_points(5)
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]

Note above that 0 is included since [5]*0 = 0.

We create a curve of rank 1 with no torsion and do a consistency check:

sage: E = EllipticCurve('11a').quadratic_twist(-7)
sage: Q = E([44,-270])
sage: (4*Q).division_points(4)
[(44 : -270 : 1)]

We create a curve over a non-prime finite field with group of order 18:

29

Elliptic curves, Release 9.8

sage: k.<a> = GF((5,2))
sage: E = EllipticCurve(k, [1,2+a,3,4*a,2])
sage: P = E([3,3*a+4])
sage: factor(E.order())
2 * 3^2
sage: P.order()
9

We find the 1-division points as a consistency check – there is just one, of course:

sage: P.division_points(1)
[(3 : 3*a + 4 : 1)]

The point 𝑃 has order coprime to 2 but divisible by 3, so:

sage: P.division_points(2)
[(2*a + 1 : 3*a + 4 : 1), (3*a + 1 : a : 1)]

We check that each of the 2-division points works as claimed:

sage: [2*Q for Q in P.division_points(2)]
[(3 : 3*a + 4 : 1), (3 : 3*a + 4 : 1)]

Some other checks:

sage: P.division_points(3)
[]
sage: P.division_points(4)
[(0 : 3*a + 2 : 1), (1 : 0 : 1)]
sage: P.division_points(5)
[(1 : 1 : 1)]

An example over a number field (see trac ticket #3383):

sage: E = EllipticCurve('19a1')
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-7*x+1)
sage: EK = E.base_extend(K)
sage: E(0).division_points(3)
[(0 : 1 : 0), (5 : -10 : 1), (5 : 9 : 1)]
sage: EK(0).division_points(3)
[(0 : 1 : 0), (5 : 9 : 1), (5 : -10 : 1)]
sage: E(0).division_points(9)
[(0 : 1 : 0), (5 : -10 : 1), (5 : 9 : 1)]
sage: EK(0).division_points(9)
[(0 : 1 : 0), (5 : 9 : 1), (5 : -10 : 1), (-150/121*t^8 + 414/121*t^7 + 1481/
→˓242*t^6 - 2382/121*t^5 - 103/242*t^4 + 629/22*t^3 - 367/242*t^2 - 1307/121*t␣
→˓+ 625/121 : 35/484*t^8 - 133/242*t^7 + 445/242*t^6 - 799/242*t^5 + 373/484*t^
→˓4 + 113/22*t^3 - 2355/484*t^2 - 753/242*t + 1165/484 : 1), (-150/121*t^8 +␣
→˓414/121*t^7 + 1481/242*t^6 - 2382/121*t^5 - 103/242*t^4 + 629/22*t^3 - 367/
→˓242*t^2 - 1307/121*t + 625/121 : -35/484*t^8 + 133/242*t^7 - 445/242*t^6 +␣
→˓799/242*t^5 - 373/484*t^4 - 113/22*t^3 + 2355/484*t^2 + 753/242*t - 1649/484␣
→˓: 1), (-1383/484*t^8 + 970/121*t^7 + 3159/242*t^6 - 5211/121*t^5 + 37/484*t^4␣
→˓+ 654/11*t^3 - 909/484*t^2 - 4831/242*t + 6791/484 : 927/121*t^8 - 5209/242*t^
→˓7 - 8187/242*t^6 + 27975/242*t^5 - 1147/242*t^4 - 1729/11*t^3 + 1566/121*t^2␣

(continues on next page)

30 Chapter 3. Points on elliptic curves

https://trac.sagemath.org/3383

Elliptic curves, Release 9.8

(continued from previous page)

→˓+ 12873/242*t - 10871/242 : 1), (-1383/484*t^8 + 970/121*t^7 + 3159/242*t^6 -␣
→˓5211/121*t^5 + 37/484*t^4 + 654/11*t^3 - 909/484*t^2 - 4831/242*t + 6791/484␣
→˓: -927/121*t^8 + 5209/242*t^7 + 8187/242*t^6 - 27975/242*t^5 + 1147/242*t^4 +␣
→˓1729/11*t^3 - 1566/121*t^2 - 12873/242*t + 10629/242 : 1), (-4793/484*t^8 +␣
→˓6791/242*t^7 + 10727/242*t^6 - 18301/121*t^5 + 2347/484*t^4 + 2293/11*t^3 -␣
→˓7311/484*t^2 - 17239/242*t + 26767/484 : 30847/484*t^8 - 21789/121*t^7 -␣
→˓34605/121*t^6 + 117164/121*t^5 - 10633/484*t^4 - 29437/22*t^3 + 39725/484*t^2␣
→˓+ 55428/121*t - 176909/484 : 1), (-4793/484*t^8 + 6791/242*t^7 + 10727/242*t^
→˓6 - 18301/121*t^5 + 2347/484*t^4 + 2293/11*t^3 - 7311/484*t^2 - 17239/242*t +␣
→˓26767/484 : -30847/484*t^8 + 21789/121*t^7 + 34605/121*t^6 - 117164/121*t^5 +␣
→˓10633/484*t^4 + 29437/22*t^3 - 39725/484*t^2 - 55428/121*t + 176425/484 : 1)]

has_finite_order()

Return True if this point has finite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:

sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P = E(0)
sage: P.has_finite_order()
True
sage: P=E(t,0)
sage: P.has_finite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over␣
→˓general fields.
sage: (2*P).is_zero()
True

has_infinite_order()

Return True if this point has infinite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:

sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P = E(0)
sage: P.has_infinite_order()
False
sage: P=E(t,0)
sage: P.has_infinite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over␣
→˓general fields.
sage: (2*P).is_zero()
True

31

Elliptic curves, Release 9.8

is_divisible_by(m)

Return True if there exists a point 𝑄 defined over the same field as self such that 𝑚𝑄 == self.

INPUT:

• m – a positive integer.

OUTPUT:

(bool) – True if there is a solution, else False.

Warning: This function usually triggers the computation of the 𝑚-th division polynomial of the
associated elliptic curve, which will be expensive if 𝑚 is large, though it will be cached for subsequent
calls with the same 𝑚.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: Q = 5*E(0,0); Q
(-2739/1444 : -77033/54872 : 1)
sage: Q.is_divisible_by(4)
False
sage: Q.is_divisible_by(5)
True

A finite field example:

sage: E = EllipticCurve(GF(101),[23,34])
sage: E.cardinality().factor()
2 * 53
sage: Set([T.order() for T in E.points()])
{1, 106, 2, 53}
sage: len([T for T in E.points() if T.is_divisible_by(2)])
53
sage: len([T for T in E.points() if T.is_divisible_by(3)])
106

is_finite_order()

Return True if this point has finite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:

sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P = E(0)
sage: P.has_finite_order()
True
sage: P=E(t,0)
sage: P.has_finite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over␣
→˓general fields.

(continues on next page)

32 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: (2*P).is_zero()
True

order()

Return the order of this point on the elliptic curve.

If the point is zero, returns 1, otherwise raise a NotImplementedError.

For curves over number fields and finite fields, see below.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P=E(t,0)
sage: P.order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over␣
→˓general fields.
sage: E(0).additive_order()
1
sage: E(0).order() == 1
True

plot(**args)
Plot this point on an elliptic curve.

INPUT:

• **args – all arguments get passed directly onto the point plotting function.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: P = E([-1,1])
sage: P.plot(pointsize=30, rgbcolor=(1,0,0))
Graphics object consisting of 1 graphics primitive

scheme()

Return the scheme of this point, i.e., the curve it is on. This is synonymous with curve() which is perhaps
more intuitive.

EXAMPLES:

sage: E=EllipticCurve(QQ,[1,1])
sage: P=E(0,1)
sage: P.scheme()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: P.scheme() == P.curve()
True
sage: K.<a>=NumberField(x^2-3,'a')

(continues on next page)

33

Elliptic curves, Release 9.8

(continued from previous page)

sage: P=E.base_extend(K)(1,a)
sage: P.scheme()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Number Field in a with␣
→˓defining polynomial x^2 - 3

set_order(value, check)
Set the value of self._order to value.

Use this when you know a priori the order of this point to avoid a potentially expensive order calculation.

INPUT:

• value – positive integer

OUTPUT:

None

EXAMPLES:

This example illustrates basic usage.

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E(5, 0)
sage: G.set_order(2)
sage: 2*G
(0 : 1 : 0)

We now give a more interesting case, the NIST-P521 curve. Its order is too big to calculate with Sage, and
takes a long time using other packages, so it is very useful here.

sage: p = 2^521 - 1
sage: prev_proof_state = proof.arithmetic()
sage: proof.arithmetic(False) # turn off primality checking
sage: F = GF(p)
sage: A = p - 3
sage: B =␣
→˓1093849038073734274511112390766805569936207598951683748994586394495953116150735016013708737573759623248592132296706313309438452531591012912142327488478985984
sage: q =␣
→˓6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
sage: E = EllipticCurve([F(A), F(B)])
sage: G = E.random_point()
sage: G.set_order(q)
sage: G.order() * G # This takes practically no time.
(0 : 1 : 0)
sage: proof.arithmetic(prev_proof_state) # restore state

It is an error to pass a 𝑣𝑎𝑙𝑢𝑒 equal to 0:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E.random_point()
sage: G.set_order(0)
Traceback (most recent call last):
...
ValueError: Value 0 illegal for point order
sage: G.set_order(1000)

(continues on next page)

34 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
ValueError: Value 1000 illegal: outside max Hasse bound

It is also very likely an error to pass a value which is not the actual order of this point. How unlikely is
determined by the factorization of the actual order, and the actual group structure:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E(5, 0) # G has order 2
sage: G.set_order(11)
Traceback (most recent call last):
...
ValueError: Value 11 illegal: 11 * (5 : 0 : 1) is not the identity

However, set_order can be fooled, though it’s not likely in “real cases of interest”. For instance, the order
can be set to a multiple the actual order:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 12
sage: G = E(5, 0) # G has order 2
sage: G.set_order(8)
sage: G.order()
8

AUTHORS:

• Mariah Lenox (2011-02-16)

tate_pairing(Q, n, k, q=None)
Return Tate pairing of 𝑛-torsion point 𝑃 = 𝑠𝑒𝑙𝑓 and point 𝑄.

The value returned is 𝑓𝑛,𝑃 (𝑄)𝑒 where 𝑓𝑛,𝑃 is a function with divisor 𝑛[𝑃] − 𝑛[𝑂].. This is also known as
the “modified Tate pairing”. It is a well-defined bilinear map.

INPUT:

• P=self – Elliptic curve point having order n

• Q – Elliptic curve point on same curve as P (can be any order)

• n – positive integer: order of P

• k – positive integer: embedding degree

• q – positive integer: size of base field (the “big” field is 𝐺𝐹 (𝑞𝑘). 𝑞 needs to be set only if its value
cannot be deduced.)

OUTPUT:

An 𝑛’th root of unity in the base field self.curve().base_field()

EXAMPLES:

A simple example, pairing a point with itself, and pairing a point with another rational point:

sage: p = 103; A = 1; B = 18; E = EllipticCurve(GF(p), [A, B])
sage: P = E(33, 91); n = P.order(); n
19
sage: k = GF(n)(p).multiplicative_order(); k
6

(continues on next page)

35

Elliptic curves, Release 9.8

(continued from previous page)

sage: P.tate_pairing(P, n, k)
1
sage: Q = E(87, 51)
sage: P.tate_pairing(Q, n, k)
1
sage: set_random_seed(35)
sage: P.tate_pairing(P,n,k)
1

We now let Q be a point on the same curve as above, but defined over the pairing extension field, and we
also demonstrate the bilinearity of the pairing:

sage: K.<a> = GF((p,k))
sage: EK = E.base_extend(K); P = EK(P)
sage: Qx = 69*a^5 + 96*a^4 + 22*a^3 + 86*a^2 + 6*a + 35
sage: Qy = 34*a^5 + 24*a^4 + 16*a^3 + 41*a^2 + 4*a + 40
sage: Q = EK(Qx, Qy);

Multiply by cofactor so Q has order n:

sage: h = 551269674; Q = h*Q
sage: P = EK(P); P.tate_pairing(Q, n, k)
24*a^5 + 34*a^4 + 3*a^3 + 69*a^2 + 86*a + 45
sage: s = Integer(randrange(1,n))
sage: ans1 = (s*P).tate_pairing(Q, n, k)
sage: ans2 = P.tate_pairing(s*Q, n, k)
sage: ans3 = P.tate_pairing(Q, n, k)^s
sage: ans1 == ans2 == ans3
True
sage: (ans1 != 1) and (ans1^n == 1)
True

Here is an example of using the Tate pairing to compute the Weil pairing (using the same data as above):

sage: e = Integer((p^k-1)/n); e
62844857712
sage: P.weil_pairing(Q, n)^e
94*a^5 + 99*a^4 + 29*a^3 + 45*a^2 + 57*a + 34
sage: P.tate_pairing(Q, n, k) == P._miller_(Q, n)^e
True
sage: Q.tate_pairing(P, n, k) == Q._miller_(P, n)^e
True
sage: P.tate_pairing(Q, n, k)/Q.tate_pairing(P, n, k)
94*a^5 + 99*a^4 + 29*a^3 + 45*a^2 + 57*a + 34

An example where we have to pass the base field size (and we again have agreement with the Weil pairing):

sage: F.<a>=GF((2,5))
sage: E=EllipticCurve(F,[0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)
sage: Fx.=GF((2,4*5))
sage: Ex=EllipticCurve(Fx,[0,0,1,1,1])
sage: phi=Hom(F,Fx)(F.gen().minpoly().roots(Fx)[0][0])

(continues on next page)

36 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: Px=Ex(phi(P.xy()[0]),phi(P.xy()[1]))
sage: Qx = Ex(b^19+b^18+b^16+b^12+b^10+b^9+b^8+b^5+b^3+1, b^18+b^13+b^10+b^8+b^
→˓5+b^4+b^3+b)
sage: Px.tate_pairing(Qx, n=41, k=4)
Traceback (most recent call last):
...
ValueError: Unexpected field degree: set keyword argument q equal to the size␣
→˓of the base field (big field is GF(q^4)).
sage: num = Px.tate_pairing(Qx, n=41, k=4, q=32); num
b^19 + b^14 + b^13 + b^12 + b^6 + b^4 + b^3
sage: den = Qx.tate_pairing(Px, n=41, k=4, q=32); den
b^19 + b^17 + b^16 + b^15 + b^14 + b^10 + b^6 + b^2 + 1
sage: e = Integer((32^4-1)/41); e
25575
sage: Px.weil_pairing(Qx, 41)^e == num/den
True

Note: This function uses Miller’s algorithm, followed by a naive exponentiation. It does not do anything
fancy. In the case that there is an issue with 𝑄 being on one of the lines generated in the 𝑟 * 𝑃 calculation,
𝑄 is offset by a random point 𝑅 and P.tate_pairing(Q+R,n,k)/P.tate_pairing(R,n,k) is returned.

AUTHORS:

• Mariah Lenox (2011-03-07)

weil_pairing(Q, n, algorithm=None)
Compute the Weil pairing of this point with another point 𝑄 on the same curve.

INPUT:

• Q – another point on the same curve as self.

• n – an integer 𝑛 such that 𝑛𝑃 = 𝑛𝑄 = (0 : 1 : 0), where 𝑃 is self.

• algorithm (default: None) – choices are pari and sage. PARI is usually significantly faster, but it
only works over finite fields. When None is given, a suitable algorithm is chosen automatically.

OUTPUT:

An 𝑛’th root of unity in the base field of the curve.

EXAMPLES:

sage: F.<a>=GF((2,5))
sage: E=EllipticCurve(F,[0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)
sage: Fx.=GF((2,4*5))
sage: Ex=EllipticCurve(Fx,[0,0,1,1,1])
sage: phi=Hom(F,Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px=Ex(phi(P.xy()[0]),phi(P.xy()[1]))
sage: O = Ex(0)
sage: Qx = Ex(b^19 + b^18 + b^16 + b^12 + b^10 + b^9 + b^8 + b^5 + b^3 + 1, b^
→˓18 + b^13 + b^10 + b^8 + b^5 + b^4 + b^3 + b)
sage: Px.weil_pairing(Qx,41) == b^19 + b^15 + b^9 + b^8 + b^6 + b^4 + b^3 + b^2␣
→˓+ 1

(continues on next page)

37

Elliptic curves, Release 9.8

(continued from previous page)

True
sage: Px.weil_pairing(17*Px,41) == Fx(1)
True
sage: Px.weil_pairing(O,41) == Fx(1)
True

An error is raised if either point is not 𝑛-torsion:

sage: Px.weil_pairing(O,40)
Traceback (most recent call last):
...
ValueError: points must both be n-torsion

A larger example (see trac ticket #4964):

sage: P,Q = EllipticCurve(GF((19,4),'a'),[-1,0]).gens()
sage: P.order(), Q.order()
(360, 360)
sage: z = P.weil_pairing(Q,360)
sage: z.multiplicative_order()
360

An example over a number field:

sage: P,Q = EllipticCurve('11a1').change_ring(CyclotomicField(5)).torsion_
→˓subgroup().gens()
sage: P,Q = (P.element(), Q.element())
sage: (P.order(),Q.order())
(5, 5)
sage: P.weil_pairing(Q,5)
zeta5^2
sage: Q.weil_pairing(P,5)
zeta5^3

ALGORITHM:

• For algorithm='pari': pari:ellweilpairing.

• For algorithm='sage': Implemented using Proposition 8 in [Mil2004]. The value 1 is returned for
linearly dependent input points. This condition is caught via a DivisionByZeroError, since the use of
a discrete logarithm test for linear dependence is much too slow for large 𝑛.

AUTHORS:

• David Hansen (2009-01-25)

• Lorenz Panny (2022): algorithm='pari'

xy()

Return the 𝑥 and 𝑦 coordinates of this point, as a 2-tuple. If this is the point at infinity a ZeroDivisionError
is raised.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: P = E([-1,1])

(continues on next page)

38 Chapter 3. Points on elliptic curves

https://trac.sagemath.org/4964
https://pari.math.u-bordeaux.fr/dochtml/help/ellweilpairing

Elliptic curves, Release 9.8

(continued from previous page)

sage: P.xy()
(-1, 1)
sage: Q = E(0); Q
(0 : 1 : 0)
sage: Q.xy()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field(curve, v,
check=True)

Bases: EllipticCurvePoint_field

Class for elliptic curve points over finite fields.

additive_order()

Return the order of this point on the elliptic curve.

ALGORITHM: Use PARI function pari:ellorder.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: k.<a> = GF((5,5))
sage: E = EllipticCurve(k,[2,4]); E
Elliptic Curve defined by y^2 = x^3 + 2*x + 4 over Finite Field in a of size 5^5
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: P.order()
3227
sage: Q = E(0,2)
sage: Q.order()
7
sage: Q.additive_order()
7

sage: p=next_prime(2^150)
sage: E=EllipticCurve(GF(p),[1,1])
sage: P=E(831623307675610677632782670796608848711856078,␣
→˓42295786042873366706573292533588638217232964)
sage: P.order()
1427247692705959881058262545272474300628281448
sage: P.order() == E.cardinality()
True

The next example has 𝑗(𝐸) = 0:

sage: p = 33554501
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F,[0,1])
sage: E.j_invariant()
0

(continues on next page)

39

https://pari.math.u-bordeaux.fr/dochtml/help/ellorder

Elliptic curves, Release 9.8

(continued from previous page)

sage: P = E.random_point()
sage: P.order() # random
16777251

Similarly when 𝑗(𝐸) = 1728:

sage: p = 33554473
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F,[1,0])
sage: E.j_invariant()
1728
sage: P = E.random_point()
sage: P.order() # random
46912611635760

discrete_log(Q, ord=None)
Return the discrete logarithm of 𝑄 to base 𝑃 = self, that is, an integer 𝑥 such that 𝑥𝑃 = 𝑄.

A ValueError is raised if there is no solution.

ALGORITHM:

To compute the actual logarithm, pari:elllog is called.

However, elllog() does not guarantee termination if 𝑄 is not a multiple of 𝑃 , so we first need to check
subgroup membership. This is done as follows:

• Let 𝑛 denote the order of 𝑃 . First check that 𝑛𝑄 equals the point at infinity (and hence the order of 𝑄
divides 𝑛).

• If the curve order #𝐸 has been cached, check whether gcd(𝑛2,#𝐸) = 𝑛. If this holds, the curve has
cyclic 𝑛-torsion, hence all points whose order divides 𝑛 must be multiples of 𝑃 and we are done.

• Otherwise (if this test is inconclusive), check that the Weil pairing of 𝑃 and 𝑄 is trivial.

For anomalous curves with #𝐸 = 𝑝, the padic_elliptic_logarithm() function is called.

INPUT:

• Q (point) – another point on the same curve as self.

OUTPUT:

(integer) – The discrete logarithm of𝑄 with respect to 𝑃 , which is an integer 𝑥 with 0 ≤ 𝑥 < ord(𝑃) such
that 𝑥𝑃 = 𝑄, if one exists.

AUTHORS:

• John Cremona. Adapted to use generic functions 2008-04-05.

• Lorenz Panny (2022): switch to PARI.

EXAMPLES:

sage: F = GF((3,6),'a')
sage: a = F.gen()
sage: E = EllipticCurve([0,1,1,a,a])
sage: E.cardinality()
762
sage: P = E.gens()[0]

(continues on next page)

40 Chapter 3. Points on elliptic curves

https://docs.python.org/library/exceptions.html#ValueError
https://pari.math.u-bordeaux.fr/dochtml/help/elllog

Elliptic curves, Release 9.8

(continued from previous page)

sage: Q = 400*P
sage: P.discrete_log(Q)
400

has_finite_order()

Return True if this point has finite additive order as an element of the group of points on this curve.

Since the base field is finite, the answer will always be True.

EXAMPLES:

sage: E = EllipticCurve(GF(7), [1,3])
sage: P = E.points()[3]
sage: P.has_finite_order()
True

order()

Return the order of this point on the elliptic curve.

ALGORITHM: Use PARI function pari:ellorder.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: k.<a> = GF((5,5))
sage: E = EllipticCurve(k,[2,4]); E
Elliptic Curve defined by y^2 = x^3 + 2*x + 4 over Finite Field in a of size 5^5
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: P.order()
3227
sage: Q = E(0,2)
sage: Q.order()
7
sage: Q.additive_order()
7

sage: p=next_prime(2^150)
sage: E=EllipticCurve(GF(p),[1,1])
sage: P=E(831623307675610677632782670796608848711856078,␣
→˓42295786042873366706573292533588638217232964)
sage: P.order()
1427247692705959881058262545272474300628281448
sage: P.order() == E.cardinality()
True

The next example has 𝑗(𝐸) = 0:

sage: p = 33554501
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F,[0,1])
sage: E.j_invariant()

(continues on next page)

41

https://pari.math.u-bordeaux.fr/dochtml/help/ellorder

Elliptic curves, Release 9.8

(continued from previous page)

0
sage: P = E.random_point()
sage: P.order() # random
16777251

Similarly when 𝑗(𝐸) = 1728:

sage: p = 33554473
sage: F.<u> = GF((p,2))
sage: E = EllipticCurve(F,[1,0])
sage: E.j_invariant()
1728
sage: P = E.random_point()
sage: P.order() # random
46912611635760

padic_elliptic_logarithm(Q, p)
Return the discrete logarithm of 𝑄 to base 𝑃 = self, that is, an integer 𝑥 such that 𝑥𝑃 = 𝑄 only for
anomalous curves.

ALGORITHM:

Discrete logarithm computed as in [Sma1999] with a loop to avoid the canonical lift.

INPUT:

• Q (point) – another point on the same curve as self.

• p (integer) – a prime equals the order of the curve.

OUTPUT:

(integer) – The discrete logarithm of𝑄 with respect to 𝑃 , which is an integer 𝑥 with 0 ≤ 𝑥 < ord(𝑃) such
that 𝑥𝑃 = 𝑄.

AUTHORS:

• Sylvain Pelissier (2022) based on Samuel Neves code.

EXAMPLES:

sage: p=235322474717419
sage: b=8856682
sage: E = EllipticCurve(GF(p), [0, b])
sage: P = E(200673830421813, 57025307876612)
sage: Q = E(40345734829479, 211738132651297)
sage: x = P.padic_elliptic_logarithm(Q, p)
sage: x * P == Q
True

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field(curve, v,
check=True)

Bases: EllipticCurvePoint_field

A point on an elliptic curve over a number field.

Most of the functionality is derived from the parent class EllipticCurvePoint_field. In addition we have
support for orders, heights, reduction modulo primes, and elliptic logarithms.

42 Chapter 3. Points on elliptic curves

https://crypto.stackexchange.com/questions/70454/why-smarts-attack-doesnt-work-on-this-ecdlp/70508#70508

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E([0,0])
(0 : 0 : 1)
sage: E(0,0) # brackets are optional
(0 : 0 : 1)
sage: E([GF(5)(0), 0]) # entries are coerced
(0 : 0 : 1)

sage: E(0.000, 0)
(0 : 0 : 1)

sage: E(1,0,0)
Traceback (most recent call last):
...
TypeError: Coordinates [1, 0, 0] do not define a point on
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: E = EllipticCurve([0,0,1,-1,0])
sage: S = E(QQ); S
Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

additive_order()

Return the order of this point on the elliptic curve.

If the point has infinite order, returns +Infinity. For curves defined over Q, we call PARI; over other number
fields we implement the function here.

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.order()
+Infinity

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.order()
2
sage: P.additive_order()
2

archimedean_local_height(v=None, prec=None, weighted=False)
Compute the local height of self at the archimedean place 𝑣.

INPUT:

• self – a point on an elliptic curve over a number field 𝐾.

43

Elliptic curves, Release 9.8

• v – a real or complex embedding of K, or None (default). If 𝑣 is a real or complex embedding, return
the local height of self at 𝑣. If 𝑣 is None, return the total archimedean contribution to the global height.

• prec – integer, or None (default). The precision of the computation. If None, the precision is deduced
from v.

• weighted – boolean. If False (default), the height is normalised to be invariant under extension of
𝐾. If True, return this normalised height multiplied by the local degree if 𝑣 is a single place, or by the
degree of 𝐾 if 𝑣 is None.

OUTPUT:

A real number. The normalisation is twice that in Silverman’s paper [Sil1988]. Note that this local height
depends on the model of the curve.

ALGORITHM:

See [Sil1988], Section 4.

EXAMPLES:

Examples 1, 2, and 3 from [Sil1988]:

sage: K.<a> = QuadraticField(-2)
sage: E = EllipticCurve(K, [0,-1,1,0,0]); E
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a with␣
→˓defining polynomial x^2 + 2 with a = 1.414213562373095?*I
sage: P = E.lift_x(2+a); P
(a + 2 : 2*a + 1 : 1)
sage: P.archimedean_local_height(K.places(prec=170)[0]) / 2
0.45754773287523276736211210741423654346576029814695

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0]); E
Elliptic Curve defined by y^2 + 4*y = x^3 + 6*i*x over Number Field in i with␣
→˓defining polynomial x^2 + 1
sage: P = E((0,0))
sage: P.archimedean_local_height(K.places()[0]) / 2
0.510184995162373

sage: Q = E.lift_x(-9/4); Q
(-9/4 : -27/8*i : 1)
sage: Q.archimedean_local_height(K.places()[0]) / 2
0.654445619529600

An example over the rational numbers:

sage: E = EllipticCurve([0, 0, 0, -36, 0])
sage: P = E([-3, 9])
sage: P.archimedean_local_height()
1.98723816350773

Local heights of torsion points can be non-zero (unlike the global height):

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, K(1), 0])
sage: P = E(i, 0)

(continues on next page)

44 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: P.archimedean_local_height()
0.346573590279973

elliptic_logarithm(embedding=None, precision=100, algorithm='pari')
Return the elliptic logarithm of this elliptic curve point.

An embedding of the base field into R or C (with arbitrary precision) may be given; otherwise the first real
embedding is used (with the specified precision) if any, else the first complex embedding.

INPUT:

• embedding: an embedding of the base field into R or C

• precision: a positive integer (default 100) setting the number of bits of precision for the computation

• algorithm: either ‘pari’ (default for real embeddings) to use PARI’s pari:ellpointtoz, or ‘sage’ for a
native implementation. Ignored for complex embeddings.

ALGORITHM:

See [Coh1993] for the case of real embeddings, and Cremona, J.E. and Thongjunthug, T. 2010 for the
complex case.

AUTHORS:

• Michael Mardaus (2008-07),

• Tobias Nagel (2008-07) – original version from [Coh1993].

• John Cremona (2008-07) – revision following eclib code.

• John Cremona (2010-03) – implementation for complex embeddings.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: E.discriminant() > 0
True
sage: P = E([-1,1])
sage: P.is_on_identity_component ()
False
sage: P.elliptic_logarithm (precision=96)
0.4793482501902193161295330101 + 0.985868850775824102211203849...*I
sage: Q=E([3,5])
sage: Q.is_on_identity_component()
True
sage: Q.elliptic_logarithm (precision=96)
1.931128271542559442488585220

An example with negative discriminant, and a torsion point:

sage: E = EllipticCurve('11a1')
sage: E.discriminant() < 0
True
sage: P = E([16,-61])
sage: P.elliptic_logarithm(precision=70)
0.25384186085591068434
sage: E.period_lattice().real_period(prec=70) / P.elliptic_

(continues on next page)

45

https://pari.math.u-bordeaux.fr/dochtml/help/ellpointtoz

Elliptic curves, Release 9.8

(continued from previous page)

→˓logarithm(precision=70)
5.0000000000000000000

A larger example. The default algorithm uses PARI and makes sure the result has the requested precision:

sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) #18074g1
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])
sage: P.elliptic_logarithm() # 100 bits
0.27656204014107061464076203097

The native algorithm ‘sage’ used to have trouble with precision in this example, but no longer:

sage: P.elliptic_logarithm(algorithm='sage') # 100 bits
0.27656204014107061464076203097

This shows that the bug reported at trac ticket #4901 has been fixed:

sage: E = EllipticCurve("4390c2")
sage: P = E(683762969925/44944,-565388972095220019/9528128)
sage: P.elliptic_logarithm()
0.00025638725886520225353198932529
sage: P.elliptic_logarithm(precision=64)
0.000256387258865202254
sage: P.elliptic_logarithm(precision=65)
0.0002563872588652022535
sage: P.elliptic_logarithm(precision=128)
0.00025638725886520225353198932528666427412
sage: P.elliptic_logarithm(precision=129)
0.00025638725886520225353198932528666427412
sage: P.elliptic_logarithm(precision=256)
0.
→˓0002563872588652022535319893252866642741168388008346370015005142128009610936373
sage: P.elliptic_logarithm(precision=257)
0.
→˓00025638725886520225353198932528666427411683880083463700150051421280096109363730

Examples over number fields:

sage: K.<a> = NumberField(x^3-2)
sage: embs = K.embeddings(CC)
sage: E = EllipticCurve([0,1,0,a,a])
sage: Ls = [E.period_lattice(e) for e in embs]
sage: [L.real_flag for L in Ls]
[0, 0, -1]
sage: P = E(-1,0) # order 2
sage: [L.elliptic_logarithm(P) for L in Ls]
[-1.73964256006716 - 1.07861534489191*I, -0.363756518406398 - 1.
→˓50699412135253*I, 1.90726488608927]

sage: E = EllipticCurve([-a^2 - a - 1, a^2 + a])
sage: Ls = [E.period_lattice(e) for e in embs]
sage: pts = [E(2*a^2 - a - 1 , -2*a^2 - 2*a + 6), E(-2/3*a^2 - 1/3 , -4/3*a -␣
→˓2/3), E(5/4*a^2 - 1/2*a , -a^2 - 1/4*a + 9/4), E(2*a^2 + 3*a + 4 , -7*a^2 -␣

(continues on next page)

46 Chapter 3. Points on elliptic curves

https://trac.sagemath.org/4901

Elliptic curves, Release 9.8

(continued from previous page)

→˓10*a - 12)]
sage: [[L.elliptic_logarithm(P) for P in pts] for L in Ls]
[[0.250819591818930 - 0.411963479992219*I, -0.290994550611374 - 1.
→˓37239400324105*I, -0.693473752205595 - 2.45028458830342*I, -0.151659609775291␣
→˓- 1.48985406505459*I], [1.33444787667954 - 1.50889756650544*I, 0.
→˓792633734249234 - 0.548467043256610*I, 0.390154532655013 + 0.
→˓529423541805758*I, 0.931968675085317 - 0.431006981443071*I], [1.
→˓14758249500109 + 0.853389664016075*I, 2.59823462472518 + 0.853389664016075*I,␣
→˓1.75372176444709, 0.303069634723001]]

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,9*i-10,21-i])
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2-i,4+2*i)
sage: L.elliptic_logarithm(P,prec=100)
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I

has_finite_order()

Return True iff this point has finite order on the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.has_finite_order()
False

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.has_finite_order()
True

has_good_reduction(P=None)
Returns True iff this point has good reduction modulo a prime.

INPUT:

• P – a prime of the base_field of the point’s curve, or None (default)

OUTPUT:

(bool) If a prime𝑃 of the base field is specified, returns True iff the point has good reduction at𝑃 ; otherwise,
return true if the point has god reduction at all primes in the support of the discriminant of this model.

EXAMPLES:

sage: E = EllipticCurve('990e1')
sage: P = E.gen(0); P
(15 : 51 : 1)
sage: [E.has_good_reduction(p) for p in [2,3,5,7]]
[False, False, False, True]
sage: [P.has_good_reduction(p) for p in [2,3,5,7]]

(continues on next page)

47

Elliptic curves, Release 9.8

(continued from previous page)

[True, False, True, True]
sage: [E.tamagawa_exponent(p) for p in [2,3,5,7]]
[2, 2, 1, 1]
sage: [(2*P).has_good_reduction(p) for p in [2,3,5,7]]
[True, True, True, True]
sage: P.has_good_reduction()
False
sage: (2*P).has_good_reduction()
True
sage: (3*P).has_good_reduction()
False

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K,[0,1,0,-160,308])
sage: P = E(26,-120)
sage: E.discriminant().support()
[Fractional ideal (i + 1),
Fractional ideal (-i - 2),
Fractional ideal (2*i + 1),
Fractional ideal (3)]
sage: [E.tamagawa_exponent(p) for p in E.discriminant().support()]
[1, 4, 4, 4]
sage: P.has_good_reduction()
False
sage: (2*P).has_good_reduction()
False
sage: (4*P).has_good_reduction()
True

has_infinite_order()

Return True iff this point has infinite order on the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.has_infinite_order()
True

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.has_infinite_order()
False

height(precision=None, normalised=True, algorithm='pari')
Return the Néron-Tate canonical height of the point.

INPUT:

• self – a point on an elliptic curve over a number field 𝐾.

• precision – positive integer, or None (default). The precision in bits of the result. If None, the default
real precision is used.

48 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

• normalised – boolean. If True (default), the height is normalised to be invariant under extension of
𝐾. If False, return this normalised height multiplied by the degree of 𝐾.

• algorithm – string: either ‘pari’ (default) or ‘sage’. If ‘pari’ and the base field is Q, use the PARI
library function; otherwise use the Sage implementation.

OUTPUT:

The rational number 0, or a non-negative real number.

There are two normalisations used in the literature, one of which is double the other. We use the larger of
the two, which is the one appropriate for the BSD conjecture. This is consistent with [Cre1997] and double
that of [Sil2009].

See Wikipedia article Néron-Tate height.

Note: The correct height to use for the regulator in the BSD formula is the non-normalised height.

EXAMPLES:

sage: E = EllipticCurve('11a'); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: P = E([5,5]); P
(5 : 5 : 1)
sage: P.height()
0
sage: Q = 5*P
sage: Q.height()
0

sage: E = EllipticCurve('37a'); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: P.height()
0.0511114082399688
sage: P.order()
+Infinity
sage: E.regulator()
0.0511114082399688...

sage: def naive_height(P):
....: return log(RR(max(abs(P[0].numerator()), abs(P[0].denominator()))))
sage: for n in [1..10]:
....: print(naive_height(2^n*P)/4^n)
0.000000000000000
0.0433216987849966
0.0502949347635656
0.0511006335618645
0.0511007834799612
0.0511013666152466
0.0511034199907743
0.0511106492906471
0.0511114081541082
0.0511114081541180

49

https://en.wikipedia.org/wiki/N�ron-Tate height

Elliptic curves, Release 9.8

sage: E = EllipticCurve('4602a1'); E
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 37746035*x - 89296920339␣
→˓over Rational Field
sage: x = 77985922458974949246858229195945103471590
sage: y = 19575260230015313702261379022151675961965157108920263594545223
sage: d = 2254020761884782243
sage: E([x / d^2, y / d^3]).height()
86.7406561381275

sage: E = EllipticCurve([17, -60, -120, 0, 0]); E
Elliptic Curve defined by y^2 + 17*x*y - 120*y = x^3 - 60*x^2 over Rational␣
→˓Field
sage: E([30, -90]).height()
0

sage: E = EllipticCurve('389a1'); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: [P,Q] = [E(-1,1),E(0,-1)]
sage: P.height(precision=100)
0.68666708330558658572355210295
sage: (3*Q).height(precision=100)/Q.height(precision=100)
9.0000000000000000000000000000
sage: _.parent()
Real Field with 100 bits of precision

Canonical heights over number fields are implemented as well:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([a, 4]); E
Elliptic Curve defined by y^2 = x^3 + a*x + 4 over Number Field in a with␣
→˓defining polynomial x^3 - 2
sage: P = E((0,2))
sage: P.height()
0.810463096585925
sage: P.height(precision=100)
0.81046309658592536863991810577
sage: P.height(precision=200)
0.81046309658592536863991810576865158896130286417155832378086
sage: (2*P).height() / P.height()
4.00000000000000
sage: (100*P).height() / P.height()
10000.0000000000

Setting normalised=False multiplies the height by the degree of 𝐾:

sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: P.height()
0.0511114082399688
sage: P.height(normalised=False)
0.0511114082399688
sage: K.<z> = CyclotomicField(5)

(continues on next page)

50 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: EK = E.change_ring(K)
sage: PK = EK([0,0])
sage: PK.height()
0.0511114082399688
sage: PK.height(normalised=False)
0.204445632959875

Some consistency checks:

sage: E = EllipticCurve('5077a1')
sage: P = E([-2,3,1])
sage: P.height()
1.36857250535393

sage: EK = E.change_ring(QuadraticField(-3,'a'))
sage: PK = EK([-2,3,1])
sage: PK.height()
1.36857250535393

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0])
sage: Q = E.lift_x(-9/4); Q
(-9/4 : -27/8*i : 1)
sage: Q.height()
2.69518560017909
sage: (15*Q).height() / Q.height()
225.000000000000

sage: E = EllipticCurve('37a')
sage: P = E([0,-1])
sage: P.height()
0.0511114082399688
sage: K.<a> = QuadraticField(-7)
sage: ED = E.quadratic_twist(-7)
sage: Q = E.isomorphism_to(ED.change_ring(K))(P); Q
(0 : -7/2*a - 1/2 : 1)
sage: Q.height()
0.0511114082399688
sage: Q.height(precision=100)
0.051111408239968840235886099757

An example to show that the bug at trac ticket #5252 is fixed:

sage: E = EllipticCurve([1, -1, 1, -2063758701246626370773726978,␣
→˓32838647793306133075103747085833809114881])
sage: P = E([-30987785091199, 258909576181697016447])
sage: P.height()
25.8603170675462
sage: P.height(precision=100)
25.860317067546190743868840741
sage: P.height(precision=250)
25.860317067546190743868840740735110323098872903844416215577171041783572513

(continues on next page)

51

https://trac.sagemath.org/5252

Elliptic curves, Release 9.8

(continued from previous page)

sage: P.height(precision=500)
25.
→˓8603170675461907438688407407351103230988729038444162155771710417835725129551130570889813281792157278507639909972112856019190236125362914195452321720

sage: P.height(precision=100) == P.non_archimedean_local_height(prec=100)+P.
→˓archimedean_local_height(prec=100)
True

An example to show that the bug at trac ticket #8319 is fixed (correct height when the curve is not minimal):

sage: E = EllipticCurve([-5580472329446114952805505804593498080000,-
→˓157339733785368110382973689903536054787700497223306368000000])
sage: xP =␣
→˓204885147732879546487576840131729064308289385547094673627174585676211859152978311600/
→˓23625501907057948132262217188983681204856907657753178415430361
sage: P = E.lift_x(xP)
sage: P.height()
157.432598516754
sage: Q = 2*P
sage: Q.height() # long time (4s)
629.730394067016
sage: Q.height()-4*P.height() # long time
0.000000000000000

An example to show that the bug at trac ticket #12509 is fixed (precision issues):

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2-x-1)
sage: v = [0, a + 1, 1, 28665*a - 46382, 2797026*a - 4525688]
sage: E = EllipticCurve(v)
sage: P = E([72*a - 509/5, -682/25*a - 434/25])
sage: P.height()
1.38877711688727
sage: (2*P).height()/P.height()
4.00000000000000
sage: (2*P).height(precision=100)/P.height(precision=100)
4.0000000000000000000000000000
sage: (2*P).height(precision=1000)/P.height(precision=1000)
4.
→˓000

This shows that the bug reported at trac ticket #13951 has been fixed:

sage: E = EllipticCurve([0,17])
sage: P1 = E(2,5)
sage: P1.height()
1.06248137652528
sage: F = E.change_ring(QuadraticField(-3,'a'))
sage: P2 = F([2,5])
sage: P2.height()
1.06248137652528

is_on_identity_component(embedding=None)

52 Chapter 3. Points on elliptic curves

https://trac.sagemath.org/8319
https://trac.sagemath.org/12509
https://trac.sagemath.org/13951

Elliptic curves, Release 9.8

Returns True iff this point is on the identity component of its curve with respect to a given (real or complex)
embedding.

INPUT:

• self – a point on a curve over any ordered field (e.g. Q)

• embedding – an embedding from the base_field of the point’s curve into R or C; if None (the default)
it uses the first embedding of the base_field into R if any, else the first embedding into C.

OUTPUT:

(bool) – True iff the point is on the identity component of the curve. (If the point is zero then the result is
True.)

EXAMPLES:

For 𝐾 = Q there is no need to specify an embedding:

sage: E=EllipticCurve('5077a1')
sage: [E.lift_x(x).is_on_identity_component() for x in srange(-3,5)]
[False, False, False, False, False, True, True, True]

An example over a field with two real embeddings:

sage: L.<a> = QuadraticField(2)
sage: E=EllipticCurve(L,[0,1,0,a,a])
sage: P=E(-1,0)
sage: [P.is_on_identity_component(e) for e in L.embeddings(RR)]
[False, True]

We can check this as follows:

sage: [e(E.discriminant())>0 for e in L.embeddings(RR)]
[True, False]
sage: e = L.embeddings(RR)[0]
sage: E1 = EllipticCurve(RR,[e(ai) for ai in E.ainvs()])
sage: e1,e2,e3 = E1.two_division_polynomial().roots(RR,multiplicities=False)
sage: e1 < e2 < e3 and e(P[0]) < e3
True

non_archimedean_local_height(v=None, prec=None, weighted=False, is_minimal=None)
Compute the local height of self at the non-archimedean place 𝑣.

INPUT:

• self – a point on an elliptic curve over a number field 𝐾.

• v – a non-archimedean place of𝐾, or None (default). If 𝑣 is a non-archimedean place, return the local
height of self at 𝑣. If 𝑣 is None, return the total non-archimedean contribution to the global height.

• prec – integer, or None (default). The precision of the computation. If None, the height is returned
symbolically.

• weighted – boolean. If False (default), the height is normalised to be invariant under extension of
𝐾. If True, return this normalised height multiplied by the local degree if 𝑣 is a single place, or by the
degree of 𝐾 if 𝑣 is None.

OUTPUT:

53

Elliptic curves, Release 9.8

A real number. The normalisation is twice that in Silverman’s paper [Sil1988]. Note that this local height
depends on the model of the curve.

ALGORITHM:

See [Sil1988], Section 5.

EXAMPLES:

Examples 2 and 3 from [Sil1988]:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0]); E
Elliptic Curve defined by y^2 + 4*y = x^3 + 6*i*x over Number Field in i with␣
→˓defining polynomial x^2 + 1
sage: P = E((0,0))
sage: P.non_archimedean_local_height(K.ideal(i+1))
-1/2*log(2)
sage: P.non_archimedean_local_height(K.ideal(3))
0
sage: P.non_archimedean_local_height(K.ideal(1-2*i))
0

sage: Q = E.lift_x(-9/4); Q
(-9/4 : -27/8*i : 1)
sage: Q.non_archimedean_local_height(K.ideal(1+i))
2*log(2)
sage: Q.non_archimedean_local_height(K.ideal(3))
0
sage: Q.non_archimedean_local_height(K.ideal(1-2*i))
0
sage: Q.non_archimedean_local_height()
2*log(2)

An example over the rational numbers:

sage: E = EllipticCurve([0, 0, 0, -36, 0])
sage: P = E([-3, 9])
sage: P.non_archimedean_local_height()
-log(3)

Local heights of torsion points can be non-zero (unlike the global height):

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, K(1), 0])
sage: P = E(i, 0)
sage: P.non_archimedean_local_height()
-1/2*log(2)

order()

Return the order of this point on the elliptic curve.

If the point has infinite order, returns +Infinity. For curves defined over Q, we call PARI; over other number
fields we implement the function here.

Note: additive_order() is a synonym for order()

54 Chapter 3. Points on elliptic curves

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.order()
+Infinity

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.order()
2
sage: P.additive_order()
2

padic_elliptic_logarithm(p, absprec=20)
Computes the 𝑝-adic elliptic logarithm of this point.

INPUT:

p - integer: a prime absprec - integer (default: 20): the initial 𝑝-adic absolute precision of the computation

OUTPUT:

The 𝑝-adic elliptic logarithm of self, with precision absprec.

AUTHORS:

• Tobias Nagel

• Michael Mardaus

• John Cremona

ALGORITHM:

For points in the formal group (i.e. not integral at 𝑝) we take the log() function from the formal groups
module and evaluate it at −𝑥/𝑦. Otherwise we first multiply the point to get into the formal group, and
divide the result afterwards.

Todo: See comments at trac ticket #4805. Currently the absolute precision of the result may be less than
the given value of absprec, and error-handling is imperfect.

EXAMPLES:

sage: E = EllipticCurve([0,1,1,-2,0])
sage: E(0).padic_elliptic_logarithm(3)
0
sage: P = E(0,0)
sage: P.padic_elliptic_logarithm(3)
2 + 2*3 + 3^3 + 2*3^7 + 3^8 + 3^9 + 3^11 + 3^15 + 2*3^17 + 3^18 + O(3^19)
sage: P.padic_elliptic_logarithm(3).lift()
660257522
sage: P = E(-11/9,28/27)
sage: [(2*P).padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p in␣
→˓prime_range(20)] # long time (3s)
[2 + O(2^19), 2 + O(3^20), 2 + O(5^19), 2 + O(7^19), 2 + O(11^19), 2 + O(13^19),

(continues on next page)

55

https://trac.sagemath.org/4805

Elliptic curves, Release 9.8

(continued from previous page)

→˓ 2 + O(17^19), 2 + O(19^19)]
sage: [(3*P).padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p in␣
→˓prime_range(12)] # long time (2s)
[1 + 2 + O(2^19), 3 + 3^20 + O(3^21), 3 + O(5^19), 3 + O(7^19), 3 + O(11^19)]
sage: [(5*P).padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p in␣
→˓prime_range(12)] # long time (2s)
[1 + 2^2 + O(2^19), 2 + 3 + O(3^20), 5 + O(5^19), 5 + O(7^19), 5 + O(11^19)]

An example which arose during reviewing trac ticket #4741:

sage: E = EllipticCurve('794a1')
sage: P = E(-1,2)
sage: P.padic_elliptic_logarithm(2) # default precision=20
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + O(2^16)
sage: P.padic_elliptic_logarithm(2, absprec=30)
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + 2^22 + 2^23 + 2^24 + O(2^26)
sage: P.padic_elliptic_logarithm(2, absprec=40)
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + 2^22 + 2^23 + 2^24 + 2^28 +␣
→˓2^29 + 2^31 + 2^34 + O(2^35)

reduction(p)
This finds the reduction of a point 𝑃 on the elliptic curve modulo the prime 𝑝.

INPUT:

• self – A point on an elliptic curve.

• p – a prime number

OUTPUT:

The point reduced to be a point on the elliptic curve modulo 𝑝.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,0])
sage: P = E(0,0)
sage: P.reduction(5)
(0 : 0 : 1)
sage: Q = E(98,931)
sage: Q.reduction(5)
(3 : 1 : 1)
sage: Q.reduction(5).curve() == E.reduction(5)
True

sage: F.<a> = NumberField(x^2+5)
sage: E = EllipticCurve(F,[1,2,3,4,0])
sage: Q = E(98,931)
sage: Q.reduction(a)
(3 : 1 : 1)
sage: Q.reduction(11)
(10 : 7 : 1)

sage: F.<a> = NumberField(x^3+x^2+1)
sage: E = EllipticCurve(F,[a,2])

(continues on next page)

56 Chapter 3. Points on elliptic curves

https://trac.sagemath.org/4741

Elliptic curves, Release 9.8

(continued from previous page)

sage: P = E(a,1)
sage: P.reduction(F.ideal(5))
(abar : 1 : 1)
sage: P.reduction(F.ideal(a^2-4*a-2))
(abar : 1 : 1)

57

Elliptic curves, Release 9.8

58 Chapter 3. Points on elliptic curves

CHAPTER

FOUR

ELLIPTIC CURVES OVER A GENERAL RING

Sage defines an elliptic curve over a ring 𝑅 as a Weierstrass Model with five coefficients [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] in 𝑅 given
by

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6.

Note that the (usual) scheme-theoretic definition of an elliptic curve over 𝑅 would require the discriminant to be a
unit in 𝑅; Sage only imposes that the discriminant is non-zero. Also note that in Magma, “Weierstrass Model” refers
to a model with 𝑎1 = 𝑎2 = 𝑎3 = 0, which is called Short Weierstrass Model in Sage; these do not always exist in
characteristics 2 and 3.

EXAMPLES:

We construct an elliptic curve over an elaborate base ring:

sage: p, a, b = 97, 1, 3
sage: R.<u> = GF(p)[]
sage: S.<v> = R[]
sage: T = S.fraction_field()
sage: E = EllipticCurve(T, [a, b]); E
Elliptic Curve defined by y^2 = x^3 + x + 3 over Fraction Field of Univariate␣
→˓Polynomial Ring in v over Univariate Polynomial Ring in u over Finite Field of size 97
sage: latex(E)
y^2 = x^{3} + x + 3

AUTHORS:

• William Stein (2005): Initial version

• Robert Bradshaw et al. . . .

• John Cremona (2008-01): isomorphisms, automorphisms and twists in all characteristics

• Julian Rueth (2014-04-11): improved caching

• Lorenz Panny (2022-04-14): added .montgomery_model()

class sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic(K, ainvs)
Bases: WithEqualityById, ProjectivePlaneCurve

Elliptic curve over a generic base ring.

EXAMPLES:

sage: E = EllipticCurve([1,2,3/4,7,19]); E
Elliptic Curve defined by y^2 + x*y + 3/4*y = x^3 + 2*x^2 + 7*x + 19 over Rational␣
→˓Field

(continues on next page)

59

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 9.8

(continued from previous page)

sage: loads(E.dumps()) == E
True
sage: E = EllipticCurve([1,3])
sage: P = E([-1,1,1])
sage: -5*P
(179051/80089 : -91814227/22665187 : 1)

a1()

Return the 𝑎1 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a1()
1

a2()

Return the 𝑎2 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a2()
2

a3()

Return the 𝑎3 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a3()
3

a4()

Return the 𝑎4 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a4()
4

a6()

Return the 𝑎6 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a6()
6

a_invariants()

The 𝑎-invariants of this elliptic curve, as a tuple.

60 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

OUTPUT:

(tuple) - a 5-tuple of the 𝑎-invariants of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.a_invariants()
(1, 2, 3, 4, 5)

sage: E = EllipticCurve([0,1]); E
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: E.a_invariants()
(0, 0, 0, 0, 1)

sage: E = EllipticCurve([GF(7)(3),5])
sage: E.a_invariants()
(0, 0, 0, 3, 5)

ainvs()

The 𝑎-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 5-tuple of the 𝑎-invariants of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.a_invariants()
(1, 2, 3, 4, 5)

sage: E = EllipticCurve([0,1]); E
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: E.a_invariants()
(0, 0, 0, 0, 1)

sage: E = EllipticCurve([GF(7)(3),5])
sage: E.a_invariants()
(0, 0, 0, 3, 5)

automorphisms(field=None)
Return the set of isomorphisms from self to itself (as a list).

The identity and negation morphisms are guaranteed to appear as the first and second entry of the returned
list.

INPUT:

• field (default None) – a field into which the coefficients of the curve may be coerced (by default, uses
the base field of the curve).

OUTPUT:

(list) A list of WeierstrassIsomorphism objects consisting of all the isomorphisms from the curve self
to itself defined over field.

EXAMPLES:

61

Elliptic curves, Release 9.8

sage: E = EllipticCurve_from_j(QQ(0)) # a curve with j=0 over QQ
sage: E.automorphisms()
[Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Rational Field

Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Rational Field

Via: (u,r,s,t) = (-1, 0, 0, -1)]

We can also find automorphisms defined over extension fields:

sage: K.<a> = NumberField(x^2+3) # adjoin roots of unity
sage: E.automorphisms(K)
[Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Number Field in a with defining polynomial x^2 + 3

Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Number Field in a with defining polynomial x^2 + 3

Via: (u,r,s,t) = (-1, 0, 0, -1),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Number Field in a with defining polynomial x^2 + 3

Via: (u,r,s,t) = (-1/2*a - 1/2, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Number Field in a with defining polynomial x^2 + 3

Via: (u,r,s,t) = (1/2*a + 1/2, 0, 0, -1),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Number Field in a with defining polynomial x^2 + 3

Via: (u,r,s,t) = (1/2*a - 1/2, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Number Field in a with defining polynomial x^2 + 3

Via: (u,r,s,t) = (-1/2*a + 1/2, 0, 0, -1)]

sage: [len(EllipticCurve_from_j(GF(q,'a')(0)).automorphisms()) for q in [2,4,3,
→˓9,5,25,7,49]]
[2, 24, 2, 12, 2, 6, 6, 6]

b2()

Return the 𝑏2 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b2()
9

b4()

Return the 𝑏4 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b4()
11

62 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

b6()

Return the 𝑏6 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b6()
29

b8()

Return the 𝑏8 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b8()
35

b_invariants()

Return the 𝑏-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 4-tuple of the 𝑏-invariants of this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.b_invariants()
(-4, -20, -79, -21)

sage: E = EllipticCurve([-4,0])
sage: E.b_invariants()
(0, -8, 0, -16)

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b_invariants()
(9, 11, 29, 35)
sage: E.b2()
9
sage: E.b4()
11
sage: E.b6()
29
sage: E.b8()
35

ALGORITHM:

These are simple functions of the 𝑎-invariants.

AUTHORS:

• William Stein (2005-04-25)

63

Elliptic curves, Release 9.8

base_extend(R)
Return the base extension of self to 𝑅.

INPUT:

• R – either a ring into which the 𝑎-invariants of self may be converted, or a morphism which may be
applied to them.

OUTPUT:

An elliptic curve over the new ring whose 𝑎-invariants are the images of the 𝑎-invariants of self.

EXAMPLES:

sage: E = EllipticCurve(GF(5),[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
sage: E1 = E.base_extend(GF(125,'a')); E1
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of size 5^3

base_ring()

Return the base ring of the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(GF(49, 'a'), [3,5])
sage: E.base_ring()
Finite Field in a of size 7^2

sage: E = EllipticCurve([1,1])
sage: E.base_ring()
Rational Field

sage: E = EllipticCurve(ZZ, [3,5])
sage: E.base_ring()
Integer Ring

c4()

Return the 𝑐4 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c4()
496

c6()

Return the 𝑐6 invariant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c6()
20008

c_invariants()

Return the 𝑐-invariants of this elliptic curve, as a tuple.

This method is cached.

64 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

OUTPUT:

(tuple) - a 2-tuple of the 𝑐-invariants of the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c_invariants()
(496, 20008)

sage: E = EllipticCurve([-4,0])
sage: E.c_invariants()
(192, 0)

ALGORITHM:

These are simple functions of the 𝑎-invariants.

AUTHORS:

• William Stein (2005-04-25)

change_ring(R)
Return the base change of self to 𝑅.

This has the same effect as self.base_extend(R).

EXAMPLES:

sage: F2 = GF(5^2,'a'); a = F2.gen()
sage: F4 = GF(5^4,'b'); b = F4.gen()
sage: h = F2.hom([a.charpoly().roots(ring=F4,multiplicities=False)[0]],F4)
sage: E = EllipticCurve(F2,[1,a]); E
Elliptic Curve defined by y^2 = x^3 + x + a over Finite Field in a of size 5^2
sage: E.change_ring(h)
Elliptic Curve defined by y^2 = x^3 + x + (4*b^3+4*b^2+4*b+3) over Finite Field␣
→˓in b of size 5^4

change_weierstrass_model(*urst)
Return a new Weierstrass model of self under the standard transformation (𝑢, 𝑟, 𝑠, 𝑡)

(𝑥, 𝑦) ↦→ (𝑥′, 𝑦′) = (𝑢2𝑥+ 𝑟, 𝑢3𝑦 + 𝑠𝑢2𝑥+ 𝑡).

EXAMPLES:

sage: E = EllipticCurve('15a')
sage: F1 = E.change_weierstrass_model([1/2,0,0,0]); F1
Elliptic Curve defined by y^2 + 2*x*y + 8*y = x^3 + 4*x^2 - 160*x - 640 over␣
→˓Rational Field
sage: F2 = E.change_weierstrass_model([7,2,1/3,5]); F2
Elliptic Curve defined by y^2 + 5/21*x*y + 13/343*y = x^3 + 59/441*x^2 - 10/
→˓7203*x - 58/117649 over Rational Field
sage: F1.is_isomorphic(F2)
True

discriminant()

Return the discriminant of this elliptic curve.

This method is cached.

65

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.discriminant()
37

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.discriminant()
-161051

sage: E = EllipticCurve([GF(7)(2),1])
sage: E.discriminant()
1

division_polynomial(m, x=None, two_torsion_multiplicity=2, force_evaluate=None)
Return the 𝑚𝑡ℎ division polynomial of this elliptic curve evaluated at 𝑥.

The division polynomial is cached if 𝑥 is None.

INPUT:

• m – positive integer.

• x – optional ring element to use as the 𝑥 variable. If 𝑥 is None (omitted), then a new polynomial ring
will be constructed over the base ring of the elliptic curve, and its generator will be used as 𝑥. Note
that 𝑥 does not need to be a generator of a polynomial ring; any ring element works. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

• two_torsion_multiplicity – 0, 1, or 2

If 0: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which omits factors whose roots are the 𝑥-coordinates of the 2-torsion points. When 𝑥 is not None,
the evaluation of such a polynomial at 𝑥 is returned.

If 2: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which includes a factor of degree 3 whose roots are the 𝑥-coordinates of the 2-torsion points. Similarly,
when 𝑥 is not None, the evaluation of such a polynomial at 𝑥 is returned.

If 1: For even 𝑚 when 𝑥 is None, a bivariate polynomial over the base ring of the curve is returned,
which includes a factor 2𝑦+𝑎1𝑥+𝑎3 having simple zeros at the 2-torsion points. When 𝑥 is not None,
it should be a tuple of length 2, and the evaluation of such a polynomial at 𝑥 is returned.

• force_evaluate (optional) – 0, 1, or 2

By default, this method makes use of previously cached generic division polynomials to compute the
value of the polynomial at a given element 𝑥whenever it appears beneficial to do so. Explicitly setting
this flag overrides the default behavior.

Note that the complexity of evaluating a generic division polynomial scales much worse than that of
computing the value at a point directly (using the recursive formulas), hence setting this flag can be
detrimental to performance.

If 0: Do not use cached generic division polynomials.

If 1: If the generic division polynomial for this 𝑚 has been cached before, evaluate it at 𝑥 to compute
the result.

If 2: Compute the value at 𝑥 by evaluating the generic division polynomial. If the generic 𝑚-division
polynomial has not yet been cached, compute and cache it first.

EXAMPLES:

66 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.division_polynomial(1)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=0)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=1)
2*y + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=2)
4*x^3 - 4*x + 1
sage: E.division_polynomial(2)
4*x^3 - 4*x + 1
sage: [E.division_polynomial(3, two_torsion_multiplicity=i) for i in range(3)]
[3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1]
sage: [type(E.division_polynomial(3, two_torsion_multiplicity=i)) for i in␣
→˓range(3)]
[<... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
→˓'>,
<... 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_
→˓libsingular'>,
<... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
→˓'>]

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z>=PolynomialRing(QQ)
sage: E.division_polynomial(4,z,0)
2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821
sage: E.division_polynomial(4,z)
8*z^9 - 24*z^8 - 464*z^7 - 2758*z^6 + 6636*z^5 + 34356*z^4 + 53510*z^3 +␣
→˓99714*z^2 + 351024*z + 459859

This does not work, since when two_torsion_multiplicity is 1, we compute a bivariate polynomial, and must
evaluate at a tuple of length 2:

sage: E.division_polynomial(4,z,1)
Traceback (most recent call last):
...
ValueError: x should be a tuple of length 2 (or None) when two_torsion_
→˓multiplicity is 1
sage: R.<z,w>=PolynomialRing(QQ,2)
sage: E.division_polynomial(4,(z,w),1).factor()
(2*w + 1) * (2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821)

We can also evaluate this bivariate polynomial at a point:

sage: P = E(5,5)
sage: E.division_polynomial(4,P,two_torsion_multiplicity=1)
-1771561

division_polynomial_0(n, x=None)
Return the 𝑛𝑡ℎ torsion (division) polynomial, without the 2-torsion factor if 𝑛 is even, as a polynomial in
𝑥.

These are the polynomials 𝑔𝑛 defined in [MT1991], but with the sign flipped for even 𝑛, so that the leading
coefficient is always positive.

67

Elliptic curves, Release 9.8

Note: This function is intended for internal use; users should use division_polynomial().

See also:

• division_polynomial()

• _multiple_x_numerator()

• _multiple_x_denominator()

INPUT:

• n – positive integer, or the special values -1 and -2 which mean 𝐵6 = (2𝑦 + 𝑎1𝑥 + 𝑎3)2 and 𝐵2
6

respectively (in the notation of [MT1991]); or a list of integers.

• x – a ring element to use as the “x” variable or None (default: None). If None, then a new polynomial
ring will be constructed over the base ring of the elliptic curve, and its generator will be used as x.
Note that x does not need to be a generator of a polynomial ring; any ring element is ok. This permits
fast calculation of the torsion polynomial evaluated on any element of a ring.

ALGORITHM:

Recursion described in [MT1991]. The recursive formulae are evaluated 𝑂(log2 𝑛) times.

AUTHORS:

• David Harvey (2006-09-24): initial version

• John Cremona (2008-08-26): unified division polynomial code

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.division_polynomial_0(1)
1
sage: E.division_polynomial_0(2)
1
sage: E.division_polynomial_0(3)
3*x^4 - 6*x^2 + 3*x - 1
sage: E.division_polynomial_0(4)
2*x^6 - 10*x^4 + 10*x^3 - 10*x^2 + 2*x + 1
sage: E.division_polynomial_0(5)
5*x^12 - 62*x^10 + 95*x^9 - 105*x^8 - 60*x^7 + 285*x^6 - 174*x^5 - 5*x^4 - 5*x^
→˓3 + 35*x^2 - 15*x + 2
sage: E.division_polynomial_0(6)
3*x^16 - 72*x^14 + 168*x^13 - 364*x^12 + 1120*x^10 - 1144*x^9 + 300*x^8 - 540*x^
→˓7 + 1120*x^6 - 588*x^5 - 133*x^4 + 252*x^3 - 114*x^2 + 22*x - 1
sage: E.division_polynomial_0(7)
7*x^24 - 308*x^22 + 986*x^21 - 2954*x^20 + 28*x^19 + 17171*x^18 - 23142*x^17 +␣
→˓511*x^16 - 5012*x^15 + 43804*x^14 - 7140*x^13 - 96950*x^12 + 111356*x^11 -␣
→˓19516*x^10 - 49707*x^9 + 40054*x^8 - 124*x^7 - 18382*x^6 + 13342*x^5 - 4816*x^
→˓4 + 1099*x^3 - 210*x^2 + 35*x - 3
sage: E.division_polynomial_0(8)
4*x^30 - 292*x^28 + 1252*x^27 - 5436*x^26 + 2340*x^25 + 39834*x^24 - 79560*x^23␣
→˓+ 51432*x^22 - 142896*x^21 + 451596*x^20 - 212040*x^19 - 1005316*x^18 +␣
→˓1726416*x^17 - 671160*x^16 - 954924*x^15 + 1119552*x^14 + 313308*x^13 -␣

(continues on next page)

68 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

(continued from previous page)

→˓1502818*x^12 + 1189908*x^11 - 160152*x^10 - 399176*x^9 + 386142*x^8 -␣
→˓220128*x^7 + 99558*x^6 - 33528*x^5 + 6042*x^4 + 310*x^3 - 406*x^2 + 78*x - 5

sage: E.division_polynomial_0(18) % E.division_polynomial_0(6) == 0
True

An example to illustrate the relationship with torsion points:

sage: F = GF(11)
sage: E = EllipticCurve(F, [0, 2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field of size 11
sage: f = E.division_polynomial_0(5); f
5*x^12 + x^9 + 8*x^6 + 4*x^3 + 7
sage: f.factor()
(5) * (x^2 + 5) * (x^2 + 2*x + 5) * (x^2 + 5*x + 7) * (x^2 + 7*x + 7) * (x^2 +␣
→˓9*x + 5) * (x^2 + 10*x + 7)

This indicates that the 𝑥-coordinates of all the 5-torsion points of 𝐸 are in F112 , and therefore the 𝑦-
coordinates are in F114 :

sage: K = GF(11^4, 'a')
sage: X = E.change_ring(K)
sage: f = X.division_polynomial_0(5)
sage: x_coords = f.roots(multiplicities=False); x_coords
[10*a^3 + 4*a^2 + 5*a + 6,
9*a^3 + 8*a^2 + 10*a + 8,
8*a^3 + a^2 + 4*a + 10,
8*a^3 + a^2 + 4*a + 8,
8*a^3 + a^2 + 4*a + 4,
6*a^3 + 9*a^2 + 3*a + 4,
5*a^3 + 2*a^2 + 8*a + 7,
3*a^3 + 10*a^2 + 7*a + 8,
3*a^3 + 10*a^2 + 7*a + 3,
3*a^3 + 10*a^2 + 7*a + 1,
2*a^3 + 3*a^2 + a + 7,
a^3 + 7*a^2 + 6*a]

Now we check that these are exactly the 𝑥-coordinates of the 5-torsion points of 𝐸:

sage: for x in x_coords:
....: assert X.lift_x(x).order() == 5

The roots of the polynomial are the 𝑥-coordinates of the points 𝑃 such that 𝑚𝑃 = 0 but 2𝑃 ̸= 0:

sage: E = EllipticCurve('14a1')
sage: T = E.torsion_subgroup()
sage: [n*T.0 for n in range(6)]
[(0 : 1 : 0),
(9 : 23 : 1),
(2 : 2 : 1),
(1 : -1 : 1),
(2 : -5 : 1),

(continues on next page)

69

Elliptic curves, Release 9.8

(continued from previous page)

(9 : -33 : 1)]
sage: pol = E.division_polynomial_0(6)
sage: xlist = pol.roots(multiplicities=False); xlist
[9, 2, -1/3, -5]
sage: [E.lift_x(x, all=True) for x in xlist]
[[(9 : 23 : 1), (9 : -33 : 1)], [(2 : 2 : 1), (2 : -5 : 1)], [], []]

Note: The point of order 2 and the identity do not appear. The points with 𝑥 = −1/3 and 𝑥 = −5 are not
rational.

formal()

Return the formal group associated to this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.formal_group()
Formal Group associated to the Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

formal_group()

Return the formal group associated to this elliptic curve.

This method is cached.

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.formal_group()
Formal Group associated to the Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

frobenius_isogeny(n=1)
Return the 𝑛-power Frobenius isogeny from this curve to its Galois conjugate.

The Frobenius endomorphism is the special case where 𝑛 is divisible by the degree of the base ring of the
curve.

See also:
frobenius_endomorphism()

EXAMPLES:

sage: z3, = GF(13^3).gens()
sage: E = EllipticCurve([z3,z3^2])
sage: E.frobenius_isogeny()
Frobenius isogeny of degree 13:
From: Elliptic Curve defined by y^2 = x^3 + z3*x + z3^2 over Finite Field in␣

→˓z3 of size 13^3
To: Elliptic Curve defined by y^2 = x^3 + (5*z3^2+7*z3+11)*x + (5*z3^

→˓2+12*z3+1) over Finite Field in z3 of size 13^3
(continues on next page)

70 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.frobenius_isogeny(3)
Frobenius endomorphism of degree 2197 = 13^3:
From: Elliptic Curve defined by y^2 = x^3 + z3*x + z3^2 over Finite Field in␣

→˓z3 of size 13^3
To: Elliptic Curve defined by y^2 = x^3 + z3*x + z3^2 over Finite Field in␣

→˓z3 of size 13^3

gen(i)
Function returning the i’th generator of this elliptic curve.

Note: Relies on gens() being implemented.

EXAMPLES:

sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.gen(0)
Traceback (most recent call last):
...
NotImplementedError: not implemented.

gens()

Placeholder function to return generators of an elliptic curve.

Note: This functionality is implemented in certain derived classes, such as EllipticCurve_rational_field.

EXAMPLES:

sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.gens()
Traceback (most recent call last):
...
NotImplementedError: not implemented.
sage: E = EllipticCurve(QQ,[1,1])
sage: E.gens()
[(0 : 1 : 1)]

hyperelliptic_polynomials()

Return a pair of polynomials 𝑔(𝑥), ℎ(𝑥) such that this elliptic curve can be defined by the standard hyper-
elliptic equation

𝑦2 + ℎ(𝑥)𝑦 = 𝑔(𝑥).

EXAMPLES:

sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.hyperelliptic_polynomials()
(x^3 + a2*x^2 + a4*x + a6, a1*x + a3)

71

Elliptic curves, Release 9.8

is_isomorphic(other, field=None)
Return whether or not self is isomorphic to other.

INPUT:

• other – another elliptic curve.

• field (default None) – a field into which the coefficients of the curves may be coerced (by default,
uses the base field of the curves).

OUTPUT:

(bool) True if there is an isomorphism from curve self to curve other defined over field.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: F = E.change_weierstrass_model([2,3,4,5]); F
Elliptic Curve defined by y^2 + 4*x*y + 11/8*y = x^3 - 3/2*x^2 - 13/16*x over␣
→˓Rational Field
sage: E.is_isomorphic(F)
True
sage: E.is_isomorphic(F.change_ring(CC))
False

is_on_curve(x, y)
Return True if (𝑥, 𝑦) is an affine point on this curve.

INPUT:

• x, y – elements of the base ring of the curve.

EXAMPLES:

sage: E = EllipticCurve(QQ,[1,1])
sage: E.is_on_curve(0,1)
True
sage: E.is_on_curve(1,1)
False

is_x_coord(x)
Return True if x is the 𝑥-coordinate of a point on this curve.

Note: See also lift_x() to find the point(s) with a given 𝑥-coordinate. This function may be useful in
cases where testing an element of the base field for being a square is faster than finding its square root.

EXAMPLES:

sage: E = EllipticCurve('37a'); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.is_x_coord(1)
True
sage: E.is_x_coord(2)
True

There are no rational points with x-coordinate 3:

72 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

sage: E.is_x_coord(3)
False

However, there are such points in 𝐸(R):

sage: E.change_ring(RR).is_x_coord(3)
True

And of course it always works in 𝐸(C):

sage: E.change_ring(RR).is_x_coord(-3)
False
sage: E.change_ring(CC).is_x_coord(-3)
True

AUTHORS:

• John Cremona (2008-08-07): adapted from lift_x()

isomorphism_to(other)
Given another weierstrass model other of self, return an isomorphism from self to other.

INPUT:

• other – an elliptic curve isomorphic to self.

OUTPUT:

(Weierstrassmorphism) An isomorphism from self to other.

Note: If the curves in question are not isomorphic, a ValueError is raised.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: F = E.short_weierstrass_model()
sage: w = E.isomorphism_to(F); w
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
To: Elliptic Curve defined by y^2 = x^3 - 16*x + 16 over Rational Field
Via: (u,r,s,t) = (1/2, 0, 0, -1/2)
sage: P = E(0,-1,1)
sage: w(P)
(0 : -4 : 1)
sage: w(5*P)
(1 : 1 : 1)
sage: 5*w(P)
(1 : 1 : 1)
sage: 120*w(P) == w(120*P)
True

We can also handle injections to different base rings:

sage: K.<a> = NumberField(x^3-7)
sage: E.isomorphism_to(E.change_ring(K))

(continues on next page)

73

Elliptic curves, Release 9.8

(continued from previous page)

Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
To: Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over Number Field in a␣

→˓with defining polynomial x^3 - 7
Via: (u,r,s,t) = (1, 0, 0, 0)

isomorphisms(other, field=None)
Return the set of isomorphisms from self to other (as a list).

INPUT:

• other – another elliptic curve.

• field (default None) – a field into which the coefficients of the curves may be coerced (by default,
uses the base field of the curves).

OUTPUT:

(list) A list of WeierstrassIsomorphism objects consisting of all the isomorphisms from the curve self
to the curve other defined over field.

EXAMPLES:

sage: E = EllipticCurve_from_j(QQ(0)) # a curve with j=0 over QQ
sage: F = EllipticCurve('27a3') # should be the same one
sage: E.isomorphisms(F)
[Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Rational Field

Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 + y = x^3 over␣
→˓Rational Field

Via: (u,r,s,t) = (-1, 0, 0, -1)]

We can also find isomorphisms defined over extension fields:

sage: E = EllipticCurve(GF(7),[0,0,0,1,1])
sage: F = EllipticCurve(GF(7),[0,0,0,1,-1])
sage: E.isomorphisms(F)
[]
sage: E.isomorphisms(F,GF(49,'a'))
[Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of␣
→˓size 7^2
To: Elliptic Curve defined by y^2 = x^3 + x + 6 over Finite Field in a of␣
→˓size 7^2
Via: (u,r,s,t) = (a + 3, 0, 0, 0), Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of␣
→˓size 7^2
To: Elliptic Curve defined by y^2 = x^3 + x + 6 over Finite Field in a of␣
→˓size 7^2
Via: (u,r,s,t) = (6*a + 4, 0, 0, 0)]

j_invariant()

Return the 𝑗-invariant of this elliptic curve.

This method is cached.

74 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.j_invariant()
110592/37

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.j_invariant()
-122023936/161051

sage: E = EllipticCurve([-4,0])
sage: E.j_invariant()
1728

sage: E = EllipticCurve([GF(7)(2),1])
sage: E.j_invariant()
1

lift_x(x, all=False, extend=False)
Return one or all points with given 𝑥-coordinate.

INPUT:

• x – an element of the base ring of the curve, or of an extension.

• all (bool, default False) – if True, return a (possibly empty) list of all points; if False, return just one
point, or raise a ValueError if there are none.

• extend (bool, default False) –

– if False, extend the base if necessary and possible to include 𝑥, and only return point(s) defined
over this ring, or raise an error when there are none with this 𝑥-coordinate;

– If True, the base ring will be extended if necessary to contain the 𝑦-coordinates of the point(s)
with this 𝑥-coordinate, in addition to a possible base change to include 𝑥.

OUTPUT:

A point or list of up to 2 points on this curve, or a base-change of this curve to a larger ring.

See also:
is_x_coord()

EXAMPLES:

sage: E = EllipticCurve('37a'); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.lift_x(1)
(1 : 0 : 1)
sage: E.lift_x(2)
(2 : 2 : 1)
sage: E.lift_x(1/4, all=True)
[(1/4 : -3/8 : 1), (1/4 : -5/8 : 1)]

There are no rational points with 𝑥-coordinate 3:

sage: E.lift_x(3)
Traceback (most recent call last):

(continues on next page)

75

Elliptic curves, Release 9.8

(continued from previous page)

...
ValueError: No point with x-coordinate 3 on Elliptic Curve defined by y^2 + y =␣
→˓x^3 - x over Rational Field

We can use the extend parameter to make the necessary quadratic extension. Note that in such cases the
returned point is a point on a new curve object, the result of changing the base ring to the parent of 𝑥:

sage: P = E.lift_x(3, extend=True); P
(3 : y : 1)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over Number Field in y with␣
→˓defining polynomial y^2 + y - 24

Or we can extend scalars. There are two such points in 𝐸(R):

sage: E.change_ring(RR).lift_x(3, all=True)
[(3.00000000000000 : 4.42442890089805 : 1.00000000000000),
(3.00000000000000 : -5.42442890089805 : 1.00000000000000)]

And of course it always works in 𝐸(C):

sage: E.change_ring(RR).lift_x(.5, all=True)
[]
sage: E.change_ring(CC).lift_x(.5)
(0.500000000000000 : -0.500000000000000 + 0.353553390593274*I : 1.
→˓00000000000000)

In this example we start with a curve defined over Q which has no rational points with 𝑥 = 0, but using
extend = True we can construct such a point over a quadratic field:

sage: E = EllipticCurve([0,0,0,0,2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Rational Field
sage: P = E.lift_x(0, extend=True); P
(0 : y : 1)
sage: P.curve()
Elliptic Curve defined by y^2 = x^3 + 2 over Number Field in y with defining␣
→˓polynomial y^2 - 2

We can perform these operations over finite fields too:

sage: E = EllipticCurve('37a').change_ring(GF(17)); E
Elliptic Curve defined by y^2 + y = x^3 + 16*x over Finite Field of size 17
sage: E.lift_x(7)
(7 : 11 : 1)
sage: E.lift_x(3)
Traceback (most recent call last):
...
ValueError: No point with x-coordinate 3 on Elliptic Curve defined by y^2 + y =␣
→˓x^3 + 16*x over Finite Field of size 17

Note that there is only one lift with 𝑥-coordinate 10 in 𝐸(F17):

sage: E.lift_x(10, all=True)
[(10 : 8 : 1)]

76 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

We can lift over more exotic rings too. If the supplied x value is in an extension of the base, note that the
point returned is on the base-extended curve:

sage: E = EllipticCurve('37a')
sage: P = E.lift_x(pAdicField(17, 5)(6)); P
(6 + O(17^5) : 2 + 16*17 + 16*17^2 + 16*17^3 + 16*17^4 + O(17^5) : 1 + O(17^5))
sage: P.curve()
Elliptic Curve defined by y^2 + (1+O(17^5))*y = x^3 + (16+16*17+16*17^2+16*17^
→˓3+16*17^4+O(17^5))*x over 17-adic Field with capped relative precision 5
sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: P = E.lift_x(1+t); P
(1 + t : 2*t - t^2 + 5*t^3 - 21*t^4 + O(t^5) : 1)
sage: K.<a> = GF(16)
sage: P = E.change_ring(K).lift_x(a^3); P
(a^3 : a^3 + a : 1)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x over Finite Field in a of size 2^4

We can extend the base field to include the associated 𝑦 value(s):

sage: E = EllipticCurve([0,0,0,0,2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Rational Field
sage: x = polygen(QQ)
sage: P = E.lift_x(x, extend=True); P
(x : y : 1)

This point is a generic point on E:

sage: P.curve()
Elliptic Curve defined by y^2 = x^3 + 2 over Univariate Quotient Polynomial␣
→˓Ring in y over Fraction Field of Univariate Polynomial Ring in x over␣
→˓Rational Field with modulus y^2 - x^3 - 2
sage: -P
(x : -y : 1)
sage: 2*P
((1/4*x^4 - 4*x)/(x^3 + 2) : ((1/8*x^6 + 5*x^3 - 4)/(x^6 + 4*x^3 + 4))*y : 1)

Check that trac ticket #30297 is fixed:

sage: K = Qp(5)
sage: E = EllipticCurve([K(0), K(1)])
sage: E.lift_x(1, extend=True)
(1 + O(5^20) : y + O(5^20) : 1 + O(5^20))

AUTHORS:

• Robert Bradshaw (2007-04-24)

• John Cremona (2017-11-10)

montgomery_model(twisted=False, morphism=False)
Return a (twisted or untwisted) Montgomery model for this elliptic curve, if possible.

A Montgomery curve is a smooth projective curve of the form

𝐵𝑌 2 = 𝑋3 +𝐴𝑋2 +𝑋.

77

https://trac.sagemath.org/30297

Elliptic curves, Release 9.8

The Montgomery curve is called untwisted if 𝐵 = 1.

INPUT:

• twisted – boolean (default: False); allow 𝐵 ̸= 1

• morphism – boolean (default: False); also return an isomorphism from this curve to the computed
Montgomery model

OUTPUT:

If twisted is False (the default), an EllipticCurve_generic object encapsulating an untwisted Mont-
gomery curve. Otherwise, a ProjectivePlaneCurve object encapsulating a (potentially twisted) Mont-
gomery curve.

If morphism is True, this method returns a tuple consisting of such a curve together with an isomorphism of
suitable type (either WeierstrassIsomorphism or WeierstrassTransformationWithInverse) from
this curve to the Montgomery model.

EXAMPLES:

sage: E = EllipticCurve(QQbar, '11a1')
sage: E.montgomery_model()
Elliptic Curve defined by y^2 = x^3 + (-1.953522420987248?)*x^2 + x over␣
→˓Algebraic Field

sage: E = EllipticCurve(GF(431^2), [7,7])
sage: E.montgomery_model()
Elliptic Curve defined by y^2 = x^3 + (51*z2+190)*x^2 + x over Finite Field in␣
→˓z2 of size 431^2

An isomorphism between the Montgomery and Weierstrass form can be obtained using the morphism
parameter:

sage: E.montgomery_model(morphism=True)
(Elliptic Curve defined by y^2 = x^3 + (51*z2+190)*x^2 + x over Finite Field in␣
→˓z2 of size 431^2,
Elliptic-curve morphism:

From: Elliptic Curve defined by y^2 = x^3 + 7*x + 7 over Finite Field in z2␣
→˓of size 431^2

To: Elliptic Curve defined by y^2 = x^3 + (51*z2+190)*x^2 + x over Finite␣
→˓Field in z2 of size 431^2

Via: (u,r,s,t) = (64*z2 + 407, 159, 0, 0))

Not all elliptic curves have a Montgomery model over their field of definition:

sage: E = EllipticCurve(GF(257), [1,1])
sage: E.montgomery_model()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of␣
→˓size 257 has no Montgomery model

sage: E = EllipticCurve(GF(257), [10,10])
sage: E.montgomery_model()
Traceback (most recent call last):
...

(continues on next page)

78 Chapter 4. Elliptic curves over a general ring

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 9.8

(continued from previous page)

ValueError: Elliptic Curve defined by y^2 = x^3 + 10*x + 10 over Finite Field␣
→˓of size 257 has no untwisted Montgomery model

However, as hinted by the error message, the latter curve does admit a twisted Montgomery model, which
can be computed by passing twisted=True:

sage: E.montgomery_model(twisted=True)
Projective Plane Curve over Finite Field of size 257 defined by -x^3 + 8*x^2*z -
→˓ 127*y^2*z - x*z^2

Since Sage internally represents elliptic curves as (long) Weierstrass curves, which do not feature the Mont-
gomery 𝐵 coefficient, the returned curve in this case is merely a ProjectivePlaneCurve rather than the
usual EllipticCurve_generic.

Arithmetic on curves of this type is not implemented natively, but can easily be emulated by mapping back
and forth to the corresponding Weierstrass curve:

sage: C, f = E.montgomery_model(twisted=True, morphism=True)
sage: f
Scheme morphism:
From: Elliptic Curve defined by y^2 = x^3 + 10*x + 10 over Finite Field of␣

→˓size 257
To: Projective Plane Curve over Finite Field of size 257 defined by -x^3 +␣

→˓8*x^2*z - 127*y^2*z - x*z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x + 116*z : -y : -85*z)
sage: g = f.inverse(); g
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 257 defined by -x^3 +␣

→˓8*x^2*z - 127*y^2*z - x*z^2
To: Elliptic Curve defined by y^2 = x^3 + 10*x + 10 over Finite Field of␣

→˓size 257
Defn: Defined on coordinates by sending (x : y : z) to

(-85*x - 116*z : 85*y : z)
sage: P = C(70, 8)
sage: Q = C(17, 17)
sage: P + Q # this doesn't work...
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: ...
sage: f(g(P) + g(Q)) # ...but this does
(107 : 168 : 1)

Using the fact that the Weil pairing satisfies 𝑒(𝜓(𝑃), 𝜓(𝑄)) = 𝑒(𝑃,𝑄)deg𝜓 , even pairings can be emulated
in this way (note that isomorphisms have degree 1):

sage: F.<z2> = GF(257^2)
sage: C_ = C.change_ring(F)
sage: g_ = g.change_ring(F)
sage: g_(P).order()
12
sage: T = C_(-7 * z2 - 57, 31 * z2 - 52, 1)
sage: g_(T).order()

(continues on next page)

79

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 9.8

(continued from previous page)

12
sage: g_(P).weil_pairing(g_(T), 12)
15*z2 + 204

Another alternative is to simply extend the base field enough for the curve to have an untwisted Montgomery
model:

sage: C_ = E.change_ring(F).montgomery_model(); C_
Elliptic Curve defined by y^2 = x^3 + 249*x^2 + x over Finite Field in z2 of␣
→˓size 257^2
sage: h = C.defining_polynomial().change_ring(F); h
-x^3 + 8*x^2*z - 127*y^2*z - x*z^2
sage: C_.is_isomorphic(EllipticCurve_from_cubic(h).codomain())
True

See also:
The inverse conversion — computing a Weierstrass model for a given Montgomery curve — can be per-
formed using EllipticCurve_from_cubic().

ALGORITHM: [CS2018], §2.4

REFERENCES:

• Original publication: [Mont1987], §10.3.1

• More recent survey article: [CS2018]

multiplication_by_m(m, x_only=False)
Return the multiplication-by-𝑚 map from self to self

The result is a pair of rational functions in two variables 𝑥, 𝑦 (or a rational function in one variable 𝑥 if
x_only is True).

INPUT:

• m – a nonzero integer

• x_only – boolean (default: False) if True, return only the 𝑥-coordinate of the map (as a rational
function in one variable).

OUTPUT:

• a pair (𝑓(𝑥), 𝑔(𝑥, 𝑦)), where 𝑓 and 𝑔 are rational functions with the degree of 𝑦 in 𝑔(𝑥, 𝑦) exactly 1,

• or just 𝑓(𝑥) if x_only is True

Note:
• The result is not cached.

• m is allowed to be negative (but not 0).

EXAMPLES:

sage: E = EllipticCurve([-1,3])

We verify that multiplication by 1 is just the identity:

80 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

sage: E.multiplication_by_m(1)
(x, y)

Multiplication by 2 is more complicated:

sage: f = E.multiplication_by_m(2)
sage: f
((x^4 + 2*x^2 - 24*x + 1)/(4*x^3 - 4*x + 12), (8*x^6*y - 40*x^4*y + 480*x^3*y -␣
→˓40*x^2*y + 96*x*y - 568*y)/(64*x^6 - 128*x^4 + 384*x^3 + 64*x^2 - 384*x +␣
→˓576))

Grab only the x-coordinate (less work):

sage: mx = E.multiplication_by_m(2, x_only=True); mx
(1/4*x^4 + 1/2*x^2 - 6*x + 1/4)/(x^3 - x + 3)
sage: mx.parent()
Fraction Field of Univariate Polynomial Ring in x over Rational Field

We check that it works on a point:

sage: P = E([2,3])
sage: eval = lambda f,P: [fi(P[0],P[1]) for fi in f]
sage: assert E(eval(f,P)) == 2*P

We do the same but with multiplication by 3:

sage: f = E.multiplication_by_m(3)
sage: assert E(eval(f,P)) == 3*P

And the same with multiplication by 4:

sage: f = E.multiplication_by_m(4)
sage: assert E(eval(f,P)) == 4*P

And the same with multiplication by -1,-2,-3,-4:

sage: for m in [-1,-2,-3,-4]:
....: f = E.multiplication_by_m(m)
....: assert E(eval(f,P)) == m*P

multiplication_by_m_isogeny(m)

Return the EllipticCurveIsogeny object associated to the multiplication-by-𝑚 map on this elliptic
curve.

The resulting isogeny will have the associated rational maps (i.e. those returned by
𝑠𝑒𝑙𝑓.𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑏𝑦𝑚()) already computed.

NOTE: This function is currently much slower than the result of self.multiplication_by_m(), because
constructing an isogeny precomputes a significant amount of information. See trac ticket #7368 and trac
ticket #8014 for the status of improving this situation.

INPUT:

• m – a nonzero integer

OUTPUT:

81

https://trac.sagemath.org/7368
https://trac.sagemath.org/8014
https://trac.sagemath.org/8014

Elliptic curves, Release 9.8

• An EllipticCurveIsogeny object associated to the multiplication-by-𝑚 map on this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.multiplication_by_m_isogeny(7)
doctest:warning ... DeprecationWarning: ...
Isogeny of degree 49 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x -
→˓ 20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 -␣
→˓10*x - 20 over Rational Field

pari_curve()

Return the PARI curve corresponding to this elliptic curve.

The result is cached.

EXAMPLES:

sage: E = EllipticCurve([RR(0), RR(0), RR(1), RR(-1), RR(0)])
sage: e = E.pari_curve()
sage: type(e)
<... 'cypari2.gen.Gen'>
sage: e.type()
't_VEC'
sage: e.disc()
37.0000000000000

Over a finite field:

sage: EllipticCurve(GF(41),[2,5]).pari_curve()
[Mod(0, 41), Mod(0, 41), Mod(0, 41), Mod(2, 41), Mod(5, 41), Mod(0, 41), Mod(4,␣
→˓41), Mod(20, 41), Mod(37, 41), Mod(27, 41), Mod(26, 41), Mod(4, 41), Mod(11,␣
→˓41), Vecsmall([3]), [41, [9, 31, [6, 0, 0, 0]]], [0, 0, 0, 0]]

Over a 𝑝-adic field:

sage: Qp = pAdicField(5, prec=3)
sage: E = EllipticCurve(Qp,[3, 4])
sage: E.pari_curve()
[0, 0, 0, 3, 4, 0, 6, 16, -9, -144, -3456, -8640, 1728/5, Vecsmall([2]), [O(5^
→˓3)], [0, 0]]
sage: E.j_invariant()
3*5^-1 + O(5)

Over a number field:

sage: K.<a> = QuadraticField(2)
sage: E = EllipticCurve([1,a])
sage: E.pari_curve()
[0, 0, 0, Mod(1, y^2 - 2),
Mod(y, y^2 - 2), 0, Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2),
Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2), Vecsmall([5]),
[[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310;
1, 1.41421356237310], [1, -1.41421356237310; 1, 1.41421356237310],

(continues on next page)

82 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

(continued from previous page)

[16, -23; 16, 23], [2, 0; 0, 4], [4, 0; 0, 2], [2, 0; 0, 1],
[2, [0, 2; 1, 0]], [2]], [-1.41421356237310, 1.41421356237310],
[1, y], [1, 0; 0, 1], [1, 0, 0, 2; 0, 1, 1, 0]]], [0, 0, 0, 0, 0]]

PARI no longer requires that the 𝑗-invariant has negative 𝑝-adic valuation:

sage: E = EllipticCurve(Qp,[1, 1])
sage: E.j_invariant() # the j-invariant is a p-adic integer
2 + 4*5^2 + O(5^3)
sage: E.pari_curve()
[0, 0, 0, 1, 1, 0, 2, 4, -1, -48, -864, -496, 6912/31, Vecsmall([2]), [O(5^3)],␣
→˓[0, 0]]

plot(xmin=None, xmax=None, components='both', **args)
Draw a graph of this elliptic curve.

The plot method is only implemented when there is a natural coercion from the base ring of self to RR.
In this case, self is plotted as if it was defined over RR.

INPUT:

• xmin, xmax – (optional) points will be computed at least within this range, but possibly farther.

• components – a string, one of the following:

– both – (default), scale so that both bounded and unbounded components appear

– bounded – scale the plot to show the bounded component. Raises an error if there is only one real
component.

– unbounded – scale the plot to show the unbounded component, including the two flex points.

• plot_points – passed to sage.plot.generate_plot_points()

• adaptive_tolerance – passed to sage.plot.generate_plot_points()

• adaptive_recursion – passed to sage.plot.generate_plot_points()

• randomize – passed to sage.plot.generate_plot_points()

• **args – all other options are passed to sage.plot.line.Line

EXAMPLES:

sage: E = EllipticCurve([0,-1])
sage: plot(E, rgbcolor=hue(0.7))
Graphics object consisting of 1 graphics primitive
sage: E = EllipticCurve('37a')
sage: plot(E)
Graphics object consisting of 2 graphics primitives
sage: plot(E, xmin=25,xmax=26)
Graphics object consisting of 2 graphics primitives

With trac ticket #12766 we added the components keyword:

sage: E.real_components()
2
sage: E.plot(components='bounded')
Graphics object consisting of 1 graphics primitive

(continues on next page)

83

../../../../../../../html/en/reference/plotting/sage/plot/line.html#sage.plot.line.Line
https://trac.sagemath.org/12766

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.plot(components='unbounded')
Graphics object consisting of 1 graphics primitive

If there is only one component then specifying components=’bounded’ raises a ValueError:

sage: E = EllipticCurve('9990be2')
sage: E.plot(components='bounded')
Traceback (most recent call last):
...
ValueError: no bounded component for this curve

An elliptic curve defined over the Complex Field can not be plotted:

sage: E = EllipticCurve(CC, [0,0,1,-1,0])
sage: E.plot()
Traceback (most recent call last):
...
NotImplementedError: plotting of curves over Complex Field with 53 bits of␣
→˓precision is not implemented yet

rst_transform(r, s, t)
Return the transform of the curve by (𝑟, 𝑠, 𝑡) (with 𝑢 = 1).

INPUT:

• r, s, t – three elements of the base ring.

OUTPUT:

The elliptic curve obtained from self by the standard Weierstrass transformation (𝑢, 𝑟, 𝑠, 𝑡) with 𝑢 = 1.

Note: This is just a special case of change_weierstrass_model(), with 𝑢 = 1.

EXAMPLES:

sage: R.<r,s,t>=QQ[]
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.rst_transform(r,s,t)
Elliptic Curve defined by y^2 + (2*s+1)*x*y + (r+2*t+3)*y = x^3 + (-s^2+3*r-
→˓s+2)*x^2 + (3*r^2-r*s-2*s*t+4*r-3*s-t+4)*x + (r^3+2*r^2-r*t-t^2+4*r-3*t+5)␣
→˓over Multivariate Polynomial Ring in r, s, t over Rational Field

scalar_multiplication(m)

Return the scalar-multiplication map [𝑚] on this elliptic curve as a sage.schemes.elliptic_curves.
hom_scalar.EllipticCurveHom_scalar object.

EXAMPLES:

sage: E = EllipticCurve('77a1')
sage: m = E.scalar_multiplication(-7); m
Scalar-multiplication endomorphism [-7] of Elliptic Curve defined by y^2 + y =␣
→˓x^3 + 2*x over Rational Field
sage: m.degree()
49

(continues on next page)

84 Chapter 4. Elliptic curves over a general ring

Elliptic curves, Release 9.8

(continued from previous page)

sage: P = E(2,3)
sage: m(P)
(-26/225 : -2132/3375 : 1)
sage: m.rational_maps() == E.multiplication_by_m(-7)
True

scale_curve(u)
Return the transform of the curve by scale factor 𝑢.

INPUT:

• u – an invertible element of the base ring.

OUTPUT:

The elliptic curve obtained from self by the standard Weierstrass transformation (𝑢, 𝑟, 𝑠, 𝑡) with 𝑟 = 𝑠 =
𝑡 = 0.

Note: This is just a special case of change_weierstrass_model(), with 𝑟 = 𝑠 = 𝑡 = 0.

EXAMPLES:

sage: K = Frac(PolynomialRing(QQ,'u'))
sage: u = K.gen()
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.scale_curve(u)
Elliptic Curve defined by y^2 + u*x*y + 3*u^3*y = x^3 + 2*u^2*x^2 + 4*u^4*x +␣
→˓5*u^6 over Fraction Field of Univariate Polynomial Ring in u over Rational␣
→˓Field

short_weierstrass_model(complete_cube=True)
Return a short Weierstrass model for self.

INPUT:

• complete_cube – boolean (default: True); for meaning, see below.

OUTPUT:

An elliptic curve.

If complete_cube=True: Return a model of the form 𝑦2 = 𝑥3+𝑎*𝑥+𝑏 for this curve. The characteristic
must not be 2; in characteristic 3, it is only possible if 𝑏2 = 0.

If complete_cube=False: Return a model of the form 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for this curve. The
characteristic must not be 2.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational␣
→˓Field
sage: F = E.short_weierstrass_model()
sage: F
Elliptic Curve defined by y^2 = x^3 + 4941*x + 185166 over Rational Field

(continues on next page)

85

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.is_isomorphic(F)
True
sage: F = E.short_weierstrass_model(complete_cube=False)
sage: F
Elliptic Curve defined by y^2 = x^3 + 9*x^2 + 88*x + 464 over Rational Field
sage: E.is_isomorphic(F)
True

sage: E = EllipticCurve(GF(3),[1,2,3,4,5])
sage: E.short_weierstrass_model(complete_cube=False)
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 3

This used to be different see trac ticket #3973:

sage: E.short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 3

More tests in characteristic 3:

sage: E = EllipticCurve(GF(3),[0,2,1,2,1])
sage: E.short_weierstrass_model()
Traceback (most recent call last):
...
ValueError: short_weierstrass_model(): no short model for Elliptic Curve␣
→˓defined by y^2 + y = x^3 + 2*x^2 + 2*x + 1 over Finite Field of size 3␣
→˓(characteristic is 3)
sage: E.short_weierstrass_model(complete_cube=False)
Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2*x + 2 over Finite Field of size␣
→˓3
sage: E.short_weierstrass_model(complete_cube=False).is_isomorphic(E)
True

torsion_polynomial(m, x=None, two_torsion_multiplicity=2, force_evaluate=None)
Return the 𝑚𝑡ℎ division polynomial of this elliptic curve evaluated at 𝑥.

The division polynomial is cached if 𝑥 is None.

INPUT:

• m – positive integer.

• x – optional ring element to use as the 𝑥 variable. If 𝑥 is None (omitted), then a new polynomial ring
will be constructed over the base ring of the elliptic curve, and its generator will be used as 𝑥. Note
that 𝑥 does not need to be a generator of a polynomial ring; any ring element works. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

• two_torsion_multiplicity – 0, 1, or 2

If 0: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which omits factors whose roots are the 𝑥-coordinates of the 2-torsion points. When 𝑥 is not None,
the evaluation of such a polynomial at 𝑥 is returned.

If 2: For even 𝑚 when 𝑥 is None, a univariate polynomial over the base ring of the curve is returned,
which includes a factor of degree 3 whose roots are the 𝑥-coordinates of the 2-torsion points. Similarly,
when 𝑥 is not None, the evaluation of such a polynomial at 𝑥 is returned.

86 Chapter 4. Elliptic curves over a general ring

https://trac.sagemath.org/3973

Elliptic curves, Release 9.8

If 1: For even 𝑚 when 𝑥 is None, a bivariate polynomial over the base ring of the curve is returned,
which includes a factor 2𝑦+𝑎1𝑥+𝑎3 having simple zeros at the 2-torsion points. When 𝑥 is not None,
it should be a tuple of length 2, and the evaluation of such a polynomial at 𝑥 is returned.

• force_evaluate (optional) – 0, 1, or 2

By default, this method makes use of previously cached generic division polynomials to compute the
value of the polynomial at a given element 𝑥whenever it appears beneficial to do so. Explicitly setting
this flag overrides the default behavior.

Note that the complexity of evaluating a generic division polynomial scales much worse than that of
computing the value at a point directly (using the recursive formulas), hence setting this flag can be
detrimental to performance.

If 0: Do not use cached generic division polynomials.

If 1: If the generic division polynomial for this 𝑚 has been cached before, evaluate it at 𝑥 to compute
the result.

If 2: Compute the value at 𝑥 by evaluating the generic division polynomial. If the generic 𝑚-division
polynomial has not yet been cached, compute and cache it first.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.division_polynomial(1)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=0)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=1)
2*y + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=2)
4*x^3 - 4*x + 1
sage: E.division_polynomial(2)
4*x^3 - 4*x + 1
sage: [E.division_polynomial(3, two_torsion_multiplicity=i) for i in range(3)]
[3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1]
sage: [type(E.division_polynomial(3, two_torsion_multiplicity=i)) for i in␣
→˓range(3)]
[<... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
→˓'>,
<... 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_
→˓libsingular'>,
<... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
→˓'>]

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z>=PolynomialRing(QQ)
sage: E.division_polynomial(4,z,0)
2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821
sage: E.division_polynomial(4,z)
8*z^9 - 24*z^8 - 464*z^7 - 2758*z^6 + 6636*z^5 + 34356*z^4 + 53510*z^3 +␣
→˓99714*z^2 + 351024*z + 459859

This does not work, since when two_torsion_multiplicity is 1, we compute a bivariate polynomial, and must
evaluate at a tuple of length 2:

87

Elliptic curves, Release 9.8

sage: E.division_polynomial(4,z,1)
Traceback (most recent call last):
...
ValueError: x should be a tuple of length 2 (or None) when two_torsion_
→˓multiplicity is 1
sage: R.<z,w>=PolynomialRing(QQ,2)
sage: E.division_polynomial(4,(z,w),1).factor()
(2*w + 1) * (2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821)

We can also evaluate this bivariate polynomial at a point:

sage: P = E(5,5)
sage: E.division_polynomial(4,P,two_torsion_multiplicity=1)
-1771561

two_division_polynomial(x=None)
Return the 2-division polynomial of this elliptic curve evaluated at x.

INPUT:

• x – optional ring element to use as the 𝑥 variable. If x is None, then a new polynomial ring will be
constructed over the base ring of the elliptic curve, and its generator will be used as x. Note that x
does not need to be a generator of a polynomial ring; any ring element is acceptable. This permits fast
calculation of the torsion polynomial evaluated on any element of a ring.

EXAMPLES:

sage: E = EllipticCurve('5077a1')
sage: E.two_division_polynomial()
4*x^3 - 28*x + 25
sage: E = EllipticCurve(GF(3^2,'a'),[1,1,1,1,1])
sage: E.two_division_polynomial()
x^3 + 2*x^2 + 2
sage: E.two_division_polynomial().roots()
[(2, 1), (2*a, 1), (a + 2, 1)]

sage.schemes.elliptic_curves.ell_generic.is_EllipticCurve(x)
Utility function to test if x is an instance of an Elliptic Curve class.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_generic import is_EllipticCurve
sage: E = EllipticCurve([1,2,3/4,7,19])
sage: is_EllipticCurve(E)
True
sage: is_EllipticCurve(0)
False

88 Chapter 4. Elliptic curves over a general ring

CHAPTER

FIVE

ELLIPTIC CURVES OVER A GENERAL FIELD

This module defines the class EllipticCurve_field, based on EllipticCurve_generic, for elliptic curves over
general fields.

class sage.schemes.elliptic_curves.ell_field.EllipticCurve_field(K, ainvs)
Bases: EllipticCurve_generic, ProjectivePlaneCurve_field

base_field()

Return the base ring of the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve(GF(49, 'a'), [3,5])
sage: E.base_ring()
Finite Field in a of size 7^2

sage: E = EllipticCurve([1,1])
sage: E.base_ring()
Rational Field

sage: E = EllipticCurve(ZZ, [3,5])
sage: E.base_ring()
Integer Ring

descend_to(K, f=None)
Given an elliptic curve self defined over a field 𝐿 and a subfield 𝐾 of 𝐿, return all elliptic curves over 𝐾
which are isomorphic over 𝐿 to self.

INPUT:

• 𝐾 – a field which embeds into the base field 𝐿 of self.

• 𝑓 (optional) – an embedding of 𝐾 into 𝐿. Ignored if 𝐾 is Q.

OUTPUT:

A list (possibly empty) of elliptic curves defined over𝐾 which are isomorphic to self over 𝐿, up to isomor-
phism over 𝐾.

Note: Currently only implemented over number fields. To extend to other fields of characteristic not 2
or 3, what is needed is a method giving the preimages in 𝐾*/(𝐾*)𝑚 of an element of the base field, for
𝑚 = 2, 4, 6.

EXAMPLES:

89

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.descend_to(ZZ)
Traceback (most recent call last):
...
TypeError: Input must be a field.

sage: F. = QuadraticField(23)
sage: G.<a> = F.extension(x^3+5)
sage: E = EllipticCurve(j=1728*b).change_ring(G)
sage: EF = E.descend_to(F); EF
[Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484) over␣
→˓Number Field in b with defining polynomial x^2 - 23 with b = 4.
→˓795831523312720?]
sage: all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF)
True

sage: L.<a> = NumberField(x^4 - 7)
sage: K. = NumberField(x^2 - 7, embedding=a^2)
sage: E = EllipticCurve([a^6,0])
sage: EK = E.descend_to(K); EK
[Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b with defining␣
→˓polynomial x^2 - 7 with b = a^2,
Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b with␣
→˓defining polynomial x^2 - 7 with b = a^2]
sage: all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK)
True

sage: K.<a> = QuadraticField(17)
sage: E = EllipticCurve(j = 2*a)
sage: E.descend_to(QQ)
[]

division_field(l, names='t', map=False, **kwds)
Given an elliptic curve over a number field or finite field 𝐹 and a prime number ℓ, construct the ℓ-division
field 𝐹 (𝐸[ℓ]).

The ℓ-division field is the smallest extension of 𝐹 over which all ℓ-torsion points of 𝐸 are defined.

INPUT:

• ℓ – a prime number (an element of Z)

• names – (default: 't') a variable name for the division field

• map – (default: False) also return an embedding of the base_field() into the resulting field

• kwds – additional keyword arguments passed to splitting_field()

OUTPUT:

If map is False, the division field 𝐾 as an absolute number field or a finite field. If map is True, a tuple
(𝐾,𝜑) where 𝜑 is an embedding of the base field in the division field 𝐾.

Warning: This can take a very long time when the degree of the division field is large (e.g. when ℓ
is large or when the Galois representation is surjective). The simplify flag also has a big influence

90 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

on the running time over number fields: sometimes simplify=False is faster, sometimes the default
simplify=True is faster.

EXAMPLES:

The 2-division field is the same as the splitting field of the 2-division polynomial (therefore, it has degree
1, 2, 3 or 6):

sage: E = EllipticCurve('15a1')
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x
sage: E = EllipticCurve('14a1')
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^2 + 5*x + 92
sage: E = EllipticCurve('196b1')
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127
sage: E = EllipticCurve('19a1')
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^6 + 10*x^5 + 24*x^4 - 212*x^3 +␣
→˓1364*x^2 + 24072*x + 104292

For odd primes ℓ, the division field is either the splitting field of the ℓ-division polynomial, or a quadratic
extension of it.

sage: E = EllipticCurve('50a1')
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2␣
→˓+ 3*x + 3
sage: K. = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2␣
→˓+ 3*x + 3

If we take any quadratic twist, the splitting field of the 3-division polynomial remains the same, but the
3-division field becomes a quadratic extension:

sage: E = E.quadratic_twist(5) # 50b3
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^2␣
→˓+ 3*x + 3
sage: K. = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9 +␣
→˓30*x^8 - 63*x^7 + 109*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4

Try another quadratic twist, this time over a subfield of 𝐹 :

sage: G.<c>,_,_ = F.subfields(3)[0]
sage: E = E.base_extend(G).quadratic_twist(c); E
Elliptic Curve defined by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^
→˓2+42000*a0+126000) over Number Field in a0 with defining polynomial x^3 - 3*x^
→˓2 + 3*x + 9
sage: K. = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 + 5*x^10 + 40*x^8 + 315*x^6 +␣
→˓750*x^4 + 675*x^2 + 2025

91

Elliptic curves, Release 9.8

Some higher-degree examples:

sage: E = EllipticCurve('11a1')
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^6 + 2*x^5 - 48*x^4 - 436*x^3 +␣
→˓1668*x^2 + 28792*x + 73844
sage: K. = E.division_field(3); K # long time (3s on sage.math, 2014)
Number Field in b with defining polynomial x^48 ...
sage: K. = E.division_field(5); K
Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1
sage: E.division_field(5, 'b', simplify=False)
Number Field in b with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
sage: E.base_extend(K).torsion_subgroup() # long time (2s on sage.math, 2014)
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in b␣
→˓with defining polynomial x^4 - x^3 + x^2 - x + 1

sage: E = EllipticCurve('27a1')
sage: K. = E.division_field(3); K
Number Field in b with defining polynomial x^2 + 3*x + 9
sage: K. = E.division_field(2); K
Number Field in b with defining polynomial x^6 + 6*x^5 + 24*x^4 - 52*x^3 -␣
→˓228*x^2 + 744*x + 3844
sage: K. = E.division_field(2, simplify_all=True); K
Number Field in b with defining polynomial x^6 - 3*x^5 + 5*x^3 - 3*x + 1
sage: K. = E.division_field(5); K # long time (4s on sage.math, 2014)
Number Field in b with defining polynomial x^48 ...
sage: K. = E.division_field(7); K # long time (8s on sage.math, 2014)
Number Field in b with defining polynomial x^72 ...

Over a number field:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve([0,0,0,0,i])
sage: L. = E.division_field(2); L
Number Field in b with defining polynomial x^4 - x^2 + 1
sage: L., phi = E.division_field(2, map=True); phi
Ring morphism:
From: Number Field in i with defining polynomial x^2 + 1
To: Number Field in b with defining polynomial x^4 - x^2 + 1
Defn: i |--> -b^3

sage: L., phi = E.division_field(3, map=True)
sage: L
Number Field in b with defining polynomial x^24 - 6*x^22 - 12*x^21 - 21*x^20 +␣
→˓216*x^19 + 48*x^18 + 804*x^17 + 1194*x^16 - 13488*x^15 + 21222*x^14 + 44196*x^
→˓13 - 47977*x^12 - 102888*x^11 + 173424*x^10 - 172308*x^9 + 302046*x^8 +␣
→˓252864*x^7 - 931182*x^6 + 180300*x^5 + 879567*x^4 - 415896*x^3 + 1941012*x^2␣
→˓+ 650220*x + 443089
sage: phi
Ring morphism:
From: Number Field in i with defining polynomial x^2 + 1
To: Number Field in b with defining polynomial x^24 ...
Defn: i |--> -215621657062634529/183360797284413355040732*b^23 ...

92 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

Over a finite field:

sage: E = EllipticCurve(GF(431^2), [1,0])
sage: E.division_field(5, map=True)
(Finite Field in t of size 431^4,
Ring morphism:
From: Finite Field in z2 of size 431^2
To: Finite Field in t of size 431^4
Defn: z2 |--> 52*t^3 + 222*t^2 + 78*t + 105)

sage: E = EllipticCurve(GF(433^2), [1,0])
sage: K.<v> = E.division_field(7); K
Finite Field in v of size 433^16

AUTHORS:

• Jeroen Demeyer (2014-01-06): trac ticket #11905, use splitting_field method, moved from
gal_reps.py, make it work over number fields.

• Lorenz Panny (2022): extend to finite fields

genus()

Return 1 for elliptic curves.

EXAMPLES:

sage: E = EllipticCurve(GF(3), [0, -1, 0, -346, 2652])
sage: E.genus()
1

sage: R = FractionField(QQ['z'])
sage: E = EllipticCurve(R, [0, -1, 0, -346, 2652])
sage: E.genus()
1

hasse_invariant()

Return the Hasse invariant of this elliptic curve.

OUTPUT:

The Hasse invariant of this elliptic curve, as an element of the base field. This is only defined over fields of
positive characteristic, and is an element of the field which is zero if and only if the curve is supersingular.
Over a field of characteristic zero, where the Hasse invariant is undefined, a ValueError is returned.

EXAMPLES:

sage: E = EllipticCurve([Mod(1,2),Mod(1,2),0,0,Mod(1,2)])
sage: E.hasse_invariant()
1
sage: E = EllipticCurve([0,0,Mod(1,3),Mod(1,3),Mod(1,3)])
sage: E.hasse_invariant()
0
sage: E = EllipticCurve([0,0,Mod(1,5),0,Mod(2,5)])
sage: E.hasse_invariant()
0
sage: E = EllipticCurve([0,0,Mod(1,5),Mod(1,5),Mod(2,5)])

(continues on next page)

93

https://trac.sagemath.org/11905

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.hasse_invariant()
2

Some examples over larger fields:

sage: EllipticCurve(GF(101),[0,0,0,0,1]).hasse_invariant()
0
sage: EllipticCurve(GF(101),[0,0,0,1,1]).hasse_invariant()
98
sage: EllipticCurve(GF(103),[0,0,0,0,1]).hasse_invariant()
20
sage: EllipticCurve(GF(103),[0,0,0,1,1]).hasse_invariant()
17
sage: F.<a> = GF(107^2)
sage: EllipticCurve(F,[0,0,0,a,1]).hasse_invariant()
62*a + 75
sage: EllipticCurve(F,[0,0,0,0,a]).hasse_invariant()
0

Over fields of characteristic zero, the Hasse invariant is undefined:

sage: E = EllipticCurve([0,0,0,0,1])
sage: E.hasse_invariant()
Traceback (most recent call last):
...
ValueError: Hasse invariant only defined in positive characteristic

is_isogenous(other, field=None)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• field (default None) – Currently not implemented. A field containing the base fields of the two
elliptic curves onto which the two curves may be extended to test if they are isogenous over this field.
By default is_isogenous will not try to find this field unless one of the curves can be be extended into
the base field of the other, in which case it will test over the larger base field.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other defined over field.

METHOD:

Over general fields this is only implemented in trivial cases.

EXAMPLES:

sage: E1 = EllipticCurve(CC, [1,18]); E1
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000␣
→˓over Complex Field with 53 bits of precision
sage: E2 = EllipticCurve(CC, [2,7]); E2
Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000␣
→˓over Complex Field with 53 bits of precision
sage: E1.is_isogenous(E2)

(continues on next page)

94 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.

sage: E1 = EllipticCurve(Frac(PolynomialRing(ZZ,'t')), [2,19]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 19 over Fraction Field of␣
→˓Univariate Polynomial Ring in t over Integer Ring
sage: E2 = EllipticCurve(CC, [23,4]); E2
Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000␣
→˓over Complex Field with 53 bits of precision
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.

is_quadratic_twist(other)
Determine whether this curve is a quadratic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not quadratic twists, or 𝐷 if other is self.quadratic_twist(D) (up to
isomorphism). If self and other are isomorphic, returns 1.

If the curves are defined over Q, the output 𝐷 is a squarefree integer.

Note: Not fully implemented in characteristic 2, or in characteristic 3 when both 𝑗-invariants are 0.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: Et = E.quadratic_twist(-24)
sage: E.is_quadratic_twist(Et)
-6

sage: E1=EllipticCurve([0,0,1,0,0])
sage: E1.j_invariant()
0
sage: E2=EllipticCurve([0,0,0,0,2])
sage: E1.is_quadratic_twist(E2)
2
sage: E1.is_quadratic_twist(E1)
1
sage: type(E1.is_quadratic_twist(E1)) == type(E1.is_quadratic_twist(E2))
→˓#trac 6574
True

sage: E1=EllipticCurve([0,0,0,1,0])
sage: E1.j_invariant()
1728

(continues on next page)

95

Elliptic curves, Release 9.8

(continued from previous page)

sage: E2=EllipticCurve([0,0,0,2,0])
sage: E1.is_quadratic_twist(E2)
0
sage: E2=EllipticCurve([0,0,0,25,0])
sage: E1.is_quadratic_twist(E2)
5

sage: F = GF(101)
sage: E1 = EllipticCurve(F,[4,7])
sage: E2 = E1.quadratic_twist()
sage: D = E1.is_quadratic_twist(E2); D!=0
True
sage: F = GF(101)
sage: E1 = EllipticCurve(F,[4,7])
sage: E2 = E1.quadratic_twist()
sage: D = E1.is_quadratic_twist(E2)
sage: E1.quadratic_twist(D).is_isomorphic(E2)
True
sage: E1.is_isomorphic(E2)
False
sage: F2 = GF(101^2,'a')
sage: E1.change_ring(F2).is_isomorphic(E2.change_ring(F2))
True

A characteristic 3 example:

sage: F = GF(3^5,'a')
sage: E1 = EllipticCurve_from_j(F(1))
sage: E2 = E1.quadratic_twist(-1)
sage: D = E1.is_quadratic_twist(E2); D!=0
True
sage: E1.quadratic_twist(D).is_isomorphic(E2)
True

sage: E1 = EllipticCurve_from_j(F(0))
sage: E2 = E1.quadratic_twist()
sage: D = E1.is_quadratic_twist(E2); D
1
sage: E1.is_isomorphic(E2)
True

is_quartic_twist(other)
Determine whether this curve is a quartic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not quartic twists, or 𝐷 if other is self.quartic_twist(D) (up to isomor-
phism). If self and other are isomorphic, returns 1.

96 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

Note: Not fully implemented in characteristics 2 or 3.

EXAMPLES:

sage: E = EllipticCurve_from_j(GF(13)(1728))
sage: E1 = E.quartic_twist(2)
sage: D = E.is_quartic_twist(E1); D!=0
True
sage: E.quartic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(1728)
sage: E1 = E.quartic_twist(12345)
sage: D = E.is_quartic_twist(E1); D
15999120
sage: (D/12345).is_perfect_power(4)
True

is_sextic_twist(other)
Determine whether this curve is a sextic twist of another.

INPUT:

• other – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not sextic twists, or𝐷 if other is self.sextic_twist(D) (up to isomorphism).
If self and other are isomorphic, returns 1.

Note: Not fully implemented in characteristics 2 or 3.

EXAMPLES:

sage: E = EllipticCurve_from_j(GF(13)(0))
sage: E1 = E.sextic_twist(2)
sage: D = E.is_sextic_twist(E1); D!=0
True
sage: E.sextic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(0)
sage: E1 = E.sextic_twist(12345)
sage: D = E.is_sextic_twist(E1); D
575968320
sage: (D/12345).is_perfect_power(6)
True

isogenies_prime_degree(l=None, max_l=31)
Return a list of all separable isogenies of given prime degree(s) with domain equal to self, which are
defined over the base field of self.

INPUT:

97

Elliptic curves, Release 9.8

• l – a prime or a list of primes.

• max_l – (default: 31) a bound on the primes to be tested. This is only used if l is None.

OUTPUT:

(list) All separable 𝑙-isogenies for the given 𝑙 with domain self.

ALGORITHM:

Calls the generic function isogenies_prime_degree(). This is generic code, valid for all fields. It re-
quires that certain operations have been implemented over the base field, such as root-finding for univariate
polynomials.

EXAMPLES:

Examples over finite fields:

sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x␣
→˓+ 206196 over Finite Field of size 1000003,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓999960*x + 78 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(7)
[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓375648*x + 342776 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree(max_l=13)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x␣
→˓+ 206196 over Finite Field of size 1000003,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓999960*x + 78 over Finite Field of size 1000003,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓878063*x + 845666 over Finite Field of size 1000003,

(continues on next page)

98 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

(continued from previous page)

Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓375648*x + 342776 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree() # Default limit of 31
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓970389*x + 794257 over Finite Field of size 1000003,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x␣
→˓+ 206196 over Finite Field of size 1000003,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓999960*x + 78 over Finite Field of size 1000003,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓878063*x + 845666 over Finite Field of size 1000003,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓375648*x + 342776 over Finite Field of size 1000003,
Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓347438*x + 594729 over Finite Field of size 1000003,
Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓674846*x + 7392 over Finite Field of size 1000003,
Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over␣
→˓Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 +␣
→˓390065*x + 605596 over Finite Field of size 1000003]

sage: E = EllipticCurve(GF(17), [2,0])
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite␣
→˓Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite␣
→˓Field of size 17,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite␣
→˓Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite␣
→˓Field of size 17,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite␣
→˓Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite␣
→˓Field of size 17]

The base field matters, over a field extension we find more isogenies:

sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over␣
→˓Finite Field of size 13,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11␣

(continues on next page)

99

Elliptic curves, Release 9.8

(continued from previous page)

→˓over Finite Field of size 13]
sage: E = EllipticCurve(GF(13^6), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 7*x␣
→˓+ 4 over Finite Field in z6 of size 13^6,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x + (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite␣
→˓Field in z6 of size 13^6,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(11*z6^5+7*z6^4+4*z6^3+5*z6+9)*x + (10*z6^5+4*z6^4+6*z6^3+z6+10) over Finite␣
→˓Field in z6 of size 13^6,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 9*x␣
→˓+ 11 over Finite Field in z6 of size 13^6,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(3*z6^5+5*z6^4+8*z6^3+11*z6^2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^
→˓2+7*z6+6) over Finite Field in z6 of size 13^6,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(7*z6^4+12*z6^3+7*z6^2+4)*x + (6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite␣
→˓Field in z6 of size 13^6,
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(10*z6^5+z6^4+6*z6^3+8*z6^2+8*z6)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7)␣
→˓over Finite Field in z6 of size 13^6]

If the degree equals the characteristic, we find only separable isogenies:

sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over␣
→˓Finite Field of size 13]
sage: E = EllipticCurve(GF(5), [1,1])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + 1 over␣
→˓Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 4 over␣
→˓Finite Field of size 5]
sage: k.<a> = GF(3^4)
sage: E = EllipticCurve(k, [0,1,0,0,a])
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + x^2 + a over␣
→˓Finite Field in a of size 3^4 to Elliptic Curve defined by y^2 = x^3 + x^2 +␣
→˓(2*a^3+a^2+2)*x + (a^2+2) over Finite Field in a of size 3^4]

In the supersingular case, there are no separable isogenies of degree equal to the characteristic:

sage: E = EllipticCurve(GF(5), [0,1])
(continues on next page)

100 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.isogenies_prime_degree(5)
[]

An example over a rational function field:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: E = EllipticCurve(K, [1, t^5])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + t^5 over␣
→˓Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5␣
→˓to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field of␣
→˓Univariate Polynomial Ring in t over Finite Field of size 5]

Examples over number fields (other than QQ):

sage: QQroot2.<e> = NumberField(x^2-2)
sage: E = EllipticCurve(QQroot2, j=8000)
sage: E.isogenies_prime_degree()
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x␣
→˓+ (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to␣
→˓Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 2401000 over Number Field␣
→˓in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x +␣
→˓(-629407744000) over Number Field in e with defining polynomial x^2 - 2 to␣
→˓Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (54022500*e-
→˓88837000) over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x +␣
→˓(-629407744000) over Number Field in e with defining polynomial x^2 - 2 to␣
→˓Elliptic Curve defined by y^2 = x^3 + (-220500*e-257250)*x + (-54022500*e-
→˓88837000) over Number Field in e with defining polynomial x^2 - 2]

sage: E = EllipticCurve(QQroot2, [1,0,1,4, -6]); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in␣
→˓e with defining polynomial x^2 - 2
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x +␣
→˓(-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic␣
→˓Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e␣
→˓with defining polynomial x^2 - 2]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x +␣
→˓(-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic␣
→˓Curve defined by y^2 + x*y + y = x^3 + (-1)*x over Number Field in e with␣
→˓defining polynomial x^2 - 2,
Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x +␣
→˓(-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic␣
→˓Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in␣
→˓e with defining polynomial x^2 - 2]

These are not implemented yet:

101

Elliptic curves, Release 9.8

sage: E = EllipticCurve(QQbar, [1,18]); E
Elliptic Curve defined by y^2 = x^3 + x + 18 over Algebraic Field
sage: E.isogenies_prime_degree()
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for QQbar, but has not been␣
→˓yet.

sage: E = EllipticCurve(CC, [1,18]); E
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000␣
→˓over Complex Field with 53 bits of precision
sage: E.isogenies_prime_degree(11)
Traceback (most recent call last):
...
NotImplementedError: This code could be implemented for general complex fields,␣
→˓but has not been yet.

isogeny(kernel, codomain=None, degree=None, model=None, check=True, algorithm=None)
Return an elliptic-curve isogeny from this elliptic curve.

The isogeny can be specified in two ways, by passing either a polynomial or a set of torsion points. The
methods used are:

• Vélu’s Formulas: Vélu’s original formulas for computing isogenies. This algorithm is selected by
giving as the kernel parameter a single point, or a list of points, generating a finite subgroup.

• Kohel’s Formulas: Kohel’s original formulas for computing isogenies. This algorithm is selected by
giving as the kernel parameter a monic polynomial (or a coefficient list in little endian) which will
define the kernel of the isogeny. Kohel’s algorithm is currently only implemented for cyclic isogenies,
with the exception of [2].

• √élu Algorithm (see hom_velusqrt): A variant of Vélu’s formulas with essentially square-root in-
stead of linear complexity (in the degree). Currently only available over finite fields. The input must
be a single kernel point of odd order ≥ 5. This algorithm is selected using algorithm="velusqrt".

• Factored Isogenies (see hom_composite): Given a list of points which generate a composite-order
subgroup, decomposes the isogeny into prime-degree steps. This can be used to construct isogenies of
extremely large, smooth degree. This algorithm is selected using algorithm="factored".

INPUT:

• kernel – a kernel: either a point on this curve, a list of points on this curve, a monic kernel polynomial,
or None. If initializing from a codomain, this must be None.

• codomain – an elliptic curve (default: None).

– If kernel is None, then degree must be given as well and the given codomain must be the
codomain of a cyclic, separable, normalized isogeny of the given degree.

– If kernel is not None, then this must be isomorphic to the codomain of the separable isogeny
defined by kernel; in this case, the isogeny is post-composed with an isomorphism so that the
codomain equals the given curve.

• degree – an integer (default: None).

– If kernel is None, then this is the degree of the isogeny from this curve to codomain.

– If kernel is not None, then this is used to determine whether or not to skip a gcd of the given
kernel polynomial with the two-torsion polynomial of this curve.

102 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

• model – a string (default: None). Supported values (cf. compute_model()):

– "minimal": If self is a curve over the rationals or over a number field, then the codomain is a
global minimal model where this exists.

– "short_weierstrass": The codomain is a short Weierstrass curve, assuming one exists.

– "montgomery": The codomain is an (untwisted) Montgomery curve, assuming one exists over
this field.

• check (default: True) – check whether the input is valid. Setting this to False can lead to significant
speedups.

• algorithm – string (optional). By default (when algorithm is omitted), the “traditional” implemen-
tation EllipticCurveIsogeny is used. The other choices are:

– "velusqrt": Use EllipticCurveHom_velusqrt.

– "factored": Use EllipticCurveHom_composite to decompose the isogeny into prime-degree
steps.

The degree parameter is not supported when an algorithm is specified.

OUTPUT:

An isogeny between elliptic curves. This is a morphism of curves. (In all cases, the returned object will be
an instance of EllipticCurveHom .)

EXAMPLES:

sage: F = GF(2^5, 'alpha'); alpha = F.gen()
sage: E = EllipticCurve(F, [1,0,1,1,1])
sage: R.<x> = F[]
sage: phi = E.isogeny(x+1)
sage: phi.rational_maps()
((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))

sage: E = EllipticCurve('11a1')
sage: P = E.torsion_points()[1]
sage: E.isogeny(P)
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x -␣
→˓20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 -␣
→˓7820*x - 263580 over Rational Field

sage: E = EllipticCurve(GF(19),[1,1])
sage: P = E(15,3); Q = E(2,12);
sage: (P.order(), Q.order())
(7, 3)
sage: phi = E.isogeny([P,Q]); phi
Isogeny of degree 21 from Elliptic Curve defined by y^2 = x^3 + x + 1 over␣
→˓Finite Field of size 19 to Elliptic Curve defined by y^2 = x^3 + x + 1 over␣
→˓Finite Field of size 19
sage: phi(E.random_point()) # all points defined over GF(19) are in the kernel
(0 : 1 : 0)

sage: E = EllipticCurve(GF(2^32-5), [170246996, 2036646110])
sage: P = E.lift_x(2)
sage: E.isogeny(P, algorithm="factored")

(continues on next page)

103

Elliptic curves, Release 9.8

(continued from previous page)

Composite morphism of degree 1073721825 = 3^4*5^2*11*19*43*59:
From: Elliptic Curve defined by y^2 = x^3 + 170246996*x + 2036646110 over␣

→˓Finite Field of size 4294967291
To: Elliptic Curve defined by y^2 = x^3 + 272790262*x + 1903695400 over␣

→˓Finite Field of size 4294967291

Not all polynomials define a finite subgroup (trac ticket #6384):

sage: E = EllipticCurve(GF(31),[1,0,0,1,2])
sage: phi = E.isogeny([14,27,4,1])
Traceback (most recent call last):
...
ValueError: the polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite␣
→˓subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite␣
→˓Field of size 31

See also:

• EllipticCurveHom

• EllipticCurveIsogeny

• EllipticCurveHom_composite

isogeny_codomain(kernel, degree=None)
Return the codomain of the isogeny from self with given kernel.

INPUT:

• kernel – Either a list of points in the kernel of the isogeny,
or a kernel polynomial (specified as either a univariate polynomial or a coefficient list.)

OUTPUT:

An elliptic curve, the codomain of the separable normalized isogeny defined by this kernel.

EXAMPLES:

sage: E = EllipticCurve('17a1')
sage: R.<x> = QQ[]
sage: E2 = E.isogeny_codomain(x - 11/4); E2
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64 over␣
→˓Rational Field

isogeny_ell_graph(l, directed=True, label_by_j=False)
Return a graph representing the l-degree K-isogenies between K-isomorphism classes of elliptic curves for
K = self.base_field().

INPUT:

• l – prime degree of isogenies

• directed – boolean (default: True); whether to return a directed or undirected graph. In the undi-
rected case, the in-degrees and out-degrees of the vertices must be balanced and therefore the number
of out-edges from the vertices corresponding to j-invariants 0 and 1728 (if they are part of the graph)
are reduced to match the number of in-edges.

104 Chapter 5. Elliptic curves over a general field

https://trac.sagemath.org/6384

Elliptic curves, Release 9.8

• label_by_j – boolean (default: False); whether to label graph vertices by the j-invariant correspond-
ing to the isomorphism class of curves. If the j-invariant is not unique in the isogeny class, append *
to it to indicate a twist. Otherwise, if False label vertices by the equation of a representative curve.

OUTPUT:

A Graph or Digraph

EXAMPLES:

Ordinary curve over finite extension field of degree 2:

sage: E = EllipticCurve(GF(59^2, "i", x^2 + 1), j=5)
sage: G = E.isogeny_ell_graph(5, directed=False, label_by_j=True)
sage: G
Graph on 20 vertices
sage: G.vertices(sort=True)
['1',
'12',
...
'i + 55']
sage: G.edges(sort=True)
[('1', '28*i + 11', None),
('1', '31*i + 11', None),
...
('8', 'i + 1', None)]

Supersingular curve over prime field:

sage: E = EllipticCurve(GF(419), j=1728)
sage: G3 = E.isogeny_ell_graph(3, directed=False, label_by_j=True)
sage: G3
Graph on 27 vertices
sage: G3.vertices(sort=True)
['0',
'0*',
...
'98*']
sage: G3.edges(sort=True)
[('0', '0*', None),
('0', '13', None),
...
('48*', '98*', None)]
sage: G5 = E.isogeny_ell_graph(5, directed=False, label_by_j=True)
sage: G5
Graph on 9 vertices
sage: G5.vertices(sort=True)
['13', '13*', '407', '407*', '52', '62', '62*', '98', '98*']
sage: G5.edges(sort=True)
[('13', '52', None),
('13', '98', None),
...
('62*', '98*', None)]

Supersingular curve over finite extension field of degree 2:

105

Elliptic curves, Release 9.8

sage: K = GF(431^2, "i", x^2 + 1)
sage: E = EllipticCurve(K, j=0)
sage: E.is_supersingular()
True
sage: G = E.isogeny_ell_graph(2, directed=True, label_by_j=True)
sage: G
Looped multi-digraph on 37 vertices
sage: G.vertices(sort=True)
['0',
'102',
...
'87*i + 190']
sage: G.edges(sort=True)
[('0', '125', None),
('0', '125', None),
...
'81*i + 65', None)]
sage: H = E.isogeny_ell_graph(2, directed=False, label_by_j=True)
sage: H
Looped multi-graph on 37 vertices
sage: H.vertices(sort=True)
['0',
'102',
...
'87*i + 190']
sage: H.edges(sort=True)
[('0', '125', None),
('102', '125', None),
...
('81*i + 65', '87*i + 190', None)]

Curve over a quadratic number field:

sage: K.<e> = NumberField(x^2 - 2)
sage: E = EllipticCurve(K, [1,0,1,4, -6])
sage: G2 = E.isogeny_ell_graph(2, directed=False)
sage: G2.vertices(sort=True)
['y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)',
'y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)',
'y^2 + x*y + y = x^3 + 4*x + (-6)']
sage: G2.edges(sort=True)
[('y^2 + x*y + y = x^3 + (-130*e-356)*x + (-2000*e-2038)',
'y^2 + x*y + y = x^3 + (-36)*x + (-70)', None),
('y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + (130*e-356)*x + (2000*e-2038)', None),
('y^2 + x*y + y = x^3 + (-36)*x + (-70)',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]
sage: G3 = E.isogeny_ell_graph(3, directed=False)
sage: G3.vertices(sort=True)
['y^2 + x*y + y = x^3 + (-1)*x',
'y^2 + x*y + y = x^3 + (-171)*x + (-874)',
'y^2 + x*y + y = x^3 + 4*x + (-6)']

(continues on next page)

106 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

(continued from previous page)

sage: G3.edges(sort=True)
[('y^2 + x*y + y = x^3 + (-1)*x',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None),
('y^2 + x*y + y = x^3 + (-171)*x + (-874)',
'y^2 + x*y + y = x^3 + 4*x + (-6)', None)]

quadratic_twist(D=None)
Return the quadratic twist of this curve by D.

INPUT:

• D (default None) the twisting parameter (see below).

In characteristics other than 2,𝐷 must be nonzero, and the twist is isomorphic to self after adjoining
√︀

(𝐷)
to the base.

In characteristic 2, 𝐷 is arbitrary, and the twist is isomorphic to self after adjoining a root of 𝑥2 + 𝑥 + 𝐷
to the base.

In characteristic 2 when 𝑗 = 0, this is not implemented.

If the base field 𝐹 is finite, 𝐷 need not be specified, and the curve returned is the unique curve (up to
isomorphism) defined over 𝐹 isomorphic to the original curve over the quadratic extension of 𝐹 but not
over 𝐹 itself. Over infinite fields, an error is raised if 𝐷 is not given.

EXAMPLES:

sage: E = EllipticCurve([GF(1103)(1), 0, 0, 107, 340]); E
Elliptic Curve defined by y^2 + x*y = x^3 + 107*x + 340 over Finite Field of␣
→˓size 1103
sage: F=E.quadratic_twist(-1); F
Elliptic Curve defined by y^2 = x^3 + 1102*x^2 + 609*x + 300 over Finite Field␣
→˓of size 1103
sage: E.is_isomorphic(F)
False
sage: E.is_isomorphic(F,GF(1103^2,'a'))
True

A characteristic 2 example:

sage: E=EllipticCurve(GF(2),[1,0,1,1,1])
sage: E1=E.quadratic_twist(1)
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1,GF(4,'a'))
True

Over finite fields, the twisting parameter may be omitted:

sage: k.<a> = GF(2^10)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: Et = E.quadratic_twist()
sage: Et # random (only determined up to isomorphism)
Elliptic Curve defined by y^2 + x*y = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^
→˓6+a^4+1) over Finite Field in a of size 2^10
sage: E.is_isomorphic(Et)

(continues on next page)

107

Elliptic curves, Release 9.8

(continued from previous page)

False
sage: E.j_invariant()==Et.j_invariant()
True

sage: p=next_prime(10^10)
sage: k = GF(p)
sage: E = EllipticCurve(k,[1,2,3,4,5])
sage: Et = E.quadratic_twist()
sage: Et # random (only determined up to isomorphism)
Elliptic Curve defined by y^2 = x^3 + 7860088097*x^2 + 9495240877*x +␣
→˓3048660957 over Finite Field of size 10000000019
sage: E.is_isomorphic(Et)
False
sage: k2 = GF(p^2,'a')
sage: E.change_ring(k2).is_isomorphic(Et.change_ring(k2))
True

quartic_twist(D)

Return the quartic twist of this curve by 𝐷.

INPUT:

• D (must be nonzero) – the twisting parameter..

Note: The characteristic must not be 2 or 3, and the 𝑗-invariant must be 1728.

EXAMPLES:

sage: E=EllipticCurve_from_j(GF(13)(1728)); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13
sage: E1=E.quartic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1,GF(13^2,'a'))
False
sage: E.is_isomorphic(E1,GF(13^4,'a'))
True

sextic_twist(D)

Return the quartic twist of this curve by 𝐷.

INPUT:

• D (must be nonzero) – the twisting parameter..

Note: The characteristic must not be 2 or 3, and the 𝑗-invariant must be 0.

EXAMPLES:

sage: E=EllipticCurve_from_j(GF(13)(0)); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13

(continues on next page)

108 Chapter 5. Elliptic curves over a general field

Elliptic curves, Release 9.8

(continued from previous page)

sage: E1=E.sextic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1,GF(13^2,'a'))
False
sage: E.is_isomorphic(E1,GF(13^4,'a'))
False
sage: E.is_isomorphic(E1,GF(13^6,'a'))
True

two_torsion_rank()

Return the dimension of the 2-torsion subgroup of 𝐸(𝐾).

This will be 0, 1 or 2.

EXAMPLES:

sage: E=EllipticCurve('11a1')
sage: E.two_torsion_rank()
0
sage: K.<alpha>=QQ.extension(E.division_polynomial(2).monic())
sage: E.base_extend(K).two_torsion_rank()
1
sage: E.reduction(53).two_torsion_rank()
2

sage: E = EllipticCurve('14a1')
sage: E.two_torsion_rank()
1
sage: K.<alpha>=QQ.extension(E.division_polynomial(2).monic().factor()[1][0])
sage: E.base_extend(K).two_torsion_rank()
2

sage: EllipticCurve('15a1').two_torsion_rank()
2

weierstrass_p(prec=20, algorithm=None)
Compute the Weierstrass ℘-function of this elliptic curve.

ALGORITHM: sage.schemes.elliptic_curves.ell_wp.weierstrass_p()

INPUT:

• prec – precision

• algorithm – string or None (default: None): a choice of algorithm among "pari", "fast",
"quadratic"; or None to let this function determine the best algorithm to use.

OUTPUT:

a Laurent series in one variable 𝑧 with coefficients in the base field 𝑘 of 𝐸.

EXAMPLES:

109

Elliptic curves, Release 9.8

sage: E = EllipticCurve('11a1')
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)
sage: E.weierstrass_p(prec=20, algorithm='fast')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/
→˓928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 +␣
→˓3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)
sage: E.weierstrass_p(prec=20, algorithm='pari')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/
→˓928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 +␣
→˓3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)
sage: E.weierstrass_p(prec=20, algorithm='quadratic')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/
→˓928746000*z^10 + 2403461/2806650*z^12 + 30211462703/43418875500*z^14 +␣
→˓3539374016033/7723451736000*z^16 + 413306031683977/1289540602350000*z^18 +␣
→˓O(z^20)

sage.schemes.elliptic_curves.ell_field.compute_model(E, name)
Return a model of an elliptic curve E of the type specified in the name parameter.

Used as a helper function in EllipticCurveIsogeny.

INPUT:

• E (elliptic curve)

• name (string) – current options:

– "minimal": Return a global minimal model of E if it exists, and a semi-global minimal model other-
wise. For this choice, E must be defined over a number field. See global_minimal_model().

– "short_weierstrass": Return a short Weierstrass model of E assuming one exists. See
short_weierstrass_model().

– "montgomery": Return an (untwisted) Montgomery model of E assuming one exists over this field.
See montgomery_model().

OUTPUT:

An elliptic curve of the specified type isomorphic to 𝐸.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_field import compute_model
sage: E = EllipticCurve([12/7, 405/49, 0, -81/8, 135/64])
sage: compute_model(E, 'minimal')
Elliptic Curve defined by y^2 = x^3 - x^2 - 7*x + 10 over Rational Field
sage: compute_model(E, 'short_weierstrass')
Elliptic Curve defined by y^2 = x^3 - 48114*x + 4035015 over Rational Field
sage: compute_model(E, 'montgomery')
Elliptic Curve defined by y^2 = x^3 + 5*x^2 + x over Rational Field

110 Chapter 5. Elliptic curves over a general field

CHAPTER

SIX

ELLIPTIC CURVES OVER FINITE FIELDS

AUTHORS:

• William Stein (2005): Initial version

• Robert Bradshaw et al. . . .

• John Cremona (2008-02): Point counting and group structure for non-prime fields, Frobenius endomorphism
and order, elliptic logs

• Mariah Lenox (2011-03): Added set_order method

class sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field(K, ainvs)
Bases: EllipticCurve_field , HyperellipticCurve_finite_field

Elliptic curve over a finite field.

EXAMPLES:

sage: EllipticCurve(GF(101),[2,3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Finite Field of size 101

sage: F = GF(101^2, 'a')
sage: EllipticCurve([F(2),F(3)])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Finite Field in a of size 101^2

Elliptic curves over Z/𝑁Z with 𝑁 prime are of type “elliptic curve over a finite field”:

sage: F = Zmod(101)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)
<class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_
→˓with_category'>
sage: E.category()
Category of schemes over Ring of integers modulo 101

Elliptic curves over Z/𝑁Z with 𝑁 composite are of type “generic elliptic curve”:

sage: F = Zmod(95)
sage: EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95
sage: E = EllipticCurve([F(2), F(3)])
sage: type(E)

(continues on next page)

111

Elliptic curves, Release 9.8

(continued from previous page)

<class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category
→˓'>
sage: E.category()
Category of schemes over Ring of integers modulo 95
sage: TestSuite(E).run(skip=["_test_elements"])

abelian_group()

Return the abelian group structure of the group of points on this elliptic curve.

See also:
If you do not need the complete abelian group structure but only generators of the group, use gens()which
can be much faster in some cases.

This method relies on gens(), which uses random points on the curve and hence the generators are likely
to differ from one run to another. However, the group is cached, so the generators will not change in any
one run of Sage.

OUTPUT:

• an AdditiveAbelianGroupWrapper object encapsulating the abelian group of rational points on this
elliptic curve

ALGORITHM:

We first call gens() to obtain a generating set (𝑃,𝑄). Letting 𝑃 denote the point of larger order 𝑛1, we
extend 𝑃 to a basis (𝑃,𝑄′) by computing a scalar 𝑥 such that 𝑄′ = 𝑄 − [𝑥]𝑃 has order 𝑛2 = #𝐸/𝑛1.
Finding 𝑥 involves a (typically easy) discrete-logarithm computation.

The complexity of the algorithm is the cost of factoring the group order, plus Θ(
√
ℓ) for each prime ℓ such

that the rational ℓ∞-torsion of self is isomorphic to Z/ℓ𝑟 × Z/ℓ𝑠 with 𝑟 > 𝑠 > 0, times a polynomial in
the logarithm of the base-field size.

AUTHORS:

• John Cremona: original implementation

• Lorenz Panny (2021): current implementation

EXAMPLES:

sage: E = EllipticCurve(GF(11),[2,5])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/10 embedded in Abelian group of points␣
→˓on Elliptic Curve defined by y^2 = x^3 + 2*x + 5 over Finite Field of size 11

sage: E = EllipticCurve(GF(41),[2,5])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/22 + Z/2 ...

sage: F.<a> = GF(3^6,'a')
sage: E = EllipticCurve([a^4 + a^3 + 2*a^2 + 2*a, 2*a^5 + 2*a^3 + 2*a^2 + 1])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/26 + Z/26 ...

sage: F.<a> = GF(101^3,'a')
sage: E = EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])

(continues on next page)

112 Chapter 6. Elliptic curves over finite fields

../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.abelian_group()
Additive abelian group isomorphic to Z/1031352 ...

The group can be trivial:

sage: E = EllipticCurve(GF(2),[0,0,1,1,1])
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined by␣
→˓y^2 + y = x^3 + x + 1 over Finite Field of size 2

Of course, there are plenty of points if we extend the field:

sage: E.cardinality(extension_degree=100)
1267650600228231653296516890625

This tests the patch for trac ticket #3111, using 10 primes randomly selected:

sage: E = EllipticCurve('389a')
sage: for p in [5927, 2297, 1571, 1709, 3851, 127, 3253, 5783, 3499, 4817]:
....: G = E.change_ring(GF(p)).abelian_group()
sage: for p in prime_range(10000): # long time (19s on sage.math, 2011)
....: if p != 389:
....: G = E.change_ring(GF(p)).abelian_group()

This tests that the bug reported in trac ticket #3926 has been fixed:

sage: K.<i> = QuadraticField(-1)
sage: OK = K.ring_of_integers()
sage: P=K.factor(10007)[0][0]
sage: OKmodP = OK.residue_field(P)
sage: E = EllipticCurve([0,0,0,i,i+3])
sage: Emod = E.change_ring(OKmodP); Emod
Elliptic Curve defined by y^2 = x^3 + ibar*x + (ibar+3) over Residue field in␣
→˓ibar of Fractional ideal (10007)
sage: Emod.abelian_group() #random generators
(Multiplicative Abelian group isomorphic to C50067594 x C2,
((3152*ibar + 7679 : 7330*ibar + 7913 : 1), (8466*ibar + 1770 : 0 : 1)))

cardinality(algorithm=None, extension_degree=1)
Return the number of points on this elliptic curve.

INPUT:

• algorithm – (optional) string:

– 'pari' – use the PARI C-library function ellcard.

– 'bsgs' – use the baby-step giant-step method as
implemented in Sage, with the Cremona-Sutherland version of Mestre’s trick.

– 'exhaustive' – naive point counting.

– 'subfield' – reduce to a smaller field, provided that the j-invariant lies in a subfield.

– 'all' – compute cardinality with both 'pari' and 'bsgs'; return result if they agree or raise a
AssertionError if they do not

113

https://trac.sagemath.org/3111
https://trac.sagemath.org/3926

Elliptic curves, Release 9.8

• extension_degree – an integer 𝑑 (default: 1): if the base field is F𝑞 , return the cardinality of self
over the extension F𝑞𝑑 of degree 𝑑.

OUTPUT:

The order of the group of rational points of self over its base field, or over an extension field of degree 𝑑
as above. The result is cached.

EXAMPLES:

sage: EllipticCurve(GF(4, 'a'), [1,2,3,4,5]).cardinality()
8
sage: k.<a> = GF(3^3)
sage: l = [a^2 + 1, 2*a^2 + 2*a + 1, a^2 + a + 1, 2, 2*a]
sage: EllipticCurve(k,l).cardinality()
29

sage: l = [1, 1, 0, 2, 0]
sage: EllipticCurve(k, l).cardinality()
38

An even bigger extension (which we check against Magma):

sage: EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5]).cardinality()
515377520732011331036459693969645888996929981504
sage: magma.eval("Order(EllipticCurve([GF(3^100)|1,2,3,4,5]))") # optional -␣
→˓magma
'515377520732011331036459693969645888996929981504'

sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality()
10076
sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality(algorithm='pari')
10076
sage: EllipticCurve(GF(next_prime(10**20)), [1,2,3,4,5]).cardinality()
100000000011093199520

The cardinality is cached:

sage: E = EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5])
sage: E.cardinality() is E.cardinality()
True

The following is very fast since the curve is actually defined over the prime field:

sage: k.<a> = GF(11^100)
sage: E1 = EllipticCurve(k, [3,3])
sage: N1 = E1.cardinality(algorithm="subfield"); N1
137806123398222701841183371720896367762643312000384671846835266941791510341065565176497846502742959856128
sage: E1.cardinality_pari() == N1
True
sage: E2 = E1.quadratic_twist()
sage: N2 = E2.cardinality(algorithm="subfield"); N2
137806123398222701841183371720896367762643312000384656816094284101308193849980588362304472492174093035876
sage: E2.cardinality_pari() == N2
True

(continues on next page)

114 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: N1 + N2 == 2*(k.cardinality() + 1)
True

We can count points over curves defined as a reduction:

sage: x = polygen(QQ)
sage: K.<w> = NumberField(x^2 + x + 1)
sage: EK = EllipticCurve(K, [0, 0, w, 2, 1])
sage: E = EK.base_extend(K.residue_field(2))
sage: E
Elliptic Curve defined by y^2 + wbar*y = x^3 + 1 over Residue field in wbar of␣
→˓Fractional ideal (2)
sage: E.cardinality()
7
sage: E = EK.base_extend(K.residue_field(w - 1))
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined by␣
→˓y^2 + y = x^3 + 2*x + 1 over Residue field of Fractional ideal (w - 1)

sage: R.<x> = GF(17)[]
sage: pol = R.irreducible_element(5)
sage: k.<a> = R.residue_field(pol)
sage: E = EllipticCurve(R, [1, x]).base_extend(k)
sage: E
Elliptic Curve defined by y^2 = x^3 + x + a over Residue field in a of␣
→˓Principal ideal (x^5 + x + 14) of Univariate Polynomial Ring in x over Finite␣
→˓Field of size 17
sage: E.cardinality()
1421004

cardinality_bsgs(verbose=False)
Return the cardinality of self over the base field.

ALGORITHM: A variant of “Mestre’s trick” extended to all finite fields by Cremona and Sutherland, 2008.

Note:
1. The Mestre-Schoof-Cremona-Sutherland algorithm may fail for a small finite number of curves over
𝐹𝑞 for 𝑞 at most 49, so for 𝑞 < 50 we use an exhaustive count.

2. Quadratic twists are not implemented in characteristic 2 when 𝑗 = 0(= 1728); but this case is treated
separately.

EXAMPLES:

sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p),[3,4])
sage: E.cardinality_bsgs()
1020
sage: E = EllipticCurve(GF(3^4,'a'),[1,1])
sage: E.cardinality_bsgs()
64

(continues on next page)

115

Elliptic curves, Release 9.8

(continued from previous page)

sage: F.<a> = GF(101^3,'a')
sage: E = EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])
sage: E.cardinality_bsgs()
1031352

cardinality_exhaustive()

Return the cardinality of self over the base field.

This simply adds up the number of points with each x-coordinate: only used for small field sizes!

EXAMPLES:

sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p),[3,4])
sage: E.cardinality_exhaustive()
1020
sage: E = EllipticCurve(GF(3^4,'a'),[1,1])
sage: E.cardinality_exhaustive()
64

cardinality_pari()

Return the cardinality of self using PARI.

This uses pari:ellcard.

EXAMPLES:

sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p),[3,4])
sage: E.cardinality_pari()
1020
sage: K = GF(next_prime(10^6))
sage: E = EllipticCurve(K,[1,0,0,1,1])
sage: E.cardinality_pari()
999945

Since trac ticket #16931, this now works over finite fields which are not prime fields:

sage: k.<a> = GF(7^3)
sage: E = EllipticCurve_from_j(a)
sage: E.cardinality_pari()
318
sage: K.<a> = GF(3^20)
sage: E = EllipticCurve(K,[1,0,0,1,a])
sage: E.cardinality_pari()
3486794310

count_points(n=1)
Return the cardinality of this elliptic curve over the base field or extensions.

INPUT:

• n (int) – a positive integer

OUTPUT:

If 𝑛 = 1, returns the cardinality of the curve over its base field.

116 Chapter 6. Elliptic curves over finite fields

https://pari.math.u-bordeaux.fr/dochtml/help/ellcard
https://trac.sagemath.org/16931

Elliptic curves, Release 9.8

If 𝑛 > 1, returns a list [𝑐1, 𝑐2, ..., 𝑐𝑛] where 𝑐𝑑 is the cardinality of the curve over the extension of degree 𝑑
of its base field.

EXAMPLES:

sage: p = 101
sage: F = GF(p)
sage: E = EllipticCurve(F, [2,3])
sage: E.count_points(1)
96
sage: E.count_points(5)
[96, 10368, 1031904, 104053248, 10509895776]

sage: F.<a> = GF(p^2)
sage: E = EllipticCurve(F, [a,a])
sage: E.cardinality()
10295
sage: E.count_points()
10295
sage: E.count_points(1)
10295
sage: E.count_points(5)
[10295, 104072155, 1061518108880, 10828567126268595, 110462212555439192375]

frobenius()

Return the frobenius of self as an element of a quadratic order.

Note: This computes the curve cardinality, which may be time-consuming.

Frobenius is only determined up to conjugacy.

EXAMPLES:

sage: E = EllipticCurve(GF(11),[3,3])
sage: E.frobenius()
phi
sage: E.frobenius().minpoly()
x^2 - 4*x + 11

For some supersingular curves, Frobenius is in Z:

sage: E = EllipticCurve(GF(25,'a'),[0,0,0,0,1])
sage: E.frobenius()
-5

frobenius_endomorphism()

Return the 𝑞-power Frobenius endomorphism of this elliptic curve, where 𝑞 is the cardinality of the (finite)
base field.

EXAMPLES:

sage: F.<t> = GF(11^4)
sage: E = EllipticCurve([t,t])
sage: E.frobenius_endomorphism()

(continues on next page)

117

Elliptic curves, Release 9.8

(continued from previous page)

Frobenius endomorphism of degree 14641 = 11^4:
From: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t of␣

→˓size 11^4
To: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t of␣

→˓size 11^4
sage: E.frobenius_endomorphism() == E.frobenius_isogeny(4)
True

See also:
frobenius_isogeny()

frobenius_order()

Return the quadratic order Z[phi] where phi is the Frobenius endomorphism of the elliptic curve.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

sage: E = EllipticCurve(GF(11),[3,3])
sage: E.frobenius_order()
Order in Number Field in phi with defining polynomial x^2 - 4*x + 11

For some supersingular curves, Frobenius is in Z and the Frobenius order is Z:

sage: E = EllipticCurve(GF(25,'a'),[0,0,0,0,1])
sage: R = E.frobenius_order()
sage: R
Order in Number Field in phi with defining polynomial x + 5
sage: R.degree()
1

frobenius_polynomial()

Return the characteristic polynomial of Frobenius.

The Frobenius endomorphism of the elliptic curve has quadratic characteristic polynomial. In most cases
this is irreducible and defines an imaginary quadratic order; for some supersingular curves, Frobenius is an
integer a and the polynomial is (𝑥− 𝑎)2.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

sage: E = EllipticCurve(GF(11),[3,3])
sage: E.frobenius_polynomial()
x^2 - 4*x + 11

For some supersingular curves, Frobenius is in Z and the polynomial is a square:

sage: E = EllipticCurve(GF(25,'a'),[0,0,0,0,1])
sage: E.frobenius_polynomial().factor()
(x + 5)^2

118 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 9.8

gens()

Return points which generate the abelian group of points on this elliptic curve.

The algorithm involves factoring the group order of self, but is otherwise (randomized) polynomial-time.

(The points returned by this function are not guaranteed to be the same each time, although they should
remain fixed within a single run of Sage unless abelian_group() is called.)

OUTPUT: a tuple of points on the curve.

• if the group is trivial: an empty tuple.

• if the group is cyclic: a tuple with 1 point, a generator.

• if the group is not cyclic: a tuple with 2 points, where the order of the first point equals the exponent
of the group.

Warning: In the case of 2 generators 𝑃 and 𝑄, it is not guaranteed that the group is the cartesian
product of the 2 cyclic groups ⟨𝑃 ⟩ and ⟨𝑄⟩. In other words, the order of 𝑄 is not as small as possible.
If you really need a basis (rather than just a generating set) of the group, use abelian_group().

EXAMPLES:

sage: E = EllipticCurve(GF(11),[2,5])
sage: P = E.gens()[0]; P # random
(0 : 7 : 1)
sage: E.cardinality(), P.order()
(10, 10)
sage: E = EllipticCurve(GF(41),[2,5])
sage: E.gens() # random
((20 : 38 : 1), (25 : 31 : 1))
sage: E.cardinality()
44

If the abelian group has been computed, return those generators instead:

sage: E.abelian_group()
Additive abelian group isomorphic to Z/22 + Z/2 embedded in Abelian group of␣
→˓points on Elliptic Curve defined by y^2 = x^3 + 2*x + 5 over Finite Field of␣
→˓size 41
sage: ab_gens = E.abelian_group().gens()
sage: ab_gens == E.gens()
True
sage: E.gens()[0].order()
22
sage: E.gens()[1].order()
2

Examples with 1 and 0 generators:

sage: F.<a> = GF(3^6)
sage: E = EllipticCurve([a, a+1])
sage: pts = E.gens()
sage: len(pts)
1

(continues on next page)

119

Elliptic curves, Release 9.8

(continued from previous page)

sage: pts[0].order() == E.cardinality()
True
sage: E = EllipticCurve(GF(2), [0,0,1,1,1])
sage: E.gens()
()

This works over larger finite fields where abelian_group() may be too expensive:

sage: k.<a> = GF(5^60)
sage: E = EllipticCurve([a, a])
sage: len(E.gens())
2
sage: E.cardinality()
867361737988403547206134229616487867594472
sage: a = E.gens()[0].order(); a # random
433680868994201773603067114808243933797236
sage: b = E.gens()[1].order(); b # random
30977204928157269543076222486303138128374
sage: lcm(a,b)
433680868994201773603067114808243933797236

is_isogenous(other, field=None, proof=True)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• field (default None) – a field containing the base fields of the two elliptic curves into which the two
curves may be extended to test if they are isogenous over this field. By default is_isogenous will not
try to find this field unless one of the curves can be extended into the base field of the other, in which
case it will test over the larger base field.

• proof (default True) – this parameter is here only to be consistent with versions for other types of
elliptic curves.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other defined over field.

EXAMPLES:

sage: E1 = EllipticCurve(GF(11^2,'a'),[2,7]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 7 over Finite Field in a of size 11^
→˓2
sage: E1.is_isogenous(5)
Traceback (most recent call last):
...
ValueError: Second argument is not an Elliptic Curve.
sage: E1.is_isogenous(E1)
True

sage: E2 = EllipticCurve(GF(7^3,'b'),[3,1]); E2
Elliptic Curve defined by y^2 = x^3 + 3*x + 1 over Finite Field in b of size 7^3
sage: E1.is_isogenous(E2)
Traceback (most recent call last):

(continues on next page)

120 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 9.8

(continued from previous page)

...
ValueError: The base fields must have the same characteristic.

sage: E3 = EllipticCurve(GF(11^2,'c'),[4,3]); E3
Elliptic Curve defined by y^2 = x^3 + 4*x + 3 over Finite Field in c of size 11^
→˓2
sage: E1.is_isogenous(E3)
False

sage: E4 = EllipticCurve(GF(11^6,'d'),[6,5]); E4
Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field in d of size 11^
→˓6
sage: E1.is_isogenous(E4)
True

sage: E5 = EllipticCurve(GF(11^7,'e'),[4,2]); E5
Elliptic Curve defined by y^2 = x^3 + 4*x + 2 over Finite Field in e of size 11^
→˓7
sage: E1.is_isogenous(E5)
Traceback (most recent call last):
...
ValueError: Curves have different base fields: use the field parameter.

When the field is given:

sage: E1 = EllipticCurve(GF(13^2,’a’),[2,7]); E1 Elliptic Curve defined by y^2 = x^3 + 2*x +
7 over Finite Field in a of size 13^2 sage: E1.is_isogenous(5,GF(13^6,’f’)) Traceback (most re-
cent call last): . . . ValueError: Second argument is not an Elliptic Curve. sage: E6 = Elliptic-
Curve(GF(11^3,’g’),[9,3]); E6 Elliptic Curve defined by y^2 = x^3 + 9*x + 3 over Finite Field in
g of size 11^3 sage: E1.is_isogenous(E6,QQ) Traceback (most recent call last): . . . ValueError:
The base fields must have the same characteristic. sage: E7 = EllipticCurve(GF(13^5,’h’),[2,9]);
E7 Elliptic Curve defined by y^2 = x^3 + 2*x + 9 over Finite Field in h of size 13^5 sage:
E1.is_isogenous(E7,GF(13^4,’i’)) Traceback (most recent call last): . . . ValueError: Field must
be an extension of the base fields of both curves sage: E1.is_isogenous(E7,GF(13^10,’j’)) False
sage: E1.is_isogenous(E7,GF(13^30,’j’)) False

is_ordinary(proof=True)
Return True if this elliptic curve is ordinary, else False.

INPUT:

• proof (boolean, default True) – If True, returns a proved result. If False, then a return value of True
is certain but a return value of False may be based on a probabilistic test. See the documentation of
the function is_j_supersingular() for more details.

EXAMPLES:

sage: F = GF(101)
sage: EllipticCurve(j=F(0)).is_ordinary()
False
sage: EllipticCurve(j=F(1728)).is_ordinary()
True
sage: EllipticCurve(j=F(66)).is_ordinary()
False

(continues on next page)

121

Elliptic curves, Release 9.8

(continued from previous page)

sage: EllipticCurve(j=F(99)).is_ordinary()
True

is_supersingular(proof=True)
Return True if this elliptic curve is supersingular, else False.

INPUT:

• proof (boolean, default True) – If True, returns a proved result. If False, then a return value of False
is certain but a return value of True may be based on a probabilistic test. See the documentation of the
function is_j_supersingular() for more details.

EXAMPLES:

sage: F = GF(101)
sage: EllipticCurve(j=F(0)).is_supersingular()
True
sage: EllipticCurve(j=F(1728)).is_supersingular()
False
sage: EllipticCurve(j=F(66)).is_supersingular()
True
sage: EllipticCurve(j=F(99)).is_supersingular()
False

order(algorithm=None, extension_degree=1)
Return the number of points on this elliptic curve.

INPUT:

• algorithm – (optional) string:

– 'pari' – use the PARI C-library function ellcard.

– 'bsgs' – use the baby-step giant-step method as
implemented in Sage, with the Cremona-Sutherland version of Mestre’s trick.

– 'exhaustive' – naive point counting.

– 'subfield' – reduce to a smaller field, provided that the j-invariant lies in a subfield.

– 'all' – compute cardinality with both 'pari' and 'bsgs'; return result if they agree or raise a
AssertionError if they do not

• extension_degree – an integer 𝑑 (default: 1): if the base field is F𝑞 , return the cardinality of self
over the extension F𝑞𝑑 of degree 𝑑.

OUTPUT:

The order of the group of rational points of self over its base field, or over an extension field of degree 𝑑
as above. The result is cached.

EXAMPLES:

sage: EllipticCurve(GF(4, 'a'), [1,2,3,4,5]).cardinality()
8
sage: k.<a> = GF(3^3)
sage: l = [a^2 + 1, 2*a^2 + 2*a + 1, a^2 + a + 1, 2, 2*a]
sage: EllipticCurve(k,l).cardinality()
29

122 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 9.8

sage: l = [1, 1, 0, 2, 0]
sage: EllipticCurve(k, l).cardinality()
38

An even bigger extension (which we check against Magma):

sage: EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5]).cardinality()
515377520732011331036459693969645888996929981504
sage: magma.eval("Order(EllipticCurve([GF(3^100)|1,2,3,4,5]))") # optional -␣
→˓magma
'515377520732011331036459693969645888996929981504'

sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality()
10076
sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality(algorithm='pari')
10076
sage: EllipticCurve(GF(next_prime(10**20)), [1,2,3,4,5]).cardinality()
100000000011093199520

The cardinality is cached:

sage: E = EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5])
sage: E.cardinality() is E.cardinality()
True

The following is very fast since the curve is actually defined over the prime field:

sage: k.<a> = GF(11^100)
sage: E1 = EllipticCurve(k, [3,3])
sage: N1 = E1.cardinality(algorithm="subfield"); N1
137806123398222701841183371720896367762643312000384671846835266941791510341065565176497846502742959856128
sage: E1.cardinality_pari() == N1
True
sage: E2 = E1.quadratic_twist()
sage: N2 = E2.cardinality(algorithm="subfield"); N2
137806123398222701841183371720896367762643312000384656816094284101308193849980588362304472492174093035876
sage: E2.cardinality_pari() == N2
True
sage: N1 + N2 == 2*(k.cardinality() + 1)
True

We can count points over curves defined as a reduction:

sage: x = polygen(QQ)
sage: K.<w> = NumberField(x^2 + x + 1)
sage: EK = EllipticCurve(K, [0, 0, w, 2, 1])
sage: E = EK.base_extend(K.residue_field(2))
sage: E
Elliptic Curve defined by y^2 + wbar*y = x^3 + 1 over Residue field in wbar of␣
→˓Fractional ideal (2)
sage: E.cardinality()
7
sage: E = EK.base_extend(K.residue_field(w - 1))

(continues on next page)

123

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined by␣
→˓y^2 + y = x^3 + 2*x + 1 over Residue field of Fractional ideal (w - 1)

sage: R.<x> = GF(17)[]
sage: pol = R.irreducible_element(5)
sage: k.<a> = R.residue_field(pol)
sage: E = EllipticCurve(R, [1, x]).base_extend(k)
sage: E
Elliptic Curve defined by y^2 = x^3 + x + a over Residue field in a of␣
→˓Principal ideal (x^5 + x + 14) of Univariate Polynomial Ring in x over Finite␣
→˓Field of size 17
sage: E.cardinality()
1421004

plot(*args, **kwds)
Draw a graph of this elliptic curve over a prime finite field.

INPUT:

• *args, **kwds – all other options are passed to the circle graphing primitive.

EXAMPLES:

sage: E = EllipticCurve(FiniteField(17), [0,1])
sage: P = plot(E, rgbcolor=(0,0,1))

points()

All the points on this elliptic curve. The list of points is cached so subsequent calls are free.

EXAMPLES:

sage: p = 5
sage: F = GF(p)
sage: E = EllipticCurve(F, [1, 3])
sage: a_sub_p = E.change_ring(QQ).ap(p); a_sub_p
2

sage: len(E.points())
4
sage: p + 1 - a_sub_p
4
sage: E.points()
[(0 : 1 : 0), (1 : 0 : 1), (4 : 1 : 1), (4 : 4 : 1)]

sage: K = GF((p, 2),'a')
sage: E = E.change_ring(K)
sage: len(E.points())
32
sage: (p + 1)**2 - a_sub_p**2
32
sage: w = E.points(); w
[(0 : 1 : 0), (0 : 2*a + 4 : 1), (0 : 3*a + 1 : 1), (1 : 0 : 1), (2 : 2*a + 4 :␣

(continues on next page)

124 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 9.8

(continued from previous page)

→˓1), (2 : 3*a + 1 : 1), (3 : 2*a + 4 : 1), (3 : 3*a + 1 : 1), (4 : 1 : 1), (4␣
→˓: 4 : 1), (a : 1 : 1), (a : 4 : 1), (a + 2 : a + 1 : 1), (a + 2 : 4*a + 4 :␣
→˓1), (a + 3 : a : 1), (a + 3 : 4*a : 1), (a + 4 : 0 : 1), (2*a : 2*a : 1),␣
→˓(2*a : 3*a : 1), (2*a + 4 : a + 1 : 1), (2*a + 4 : 4*a + 4 : 1), (3*a + 1 : a␣
→˓+ 3 : 1), (3*a + 1 : 4*a + 2 : 1), (3*a + 2 : 2*a + 3 : 1), (3*a + 2 : 3*a +␣
→˓2 : 1), (4*a : 0 : 1), (4*a + 1 : 1 : 1), (4*a + 1 : 4 : 1), (4*a + 3 : a + 3␣
→˓: 1), (4*a + 3 : 4*a + 2 : 1), (4*a + 4 : a + 4 : 1), (4*a + 4 : 4*a + 1 : 1)]

Note that the returned list is an immutable sorted Sequence:

sage: w[0] = 9
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

random_element()

Return a random point on this elliptic curve, uniformly chosen among all rational points.

ALGORITHM:

Choose the point at infinity with probability 1/(2𝑞 + 1). Otherwise, take a random element from the field
as x-coordinate and compute the possible y-coordinates. Return the i’th possible y-coordinate, where i is
randomly chosen to be 0 or 1. If the i’th y-coordinate does not exist (either there is no point with the given
x-coordinate or we hit a 2-torsion point with i == 1), try again.

This gives a uniform distribution because you can imagine 2𝑞 + 1 buckets, one for the point at infinity and
2 for each element of the field (representing the x-coordinates). This gives a 1-to-1 map of elliptic curve
points into buckets. At every iteration, we simply choose a random bucket until we find a bucket containing
a point.

AUTHORS:

• Jeroen Demeyer (2014-09-09): choose points uniformly random, see trac ticket #16951.

EXAMPLES:

sage: k = GF(next_prime(7^5))
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(16740 : 12486 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

sage: k.<a> = GF(7^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(5*a^4 + 3*a^3 + 2*a^2 + a + 4 : 2*a^4 + 3*a^3 + 4*a^2 + a + 5 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

125

https://trac.sagemath.org/16951

Elliptic curves, Release 9.8

sage: k.<a> = GF(2^5)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: P = E.random_element();P # random
(a^4 + a : a^4 + a^3 + a^2 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

Ensure that the entire point set is reachable:

sage: E = EllipticCurve(GF(11), [2,1])
sage: S = set()
sage: while len(S) < E.cardinality():
....: S.add(E.random_element())

random_point()

Return a random point on this elliptic curve, uniformly chosen among all rational points.

ALGORITHM:

Choose the point at infinity with probability 1/(2𝑞 + 1). Otherwise, take a random element from the field
as x-coordinate and compute the possible y-coordinates. Return the i’th possible y-coordinate, where i is
randomly chosen to be 0 or 1. If the i’th y-coordinate does not exist (either there is no point with the given
x-coordinate or we hit a 2-torsion point with i == 1), try again.

This gives a uniform distribution because you can imagine 2𝑞 + 1 buckets, one for the point at infinity and
2 for each element of the field (representing the x-coordinates). This gives a 1-to-1 map of elliptic curve
points into buckets. At every iteration, we simply choose a random bucket until we find a bucket containing
a point.

AUTHORS:

• Jeroen Demeyer (2014-09-09): choose points uniformly random, see trac ticket #16951.

EXAMPLES:

sage: k = GF(next_prime(7^5))
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(16740 : 12486 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

sage: k.<a> = GF(7^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(5*a^4 + 3*a^3 + 2*a^2 + a + 4 : 2*a^4 + 3*a^3 + 4*a^2 + a + 5 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

126 Chapter 6. Elliptic curves over finite fields

https://trac.sagemath.org/16951

Elliptic curves, Release 9.8

sage: k.<a> = GF(2^5)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: P = E.random_element();P # random
(a^4 + a : a^4 + a^3 + a^2 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

Ensure that the entire point set is reachable:

sage: E = EllipticCurve(GF(11), [2,1])
sage: S = set()
sage: while len(S) < E.cardinality():
....: S.add(E.random_element())

rational_points()

All the points on this elliptic curve. The list of points is cached so subsequent calls are free.

EXAMPLES:

sage: p = 5
sage: F = GF(p)
sage: E = EllipticCurve(F, [1, 3])
sage: a_sub_p = E.change_ring(QQ).ap(p); a_sub_p
2

sage: len(E.points())
4
sage: p + 1 - a_sub_p
4
sage: E.points()
[(0 : 1 : 0), (1 : 0 : 1), (4 : 1 : 1), (4 : 4 : 1)]

sage: K = GF((p, 2),'a')
sage: E = E.change_ring(K)
sage: len(E.points())
32
sage: (p + 1)**2 - a_sub_p**2
32
sage: w = E.points(); w
[(0 : 1 : 0), (0 : 2*a + 4 : 1), (0 : 3*a + 1 : 1), (1 : 0 : 1), (2 : 2*a + 4 :␣
→˓1), (2 : 3*a + 1 : 1), (3 : 2*a + 4 : 1), (3 : 3*a + 1 : 1), (4 : 1 : 1), (4␣
→˓: 4 : 1), (a : 1 : 1), (a : 4 : 1), (a + 2 : a + 1 : 1), (a + 2 : 4*a + 4 :␣
→˓1), (a + 3 : a : 1), (a + 3 : 4*a : 1), (a + 4 : 0 : 1), (2*a : 2*a : 1),␣
→˓(2*a : 3*a : 1), (2*a + 4 : a + 1 : 1), (2*a + 4 : 4*a + 4 : 1), (3*a + 1 : a␣
→˓+ 3 : 1), (3*a + 1 : 4*a + 2 : 1), (3*a + 2 : 2*a + 3 : 1), (3*a + 2 : 3*a +␣
→˓2 : 1), (4*a : 0 : 1), (4*a + 1 : 1 : 1), (4*a + 1 : 4 : 1), (4*a + 3 : a + 3␣
→˓: 1), (4*a + 3 : 4*a + 2 : 1), (4*a + 4 : a + 4 : 1), (4*a + 4 : 4*a + 1 : 1)]

Note that the returned list is an immutable sorted Sequence:

127

Elliptic curves, Release 9.8

sage: w[0] = 9
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

set_order(value, check, num_checks)
Set the value of self._order to value.

Use this when you know a priori the order of the curve to avoid a potentially expensive order calculation.

INPUT:

• value – integer in the Hasse-Weil range for this curve.

• check (boolean, default: True) – whether or not to run sanity checks on the input.

• num_checks (integer, default: 8) – if check is True, the number of times to check whether value
times a random point on this curve equals the identity.

OUTPUT:

None

EXAMPLES:

This example illustrates basic usage.

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order(6)
sage: E.order()
6
sage: E.order() * E.random_point()
(0 : 1 : 0)

We now give a more interesting case, the NIST-P521 curve. Its order is too big to calculate with Sage, and
takes a long time using other packages, so it is very useful here.

sage: p = 2^521 - 1
sage: prev_proof_state = proof.arithmetic()
sage: proof.arithmetic(False) # turn off primality checking
sage: F = GF(p)
sage: A = p - 3
sage: B =␣
→˓1093849038073734274511112390766805569936207598951683748994586394495953116150735016013708737573759623248592132296706313309438452531591012912142327488478985984
sage: q =␣
→˓6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
sage: E = EllipticCurve([F(A), F(B)])
sage: E.set_order(q)
sage: G = E.random_point()
sage: G.order() * G # This takes practically no time.
(0 : 1 : 0)
sage: proof.arithmetic(prev_proof_state) # restore state

It is an error to pass a value which is not an integer in the Hasse-Weil range:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order("hi")

(continues on next page)

128 Chapter 6. Elliptic curves over finite fields

Elliptic curves, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
TypeError: unable to convert 'hi' to an integer
sage: E.set_order(0)
Traceback (most recent call last):
...
ValueError: Value 0 illegal (not an integer in the Hasse range)
sage: E.set_order(1000)
Traceback (most recent call last):
...
ValueError: Value 1000 illegal (not an integer in the Hasse range)

It is also very likely an error to pass a value which is not the actual order of this curve. How unlikely is
determined by num_checks, the factorization of the actual order, and the actual group structure:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order(11)
Traceback (most recent call last):
...
ValueError: Value 11 illegal (multiple of random point not the identity)

However, set_order can be fooled, though it’s not likely in “real cases of interest”. For instance, the order
can be set to a multiple of the actual order:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order(12) # 12 just fits in the Hasse range
sage: E.order()
12

Or, the order can be set incorrectly along with num_checks set too small:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order(4, num_checks=0)
sage: E.order()
4

The value of num_checks must be an integer. Negative values are interpreted as zero, which means don’t
do any checking:

sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order(4, num_checks=-12)
sage: E.order()
4

AUTHORS:

• Mariah Lenox (2011-02-16)

trace_of_frobenius()

Return the trace of Frobenius acting on this elliptic curve.

Note: This computes the curve cardinality, which may be time-consuming.

129

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve(GF(101),[2,3])
sage: E.trace_of_frobenius()
6
sage: E = EllipticCurve(GF(11^5,'a'),[2,5])
sage: E.trace_of_frobenius()
802

The following shows that the issue from trac ticket #2849 is fixed:

sage: E = EllipticCurve(GF(3^5,'a'),[-1,-1])
sage: E.trace_of_frobenius()
-27

sage.schemes.elliptic_curves.ell_finite_field.fill_ss_j_dict()

Fill the global cache of supersingular j-_polynomials.

This function does nothing except the first time it is called, when it fills supersingular_j_polynomials with
precomputed values for 𝑝 < 300. Setting the values this way avoids start-up costs.

sage.schemes.elliptic_curves.ell_finite_field.is_j_supersingular(j, proof=True)
Return True if 𝑗 is a supersingular 𝑗-invariant.

INPUT:

• j (finite field element) – an element of a finite field

• proof (boolean, default True) – If True, returns a proved result. If False, then a return value of False is
certain but a return value of True may be based on a probabilistic test. See the ALGORITHM section below
for more details.

OUTPUT:

(boolean) True if 𝑗 is supersingular, else False.

ALGORITHM:

For small characteristics 𝑝 we check whether the 𝑗-invariant is in a precomputed list of supersingular values.
Otherwise we next check the 𝑗-invariant. If 𝑗 = 0, the curve is supersingular if and only if 𝑝 = 2 or 𝑝 ≡ 3
(mod 4); if 𝑗 = 1728, the curve is supersingular if and only if 𝑝 = 3 or 𝑝 ≡ 2 (mod 3). Next, if the base field
is the prime field GF(𝑝), we check that (𝑝 + 1)𝑃 = 0 for several random points 𝑃 , returning False if any fail:
supersingular curves over GF(𝑝) have cardinality 𝑝 + 1. If Proof is false we now return True. Otherwise we
compute the cardinality and return True if and only if it is divisible by 𝑝.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_finite_field import is_j_supersingular,␣
→˓supersingular_j_polynomials
sage: [(p,[j for j in GF(p) if is_j_supersingular(j)]) for p in prime_range(30)]
[(2, [0]), (3, [0]), (5, [0]), (7, [6]), (11, [0, 1]), (13, [5]), (17, [0, 8]), (19,
→˓ [7, 18]), (23, [0, 3, 19]), (29, [0, 2, 25])]

sage: [j for j in GF(109) if is_j_supersingular(j)]
[17, 41, 43]
sage: PolynomialRing(GF(109),'j')(supersingular_j_polynomials[109]).roots()
[(43, 1), (41, 1), (17, 1)]

(continues on next page)

130 Chapter 6. Elliptic curves over finite fields

https://trac.sagemath.org/2849

Elliptic curves, Release 9.8

(continued from previous page)

sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(0))]
[2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89]
sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(1728))]
[2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83]
sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(123456))]
[2, 3, 59, 89]

sage.schemes.elliptic_curves.ell_finite_field.supersingular_j_polynomial(p, use_cache=True)
Return a polynomial whose roots are the supersingular 𝑗-invariants in characteristic 𝑝, other than 0, 1728.

INPUT:

• 𝑝 (integer) – a prime number.

• 𝑢𝑠𝑒𝑐𝑎𝑐ℎ𝑒 (boolean, default True) – use cached coefficients if they exist

ALGORITHM:

First compute H(X) whose roots are the Legendre 𝜆-invariants of supersingular curves (Silverman V.4.1(b)) in
characteristic 𝑝. Then, using a resultant computation with the polynomial relating 𝜆 and 𝑗 (Silverman III.1.7(b)),
we recover the polynomial (in variable j) whose roots are the 𝑗-invariants. Factors of 𝑗 and 𝑗−1728 are removed
if present.

Note: The only point of the use_cache parameter is to allow checking the precomputed coefficients.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_finite_field import supersingular_j_
→˓polynomial
sage: f = supersingular_j_polynomial(67); f
j^5 + 53*j^4 + 4*j^3 + 47*j^2 + 36*j + 8
sage: f.factor()
(j + 1) * (j^2 + 8*j + 45) * (j^2 + 44*j + 24)

sage: [supersingular_j_polynomial(p) for p in prime_range(30)]
[1, 1, 1, 1, 1, j + 8, j + 9, j + 12, j + 4, j^2 + 2*j + 21]

131

Elliptic curves, Release 9.8

132 Chapter 6. Elliptic curves over finite fields

CHAPTER

SEVEN

FORMAL GROUPS OF ELLIPTIC CURVES

AUTHORS:

• William Stein: original implementations

• David Harvey: improved asymptotics of some methods

• Nick Alexander: separation from ell_generic.py, bugfixes and docstrings

class sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup(E)
Bases: SageObject

The formal group associated to an elliptic curve.

curve()

Return the elliptic curve this formal group is associated to.

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: F = E.formal_group()
sage: F.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

differential(prec=20)
Return the power series 𝑓(𝑡) = 1+· · · such that 𝑓(𝑡)𝑑𝑡 is the usual invariant differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3).

INPUT:

• prec – nonnegative integer (default: 20), answer will be returned 𝑂(𝑡prec)

OUTPUT: a power series with given precision

Return the formal series

𝑓(𝑡) = 1 + 𝑎1𝑡+ (𝑎1
2 + 𝑎2)𝑡2 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 113 of [Sil2009].

The result is cached, and a cached version is returned if possible.

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have
default precision 20 (or whatever the default default is).

EXAMPLES:

133

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

sage: EllipticCurve([-1, 1/4]).formal_group().differential(15)
1 - 2*t^4 + 3/4*t^6 + 6*t^8 - 5*t^10 - 305/16*t^12 + 105/4*t^14 + O(t^15)
sage: EllipticCurve(Integers(53), [-1, 1/4]).formal_group().differential(15)
1 + 51*t^4 + 14*t^6 + 6*t^8 + 48*t^10 + 24*t^12 + 13*t^14 + O(t^15)

AUTHORS:

• David Harvey (2006-09-10): factored out of log

group_law(prec=10)
Return the formal group law.

INPUT:

• prec – integer (default: 10)

OUTPUT: a power series with given precision in R[[‘t1’,’t2’]], where the curve is defined over R.

Return the formal power series

𝐹 (𝑡1, 𝑡2) = 𝑡1 + 𝑡2 − 𝑎1𝑡1𝑡2 − · · ·

to precision 𝑂(𝑡1, 𝑡2)𝑝𝑟𝑒𝑐 of page 115 of [Sil2009].

The result is cached, and a cached version is returned if possible.

AUTHORS:

• Nick Alexander: minor fixes, docstring

• Francis Clarke (2012-08): modified to use two-variable power series ring

EXAMPLES:

sage: e = EllipticCurve([1, 2])
sage: e.formal_group().group_law(6)
t1 + t2 - 2*t1^4*t2 - 4*t1^3*t2^2 - 4*t1^2*t2^3 - 2*t1*t2^4 + O(t1, t2)^6

sage: e = EllipticCurve('14a1')
sage: ehat = e.formal()
sage: ehat.group_law(3)
t1 + t2 - t1*t2 + O(t1, t2)^3
sage: ehat.group_law(5)
t1 + t2 - t1*t2 - 2*t1^3*t2 - 3*t1^2*t2^2 - 2*t1*t2^3 + O(t1, t2)^5

sage: e = EllipticCurve(GF(7), [3, 4])
sage: ehat = e.formal()
sage: ehat.group_law(3)
t1 + t2 + O(t1, t2)^3
sage: F = ehat.group_law(7); F
t1 + t2 + t1^4*t2 + 2*t1^3*t2^2 + 2*t1^2*t2^3 + t1*t2^4 + O(t1, t2)^7

inverse(prec=20)
Return the formal group inverse law i(t), which satisfies F(t, i(t)) = 0.

INPUT:

• prec – integer (default: 20)

134 Chapter 7. Formal groups of elliptic curves

Elliptic curves, Release 9.8

OUTPUT: a power series with given precision

Return the formal power series

𝑖(𝑡) = −𝑡+ 𝑎1𝑡
2 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 114 of [Sil2009].

The result is cached, and a cached version is returned if possible.

Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will
have default precision 20 (or whatever the default default is).

EXAMPLES:

sage: P.<a1, a2, a3, a4, a6> = ZZ[]
sage: E = EllipticCurve(list(P.gens()))
sage: i = E.formal_group().inverse(6); i
-t - a1*t^2 - a1^2*t^3 + (-a1^3 - a3)*t^4 + (-a1^4 - 3*a1*a3)*t^5 + O(t^6)
sage: F = E.formal_group().group_law(6)
sage: F(i.parent().gen(), i)
O(t^6)

log(prec=20)
Return the power series 𝑓(𝑡) = 𝑡+ · · · which is an isomorphism to the additive formal group.

Generally this only makes sense in characteristic zero, although the terms before 𝑡𝑝 may work in character-
istic 𝑝.

INPUT:

• prec – nonnegative integer (default: 20)

OUTPUT: a power series with given precision

EXAMPLES:

sage: EllipticCurve([-1, 1/4]).formal_group().log(15)
t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 - 5/11*t^11 - 305/208*t^13 + O(t^15)

AUTHORS:

• David Harvey (2006-09-10): rewrote to use differential

mult_by_n(n, prec=10)
Return the formal ‘multiplication by n’ endomorphism [𝑛].

INPUT:

• prec – integer (default: 10)

OUTPUT: a power series with given precision

Return the formal power series

[𝑛](𝑡) = 𝑛𝑡+ · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of Proposition 2.3 of [Sil2009].

135

Elliptic curves, Release 9.8

Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will
have default precision 20 (or whatever the default default is).

AUTHORS:

• Nick Alexander: minor fixes, docstring

• David Harvey (2007-03): faster algorithm for char 0 field case

• Hamish Ivey-Law (2009-06): double-and-add algorithm for non char 0 field case.

• Tom Boothby (2009-06): slight improvement to double-and-add

• Francis Clarke (2012-08): adjustments and simplifications using group_law code as modified to yield
a two-variable power series.

EXAMPLES:

sage: e = EllipticCurve([1, 2, 3, 4, 6])
sage: e.formal_group().mult_by_n(0, 5)
O(t^5)
sage: e.formal_group().mult_by_n(1, 5)
t + O(t^5)

We verify an identity of low degree:

sage: none = e.formal_group().mult_by_n(-1, 5)
sage: two = e.formal_group().mult_by_n(2, 5)
sage: ntwo = e.formal_group().mult_by_n(-2, 5)
sage: ntwo - none(two)
O(t^5)
sage: ntwo - two(none)
O(t^5)

It’s quite fast:

sage: E = EllipticCurve("37a"); F = E.formal_group()
sage: F.mult_by_n(100, 20)
100*t - 49999950*t^4 + 3999999960*t^5 + 14285614285800*t^7 - 2999989920000150*t^
→˓8 + 133333325333333400*t^9 - 3571378571674999800*t^10 +␣
→˓1402585362624965454000*t^11 - 146666057066712847999500*t^12 +␣
→˓5336978000014213190385000*t^13 - 519472790950932256570002000*t^14 +␣
→˓93851927683683567270392002800*t^15 - 6673787211563812368630730325175*t^16 +␣
→˓320129060335050875009191524993000*t^17 -␣
→˓45670288869783478472872833214986000*t^18 +␣
→˓5302464956134111125466184947310391600*t^19 + O(t^20)

sigma(prec=10)
Return the Weierstrass sigma function as a formal power series solution to the differential equation

𝑑2 log 𝜎

𝑑𝑧2
= −℘(𝑧)

with initial conditions 𝜎(𝑂) = 0 and 𝜎′(𝑂) = 1, expressed in the variable 𝑡 = log𝐸(𝑧) of the formal
group.

INPUT:

136 Chapter 7. Formal groups of elliptic curves

Elliptic curves, Release 9.8

• prec – integer (default: 10)

OUTPUT: a power series with given precision

Other solutions can be obtained by multiplication with a function of the form exp(𝑐𝑧2). If the curve has
good ordinary reduction at a prime 𝑝 then there is a canonical choice of 𝑐 that produces the canonical 𝑝-adic
sigma function. To obtain that, please use E.padic_sigma(p) instead. See padic_sigma()

EXAMPLES:

sage: E = EllipticCurve('14a')
sage: F = E.formal_group()
sage: F.sigma(5)
t + 1/2*t^2 + 1/3*t^3 + 3/4*t^4 + O(t^5)

w(prec=20)
Return the formal group power series 𝑤.

INPUT:

• prec – integer (default: 20)

OUTPUT: a power series with given precision

Return the formal power series

𝑤(𝑡) = 𝑡3 + 𝑎1𝑡
4 + (𝑎2 + 𝑎21)𝑡5 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of Proposition IV.1.1 of [Sil2009]. This is the formal expansion of 𝑤 = −1/𝑦 about
the formal parameter 𝑡 = −𝑥/𝑦 at ∞.

The result is cached, and a cached version is returned if possible.

Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will
have default precision 20 (or whatever the default default is).

ALGORITHM: Uses Newton’s method to solve the elliptic curve equation at the origin. Complexity is
roughly 𝑂(𝑀(𝑛)) where 𝑛 is the precision and 𝑀(𝑛) is the time required to multiply polynomials of
length 𝑛 over the coefficient ring of 𝐸.

AUTHORS:

• David Harvey (2006-09-09): modified to use Newton’s method instead of a recurrence formula.

EXAMPLES:

sage: e = EllipticCurve([0, 0, 1, -1, 0])
sage: e.formal_group().w(10)
t^3 + t^6 - t^7 + 2*t^9 + O(t^10)

Check that caching works:

sage: e = EllipticCurve([3, 2, -4, -2, 5])
sage: e.formal_group().w(20)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + 237*t^8 + 312*t^9 - 949*t^10 -␣
→˓10389*t^11 - 57087*t^12 - 244092*t^13 - 865333*t^14 - 2455206*t^15 -␣
→˓4366196*t^16 + 6136610*t^17 + 109938783*t^18 + 688672497*t^19 + O(t^20)
sage: e.formal_group().w(7)

(continues on next page)

137

Elliptic curves, Release 9.8

(continued from previous page)

t^3 + 3*t^4 + 11*t^5 + 35*t^6 + O(t^7)
sage: e.formal_group().w(35)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + 237*t^8 + 312*t^9 - 949*t^10 -␣
→˓10389*t^11 - 57087*t^12 - 244092*t^13 - 865333*t^14 - 2455206*t^15 -␣
→˓4366196*t^16 + 6136610*t^17 + 109938783*t^18 + 688672497*t^19 + 3219525807*t^
→˓20 + 12337076504*t^21 + 38106669615*t^22 + 79452618700*t^23 - 33430470002*t^
→˓24 - 1522228110356*t^25 - 10561222329021*t^26 - 52449326572178*t^27 -␣
→˓211701726058446*t^28 - 693522772940043*t^29 - 1613471639599050*t^30 -␣
→˓421817906421378*t^31 + 23651687753515182*t^32 + 181817896829144595*t^33 +␣
→˓950887648021211163*t^34 + O(t^35)

x(prec=20)
Return the formal series 𝑥(𝑡) = 𝑡/𝑤(𝑡) in terms of the local parameter 𝑡 = −𝑥/𝑦 at infinity.

INPUT:

• prec – integer (default: 20)

OUTPUT: a Laurent series with given precision

Return the formal series

𝑥(𝑡) = 𝑡−2 − 𝑎1𝑡
−1 − 𝑎2 − 𝑎3𝑡− · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 113 of [Sil2009].

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have
default precision 20 (or whatever the default default is).

EXAMPLES:

sage: EllipticCurve([0, 0, 1, -1, 0]).formal_group().x(10)
t^-2 - t + t^2 - t^4 + 2*t^5 - t^6 - 2*t^7 + 6*t^8 - 6*t^9 + O(t^10)

y(prec=20)
Return the formal series 𝑦(𝑡) = −1/𝑤(𝑡) in terms of the local parameter 𝑡 = −𝑥/𝑦 at infinity.

INPUT:

• prec – integer (default: 20)

OUTPUT: a Laurent series with given precision

Return the formal series

𝑦(𝑡) = −𝑡−3 + 𝑎1𝑡
−2 + 𝑎2𝑡+ 𝑎3 + · · ·

to precision 𝑂(𝑡𝑝𝑟𝑒𝑐) of page 113 of [Sil2009].

The result is cached, and a cached version is returned if possible.

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have
default precision 20 (or whatever the default default is).

EXAMPLES:

138 Chapter 7. Formal groups of elliptic curves

Elliptic curves, Release 9.8

sage: EllipticCurve([0, 0, 1, -1, 0]).formal_group().y(10)
-t^-3 + 1 - t + t^3 - 2*t^4 + t^5 + 2*t^6 - 6*t^7 + 6*t^8 + 3*t^9 + O(t^10)

Maps between them

139

Elliptic curves, Release 9.8

140 Chapter 7. Formal groups of elliptic curves

CHAPTER

EIGHT

ELLIPTIC-CURVE MORPHISMS

This class serves as a common parent for various specializations of morphisms between elliptic curves, with the aim
of providing a common interface regardless of implementation details.

Current implementations of elliptic-curve morphisms (child classes):

• EllipticCurveIsogeny

• WeierstrassIsomorphism

• EllipticCurveHom_composite

• EllipticCurveHom_scalar

• EllipticCurveHom_frobenius

• EllipticCurveHom_velusqrt

AUTHORS:

• See authors of EllipticCurveIsogeny. Some of the code in this class was lifted from there.

• Lorenz Panny (2021): Refactor isogenies and isomorphisms into the common EllipticCurveHom interface.

class sage.schemes.elliptic_curves.hom.EllipticCurveHom(*args, **kwds)
Bases: Morphism

Base class for elliptic-curve morphisms.

as_morphism()

Return self as a morphism of projective schemes.

EXAMPLES:

sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: Q = E(6,5)
sage: phi = E.isogeny(Q)
sage: mor = phi.as_morphism()
sage: mor.domain() == E
True
sage: mor.codomain() == phi.codomain()
True
sage: mor(Q) == phi(Q)
True

141

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Elliptic curves, Release 9.8

degree()

Return the degree of this elliptic-curve morphism.

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.degree()
2
sage: phi = EllipticCurveIsogeny(E, [0,1,0,1])
sage: phi.degree()
4

sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: phi = EllipticCurveIsogeny(E, [17, 1])
sage: phi.degree()
3

Degrees are multiplicative, so the degree of a composite isogeny is the product of the degrees of the indi-
vidual factors:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(419), [1,0])
sage: P, = E.gens()
sage: phi = EllipticCurveHom_composite(E, P+P)
sage: phi.degree()
210
sage: phi.degree() == prod(f.degree() for f in phi.factors())
True

Isomorphisms always have degree 1 by definition:

sage: E1 = EllipticCurve([1,2,3,4,5])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: E1.isomorphism_to(E2).degree()
1

dual()

Return the dual of this elliptic-curve morphism.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.dual()

• sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism.
dual()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.dual()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.dual()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.dual()

formal(prec=20)
Return the formal isogeny associated to this elliptic-curve morphism as a power series in the variable 𝑡 =
−𝑥/𝑦 on the domain curve.

INPUT:

142 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 9.8

• prec – (default: 20), the precision with which the computations in the formal group are carried out.

EXAMPLES:

sage: E = EllipticCurve(GF(13),[1,7])
sage: phi = E.isogeny(E(10,4))
sage: phi.formal()
t + 12*t^13 + 2*t^17 + 8*t^19 + 2*t^21 + O(t^23)

sage: E = EllipticCurve([0,1])
sage: phi = E.isogeny(E(2,3))
sage: phi.formal(prec=10)
t + 54*t^5 + 255*t^7 + 2430*t^9 + 19278*t^11 + O(t^13)

sage: E = EllipticCurve('11a2')
sage: R.<x> = QQ[]
sage: phi = E.isogeny(x^2 + 101*x + 12751/5)
sage: phi.formal(prec=7)
t - 2724/5*t^5 + 209046/5*t^7 - 4767/5*t^8 + 29200946/5*t^9 + O(t^10)

is_injective()

Determine whether or not this morphism has trivial kernel.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 + x - 29/5
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi.is_injective()
False
sage: phi = EllipticCurveIsogeny(E, R(1))
sage: phi.is_injective()
True

sage: F = GF(7)
sage: E = EllipticCurve(j=F(0))
sage: phi = EllipticCurveIsogeny(E, [E((0,-1)), E((0,1))])
sage: phi.is_injective()
False
sage: phi = EllipticCurveIsogeny(E, E(0))
sage: phi.is_injective()
True

is_normalized()

Determine whether this morphism is a normalized isogeny.

Note: An isogeny 𝜙 : 𝐸1 → 𝐸2 between two given Weierstrass equations is said to be normalized if the
𝜙*(𝜔2) = 𝜔1, where 𝜔1 and 𝜔2 are the invariant differentials on 𝐸1 and 𝐸2 corresponding to the given
equation.

EXAMPLES:

143

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: R.<x> = GF(7)[]
sage: phi = EllipticCurveIsogeny(E, x)
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (3, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (5, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi = isom * phi
sage: phi.is_normalized()
True

sage: F = GF(2^5, 'alpha'); alpha = F.gen()
sage: E = EllipticCurve(F, [1,0,1,1,1])
sage: R.<x> = F[]
sage: phi = EllipticCurveIsogeny(E, x+1)
sage: isom = WeierstrassIsomorphism(phi.codomain(), (alpha, 0, 0, 0))
sage: phi.is_normalized()
True
sage: phi = isom * phi
sage: phi.is_normalized()
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1/alpha, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi = isom * phi
sage: phi.is_normalized()
True

sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^3 - x^2 - 10*x - 79/4
sage: phi = EllipticCurveIsogeny(E, f)
sage: isom = WeierstrassIsomorphism(phi.codomain(), (2, 0, 0, 0))
sage: phi.is_normalized()
True
sage: phi = isom * phi
sage: phi.is_normalized()
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1/2, 0, 0, 0))
sage: phi = isom * phi
sage: phi.is_normalized()

(continues on next page)

144 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 9.8

(continued from previous page)

True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi = isom * phi
sage: phi.is_normalized()
True

ALGORITHM: We check if scaling_factor() returns 1.

is_separable()

Determine whether or not this morphism is separable.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.is_separable()

• sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism.
is_separable()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
is_separable()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
is_separable()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
is_separable()

is_surjective()

Determine whether or not this morphism is surjective.

Note: This method currently always returns True, since a non-constant map of algebraic curves must be
surjective, and Sage does not yet implement the constant zero map. This will probably change in the future.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 + x - 29/5
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi.is_surjective()
True

sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.is_surjective()
True

sage: F = GF(2^5, 'omega')
sage: E = EllipticCurve(j=F(0))
sage: R.<x> = F[]
sage: phi = EllipticCurveIsogeny(E, x)
sage: phi.is_surjective()
True

145

Elliptic curves, Release 9.8

is_zero()

Check whether this elliptic-curve morphism is the zero map.

Note: This function currently always returns True as Sage does not yet implement the constant zero
morphism. This will probably change in the future.

EXAMPLES:

sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = EllipticCurveIsogeny(E, [E(0,1), E(0,-1)])
sage: phi.is_zero()
False

kernel_polynomial()

Return the kernel polynomial of this elliptic-curve morphism.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.kernel_polynomial()

• sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism.
kernel_polynomial()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
kernel_polynomial()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
kernel_polynomial()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
kernel_polynomial()

rational_maps()

Return the pair of explicit rational maps defining this elliptic-curve morphism as fractions of bivariate
polynomials in 𝑥 and 𝑦.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.rational_maps()

• sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism.
rational_maps()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
rational_maps()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
rational_maps()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
rational_maps()

scaling_factor()

Return the Weierstrass scaling factor associated to this elliptic-curve morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.scaling_factor()

146 Chapter 8. Elliptic-curve morphisms

Elliptic curves, Release 9.8

• sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism.
scaling_factor()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
scaling_factor()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
scaling_factor()

x_rational_map()

Return the 𝑥-coordinate rational map of this elliptic-curve morphism as a univariate rational expression in
𝑥.

Implemented by child classes. For examples, see:

• EllipticCurveIsogeny.x_rational_map()

• sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism.
x_rational_map()

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
x_rational_map()

• sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar.
x_rational_map()

• sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius.
x_rational_map()

sage.schemes.elliptic_curves.hom.compare_via_evaluation(left, right)
Test if two elliptic-curve morphisms are equal by evaluating them at enough points.

INPUT:

• left, right – EllipticCurveHom objects

ALGORITHM:

We use the fact that two isogenies of equal degree 𝑑 must be the same if and only if they behave identically on
more than 4𝑑 points. (It suffices to check this on a few points that generate a large enough subgroup.)

If the domain curve does not have sufficiently many rational points, the base field is extended first: Taking an
extension of degree 𝑂(log(𝑑)) suffices.

EXAMPLES:

sage: E = EllipticCurve(GF(83), [1,0])
sage: phi = E.isogeny(12*E.0, model='montgomery'); phi
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field␣
→˓of size 83 to Elliptic Curve defined by y^2 = x^3 + 70*x^2 + x over Finite Field␣
→˓of size 83
sage: psi = phi.dual(); psi
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 70*x^2 + x over␣
→˓Finite Field of size 83 to Elliptic Curve defined by y^2 = x^3 + x over Finite␣
→˓Field of size 83
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: mu = EllipticCurveHom_composite.from_factors([phi, psi])
sage: from sage.schemes.elliptic_curves.hom import compare_via_evaluation
sage: compare_via_evaluation(mu, E.scalar_multiplication(7))
True

147

Elliptic curves, Release 9.8

See also:

• sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite.
richcmp()

sage.schemes.elliptic_curves.hom.find_post_isomorphism(phi, psi)
Given two isogenies 𝜑 : 𝐸 → 𝐸′ and 𝜓 : 𝐸 → 𝐸′′ which are equal up to post-isomorphism defined over the
same field, find that isomorphism.

In other words, this function computes an isomorphism 𝛼 : 𝐸′ → 𝐸′′ such that 𝛼 ∘ 𝜑 = 𝜓.

ALGORITHM:

Start with a list of all isomorphisms𝐸′ → 𝐸′′. Then repeatedly evaluate 𝜑 and 𝜓 at random points 𝑃 to filter the
list for isomorphisms 𝛼 with 𝛼(𝜑(𝑃)) = 𝜓(𝑃). Once only one candidate is left, return it. Periodically extend
the base field to avoid getting stuck (say, if all candidate isomorphisms act the same on all rational points).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom import find_post_isomorphism
sage: E = EllipticCurve(GF(7^2), [1,0])
sage: f = E.scalar_multiplication(1)
sage: g = choice(E.automorphisms())
sage: find_post_isomorphism(f, g) == g
True

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: F.<i> = GF(883^2, modulus=x^2+1)
sage: E = EllipticCurve(F, [1,0])
sage: P = E.lift_x(117)
sage: Q = E.lift_x(774)
sage: w = WeierstrassIsomorphism(E, [i,0,0,0])
sage: phi = EllipticCurveHom_composite(E, [P,w(Q)]) * w
sage: psi = EllipticCurveHom_composite(E, [Q,w(P)])
sage: phi.kernel_polynomial() == psi.kernel_polynomial()
True
sage: find_post_isomorphism(phi, psi)
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + 320*x + 482 over Finite Field in i of␣

→˓size 883^2
To: Elliptic Curve defined by y^2 = x^3 + 320*x + 401 over Finite Field in i of␣

→˓size 883^2
Via: (u,r,s,t) = (882*i, 0, 0, 0)

148 Chapter 8. Elliptic-curve morphisms

CHAPTER

NINE

ISOMORPHISMS BETWEEN WEIERSTRASS MODELS OF ELLIPTIC
CURVES

AUTHORS:

• Robert Bradshaw (2007): initial version

• John Cremona (Jan 2008): isomorphisms, automorphisms and twists in all characteristics

• Lorenz Panny (2021): EllipticCurveHom interface

class sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism(E=None,
urst=None,
F=None)

Bases: EllipticCurveHom , baseWI

Class representing a Weierstrass isomorphism between two elliptic curves.

dual()

Return the dual isogeny of this isomorphism.

For isomorphisms, the dual is just the inverse.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: E = EllipticCurve(QuadraticField(-3), [0,1])
sage: w = WeierstrassIsomorphism(E, (CyclotomicField(3).gen(),0,0,0))
sage: (w.dual() * w).rational_maps()
(x, y)

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = E1.short_weierstrass_model()
sage: iso = E1.isomorphism_to(E2)
sage: iso.dual() == ~iso
True

is_separable()

Determine whether or not this isogeny is separable.

Since WeierstrassIsomorphism only implements isomorphisms, this method always returns True.

EXAMPLES:

149

Elliptic curves, Release 9.8

sage: E = EllipticCurve(GF(31337), [0,1])
sage: {f.is_separable() for f in E.automorphisms()}
{True}

kernel_polynomial()

Return the kernel polynomial of this isomorphism.

Isomorphisms have trivial kernel by definition, hence this method always returns 1.

EXAMPLES:

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: iso = E1.isomorphism_to(E2)
sage: iso.kernel_polynomial()
1
sage: psi = E1.isogeny(iso.kernel_polynomial(), codomain=E2); psi
Isogeny of degree 1 from Elliptic Curve defined by y^2 + 11*x*y + 33*y = x^3 +␣
→˓22*x^2 + 44*x + 55 over Rational Field to Elliptic Curve defined by y^2 + x*y␣
→˓= x^3 + x^2 - 684*x + 6681 over Rational Field
sage: psi in {iso, -iso}
True

rational_maps()

Return the pair of rational maps defining this isomorphism.

EXAMPLES:

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: iso = E1.isomorphism_to(E2); iso
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + 11*x*y + 33*y = x^3 + 22*x^2 + 44*x +␣

→˓55 over Rational Field
To: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 684*x + 6681 over␣

→˓Rational Field
Via: (u,r,s,t) = (1, -17, -5, 77)

sage: iso.rational_maps()
(x + 17, 5*x + y + 8)
sage: f = E2.defining_polynomial()(*iso.rational_maps(), 1)
sage: I = E1.defining_ideal()
sage: x,y,z = I.ring().gens()
sage: f in I + Ideal(z-1)
True

sage: E = EllipticCurve(GF(65537), [1,1,1,1,1])
sage: w = E.isomorphism_to(E.short_weierstrass_model())
sage: f,g = w.rational_maps()
sage: P = E.random_point()
sage: w(P).xy() == (f(P.xy()), g(P.xy()))
True

scaling_factor()

Return the Weierstrass scaling factor associated to this Weierstrass isomorphism.

150 Chapter 9. Isomorphisms between Weierstrass models of elliptic curves

Elliptic curves, Release 9.8

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
isomorphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve(QQbar, [0,1])
sage: all(f.scaling_factor() == f.formal()[1] for f in E.automorphisms())
True

ALGORITHM: The scaling factor equals the 𝑢 component of the tuple (𝑢, 𝑟, 𝑠, 𝑡) defining the isomorphism.

x_rational_map()

Return the 𝑥-coordinate rational map of this isomorphism.

EXAMPLES:

sage: E1 = EllipticCurve([11,22,33,44,55])
sage: E2 = EllipticCurve_from_j(E1.j_invariant())
sage: iso = E1.isomorphism_to(E2); iso
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + 11*x*y + 33*y = x^3 + 22*x^2 + 44*x +␣

→˓55 over Rational Field
To: Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 684*x + 6681 over␣

→˓Rational Field
Via: (u,r,s,t) = (1, -17, -5, 77)

sage: iso.x_rational_map()
x + 17
sage: iso.x_rational_map() == iso.rational_maps()[0]
True

class sage.schemes.elliptic_curves.weierstrass_morphism.baseWI(u=1, r=0, s=0, t=0)
Bases: object

This class implements the basic arithmetic of isomorphisms between Weierstrass models of elliptic curves.

These are specified by lists of the form [𝑢, 𝑟, 𝑠, 𝑡] (with 𝑢 ̸= 0) which specifies a transformation (𝑥, 𝑦) ↦→ (𝑥′, 𝑦′)
where

(𝑥, 𝑦) = (𝑢2𝑥′ + 𝑟, 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡).

INPUT:

• u,r,s,t (default (1, 0, 0, 0)) – standard parameters of an isomorphism between Weierstrass models.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: baseWI()
(1, 0, 0, 0)
sage: baseWI(2,3,4,5)
(2, 3, 4, 5)
sage: R.<u,r,s,t> = QQ[]
sage: baseWI(u,r,s,t)
(u, r, s, t)

is_identity()

Return True if this is the identity isomorphism.

EXAMPLES:

151

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: w = baseWI(); w.is_identity()
True
sage: w = baseWI(2,3,4,5); w.is_identity()
False

tuple()

Return the parameters 𝑢, 𝑟, 𝑠, 𝑡 as a tuple.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: w = baseWI(2,3,4,5)
sage: w.tuple()
(2, 3, 4, 5)

sage.schemes.elliptic_curves.weierstrass_morphism.identity_morphism(E)
Given an elliptic curve 𝐸, return the identity morphism on 𝐸 as a WeierstrassIsomorphism .

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import identity_
→˓morphism
sage: E = EllipticCurve([5,6,7,8,9])
sage: id_ = identity_morphism(E)
sage: id_.rational_maps()
(x, y)

sage.schemes.elliptic_curves.weierstrass_morphism.negation_morphism(E)
Given an elliptic curve 𝐸, return the negation endomorphism [−1] of 𝐸 as a WeierstrassIsomorphism .

EXAMPLES:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import negation_
→˓morphism
sage: E = EllipticCurve([5,6,7,8,9])
sage: neg = negation_morphism(E)
sage: neg.rational_maps()
(x, -5*x - y - 7)

152 Chapter 9. Isomorphisms between Weierstrass models of elliptic curves

CHAPTER

TEN

ISOGENIES

An isogeny 𝜙 : 𝐸1 → 𝐸2 between two elliptic curves𝐸1 and𝐸2 is a morphism of curves that sends the origin of𝐸1 to
the origin of 𝐸2. Such a morphism is automatically a morphism of group schemes and the kernel is a finite subgroup
scheme of 𝐸1. Such a subscheme can either be given by a list of generators, which have to be torsion points, or by a
polynomial in the coordinate 𝑥 of the Weierstrass equation of 𝐸1.

The usual way to create and work with isogenies is illustrated with the following example:

sage: k = GF(11)
sage: E = EllipticCurve(k,[1,1])
sage: Q = E(6,5)
sage: phi = E.isogeny(Q)
sage: phi
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x + 1 over
Finite Field of size 11 to Elliptic Curve defined by y^2 = x^3 + 7*x + 8
over Finite Field of size 11
sage: P = E(4,5)
sage: phi(P)
(10 : 0 : 1)
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 11
sage: phi.rational_maps()
((x^7 + 4*x^6 - 3*x^5 - 2*x^4 - 3*x^3 + 3*x^2 + x - 2)/(x^6 + 4*x^5 - 4*x^4
- 5*x^3 + 5*x^2), (x^9*y - 5*x^8*y - x^7*y + x^5*y - x^4*y - 5*x^3*y -
5*x^2*y - 2*x*y - 5*y)/(x^9 - 5*x^8 + 4*x^6 - 3*x^4 + 2*x^3))

The methods directly accessible from an elliptic curve E over a field are isogeny() and isogeny_codomain().

The most useful methods that apply to isogenies are:

• .domain()

• .codomain()

• degree()

• dual()

• rational_maps()

• kernel_polynomial()

Warning: This class only implements separable isogenies. When using Kohel’s algorithm, only cyclic isogenies
can be computed (except for [2]).

153

Elliptic curves, Release 9.8

Working with other kinds of isogenies may be possible using other child classes of EllipticCurveHom .

Some algorithms may need the isogeny to be normalized.

AUTHORS:

• Daniel Shumow <shumow@gmail.com>: 2009-04-19: initial version

• Chris Wuthrich: 7/09: add check of input, not the full list is needed. 10/09: eliminating some bugs.

• John Cremona 2014-08-08: tidying of code and docstrings, systematic use of univariate vs. bivariate polynomials
and rational functions.

• Lorenz Panny (2022-04): major cleanup of code and documentation

• Lorenz Panny (2022): inseparable duals

class sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny(E, kernel,
codomain=None,
degree=None,
model=None,
check=True)

Bases: EllipticCurveHom

This class implements separable isogenies of elliptic curves.

Several different algorithms for computing isogenies are available. These include:

• Vélu’s Formulas: Vélu’s original formulas for computing isogenies. This algorithm is selected by giving
as the kernel parameter a single point, or a list of points, generating a finite subgroup.

• Kohel’s Formulas: Kohel’s original formulas for computing isogenies. This algorithm is selected by giving
as the kernel parameter a monic polynomial (or a coefficient list) which will define the kernel of the
isogeny. Kohel’s algorithm is currently only implemented for cyclic isogenies, with the exception of [2].

INPUT:

• E – an elliptic curve, the domain of the isogeny to initialize.

• kernel – a kernel: either a point on E, a list of points on E, a monic kernel polynomial, or None. If
initializing from a domain/codomain, this must be None.

• codomain – an elliptic curve (default: None).

– If kernel is None, then degree must be given as well and the given codomain must be the codomain
of a cyclic, separable, normalized isogeny of the given degree.

– If kernel is not None, then this must be isomorphic to the codomain of the separable isogeny defined
by kernel; in this case, the isogeny is post-composed with an isomorphism so that the codomain
equals the given curve.

• degree – an integer (default: None).

– If kernel is None, then this is the degree of the isogeny from E to codomain.

– If kernel is not None, then this is used to determine whether or not to skip a gcd of the given kernel
polynomial with the two-torsion polynomial of E.

• model – a string (default: None). Supported values (cf. compute_model()):

– "minimal": If E is a curve over the rationals or over a number field, then the codomain is a global
minimal model where this exists.

– "short_weierstrass": The codomain is a short Weierstrass curve, assuming one exists.

154 Chapter 10. Isogenies

mailto:shumow@gmail.com

Elliptic curves, Release 9.8

– "montgomery": The codomain is an (untwisted) Montgomery curve, assuming one exists over this
field.

• check (default: True) – check whether the input is valid. Setting this to False can lead to significant
speedups.

EXAMPLES:

A simple example of creating an isogeny of a field of small characteristic:

sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0))); phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field␣
→˓of size 7 to Elliptic Curve defined by y^2 = x^3 + 3*x over Finite Field of size 7
sage: phi.degree() == 2
True
sage: phi.kernel_polynomial()
x
sage: phi.rational_maps()
((x^2 + 1)/x, (x^2*y - y)/x^2)
sage: phi == loads(dumps(phi)) # known bug
True

A more complicated example of a characteristic-2 field:

sage: E = EllipticCurve(GF(2^4,'alpha'), [0,0,1,0,1])
sage: P = E((1,1))
sage: phi_v = EllipticCurveIsogeny(E, P); phi_v
Isogeny of degree 3 from Elliptic Curve defined by y^2 + y = x^3 + 1 over Finite␣
→˓Field in alpha of size 2^4 to Elliptic Curve defined by y^2 + y = x^3 over Finite␣
→˓Field in alpha of size 2^4
sage: phi_ker_poly = phi_v.kernel_polynomial()
sage: phi_ker_poly
x + 1
sage: phi_k = EllipticCurveIsogeny(E, phi_ker_poly)
sage: phi_k == phi_v
True
sage: phi_k.rational_maps()
((x^3 + x + 1)/(x^2 + 1), (x^3*y + x^2*y + x*y + x + y)/(x^3 + x^2 + x + 1))
sage: phi_v.rational_maps()
((x^3 + x + 1)/(x^2 + 1), (x^3*y + x^2*y + x*y + x + y)/(x^3 + x^2 + x + 1))
sage: phi_k.degree() == phi_v.degree() == 3
True
sage: phi_k.is_separable()
True
sage: phi_v(E(0))
(0 : 1 : 0)
sage: alpha = E.base_field().gen()
sage: Q = E((0, alpha*(alpha + 1)))
sage: phi_v(Q)
(1 : alpha^2 + alpha : 1)
sage: phi_v(P) == phi_k(P)
True
sage: phi_k(P) == phi_v.codomain()(0)
True

155

Elliptic curves, Release 9.8

We can create an isogeny whose kernel equals the full 2-torsion:

sage: E = EllipticCurve(GF((3,2)), [0,0,0,1,1])
sage: ker_poly = E.division_polynomial(2)
sage: phi = EllipticCurveIsogeny(E, ker_poly); phi
Isogeny of degree 4 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite␣
→˓Field in z2 of size 3^2 to Elliptic Curve defined by y^2 = x^3 + x + 1 over␣
→˓Finite Field in z2 of size 3^2
sage: P1,P2,P3 = filter(bool, E(0).division_points(2))
sage: phi(P1)
(0 : 1 : 0)
sage: phi(P2)
(0 : 1 : 0)
sage: phi(P3)
(0 : 1 : 0)
sage: phi.degree()
4

We can also create trivial isogenies with the trivial kernel:

sage: E = EllipticCurve(GF(17), [11, 11, 4, 12, 10])
sage: phi_v = EllipticCurveIsogeny(E, E(0))
sage: phi_v.degree()
1
sage: phi_v.rational_maps()
(x, y)
sage: E == phi_v.codomain()
True
sage: P = E.random_point()
sage: phi_v(P) == P
True

sage: E = EllipticCurve(GF(31), [23, 1, 22, 7, 18])
sage: phi_k = EllipticCurveIsogeny(E, [1]); phi_k
Isogeny of degree 1 from Elliptic Curve defined by y^2 + 23*x*y + 22*y = x^3 + x^2␣
→˓+ 7*x + 18 over Finite Field of size 31 to Elliptic Curve defined by y^2 + 23*x*y␣
→˓+ 22*y = x^3 + x^2 + 7*x + 18 over Finite Field of size 31
sage: phi_k.degree()
1
sage: phi_k.rational_maps()
(x, y)
sage: phi_k.codomain() == E
True
sage: phi_k.kernel_polynomial()
1
sage: P = E.random_point(); P == phi_k(P)
True

Vélu and Kohel also work in characteristic 0:

sage: E = EllipticCurve(QQ, [0,0,0,3,4])
sage: P_list = E.torsion_points()
sage: phi = EllipticCurveIsogeny(E, P_list); phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 3*x + 4 over␣

(continues on next page)

156 Chapter 10. Isogenies

Elliptic curves, Release 9.8

(continued from previous page)

→˓Rational Field to Elliptic Curve defined by y^2 = x^3 - 27*x + 46 over Rational␣
→˓Field
sage: P = E((0,2))
sage: phi(P)
(6 : -10 : 1)
sage: phi_ker_poly = phi.kernel_polynomial()
sage: phi_ker_poly
x + 1
sage: phi_k = EllipticCurveIsogeny(E, phi_ker_poly); phi_k
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 3*x + 4 over␣
→˓Rational Field to Elliptic Curve defined by y^2 = x^3 - 27*x + 46 over Rational␣
→˓Field
sage: phi_k(P) == phi(P)
True
sage: phi_k == phi
True
sage: phi_k.degree()
2
sage: phi_k.is_separable()
True

A more complicated example over the rationals (of odd degree):

sage: E = EllipticCurve('11a1')
sage: P_list = E.torsion_points()
sage: phi_v = EllipticCurveIsogeny(E, P_list); phi_v
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x -␣
→˓263580 over Rational Field
sage: P = E((16,-61))
sage: phi_v(P)
(0 : 1 : 0)
sage: ker_poly = phi_v.kernel_polynomial(); ker_poly
x^2 - 21*x + 80
sage: phi_k = EllipticCurveIsogeny(E, ker_poly); phi_k
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x -␣
→˓263580 over Rational Field
sage: phi_k == phi_v
True
sage: phi_v(P) == phi_k(P)
True
sage: phi_k.is_separable()
True

We can also do this same example over the number field defined by the irreducible two-torsion polynomial of 𝐸:

sage: E = EllipticCurve('11a1')
sage: P_list = E.torsion_points()
sage: K.<alpha> = NumberField(x^3 - 2* x^2 - 40*x - 158)
sage: EK = E.change_ring(K)
sage: P_list = [EK(P) for P in P_list]

(continues on next page)

157

Elliptic curves, Release 9.8

(continued from previous page)

sage: phi_v = EllipticCurveIsogeny(EK, P_list); phi_v
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-
→˓10)*x + (-20) over Number Field in alpha with defining polynomial x^3 - 2*x^2 -␣
→˓40*x - 158 to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-7820)*x + (-
→˓263580) over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x -␣
→˓158
sage: P = EK((alpha/2,-1/2))
sage: phi_v(P)
(122/121*alpha^2 + 1633/242*alpha - 3920/121 : -1/2 : 1)
sage: ker_poly = phi_v.kernel_polynomial()
sage: ker_poly
x^2 - 21*x + 80
sage: phi_k = EllipticCurveIsogeny(EK, ker_poly)
sage: phi_k
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-
→˓10)*x + (-20) over Number Field in alpha with defining polynomial x^3 - 2*x^2 -␣
→˓40*x - 158 to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-7820)*x + (-
→˓263580) over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x -␣
→˓158
sage: phi_v == phi_k
True
sage: phi_k(P) == phi_v(P)
True
sage: phi_k == phi_v
True
sage: phi_k.degree()
5
sage: phi_v.is_separable()
True

The following example shows how to specify an isogeny from domain and codomain:

sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = E.isogeny(f)
sage: E2 = phi.codomain()
sage: phi_s = EllipticCurveIsogeny(E, None, E2, 5)
sage: phi_s
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x -␣
→˓263580 over Rational Field
sage: phi_s == phi
True
sage: phi_s.rational_maps() == phi.rational_maps()
True

However, only cyclic normalized isogenies can be constructed this way. The non-cyclic multiplication-by-3
isogeny won’t be found:

sage: E.isogeny(None, codomain=E, degree=9)
Traceback (most recent call last):

(continues on next page)

158 Chapter 10. Isogenies

Elliptic curves, Release 9.8

(continued from previous page)

...
ValueError: the two curves are not linked by a cyclic normalized isogeny of degree 9

Non-normalized isogeny also won’t be found:

sage: E2.isogeny(None, codomain=E, degree=5)
Traceback (most recent call last):
...
ValueError: the two curves are not linked by a cyclic normalized isogeny of degree 5
sage: phihat = phi.dual(); phihat
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x -␣
→˓263580 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 -␣
→˓10*x - 20 over Rational Field
sage: phihat.is_normalized()
False

Here an example of a construction of a endomorphisms with cyclic kernel on a CM-curve:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [1,0])
sage: RK.<X> = K[]
sage: f = X^2 - 2/5*i + 1/5
sage: phi= E.isogeny(f)
sage: isom = phi.codomain().isomorphism_to(E)
sage: phi = isom * phi
sage: phi.codomain() == phi.domain()
True
sage: phi.rational_maps()
(((4/25*i + 3/25)*x^5 + (4/5*i - 2/5)*x^3 - x)/(x^4 + (-4/5*i + 2/5)*x^2 + (-4/25*i␣
→˓- 3/25)), ((11/125*i + 2/125)*x^6*y + (-23/125*i + 64/125)*x^4*y + (141/125*i +␣
→˓162/125)*x^2*y + (3/25*i - 4/25)*y)/(x^6 + (-6/5*i + 3/5)*x^4 + (-12/25*i - 9/
→˓25)*x^2 + (2/125*i - 11/125)))

dual()

Return the isogeny dual to this isogeny.

Note: If 𝜙 : 𝐸 → 𝐸′ is the given isogeny and 𝑛 is its degree, then the dual is by definition the unique
isogeny 𝜙 : 𝐸′ → 𝐸 such that the compositions 𝜙 ∘ 𝜙 and 𝜙 ∘ 𝜙 are the multiplication-by-𝑛 maps on 𝐸
and 𝐸′, respectively.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()
sage: phi_hat.domain() == phi.codomain()
True
sage: phi_hat.codomain() == phi.domain()
True

(continues on next page)

159

Elliptic curves, Release 9.8

(continued from previous page)

sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)
sage: (Xm, Ym) == E.multiplication_by_m(5)
True

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = x^3 + x^2 + 28*x + 33
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()
sage: phi_hat.codomain() == phi.domain()
True
sage: phi_hat.domain() == phi.codomain()
True
sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)
sage: (Xm, Ym) == E.multiplication_by_m(7)
True

sage: E = EllipticCurve(GF(31), [0,0,0,1,8])
sage: R.<x> = GF(31)[]
sage: f = x^2 + 17*x + 29
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()
sage: phi_hat.codomain() == phi.domain()
True
sage: phi_hat.domain() == phi.codomain()
True
sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)
sage: (Xm, Ym) == E.multiplication_by_m(5)
True

Inseparable duals should be computed correctly:

sage: z2 = GF(71^2).gen()
sage: E = EllipticCurve(j=57*z2+51)
sage: E.isogeny(3*E.lift_x(0)).dual()
Composite morphism of degree 71 = 71*1^2:
From: Elliptic Curve defined by y^2 = x^3 + (32*z2+67)*x + (24*z2+37) over␣

→˓Finite Field in z2 of size 71^2
To: Elliptic Curve defined by y^2 = x^3 + (41*z2+56)*x + (18*z2+42) over␣

→˓Finite Field in z2 of size 71^2
sage: E.isogeny(E.lift_x(0)).dual()
Composite morphism of degree 213 = 71*3:
From: Elliptic Curve defined by y^2 = x^3 + (58*z2+31)*x + (34*z2+58) over␣

(continues on next page)

160 Chapter 10. Isogenies

Elliptic curves, Release 9.8

(continued from previous page)

→˓Finite Field in z2 of size 71^2
To: Elliptic Curve defined by y^2 = x^3 + (41*z2+56)*x + (18*z2+42) over␣

→˓Finite Field in z2 of size 71^2

. . . even if pre- or post-isomorphisms are present:

sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: phi = E.isogeny(E.lift_x(0))
sage: pre = ~WeierstrassIsomorphism(phi.domain(), (z2,2,3,4))
sage: post = WeierstrassIsomorphism(phi.codomain(), (5,6,7,8))
sage: phi = post * phi * pre
sage: phi.dual()
Composite morphism of degree 213 = 71*3:
From: Elliptic Curve defined by y^2 + 17*x*y + 45*y = x^3 + 30*x^2 +␣

→˓(6*z2+64)*x + (48*z2+65) over Finite Field in z2 of size 71^2
To: Elliptic Curve defined by y^2 + (60*z2+22)*x*y + (69*z2+37)*y = x^3 +␣

→˓(32*z2+48)*x^2 + (19*z2+58)*x + (56*z2+22) over Finite Field in z2 of size 71^
→˓2

is_separable()

Determine whether or not this isogeny is separable.

Since EllipticCurveIsogeny only implements separable isogenies, this method always returns True.

EXAMPLES:

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.is_separable()
True

sage: E = EllipticCurve('11a1')
sage: phi = EllipticCurveIsogeny(E, E.torsion_points())
sage: phi.is_separable()
True

kernel_polynomial()

Return the kernel polynomial of this isogeny.

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,0,0,2,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.kernel_polynomial()
x

sage: E = EllipticCurve('11a1')
sage: phi = EllipticCurveIsogeny(E, E.torsion_points())
sage: phi.kernel_polynomial()
x^2 - 21*x + 80

sage: E = EllipticCurve(GF(17), [1,-1,1,-1,1])
(continues on next page)

161

Elliptic curves, Release 9.8

(continued from previous page)

sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.kernel_polynomial()
1

sage: E = EllipticCurve(GF(31), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, [0,3,0,1])
sage: phi.kernel_polynomial()
x^3 + 3*x

rational_maps()

Return the pair of rational maps defining this isogeny.

Note: Both components are returned as elements of the function field 𝐹 (𝑥, 𝑦) in two variables over the
base field 𝐹 , though the first only involves 𝑥. To obtain the 𝑥-coordinate function as a rational function in
𝐹 (𝑥), use x_rational_map().

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,2,0,1,-1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.rational_maps()
(x, y)

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.rational_maps()
((x^2 + 3)/x, (x^2*y - 3*y)/x^2)

scaling_factor()

Return the Weierstrass scaling factor associated to this elliptic-curve isogeny.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
isogeny and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve(GF(257^2), [0,1])
sage: phi = E.isogeny(E.lift_x(240))
sage: phi.degree()
43
sage: phi.scaling_factor()
1
sage: phi.dual().scaling_factor()
43

ALGORITHM: The “inner” isogeny is normalized by construction, so we only need to account for the
scaling factors of a pre- and post-isomorphism.

x_rational_map()

Return the rational map giving the 𝑥-coordinate of this isogeny.

Note: This function returns the 𝑥-coordinate component of the isogeny as a rational function in 𝐹 (𝑥),

162 Chapter 10. Isogenies

Elliptic curves, Release 9.8

where 𝐹 is the base field. To obtain both coordinate functions as elements of the function field 𝐹 (𝑥, 𝑦) in
two variables, use rational_maps().

EXAMPLES:

sage: E = EllipticCurve(QQ, [0,2,0,1,-1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.x_rational_map()
x

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.x_rational_map()
(x^2 + 3)/x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_codomain_formula(E, v, w)
Compute the codomain curve given parameters 𝑣 and 𝑤 (as in Vélu/Kohel/etc. formulas).

INPUT:

• E – an elliptic curve

• v, w – elements of the base field of E

OUTPUT:

The elliptic curve with invariants [𝑎1, 𝑎2, 𝑎3, 𝑎4 − 5𝑣, 𝑎6 − (𝑎21 + 4𝑎2)𝑣 − 7𝑤] where 𝐸 = [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].

EXAMPLES:

This formula is used by every invocation of the EllipticCurveIsogeny constructor:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, E((1,2)))
sage: phi.codomain()
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 13 over Finite␣
→˓Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_
→˓formula
sage: v = phi._EllipticCurveIsogeny__v
sage: w = phi._EllipticCurveIsogeny__w
sage: compute_codomain_formula(E, v, w) == phi.codomain()
True

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_codomain_kohel(E, kernel)
Compute the codomain from the kernel polynomial using Kohel’s formulas.

INPUT:

• E – domain elliptic curve

• kernel (polynomial or list) – the kernel polynomial, or a list of its coefficients

OUTPUT:

(elliptic curve) The codomain elliptic curve of the isogeny defined by kernel.

EXAMPLES:

163

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_
→˓kohel
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, [9,1])
sage: phi.codomain() == isogeny_codomain_from_kernel(E, [9,1])
True
sage: compute_codomain_kohel(E, [9,1])
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 8 over Finite Field␣
→˓of size 19
sage: R.<x> = GF(19)[]
sage: E = EllipticCurve(GF(19), [18,17,16,15,14])
sage: phi = EllipticCurveIsogeny(E, x^3 + 14*x^2 + 3*x + 11)
sage: phi.codomain() == isogeny_codomain_from_kernel(E, x^3 + 14*x^2 + 3*x + 11)
True
sage: compute_codomain_kohel(E, x^3 + 14*x^2 + 3*x + 11)
Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 18 over␣
→˓Finite Field of size 19
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, x^3 + 7*x^2 + 15*x + 12)
sage: isogeny_codomain_from_kernel(E, x^3 + 7*x^2 + 15*x + 12) == phi.codomain()
True
sage: compute_codomain_kohel(E, x^3 + 7*x^2 + 15*x + 12)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15 over Finite␣
→˓Field of size 19

ALGORITHM:

This function uses the formulas of Section 2.4 of [Koh1996].

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_intermediate_curves(E1, E2)
Return intermediate curves and isomorphisms.

Note: This is used to compute ℘ functions from the short Weierstrass model more easily.

Warning: The base field must be of characteristic not equal to 2 or 3.

INPUT:

• E1, E2 – elliptic curves

OUTPUT:

A tuple (pre_isomorphism, post_isomorphism, intermediate_domain, intermediate_codomain)
where:

• intermediate_domain is a short Weierstrass curve isomorphic to E1;

• intermediate_codomain is a short Weierstrass curve isomorphic to E2;

• pre_isomorphism is a normalized isomorphism from E1 to intermediate_domain;

• post_isomorphism is a normalized isomorphism from intermediate_codomain to E2.

EXAMPLES:

164 Chapter 10. Isogenies

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_
→˓intermediate_curves
sage: E = EllipticCurve(GF(83), [1,0,1,1,0])
sage: R.<x> = GF(83)[]; f = x+24
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_intermediate_curves(E, E2)
(Elliptic Curve defined by y^2 = x^3 + 62*x + 74 over Finite Field of size 83,
Elliptic Curve defined by y^2 = x^3 + 65*x + 69 over Finite Field of size 83,
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x over Finite Field of size␣

→˓83
To: Elliptic Curve defined by y^2 = x^3 + 62*x + 74 over Finite Field of size 83
Via: (u,r,s,t) = (1, 76, 41, 3),
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + 65*x + 69 over Finite Field of size 83
To: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 16 over Finite Field␣

→˓of size 83
Via: (u,r,s,t) = (1, 7, 42, 42))

sage: R.<x> = QQ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_intermediate_curves(E, E2)
(Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining␣
→˓polynomial x^2 + 1,
Elliptic Curve defined by y^2 = x^3 + 16*x over Number Field in i with defining␣
→˓polynomial x^2 + 1,
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over Number␣
→˓Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + 16*x over␣
→˓Number Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0))

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_kernel_polynomial(E1, E2, ell,
algo-
rithm='starks')

Return the kernel polynomial of an isogeny of degree ell from E1 to E2.

INPUT:

• E1 – domain elliptic curve in short Weierstrass form

• E2 – codomain elliptic curve in short Weierstrass form

• ell – the degree of an isogeny from E1 to E2

• algorithm – currently only "starks" (default) is implemented

OUTPUT:

The kernel polynomial of an isogeny from E1 to E2.

Note: If there is no degree-ell, cyclic, separable, normalized isogeny from E1 to E2, a ValueError will be

165

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 9.8

raised.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_
→˓kernel_polynomial

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = (x + 14) * (x + 30)
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_kernel_polynomial(E, E2, 5)
x^2 + 7*x + 13
sage: f
x^2 + 7*x + 13

sage: R.<x> = QQ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_isogeny_kernel_polynomial(E, E2, 4)
x^3 + x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_starks(E1, E2, ell)
Return the kernel polynomial of an isogeny of degree ell from E1 to E2.

INPUT:

• E1 – domain elliptic curve in short Weierstrass form

• E2 – codomain elliptic curve in short Weierstrass form

• ell – the degree of an isogeny from E1 to E2

OUTPUT:

The kernel polynomial of an isogeny from E1 to E2.

Note: If there is no degree-ell, cyclic, separable, normalized isogeny from E1 to E2, a ValueError will be
raised.

ALGORITHM:

This function uses Starks’ algorithm as presented in Section 6.2 of [BMSS2006].

Note: As published in [BMSS2006], the algorithm is incorrect, and a correct version (with slightly different
notation) can be found in [Mo2009]. The algorithm originates in [Sta1973].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_
→˓starks, compute_sequence_of_maps

(continues on next page)

166 Chapter 10. Isogenies

https://docs.python.org/library/exceptions.html#ValueError

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(GF(97), [1,0,1,1,0])
sage: R.<x> = GF(97)[]; f = x^5 + 27*x^4 + 61*x^3 + 58*x^2 + 28*x + 21
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: (isom1, isom2, E1pr, E2pr, ker_poly) = compute_sequence_of_maps(E, E2, 11)
sage: compute_isogeny_starks(E1pr, E2pr, 11)
x^10 + 37*x^9 + 53*x^8 + 66*x^7 + 66*x^6 + 17*x^5 + 57*x^4 + 6*x^3 + 89*x^2 + 53*x␣
→˓+ 8

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = (x + 14) * (x + 30)
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_starks(E, E2, 5)
x^4 + 14*x^3 + x^2 + 34*x + 21
sage: f**2
x^4 + 14*x^3 + x^2 + 34*x + 21

sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: R.<x> = QQ[]
sage: f = x
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_starks(E, E2, 2)
x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_sequence_of_maps(E1, E2, ell)
Return intermediate curves, isomorphisms and kernel polynomial.

INPUT:

• E1, E2 – elliptic curves

• ell – a prime such that there is a degree-ell separable normalized isogeny from E1 to E2

OUTPUT:

A tuple (pre_isom, post_isom, E1pr, E2pr, ker_poly) where:

• E1pr is an elliptic curve in short Weierstrass form isomorphic to E1;

• E2pr is an elliptic curve in short Weierstrass form isomorphic to E2;

• pre_isom is a normalized isomorphism from E1 to E1pr;

• post_isom is a normalized isomorphism from E2pr to E2;

• ker_poly is the kernel polynomial of an ell-isogeny from E1pr to E2pr.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_sequence_
→˓of_maps
sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]; f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)

(continues on next page)

167

Elliptic curves, Release 9.8

(continued from previous page)

sage: E2 = phi.codomain()
sage: compute_sequence_of_maps(E, E2, 5)
(Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational␣

→˓Field
To: Elliptic Curve defined by y^2 = x^3 - 31/3*x - 2501/108 over Rational Field
Via: (u,r,s,t) = (1, 1/3, 0, -1/2),
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 - 23461/3*x - 28748141/108 over␣

→˓Rational Field
To: Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over␣

→˓Rational Field
Via: (u,r,s,t) = (1, -1/3, 0, 1/2),
Elliptic Curve defined by y^2 = x^3 - 31/3*x - 2501/108 over Rational Field,
Elliptic Curve defined by y^2 = x^3 - 23461/3*x - 28748141/108 over Rational Field,
x^2 - 61/3*x + 658/9)

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_sequence_of_maps(E, E2, 4)
(Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + x over Number␣
→˓Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + 16*x over␣
→˓Number Field in i with defining polynomial x^2 + 1
Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining␣
→˓polynomial x^2 + 1,
Elliptic Curve defined by y^2 = x^3 + 16*x over Number Field in i with defining␣
→˓polynomial x^2 + 1,
x^3 + x)

sage: E = EllipticCurve(GF(97), [1,0,1,1,0])
sage: R.<x> = GF(97)[]; f = x^5 + 27*x^4 + 61*x^3 + 58*x^2 + 28*x + 21
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_sequence_of_maps(E, E2, 11)
(Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x over Finite Field of size␣

→˓97
To: Elliptic Curve defined by y^2 = x^3 + 52*x + 31 over Finite Field of size 97
Via: (u,r,s,t) = (1, 8, 48, 44),
Elliptic-curve morphism:
From: Elliptic Curve defined by y^2 = x^3 + 41*x + 66 over Finite Field of size 97
To: Elliptic Curve defined by y^2 + x*y + y = x^3 + 87*x + 26 over Finite Field␣

→˓of size 97
Via: (u,r,s,t) = (1, 89, 49, 49),
Elliptic Curve defined by y^2 = x^3 + 52*x + 31 over Finite Field of size 97,
Elliptic Curve defined by y^2 = x^3 + 41*x + 66 over Finite Field of size 97,
x^5 + 67*x^4 + 13*x^3 + 35*x^2 + 77*x + 69)

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_even_deg1(x0, y0, a1, a2, a4)

168 Chapter 10. Isogenies

Elliptic curves, Release 9.8

Compute Vélu’s (𝑣, 𝑤) using Kohel’s formulas for isogenies of degree exactly divisible by 2.

INPUT:

• x0, y0 – coordinates of a 2-torsion point on an elliptic curve 𝐸

• a1, a2, a4 – invariants of 𝐸

OUTPUT:

(tuple) Vélu’s isogeny parameters (𝑣, 𝑤).

EXAMPLES:

This function will be implicitly called by the following example:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, [9,1]); phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 +␣
→˓4*x + 5 over Finite Field of size 19 to Elliptic Curve defined by y^2 + x*y + 3*y␣
→˓= x^3 + 2*x^2 + 9*x + 8 over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_
→˓even_deg1
sage: a1,a2,a3,a4,a6 = E.a_invariants()
sage: x0 = -9
sage: y0 = -(a1*x0 + a3)/2
sage: compute_vw_kohel_even_deg1(x0, y0, a1, a2, a4)
(18, 9)

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_even_deg3(b2, b4, s1, s2, s3)
Compute Vélu’s (𝑣, 𝑤) using Kohel’s formulas for isogenies of degree divisible by 4.

INPUT:

• b2, b4 – invariants of an elliptic curve 𝐸

• s1, s2, s3 – signed coefficients of the 2-division polynomial of 𝐸

OUTPUT:

(tuple) Vélu’s isogeny parameters (𝑣, 𝑤).

EXAMPLES:

This function will be implicitly called by the following example:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x^3 + 7*x^2 + 15*x + 12); phi
Isogeny of degree 4 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 +␣
→˓4*x + 5 over Finite Field of size 19 to Elliptic Curve defined by y^2 + x*y + 3*y␣
→˓= x^3 + 2*x^2 + 3*x + 15 over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_
→˓even_deg3
sage: b2,b4 = E.b2(), E.b4()
sage: s1, s2, s3 = -7, 15, -12
sage: compute_vw_kohel_even_deg3(b2, b4, s1, s2, s3)
(4, 7)

169

Elliptic curves, Release 9.8

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_odd(b2, b4, b6, s1, s2, s3, n)
Compute Vélu’s (𝑣, 𝑤) using Kohel’s formulas for isogenies of odd degree.

INPUT:

• b2, b4, b6 – invariants of an elliptic curve 𝐸

• s1, s2, s3 – signed coefficients of lowest powers of 𝑥 in the kernel polynomial

• n (integer) – the degree

OUTPUT:

(tuple) Vélu’s isogeny parameters (𝑣, 𝑤).

EXAMPLES:

This function will be implicitly called by the following example:

sage: E = EllipticCurve(GF(19), [18,17,16,15,14])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x^3 + 14*x^2 + 3*x + 11); phi
Isogeny of degree 7 from Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^
→˓2 + 15*x + 14 over Finite Field of size 19 to Elliptic Curve defined by y^2 +␣
→˓18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 18 over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_
→˓odd
sage: b2,b4,b6 = E.b2(), E.b4(), E.b6()
sage: s1,s2,s3 = -14,3,-11
sage: compute_vw_kohel_odd(b2,b4,b6,s1,s2,s3,3)
(7, 1)

sage.schemes.elliptic_curves.ell_curve_isogeny.fill_isogeny_matrix(M)

Return a filled isogeny matrix giving all degrees from one giving only prime degrees.

INPUT:

• M – a square symmetric matrix whose off-diagonal 𝑖, 𝑗 entry is either a prime 𝑙 if the 𝑖’th and 𝑗’th curves
have an 𝑙-isogeny between them, otherwise 0

OUTPUT:

(matrix) A square matrix with entries 1 on the diagonal, and in general the 𝑖, 𝑗 entry is 𝑑 > 0 if 𝑑 is the minimal
degree of an isogeny from the 𝑖’th to the 𝑗’th curve.

EXAMPLES:

sage: M = Matrix([[0, 2, 3, 3, 0, 0], [2, 0, 0, 0, 3, 3], [3, 0, 0, 0, 2, 0], [3, 0,
→˓ 0, 0, 0, 2], [0, 3, 2, 0, 0, 0], [0, 3, 0, 2, 0, 0]]); M
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import fill_isogeny_matrix
sage: fill_isogeny_matrix(M)
[1 2 3 3 6 6]
[2 1 6 6 3 3]
[3 6 1 9 2 18]

(continues on next page)

170 Chapter 10. Isogenies

Elliptic curves, Release 9.8

(continued from previous page)

[3 6 9 1 18 2]
[6 3 2 18 1 9]
[6 3 18 2 9 1]

sage.schemes.elliptic_curves.ell_curve_isogeny.isogeny_codomain_from_kernel(E, kernel,
degree=None)

Compute the isogeny codomain given a kernel.

INPUT:

• E – domain elliptic curve

• kernel – either a list of points in the kernel of the isogeny,
or a kernel polynomial (specified as either a univariate polynomial or a coefficient list)

OUTPUT:

(elliptic curve) The codomain of the separable normalized isogeny defined by this kernel.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import isogeny_codomain_
→˓from_kernel
sage: E = EllipticCurve(GF(7), [1,0,1,0,1])
sage: R.<x> = GF(7)[]
sage: isogeny_codomain_from_kernel(E, [4,1])
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6 over Finite Field of size 7
sage: EllipticCurveIsogeny(E, [4,1]).codomain() == isogeny_codomain_from_kernel(E,␣
→˓[4,1])
True
sage: isogeny_codomain_from_kernel(E, x^3 + x^2 + 4*x + 3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6 over Finite Field of size 7
sage: isogeny_codomain_from_kernel(E, x^3 + 2*x^2 + 4*x + 3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 5*x + 2 over Finite Field of size 7

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: kernel_list = [E((15,10)), E((10,3)), E((6,5))]
sage: isogeny_codomain_from_kernel(E, kernel_list)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15 over Finite␣
→˓Field of size 19

sage.schemes.elliptic_curves.ell_curve_isogeny.split_kernel_polynomial(poly)
Obsolete internal helper function formerly used by compute_isogeny_kernel_polynomial().

Use radical() instead.

INPUT:

• poly – a nonzero univariate polynomial

OUTPUT:

The maximum separable divisor of poly. If the input is a full kernel polynomial where the roots which are
𝑥-coordinates of points of order greater than 2 have multiplicity 1, the output will be a polynomial with the same
roots, all of multiplicity 1.

EXAMPLES:

Check that this behaves identically to .radical():

171

../../../../../../../html/en/reference/polynomial_rings/sage/rings/polynomial/polynomial_element.html#sage.rings.polynomial.polynomial_element.Polynomial.radical

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import split_kernel_
→˓polynomial
sage: q = next_prime(randrange(3,10^3))
sage: e = randrange(1,5)
sage: R = GF(q^e,'a')['x']
sage: f = R.random_element(randrange(10,100)).monic()
sage: split_kernel_polynomial(f) == f.radical()
doctest:warning ...
DeprecationWarning: ...
True

sage.schemes.elliptic_curves.ell_curve_isogeny.two_torsion_part(E, psi)
Return the greatest common divisor of psi and the 2-torsion polynomial of 𝐸.

INPUT:

• E – an elliptic curve

• psi – a univariate polynomial over the base field of E

OUTPUT:

(polynomial) The gcd of psi and the 2-torsion polynomial of E.

EXAMPLES:

Every function that computes the kernel polynomial via Kohel’s formulas will call this function:

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x + 13)
sage: isogeny_codomain_from_kernel(E, x + 13) == phi.codomain()
True
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import two_torsion_part
sage: two_torsion_part(E, x+13)
x + 13

sage.schemes.elliptic_curves.ell_curve_isogeny.unfill_isogeny_matrix(M)

Reverses the action of fill_isogeny_matrix.

INPUT:

• M – a square symmetric matrix of integers

OUTPUT:

(matrix) A square symmetric matrix obtained from M by replacing non-prime entries with 0.

EXAMPLES:

sage: M = Matrix([[0, 2, 3, 3, 0, 0], [2, 0, 0, 0, 3, 3], [3, 0, 0, 0, 2, 0], [3, 0,
→˓ 0, 0, 0, 2], [0, 3, 2, 0, 0, 0], [0, 3, 0, 2, 0, 0]]); M
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]

(continues on next page)

172 Chapter 10. Isogenies

Elliptic curves, Release 9.8

(continued from previous page)

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import fill_isogeny_
→˓matrix, unfill_isogeny_matrix
sage: M1 = fill_isogeny_matrix(M); M1
[1 2 3 3 6 6]
[2 1 6 6 3 3]
[3 6 1 9 2 18]
[3 6 9 1 18 2]
[6 3 2 18 1 9]
[6 3 18 2 9 1]
sage: unfill_isogeny_matrix(M1)
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]
sage: unfill_isogeny_matrix(M1) == M
True

173

Elliptic curves, Release 9.8

174 Chapter 10. Isogenies

CHAPTER

ELEVEN

√ÉLU ALGORITHM FOR ELLIPTIC-CURVE ISOGENIES

The√élu algorithm computes isogenies of elliptic curves in time �̃�(
√
ℓ) rather than naïvely𝑂(ℓ), where ℓ is the degree.

The core idea is to reindex the points in the kernel subgroup in a baby-step-giant-step manner, then use fast resultant
computations to evaluate “elliptic polynomials” (see FastEllipticPolynomial) in essentially square-root time.

Based on experiments with Sage version 9.7, the isogeny degree where EllipticCurveHom_velusqrt begins to
outperform EllipticCurveIsogeny can be as low as ≈ 100, but is typically closer to ≈ 1000, depending on the
exact situation.

REFERENCES: [BDLS2020]

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
sage: E = EllipticCurve(GF(6666679), [5,5])
sage: K = E(9970, 1003793, 1)
sage: K.order()
10009
sage: phi = EllipticCurveHom_velusqrt(E, K)
sage: phi
Elliptic-curve isogeny (using

√
élu) of degree 10009:

From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 6666679
To: Elliptic Curve defined by y^2 = x^3 + 227975*x + 3596133 over Finite Field of␣

→˓size 6666679
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 + 227975*x + 3596133 over Finite Field of size␣
→˓6666679

Note that the isogeny is usually not identical to the one computed by EllipticCurveIsogeny:

sage: psi = EllipticCurveIsogeny(E, K)
sage: psi
Isogeny of degree 10009

from Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 6666679
to Elliptic Curve defined by y^2 = x^3 + 5344836*x + 3950273 over Finite Field of␣

→˓size 6666679

However, they are certainly separable isogenies with the same kernel and must therefore be equal up to post-
isomorphism:

sage: isos = psi.codomain().isomorphisms(phi.codomain())
sage: sum(iso * psi == phi for iso in isos)
1

175

Elliptic curves, Release 9.8

Just like EllipticCurveIsogeny, the constructor supports a model keyword argument:

sage: E = EllipticCurve(GF(6666679), [1,1])
sage: K = E(9091, 517864)
sage: phi = EllipticCurveHom_velusqrt(E, K, model='montgomery')
sage: phi
Elliptic-curve isogeny (using

√
élu) of degree 2999:

From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 6666679
To: Elliptic Curve defined by y^2 = x^3 + 1559358*x^2 + x over Finite Field of size␣

→˓6666679

Internally, EllipticCurveHom_velusqrt works on short Weierstraß curves, but it performs the conversion automat-
ically:

sage: E = EllipticCurve(GF(101), [1,2,3,4,5])
sage: K = E(1, 2)
sage: K.order()
37
sage: EllipticCurveHom_velusqrt(E, K)
Elliptic-curve isogeny (using

√
élu) of degree 37:

From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite␣
→˓Field of size 101
To: Elliptic Curve defined by y^2 = x^3 + 66*x + 86 over Finite Field of size 101

However, this does imply not all elliptic curves are supported. Curves without a short Weierstraß model exist in char-
acteristics 2 and 3:

sage: F.<t> = GF(3^3)
sage: E = EllipticCurve(F, [1,1,1,1,1])
sage: P = E(t^2+2, 1)
sage: P.order()
19
sage: EllipticCurveHom_velusqrt(E, P)
Traceback (most recent call last):
...
NotImplementedError: only implemented for curves having a short Weierstrass model

Furthermore, the implementation is restricted to finite fields, since this appears to be the most relevant application for
the √élu algorithm:

sage: E = EllipticCurve('26b1')
sage: P = E(1,0)
sage: P.order()
7
sage: EllipticCurveHom_velusqrt(E, P)
Traceback (most recent call last):
...
NotImplementedError: only implemented for elliptic curves over finite fields

Note: Some of the methods inherited from EllipticCurveHom compute data whose size is linear in the degree; this
includes kernel polynomial and rational maps. In consequence, those methods cannot possibly run in the otherwise
advertised square-root complexity, as merely storing the result already takes linear time.

176 Chapter 11. √élu algorithm for elliptic-curve isogenies

Elliptic curves, Release 9.8

AUTHORS:

• Lorenz Panny (2022)

class sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt(E, P, *,
codomain=None,
model=None,
Q=None)

Bases: EllipticCurveHom

This class implements separable odd-degree isogenies of elliptic curves over finite fields using the √élu algo-
rithm.

The complexity is �̃�(
√
ℓ) base-field operations, where ℓ is the degree.

REFERENCES: [BDLS2020]

INPUT:

• E – an elliptic curve over a finite field

• P – a point on 𝐸 of odd order ≥ 9

• codomain – codomain elliptic curve (optional)

• model – string (optional); input to compute_model()

• Q – a point on 𝐸 outside ⟨𝑃 ⟩, or None

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_
→˓velusqrt
sage: F.<t> = GF(10009^3)
sage: E = EllipticCurve(F, [t,t])
sage: K = E(2154*t^2 + 5711*t + 2899, 7340*t^2 + 4653*t + 6935)
sage: phi = EllipticCurveHom_velusqrt(E, K); phi
Elliptic-curve isogeny (using

√
élu) of degree 601:

From: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t of␣
→˓size 10009^3
To: Elliptic Curve defined by y^2 = x^3 + (263*t^2+3173*t+4759)*x + (3898*t^

→˓2+6111*t+9443) over Finite Field in t of size 10009^3
sage: phi(K)
(0 : 1 : 0)
sage: P = E(2, 3163*t^2 + 7293*t + 5999)
sage: phi(P)
(6085*t^2 + 855*t + 8720 : 8078*t^2 + 9889*t + 6030 : 1)
sage: Q = E(6, 5575*t^2 + 6607*t + 9991)
sage: phi(Q)
(626*t^2 + 9749*t + 1291 : 5931*t^2 + 8549*t + 3111 : 1)
sage: phi(P + Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)
sage: phi(P) + phi(Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)

See also:
EllipticCurveIsogeny

177

Elliptic curves, Release 9.8

dual()

Return the dual of this √élu isogeny as an EllipticCurveHom .

Note: The dual is computed by EllipticCurveIsogeny, hence it does not benefit from the √élu
speedup.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = E.cardinality() // 11 * E.gens()[0]
sage: phi = E.isogeny(K, algorithm='velusqrt'); phi
Elliptic-curve isogeny (using

√
élu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Finite␣
→˓Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over Finite Field in z2␣

→˓of size 101^2
sage: phi.dual()
Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over␣
→˓Finite Field in z2 of size 101^2 to Elliptic Curve defined by y^2 + x*y + y =␣
→˓x^3 + x^2 + x + 1 over Finite Field in z2 of size 101^2
sage: phi.dual() * phi == phi.domain().scalar_multiplication(11)
True
sage: phi * phi.dual() == phi.codomain().scalar_multiplication(11)
True

is_separable()

Determine whether or not this isogeny is separable.

Since EllipticCurveHom_velusqrt only implements separable isogenies, this method always returns
True.

EXAMPLES:

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = E.isogeny(E((1,2)), algorithm='velusqrt')
sage: phi.is_separable()
True

kernel_polynomial()

Return the kernel polynomial of this √élu isogeny.

Note: The data returned by this method has size linear in the degree.

EXAMPLES:

sage: E = EllipticCurve(GF(65537^2,'a'), [5,5])
sage: K = E.cardinality()//31 * E.gens()[0]
sage: phi = E.isogeny(K, algorithm='velusqrt')
sage: h = phi.kernel_polynomial(); h
x^15 + 21562*x^14 + 8571*x^13 + 20029*x^12 + 1775*x^11 + 60402*x^10 + 17481*x^9␣
→˓+ 46543*x^8 + 46519*x^7 + 18590*x^6 + 36554*x^5 + 36499*x^4 + 48857*x^3 +␣
→˓3066*x^2 + 23264*x + 53937

(continues on next page)

178 Chapter 11. √élu algorithm for elliptic-curve isogenies

Elliptic curves, Release 9.8

(continued from previous page)

sage: h == E.isogeny(K).kernel_polynomial()
True
sage: h(K.xy()[0])
0

rational_maps()

Return the pair of explicit rational maps of this √élu isogeny as fractions of bivariate polynomials in 𝑥 and
𝑦.

Note: The data returned by this method has size linear in the degree.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = (E.cardinality() // 11) * E.gens()[0]
sage: phi = E.isogeny(K, algorithm='velusqrt'); phi
Elliptic-curve isogeny (using

√
élu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Finite␣
→˓Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over Finite Field in z2␣

→˓of size 101^2
sage: phi.rational_maps()
((-17*x^11 - 34*x^10 - 36*x^9 + ... - 29*x^2 - 25*x - 25)/(x^10 + 10*x^9 + 19*x^
→˓8 - ... + x^2 + 47*x + 24),
(-3*x^16 - 6*x^15*y - 48*x^15 + ... - 49*x - 9*y + 46)/(x^15 + 15*x^14 - 35*x^
→˓13 - ... + 3*x^2 - 45*x + 47))

scaling_factor()

Return the Weierstrass scaling factor associated to this √élu isogeny.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
isogeny and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = (E.cardinality() // 11) * E.gens()[0]
sage: phi = E.isogeny(K, algorithm='velusqrt', model='montgomery'); phi
Elliptic-curve isogeny (using

√
élu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Finite␣
→˓Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 61*x^2 + x over Finite Field in␣

→˓z2 of size 101^2
sage: phi.scaling_factor()
55
sage: phi.scaling_factor() == phi.formal()[1]
True

x_rational_map()

Return the 𝑥-coordinate rational map of this √élu isogeny as a univariate rational function in 𝑥.

179

Elliptic curves, Release 9.8

Note: The data returned by this method has size linear in the degree.

EXAMPLES:

sage: E = EllipticCurve(GF(101^2), [1, 1, 1, 1, 1])
sage: K = (E.cardinality() // 11) * E.gens()[0]
sage: phi = E.isogeny(K, algorithm='velusqrt'); phi
Elliptic-curve isogeny (using

√
élu) of degree 11:

From: Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Finite␣
→˓Field in z2 of size 101^2
To: Elliptic Curve defined by y^2 = x^3 + 39*x + 40 over Finite Field in z2␣

→˓of size 101^2
sage: phi.x_rational_map()
(84*x^11 + 67*x^10 + 65*x^9 + ... + 72*x^2 + 76*x + 76)/(x^10 + 10*x^9 + 19*x^8␣
→˓+ ... + x^2 + 47*x + 24)
sage: phi.x_rational_map() == phi.rational_maps()[0]
True

class sage.schemes.elliptic_curves.hom_velusqrt.FastEllipticPolynomial(E, n, P, Q=None)
Bases: object

A class to represent and evaluate an elliptic polynomial, and optionally its derivative, in essentially square-root
time.

The elliptic polynomials computed by this class are of the form

ℎ𝑆(𝑍) =
∏︁
𝑖∈𝑆

(𝑍 − 𝑥(𝑄+ [𝑖]𝑃))

where 𝑃 is a point of odd order 𝑛 ≥ 5 and 𝑄 is either None, in which case it is assumed to be ∞, or an arbitrary
point which is not a multiple of 𝑃 .

The index set 𝑆 is chosen as follows:

• If 𝑄 is given, then 𝑆 = {0, 1, 2, 3, ..., 𝑛− 1}.

• If 𝑄 is omitted, then 𝑆 = {1, 3, 5, ..., 𝑛− 2}. Note that in this case, ℎ{1,2,3,...,𝑛−1} can be computed as ℎ2𝑆
since 𝑛 is odd.

INPUT:

• E – an elliptic curve in short Weierstraß form

• n – an odd integer ≥ 5

• P – a point on 𝐸

• Q – a point on 𝐸, or None

ALGORITHM: [BDLS2020], Algorithm 2

Note: Currently only implemented for short Weierstraß curves.

EXAMPLES:

180 Chapter 11. √élu algorithm for elliptic-curve isogenies

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.hom_velusqrt import FastEllipticPolynomial
sage: E = EllipticCurve(GF(71), [5,5])
sage: P = E(4, 35)
sage: hP = FastEllipticPolynomial(E, P.order(), P); hP
Fast elliptic polynomial prod(Z - x(i*P) for i in range(1,n,2)) with n = 19, P = (4␣
→˓: 35 : 1)
sage: hP(7)
19
sage: prod(7 - (i*P).xy()[0] for i in range(1,P.order(),2))
19

Passing 𝑄 changes the index set:

sage: Q = E(0, 17)
sage: hPQ = FastEllipticPolynomial(E, P.order(), P, Q)
sage: hPQ(7)
58
sage: prod(7 - (Q+i*P).xy()[0] for i in range(P.order()))
58

The call syntax has an optional keyword argument derivative, which will make the function return the pair
(ℎ𝑆(𝛼), ℎ′𝑆(𝛼)) instead of just ℎ𝑆(𝛼):

sage: hP(7, derivative=True)
(19, 15)
sage: R.<Z> = E.base_field()[]
sage: HP = prod(Z - (i*P).xy()[0] for i in range(1,P.order(),2))
sage: HP
Z^9 + 16*Z^8 + 57*Z^7 + 6*Z^6 + 45*Z^5 + 31*Z^4 + 46*Z^3 + 10*Z^2 + 28*Z + 41
sage: HP(7)
19
sage: HP.derivative()(7)
15

sage: hPQ(7, derivative=True)
(58, 62)
sage: R.<Z> = E.base_field()[]
sage: HPQ = prod(Z - (Q+i*P).xy()[0] for i in range(P.order()))
sage: HPQ
Z^19 + 53*Z^18 + 67*Z^17 + 39*Z^16 + 56*Z^15 + 32*Z^14 + 44*Z^13 + 6*Z^12 + 27*Z^11␣
→˓+ 29*Z^10 + 38*Z^9 + 48*Z^8 + 38*Z^7 + 43*Z^6 + 21*Z^5 + 25*Z^4 + 33*Z^3 + 49*Z^2␣
→˓+ 60*Z
sage: HPQ(7)
58
sage: HPQ.derivative()(7)
62

The input can be an element of any algebra over the base ring:

sage: R.<T> = GF(71)[]
sage: S.<t> = R.quotient(T^2)
sage: hP(7 + t)
15*t + 19

181

Elliptic curves, Release 9.8

182 Chapter 11. √élu algorithm for elliptic-curve isogenies

CHAPTER

TWELVE

COMPOSITE MORPHISMS OF ELLIPTIC CURVES

It is often computationally convenient (for example, in cryptography) to factor an isogeny of large degree into a com-
position of isogenies of smaller (prime) degree. This class implements such a decomposition while exposing (close to)
the same interface as “normal”, unfactored elliptic-curve isogenies.

EXAMPLES:

The following example would take quite literally forever with the straightforward EllipticCurveIsogeny imple-
mentation, but decomposing into prime steps is exponentially faster:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_composite
sage: p = 3 * 2^143 - 1
sage: GF(p^2).inject_variables()
Defining z2
sage: E = EllipticCurve(GF(p^2), [1,0])
sage: P = E.lift_x(31415926535897932384626433832795028841971 - z2)
sage: P.order().factor()
2^143
sage: EllipticCurveHom_composite(E, P)
Composite morphism of degree 11150372599265311570767859136324180752990208 = 2^143:
From: Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size␣

→˓33451117797795934712303577408972542258970623^2
To: Elliptic Curve defined by y^2 = x^3 +␣

→˓(18676616716352953484576727486205473216172067*z2+32690199585974925193292786311814241821808308)*x
+␣
→˓(3369702436351367403910078877591946300201903*z2+15227558615699041241851978605002704626689722)
over Finite Field in z2 of size 33451117797795934712303577408972542258970623^2

Yet, the interface provided by EllipticCurveHom_composite is identical to EllipticCurveIsogeny and other
instantiations of EllipticCurveHom :

sage: E = EllipticCurve(GF(419), [0,1])
sage: P = E.lift_x(33); P.order()
35
sage: psi = EllipticCurveHom_composite(E, P); psi
Composite morphism of degree 35 = 5*7:
From: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 419
To: Elliptic Curve defined by y^2 = x^3 + 101*x + 285 over Finite Field of size 419

sage: psi(E.lift_x(11))
(352 : 73 : 1)
sage: psi.rational_maps()
((x^35 + 162*x^34 + 186*x^33 + 92*x^32 - ... + 44*x^3 + 190*x^2 + 80*x -
72)/(x^34 + 162*x^33 - 129*x^32 + 41*x^31 + ... + 66*x^3 - 191*x^2 + 119*x

(continues on next page)

183

Elliptic curves, Release 9.8

(continued from previous page)

+ 21), (x^51*y - 176*x^50*y + 115*x^49*y - 120*x^48*y + ... + 72*x^3*y +
129*x^2*y + 163*x*y + 178*y)/(x^51 - 176*x^50 + 11*x^49 + 26*x^48 - ... -
77*x^3 + 185*x^2 + 169*x - 128))
sage: psi.kernel_polynomial()
x^17 + 81*x^16 + 7*x^15 + 82*x^14 + 49*x^13 + 68*x^12 + 109*x^11 + 326*x^10
+ 117*x^9 + 136*x^8 + 111*x^7 + 292*x^6 + 55*x^5 + 389*x^4 + 175*x^3 +
43*x^2 + 149*x + 373
sage: psi.dual()
Composite morphism of degree 35 = 7*5:
From: Elliptic Curve defined by y^2 = x^3 + 101*x + 285 over Finite Field of size 419
To: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 419

sage: psi.formal()
t + 211*t^5 + 417*t^7 + 159*t^9 + 360*t^11 + 259*t^13 + 224*t^15 + 296*t^17 + 139*t^19 +␣
→˓222*t^21 + O(t^23)

Equality is decided correctly (and, in some cases, much faster than comparing EllipticCurveHom.
rational_maps()) even when distinct factorizations of the same isogeny are compared:

sage: psi == EllipticCurveIsogeny(E, P)
True

We can easily obtain the individual factors of the composite map:

sage: psi.factors()
(Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of␣
→˓size 419 to Elliptic Curve defined by y^2 = x^3 + 140*x + 214 over Finite Field of␣
→˓size 419,
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 140*x + 214 over Finite␣
→˓Field of size 419 to Elliptic Curve defined by y^2 = x^3 + 101*x + 285 over Finite␣
→˓Field of size 419)

AUTHORS:

• Lukas Zobernig (2020): initial proof-of-concept version

• Lorenz Panny (2021): EllipticCurveHom interface, documentation and tests, equality testing

class sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite(E, kernel,
codomain=None,
model=None)

Bases: EllipticCurveHom

Construct a composite isogeny with given kernel (and optionally, prescribed codomain curve). The isogeny is
decomposed into steps of prime degree.

The codomain and model parameters have the same meaning as for EllipticCurveIsogeny.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(419), [1,0])
sage: EllipticCurveHom_composite(E, E.lift_x(23))
Composite morphism of degree 105 = 3*5*7:
From: Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 419

(continues on next page)

184 Chapter 12. Composite morphisms of elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

To: Elliptic Curve defined by y^2 = x^3 + 373*x + 126 over Finite Field of size␣
→˓419

The given kernel generators need not be independent:

sage: K.<a> = NumberField(x^2 - x - 5)
sage: E = EllipticCurve('210.b6').change_ring(K)
sage: E.torsion_subgroup()
Torsion Subgroup isomorphic to Z/12 + Z/2 associated to the Elliptic Curve defined␣
→˓by y^2 + x*y + y = x^3 + (-578)*x + 2756 over Number Field in a with defining␣
→˓polynomial x^2 - x - 5
sage: EllipticCurveHom_composite(E, E.torsion_points())
Composite morphism of degree 24 = 2^3*3:
From: Elliptic Curve defined by y^2 + x*y + y = x^3 + (-578)*x + 2756 over Number␣

→˓Field in a with defining polynomial x^2 - x - 5
To: Elliptic Curve defined by y^2 + x*y + y = x^3 + (-89915533/16)*x + (-

→˓328200928141/64) over Number Field in a with defining polynomial x^2 - x - 5

dual()

Return the dual of this composite isogeny.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P); phi
Composite morphism of degree 9 = 3^2:
From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over␣

→˓Finite Field of size 65537
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 28339*x +␣

→˓59518 over Finite Field of size 65537
sage: psi = phi.dual(); psi
Composite morphism of degree 9 = 3^2:
From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 28339*x +␣

→˓59518 over Finite Field of size 65537
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over␣

→˓Finite Field of size 65537
sage: psi * phi == phi.domain().scalar_multiplication(phi.degree())
True
sage: phi * psi == psi.domain().scalar_multiplication(psi.degree())
True

factors()

Return the factors of this composite isogeny as a tuple.

The isogenies are returned in left-to-right order, i.e., the returned tuple (𝑓1, ..., 𝑓𝑛) corresponds to the map
𝑓𝑛 ∘ · · · ∘ 𝑓1.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite

(continues on next page)

185

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(GF(43), [1,0])
sage: P, = E.gens()
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.factors()
(Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + x over Finite␣
→˓Field of size 43 to Elliptic Curve defined by y^2 = x^3 + 39*x over Finite␣
→˓Field of size 43,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 39*x over␣
→˓Finite Field of size 43 to Elliptic Curve defined by y^2 = x^3 + 42*x + 26␣
→˓over Finite Field of size 43,
Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + 42*x + 26 over␣
→˓Finite Field of size 43 to Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field of size 43)

formal(prec=20)
Return the formal isogeny corresponding to this composite isogeny as a power series in the variable 𝑡 =
−𝑥/𝑦 on the domain curve.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.formal()
t + 54203*t^5 + 48536*t^6 + 40698*t^7 + 37808*t^8 + 21111*t^9 + 42381*t^10 +␣
→˓46688*t^11 + 657*t^12 + 38916*t^13 + 62261*t^14 + 59707*t^15 + 30767*t^16 +␣
→˓7248*t^17 + 60287*t^18 + 50451*t^19 + 38305*t^20 + 12312*t^21 + 31329*t^22 +␣
→˓O(t^23)
sage: (phi.dual() * phi).formal(prec=5)
9*t + 65501*t^2 + 65141*t^3 + 59183*t^4 + 21491*t^5 + 8957*t^6 + 999*t^7 + O(t^
→˓8)

classmethod from_factors(maps, E=None, strict=True)
This method constructs a EllipticCurveHom_composite object encapsulating a given sequence of com-
patible isogenies.

The isogenies are composed in left-to-right order, i.e., the resulting composite map equals 𝑓𝑛−1 ∘ · · · ∘ 𝑓0
where 𝑓𝑖 denotes maps[i].

INPUT:

• maps – sequence of EllipticCurveHom objects

• E (optional) – the domain elliptic curve

• strict (optional, default: True) – if True, always return an EllipticCurveHom_composite ob-
ject; else may return another EllipticCurveHom type

OUTPUT: the composite of maps

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite

(continues on next page)

186 Chapter 12. Composite morphisms of elliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(GF(43), [1,0])
sage: P, = E.gens()
sage: phi = EllipticCurveHom_composite(E, P)
sage: psi = EllipticCurveHom_composite.from_factors(phi.factors())
sage: psi == phi
True

is_injective()

Determine whether this composite morphism has trivial kernel.

In other words, return True if and only if self is a purely inseparable isogeny.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve([1,0])
sage: phi = EllipticCurveHom_composite(E, E(0,0))
sage: phi.is_injective()
False
sage: E = EllipticCurve_from_j(GF(3).algebraic_closure()(0))
sage: nu = EllipticCurveHom_composite.from_factors(E.automorphisms())
sage: nu
Composite morphism of degree 1 = 1^12:
From: Elliptic Curve defined by y^2 = x^3 + x over Algebraic closure of␣

→˓Finite Field of size 3
To: Elliptic Curve defined by y^2 = x^3 + x over Algebraic closure of␣

→˓Finite Field of size 3
sage: nu.is_injective()
True

is_separable()

Determine whether this composite isogeny is separable.

A composition of isogenies is separable if and only if all factors are.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(7^2), [3,2])
sage: P = E.lift_x(1)
sage: phi = EllipticCurveHom_composite(E, P); phi
Composite morphism of degree 7 = 7:
From: Elliptic Curve defined by y^2 = x^3 + 3*x + 2 over Finite Field in z2␣

→˓of size 7^2
To: Elliptic Curve defined by y^2 = x^3 + 3*x + 2 over Finite Field in z2␣

→˓of size 7^2
sage: phi.is_separable()
True

kernel_polynomial()

Return the kernel polynomial of this composite isogeny.

EXAMPLES:

187

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P); phi
Composite morphism of degree 9 = 3^2:
From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over␣

→˓Finite Field of size 65537
To: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 28339*x +␣

→˓59518 over Finite Field of size 65537
sage: phi.kernel_polynomial()
x^4 + 46500*x^3 + 19556*x^2 + 7643*x + 15952

static make_default()

This method does nothing and will be removed.

(It is a leftover from the time when EllipticCurveHom_composite wasn’t the default yet.)

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: EllipticCurveHom_composite.make_default()
doctest:warning ...

rational_maps()

Return the pair of explicit rational maps defining this composite isogeny.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.rational_maps()
((x^9 + 27463*x^8 + 21204*x^7 - 5750*x^6 + 1610*x^5 + 14440*x^4 + 26605*x^3 -␣
→˓15569*x^2 - 3341*x + 1267)/(x^8 + 27463*x^7 + 26871*x^6 + 5999*x^5 - 20194*x^
→˓4 - 6310*x^3 + 24366*x^2 - 20905*x - 13867),
(x^12*y + 8426*x^11*y + 5667*x^11 + 27612*x^10*y + 26124*x^10 + 9688*x^9*y -␣
→˓22715*x^9 + 19864*x^8*y + 498*x^8 + 22466*x^7*y - 14036*x^7 + 8070*x^6*y +␣
→˓19955*x^6 - 20765*x^5*y - 12481*x^5 + 12672*x^4*y + 24142*x^4 - 23695*x^3*y +␣
→˓26667*x^3 + 23780*x^2*y + 17864*x^2 + 15053*x*y - 30118*x + 17539*y - 23609)/
→˓(x^12 + 8426*x^11 + 21945*x^10 - 22587*x^9 + 22094*x^8 + 14603*x^7 - 26255*x^
→˓6 + 11171*x^5 - 16508*x^4 - 14435*x^3 - 2170*x^2 + 29081*x - 19009))

scaling_factor()

Return the Weierstrass scaling factor associated to this composite morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

188 Chapter 12. Composite morphisms of elliptic curves

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import␣
→˓WeierstrassIsomorphism
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi = WeierstrassIsomorphism(phi.codomain(), [7,8,9,10]) * phi
sage: phi.formal()
7*t + 65474*t^2 + 511*t^3 + 61316*t^4 + 20548*t^5 + 45511*t^6 + 37285*t^7 +␣
→˓48414*t^8 + 9022*t^9 + 24025*t^10 + 35986*t^11 + 55397*t^12 + 25199*t^13 +␣
→˓18744*t^14 + 46142*t^15 + 9078*t^16 + 18030*t^17 + 47599*t^18 + 12158*t^19 +␣
→˓50630*t^20 + 56449*t^21 + 43320*t^22 + O(t^23)
sage: phi.scaling_factor()
7

ALGORITHM: The scaling factor is multiplicative under composition, so we return the product of the
individual scaling factors associated to each factor.

x_rational_map()

Return the 𝑥-coordinate rational map of this composite isogeny.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_composite import EllipticCurveHom_
→˓composite
sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: P = E.lift_x(7321)
sage: phi = EllipticCurveHom_composite(E, P)
sage: phi.x_rational_map() == phi.rational_maps()[0]
True

189

Elliptic curves, Release 9.8

190 Chapter 12. Composite morphisms of elliptic curves

CHAPTER

THIRTEEN

SCALAR-MULTIPLICATION MORPHISMS OF ELLIPTIC CURVES

This class provides an EllipticCurveHom instantiation for multiplication-by-𝑚 maps on elliptic curves.

EXAMPLES:

We can construct and evaluate scalar multiplications:

sage: from sage.schemes.elliptic_curves.hom_scalar import EllipticCurveHom_scalar
sage: E = EllipticCurve('77a1')
sage: phi = E.scalar_multiplication(5); phi
Scalar-multiplication endomorphism [5] of Elliptic Curve defined by y^2 + y = x^3 + 2*x␣
→˓over Rational Field
sage: P = E(2,3)
sage: phi(P)
(30 : 164 : 1)

The usual EllipticCurveHom methods are supported:

sage: phi.degree()
25
sage: phi.kernel_polynomial()
x^12 + 124/5*x^10 + 19*x^9 - 84*x^8 + 24*x^7 - 483*x^6 - 696/5*x^5 - 448*x^4 - 37*x^3 -␣
→˓332*x^2 - 84*x + 47/5
sage: phi.rational_maps()
((x^25 - 200*x^23 - 520*x^22 + 9000*x^21 + ... + 1377010*x^3 + 20360*x^2 - 39480*x +␣
→˓2209),
(10*x^36*y - 620*x^36 + 3240*x^34*y - 44880*x^34 + ... + 424927560*x*y + 226380480*x +␣
→˓42986410*y + 20974090)/(1250*x^36 + 93000*x^34 + 71250*x^33 + 1991400*x^32 + ... +␣
→˓1212964050*x^3 + 138715800*x^2 - 27833400*x + 1038230))
sage: phi.dual()
Scalar-multiplication endomorphism [5] of Elliptic Curve defined by y^2 + y = x^3 + 2*x␣
→˓over Rational Field
sage: phi.dual() is phi
True
sage: phi.formal()
5*t - 310*t^4 - 2496*t^5 + 10540*t^7 + ... - 38140146674516*t^20 - 46800256902400*t^21 +␣
→˓522178541079910*t^22 + O(t^23)
sage: phi.is_normalized()
False
sage: phi.is_separable()
True
sage: phi.is_injective()
False

(continues on next page)

191

Elliptic curves, Release 9.8

(continued from previous page)

sage: phi.is_surjective()
True

Contrary to constructing an EllipticCurveIsogeny from the division polynomial, EllipticCurveHom_scalar
can deal with huge scalars very quickly:

sage: E = EllipticCurve(GF(2^127-1), [1,2,3,4,5])
sage: phi = E.scalar_multiplication(9^99); phi
Scalar-multiplication endomorphism␣
→˓[29512665430652752148753480226197736314359272517043832886063884637676943433478020332709411004889]␣
→˓of Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field␣
→˓of size 170141183460469231731687303715884105727
sage: phi(E(1,2))
(82124533143060719620799539030695848450 : 17016022038624814655722682134021402379 : 1)

Composition of scalar multiplications results in another scalar multiplication:

sage: E = EllipticCurve(GF(19), [4,4])
sage: phi = E.scalar_multiplication(-3); phi
Scalar-multiplication endomorphism [-3] of Elliptic Curve defined by y^2 = x^3 + 4*x + 4␣
→˓over Finite Field of size 19
sage: psi = E.scalar_multiplication(7); psi
Scalar-multiplication endomorphism [7] of Elliptic Curve defined by y^2 = x^3 + 4*x + 4␣
→˓over Finite Field of size 19
sage: phi * psi
Scalar-multiplication endomorphism [-21] of Elliptic Curve defined by y^2 = x^3 + 4*x +␣
→˓4 over Finite Field of size 19
sage: psi * phi
Scalar-multiplication endomorphism [-21] of Elliptic Curve defined by y^2 = x^3 + 4*x +␣
→˓4 over Finite Field of size 19
sage: phi * psi == psi * phi
True
sage: -phi == E.scalar_multiplication(-1) * phi
True

The zero endomorphism [0] is supported:

sage: E = EllipticCurve(GF(71), [1,1])
sage: zero = E.scalar_multiplication(0); zero
Scalar-multiplication endomorphism [0] of Elliptic Curve defined by y^2 = x^3 + x + 1␣
→˓over Finite Field of size 71
sage: zero.is_zero()
True
sage: zero.is_injective()
False
sage: zero.is_surjective()
False
sage: zero(E.random_point())
(0 : 1 : 0)

Due to a bug (trac ticket #6413), retrieving multiplication-by-𝑚maps when𝑚 is divisible by the characteristic currently
fails:

192 Chapter 13. Scalar-multiplication morphisms of elliptic curves

https://trac.sagemath.org/6413

Elliptic curves, Release 9.8

sage: E = EllipticCurve(GF(7), [1,0])
sage: phi = E.scalar_multiplication(7); phi
Scalar-multiplication endomorphism [7] of Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field of size 7
sage: phi.rational_maps() # known bug -- #6413
(x^49, y^49)
sage: phi.x_rational_map()
x^49

sage: E = EllipticCurve(GF(7), [0,1])
sage: phi = E.scalar_multiplication(7); phi
Scalar-multiplication endomorphism [7] of Elliptic Curve defined by y^2 = x^3 + 1 over␣
→˓Finite Field of size 7
sage: phi.rational_maps() # known bug -- #6413
((-3*x^49 - x^28 - x^7)/(x^42 - x^21 + 2),
(-x^72*y - 3*x^69*y - 3*x^66*y - x^63*y + 3*x^51*y + 2*x^48*y + 2*x^45*y + 3*x^42*y - x^
→˓9*y - 3*x^6*y - 3*x^3*y - y)/(x^63 + 2*x^42 - x^21 - 1))
sage: phi.x_rational_map()
(4*x^49 + 6*x^28 + 6*x^7)/(x^42 + 6*x^21 + 2)

AUTHORS:

• Lorenz Panny (2021): implement EllipticCurveHom_scalar

class sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar(E, m)

Bases: EllipticCurveHom

Construct a scalar-multiplication map on an elliptic curve.

degree()

Return the degree of this scalar-multiplication morphism.

The map [𝑚] has degree 𝑚2.

EXAMPLES:

sage: E = EllipticCurve(GF(23), [0,1])
sage: phi = E.scalar_multiplication(1111111)
sage: phi.degree()
1234567654321

dual()

Return the dual isogeny of this scalar-multiplication map.

This method simply returns self as scalars are self-dual.

EXAMPLES:

sage: E = EllipticCurve([5,5])
sage: phi = E.scalar_multiplication(5)
sage: phi.dual() is phi
True

is_injective()

Determine whether this scalar multiplication defines an injective map (over the algebraic closure).

Equivalently, return True if and only if this scalar multiplication is a purely inseparable isogeny.

193

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve(GF(23), [1,0])
sage: E.scalar_multiplication(4).is_injective()
False
sage: E.scalar_multiplication(5).is_injective()
False
sage: E.scalar_multiplication(1).is_injective()
True
sage: E.scalar_multiplication(-1).is_injective()
True
sage: E.scalar_multiplication(23).is_injective()
True
sage: E.scalar_multiplication(-23).is_injective()
True
sage: E.scalar_multiplication(0).is_injective()
False

is_separable()

Determine whether this scalar-multiplication map is a separable isogeny. (This is the case if and only if the
scalar 𝑚 is coprime to the characteristic.)

EXAMPLES:

sage: E = EllipticCurve(GF(11), [4,4])
sage: E.scalar_multiplication(11).is_separable()
False
sage: E.scalar_multiplication(-11).is_separable()
False
sage: E.scalar_multiplication(777).is_separable()
True
sage: E.scalar_multiplication(-1).is_separable()
True
sage: E.scalar_multiplication(77).is_separable()
False
sage: E.scalar_multiplication(121).is_separable()
False

kernel_polynomial()

Return the kernel polynomial of this scalar-multiplication map. (When 𝑚 = 0, return 0.)

EXAMPLES:

sage: E = EllipticCurve(GF(997), [7,7,7,7,7])
sage: phi = E.scalar_multiplication(5)
sage: phi.kernel_polynomial()
x^12 + 77*x^11 + 380*x^10 + 198*x^9 + 840*x^8 + 376*x^7 + 946*x^6 + 848*x^5 +␣
→˓246*x^4 + 778*x^3 + 77*x^2 + 518*x + 28

sage: E = EllipticCurve(GF(997), [5,6,7,8,9])
sage: phi = E.scalar_multiplication(11)
sage: phi.kernel_polynomial()
x^60 + 245*x^59 + 353*x^58 + 693*x^57 + 499*x^56 + 462*x^55 + 820*x^54 + 962*x^
→˓53 + ... + 736*x^7 + 939*x^6 + 429*x^5 + 267*x^4 + 116*x^3 + 770*x^2 + 491*x␣
→˓+ 519

194 Chapter 13. Scalar-multiplication morphisms of elliptic curves

Elliptic curves, Release 9.8

rational_maps()

Return the pair of explicit rational maps defining this scalar multiplication.

ALGORITHM: EllipticCurve_generic.multiplication_by_m()

EXAMPLES:

sage: E = EllipticCurve('77a1')
sage: phi = E.scalar_multiplication(5)
sage: phi.rational_maps()
((x^25 - 200*x^23 - 520*x^22 + ... + 368660*x^2 + 163195*x + 16456)/(25*x^24 +␣
→˓1240*x^22 + 950*x^21 + ... + 20360*x^2 - 39480*x + 2209),
(10*x^36*y - 620*x^36 + 3240*x^34*y - ... + 226380480*x + 42986410*y +␣
→˓20974090)/(1250*x^36 + 93000*x^34 + 71250*x^33 + ... + 138715800*x^2 -␣
→˓27833400*x + 1038230))
sage: P = (2,3)
sage: Q = tuple(r(P) for r in phi.rational_maps()); Q
(30, 164)
sage: E(Q) == 5*E(P)
True

scaling_factor()

Return the Weierstrass scaling factor associated to this scalar multiplication.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: phi = E.scalar_multiplication(5)
sage: u = phi.scaling_factor()
sage: u == phi.formal()[1]
True
sage: u == E.multiplication_by_m_isogeny(5).scaling_factor()
doctest:warning ... DeprecationWarning: ...
True

The scaling factor lives in the base ring:

sage: E = EllipticCurve(GF(101^2), [5,5])
sage: phi = E.scalar_multiplication(123)
sage: phi.scaling_factor()
22
sage: phi.scaling_factor().parent()
Finite Field in z2 of size 101^2

ALGORITHM: The scaling factor equals the scalar that is being multiplied by.

x_rational_map()

Return the 𝑥-coordinate rational map of this scalar multiplication.

ALGORITHM: EllipticCurve_generic.multiplication_by_m()

EXAMPLES:

195

Elliptic curves, Release 9.8

sage: E = EllipticCurve(GF(65537), [1,2,3,4,5])
sage: phi = E.scalar_multiplication(7)
sage: phi.x_rational_map() == phi.rational_maps()[0]
True

196 Chapter 13. Scalar-multiplication morphisms of elliptic curves

CHAPTER

FOURTEEN

FROBENIUS ISOGENIES OF ELLIPTIC CURVES

Frobenius isogenies only exist in positive characteristic 𝑝. They are given by 𝜋𝑛 : (𝑥, 𝑦) ↦→ (𝑥𝑝
𝑛

, 𝑦𝑝
𝑛

).

This class implements 𝜋𝑛 for 𝑛 ≥ 0. Together with existing tools for composing isogenies (see
EllipticCurveHom_composite), we can therefore represent arbitrary inseparable isogenies in Sage.

EXAMPLES:

Constructing a Frobenius isogeny is straightforward:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_frobenius
sage: z5, = GF(17^5).gens()
sage: E = EllipticCurve([z5,1])
sage: pi = EllipticCurveHom_frobenius(E); pi
Frobenius isogeny of degree 17:
From: Elliptic Curve defined by y^2 = x^3 + z5*x + 1 over Finite Field in z5 of size␣

→˓17^5
To: Elliptic Curve defined by y^2 = x^3 + (9*z5^4+7*z5^3+10*z5^2+z5+14)*x + 1 over␣

→˓Finite Field in z5 of size 17^5

By passing 𝑛, we can also construct higher-power Frobenius maps, such as the Frobenius endomorphism:

sage: z5, = GF(7^5).gens()
sage: E = EllipticCurve([z5,1])
sage: pi = EllipticCurveHom_frobenius(E,5); pi
Frobenius endomorphism of degree 16807 = 7^5:
From: Elliptic Curve defined by y^2 = x^3 + z5*x + 1 over Finite Field in z5 of size 7^

→˓5
To: Elliptic Curve defined by y^2 = x^3 + z5*x + 1 over Finite Field in z5 of size 7^

→˓5

The usual EllipticCurveHom methods are supported:

sage: z5, = GF(7^5).gens()
sage: E = EllipticCurve([z5,1])
sage: pi = EllipticCurveHom_frobenius(E,5)
sage: pi.degree()
16807
sage: pi.rational_maps()
(x^16807, y^16807)
sage: pi.formal() # known bug
...
sage: pi.is_normalized() # known bug

(continues on next page)

197

Elliptic curves, Release 9.8

(continued from previous page)

...
sage: pi.is_separable()
False
sage: pi.is_injective()
True
sage: pi.is_surjective()
True

Computing the dual of Frobenius is supported as well:

sage: E = EllipticCurve([GF(17^6).gen(), 0])
sage: pi = EllipticCurveHom_frobenius(E)
sage: pihat = pi.dual(); pihat
Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + (15*z6^5+5*z6^4+8*z6^
→˓3+12*z6^2+11*z6+7)*x over Finite Field in z6 of size 17^6 to Elliptic Curve defined by␣
→˓y^2 = x^3 + z6*x over Finite Field in z6 of size 17^6
sage: pihat.is_separable()
True
sage: pihat * pi == EllipticCurveHom_scalar(E,17) # known bug -- #6413
True

A supersingular example (with purely inseparable dual):

sage: E = EllipticCurve([0, GF(17^6).gen()])
sage: E.is_supersingular()
True
sage: pi1 = EllipticCurveHom_frobenius(E)
sage: pi1hat = pi1.dual(); pi1hat
Composite morphism of degree 17 = 17*1:
From: Elliptic Curve defined by y^2 = x^3 + (15*z6^5+5*z6^4+8*z6^3+12*z6^2+11*z6+7)␣

→˓over Finite Field in z6 of size 17^6
To: Elliptic Curve defined by y^2 = x^3 + z6 over Finite Field in z6 of size 17^6

sage: pi6 = EllipticCurveHom_frobenius(E,6)
sage: pi6hat = pi6.dual(); pi6hat
Composite morphism of degree 24137569 = 24137569*1:
From: Elliptic Curve defined by y^2 = x^3 + z6 over Finite Field in z6 of size 17^6
To: Elliptic Curve defined by y^2 = x^3 + z6 over Finite Field in z6 of size 17^6

sage: pi6hat.factors()
(Frobenius endomorphism of degree 24137569 = 17^6:

From: Elliptic Curve defined by y^2 = x^3 + z6 over Finite Field in z6 of size 17^6
To: Elliptic Curve defined by y^2 = x^3 + z6 over Finite Field in z6 of size 17^6,

Elliptic-curve endomorphism of Elliptic Curve defined by y^2 = x^3 + z6 over Finite␣
→˓Field in z6 of size 17^6

Via: (u,r,s,t) = (2*z6^5 + 10*z6^3 + z6^2 + 8, 0, 0, 0))

AUTHORS:

• Lorenz Panny (2021): implement EllipticCurveHom_frobenius

• Mickaël Montessinos (2021): computing the dual of a Frobenius isogeny

class sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius(E, power=1)
Bases: EllipticCurveHom

Construct a Frobenius isogeny on a given curve with a given power of the base-ring characteristic.

198 Chapter 14. Frobenius isogenies of elliptic curves

Elliptic curves, Release 9.8

Writing 𝑛 for the parameter power (default: 1), the isogeny is defined by (𝑥, 𝑦) → (𝑥𝑝
𝑛

, 𝑦𝑝
𝑛

) where 𝑝 is the
characteristic of the base ring.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(j=GF(11^2).gen())
sage: EllipticCurveHom_frobenius(E)
Frobenius isogeny of degree 11:
From: Elliptic Curve defined by y^2 = x^3 + (2*z2+6)*x + (8*z2+8) over Finite␣

→˓Field in z2 of size 11^2
To: Elliptic Curve defined by y^2 = x^3 + (9*z2+3)*x + (3*z2+7) over Finite␣

→˓Field in z2 of size 11^2
sage: EllipticCurveHom_frobenius(E, 2)
Frobenius endomorphism of degree 121 = 11^2:
From: Elliptic Curve defined by y^2 = x^3 + (2*z2+6)*x + (8*z2+8) over Finite␣

→˓Field in z2 of size 11^2
To: Elliptic Curve defined by y^2 = x^3 + (2*z2+6)*x + (8*z2+8) over Finite␣

→˓Field in z2 of size 11^2

degree()

Return the degree of this Frobenius isogeny.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 4)
sage: pi.degree()
14641

dual()

Compute the dual of this Frobenius isogeny.

This method returns an EllipticCurveHom object.

EXAMPLES:

An ordinary example:

sage: from sage.schemes.elliptic_curves.hom_scalar import EllipticCurveHom_
→˓scalar
sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(31), [0,1])
sage: f = EllipticCurveHom_frobenius(E)
sage: f.dual() * f == EllipticCurveHom_scalar(f.domain(), 31)
True
sage: f * f.dual() == EllipticCurveHom_scalar(f.codomain(), 31)
True

A supersingular example:

199

Elliptic curves, Release 9.8

sage: E = EllipticCurve(GF(31), [1,0])
sage: f = EllipticCurveHom_frobenius(E)
sage: f.dual() * f == EllipticCurveHom_scalar(f.domain(), 31)
True
sage: f * f.dual() == EllipticCurveHom_scalar(f.codomain(), 31)
True

ALGORITHM:

• For supersingular curves, the dual of Frobenius is again purely inseparable, so we start out with a
Frobenius isogeny of equal degree in the opposite direction.

• For ordinary curves, we immediately reduce to the case of prime degree. The kernel of the dual is the
unique subgroup of size 𝑝, which we compute from the 𝑝-division polynomial.

In both cases, we then search for the correct post-isomorphism using find_post_isomorphism().

is_injective()

Determine whether or not this Frobenius isogeny has trivial kernel.

Since Frobenius isogenies are purely inseparable, this method always returns True.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 5)
sage: pi.is_injective()
True

is_separable()

Determine whether or not this Frobenius isogeny is separable.

Since Frobenius isogenies are purely inseparable, this method returns True if and only if the degree is 1.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E)
sage: pi.degree()
11
sage: pi.is_separable()
False
sage: pi = EllipticCurveHom_frobenius(E, 0)
sage: pi.degree()
1
sage: pi.is_separable()
True

kernel_polynomial()

Return the kernel polynomial of this Frobenius isogeny as a polynomial in 𝑥. This method always returns
1.

EXAMPLES:

200 Chapter 14. Frobenius isogenies of elliptic curves

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 5)
sage: pi.kernel_polynomial()
1

rational_maps()

Return the explicit rational maps defining this Frobenius isogeny as (sparse) bivariate rational maps in 𝑥
and 𝑦.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 4)
sage: pi.rational_maps()
(x^14641, y^14641)

scaling_factor()

Return the Weierstrass scaling factor associated to this Frobenius morphism.

The scaling factor is the constant 𝑢 (in the base field) such that 𝜙*𝜔2 = 𝑢𝜔1, where 𝜙 : 𝐸1 → 𝐸2 is this
morphism and 𝜔𝑖 are the standard Weierstrass differentials on 𝐸𝑖 defined by d𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E)
sage: pi.formal()
t^11 + O(t^33)
sage: pi.scaling_factor()
0
sage: pi = EllipticCurveHom_frobenius(E, 3)
sage: pi.formal()
t^1331 + O(t^1353)
sage: pi.scaling_factor()
0
sage: pi = EllipticCurveHom_frobenius(E, 0)
sage: pi == E.scalar_multiplication(1)
True
sage: pi.scaling_factor()
1

The scaling factor lives in the base ring:

sage: pi.scaling_factor().parent()
Finite Field of size 11

ALGORITHM: Inseparable isogenies of degree > 1 have scaling factor 0.

201

Elliptic curves, Release 9.8

x_rational_map()

Return the 𝑥-coordinate rational map of this Frobenius isogeny as a (sparse) univariate rational map in 𝑥.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_frobenius import EllipticCurveHom_
→˓frobenius
sage: E = EllipticCurve(GF(11), [1,1])
sage: pi = EllipticCurveHom_frobenius(E, 4)
sage: pi.x_rational_map()
x^14641

202 Chapter 14. Frobenius isogenies of elliptic curves

CHAPTER

FIFTEEN

ISOGENIES OF SMALL PRIME DEGREE

Functions for the computation of isogenies of small primes degree. First: 𝑙 = 2, 3, 5, 7, or 13, where the modular curve
𝑋0(𝑙) has genus 0. Second: 𝑙 = 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71, where𝑋+

0 (𝑙) has genus 0 and𝑋0(𝑙) is elliptic
or hyperelliptic. Also: 𝑙 = 11, 17, 19, 37, 43, 67 or 163 over Q (the sporadic cases with only finitely many 𝑗-invariants
each). All the above only require factorization of a polynomial of degree 𝑙 + 1. Finally, a generic function which
works for arbitrary odd primes 𝑙 (including the characteristic), but requires factorization of the 𝑙-division polynomial,
of degree (𝑙2 − 1)/2.

AUTHORS:

• John Cremona and Jenny Cooley: 2009-07..11: the genus 0 cases the sporadic cases over Q.

• Kimi Tsukazaki and John Cremona: 2013-07: The 10 (hyper)-elliptic cases and the generic algorithm. See
[KT2013].

sage.schemes.elliptic_curves.isogeny_small_degree.Fricke_module()

Fricke module for l =2,3,5,7,13.

For these primes (and these only) the modular curve 𝑋0(𝑙) has genus zero, and its field is generated by a single
modular function called the Fricke module (or Hauptmodul), 𝑡. There is a classical choice of such a generator
𝑡 in each case, and the 𝑗-function is a rational function of 𝑡 of degree 𝑙 + 1 of the form 𝑃 (𝑡)/𝑡 where 𝑃 is a
polynomial of degree 𝑙 + 1. Up to scaling, 𝑡 is determined by the condition that the ramification points above
𝑗 = ∞ are 𝑡 = 0 (with ramification degree 1) and 𝑡 = ∞ (with degree 𝑙). The ramification above 𝑗 = 0 and
𝑗 = 1728 may be seen in the factorizations of 𝑗(𝑡) and 𝑘(𝑡) where 𝑘 = 𝑗 − 1728.

OUTPUT:

The rational function 𝑃 (𝑡)/𝑡.

sage.schemes.elliptic_curves.isogeny_small_degree.Fricke_polynomial()

Fricke polynomial for l =2,3,5,7,13.

For these primes (and these only) the modular curve 𝑋0(𝑙) has genus zero, and its field is generated by a single
modular function called the Fricke module (or Hauptmodul), 𝑡. There is a classical choice of such a generator
𝑡 in each case, and the 𝑗-function is a rational function of 𝑡 of degree 𝑙 + 1 of the form 𝑃 (𝑡)/𝑡 where 𝑃 is a
polynomial of degree 𝑙 + 1. Up to scaling, 𝑡 is determined by the condition that the ramification points above
𝑗 = ∞ are 𝑡 = 0 (with ramification degree 1) and 𝑡 = ∞ (with degree 𝑙). The ramification above 𝑗 = 0 and
𝑗 = 1728 may be seen in the factorizations of 𝑗(𝑡) and 𝑘(𝑡) where 𝑘 = 𝑗 − 1728.

OUTPUT:

The polynomial 𝑃 (𝑡) as an element of Z[𝑡].

sage.schemes.elliptic_curves.isogeny_small_degree.Psi(use_stored=True)
Generic kernel polynomial for genus zero primes.

For each of the primes 𝑙 for which 𝑋0(𝑙) has genus zero (namely 𝑙 = 2, 3, 5, 7, 13), we may define an elliptic
curve 𝐸𝑡 over Q(𝑡), with coefficients in Z[𝑡], which has good reduction except at 𝑡 = 0 and 𝑡 = ∞ (which lie

203

Elliptic curves, Release 9.8

above 𝑗 = ∞) and at certain other values of 𝑡 above 𝑗 = 0 when 𝑙 = 3 (one value) or 𝑙 ≡ 1 (mod 3) (two
values) and above 𝑗 = 1728 when 𝑙 = 2 (one value) or 𝑙 ≡ 1 (mod 4) (two values). (These exceptional values
correspond to endomorphisms of 𝐸𝑡 of degree 𝑙.) The 𝑙-division polynomial of 𝐸𝑡 has a unique factor of degree
(𝑙− 1)/2 (or 1 when 𝑙 = 2), with coefficients in Z[𝑡], which we call the Generic Kernel Polynomial for 𝑙. These
are used, by specialising 𝑡, in the function isogenies_prime_degree_genus_0(), which also has to take into
account the twisting factor between𝐸𝑡 for a specific value of 𝑡 and the short Weierstrass form of an elliptic curve
with 𝑗-invariant 𝑗(𝑡). This enables the computation of the kernel polynomials of isogenies without having to
compute and factor division polynomials.

All of this data is quickly computed from the Fricke modules, except that for 𝑙 = 13 the factorization of the
Generic Division Polynomial takes a long time, so the value have been precomputed and cached; by default the
cached values are used, but the code here will recompute them when use_stored is False, as in the doctests.

INPUT:

• l – either 2, 3, 5, 7, or 13.

• use_stored (boolean, default True) – If True, use precomputed values, otherwise compute them on the
fly.

Note: This computation takes a negligible time for 𝑙 = 2, 3, 5, 7 but more than 100s for 𝑙 = 13. The reason for
allowing dynamic computation here instead of just using precomputed values is for testing.

sage.schemes.elliptic_curves.isogeny_small_degree.Psi2()

Return the generic kernel polynomial for hyperelliptic 𝑙-isogenies.

INPUT:

• l – either 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

OUTPUT:

The generic 𝑙-kernel polynomial.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import Psi2
sage: Psi2(11)
x^5 - 55*x^4*u + 994*x^3*u^2 - 8774*x^2*u^3 + 41453*x*u^4 - 928945/11*u^5 + 33*x^4␣
→˓+ 276*x^3*u - 7794*x^2*u^2 + 4452*x*u^3 + 1319331/11*u^4 + 216*x^3*v - 4536*x^
→˓2*u*v + 31752*x*u^2*v - 842616/11*u^3*v + 162*x^3 + 38718*x^2*u - 610578*x*u^2 +␣
→˓33434694/11*u^3 - 4536*x^2*v + 73872*x*u*v - 2745576/11*u^2*v - 16470*x^2 +␣
→˓580068*x*u - 67821354/11*u^2 - 185976*x*v + 14143896/11*u*v + 7533*x - 20437029/
→˓11*u - 12389112/11*v + 19964151/11
sage: p = Psi2(71) # long time
sage: (x,u,v) = p.variables() # long time
sage: p.coefficient({x: 0, u: 210, v: 0}) # long time
-2209380711722505179506258739515288584116147237393815266468076436521/71
sage: p.coefficient({x: 0, u: 0, v: 0}) # long time
-14790739586438315394567393301990769678157425619440464678252277649/71

sage.schemes.elliptic_curves.isogeny_small_degree.is_kernel_polynomial(E, m, f)
Test whether E has a cyclic isogeny of degree m with kernel polynomial f.

INPUT:

• E – an elliptic curve.

• m – a positive integer.

204 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

• f – a polynomial over the base field of E.

OUTPUT:

(bool) True if E has a cyclic isogeny of degree m with kernel polynomial f, else False.

ALGORITHM:

𝑓 must have degree (𝑚 − 1)/2 (if 𝑚 is odd) or degree 𝑚/2 (if 𝑚 is even), and have the property that for each
root 𝑥 of 𝑓 , 𝜇(𝑥) is also a root where 𝜇 is the multiplication-by-𝑚map on 𝐸 and𝑚 runs over a set of generators
of (Z/𝑚Z)*/{1,−1}.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import is_kernel_
→˓polynomial
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: x = polygen(QQ)
sage: is_kernel_polynomial(E,5,x^2 + x - 29/5)
True
sage: is_kernel_polynomial(E,5,(x - 16) * (x - 5))
True

An example from [KT2013], where the 13-division polynomial splits into 14 factors each of degree 6, but only
two of these is a kernel polynomial for a 13-isogeny:

sage: F = GF(3)
sage: E = EllipticCurve(F,[0,0,0,-1,0])
sage: f13 = E.division_polynomial(13)
sage: factors = [f for f,e in f13.factor()]
sage: all(f.degree() == 6 for f in factors)
True
sage: [is_kernel_polynomial(E,13,f) for f in factors]
[True,
True,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False]

See trac ticket #22232:

sage: K =GF(47^2)
sage: E = EllipticCurve([0, K.gen()])
sage: psi7 = E.division_polynomial(7)
sage: f = psi7.factor()[4][0]
sage: f
x^3 + (7*z2 + 11)*x^2 + (25*z2 + 33)*x + 25*z2

(continues on next page)

205

https://trac.sagemath.org/22232

Elliptic curves, Release 9.8

(continued from previous page)

sage: f.divides(psi7)
True
sage: is_kernel_polynomial(E,7, f)
False

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_13_0(E, minimal_models=True)
Return list of all 13-isogenies from E when the j-invariant is 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 13-isogenies with codomain E. In general these are normalised; but if −3 is a square then there are two
endomorphisms of degree 13, for which the codomain is the same as the domain.

Note: This implementation requires that the characteristic is not 2, 3 or 13.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(13).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_13_0

Endomorphisms of degree 13 will exist when -3 is a square:

sage: K.<r> = QuadraticField(-3)
sage: E = EllipticCurve(K, [0, r]); E
Elliptic Curve defined by y^2 = x^3 + r over Number Field in r with defining␣
→˓polynomial x^2 + 3 with r = 1.732050807568878?*I
sage: isogenies_13_0(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + r over Number␣
→˓Field in r with defining polynomial x^2 + 3 with r = 1.732050807568878?*I to␣
→˓Elliptic Curve defined by y^2 = x^3 + r over Number Field in r with defining␣
→˓polynomial x^2 + 3 with r = 1.732050807568878?*I,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + r over Number␣
→˓Field in r with defining polynomial x^2 + 3 with r = 1.732050807568878?*I to␣
→˓Elliptic Curve defined by y^2 = x^3 + r over Number Field in r with defining␣
→˓polynomial x^2 + 3 with r = 1.732050807568878?*I]
sage: isogenies_13_0(E)[0].rational_maps()
(((7/338*r + 23/338)*x^13 + (-164/13*r - 420/13)*x^10 + (720/13*r + 3168/13)*x^7 +␣
→˓(3840/13*r - 576/13)*x^4 + (4608/13*r + 2304/13)*x)/(x^12 + (4*r + 36)*x^9 +␣
→˓(1080/13*r + 3816/13)*x^6 + (2112/13*r - 5184/13)*x^3 + (-17280/169*r - 1152/
→˓169)), ((18/2197*r + 35/2197)*x^18*y + (23142/2197*r + 35478/2197)*x^15*y + (-
→˓1127520/2197*r - 1559664/2197)*x^12*y + (-87744/2197*r + 5992704/2197)*x^9*y + (-
→˓6625152/2197*r - 9085824/2197)*x^6*y + (-28919808/2197*r - 2239488/2197)*x^3*y +␣
→˓(-1990656/2197*r - 3870720/2197)*y)/(x^18 + (6*r + 54)*x^15 + (3024/13*r + 11808/

(continues on next page)

206 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

→˓13)*x^12 + (31296/13*r + 51840/13)*x^9 + (487296/169*r - 2070144/169)*x^6 + (-
→˓940032/169*r + 248832/169)*x^3 + (1990656/2197*r + 3870720/2197)))

An example of endomorphisms over a finite field:

sage: K = GF(19^2,'a')
sage: E = EllipticCurve(j=K(0)); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 19^2
sage: isogenies_13_0(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 19^2 to Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 19^2,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field␣
→˓in a of size 19^2 to Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in␣
→˓a of size 19^2]
sage: isogenies_13_0(E)[0].rational_maps()
((6*x^13 - 6*x^10 - 3*x^7 + 6*x^4 + x)/(x^12 - 5*x^9 - 9*x^6 - 7*x^3 + 5), (-8*x^
→˓18*y - 9*x^15*y + 9*x^12*y - 5*x^9*y + 5*x^6*y - 7*x^3*y + 7*y)/(x^18 + 2*x^15 +␣
→˓3*x^12 - x^9 + 8*x^6 - 9*x^3 + 7))

A previous implementation did not work in some characteristics:

sage: K = GF(29)
sage: E = EllipticCurve(j=K(0))
sage: isogenies_13_0(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field of size 29 to Elliptic Curve defined by y^2 = x^3 + 26*x + 12 over Finite␣
→˓Field of size 29, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 +␣
→˓1 over Finite Field of size 29 to Elliptic Curve defined by y^2 = x^3 + 16*x + 28␣
→˓over Finite Field of size 29]

sage: K = GF(101)
sage: E = EllipticCurve(j=K(0)); E.ainvs()
(0, 0, 0, 0, 1)
sage: [phi.codomain().ainvs() for phi in isogenies_13_0(E)]
[(0, 0, 0, 64, 36), (0, 0, 0, 42, 66)]

sage: x = polygen(QQ)
sage: f = x^12 + 78624*x^9 - 130308048*x^6 + 2270840832*x^3 - 54500179968
sage: K.<a> = NumberField(f)
sage: E = EllipticCurve(j=K(0)); E.ainvs()
(0, 0, 0, 0, 1)
sage: len([phi.codomain().ainvs() for phi in isogenies_13_0(E)]) # long time (4s)
2

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_13_1728(E, minimal_models=True)
Return list of all 13-isogenies from E when the j-invariant is 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

207

Elliptic curves, Release 9.8

OUTPUT:

(list) 13-isogenies with codomain E. In general these are normalised; but if −1 is a square then there are two
endomorphisms of degree 13, for which the codomain is the same as the domain; and over Q or a number field,
the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 13.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(13).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_13_
→˓1728

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,0]); E.ainvs()
(0, 0, 0, i, 0)
sage: isogenies_13_1728(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + i*x over Number␣
→˓Field in i with defining polynomial x^2 + 1 with i = 1*I to Elliptic Curve␣
→˓defined by y^2 = x^3 + i*x over Number Field in i with defining polynomial x^2 +␣
→˓1 with i = 1*I,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + i*x over Number␣
→˓Field in i with defining polynomial x^2 + 1 with i = 1*I to Elliptic Curve␣
→˓defined by y^2 = x^3 + i*x over Number Field in i with defining polynomial x^2 +␣
→˓1 with i = 1*I]

sage: K = GF(83)
sage: E = EllipticCurve(K, [0,0,0,5,0]); E.ainvs()
(0, 0, 0, 5, 0)
sage: isogenies_13_1728(E)
[]
sage: K = GF(89)
sage: E = EllipticCurve(K, [0,0,0,5,0]); E.ainvs()
(0, 0, 0, 5, 0)
sage: isogenies_13_1728(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 5*x over Finite␣
→˓Field of size 89 to Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field␣
→˓of size 89,
Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 5*x over Finite␣
→˓Field of size 89 to Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field␣
→˓of size 89]

sage: K = GF(23)
sage: E = EllipticCurve(K, [1,0])
sage: isogenies_13_1728(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + x over Finite␣
→˓Field of size 23 to Elliptic Curve defined by y^2 = x^3 + 16 over Finite Field of␣
→˓size 23, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + x over␣
→˓Finite Field of size 23 to Elliptic Curve defined by y^2 = x^3 + 7 over Finite␣

(continues on next page)

208 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

→˓Field of size 23]

sage: x = polygen(QQ)
sage: f = x^12 + 1092*x^10 - 432432*x^8 + 6641024*x^6 - 282896640*x^4 - 149879808*x^
→˓2 - 349360128
sage: K.<a> = NumberField(f)
sage: E = EllipticCurve(K, [1,0])
sage: [phi.codomain().ainvs() for phi in isogenies_13_1728(E)] # long time (3s)
[(0,
0,
0,
-4225010072113/3063768069807341568*a^10 - 24841071989413/15957125363579904*a^8 +␣
→˓11179537789374271/21276167151439872*a^6 - 407474562289492049/47871376090739712*a^
→˓4 + 1608052769560747/4522994717568*a^2 + 7786720245212809/36937790193472,
-363594277511/574456513088876544*a^11 - 7213386922793/2991961005671232*a^9 -␣
→˓2810970361185589/1329760446964992*a^7 + 281503836888046601/8975883017013696*a^5 -␣
→˓1287313166530075/848061509544*a^3 + 9768837984886039/6925835661276*a),
(0,
0,
0,
-4225010072113/3063768069807341568*a^10 - 24841071989413/15957125363579904*a^8 +␣
→˓11179537789374271/21276167151439872*a^6 - 407474562289492049/47871376090739712*a^
→˓4 + 1608052769560747/4522994717568*a^2 + 7786720245212809/36937790193472,
363594277511/574456513088876544*a^11 + 7213386922793/2991961005671232*a^9 +␣
→˓2810970361185589/1329760446964992*a^7 - 281503836888046601/8975883017013696*a^5 +␣
→˓1287313166530075/848061509544*a^3 - 9768837984886039/6925835661276*a)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_2(E, minimal_models=True)
Return a list of all 2-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 2-isogenies with domain E. In general these are normalised, but over Q and other number fields, the
codomain is a minimal model where possible.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_2
sage: E = EllipticCurve('14a1'); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field
sage: [phi.codomain().ainvs() for phi in isogenies_2(E)]
[(1, 0, 1, -36, -70)]

sage: E = EllipticCurve([1,2,3,4,5]); E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational␣
→˓Field
sage: [phi.codomain().ainvs() for phi in isogenies_2(E)]
[]

(continues on next page)

209

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(QQbar, [9,8]); E
Elliptic Curve defined by y^2 = x^3 + 9*x + 8 over Algebraic Field
sage: isogenies_2(E) # not implemented

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_3(E, minimal_models=True)
Return a list of all 3-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 3-isogenies with domain E. In general these are normalised, but over Q or a number field, the codomain is
a global minimal model where possible.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_3
sage: E = EllipticCurve(GF(17), [1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 0, 0, 9, 7), (0, 0, 0, 0, 1)]

sage: E = EllipticCurve(GF(17^2,'a'), [1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 0, 0, 9, 7), (0, 0, 0, 0, 1), (0, 0, 0, 5*a + 1, a + 13), (0, 0, 0, 12*a + 6,␣
→˓16*a + 14)]

sage: E = EllipticCurve('19a1')
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 1, 1, 1, 0), (0, 1, 1, -769, -8470)]

sage: E = EllipticCurve([1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_5_0(E, minimal_models=True)
Return a list of all the 5-isogenies with domain E when the j-invariant is 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 5-isogenies with codomain E. In general these are normalised, but over Q or a number field, the codomain
is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 5.

210 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(5).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_0
sage: E = EllipticCurve([0,12])
sage: isogenies_5_0(E)
[]

sage: E = EllipticCurve(GF(13^2,'a'),[0,-3])
sage: isogenies_5_0(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 10 over Finite␣
→˓Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + (4*a+6)*x +␣
→˓(2*a+10) over Finite Field in a of size 13^2, Isogeny of degree 5 from Elliptic␣
→˓Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^2 to Elliptic␣
→˓Curve defined by y^2 = x^3 + (12*a+5)*x + (2*a+10) over Finite Field in a of size␣
→˓13^2, Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 10 over␣
→˓Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(10*a+2)*x + (2*a+10) over Finite Field in a of size 13^2, Isogeny of degree 5␣
→˓from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^2␣
→˓to Elliptic Curve defined by y^2 = x^3 + (3*a+12)*x + (11*a+12) over Finite Field␣
→˓in a of size 13^2, Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 +␣
→˓10 over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(a+4)*x + (11*a+12) over Finite Field in a of size 13^2, Isogeny of degree 5 from␣
→˓Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^2 to␣
→˓Elliptic Curve defined by y^2 = x^3 + (9*a+10)*x + (11*a+12) over Finite Field in␣
→˓a of size 13^2]

sage: K.<a> = NumberField(x**6-320*x**3-320)
sage: E = EllipticCurve(K,[0,0,1,0,0])
sage: isogenies_5_0(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field␣
→˓in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^
→˓2 + y = x^3 + (241565/32*a^5-362149/48*a^4+180281/24*a^3-9693307/4*a^2+14524871/
→˓6*a-7254985/3)*x + (1660391123/192*a^5-829315373/96*a^4+77680504/9*a^3-
→˓66622345345/24*a^2+33276655441/12*a-24931615912/9) over Number Field in a with␣
→˓defining polynomial x^6 - 320*x^3 - 320,
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field␣
→˓in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^
→˓2 + y = x^3 + (47519/32*a^5-72103/48*a^4+32939/24*a^3-1909753/4*a^2+2861549/6*a-
→˓1429675/3)*x + (-131678717/192*a^5+65520419/96*a^4-12594215/18*a^3+5280985135/
→˓24*a^2-2637787519/12*a+1976130088/9) over Number Field in a with defining␣
→˓polynomial x^6 - 320*x^3 - 320]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_5_1728(E, minimal_models=True)
Return a list of 5-isogenies with domain E when the j-invariant is 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

211

Elliptic curves, Release 9.8

OUTPUT:

(list) 5-isogenies with codomain E. In general these are normalised; but if −1 is a square then there are two
endomorphisms of degree 5, for which the codomain is the same as the domain curve; and over Q or a number
field, the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 5.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(5).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_1728
sage: E = EllipticCurve([7,0])
sage: isogenies_5_1728(E)
[]

sage: E = EllipticCurve(GF(13),[11,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 11*x over Finite␣
→˓Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field␣
→˓of size 13,
Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 11*x over Finite␣
→˓Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field␣
→˓of size 13]

An example of endomorphisms of degree 5:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,0,1,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field␣
→˓in i with defining polynomial x^2 + 1 with i = 1*I to Elliptic Curve defined by y^
→˓2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1 with i = 1*I,
Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field␣
→˓in i with defining polynomial x^2 + 1 with i = 1*I to Elliptic Curve defined by y^
→˓2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1 with i = 1*I]
sage: _[0].rational_maps()
(((4/25*i + 3/25)*x^5 + (4/5*i - 2/5)*x^3 - x)/(x^4 + (-4/5*i + 2/5)*x^2 + (-4/25*i␣
→˓- 3/25)),
((11/125*i + 2/125)*x^6*y + (-23/125*i + 64/125)*x^4*y + (141/125*i + 162/125)*x^
→˓2*y + (3/25*i - 4/25)*y)/(x^6 + (-6/5*i + 3/5)*x^4 + (-12/25*i - 9/25)*x^2 + (2/
→˓125*i - 11/125)))

An example of 5-isogenies over a number field:

sage: K.<a> = NumberField(x**4+20*x**2-80)
sage: K(5).is_square() #necessary but not sufficient!
True
sage: E = EllipticCurve(K,[0,0,0,1,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field␣

(continues on next page)

212 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

→˓in a with defining polynomial x^4 + 20*x^2 - 80 to Elliptic Curve defined by y^2␣
→˓= x^3 + (-753/4*a^2-4399)*x + (2779*a^3+65072*a) over Number Field in a with␣
→˓defining polynomial x^4 + 20*x^2 - 80,
Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field␣
→˓in a with defining polynomial x^4 + 20*x^2 - 80 to Elliptic Curve defined by y^2␣
→˓= x^3 + (-753/4*a^2-4399)*x + (-2779*a^3-65072*a) over Number Field in a with␣
→˓defining polynomial x^4 + 20*x^2 - 80]

See trac ticket #19840:

sage: K.<a> = NumberField(x^4 - 5*x^2 + 5)
sage: E = EllipticCurve([a^2 + a + 1, a^3 + a^2 + a + 1, a^2 + a, 17*a^3 + 34*a^2 -␣
→˓16*a - 37, 54*a^3 + 105*a^2 - 66*a - 135])
sage: len(E.isogenies_prime_degree(5))
2
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_1728
sage: [phi.codomain().j_invariant() for phi in isogenies_5_1728(E)]
[19691491018752*a^2 - 27212977933632, 19691491018752*a^2 - 27212977933632]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_7_0(E, minimal_models=True)
Return list of all 7-isogenies from E when the j-invariant is 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 7-isogenies with codomain E. In general these are normalised; but if −3 is a square then there are two
endomorphisms of degree 7, for which the codomain is the same as the domain; and over Q or a number field,
the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 7.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(7).

EXAMPLES:

First some examples of endomorphisms:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_0
sage: K.<r> = QuadraticField(-3)
sage: E = EllipticCurve(K, [0,1])
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1 over Number Field␣
→˓in r with defining polynomial x^2 + 3 with r = 1.732050807568878?*I to Elliptic␣
→˓Curve defined by y^2 = x^3 + 1 over Number Field in r with defining polynomial x^
→˓2 + 3 with r = 1.732050807568878?*I,
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1 over Number Field␣
→˓in r with defining polynomial x^2 + 3 with r = 1.732050807568878?*I to Elliptic␣

(continues on next page)

213

https://trac.sagemath.org/19840

Elliptic curves, Release 9.8

(continued from previous page)

→˓Curve defined by y^2 = x^3 + 1 over Number Field in r with defining polynomial x^
→˓2 + 3 with r = 1.732050807568878?*I]

sage: E = EllipticCurve(GF(13^2,'a'),[0,-3])
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 10 over Finite␣
→˓Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + 10 over Finite␣
→˓Field in a of size 13^2, Isogeny of degree 7 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 10 over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^
→˓3 + 10 over Finite Field in a of size 13^2]

Now some examples of 7-isogenies which are not endomorphisms:

sage: K = GF(101)
sage: E = EllipticCurve(K, [0,1])
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field␣
→˓of size 101 to Elliptic Curve defined by y^2 = x^3 + 55*x + 100 over Finite Field␣
→˓of size 101, Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1␣
→˓over Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3 + 83*x + 26␣
→˓over Finite Field of size 101]

Examples over a number field:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_0
sage: E = EllipticCurve('27a1').change_ring(QuadraticField(-3,'r'))
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + (-7) over␣
→˓Number Field in r with defining polynomial x^2 + 3 with r = 1.732050807568878?*I␣
→˓to Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r with␣
→˓defining polynomial x^2 + 3 with r = 1.732050807568878?*I,
Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + (-7) over␣
→˓Number Field in r with defining polynomial x^2 + 3 with r = 1.732050807568878?*I␣
→˓to Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r with␣
→˓defining polynomial x^2 + 3 with r = 1.732050807568878?*I]

sage: K.<a> = NumberField(x^6 + 1512*x^3 - 21168)
sage: E = EllipticCurve(K, [0,1])
sage: isogs = isogenies_7_0(E)
sage: [phi.codomain().a_invariants() for phi in isogs]
[(0,
0,
0,
-415/98*a^5 - 675/14*a^4 + 2255/7*a^3 - 74700/7*a^2 - 25110*a - 66420,
-141163/56*a^5 + 1443453/112*a^4 - 374275/2*a^3 - 3500211/2*a^2 - 17871975/4*a -␣

→˓7710065),
(0,
0,
0,
-24485/392*a^5 - 1080/7*a^4 - 2255/7*a^3 - 1340865/14*a^2 - 230040*a - 553500,
1753037/56*a^5 + 8345733/112*a^4 + 374275/2*a^3 + 95377029/2*a^2 + 458385345/4*a␣

→˓+ 275241835)]
(continues on next page)

214 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

sage: [phi.codomain().j_invariant() for phi in isogs]
[158428486656000/7*a^3 - 313976217600000,
-158428486656000/7*a^3 - 34534529335296000]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_7_1728(E, minimal_models=True)
Return list of all 7-isogenies from E when the j-invariant is 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 7-isogenies with codomain E. In general these are normalised; but over Q or a number field, the codomain
is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3, or 7.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(7).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_1728
sage: E = EllipticCurve(GF(47), [1, 0])
sage: isogenies_7_1728(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field␣
→˓of size 47 to Elliptic Curve defined by y^2 = x^3 + 26 over Finite Field of size␣
→˓47,
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field␣
→˓of size 47 to Elliptic Curve defined by y^2 = x^3 + 21 over Finite Field of size␣
→˓47]

An example in characteristic 53 (for which an earlier implementation did not work):

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_1728
sage: E = EllipticCurve(GF(53), [1, 0])
sage: isogenies_7_1728(E)
[]
sage: E = EllipticCurve(GF(53^2,'a'), [1, 0])
sage: [iso.codomain().ainvs() for iso in isogenies_7_1728(E)]
[(0, 0, 0, 36, 19*a + 15), (0, 0, 0, 36, 34*a + 38), (0, 0, 0, 33, 39*a + 28), (0,␣
→˓0, 0, 33, 14*a + 25), (0, 0, 0, 19, 45*a + 16), (0, 0, 0, 19, 8*a + 37), (0, 0, 0,
→˓ 3, 45*a + 16), (0, 0, 0, 3, 8*a + 37)]

sage: K.<a> = NumberField(x^8 + 84*x^6 - 1890*x^4 + 644*x^2 - 567)
sage: E = EllipticCurve(K, [1, 0])
sage: isogs = isogenies_7_1728(E)
sage: [phi.codomain().j_invariant() for phi in isogs]
[-526110256146528/53*a^6 + 183649373229024*a^4 - 3333881559996576/53*a^2 +␣

(continues on next page)

215

Elliptic curves, Release 9.8

(continued from previous page)

→˓2910267397643616/53,
-526110256146528/53*a^6 + 183649373229024*a^4 - 3333881559996576/53*a^2 +␣
→˓2910267397643616/53]
sage: E1 = isogs[0].codomain()
sage: E2 = isogs[1].codomain()
sage: E1.is_isomorphic(E2)
False
sage: E1.is_quadratic_twist(E2)
-1

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree(E, l, mini-
mal_models=True)

Return all separable l-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – a prime.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False. Ignored except
over number fields other than 𝑄𝑄.

OUTPUT:

A list of all separable isogenies of degree 𝑙 with domain E.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree
sage: E = EllipticCurve_from_j(GF(2^6,'a')(1))
sage: isogenies_prime_degree(E, 7)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Finite␣
→˓Field in a of size 2^6 to Elliptic Curve defined by y^2 + x*y = x^3 + x over␣
→˓Finite Field in a of size 2^6]
sage: E = EllipticCurve_from_j(GF(3^12,'a')(2))
sage: isogenies_prime_degree(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2 over␣
→˓Finite Field in a of size 3^12 to Elliptic Curve defined by y^2 = x^3 + 2*x^2 +␣
→˓2*x over Finite Field in a of size 3^12, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 2*x^2 + 2 over Finite Field in a of size 3^12 to Elliptic␣
→˓Curve defined by y^2 = x^3 + 2*x^2 + x + 2 over Finite Field in a of size 3^12]
sage: E = EllipticCurve('50a1')
sage: isogenies_prime_degree(E, 3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2␣
→˓over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x -␣
→˓552 over Rational Field]
sage: isogenies_prime_degree(E, 5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2␣
→˓over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298␣
→˓over Rational Field]
sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree(E, 19)

(continues on next page)

216 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x +␣
→˓212325489 over Rational Field]
sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: isogenies_prime_degree(E, 37)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x +␣
→˓211072 over Rational Field to Elliptic Curve defined by y^2 = x^3 - x^2 -␣
→˓163137088*x - 801950801728 over Rational Field]

Isogenies of degree equal to the characteristic are computed (but only the separable isogeny). In the following
example we consider an elliptic curve which is supersingular in characteristic 2 only:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree
sage: ainvs = (0,1,1,-1,-1)
sage: for l in prime_range(50):
....: E = EllipticCurve(GF(l),ainvs)
....: isogenies_prime_degree(E,l)
[]
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2␣
→˓over Finite Field of size 3 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x␣
→˓over Finite Field of size 3]
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4␣
→˓over Finite Field of size 5 to Elliptic Curve defined by y^2 + y = x^3 + x^2 +␣
→˓4*x + 4 over Finite Field of size 5]
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 6*x + 6␣
→˓over Finite Field of size 7 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4␣
→˓over Finite Field of size 7]
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x +␣
→˓10 over Finite Field of size 11 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ x + 1 over Finite Field of size 11]
[Isogeny of degree 13 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x +␣
→˓12 over Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 12*x + 12 over Finite Field of size 13]
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x +␣
→˓16 over Finite Field of size 17 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 15 over Finite Field of size 17]
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 18*x +␣
→˓18 over Finite Field of size 19 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 3*x + 12 over Finite Field of size 19]
[Isogeny of degree 23 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x +␣
→˓22 over Finite Field of size 23 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 22*x + 22 over Finite Field of size 23]
[Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 28*x +␣
→˓28 over Finite Field of size 29 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 7*x + 27 over Finite Field of size 29]
[Isogeny of degree 31 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 30*x +␣
→˓30 over Finite Field of size 31 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 15*x + 16 over Finite Field of size 31]
[Isogeny of degree 37 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 36*x +␣
→˓36 over Finite Field of size 37 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 16*x + 17 over Finite Field of size 37]

(continues on next page)

217

Elliptic curves, Release 9.8

(continued from previous page)

[Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 40*x +␣
→˓40 over Finite Field of size 41 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 33*x + 16 over Finite Field of size 41]
[Isogeny of degree 43 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 42*x +␣
→˓42 over Finite Field of size 43 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 36 over Finite Field of size 43]
[Isogeny of degree 47 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 46*x +␣
→˓46 over Finite Field of size 47 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 42*x + 34 over Finite Field of size 47]

Note that the computation is faster for degrees equal to one of the genus 0 primes (2, 3, 5, 7, 13) or one of the
hyperelliptic primes (11, 17, 19, 23, 29, 31, 41, 47, 59, 71) than when the generic code must be used:

sage: E = EllipticCurve(GF(101), [-3440, 77658])
sage: E.isogenies_prime_degree(71) # fast
[]
sage: E.isogenies_prime_degree(73) # long time (2s)
[]

Test that trac ticket #32269 is fixed:

sage: K = QuadraticField(-11)
sage: E = EllipticCurve(K, [0,1,0,-117,-541])
sage: E.isogenies_prime_degree(37) # long time (9s)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 + x^2 + (-117)*x + (-
→˓541) over Number Field in a with defining polynomial x^2 + 11 with a = 3.
→˓316624790355400?*I to Elliptic Curve defined by y^2 = x^3 + x^2 +␣
→˓(30800*a+123963)*x + (3931312*a-21805005) over Number Field in a with defining␣
→˓polynomial x^2 + 11 with a = 3.316624790355400?*I,
Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 + x^2 + (-117)*x + (-
→˓541) over Number Field in a with defining polynomial x^2 + 11 with a = 3.
→˓316624790355400?*I to Elliptic Curve defined by y^2 = x^3 + x^2 + (-
→˓30800*a+123963)*x + (-3931312*a-21805005) over Number Field in a with defining␣
→˓polynomial x^2 + 11 with a = 3.316624790355400?*I]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_general(E, l, mini-
mal_models=True)

Return all separable l-isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – a prime.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

A list of all separable isogenies of degree 𝑙 with domain E.

ALGORITHM:

This algorithm factors the l-division polynomial, then combines its factors to obtain kernels. See [KT2013],
Chapter 3.

218 Chapter 15. Isogenies of small prime degree

https://trac.sagemath.org/32269

Elliptic curves, Release 9.8

Note: This function works for any prime 𝑙. Normally one should use the function
isogenies_prime_degree() which uses special functions for certain small primes.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree_general
sage: E = EllipticCurve_from_j(GF(2^6,'a')(1))
sage: isogenies_prime_degree_general(E, 7)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Finite␣
→˓Field in a of size 2^6 to Elliptic Curve defined by y^2 + x*y = x^3 + x over␣
→˓Finite Field in a of size 2^6]
sage: E = EllipticCurve_from_j(GF(3^12,'a')(2))
sage: isogenies_prime_degree_general(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2 over␣
→˓Finite Field in a of size 3^12 to Elliptic Curve defined by y^2 = x^3 + 2*x^2 +␣
→˓2*x over Finite Field in a of size 3^12, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 2*x^2 + 2 over Finite Field in a of size 3^12 to Elliptic␣
→˓Curve defined by y^2 = x^3 + 2*x^2 + x + 2 over Finite Field in a of size 3^12]
sage: E = EllipticCurve('50a1')
sage: isogenies_prime_degree_general(E, 3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2␣
→˓over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x -␣
→˓552 over Rational Field]
sage: isogenies_prime_degree_general(E, 5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2␣
→˓over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298␣
→˓over Rational Field]
sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree_general(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x +␣
→˓212325489 over Rational Field]
sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: isogenies_prime_degree_general(E, 37) # long time (2s)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x +␣
→˓211072 over Rational Field to Elliptic Curve defined by y^2 = x^3 - x^2 -␣
→˓163137088*x - 801950801728 over Rational Field]

sage: E = EllipticCurve([-3440, 77658])
sage: isogenies_prime_degree_general(E, 43) # long time (2s)
[Isogeny of degree 43 from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658␣
→˓over Rational Field to Elliptic Curve defined by y^2 = x^3 - 6360560*x -␣
→˓6174354606 over Rational Field]

Isogenies of degree equal to the characteristic are computed (but only the separable isogeny). In the following
example we consider an elliptic curve which is supersingular in characteristic 2 only:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree_general
sage: ainvs = (0,1,1,-1,-1)
sage: for l in prime_range(50):

(continues on next page)

219

Elliptic curves, Release 9.8

(continued from previous page)

....: E = EllipticCurve(GF(l),ainvs)

....: isogenies_prime_degree_general(E,l)
[]
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2␣
→˓over Finite Field of size 3 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x␣
→˓over Finite Field of size 3]
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4␣
→˓over Finite Field of size 5 to Elliptic Curve defined by y^2 + y = x^3 + x^2 +␣
→˓4*x + 4 over Finite Field of size 5]
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 6*x + 6␣
→˓over Finite Field of size 7 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4␣
→˓over Finite Field of size 7]
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x +␣
→˓10 over Finite Field of size 11 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ x + 1 over Finite Field of size 11]
[Isogeny of degree 13 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x +␣
→˓12 over Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 12*x + 12 over Finite Field of size 13]
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x +␣
→˓16 over Finite Field of size 17 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 15 over Finite Field of size 17]
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 18*x +␣
→˓18 over Finite Field of size 19 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 3*x + 12 over Finite Field of size 19]
[Isogeny of degree 23 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x +␣
→˓22 over Finite Field of size 23 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 22*x + 22 over Finite Field of size 23]
[Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 28*x +␣
→˓28 over Finite Field of size 29 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 7*x + 27 over Finite Field of size 29]
[Isogeny of degree 31 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 30*x +␣
→˓30 over Finite Field of size 31 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 15*x + 16 over Finite Field of size 31]
[Isogeny of degree 37 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 36*x +␣
→˓36 over Finite Field of size 37 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 16*x + 17 over Finite Field of size 37]
[Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 40*x +␣
→˓40 over Finite Field of size 41 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 33*x + 16 over Finite Field of size 41]
[Isogeny of degree 43 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 42*x +␣
→˓42 over Finite Field of size 43 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 36 over Finite Field of size 43]
[Isogeny of degree 47 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 46*x +␣
→˓46 over Finite Field of size 47 to Elliptic Curve defined by y^2 + y = x^3 + x^2␣
→˓+ 42*x + 34 over Finite Field of size 47]

Note that not all factors of degree (l-1)/2 of the l-division polynomial are kernel polynomials. In this example,
the 13-division polynomial factors as a product of 14 irreducible factors of degree 6 each, but only two those are
kernel polynomials:

sage: F3 = GF(3)
sage: E = EllipticCurve(F3,[0,0,0,-1,0])

(continues on next page)

220 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

sage: Psi13 = E.division_polynomial(13)
sage: len([f for f,e in Psi13.factor() if f.degree()==6])
14
sage: len(E.isogenies_prime_degree(13))
2

Over GF(9) the other factors of degree 6 split into pairs of cubics which can be rearranged to give the remaining
12 kernel polynomials:

sage: len(E.change_ring(GF(3^2,'a')).isogenies_prime_degree(13))
14

See trac ticket #18589: the following example took 20s before, now only 4s:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,0,1,0])
sage: [phi.codomain().ainvs() for phi in E.isogenies_prime_degree(37)] # long time␣
→˓(6s)
[(0, 0, 0, -840*i + 1081, 0), (0, 0, 0, 840*i + 1081, 0)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_0(E, l=None,
mini-
mal_models=True)

Return list of l -isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – either None or 2, 3, 5, 7, or 13.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) When l is None a list of all isogenies of degree 2, 3, 5, 7 and 13, otherwise a list of isogenies of the given
degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which auto-
matically calls the appropriate function.

ALGORITHM:

Cremona and Watkins [CW2005]. See also [KT2013], Chapter 4.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree_genus_0
sage: E = EllipticCurve([0,12])
sage: isogenies_prime_degree_genus_0(E, 5)
[]

sage: E = EllipticCurve('1450c1')
(continues on next page)

221

https://trac.sagemath.org/18589

Elliptic curves, Release 9.8

(continued from previous page)

sage: isogenies_prime_degree_genus_0(E)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 300*x -␣
→˓1000 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 -␣
→˓5950*x - 182250 over Rational Field]

sage: E = EllipticCurve('50a1')
sage: isogenies_prime_degree_genus_0(E)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2␣
→˓over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x -␣
→˓552 over Rational Field,
Isogeny of degree 5 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over␣
→˓Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298 over␣
→˓Rational Field]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0(E,
l=None,
min-
i-
mal_models=True)

Return list of l -isogenies with domain E.

INPUT:

• E – an elliptic curve.

• l – either None or 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) When l is None a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71, otherwise a list of
isogenies of the given degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which auto-
matically calls the appropriate function.

ALGORITHM:

See [KT2013], Chapter 5.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree_genus_plus_0

sage: E = EllipticCurve('121a1')
sage: isogenies_prime_degree_genus_plus_0(E, 11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 -␣
→˓30*x - 76 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 +␣
→˓x^2 - 305*x + 7888 over Rational Field]

sage: E = EllipticCurve([1, 1, 0, -660, -7600])
sage: isogenies_prime_degree_genus_plus_0(E, 17)

(continues on next page)

222 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

[Isogeny of degree 17 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x -
→˓ 7600 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 -␣
→˓878710*x + 316677750 over Rational Field]

sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree_genus_plus_0(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x +␣
→˓212325489 over Rational Field]

sage: K = QuadraticField(-295,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(-484650135/16777216*a + 4549855725/16777216)
sage: isogenies_prime_degree_genus_plus_0(E, 23)
[Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + (-
→˓14460494784192904095/140737488355328*a+270742665778826768325/140737488355328)*x +␣
→˓(37035998788154488846811217135/590295810358705651712*a-
→˓1447451882571839266752561148725/590295810358705651712) over Number Field in a␣
→˓with defining polynomial x^2 + 295 with a = 17.17556403731767?*I to Elliptic␣
→˓Curve defined by y^2 = x^3 + (-5130542435555445498495/
→˓140737488355328*a+173233955029127361005925/140737488355328)*x + (-
→˓1104699335561165691575396879260545/
→˓590295810358705651712*a+3169785826904210171629535101419675/590295810358705651712)␣
→˓over Number Field in a with defining polynomial x^2 + 295 with a = 17.
→˓17556403731767?*I]

sage: K = QuadraticField(-199,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(94743000*a + 269989875)
sage: isogenies_prime_degree_genus_plus_0(E, 29)
[Isogeny of degree 29 from Elliptic Curve defined by y^2 = x^3 + (-
→˓153477413215038000*a+5140130723072965125)*x +␣
→˓(297036215130547008455526000*a+2854277047164317800973582250) over Number Field in␣
→˓a with defining polynomial x^2 + 199 with a = 14.106735979665884?*I to Elliptic␣
→˓Curve defined by y^2 = x^3 + (251336161378040805000*a-3071093219933084341875)*x +␣
→˓(-8411064283162168580187643221000*a+34804337770798389546017184785250) over Number␣
→˓Field in a with defining polynomial x^2 + 199 with a = 14.106735979665884?*I]

sage: K = QuadraticField(253,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(208438034112000*a - 3315409892960000)
sage: isogenies_prime_degree_genus_plus_0(E, 31)
[Isogeny of degree 31 from Elliptic Curve defined by y^2 = x^3 +␣
→˓(4146345122185433034677956608000*a-65951656549965037259634800640000)*x + (-
→˓18329111516954473474583425393698245080252416000*a+291542366110383928366510368064204147260129280000)␣
→˓over Number Field in a with defining polynomial x^2 - 253 with a = 15.
→˓905973720586867? to Elliptic Curve defined by y^2 = x^3 +␣
→˓(200339763852548615776123686912000*a-3186599019027216904280948275200000)*x +␣
→˓(7443671791411479629112717260182286294850207744000*a-
→˓118398847898864757209685951728838895495168655360000) over Number Field in a with␣
→˓defining polynomial x^2 - 253 with a = 15.905973720586867?]

(continues on next page)

223

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve_from_j(GF(5)(1))
sage: isogenies_prime_degree_genus_plus_0(E, 41)
[Isogeny of degree 41 from Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite␣
→˓Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 3 over Finite Field␣
→˓of size 5, Isogeny of degree 41 from Elliptic Curve defined by y^2 = x^3 + x + 2␣
→˓over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 3 over␣
→˓Finite Field of size 5]

sage: K = QuadraticField(5,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(184068066743177379840*a - 411588709724712960000)
sage: isogenies_prime_degree_genus_plus_0(E, 47) # long time (2s)
[Isogeny of degree 47 from Elliptic Curve defined by y^2 = x^3 +␣
→˓(454562028554080355857852049849975895490560*a-
→˓1016431595837124114668689286176511361024000)*x + (-
→˓249456798429896080881440540950393713303830363999480904280965120*a+557802358738710443451273320227578156598454035482869042774016000)␣
→˓over Number Field in a with defining polynomial x^2 - 5 with a = 2.
→˓236067977499790? to Elliptic Curve defined by y^2 = x^3 +␣
→˓(39533118442361013730577638493616965245992960*a-
→˓88398740199669828340617478832005245173760000)*x +␣
→˓(214030321479466610282320528611562368963830105830555363061803253760*a-
→˓478586348074220699687616322532666163722004497458452316582576128000) over Number␣
→˓Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790?]

sage: K = QuadraticField(-66827,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(-98669236224000*a + 4401720074240000)
sage: isogenies_prime_degree_genus_plus_0(E, 59) # long time (5s)
[Isogeny of degree 59 from Elliptic Curve defined by y^2 = x^3 +␣
→˓(2605886146782144762297974784000*a+1893681048912773634944634716160000)*x + (-
→˓116918454256410782232296183198067568744071168000*a+17012043538294664027185882358514011304812871680000)␣
→˓over Number Field in a with defining polynomial x^2 + 66827 with a = 258.
→˓5091874576221?*I to Elliptic Curve defined by y^2 = x^3 + (-
→˓19387084027159786821400775098368000*a-4882059104868154225052787156713472000)*x +␣
→˓(-25659862010101415428713331477227179429538847260672000*a-
→˓2596038148441293485938798119003462972840818381946880000) over Number Field in a␣
→˓with defining polynomial x^2 + 66827 with a = 258.5091874576221?*I]

sage: E = EllipticCurve_from_j(GF(13)(5))
sage: isogenies_prime_degree_genus_plus_0(E, 71)
[Isogeny of degree 71 from Elliptic Curve defined by y^2 = x^3 + x + 4 over Finite␣
→˓Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 10*x + 7 over Finite␣
→˓Field of size 13, Isogeny of degree 71 from Elliptic Curve defined by y^2 = x^3 +␣
→˓x + 4 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 10*x␣
→˓+ 7 over Finite Field of size 13]

sage: E = EllipticCurve(GF(13),[0,1,1,1,0])
sage: isogenies_prime_degree_genus_plus_0(E)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x +␣
→˓1 over Finite Field of size 13,
Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over␣

(continues on next page)

224 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

→˓Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x +␣
→˓4 over Finite Field of size 13,
Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x +␣
→˓6 over Finite Field of size 13,
Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x +␣
→˓6 over Finite Field of size 13,
Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x +␣
→˓4 over Finite Field of size 13,
Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over␣
→˓Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x +␣
→˓6 over Finite Field of size 13]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0_j0(E,
l,
min-
i-
mal_models=True)

Return a list of hyperelliptic l -isogenies with domain E when 𝑗(𝐸) = 0.

INPUT:

• E – an elliptic curve with j-invariant 0.

• l – 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

Note: This implementation requires that the characteristic is not 2, 3 or l.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree_genus_plus_0_j0

sage: u = polygen(QQ)
sage: K.<a> = NumberField(u^4+228*u^3+486*u^2-540*u+225)
sage: E = EllipticCurve(K,[0,-121/5*a^3-20691/5*a^2-29403/5*a+3267])
sage: isogenies_prime_degree_genus_plus_0_j0(E,11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + (-121/5*a^3-20691/
→˓5*a^2-29403/5*a+3267) over Number Field in a with defining polynomial x^4 + 228*x^
→˓3 + 486*x^2 - 540*x + 225 to Elliptic Curve defined by y^2 = x^3 + (-44286*a^
→˓2+178596*a-32670)*x + (-17863351/5*a^3+125072739/5*a^2-74353653/5*a-682803) over␣

(continues on next page)

225

Elliptic curves, Release 9.8

(continued from previous page)

→˓Number Field in a with defining polynomial x^4 + 228*x^3 + 486*x^2 - 540*x + 225,␣
→˓Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + (-121/5*a^3-20691/
→˓5*a^2-29403/5*a+3267) over Number Field in a with defining polynomial x^4 + 228*x^
→˓3 + 486*x^2 - 540*x + 225 to Elliptic Curve defined by y^2 = x^3 + (-3267*a^3-
→˓740157*a^2+600039*a-277695)*x + (-17863351/5*a^3-4171554981/5*a^2+3769467867/5*a-
→˓272366523) over Number Field in a with defining polynomial x^4 + 228*x^3 + 486*x^
→˓2 - 540*x + 225]

sage: E = EllipticCurve(GF(5^6,'a'),[0,1])
sage: isogenies_prime_degree_genus_plus_0_j0(E,17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3␣
→˓+ 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17␣
→˓from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6␣
→˓to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6,␣
→˓Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3␣
→˓+ 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17␣
→˓from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6␣
→˓to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6,␣
→˓Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3␣
→˓+ 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17␣
→˓from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6␣
→˓to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6,␣
→˓Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3␣
→˓+ 2 over Finite Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve␣
→˓defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve␣
→˓defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6, Isogeny of degree 17␣
→˓from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 5^6␣
→˓to Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field in a of size 5^6,␣
→˓Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite␣
→˓Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3 + 2 over Finite␣
→˓Field in a of size 5^6, Isogeny of degree 17 from Elliptic Curve defined by y^2 =␣
→˓x^3 + 1 over Finite Field in a of size 5^6 to Elliptic Curve defined by y^2 = x^3␣
→˓+ 2 over Finite Field in a of size 5^6]

226 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0_j1728(E,
l,
min-
i-
mal_models=True)

Return a list of l -isogenies with domain E when 𝑗(𝐸) = 1728.

INPUT:

• E – an elliptic curve with j-invariant 1728.

• l – 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal
models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

Note: This implementation requires that the characteristic is not 2, 3 or l.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_
→˓degree_genus_plus_0_j1728

sage: u = polygen(QQ)
sage: K.<a> = NumberField(u^6 - 522*u^5 - 10017*u^4 + 2484*u^3 - 5265*u^2 + 12150*u␣
→˓- 5103)
sage: E = EllipticCurve(K,[-75295/1335852*a^5+13066735/445284*a^4+44903485/74214*a^
→˓3+17086861/24738*a^2+11373021/16492*a-1246245/2356,0])
sage: isogenies_prime_degree_genus_plus_0_j1728(E,11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + (-75295/1335852*a^
→˓5+13066735/445284*a^4+44903485/74214*a^3+17086861/24738*a^2+11373021/16492*a-
→˓1246245/2356)*x over Number Field in a with defining polynomial x^6 - 522*x^5 -␣
→˓10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103 to Elliptic Curve defined by y^2␣
→˓= x^3 + (9110695/1335852*a^5-1581074935/445284*a^4-5433321685/74214*a^3-
→˓3163057249/24738*a^2+1569269691/16492*a+73825125/2356)*x + (-3540460*a^
→˓3+30522492*a^2-7043652*a-5031180) over Number Field in a with defining polynomial␣
→˓x^6 - 522*x^5 - 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103, Isogeny of␣
→˓degree 11 from Elliptic Curve defined by y^2 = x^3 + (-75295/1335852*a^5+13066735/
→˓445284*a^4+44903485/74214*a^3+17086861/24738*a^2+11373021/16492*a-1246245/2356)*x␣
→˓over Number Field in a with defining polynomial x^6 - 522*x^5 - 10017*x^4 +␣
→˓2484*x^3 - 5265*x^2 + 12150*x - 5103 to Elliptic Curve defined by y^2 = x^3 +␣
→˓(9110695/1335852*a^5-1581074935/445284*a^4-5433321685/74214*a^3-3163057249/
→˓24738*a^2+1569269691/16492*a+73825125/2356)*x + (3540460*a^3-30522492*a^
→˓2+7043652*a+5031180) over Number Field in a with defining polynomial x^6 - 522*x^
→˓5 - 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103]
sage: i = QuadraticField(-1,'i').gen()
sage: E = EllipticCurve([-1-2*i,0])

(continues on next page)

227

Elliptic curves, Release 9.8

(continued from previous page)

sage: isogenies_prime_degree_genus_plus_0_j1728(E,17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + (-2*i-1)*x over␣
→˓Number Field in i with defining polynomial x^2 + 1 with i = 1*I to Elliptic Curve␣
→˓defined by y^2 = x^3 + (-82*i-641)*x over Number Field in i with defining␣
→˓polynomial x^2 + 1 with i = 1*I,
Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + (-2*i-1)*x over␣
→˓Number Field in i with defining polynomial x^2 + 1 with i = 1*I to Elliptic Curve␣
→˓defined by y^2 = x^3 + (-562*i+319)*x over Number Field in i with defining␣
→˓polynomial x^2 + 1 with i = 1*I]
sage: Emin = E.global_minimal_model()
sage: [(p,len(isogenies_prime_degree_genus_plus_0_j1728(Emin,p))) for p in [17, 29,␣
→˓41]]
[(17, 2), (29, 2), (41, 2)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_sporadic_Q(E, l=None,
minimal_models=True)

Return a list of sporadic l-isogenies from E (l = 11, 17, 19, 37, 43, 67 or 163). Only for elliptic curves over Q.

INPUT:

• E – an elliptic curve defined over Q.

• l – either None or a prime number.

OUTPUT:

(list) If l is None, a list of all isogenies with domain E and of degree 11, 17, 19, 37, 43, 67 or 163; otherwise a
list of isogenies of the given degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which auto-
matically calls the appropriate function.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_
→˓sporadic_Q
sage: E = EllipticCurve('121a1')
sage: isogenies_sporadic_Q(E, 11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 -␣
→˓30*x - 76 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 +␣
→˓x^2 - 305*x + 7888 over Rational Field]
sage: isogenies_sporadic_Q(E, 13)
[]
sage: isogenies_sporadic_Q(E, 17)
[]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 -␣
→˓30*x - 76 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 +␣
→˓x^2 - 305*x + 7888 over Rational Field]

sage: E = EllipticCurve([1, 1, 0, -660, -7600])
sage: isogenies_sporadic_Q(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x -

(continues on next page)

228 Chapter 15. Isogenies of small prime degree

Elliptic curves, Release 9.8

(continued from previous page)

→˓ 7600 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 -␣
→˓878710*x + 316677750 over Rational Field]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x -
→˓ 7600 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 -␣
→˓878710*x + 316677750 over Rational Field]
sage: isogenies_sporadic_Q(E, 11)
[]

sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_sporadic_Q(E, 11)
[]
sage: isogenies_sporadic_Q(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x +␣
→˓212325489 over Rational Field]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956␣
→˓over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x +␣
→˓212325489 over Rational Field]

sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: E.conductor()
19600
sage: isogenies_sporadic_Q(E,37)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x +␣
→˓211072 over Rational Field to Elliptic Curve defined by y^2 = x^3 - x^2 -␣
→˓163137088*x - 801950801728 over Rational Field]

sage: E = EllipticCurve([1, 1, 0, -25178045, 48616918750])
sage: E.conductor()
148225
sage: isogenies_sporadic_Q(E,37)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 -␣
→˓25178045*x + 48616918750 over Rational Field to Elliptic Curve defined by y^2 +␣
→˓x*y = x^3 + x^2 - 970*x - 13075 over Rational Field]

sage: E = EllipticCurve([-3440, 77658])
sage: E.conductor()
118336
sage: isogenies_sporadic_Q(E,43)
[Isogeny of degree 43 from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658␣
→˓over Rational Field to Elliptic Curve defined by y^2 = x^3 - 6360560*x -␣
→˓6174354606 over Rational Field]

sage: E = EllipticCurve([-29480, -1948226])
sage: E.conductor()
287296
sage: isogenies_sporadic_Q(E,67)
[Isogeny of degree 67 from Elliptic Curve defined by y^2 = x^3 - 29480*x - 1948226␣
→˓over Rational Field to Elliptic Curve defined by y^2 = x^3 - 132335720*x +␣
→˓585954296438 over Rational Field]

(continues on next page)

229

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve([-34790720, -78984748304])
sage: E.conductor()
425104
sage: isogenies_sporadic_Q(E,163)
[Isogeny of degree 163 from Elliptic Curve defined by y^2 = x^3 - 34790720*x -␣
→˓78984748304 over Rational Field to Elliptic Curve defined by y^2 = x^3 -␣
→˓924354639680*x + 342062961763303088 over Rational Field]

230 Chapter 15. Isogenies of small prime degree

CHAPTER

SIXTEEN

ELLIPTIC CURVES OVER NUMBER FIELDS

16.1 Elliptic curves over the rational numbers

AUTHORS:

• William Stein (2005): first version

• William Stein (2006-02-26): fixed Lseries_extended which didn’t work because of changes elsewhere in Sage.

• David Harvey (2006-09): Added padic_E2, padic_sigma, padic_height, padic_regulator methods.

• David Harvey (2007-02): reworked padic-height related code

• Christian Wuthrich (2007): added padic sha computation

• David Roe (2007-09): moved sha, l-series and p-adic functionality to separate files.

• John Cremona (2008-01)

• Tobias Nagel and Michael Mardaus (2008-07): added integral_points

• John Cremona (2008-07): further work on integral_points

• Christian Wuthrich (2010-01): moved Galois reps and modular parametrization in a separate file

• Simon Spicer (2013-03): Added code for modular degrees and congruence numbers of higher level

• Simon Spicer (2014-08): Added new analytic rank computation functionality

class sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field(ainvs,
**kwds)

Bases: EllipticCurve_number_field

Elliptic curve over the Rational Field.

INPUT:

• ainvs – a list or tuple [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of Weierstrass coefficients

Note: This class should not be called directly; use sage.constructor.EllipticCurve to construct elliptic
curves.

EXAMPLES:

Construction from Weierstrass coefficients (𝑎-invariants), long form:

231

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1,2,3,4,5]); E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational␣
→˓Field

Construction from Weierstrass coefficients (𝑎-invariants), short form (sets 𝑎1 = 𝑎2 = 𝑎3 = 0):

sage: EllipticCurve([4,5]).ainvs()
(0, 0, 0, 4, 5)

Constructor from a Cremona label:

sage: EllipticCurve('389a1')
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

Constructor from an LMFDB label:

sage: EllipticCurve('462.f3')
Elliptic Curve defined by y^2 + x*y = x^3 - 363*x + 1305 over Rational Field

CPS_height_bound()

Return the Cremona-Prickett-Siksek height bound. This is a floating point number B such that if P is a
rational point on the curve, then ℎ(𝑃) ≤ ℎ̂(𝑃) +𝐵, where ℎ(𝑃) is the naive logarithmic height of 𝑃 and
ℎ̂(𝑃) is the canonical height.

See also:
silverman_height_bound() for a bound that also works for points over number fields.

EXAMPLES:

sage: E = EllipticCurve("11a")
sage: E.CPS_height_bound()
2.8774743273580445
sage: E = EllipticCurve("5077a")
sage: E.CPS_height_bound()
0.0
sage: E = EllipticCurve([1,2,3,4,1])
sage: E.CPS_height_bound()
Traceback (most recent call last):
...
RuntimeError: curve must be minimal.
sage: F = E.quadratic_twist(-19)
sage: F
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 1376*x - 130 over␣
→˓Rational Field
sage: F.CPS_height_bound()
0.6555158376972852

IMPLEMENTATION:

Call the corresponding mwrank C++ library function. Note that the formula in the [CPS2006] paper is
given for number fields. It is only the implementation in Sage that restricts to the rational field.

Lambda(s, prec)
Return the value of the Lambda-series of the elliptic curve 𝐸 at s, where s can be any complex number.

IMPLEMENTATION:

232 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Fairly slow computation using the definitions implemented in Python.

Uses prec terms of the power series.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: E.Lambda(1.4+0.5*I, 50)
-0.354172680517... + 0.874518681720...*I

Np(p)
The number of points on 𝐸 modulo 𝑝.

INPUT:

• p (int) – a prime, not necessarily of good reduction

OUTPUT:

(int) The number ofpoints on the reduction of 𝐸 modulo 𝑝 (including the singular point when 𝑝 is a prime
of bad reduction).

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.Np(2)
5
sage: E.Np(3)
5
sage: E.conductor()
11
sage: E.Np(11)
11

This even works when the prime is large:

sage: E = EllipticCurve('37a')
sage: E.Np(next_prime(10^30))
1000000000000001426441464441649

S_integral_points(S, mw_base='auto', both_signs=False, verbose=False, proof=None)
Compute all S-integral points (up to sign) on this elliptic curve.

INPUT:

• S – list of primes

• mw_base – (default: 'auto' - calls gens()) list of EllipticCurvePoint generating the Mordell-Weil
group of 𝐸

• both_signs – boolean (default: False); if True the output contains both 𝑃 and −𝑃 , otherwise only
one of each pair

• verbose – boolean (default: False); if True, some details of the computation are output

• proof – boolean (default: True); if True ALL S-integral points will be returned. If False, the
MW basis will be computed with the proof=False flag, and also the time-consuming final call to
S_integral_x_coords_with_abs_bounded_by(abs_bound) is omitted. Use this only if the computation
takes too long, but be warned that then it cannot be guaranteed that all S-integral points will be found.

16.1. Elliptic curves over the rational numbers 233

Elliptic curves, Release 9.8

OUTPUT:

A sorted list of all the S-integral points on E (up to sign unless both_signs is True)

Note: The complexity increases exponentially in the rank of curve E and in the length of S. The compu-
tation time (but not the output!) depends on the Mordell-Weil basis. If mw_base is given but is not a basis
for the Mordell-Weil group (modulo torsion), S-integral points which are not in the subgroup generated by
the given points will almost certainly not be listed.

EXAMPLES:

A curve of rank 3 with no torsion points:

sage: E = EllipticCurve([0,0,1,-7,6])
sage: P1 = E.point((2,0))
sage: P2 = E.point((-1,3))
sage: P3 = E.point((4,6))
sage: a = E.S_integral_points(S=[2,3], mw_base=[P1,P2,P3], verbose=True);a
max_S: 3 len_S: 3 len_tors: 1
lambda 0.485997517468...
k1,k2,k3,k4 7.65200453902598e234 1.31952866480763 3.54035317966420e9 2.
→˓42767548272846e17
p= 2 : trying with p_prec = 30
mw_base_p_log_val = [2, 2, 1]
min_psi = 2 + 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^16 + 2^17 +␣
→˓2^19 + 2^20 + 2^21 + 2^23 + 2^24 + 2^28 + O(2^30)
p= 3 : trying with p_prec = 30
mw_base_p_log_val = [1, 2, 1]
min_psi = 3 + 3^2 + 2*3^3 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + 2*3^11 + 2*3^12 + 2*3^
→˓13 + 3^15 + 2*3^16 + 3^18 + 2*3^19 + 2*3^22 + 2*3^23 + 2*3^24 + 2*3^27 + 3^28␣
→˓+ 3^29 + O(3^30)
mw_base [(1 : -1 : 1), (2 : 0 : 1), (0 : -3 : 1)]
mw_base_log [0.667789378224099, 0.552642660712417, 0.818477222895703]
mp [5, 7]
mw_base_p_log [[2^2 + 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^14 + 2^15 + 2^18 + 2^19 +␣
→˓2^24 + 2^29 + O(2^30), 2^2 + 2^3 + 2^5 + 2^6 + 2^9 + 2^11 + 2^12 + 2^14 + 2^
→˓15 + 2^16 + 2^18 + 2^20 + 2^22 + 2^23 + 2^26 + 2^27 + 2^29 + O(2^30), 2 + 2^3␣
→˓+ 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^16 + 2^17 + 2^19 + 2^20 + 2^
→˓21 + 2^23 + 2^24 + 2^28 + O(2^30)], [2*3^2 + 2*3^5 + 2*3^6 + 2*3^7 + 3^8 + 3^
→˓9 + 2*3^10 + 3^12 + 2*3^14 + 3^15 + 3^17 + 2*3^19 + 2*3^23 + 3^25 + 3^28 +␣
→˓O(3^30), 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 2*3^7 + 2*3^8 + 3^10 + 2*3^12␣
→˓+ 3^13 + 2*3^14 + 3^15 + 3^18 + 3^22 + 3^25 + 2*3^26 + 3^27 + 3^28 + O(3^30),␣
→˓3 + 3^2 + 2*3^3 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + 2*3^11 + 2*3^12 + 2*3^13 + 3^15␣
→˓+ 2*3^16 + 3^18 + 2*3^19 + 2*3^22 + 2*3^23 + 2*3^24 + 2*3^27 + 3^28 + 3^29 +␣
→˓O(3^30)]]
k5,k6,k7 0.321154513240... 1.55246328915... 0.161999172489...
initial bound 2.8057927340...e117
bound_list [58, 58, 58]
bound_list [8, 9, 9]
bound_list [9, 7, 7]
starting search of points using coefficient bound 9
x-coords of S-integral points via linear combination of mw_base and torsion:
[-3, -26/9, -8159/2916, -2759/1024, -151/64, -1343/576, -2, -7/4, -1, -47/256,␣

(continues on next page)

234 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

→˓0, 1/4, 4/9, 9/16, 58/81, 7/9, 6169/6561, 1, 17/16, 2, 33/16, 172/81, 9/4, 25/
→˓9, 3, 31/9, 4, 25/4, 1793/256, 8, 625/64, 11, 14, 21, 37, 52, 6142/81, 93,␣
→˓4537/36, 342, 406, 816, 207331217/4096]
starting search of extra S-integer points with absolute value bounded by 3.
→˓89321964979420
x-coords of points with bounded absolute value
[-3, -2, -1, 0, 1, 2]
Total number of S-integral points: 43
[(-3 : 0 : 1), (-26/9 : 28/27 : 1), (-8159/2916 : 233461/157464 : 1), (-2759/
→˓1024 : 60819/32768 : 1), (-151/64 : 1333/512 : 1), (-1343/576 : 36575/13824 :␣
→˓1), (-2 : 3 : 1), (-7/4 : 25/8 : 1), (-1 : 3 : 1), (-47/256 : 9191/4096 : 1),␣
→˓(0 : 2 : 1), (1/4 : 13/8 : 1), (4/9 : 35/27 : 1), (9/16 : 69/64 : 1), (58/81␣
→˓: 559/729 : 1), (7/9 : 17/27 : 1), (6169/6561 : 109871/531441 : 1), (1 : 0 :␣
→˓1), (17/16 : -25/64 : 1), (2 : 0 : 1), (33/16 : 17/64 : 1), (172/81 : 350/729␣
→˓: 1), (9/4 : 7/8 : 1), (25/9 : 64/27 : 1), (3 : 3 : 1), (31/9 : 116/27 : 1),␣
→˓(4 : 6 : 1), (25/4 : 111/8 : 1), (1793/256 : 68991/4096 : 1), (8 : 21 : 1),␣
→˓(625/64 : 14839/512 : 1), (11 : 35 : 1), (14 : 51 : 1), (21 : 95 : 1), (37 :␣
→˓224 : 1), (52 : 374 : 1), (6142/81 : 480700/729 : 1), (93 : 896 : 1), (4537/
→˓36 : 305425/216 : 1), (342 : 6324 : 1), (406 : 8180 : 1), (816 : 23309 : 1),␣
→˓(207331217/4096 : 2985362173625/262144 : 1)]

It is not necessary to specify mw_base; if it is not provided, then the Mordell-Weil basis must be computed,
which may take much longer.

sage: a = E.S_integral_points([2,3])
sage: len(a)
43

An example with negative discriminant:

sage: EllipticCurve('900d1').S_integral_points([17], both_signs=True)
[(-11 : -27 : 1), (-11 : 27 : 1), (-4 : -34 : 1), (-4 : 34 : 1), (4 : -18 : 1),␣
→˓(4 : 18 : 1), (2636/289 : -98786/4913 : 1), (2636/289 : 98786/4913 : 1), (16␣
→˓: -54 : 1), (16 : 54 : 1)]

Output checked with Magma (corrected in 3 cases):

sage: [len(e.S_integral_points([2], both_signs=False)) for e in cremona_
→˓curves([11..100])] # long time (17s on sage.math, 2011)
[2, 0, 2, 3, 3, 1, 3, 1, 3, 5, 3, 5, 4, 1, 1, 2, 2, 2, 3, 1, 2, 1, 0, 1, 3, 3,␣
→˓1, 1, 5, 3, 4, 2, 1, 1, 5, 3, 2, 2, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 1, 3, 7, 1,␣
→˓3, 3, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 3, 1, 1, 1, 0, 1, 3, 3, 1, 1, 7, 1,␣
→˓0, 1, 1, 0, 1, 2, 0, 3, 1, 2, 1, 3, 1, 2, 2, 4, 5, 3, 2, 1, 1, 6, 1, 0, 1, 3,␣
→˓1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 2, 4, 1, 1, 1, 1, 1, 0, 1, 0, 2, 2, 0, 0,␣
→˓1, 0, 1, 1, 6, 1, 0, 1, 1, 0, 4, 3, 1, 2, 1, 2, 3, 1, 1, 1, 1, 8, 3, 1, 2, 1,␣
→˓2, 0, 8, 2, 0, 6, 2, 3, 1, 1, 1, 3, 1, 3, 2, 1, 3, 1, 2, 1, 6, 9, 3, 3, 1, 1,␣
→˓2, 3, 1, 1, 5, 5, 1, 1, 0, 1, 1, 2, 3, 1, 1, 2, 3, 1, 3, 1, 1, 1, 1, 0, 0, 1,␣
→˓3, 3, 1, 3, 1, 1, 2, 2, 0, 0, 6, 1, 0, 1, 1, 1, 1, 3, 1, 2, 6, 3, 1, 2, 2, 1,␣
→˓1, 1, 1, 7, 5, 4, 3, 3, 1, 1, 1, 1, 1, 1, 8, 5, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1,␣
→˓2, 3, 6, 1, 1, 7, 3, 3, 4, 5, 9, 6, 1, 0, 7, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 1,␣
→˓1, 1, 1, 1, 1, 7, 8, 2, 3, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]

An example from [PZGH1999]:

16.1. Elliptic curves over the rational numbers 235

Elliptic curves, Release 9.8

sage: E = EllipticCurve([0,0,0,-172,505])
sage: E.rank(), len(E.S_integral_points([3,5,7])) # long time (5s on sage.math,
→˓ 2011)
(4, 72)

This is curve “7690e1” which failed until trac ticket #4805 was fixed:

sage: EllipticCurve([1,1,1,-301,-1821]).S_integral_points([13,2])
[(-13 : 16 : 1),
(-9 : 20 : 1),
(-7 : 4 : 1),
(21 : 30 : 1),
(23 : 52 : 1),
(63 : 452 : 1),
(71 : 548 : 1),
(87 : 756 : 1),
(2711 : 139828 : 1),
(7323 : 623052 : 1),
(17687 : 2343476 : 1)]

• Some parts of this implementation are partially based on the function integral_points()

AUTHORS:

• Tobias Nagel (2008-12)

• Michael Mardaus (2008-12)

• John Cremona (2008-12)

abelian_variety()

Return self as a modular abelian variety.

OUTPUT:

• a modular abelian variety

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.abelian_variety()
Abelian variety J0(11) of dimension 1

sage: E = EllipticCurve('33a')
sage: E.abelian_variety()
Abelian subvariety of dimension 1 of J0(33)

an(n)
The n-th Fourier coefficient of the modular form corresponding to this elliptic curve, where n is a positive
integer.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: [E.an(n) for n in range(20) if n>0]
[1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0]

236 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/4805

Elliptic curves, Release 9.8

analytic_rank(algorithm='pari', leading_coefficient=False)
Return an integer that is probably the analytic rank of this elliptic curve.

INPUT:

• algorithm – (default: ‘pari’), String

– 'pari' – use the PARI library function.

– 'sympow' – use Watkins’s program sympow

– 'rubinstein' – use Rubinstein’s L-function C++ program lcalc.

– 'magma' – use MAGMA

– 'zero_sum' – Use the rank bounding zero sum method implemented in
self.analytic_rank_upper_bound()

– 'all' – compute with PARI, sympow and lcalc, check that the answers agree, and return the
common answer.

• leading_coefficient – (default: False) Boolean; if set to True, return a tuple (𝑟𝑎𝑛𝑘, 𝑙𝑒𝑎𝑑) where
𝑙𝑒𝑎𝑑 is the value of the first non-zero derivative of the L-function of the elliptic curve. Only imple-
mented for algorithm='pari'.

Note: If the curve is loaded from the large Cremona database, then the modular degree is taken from the
database.

Of the first three algorithms above, probably Rubinstein’s is the most efficient (in some limited testing
done). The zero sum method is often much faster, but can return a value which is strictly larger than the
analytic rank. For curves with conductor <=10^9 using default parameters, testing indicates that for 99.75%
of curves the returned rank bound is the true rank.

Note: If you use set_verbose(1), extra information about the computation will be printed when
algorithm='zero_sum'.

Note: It is an open problem to prove that any particular elliptic curve has analytic rank ≥ 4.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: E.analytic_rank(algorithm='pari')
2
sage: E.analytic_rank(algorithm='rubinstein')
2
sage: E.analytic_rank(algorithm='sympow')
2
sage: E.analytic_rank(algorithm='magma') # optional - magma
2
sage: E.analytic_rank(algorithm='zero_sum')
2
sage: E.analytic_rank(algorithm='all')
2

16.1. Elliptic curves over the rational numbers 237

Elliptic curves, Release 9.8

With the optional parameter leading_coefficient set to True, a tuple of both the analytic rank and the leading
term of the L-series at 𝑠 = 1 is returned. This only works for algorithm=='pari':

sage: EllipticCurve([0,-1,1,-10,-20]).analytic_rank(leading_coefficient=True)
(0, 0.25384186085591068...)
sage: EllipticCurve([0,0,1,-1,0]).analytic_rank(leading_coefficient=True)
(1, 0.30599977383405230...)
sage: EllipticCurve([0,1,1,-2,0]).analytic_rank(leading_coefficient=True)
(2, 1.518633000576853...)
sage: EllipticCurve([0,0,1,-7,6]).analytic_rank(leading_coefficient=True)
(3, 10.39109940071580...)
sage: EllipticCurve([0,0,1,-7,36]).analytic_rank(leading_coefficient=True)
(4, 196.170903794579...)

analytic_rank_upper_bound(max_Delta=None, adaptive=True, N=None, root_number='compute',
bad_primes=None, ncpus=None)

Return an upper bound for the analytic rank of self, conditional on the Generalized Riemann Hypothesis,
via computing the zero sum

∑︀
𝛾 𝑓(∆𝛾), where 𝛾 ranges over the imaginary parts of the zeros of 𝐿(𝐸, 𝑠)

along the critical strip, 𝑓(𝑥) = (sin(𝜋𝑥)/(𝜋𝑥))2, and ∆ is the tightness parameter whose maximum value
is specified by max_Delta. This computation can be run on curves with very large conductor (so long as
the conductor is known or quickly computable) when ∆ is not too large (see below). Uses Bober’s rank
bounding method as described in [Bob2013].

INPUT:

• max_Delta – (default: None) If not None, a positive real value specifying the maximum Delta value
used in the zero sum; larger values of Delta yield better bounds - but runtime is exponential in Delta. If
left as None, Delta is set to min{ 1

𝜋 (log(𝑁 + 1000)/2− log(2𝜋)− 𝜂), 2.5}, where𝑁 is the conductor
of the curve attached to self, and 𝜂 is the Euler-Mascheroni constant = 0.5772...; the crossover point
is at conductor around 8.3 · 108. For the former value, empirical results show that for about 99.7% of
all curves the returned value is the actual analytic rank.

• adaptive – (default: True) boolean

– True – the computation is first run with small and then successively larger ∆ values up to
max_Delta. If at any point the computed bound is 0 (or 1 when root_number is -1 or True),
the computation halts and that value is returned; otherwise the minimum of the computed bounds
is returned.

– False – the computation is run a single time with ∆ equal to max_Delta, and the resulting bound
returned.

• N – (default: None) If not None, a positive integer equal to the conductor of self. This is passable so
that rank estimation can be done for curves whose (large) conductor has been precomputed.

• root_number – (default: “compute”) string or integer

– "compute" – the root number of self is computed and used to (possibly) lower the analytic rank
estimate by 1.

– "ignore" – the above step is omitted

– 1 – this value is assumed to be the root number of self. This is passable so that rank estimation
can be done for curves whose root number has been precomputed.

– -1 – this value is assumed to be the root number of self. This is passable so that rank estimation
can be done for curves whose root number has been precomputed.

238 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• bad_primes – (default: None) If not None, a list of the primes of bad reduction for the curve attached
to self. This is passable so that rank estimation can be done for curves of large conductor whose bad
primes have been precomputed.

• ncpus – (default: None) If not None, a positive integer defining the maximum number of CPUs to be
used for the computation. If left as None, the maximum available number of CPUs will be used. Note:
Due to parallelization overhead, multiple processors will only be used for Delta values ≥ 1.75.

Note: Output will be incorrect if the incorrect conductor or root number is specified.

Warning: Zero sum computation time is exponential in the tightness parameter ∆, roughly doubling
for every increase of 0.1 thereof. Using ∆ = 1 (and adaptive=False) will yield a runtime of a few
milliseconds; ∆ = 2 takes a few seconds, and ∆ = 3 may take upwards of an hour. Increase beyond
this at your own risk!

OUTPUT:

A non-negative integer greater than or equal to the analytic rank of self.

Note: If you use set_verbose(1), extra information about the computation will be printed.

See also:
LFunctionZeroSum() root_number() set_verbose()

EXAMPLES:

For most elliptic curves with small conductor the central zero(s) of𝐿𝐸(𝑠) are fairly isolated, so small values
of ∆ will yield tight rank estimates.

sage: E = EllipticCurve("11a")
sage: E.rank()
0
sage: E.analytic_rank_upper_bound(max_Delta=1,adaptive=False)
0
sage: E = EllipticCurve([-39,123])
sage: E.rank()
1
sage: E.analytic_rank_upper_bound(max_Delta=1,adaptive=True)
1

This is especially true for elliptic curves with large rank.

sage: for r in range(9):
....: E = elliptic_curves.rank(r)[0]
....: print((r, E.analytic_rank_upper_bound(max_Delta=1,
....: adaptive=False,root_number="ignore")))
(0, 0)
(1, 1)
(2, 2)
(3, 3)
(4, 4)

(continues on next page)

16.1. Elliptic curves over the rational numbers 239

../../../../../../../html/en/reference/lfunctions/sage/lfunctions/zero_sums.html#sage.lfunctions.zero_sums.LFunctionZeroSum
../../../../../../../html/en/reference/misc/sage/misc/verbose.html#sage.misc.verbose.set_verbose

Elliptic curves, Release 9.8

(continued from previous page)

(5, 5)
(6, 6)
(7, 7)
(8, 8)

However, some curves have 𝐿-functions with low-lying zeroes, and for these larger values of ∆ must be
used to get tight estimates.

sage: E = EllipticCurve("974b1")
sage: r = E.rank(); r
0
sage: E.analytic_rank_upper_bound(max_Delta=1,root_number="ignore")
1
sage: E.analytic_rank_upper_bound(max_Delta=1.3,root_number="ignore")
0

Knowing the root number of 𝐸 allows us to use smaller Delta values to get tight bounds, thus speeding up
runtime considerably.

sage: E.analytic_rank_upper_bound(max_Delta=0.6,root_number="compute")
0

There are a small number of curves which have pathologically low-lying zeroes. For these curves, this
method will produce a bound that is strictly larger than the analytic rank, unless very large values of Delta
are used. The following curve (“256944c1” in the Cremona tables) is a rank 0 curve with a zero at 0.0256. . . ;
the smallest Delta value for which the zero sum is strictly less than 2 is ~2.815.

sage: E = EllipticCurve([0, -1, 0, -7460362000712, -7842981500851012704])
sage: N,r = E.conductor(),E.analytic_rank(); N, r
(256944, 0)
sage: E.analytic_rank_upper_bound(max_Delta=1,adaptive=False)
2
sage: E.analytic_rank_upper_bound(max_Delta=2,adaptive=False)
2

This method is can be called on curves with large conductor.

sage: E = EllipticCurve([-2934,19238])
sage: E.analytic_rank_upper_bound()
1

And it can bound rank on curves with very large conductor, so long as you know beforehand/can easily
compute the conductor and primes of bad reduction less than 𝑒2𝜋Δ. The example below is of the rank 28
curve discovered by Elkies that is the elliptic curve of (currently) largest known rank.

sage: a4 = -20067762415575526585033208209338542750930230312178956502
sage: a6 =␣
→˓34481611795030556467032985690390720374855944359319180361266008296291939448732243429
sage: E = EllipticCurve([1,-1,1,a4,a6])
sage: bad_primes = [2,3,5,7,11,13,17,19,48463]
sage: N =␣
→˓3455601108357547341532253864901605231198511505793733138900595189472144724781456635380154149870961231592352897621963802238155192936274322687070
sage: E.analytic_rank_upper_bound(max_Delta=2.37,adaptive=False, # long time

(continues on next page)

240 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

....: N=N,root_number=1,bad_primes=bad_primes,ncpus=2) # long time
32

anlist(n, python_ints=False)
The Fourier coefficients up to and including 𝑎𝑛 of the modular form attached to this elliptic curve. The 𝑖-th
element of the return list is a[i].

INPUT:

• n – integer

• python_ints – bool (default: False); if True return a list of Python ints instead of Sage integers

OUTPUT: list of integers

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.anlist(3)
[0, 1, -2, -1]

sage: E = EllipticCurve([0,1])
sage: E.anlist(20)
[0, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 8, 0]

antilogarithm(z, max_denominator=None)
Return the rational point (if any) associated to this complex number; the inverse of the elliptic logarithm
function.

INPUT:

• z – a complex number representing an element of C/𝐿 where 𝐿 is the period lattice of the elliptic
curve

• max_denominator – integer (optional); parameter controlling the attempted conversion of real num-
bers to rationals. If not given, simplest_rational()will be used; otherwise, nearby_rational()
will be used with this value of max_denominator.

OUTPUT:

• point on the curve: the rational point which is the image of 𝑧 under the Weierstrass parametrization,
if it exists and can be determined from 𝑧 and the given value of max_denominator (if any); otherwise
a ValueError exception is raised.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: P = E(-1,1)
sage: z = P.elliptic_logarithm()
sage: E.antilogarithm(z)
(-1 : 1 : 1)
sage: Q = E(0,-1)
sage: z = Q.elliptic_logarithm()
sage: E.antilogarithm(z)
Traceback (most recent call last):
...
ValueError: approximated point not on the curve

(continues on next page)

16.1. Elliptic curves over the rational numbers 241

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.antilogarithm(z, max_denominator=10)
(0 : -1 : 1)

sage: E = EllipticCurve('11a1')
sage: w1,w2 = E.period_lattice().basis()
sage: [E.antilogarithm(a*w1/5,1) for a in range(5)]
[(0 : 1 : 0), (16 : -61 : 1), (5 : -6 : 1), (5 : 5 : 1), (16 : 60 : 1)]

ap(p)
The p-th Fourier coefficient of the modular form corresponding to this elliptic curve, where p is prime.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: [E.ap(p) for p in prime_range(50)]
[-2, -3, -2, -1, -5, -2, 0, 0, 2, 6, -4, -1, -9, 2, -9]

aplist(n, python_ints=False)
The Fourier coefficients 𝑎𝑝 of the modular form attached to this elliptic curve, for all primes 𝑝 ≤ 𝑛.

INPUT:

• n – integer

• python_ints – bool (default: False); if True return a list of Python ints instead of Sage integers

OUTPUT: list of integers

EXAMPLES:

sage: e = EllipticCurve('37a')
sage: e.aplist(1)
[]
sage: e.aplist(2)
[-2]
sage: e.aplist(10)
[-2, -3, -2, -1]
sage: v = e.aplist(13); v
[-2, -3, -2, -1, -5, -2]
sage: type(v[0])
<... 'sage.rings.integer.Integer'>
sage: type(e.aplist(13, python_ints=True)[0])
<... 'int'>

cm_discriminant()

Return the associated quadratic discriminant if this elliptic curve has Complex Multiplication over the
algebraic closure.

A ValueError is raised if the curve does not have CM (see the function has_cm()).

EXAMPLES:

sage: E = EllipticCurve('32a1')
sage: E.cm_discriminant()
-4
sage: E = EllipticCurve('121b1')

(continues on next page)

242 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.cm_discriminant()
-11
sage: E = EllipticCurve('37a1')
sage: E.cm_discriminant()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field␣
→˓does not have CM

conductor(algorithm='pari')
Return the conductor of the elliptic curve.

INPUT:

• algorithm – str, (default: “pari”)

– "pari" – use the PARI C-library pari:ellglobalred implementation of Tate’s algorithm

– "mwrank" – use Cremona’s mwrank implementation of Tate’s algorithm; can be faster if the curve
has integer coefficients (TODO: limited to small conductor until mwrank gets integer factorization)

– "gp" – use the GP interpreter

– "generic" – use the general number field implementation

– "all" – use all four implementations, verify that the results are the same (or raise an error), and
output the common value

EXAMPLES:

sage: E = EllipticCurve([1, -1, 1, -29372, -1932937])
sage: E.conductor(algorithm="pari")
3006
sage: E.conductor(algorithm="mwrank")
3006
sage: E.conductor(algorithm="gp")
3006
sage: E.conductor(algorithm="generic")
3006
sage: E.conductor(algorithm="all")
3006

Note: The conductor computed using each algorithm is cached separately. Thus calling E.
conductor('pari'), then E.conductor('mwrank') and getting the same result checks that both sys-
tems compute the same answer.

congruence_number(M=1)
The case𝑀 == 1 corresponds to the classical definition of congruence number: Let𝑋 be the subspace of
𝑆2(Γ0(𝑁)) spanned by the newform associated with this elliptic curve, and 𝑌 be orthogonal complement of
𝑋 under the Petersson inner product. Let 𝑆𝑋 and 𝑆𝑌 be the intersections of𝑋 and 𝑌 with 𝑆2(Γ0(𝑁),Z).
The congruence number is defined to be [𝑆𝑋 ⊕ 𝑆𝑌 : 𝑆2(Γ0(𝑁),Z)]. It measures congruences between 𝑓
and elements of 𝑆2(Γ0(𝑁),Z) orthogonal to 𝑓 .

The congruence number for higher levels, when M>1, is defined as above, but instead considers 𝑋 to be
the subspace of 𝑆2(Γ0(𝑀𝑁)) spanned by embeddings into 𝑆2(Γ0(𝑀𝑁)) of the newform associated with

16.1. Elliptic curves over the rational numbers 243

https://pari.math.u-bordeaux.fr/dochtml/help/ellglobalred

Elliptic curves, Release 9.8

this elliptic curve; this subspace has dimension 𝜎0(𝑀), i.e. the number of divisors of 𝑀 . Let 𝑌 be the
orthogonal complement in 𝑆2(Γ0(𝑀𝑁)) of 𝑋 under the Petersson inner product, and 𝑆𝑋 and 𝑆𝑌 the
intersections of 𝑋 and 𝑌 with 𝑆2(Γ0(𝑀𝑁),Z) respectively. Then the congruence number at level 𝑀𝑁
is [𝑆𝑋 ⊕ 𝑆𝑌 : 𝑆2(Γ0(𝑀𝑁),Z)].

INPUT:

• M – non-negative integer; congruence number is computed at level 𝑀𝑁 , where 𝑁 is the conductor of
self

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.congruence_number()
2
sage: E.congruence_number()
2
sage: E = EllipticCurve('54b')
sage: E.congruence_number()
6
sage: E.modular_degree()
2
sage: E = EllipticCurve('242a1')
sage: E.modular_degree()
16
sage: E.congruence_number() # long time (4s on sage.math, 2011)
176

Higher level cases:

sage: E = EllipticCurve('11a')
sage: for M in range(1,11): print(E.congruence_number(M)) # long time (20s on␣
→˓2009 MBP)
1
1
3
2
7
45
12
4
18
245

It is a theorem of Ribet that the congruence number (at level 𝑁) is equal to the modular degree in the case
of square free conductor. It is a conjecture of Agashe, Ribet, and Stein that 𝑜𝑟𝑑𝑝(𝑐𝑓/𝑚𝑓) ≤ 𝑜𝑟𝑑𝑝(𝑁)/2.

cremona_label(space=False)
Return the Cremona label associated to (the minimal model) of this curve, if it is known. If not, raise a
LookupError exception.

EXAMPLES:

sage: E = EllipticCurve('389a1')
sage: E.cremona_label()
'389a1'

244 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

The default database only contains conductors up to 10000, so any curve with conductor greater than that
will cause an error to be raised. The optional package database_cremona_ellcurve contains many
more curves.

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.conductor()
234446
sage: E.cremona_label() # optional - database_cremona_ellcurve
'234446a1'
sage: E = EllipticCurve((0, 0, 1, -79, 342))
sage: E.conductor()
19047851
sage: E.cremona_label()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve defined␣
→˓by y^2 + y = x^3 - 79*x + 342 over Rational Field

database_attributes()

Return a dictionary containing information about self in the elliptic curve database.

If there is no elliptic curve isomorphic to self in the database, a LookupError is raised.

EXAMPLES:

sage: E = EllipticCurve((0, 0, 1, -1, 0))
sage: data = E.database_attributes()
sage: data['conductor']
37
sage: data['cremona_label']
'37a1'
sage: data['rank']
1
sage: data['torsion_order']
1

sage: E = EllipticCurve((8, 13, 21, 34, 55))
sage: E.database_attributes()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve defined␣
→˓by y^2 + 8*x*y + 21*y = x^3 + 13*x^2 + 34*x + 55 over Rational Field

database_curve()

Return the curve in the elliptic curve database isomorphic to this curve, if possible. Otherwise raise a
LookupError exception.

Since trac ticket #11474, this returns exactly the same curve as minimal_model(); the only difference is
the additional work of checking whether the curve is in the database.

EXAMPLES:

sage: E = EllipticCurve([0,1,2,3,4])
sage: E.database_curve()
Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 5 over Rational Field

16.1. Elliptic curves over the rational numbers 245

https://trac.sagemath.org/11474

Elliptic curves, Release 9.8

Note: The model of the curve in the database can be different from the Weierstrass model for this curve,
e.g., database models are always minimal.

elliptic_exponential(z, embedding=None)
Compute the elliptic exponential of a complex number with respect to the elliptic curve.

INPUT:

• z – a complex number

• embedding – ignored (for compatibility with the period_lattice function for ellip-
tic_curve_number_field)

OUTPUT:

The image of 𝑧 modulo 𝐿 under the Weierstrass parametrization C/𝐿→ 𝐸(C).

Note: The precision is that of the input z, or the default precision of 53 bits if z is exact.

EXAMPLES:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E([1,-2])
sage: z = P.elliptic_logarithm() # default precision is 100 here
sage: E.elliptic_exponential(z)
(1.0000000000000000000000000000 : -2.0000000000000000000000000000 : 1.
→˓0000000000000000000000000000)
sage: z = E([1,-2]).elliptic_logarithm(precision=201)
sage: E.elliptic_exponential(z)
(1.000 : -2.
→˓000 : 1.
→˓000)

sage: E = EllipticCurve('389a')
sage: Q = E([3,5])
sage: E.elliptic_exponential(Q.elliptic_logarithm())
(3.0000000000000000000000000000 : 5.0000000000000000000000000000 : 1.
→˓0000000000000000000000000000)
sage: P = E([-1,1])
sage: P.elliptic_logarithm()
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: E.elliptic_exponential(P.elliptic_logarithm())
(-1.0000000000000000000000000000 : 1.0000000000000000000000000000 : 1.
→˓0000000000000000000000000000)

Some torsion examples:

sage: w1,w2 = E.period_lattice().basis()
sage: E.two_division_polynomial().roots(CC,multiplicities=False)
[-2.0403022002854..., 0.13540924022175..., 0.90489296006371...]
sage: [E.elliptic_exponential((a*w1+b*w2)/2)[0] for a,b in [(0,1),(1,1),(1,0)]]
[-2.0403022002854..., 0.13540924022175..., 0.90489296006371...]

(continues on next page)

246 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.division_polynomial(3).roots(CC,multiplicities=False)
[-2.88288879135...,
1.39292799513...,
0.078313731444316... - 0.492840991709...*I,
0.078313731444316... + 0.492840991709...*I]
sage: [E.elliptic_exponential((a*w1+b*w2)/3)[0] for a,b in [(0,1),(1,0),(1,1),
→˓(2,1)]]
[-2.8828887913533..., 1.39292799513138,
0.0783137314443... - 0.492840991709...*I,
0.0783137314443... + 0.492840991709...*I]

Observe that this is a group homomorphism (modulo rounding error):

sage: z = CC.random_element()
sage: v = 2 * E.elliptic_exponential(z)
sage: w = E.elliptic_exponential(2 * z)
sage: def err(a, b):
....: err = abs(a - b)
....: if a + b:
....: err = min(err, err / abs(a + b))
....: return err
sage: err(v[0], w[0]) + err(v[1], w[1]) # abs tol 1e-13
0.0

eval_modular_form(points, order)
Evaluate the modular form of this elliptic curve at points in C.

INPUT:

• points – a list of points in the upper half-plane

• order – a nonnegative integer

The order parameter is the number of terms used in the summation.

OUTPUT: A list of values for 𝑠 in points

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.eval_modular_form([1.5+I,2.0+I,2.5+I],100)
[-0.0018743978548152085...,
0.0018604485340371083...,

-0.0018743978548152085...]

sage: E.eval_modular_form(2.1+I, 100) # abs tol 1e-16
[0.00150864362757267079 + 0.00109100341113449845*I]

faltings_height(stable=False, prec=None)
Return the Faltings height (stable or unstable) of this elliptic curve.

INPUT:

• stable – boolean (default: False); if True, return the stable Faltings height, otherwise the unstable
height

• prec – integer (default: None); bit precision of output; if None, use standard precision (53 bits)

16.1. Elliptic curves over the rational numbers 247

Elliptic curves, Release 9.8

OUTPUT:

(real) the Faltings height of this elliptic curve.

Note: Different authors normalise the Faltings height differently. We use the formula − 1
2 log(𝐴), where

𝐴 is the area of the fundamental period parallelogram; some authors use − 1
2𝜋 log(𝐴) instead.

The unstable Faltings height does depend on the model. The stable Faltings height is defined to be

1

12
log denom(𝑗) − 1

12
log |∆| − 1

2
log𝐴,

This is independent of the model. For the minimal model of a semistable elliptic curve, we have
denom(𝑗) = |∆|, and the stable and unstable heights agree.

EXAMPLES:

sage: E = EllipticCurve('32a1')
sage: E.faltings_height()
-0.617385745351564
sage: E.faltings_height(stable=True)
-1.31053292591151

These differ since the curve is not semistable:

sage: E.is_semistable()
False

If the model is changed, the Faltings height changes but the stable height does not. It is reduced by log(𝑢)
where 𝑢 is the scale factor:

sage: E1 = E.change_weierstrass_model([10,0,0,0])
sage: E1.faltings_height()
-2.91997083834561
sage: E1.faltings_height(stable=True)
-1.31053292591151
sage: E.faltings_height() - log(10.0)
-2.91997083834561

For a semistable curve (that is, one with squarefree conductor), the stable and unstable heights are equal.
Here we also show that one can specify the (bit) precision of the result:

sage: E = EllipticCurve('210a1')
sage: E.is_semistable()
True
sage: E.faltings_height(prec=100)
-0.043427311858075396288912139225
sage: E.faltings_height(stable=True, prec=100)
-0.043427311858075396288912139225

galois_representation()

The compatible family of the Galois representation attached to this elliptic curve.

Given an elliptic curve 𝐸 over Q and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of 𝐸 is a
representation of the absolute Galois group of Q. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a a
representation of 𝐺𝐾 on a free Z𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

248 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

EXAMPLES:

sage: rho = EllipticCurve('11a1').galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: rho.is_irreducible(7)
True
sage: rho.is_irreducible(5)
False
sage: rho.is_surjective(11)
True
sage: rho.non_surjective()
[5]
sage: rho = EllipticCurve('37a1').galois_representation()
sage: rho.non_surjective()
[]
sage: rho = EllipticCurve('27a1').galois_representation()
sage: rho.is_irreducible(7)
True
sage: rho.non_surjective() # cm-curve
[0]

gens(proof=None, **kwds)
Return generators for the Mordell-Weil group 𝐸(𝑄) modulo torsion.

INPUT:

• proof – bool or None (default None), see proof.elliptic_curve or sage.structure.proof

• verbose – (default: None), if specified changes the verbosity of mwrank computations

• rank1_search – (default: 10), if the curve has analytic rank 1, try to find a generator by a direct
search up to this logarithmic height. If this fails, the usual mwrank procedure is called.

• algorithm – one of the following:

– 'mwrank_shell' (default) – call mwrank shell command

– 'mwrank_lib' – call mwrank C library

• only_use_mwrank – bool (default True) if False, first attempts to use more naive, natively imple-
mented methods

• use_database – bool (default True) if True, attempts to find curve and gens in the (optional) database

• descent_second_limit – (default: 12) used in 2-descent

• sat_bound – (default: 1000) bound on primes used in saturation. If the computed bound on the index
of the points found by two-descent in the Mordell-Weil group is greater than this, a warning message
will be displayed.

OUTPUT:

• generators – list of generators for the Mordell-Weil group modulo torsion

Note: If you call this with proof=False, then you can use the gens_certain() method to find out
afterwards whether the generators were proved.

16.1. Elliptic curves over the rational numbers 249

Elliptic curves, Release 9.8

IMPLEMENTATION: Uses Cremona’s mwrank C library.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: E.gens() # random output
[(-1 : 1 : 1), (0 : 0 : 1)]

A non-integral example:

sage: E = EllipticCurve([-3/8,-2/3])
sage: E.gens() # random (up to sign)
[(10/9 : 29/54 : 1)]

A non-minimal example:

sage: E = EllipticCurve('389a1')
sage: E1 = E.change_weierstrass_model([1/20,0,0,0]); E1
Elliptic Curve defined by y^2 + 8000*y = x^3 + 400*x^2 - 320000*x over Rational␣
→˓Field
sage: E1.gens() # random (if database not used)
[(-400 : 8000 : 1), (0 : -8000 : 1)]

gens_certain()

Return True if the generators have been proven correct.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.gens() # random (up to sign)
[(0 : -1 : 1)]
sage: E.gens_certain()
True

global_integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: F = E.global_integral_model(); F
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: F == EllipticCurve('5077a1')
True

has_cm()

Return whether or not this curve has a CM 𝑗-invariant.

OUTPUT:

True if the 𝑗-invariant of this curve is the 𝑗-invariant of an imaginary quadratic order, otherwise False.

See also:
cm_discriminant() and has_rational_cm()

Note: Even if𝐸 has CM in this sense (that its 𝑗-invariant is a CM 𝑗-invariant), since the associated negative
discriminant 𝐷 is not a square in Q, the extra endomorphisms will not be defined over Q. See also the

250 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

method has_rational_cm() which tests whether 𝐸 has extra endomorphisms defined over Q or a given
extension of Q.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.has_cm()
False
sage: E = EllipticCurve('32a1')
sage: E.has_cm()
True
sage: E.j_invariant()
1728

has_good_reduction_outside_S(S=None)
Test if this elliptic curve has good reduction outside S.

INPUT:

• S – list of primes (default: []).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains
non-primes.

This only tests the given model, so should only be applied to minimal models.

EXAMPLES:

sage: EllipticCurve('11a1').has_good_reduction_outside_S([11])
True
sage: EllipticCurve('11a1').has_good_reduction_outside_S([2])
False
sage: EllipticCurve('2310a1').has_good_reduction_outside_S([2,3,5,7])
False
sage: EllipticCurve('2310a1').has_good_reduction_outside_S([2,3,5,7,11])
True

has_rational_cm(field=None)
Return whether or not this curve has CM defined over Q or the given field.

INPUT:

• field – (default: Q) a field, which should be an extension of Q;

OUTPUT:

True if the ring of endomorphisms of this curve over the given field is larger than Z; otherwise False. If
field is None the output will always be False. See also cm_discriminant() and has_cm().

Note: If 𝐸 has CM but the discriminant𝐷 is not a square in the given field𝐾, which will certainly be the
case for 𝐾 = Q since 𝐷 < 0, then the extra endomorphisms will not be defined over 𝐾, and this function
will return False. See also has_cm(). To obtain the CM discriminant, use cm_discriminant().

EXAMPLES:

16.1. Elliptic curves over the rational numbers 251

Elliptic curves, Release 9.8

sage: E = EllipticCurve(j=0)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-3

If we extend scalars to a field in which the discriminant is a square, the CM becomes rational:

sage: E.has_rational_cm(QuadraticField(-3))
True

sage: E = EllipticCurve(j=8000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-8

Again, we may extend scalars to a field in which the discriminant is a square, where the CM becomes
rational:

sage: E.has_rational_cm(QuadraticField(-2))
True

The field need not be a number field provided that it is an extension of Q:

sage: E.has_rational_cm(RR)
False
sage: E.has_rational_cm(CC)
True

An error is raised if a field is given which is not an extension of Q, i.e., not of characteristic 0:

sage: E.has_rational_cm(GF(2))
Traceback (most recent call last):
...
ValueError: Error in has_rational_cm: Finite Field of size 2 is not an␣
→˓extension field of QQ

heegner_discriminants(bound)
Return the list of self’s Heegner discriminants between -1 and -bound.

INPUT:

• bound (int) – upper bound for -discriminant

OUTPUT: The list of Heegner discriminants between -1 and -bound for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants(30) # indirect doctest
[-7, -8, -19, -24]

252 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

heegner_discriminants_list(n)
Return the list of self’s first 𝑛 Heegner discriminants smaller than -5.

INPUT:

• n (int) – the number of discriminants to compute

OUTPUT: The list of the first n Heegner discriminants smaller than -5 for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants_list(4) # indirect doctest
[-7, -8, -19, -24]

heegner_index(D, min_p=2, prec=5, descent_second_limit=12, verbose_mwrank=False, check_rank=True)
Return an interval that contains the index of the Heegner point 𝑦𝐾 in the group of𝐾-rational points modulo
torsion on this elliptic curve, computed using the Gross-Zagier formula and/or a point search, or possibly
half the index if the rank is greater than one.

If the curve has rank > 1, then the returned index is infinity.

Note: If min_p is bigger than 2 then the index can be off by any prime less than min_p. This function
returns the index divided by 2 exactly when the rank of𝐸(𝐾) is greater than 1 and𝐸(Q)/𝑡𝑜𝑟⊕𝐸𝐷(Q)/𝑡𝑜𝑟
has index 2 in 𝐸(𝐾)/𝑡𝑜𝑟, where the second factor undergoes a twist.

INPUT:

• D (int) – Heegner discriminant

• min_p (int) – (default: 2) only rule out primes = min_p dividing the index.

• verbose_mwrank (bool) – (default: False); print lots of mwrank search status information when
computing regulator

• prec (int) – (default: 5), use prec*sqrt(N) + 20 terms of L-series in computations, where N is the
conductor.

• descent_second_limit – (default: 12)- used in 2-descent when computing regulator of the twist

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: an interval that contains the index, or half the index

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.heegner_discriminants(50)
[-7, -8, -19, -24, -35, -39, -40, -43]
sage: E.heegner_index(-7)
1.00000?

sage: E = EllipticCurve('37b')
sage: E.heegner_discriminants(100)
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: E.heegner_index(-95) # long time (1 second)
2.00000?

This tests doing direct computation of the Mordell-Weil group.

16.1. Elliptic curves over the rational numbers 253

Elliptic curves, Release 9.8

sage: EllipticCurve('675b').heegner_index(-11)
3.0000?

Currently discriminants -3 and -4 are not supported:

sage: E.heegner_index(-3)
Traceback (most recent call last):
...
ArithmeticError: Discriminant (=-3) must not be -3 or -4.

The curve 681b returns the true index, which is 3:

sage: E = EllipticCurve('681b')
sage: I = E.heegner_index(-8); I
3.0000?

In fact, whenever the returned index has a denominator of 2, the true index is got by multiplying the returned
index by 2. Unfortunately, this is not an if and only if condition, i.e., sometimes the index must be multiplied
by 2 even though the denominator is not 2.

This example demonstrates the descent_second_limit option, which can be used to fine tune the 2-
descent used to compute the regulator of the twist:

sage: E = EllipticCurve([1,-1,0,-1228,-16267])
sage: E.heegner_index(-8)
Traceback (most recent call last):
...
RuntimeError: ...

However when we search higher, we find the points we need:

sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False) # long␣
→˓time
2.00000?

Two higher rank examples (of ranks 2 and 3):

sage: E = EllipticCurve('389a')
sage: E.heegner_index(-7)
+Infinity
sage: E = EllipticCurve('5077a')
sage: E.heegner_index(-7)
+Infinity
sage: E.heegner_index(-7, check_rank=False)
0.001?
sage: E.heegner_index(-7, check_rank=False).lower() == 0
True

heegner_index_bound(D=0, prec=5, max_height=None)
Assume self has rank 0.

Return a list 𝑣 of primes such that if an odd prime 𝑝 divides the index of the Heegner point in the group of
rational points modulo torsion, then 𝑝 is in 𝑣.

If 0 is in the interval of the height of the Heegner point computed to the given prec, then this function
returns 𝑣 = 0. This does not mean that the Heegner point is torsion, just that it is very likely torsion.

254 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

If we obtain no information from a search up to max_height, e.g., if the Siksek et al. bound is bigger than
max_height, then we return 𝑣 = −1.

INPUT:

• D (int) – (default: 0) Heegner discriminant; if 0, use the first discriminant -4 that satisfies the Heeg-
ner hypothesis

• verbose (bool) – (default: True)

• prec (int) – (default: 5), use 𝑝𝑟𝑒𝑐 ·
√︀

(𝑁) + 20 terms of 𝐿-series in computations, where 𝑁 is the
conductor.

• max_height (float) – should be = 21; bound on logarithmic naive height used in point searches.
Make smaller to make this function faster, at the expense of possibly obtaining a worse answer. A good
range is between 13 and 21.

OUTPUT:

• v – list or int (bad primes or 0 or -1)

• D – the discriminant that was used (this is useful if 𝐷 was automatically selected).

• exact – either False, or the exact Heegner index (up to factors of 2)

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.heegner_index_bound()
([2], -7, 2)

heegner_point(D, c=1, f=None, check=True)
Returns the Heegner point on this curve associated to the quadratic imaginary field 𝐾 = Q(

√
𝐷).

If the optional parameter 𝑐 is given, returns the higher Heegner point associated to the order of conductor
𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• 𝑓 – binary quadratic form or 3-tuple (𝐴,𝐵,𝐶) of coefficients of 𝐴𝑋2 +𝐵𝑋𝑌 + 𝐶𝑌 2

• check – bool (default: True)

OUTPUT:

The Heegner point 𝑦𝑐.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: P = E.heegner_point(-7); P # indirect doctest
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P.point_exact()
(0 : 0 : 1)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E.heegner_point(-40).point_exact(); P

(continues on next page)

16.1. Elliptic curves over the rational numbers 255

Elliptic curves, Release 9.8

(continued from previous page)

(a : -a + 1 : 1)
sage: P = E.heegner_point(-47).point_exact(); P
(a : a^4 + a - 1 : 1)
sage: P[0].parent()
Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1

Working out the details manually:

sage: P = E.heegner_point(-47).numerical_approx(prec=200)
sage: f = algdep(P[0], 5); f
x^5 - x^4 + x^3 + x^2 - 2*x + 1
sage: f.discriminant().factor()
47^2

The Heegner hypothesis is checked:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-5,7);
Traceback (most recent call last):
...
ValueError: N (=389) and D (=-5) must satisfy the Heegner hypothesis

We can specify the quadratic form:

sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2

heegner_point_height(D, prec=2, check_rank=True)
Use the Gross-Zagier formula to compute the Neron-Tate canonical height over 𝐾 of the Heegner point
corresponding to 𝐷, as an interval (it is computed to some precision using 𝐿-functions).

If the curve has rank at least 2, then the returned height is the exact Sage integer 0.

INPUT:

• D (int) – fundamental discriminant (=/= -3, -4)

• prec (int) – (default: 2), use 𝑝𝑟𝑒𝑐 ·
√︀

(𝑁) + 20 terms of 𝐿-series in computations, where 𝑁 is the
conductor.

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: Interval that contains the height of the Heegner point.

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.heegner_point_height(-7)
0.22227?

Some higher rank examples:

sage: E = EllipticCurve('389a')
sage: E.heegner_point_height(-7)

(continues on next page)

256 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

0
sage: E = EllipticCurve('5077a')
sage: E.heegner_point_height(-7)
0
sage: E.heegner_point_height(-7,check_rank=False)
0.0000?

heegner_sha_an(D, prec=53)

Return the conjectural (analytic) order of Sha for E over the field 𝐾 = Q(
√
𝐷).

INPUT:

• 𝐷 – negative integer; the Heegner discriminant

• prec – integer (default: 53); bits of precision to compute analytic order of Sha

OUTPUT:

(floating point number) an approximation to the conjectural order of Sha.

Note: Often you’ll want to do proof.elliptic_curve(False)when using this function, since often the
twisted elliptic curves that come up have enormous conductor, and Sha is nontrivial, which makes provably
finding the Mordell-Weil group using 2-descent difficult.

EXAMPLES:

An example where E has conductor 11:

sage: E = EllipticCurve('11a')
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

The cache works:

sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7) # long time
True

Lower precision:

sage: E.heegner_sha_an(-7,10) # long time
1.0

Checking that the cache works for any precision:

sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10) # long time
True

Next we consider a rank 1 curve with nontrivial Sha over the quadratic imaginary field 𝐾; however, there
is no Sha for 𝐸 over Q or for the quadratic twist of 𝐸:

sage: E = EllipticCurve('37a')
sage: E.heegner_sha_an(-40) # long time
4.00000000000000
sage: E.quadratic_twist(-40).sha().an() # long time

(continues on next page)

16.1. Elliptic curves over the rational numbers 257

Elliptic curves, Release 9.8

(continued from previous page)

1
sage: E.sha().an() # long time
1

A rank 2 curve:

sage: E = EllipticCurve('389a') # long time
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

If we remove the hypothesis that 𝐸(𝐾) has rank 1 in Conjecture 2.3 in [GZ1986] page 311, then that
conjecture is false, as the following example shows:

sage: E = EllipticCurve('65a') # long time
sage: E.heegner_sha_an(-56) # long time
1.00000000000000
sage: E.torsion_order() # long time
2
sage: E.tamagawa_product() # long time
1
sage: E.quadratic_twist(-56).rank() # long time
2

height(precision=None)
Return the real height of this elliptic curve.

This is used in integral_points().

INPUT:

• precision – desired real precision of the result (default real precision if None)

EXAMPLES:

sage: E = EllipticCurve('5077a1')
sage: E.height()
17.4513334798896
sage: E.height(100)
17.451333479889612702508579399
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.height()
1.38629436111989
sage: E = EllipticCurve([0,0,0,1,0])
sage: E.height()
7.45471994936400

integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: F = E.global_integral_model(); F
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field

(continues on next page)

258 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: F == EllipticCurve('5077a1')
True

integral_points(mw_base='auto', both_signs=False, verbose=False)
Compute all integral points (up to sign) on this elliptic curve.

INPUT:

• mw_base – (default: 'auto' - calls gens()) list of EllipticCurvePoint generating the Mordell-Weil
group of 𝐸

• both_signs – boolean (default: False); if True the output contains both 𝑃 and −𝑃 , otherwise only
one of each pair

• verbose – boolean (default: False); if True, some details of the computation are output

OUTPUT: A sorted list of all the integral points on 𝐸 (up to sign unless both_signs is True)

Note: The complexity increases exponentially in the rank of curve E. The computation time (but not the
output!) depends on the Mordell-Weil basis. If mw_base is given but is not a basis for the Mordell-Weil
group (modulo torsion), integral points which are not in the subgroup generated by the given points will
almost certainly not be listed.

EXAMPLES: A curve of rank 3 with no torsion points:

sage: E = EllipticCurve([0,0,1,-7,6])
sage: P1=E.point((2,0)); P2=E.point((-1,3)); P3=E.point((4,6))
sage: a=E.integral_points([P1,P2,P3]); a
[(-3 : 0 : 1), (-2 : 3 : 1), (-1 : 3 : 1), (0 : 2 : 1), (1 : 0 : 1), (2 : 0 :␣
→˓1), (3 : 3 : 1), (4 : 6 : 1), (8 : 21 : 1), (11 : 35 : 1), (14 : 51 : 1), (21␣
→˓: 95 : 1), (37 : 224 : 1), (52 : 374 : 1), (93 : 896 : 1), (342 : 6324 : 1),␣
→˓(406 : 8180 : 1), (816 : 23309 : 1)]

sage: a = E.integral_points([P1,P2,P3], verbose=True)
Using mw_basis [(2 : 0 : 1), (3 : -4 : 1), (8 : -22 : 1)]
e1,e2,e3: -3.0124303725933... 1.0658205476962... 1.94660982489710
Minimal and maximal eigenvalues of height pairing matrix: 0.637920814585005,2.
→˓31982967525725
x-coords of points on compact component with -3 <=x<= 1
[-3, -2, -1, 0, 1]
x-coords of points on non-compact component with 2 <=x<= 6
[2, 3, 4]
starting search of remaining points using coefficient bound 5 and |x| bound 1.
→˓53897183921009e25
x-coords of extra integral points:
[2, 3, 4, 8, 11, 14, 21, 37, 52, 93, 342, 406, 816]
Total number of integral points: 18

It is not necessary to specify mw_base; if it is not provided, then the Mordell-Weil basis must be computed,
which may take much longer.

sage: E = EllipticCurve([0,0,1,-7,6])
sage: a=E.integral_points(both_signs=True); a

(continues on next page)

16.1. Elliptic curves over the rational numbers 259

Elliptic curves, Release 9.8

(continued from previous page)

[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1), (-1 : -4 : 1), (-1 :␣
→˓3 : 1), (0 : -3 : 1), (0 : 2 : 1), (1 : -1 : 1), (1 : 0 : 1), (2 : -1 : 1),␣
→˓(2 : 0 : 1), (3 : -4 : 1), (3 : 3 : 1), (4 : -7 : 1), (4 : 6 : 1), (8 : -22 :␣
→˓1), (8 : 21 : 1), (11 : -36 : 1), (11 : 35 : 1), (14 : -52 : 1), (14 : 51 :␣
→˓1), (21 : -96 : 1), (21 : 95 : 1), (37 : -225 : 1), (37 : 224 : 1), (52 : -
→˓375 : 1), (52 : 374 : 1), (93 : -897 : 1), (93 : 896 : 1), (342 : -6325 : 1),␣
→˓(342 : 6324 : 1), (406 : -8181 : 1), (406 : 8180 : 1), (816 : -23310 : 1),␣
→˓(816 : 23309 : 1)]

An example with negative discriminant:

sage: EllipticCurve('900d1').integral_points()
[(-11 : 27 : 1), (-4 : 34 : 1), (4 : 18 : 1), (16 : 54 : 1)]

Another example with rank 5 and no torsion points:

sage: E = EllipticCurve([-879984,319138704])
sage: P1=E.point((540,1188)); P2=E.point((576,1836))
sage: P3=E.point((468,3132)); P4=E.point((612,3132))
sage: P5=E.point((432,4428))
sage: a=E.integral_points([P1,P2,P3,P4,P5]); len(a) # long time (18s on sage.
→˓math, 2011)
54

ALGORITHM:

This function uses the algorithm given in [Coh2007I].

AUTHORS:

• Michael Mardaus (2008-07)

• Tobias Nagel (2008-07)

• John Cremona (2008-07)

integral_short_weierstrass_model()

Return a model of the form 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 for this curve with 𝑎, 𝑏 ∈ Z.

EXAMPLES:

sage: E = EllipticCurve('17a1')
sage: E.integral_short_weierstrass_model()
Elliptic Curve defined by y^2 = x^3 - 11*x - 890 over Rational Field

integral_x_coords_in_interval(xmin, xmax)
Return the set of integers 𝑥 with 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 which are 𝑥-coordinates of rational points on this
curve.

INPUT:

• xmin, xmax (integers) – two integers

OUTPUT:

(set) The set of integers 𝑥 with 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 which are 𝑥-coordinates of rational points on the
elliptic curve.

EXAMPLES:

260 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve([0, 0, 1, -7, 6])
sage: xset = E.integral_x_coords_in_interval(-100,100)
sage: sorted(xset)
[-3, -2, -1, 0, 1, 2, 3, 4, 8, 11, 14, 21, 37, 52, 93]
sage: xset = E.integral_x_coords_in_interval(-100, 0)
sage: sorted(xset)
[-3, -2, -1, 0]

is_global_integral_model()

Return True iff self is integral at all primes.

EXAMPLES:

sage: E = EllipticCurve([1/2,1/5,1/5,1/5,1/5])
sage: E.is_global_integral_model()
False
sage: Emin=E.global_integral_model()
sage: Emin.is_global_integral_model()
True

is_good(p, check=True)
Return True if p is a prime of good reduction for 𝐸.

INPUT:

• p – a prime

OUTPUT: bool

EXAMPLES:

sage: e = EllipticCurve('11a')
sage: e.is_good(-8)
Traceback (most recent call last):
...
ValueError: p must be prime
sage: e.is_good(-8, check=False)
True

is_integral()

Return True if this elliptic curve has integral coefficients (in Z).

EXAMPLES:

sage: E = EllipticCurve(QQ,[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: E.is_integral()
True
sage: E2=E.change_weierstrass_model(2,0,0,0); E2
Elliptic Curve defined by y^2 = x^3 + 1/16*x + 1/64 over Rational Field
sage: E2.is_integral()
False

is_isogenous(other, proof=True, maxp=200)
Return whether or not self is isogenous to other.

INPUT:

16.1. Elliptic curves over the rational numbers 261

Elliptic curves, Release 9.8

• other – another elliptic curve

• proof – (default: True) if False, the function will return True whenever the two curves have the
same conductor and are isogenous modulo 𝑝 for 𝑝 up to maxp; otherwise this test is followed by a
rigorous test (which may be more time-consuming)

• maxp – (default: 200) the maximum prime 𝑝 for which isogeny modulo 𝑝 will be checked

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other.

ALGORITHM:

First the conductors are compared as well as the Traces of Frobenius for good primes up to maxp. If any of
these tests fail, False is returned. If they all pass and proof is False then True is returned, otherwise a
complete set of curves isogenous to self is computed and other is checked for isomorphism with any of
these,

EXAMPLES:

sage: E1 = EllipticCurve('14a1')
sage: E6 = EllipticCurve('14a6')
sage: E1.is_isogenous(E6)
True
sage: E1.is_isogenous(EllipticCurve('11a1'))
False

sage: EllipticCurve('37a1').is_isogenous(EllipticCurve('37b1'))
False

sage: E = EllipticCurve([2, 16])
sage: EE = EllipticCurve([87, 45])
sage: E.is_isogenous(EE)
False

is_local_integral_model(*p)
Tests if self is integral at the prime p, or at all the primes if p is a list or tuple of primes.

EXAMPLES:

sage: E = EllipticCurve([1/2,1/5,1/5,1/5,1/5])
sage: [E.is_local_integral_model(p) for p in (2,3,5)]
[False, True, False]
sage: E.is_local_integral_model(2,3,5)
False
sage: Eint2=E.local_integral_model(2)
sage: Eint2.is_local_integral_model(2)
True

is_minimal()

Return True iff this elliptic curve is a reduced minimal model.

The unique minimal Weierstrass equation for this elliptic curve. This is the model with minimal discrimi-
nant and 𝑎1, 𝑎2, 𝑎3 ∈ {0,±1}.

262 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Todo: This is not very efficient since it just computes the minimal model and compares. A better imple-
mentation using the Kraus conditions would be preferable.

EXAMPLES:

sage: E = EllipticCurve([10,100,1000,10000,1000000])
sage: E.is_minimal()
False
sage: E = E.minimal_model()
sage: E.is_minimal()
True

is_ordinary(p, ell=None)
Return True precisely when the mod-p representation attached to this elliptic curve is ordinary at ell.

INPUT:

• p – a prime

• ell – a prime (default: p)

OUTPUT: bool

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.is_ordinary(37)
True
sage: E = EllipticCurve('32a1')
sage: E.is_ordinary(2)
False
sage: [p for p in prime_range(50) if E.is_ordinary(p)]
[5, 13, 17, 29, 37, 41]

is_p_integral(p)
Return True if this elliptic curve has 𝑝-integral coefficients.

INPUT:

• p – a prime integer

EXAMPLES:

sage: E = EllipticCurve(QQ,[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: E.is_p_integral(2)
True
sage: E2=E.change_weierstrass_model(2,0,0,0); E2
Elliptic Curve defined by y^2 = x^3 + 1/16*x + 1/64 over Rational Field
sage: E2.is_p_integral(2)
False
sage: E2.is_p_integral(3)
True

is_p_minimal(p)
Tests if curve is p-minimal at a given prime p.

16.1. Elliptic curves over the rational numbers 263

Elliptic curves, Release 9.8

INPUT:

• p – a prime

OUTPUT:

• True – if curve is p-minimal

• False – if curve is not p-minimal

EXAMPLES:

sage: E = EllipticCurve('441a2')
sage: E.is_p_minimal(7)
True

sage: E = EllipticCurve([0,0,0,0,(2*5*11)**10])
sage: [E.is_p_minimal(p) for p in prime_range(2,24)]
[False, True, False, True, False, True, True, True, True]

is_semistable()

Return True iff this elliptic curve is semi-stable at all primes.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.is_semistable()
True
sage: E = EllipticCurve('90a1')
sage: E.is_semistable()
False

is_supersingular(p, ell=None)
Return True precisely when p is a prime of good reduction and the mod-p representation attached to this
elliptic curve is supersingular at ell.

INPUT:

• p – a prime

• ell – a prime (default: p)

OUTPUT: bool

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.is_supersingular(37)
False
sage: E = EllipticCurve('32a1')
sage: E.is_supersingular(2)
False
sage: E.is_supersingular(7)
True
sage: [p for p in prime_range(50) if E.is_supersingular(p)]
[3, 7, 11, 19, 23, 31, 43, 47]

264 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

isogenies_prime_degree(l=None)
Return a list of ℓ-isogenies from self, where ℓ is a prime.

INPUT:

• l – either None or a prime or a list of primes

OUTPUT:

(list) ℓ-isogenies for the given ℓ or if ℓ is None, all ℓ-isogenies.

Note: The codomains of the isogenies returned are standard minimal models. This is because the functions
isogenies_prime_degree_genus_0() and isogenies_sporadic_Q() are implemented that way for
curves defined over Q.

EXAMPLES:

sage: E = EllipticCurve([45,32])
sage: E.isogenies_prime_degree()
[]
sage: E = EllipticCurve(j = -262537412640768000)
sage: E.isogenies_prime_degree()
[Isogeny of degree 163 from Elliptic Curve defined by y^2 + y = x^3 - 2174420*x␣
→˓+ 1234136692 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 -␣
→˓57772164980*x - 5344733777551611 over Rational Field]
sage: E1 = E.quadratic_twist(6584935282)
sage: E1.isogenies_prime_degree()
[Isogeny of degree 163 from Elliptic Curve defined by y^2 = x^3 -␣
→˓94285835957031797981376080*x + 352385311612420041387338054224547830898 over␣
→˓Rational Field to Elliptic Curve defined by y^2 = x^3 -␣
→˓2505080375542377840567181069520*x -␣
→˓1526091631109553256978090116318797845018020806 over Rational Field]

sage: E = EllipticCurve('14a1')
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x -␣
→˓6 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x␣
→˓- 70 over Rational Field]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x -␣
→˓6 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - x␣
→˓over Rational Field, Isogeny of degree 3 from Elliptic Curve defined by y^2 +␣
→˓x*y + y = x^3 + 4*x - 6 over Rational Field to Elliptic Curve defined by y^2␣
→˓+ x*y + y = x^3 - 171*x - 874 over Rational Field]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(29)
[]
sage: E.isogenies_prime_degree(4)
Traceback (most recent call last):
...
ValueError: 4 is not prime.

16.1. Elliptic curves over the rational numbers 265

Elliptic curves, Release 9.8

isogeny_class(algorithm='sage', order=None)
Return the Q-isogeny class of this elliptic curve.

INPUT:

• algorithm – string: one of the following:

– “database” – use the Cremona database (only works if curve is isomorphic to a curve in the
database)

– “sage” (default) – use the native Sage implementation.

• order – None, string, or list of curves (default: None); If not None then the curves in the class are
reordered after being computed. Note that if the order is None then the resulting order will depend on
the algorithm.

– If order is “database” or “sage”, then the reordering is so that the order of curves matches the
order produced by that algorithm.

– If order is “lmfdb” then the curves are sorted lexicographically by a-invariants, in the LMFDB
database.

– If order is a list of curves, then the curves in the class are reordered to be isomorphic with the
specified list of curves.

OUTPUT:

An instance of the class sage.schemes.elliptic_curves.isogeny_class.
IsogenyClass_EC_Rational. This object models a list of minimal models (with containment,
index, etc based on isomorphism classes). It also has methods for computing the isogeny matrix and the
list of isogenies between curves in this class.

Note: The curves in the isogeny class will all be standard minimal models.

EXAMPLES:

sage: isocls = EllipticCurve('37b').isogeny_class(order="lmfdb")
sage: isocls
Elliptic curve isogeny class 37b
sage: isocls.curves
(Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field)
sage: isocls.matrix()
[1 3 9]
[3 1 3]
[9 3 1]

sage: isocls = EllipticCurve('37b').isogeny_class('database', order="lmfdb");␣
→˓isocls.curves
(Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field,
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field)

This is an example of a curve with a 37-isogeny:

266 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1,1,1,-8,6])
sage: isocls = E.isogeny_class(); isocls
Isogeny class of Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 8*x + 6␣
→˓over Rational Field
sage: isocls.matrix()
[1 37]
[37 1]
sage: print("\n".join(repr(E) for E in isocls.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 8*x + 6 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 208083*x - 36621194 over␣
→˓Rational Field

This curve had numerous 2-isogenies:

sage: e = EllipticCurve([1,0,0,-39,90])
sage: isocls = e.isogeny_class(); isocls.matrix()
[1 2 4 4 8 8]
[2 1 2 2 4 4]
[4 2 1 4 8 8]
[4 2 4 1 2 2]
[8 4 8 2 1 4]
[8 4 8 2 4 1]

See http://math.harvard.edu/~elkies/nature.html for more interesting examples of isogeny structures.

sage: E = EllipticCurve(j = -262537412640768000)
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 163]
[163 1]
sage: print("\n".join(repr(C) for C in isocls.curves))
Elliptic Curve defined by y^2 + y = x^3 - 2174420*x + 1234136692 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + y = x^3 - 57772164980*x - 5344733777551611 over␣
→˓Rational Field

The degrees of isogenies are invariant under twists:

sage: E = EllipticCurve(j = -262537412640768000)
sage: E1 = E.quadratic_twist(6584935282)
sage: isocls = E1.isogeny_class(); isocls.matrix()
[1 163]
[163 1]
sage: E1.conductor()
18433092966712063653330496

sage: E = EllipticCurve('14a1')
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 2 3 3 6 6]
[2 1 6 6 3 3]
[3 6 1 9 2 18]
[3 6 9 1 18 2]
[6 3 2 18 1 9]

(continues on next page)

16.1. Elliptic curves over the rational numbers 267

http://math.harvard.edu/~elkies/nature.html

Elliptic curves, Release 9.8

(continued from previous page)

[6 3 18 2 9 1]
sage: print("\n".join(repr(C) for C in isocls.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 11*x + 12 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 2731*x - 55146 over Rational␣
→˓Field
sage: isocls2 = isocls.reorder('lmfdb'); isocls2.matrix()
[1 2 3 9 18 6]
[2 1 6 18 9 3]
[3 6 1 3 6 2]
[9 18 3 1 2 6]
[18 9 6 2 1 3]
[6 3 2 6 3 1]
sage: print("\n".join(repr(C) for C in isocls2.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 - 2731*x - 55146 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 11*x + 12 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field

sage: E = EllipticCurve('11a1')
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 5 5]
[5 1 25]
[5 25 1]
sage: f = isocls.isogenies()[0][1]; f.kernel_polynomial()
x^2 + x - 29/5

isogeny_degree(other)
Return the minimal degree of an isogeny between self and other.

INPUT:

• other – another elliptic curve

OUTPUT:

The minimal degree of an isogeny from self to other, or 0 if the curves are not isogenous.

EXAMPLES:

sage: E = EllipticCurve([-1056, 13552])
sage: E2 = EllipticCurve([-127776, -18037712])
sage: E.isogeny_degree(E2)
11

sage: E1 = EllipticCurve('14a1')
sage: E2 = EllipticCurve('14a2')
sage: E3 = EllipticCurve('14a3')

(continues on next page)

268 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E4 = EllipticCurve('14a4')
sage: E5 = EllipticCurve('14a5')
sage: E6 = EllipticCurve('14a6')
sage: E3.isogeny_degree(E1)
3
sage: E3.isogeny_degree(E2)
6
sage: E3.isogeny_degree(E3)
1
sage: E3.isogeny_degree(E4)
9
sage: E3.isogeny_degree(E5)
2
sage: E3.isogeny_degree(E6)
18

sage: E1 = EllipticCurve('30a1')
sage: E2 = EllipticCurve('30a2')
sage: E3 = EllipticCurve('30a3')
sage: E4 = EllipticCurve('30a4')
sage: E5 = EllipticCurve('30a5')
sage: E6 = EllipticCurve('30a6')
sage: E7 = EllipticCurve('30a7')
sage: E8 = EllipticCurve('30a8')
sage: E1.isogeny_degree(E1)
1
sage: E1.isogeny_degree(E2)
2
sage: E1.isogeny_degree(E3)
3
sage: E1.isogeny_degree(E4)
4
sage: E1.isogeny_degree(E5)
4
sage: E1.isogeny_degree(E6)
6
sage: E1.isogeny_degree(E7)
12
sage: E1.isogeny_degree(E8)
12

sage: E1 = EllipticCurve('15a1')
sage: E2 = EllipticCurve('15a2')
sage: E3 = EllipticCurve('15a3')
sage: E4 = EllipticCurve('15a4')
sage: E5 = EllipticCurve('15a5')
sage: E6 = EllipticCurve('15a6')
sage: E7 = EllipticCurve('15a7')
sage: E8 = EllipticCurve('15a8')
sage: E1.isogeny_degree(E1)
1

(continues on next page)

16.1. Elliptic curves over the rational numbers 269

Elliptic curves, Release 9.8

(continued from previous page)

sage: E7.isogeny_degree(E2)
8
sage: E7.isogeny_degree(E3)
2
sage: E7.isogeny_degree(E4)
8
sage: E7.isogeny_degree(E5)
16
sage: E7.isogeny_degree(E6)
16
sage: E7.isogeny_degree(E8)
4

0 is returned when the curves are not isogenous:

sage: A = EllipticCurve('37a1')
sage: B = EllipticCurve('37b1')
sage: A.isogeny_degree(B)
0
sage: A.is_isogenous(B)
False

isogeny_graph(order=None)
Return a graph representing the isogeny class of this elliptic curve, where the vertices are isogenous curves
over Q and the edges are prime degree isogenies.

Note: The vertices are labeled 1 to 𝑛 rather than 0 to 𝑛− 1 to correspond to LMFDB and Cremona labels.

EXAMPLES:

sage: LL = []
sage: for e in cremona_optimal_curves(range(1, 38)): # long time
....: G = e.isogeny_graph()
....: already = False
....: for H in LL:
....: if G.is_isomorphic(H):
....: already = True
....: break
....: if not already:
....: LL.append(G)
sage: graphs_list.show_graphs(LL) # long time

sage: E = EllipticCurve('195a')
sage: G = E.isogeny_graph()
sage: for v in G: print("{} {}".format(v, G.get_vertex(v)))
1 Elliptic Curve defined by y^2 + x*y = x^3 - 110*x + 435 over Rational Field
2 Elliptic Curve defined by y^2 + x*y = x^3 - 115*x + 392 over Rational Field
3 Elliptic Curve defined by y^2 + x*y = x^3 + 210*x + 2277 over Rational Field
4 Elliptic Curve defined by y^2 + x*y = x^3 - 520*x - 4225 over Rational Field
5 Elliptic Curve defined by y^2 + x*y = x^3 + 605*x - 19750 over Rational Field
6 Elliptic Curve defined by y^2 + x*y = x^3 - 8125*x - 282568 over Rational␣

(continues on next page)

270 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

→˓Field
7 Elliptic Curve defined by y^2 + x*y = x^3 - 7930*x - 296725 over Rational␣
→˓Field
8 Elliptic Curve defined by y^2 + x*y = x^3 - 130000*x - 18051943 over␣
→˓Rational Field
sage: G.plot(edge_labels=True)
Graphics object consisting of 23 graphics primitives

kodaira_symbol(p)
Local Kodaira type of the elliptic curve at p.

INPUT:

• p – an integral prime

OUTPUT:

• the Kodaira type of this elliptic curve at p, as a KodairaSymbol

EXAMPLES:

sage: E = EllipticCurve('124a')
sage: E.kodaira_type(2)
IV

kodaira_type(p)
Local Kodaira type of the elliptic curve at p.

INPUT:

• p – an integral prime

OUTPUT:

• the Kodaira type of this elliptic curve at p, as a KodairaSymbol

EXAMPLES:

sage: E = EllipticCurve('124a')
sage: E.kodaira_type(2)
IV

kodaira_type_old(p)
Local Kodaira type of the elliptic curve at p.

INPUT:

• p – an integral prime

OUTPUT:

• the Kodaira type of this elliptic curve at p, as a KodairaSymbol

EXAMPLES:

sage: E = EllipticCurve('124a')
sage: E.kodaira_type_old(2)
IV

16.1. Elliptic curves over the rational numbers 271

Elliptic curves, Release 9.8

kolyvagin_point(D, c=1, check=True)
Return the Kolyvagin point on this curve associated to the quadratic imaginary field 𝐾 = Q(

√
𝐷) and

conductor 𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• check – bool (default: True)

OUTPUT:

The Kolyvagin point 𝑃 of conductor 𝑐.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(6.00000000000000 : -15.0000000000000 : 1.00000000000000)
sage: P.index()
6
sage: g = E((0,-1,1)) # a generator
sage: E.regulator() == E.regulator_of_points([g])
True
sage: 6*g
(6 : -15 : 1)

label(space=False)
Return the Cremona label associated to (the minimal model) of this curve, if it is known. If not, raise a
LookupError exception.

EXAMPLES:

sage: E = EllipticCurve('389a1')
sage: E.cremona_label()
'389a1'

The default database only contains conductors up to 10000, so any curve with conductor greater than that
will cause an error to be raised. The optional package database_cremona_ellcurve contains many
more curves.

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.conductor()
234446
sage: E.cremona_label() # optional - database_cremona_ellcurve
'234446a1'
sage: E = EllipticCurve((0, 0, 1, -79, 342))
sage: E.conductor()
19047851
sage: E.cremona_label()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve defined␣
→˓by y^2 + y = x^3 - 79*x + 342 over Rational Field

272 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

lmfdb_page()

Open the LMFDB web page of the elliptic curve in a browser.

See http://www.lmfdb.org

EXAMPLES:

sage: E = EllipticCurve('5077a1')
sage: E.lmfdb_page() # optional -- webbrowser

local_integral_model(p)
Return a model of self which is integral at the prime p.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: E.local_integral_model(2)
Elliptic Curve defined by y^2 + 1/27*y = x^3 - 7/81*x + 2/243 over Rational␣
→˓Field
sage: E.local_integral_model(3)
Elliptic Curve defined by y^2 + 1/8*y = x^3 - 7/16*x + 3/32 over Rational Field
sage: E.local_integral_model(2).local_integral_model(3) == EllipticCurve('5077a1
→˓')
True

lseries()

Return the L-series of this elliptic curve.

Further documentation is available for the functions which apply to the L-series.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.lseries()
Complex L-series of the Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

lseries_gross_zagier(A)
Return the Gross-Zagier L-series attached to self and an ideal class 𝐴.

INPUT:

• A – an ideal class in an imaginary quadratic number field 𝐾

This L-series 𝐿(𝐸,𝐴, 𝑠) is defined as the product of a shifted L-function of the quadratic character associ-
ated to 𝐾 and the Dirichlet series whose 𝑛-th coefficient is the product of the 𝑛-th factor of the L-series of
𝐸 and the number of integral ideal in 𝐴 of norm 𝑛. For any character 𝜒 on the class group of 𝐾, one gets
𝐿𝐾(𝐸,𝜒, 𝑠) =

∑︀
𝐴 𝜒(𝐴)𝐿(𝐸,𝐴, 𝑠) where 𝐴 runs through the class group of 𝐾.

For the exact definition see section IV of [GZ1986].

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-40)
sage: A = K.class_group().gen(0); A
Fractional ideal class (2, 1/2*a)
sage: L = E.lseries_gross_zagier(A) ; L

(continues on next page)

16.1. Elliptic curves over the rational numbers 273

http://www.lmfdb.org

Elliptic curves, Release 9.8

(continued from previous page)

Gross Zagier L-series attached to Elliptic Curve defined by y^2 + y = x^3 - x␣
→˓over Rational Field with ideal class Fractional ideal class (2, 1/2*a)
sage: L(1)
0.000000000000000
sage: L.taylor_series(1, 5)
0.000000000000000 - 5.51899839494458*z + 13.6297841350649*z^2 - 16.
→˓2292417817675*z^3 + 7.94788823722712*z^4 + O(z^5)

These should be equal:

sage: L(2) + E.lseries_gross_zagier(A^2)(2)
0.502803417587467
sage: E.lseries()(2) * E.quadratic_twist(-40).lseries()(2)
0.502803417587467

manin_constant()

Return the Manin constant of this elliptic curve.

If 𝜑 : 𝑋0(𝑁) → 𝐸 is the modular parametrization of minimal degree, then the Manin constant 𝑐 is defined
to be the rational number 𝑐 such that 𝜑*(𝜔𝐸) = 𝑐 ·𝜔𝑓 where 𝜔𝐸 is a Néron differential and 𝜔𝑓 = 𝑓(𝑞)𝑑𝑞/𝑞
is the differential on 𝑋0(𝑁) corresponding to the newform 𝑓 attached to the isogeny class of 𝐸.

It is known that the Manin constant is an integer. It is conjectured that in each class there is at least one,
more precisely the so-called strong Weil curve or 𝑋0(𝑁)-optimal curve, that has Manin constant 1.

OUTPUT:

an integer

This function only works if the curve is in the installed Cremona database. Sage includes by default a small
database; for the full database you have to install an optional package.

EXAMPLES:

sage: EllipticCurve('11a1').manin_constant()
1
sage: EllipticCurve('11a2').manin_constant()
1
sage: EllipticCurve('11a3').manin_constant()
5

Check that it works even if the curve is non-minimal:

sage: EllipticCurve('11a3').change_weierstrass_model([1/35,0,0,0]).manin_
→˓constant()
5

Rather complicated examples (see trac ticket #12080)

sage: [EllipticCurve('27a%s'%i).manin_constant() for i in [1,2,3,4]]
[1, 1, 3, 3]
sage: [EllipticCurve('80b%s'%i).manin_constant() for i in [1,2,3,4]]
[1, 2, 1, 2]

274 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/12080

Elliptic curves, Release 9.8

matrix_of_frobenius(p, prec=20, check=False, check_hypotheses=True, algorithm='auto')
Returns the matrix of Frobenius on the Monsky Washnitzer cohomology of the short Weierstrass model of
the minimal model of the elliptic curve.

INPUT:

• p – prime (>= 3) for which 𝐸 is good and ordinary

• prec – (relative) 𝑝-adic precision for result (default 20)

• check – boolean (default: False), whether to perform a consistency check. This will slow down the
computation by a constant factor 2. (The consistency check is to verify that its trace is correct to the
specified precision. Otherwise, the trace is used to compute one column from the other one (possibly
after a change of basis).)

• check_hypotheses – boolean, whether to check that this is a curve for which the 𝑝-adic sigma func-
tion makes sense

• algorithm – one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm
is used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better
performance for large 𝑝, but only works when 𝑝 > 6𝑁 (𝑁 = prec). The “auto” option selects “sqrtp”
whenever possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless
of the setting of the “check” flag.

OUTPUT: a matrix of 𝑝-adic number to precision prec

See also the documentation of padic_E2.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.matrix_of_frobenius(7)
[2*7 + 4*7^2 + 5*7^4 + 6*7^5 + 6*7^6 + 7^8 + 4*7^9 + 3*7^10 + 2*7^
→˓11 + 5*7^12 + 4*7^14 + 7^16 + 2*7^17 + 3*7^18 + 4*7^19 + 3*7^20 + O(7^21) ␣
→˓ 2 + 3*7 + 6*7^2 + 7^3 + 3*7^4 + 5*7^5 + 3*7^7 +␣
→˓7^8 + 3*7^9 + 6*7^13 + 7^14 + 7^16 + 5*7^17 + 4*7^18 + 7^19 + O(7^20)]
[2*7 + 3*7^2 + 7^3 + 3*7^4 + 6*7^5 + 2*7^6 + 3*7^7 + 5*7^8 + 3*7^9 + 2*7^11␣
→˓+ 6*7^12 + 5*7^13 + 4*7^16 + 4*7^17 + 6*7^18 + 6*7^19 + 4*7^20 + O(7^21) 6 +␣
→˓4*7 + 2*7^2 + 6*7^3 + 7^4 + 6*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 4*7^11 + 7^12 +␣
→˓6*7^13 + 2*7^14 + 6*7^15 + 5*7^16 + 4*7^17 + 3*7^18 + 2*7^19 + O(7^20)]
sage: M = E.matrix_of_frobenius(11,prec=3); M
[9*11 + 9*11^3 + O(11^4) 10 + 11 + O(11^3)]
[2*11 + 11^2 + O(11^4) 6 + 11 + 10*11^2 + O(11^3)]
sage: M.det()
11 + O(11^4)
sage: M.trace()
6 + 10*11 + 10*11^2 + O(11^3)
sage: E.ap(11)
-5
sage: E = EllipticCurve('83a1')
sage: E.matrix_of_frobenius(3,6)
[2*3 + 3^5 + O(3^6) 2*3 + 2*3^2 + 2*3^3 + O(3^
→˓6)]
[2*3 + 3^2 + 2*3^5 + O(3^6) 2 + 2*3^2 + 2*3^3 + 2*3^4 + 3^5 + O(3^
→˓6)]

16.1. Elliptic curves over the rational numbers 275

Elliptic curves, Release 9.8

minimal_model()

Return the unique minimal Weierstrass equation for this elliptic curve.

This is the model with minimal discriminant and 𝑎1, 𝑎2, 𝑎3 ∈ {0,±1}.

EXAMPLES:

sage: E = EllipticCurve([10,100,1000,10000,1000000])
sage: E.minimal_model()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Rational Field

minimal_quadratic_twist()

Determine a quadratic twist with minimal conductor. Return a global minimal model of the twist and the
fundamental discriminant of the quadratic field over which they are isomorphic.

Note: If there is more than one curve with minimal conductor, the one returned is the one with smallest
label (if in the database), or the one with minimal 𝑎-invariant list (otherwise).

Note: For curves with 𝑗-invariant 0 or 1728 the curve returned is the minimal quadratic twist, not neces-
sarily the minimal twist (which would have conductor 27 or 32 respectively).

EXAMPLES:

sage: E = EllipticCurve('121d1')
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 + y = x^3 - x^2 over Rational Field, -11)
sage: Et, D = EllipticCurve('32a1').minimal_quadratic_twist()
sage: D
1

sage: E = EllipticCurve('11a1')
sage: Et, D = E.quadratic_twist(-24).minimal_quadratic_twist()
sage: E == Et
True
sage: D
-24

sage: E = EllipticCurve([0,0,0,0,1000])
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field, 40)
sage: E = EllipticCurve([0,0,0,1600,0])
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 = x^3 + 4*x over Rational Field, 5)

If the curve has square-free conductor then it is already minimal (see trac ticket #14060):

sage: E = next(cremona_optimal_curves([2*3*5*7*11]))
sage: (E, 1) == E.minimal_quadratic_twist()
True

An example where the minimal quadratic twist is not the minimal twist (which has conductor 27):

276 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/14060

Elliptic curves, Release 9.8

sage: E = EllipticCurve([0,0,0,0,7])
sage: E.j_invariant()
0
sage: E.minimal_quadratic_twist()[0].conductor()
5292

mod5family()

Return the family of all elliptic curves with the same mod-5 representation as self.

EXAMPLES:

sage: E = EllipticCurve('32a1')
sage: E.mod5family()
Elliptic Curve defined by y^2 = x^3 + 4*x over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field

modular_degree(algorithm='sympow', M=1)
Return the modular degree at level 𝑀𝑁 of this elliptic curve. The case 𝑀 == 1 corresponds to the
classical definition of modular degree.

When 𝑀 > 1, the function returns the degree of the map from 𝑋0(𝑀𝑁) → 𝐴, where A is the abelian
variety generated by embeddings of 𝐸 into 𝐽0(𝑀𝑁).

The result is cached. Subsequent calls, even with a different algorithm, just returned the cached result. The
algorithm argument is ignored when 𝑀 > 1.

INPUT:

• algorithm – string:

– 'sympow' - (default) use Mark Watkin’s (newer) C program sympow

– 'magma' - requires that MAGMA be installed (also implemented by Mark Watkins)

• M – non-negative integer; the modular degree at level 𝑀𝑁 is returned (see above)

Note: On 64-bit computers ec does not work, so Sage uses sympow even if ec is selected on a 64-bit
computer.

The correctness of this function when called with algorithm “sympow” is subject to the following three
hypothesis:

• Manin’s conjecture: the Manin constant is 1

• Steven’s conjecture: the 𝑋1(𝑁)-optimal quotient is the curve with minimal Faltings height. (This is
proved in most cases.)

• The modular degree fits in a machine double, so it better be less than about 50-some bits. (If you use
sympow this constraint does not apply.)

Moreover for all algorithms, computing a certain value of an 𝐿-function ‘uses a heuristic method that
discerns when the real-number approximation to the modular degree is within epsilon [=0.01 for algo-
rithm=’sympow’] of the same integer for 3 consecutive trials (which occur maybe every 25000 coefficients
or so). Probably it could just round at some point. For rigour, you would need to bound the tail by assum-
ing (essentially) that all the 𝑎𝑛 are as large as possible, but in practice they exhibit significant (square root)
cancellation. One difficulty is that it doesn’t do the sum in 1-2-3-4 order; it uses 1-2-4-8–3-6-12-24-9-18-
(Euler product style) instead, and so you have to guess ahead of time at what point to curtail this expansion.’
(Quote from an email of Mark Watkins.)

16.1. Elliptic curves over the rational numbers 277

Elliptic curves, Release 9.8

Note: If the curve is loaded from the large Cremona database, then the modular degree is taken from the
database.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.modular_degree()
1
sage: E = EllipticCurve('5077a')
sage: E.modular_degree()
1984
sage: factor(1984)
2^6 * 31

sage: EllipticCurve([0, 0, 1, -7, 6]).modular_degree()
1984
sage: EllipticCurve([0, 0, 1, -7, 6]).modular_degree(algorithm='sympow')
1984
sage: EllipticCurve([0, 0, 1, -7, 6]).modular_degree(algorithm='magma') #␣
→˓optional - magma
1984

We compute the modular degree of the curve with rank 4 having smallest (known) conductor:

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: factor(E.conductor()) # conductor is 234446
2 * 117223
sage: factor(E.modular_degree())
2^7 * 2617

Higher level cases:

sage: E = EllipticCurve('11a')
sage: for M in range(1,11): print(E.modular_degree(M=M)) # long time (20s on␣
→˓2009 MBP)
1
1
3
2
7
45
12
16
54
245

modular_form()

Return the cuspidal modular form associated to this elliptic curve.

EXAMPLES:

278 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: f = E.modular_form()
sage: f
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + O(q^6)

If you need to see more terms in the 𝑞-expansion:

sage: f.q_expansion(20)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + 4*q^10
- 5*q^11 - 6*q^12 - 2*q^13 + 2*q^14 + 6*q^15 - 4*q^16 - 12*q^18 + O(q^20)

Note: If you just want the 𝑞-expansion, use q_expansion().

modular_parametrization()

Return the modular parametrization of this elliptic curve, which is a map from 𝑋0(𝑁) to self, where 𝑁 is
the conductor of self.

EXAMPLES:

sage: E = EllipticCurve('15a')
sage: phi = E.modular_parametrization(); phi
Modular parameterization from the upper half plane to Elliptic Curve defined by␣
→˓y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
sage: z = 0.1 + 0.2j
sage: phi(z)
(8.20822465478531 - 13.1562816054682*I : -8.79855099049364 + 69.4006129342200*I␣
→˓: 1.00000000000000)

This map is actually a map on𝑋0(𝑁), so equivalent representatives in the upper half plane map to the same
point:

sage: phi((-7*z-1)/(15*z+2))
(8.20822465478524 - 13.1562816054681*I : -8.79855099049... + 69.4006129342...*I␣
→˓: 1.00000000000000)

We can also get a series expansion of this modular parameterization:

sage: E = EllipticCurve('389a1')
sage: X,Y=E.modular_parametrization().power_series()
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^7␣
→˓+ 173*q^8 + 251*q^9 + 379*q^10 + 560*q^11 + 824*q^12 + 1199*q^13 + 1773*q^14␣
→˓+ 2548*q^15 + 3722*q^16 + 5374*q^17 + O(q^18)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 -␣
→˓528*q^6 - 861*q^7 - 1383*q^8 - 2218*q^9 - 3472*q^10 - 5451*q^11 - 8447*q^12 -␣
→˓13020*q^13 - 19923*q^14 - 30403*q^15 - 46003*q^16 + O(q^17)

The following should give 0, but only approximately:

sage: q = X.parent().gen()
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True

16.1. Elliptic curves over the rational numbers 279

Elliptic curves, Release 9.8

modular_symbol(sign=1, normalize=None, implementation='eclib', nap=0)
Return the modular symbol map associated to this elliptic curve with given sign.

INPUT:

• sign – +1 (default) or -1.

• normalize – (default: None); either ‘L_ratio’, ‘period’, or ‘none’; ignored unless implementation
is ‘sage’. For ‘L_ratio’, the modular symbol tries to normalize correctly as explained below by com-
paring it to L_ratio for the curve and some small twists. The normalization ‘period’ uses the
integral_period_map for modular symbols which is known to be equal to the desired normaliza-
tion, up to the sign and a possible power of 2. With normalization ‘none’, the modular symbol is almost
certainly not correctly normalized, i.e. all values will be a fixed scalar multiple of what they should
be.

• implementation – either ‘eclib’ (default), ‘sage’ or ‘num’. Here, ‘eclib’ uses Cremona’s C++ imple-
mentation in the eclib library, ‘sage’ uses an implementation within Sage which is often quite a bit
slower, and ‘num’ uses Wuthrich’s implementation of numerical modular symbols.

• nap – (int, default 0); ignored unless implementation is ‘eclib’. The number of ap of E to use
in determining the normalisation of the modular symbols. If 0 (the default), then the value of
100*E.conductor().isqrt() is used. Using too small a value can lead to incorrect normalisation.

DEFINITION:

The modular symbol map sends any rational number 𝑟 to the rational number whichis the ratio of the real or
imaginary part (depending on the sign) of the integral of 2𝜋𝑖𝑓(𝑧)𝑑𝑧 from ∞ to 𝑟, where 𝑓 is the newform
attached to 𝐸, to the real or imaginary period of 𝐸.

More precisely: If the sign is +1, then the value returned is the quotient of the real part of this integral
by the least positive period Ω+

𝐸 of 𝐸. In particular for 𝑟 = 0, the value is equal to 𝐿(𝐸, 1)/Ω+
𝐸 (unlike

in L_ratio of lseries(), where the value is also divided by the number of connected components of
𝐸(R)). In particular the modular symbol depends on 𝐸 and not only the isogeny class of 𝐸. For sign
−1, it is the quotient of the imaginary part of the integral divided by the purely imaginary period of 𝐸
with smallest positive imaginary part. Note however there is an issue about these normalizations, hence the
optional argument normalize explained below

ALGORITHM:

For the implementations ‘sage’ and ‘eclib’, the used algorithm starts by finding the space of modular sym-
bols within the full space of all modular symbols of that level. This initial step will take a very long time if
the conductor is large (e.g. minutes for five digit conductors). Once the space is determined, each evaluation
is very fast (logarithmic in the denominator of 𝑟).

The implementation ‘num’ uses a different algorithm. It uses numerical integration along paths in the
upper half plane. The bounds are rigorously proved so that the outcome is known to be correct. The initial
step costs no time, instead each evaluation will take more time than in the above. More information in the
documentation of the class ModularSymbolNumerical.

See also:
modular_symbol_numerical()

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: M = E.modular_symbol(); M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x over Rational Field
sage: M(1/2)

(continues on next page)

280 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

0
sage: M(1/5)
1

sage: E = EllipticCurve('121b1')
sage: M = E.modular_symbol(implementation="sage")
Warning : Could not normalize the modular symbols, maybe all further results␣
→˓will be multiplied by -1 and a power of 2
sage: M(1/7)
-1/2

With the numerical version, rather high conductors can be computed:

sage: E = EllipticCurve([999,997])
sage: E.conductor()
16059400956
sage: m = E.modular_symbol(implementation="num")
sage: m(0) # long time
16

Different curves in an isogeny class have modular symbols which differ by a nonzero rational factor:

sage: E1 = EllipticCurve('11a1')
sage: M1 = E1.modular_symbol()
sage: M1(0)
1/5
sage: E2 = EllipticCurve('11a2')
sage: M2 = E2.modular_symbol()
sage: M2(0)
1
sage: E3 = EllipticCurve('11a3')
sage: M3 = E3.modular_symbol()
sage: M3(0)
1/25
sage: all(5*M1(r)==M2(r)==25*M3(r) for r in QQ.range_by_height(10))
True

With the default implementation using eclib, the symbols are correctly normalized automatically. With
the Sage implementation we can choose to normalize using the L-ratio, unless that is 0 (for curves of
positive rank) or using periods. Here is an example where the symbol is already normalized:

sage: E = EllipticCurve('11a2')
sage: E.modular_symbol(implementation = 'eclib')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='L_ratio')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='none')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='period')(0)
1

Here is an example where both normalization methods work, while the non-normalized symbol is incorrect:

16.1. Elliptic curves over the rational numbers 281

Elliptic curves, Release 9.8

sage: E = EllipticCurve('11a3')
sage: E.modular_symbol(implementation = 'eclib')(0)
1/25
sage: E.modular_symbol(implementation = 'sage', normalize='none')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='L_ratio')(0)
1/25
sage: E.modular_symbol(implementation = 'sage', normalize='period')(0)
1/25

Since trac ticket #10256, the interface for negative modular symbols in eclib is available:

sage: E = EllipticCurve('11a1')
sage: Mplus = E.modular_symbol(+1); Mplus
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mplus(1/i) for i in [1..11]]
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
sage: Mminus = E.modular_symbol(-1); Mminus
Modular symbol with sign -1 over Rational Field attached to Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mminus(1/i) for i in [1..11]]
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]

With older version of eclib, in the default ‘eclib’ implementation, if nap is too small, the normalization
may be computed incorrectly (see trac ticket #31317). This was fixed in eclib version v20210310, since
now eclib increase nap automatically. The following used to give incorrect results. See trac ticket #31443:

sage: E = EllipticCurve('1590g1')
sage: m = E.modular_symbol(nap=300)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

These values are correct, as verified by the numerical implementation:

sage: m = E.modular_symbol(implementation='num')
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

modular_symbol_numerical(sign=1, prec=20)
Return the modular symbol as a numerical function.

Just as in modular_symbol() this returns a function that maps any rational 𝑟 to a real number that should be
equal to the rational number with an error smaller than the given binary precision. In practice the precision
is often much higher. See the examples below. The normalisation is the same.

INPUT:

• sign – either +1 (default) or -1

• prec – an integer (default 20)

OUTPUT:

• a real number

ALGORITHM:

282 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/10256
https://trac.sagemath.org/31317
https://trac.sagemath.org/31443

Elliptic curves, Release 9.8

This method does not compute spaces of modular symbols, so it is suitable for curves of larger con-
ductor than can be handled by modular_symbol(). It is essentially the same implementation as
modular_symbol with implementation set to ‘num’. However the precision is not automatically chosen to
be certain that the output is equal to the rational number it approximates.

For large conductors one should set the prec very small.

EXAMPLES:

sage: E = EllipticCurve('19a1')
sage: f = E.modular_symbol_numerical(1)
sage: g = E.modular_symbol(1)
sage: f(0), g(0) # abs tol 1e-11
(0.333333333333333, 1/3)

sage: E = EllipticCurve('5077a1')
sage: f = E.modular_symbol_numerical(-1, prec=2)
sage: f(0) # abs tol 1e-11
0.000000000000000
sage: f(1/7) # abs tol 1e-11
0.999844176260303

sage: E = EllipticCurve([123,456])
sage: E.conductor()
104461920
sage: f = E.modular_symbol_numerical(prec=2)
sage: f(0) # abs tol 1e-11
2.00001004772210

modular_symbol_space(sign=1, base_ring=Rational Field, bound=None)
Return the space of cuspidal modular symbols associated to this elliptic curve, with given sign and base
ring.

INPUT:

• sign – 0, -1, or 1

• base_ring – a ring

EXAMPLES:

sage: f = EllipticCurve('37b')
sage: f.modular_symbol_space()
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3␣
→˓for Gamma_0(37) of weight 2 with sign 1 over Rational Field
sage: f.modular_symbol_space(-1)
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2␣
→˓for Gamma_0(37) of weight 2 with sign -1 over Rational Field
sage: f.modular_symbol_space(0, bound=3)
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 5␣
→˓for Gamma_0(37) of weight 2 with sign 0 over Rational Field

Note: If you just want the 𝑞-expansion, use q_expansion().

mwrank(options='')

16.1. Elliptic curves over the rational numbers 283

Elliptic curves, Release 9.8

Run Cremona’s mwrank program on this elliptic curve and return the result as a string.

INPUT:

• options (string) – run-time options passed when starting mwrank. The format is as follows (see below
for examples of usage):

– -v n (verbosity level) sets verbosity to n (default=1)

– -o (PARI/GP style output flag) turns ON extra PARI/GP short output (default is OFF)

– -p n (precision) sets precision to 𝑛 decimals (default=15)

– -b n (quartic bound) bound on quartic point search (default=10)

– -x n (n_aux) number of aux primes used for sieving (default=6)

– -l (generator list flag) turns ON listing of points (default ON unless v=0)

– -s (selmer_only flag) if set, computes Selmer rank only (default: not set)

– -d (skip_2nd_descent flag) if set, skips the second descent for curves with 2-torsion (default: not
set)

– -S n (sat_bd) upper bound on saturation primes (default=100, -1 for automatic)

OUTPUT:

• (string) – output of mwrank on this curve

Note: The output is a raw string and completely illegible using automatic display, so it is recommended
to use print for legible output.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.mwrank() #random
...
sage: print(E.mwrank())
Curve [0,0,1,-1,0] : Basic pair: I=48, J=-432
disc=255744
...
Generator 1 is [0:-1:1]; height 0.05111...

Regulator = 0.05111...

The rank and full Mordell-Weil basis have been determined unconditionally.
...

Options to mwrank can be passed:

sage: E = EllipticCurve([0,0,0,877,0])

Run mwrank with 'verbose' flag set to 0 but list generators if found:

sage: print(E.mwrank('-v0 -l'))
Curve [0,0,0,877,0] : 0 <= rank <= 1
Regulator = 1

284 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Run mwrank again, this time with a higher bound for point searching on homogeneous spaces:

sage: print(E.mwrank('-v0 -l -b11'))
Curve [0,0,0,877,0] : Rank = 1
Generator 1 is [29604565304828237474403861024284371796799791624792913256602210:-
→˓256256267988926809388776834045513089648669153204356603464786949:490078023219787588959802933995928925096061616470779979261000];
→˓ height 95.98037...
Regulator = 95.98037...

mwrank_curve(verbose=False)
Construct an mwrank_EllipticCurve from this elliptic curve

The resulting mwrank_EllipticCurve has available methods from John Cremona’s eclib library.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: EE = E.mwrank_curve()
sage: EE
y^2 + y = x^3 - x^2 - 10 x - 20
sage: type(EE)
<class 'sage.libs.eclib.interface.mwrank_EllipticCurve'>
sage: EE.isogeny_class()
([[0, -1, 1, -10, -20], [0, -1, 1, -7820, -263580], [0, -1, 1, 0, 0]],
[[0, 5, 5], [5, 0, 0], [5, 0, 0]])

newform()

Same as self.modular_form().

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.newform()
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + O(q^6)
sage: E.newform() == E.modular_form()
True

ngens(proof=None)
Return the number of generators of this elliptic curve.

Note: See gens() for further documentation. The function ngens() calls gens() if not already done, but
only with default parameters. Better results may be obtained by calling mwrank() with carefully chosen
parameters.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.ngens()
1

sage: E = EllipticCurve([0,0,0,877,0])
sage: E.ngens()
1

(continues on next page)

16.1. Elliptic curves over the rational numbers 285

Elliptic curves, Release 9.8

(continued from previous page)

sage: print(E.mwrank('-v0 -b12 -l'))
Curve [0,0,0,877,0] : Rank = 1
Generator 1 is [29604565304828237474403861024284371796799791624792913256602210:-
→˓256256267988926809388776834045513089648669153204356603464786949:490078023219787588959802933995928925096061616470779979261000];
→˓ height 95.98037...
Regulator = 95.980...

optimal_curve()

Given an elliptic curve that is in the installed Cremona database, return the optimal curve isogenous to it.

EXAMPLES:

The following curve is not optimal:

sage: E = EllipticCurve('11a2'); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational␣
→˓Field
sage: E.optimal_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.optimal_curve().cremona_label()
'11a1'

Note that 990h is the special case where the optimal curve isn’t the first in the Cremona labeling:

sage: E = EllipticCurve('990h4'); E
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 6112*x - 41533 over␣
→˓Rational Field
sage: F = E.optimal_curve(); F
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1568*x - 4669 over␣
→˓Rational Field
sage: F.cremona_label()
'990h3'
sage: EllipticCurve('990a1').optimal_curve().cremona_label() # a isn't h.
'990a1'

If the input curve is optimal, this function returns that curve (not just a copy of it or a curve isomorphic to
it!):

sage: E = EllipticCurve('37a1')
sage: E.optimal_curve() is E
True

Also, if this curve is optimal but not given by a minimal model, this curve will still be returned, so this
function need not return a minimal model in general.

sage: F = E.short_weierstrass_model(); F
Elliptic Curve defined by y^2 = x^3 - 16*x + 16 over Rational Field
sage: F.optimal_curve()
Elliptic Curve defined by y^2 = x^3 - 16*x + 16 over Rational Field

ordinary_primes(B)
Return a list of all ordinary primes for this elliptic curve up to and possibly including B.

EXAMPLES:

286 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: e = EllipticCurve('11a')
sage: e.aplist(20)
[-2, -1, 1, -2, 1, 4, -2, 0]
sage: e.ordinary_primes(97)
[3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,␣
→˓89, 97]
sage: e = EllipticCurve('49a')
sage: e.aplist(20)
[1, 0, 0, 0, 4, 0, 0, 0]
sage: e.supersingular_primes(97)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97]
sage: e.ordinary_primes(97)
[2, 11, 23, 29, 37, 43, 53, 67, 71, 79]
sage: e.ordinary_primes(3)
[2]
sage: e.ordinary_primes(2)
[2]
sage: e.ordinary_primes(1)
[]

padic_E2(p, prec=20, check=False, check_hypotheses=True, algorithm='auto')
Returns the value of the 𝑝-adic modular form 𝐸2 for (𝐸,𝜔) where 𝜔 is the usual invariant differential
𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

INPUT:

• p – prime (= 5) for which 𝐸 is good and ordinary

• prec – (relative) p-adic precision (= 1) for result

• check – boolean, whether to perform a consistency check. This will slow down the computation by
a constant factor 2. (The consistency check is to compute the whole matrix of frobenius on Monsky-
Washnitzer cohomology, and verify that its trace is correct to the specified precision. Otherwise, the
trace is used to compute one column from the other one (possibly after a change of basis).)

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic sigma func-
tion makes sense

• algorithm – one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm
is used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better
performance for large 𝑝, but only works when 𝑝 > 6𝑁 (𝑁 = prec). The “auto” option selects “sqrtp”
whenever possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless
of the setting of the “check” flag.

OUTPUT: p-adic number to precision prec

Note: If the discriminant of the curve has nonzero valuation at p, then the result will not be returned mod
𝑝prec, but it still will have prec digits of precision.

Todo: Once we have a better implementation of the “standard” algorithm, the algorithm selection strategy
for “auto” needs to be revisited.

AUTHORS:

16.1. Elliptic curves over the rational numbers 287

Elliptic curves, Release 9.8

• David Harvey (2006-09-01): partly based on code written by Robert Bradshaw at the MSRI 2006
modular forms workshop

ACKNOWLEDGMENT: - discussion with Eyal Goren that led to the trace trick.

EXAMPLES: Here is the example discussed in the paper “Computation of p-adic Heights and Log Con-
vergence” (Mazur, Stein, Tate):

sage: EllipticCurve([-1, 1/4]).padic_E2(5)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12␣
→˓+ 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + O(5^20)

Let’s try to higher precision (this is the same answer the MAGMA implementation gives):

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 100)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12␣
→˓+ 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^
→˓22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + 2*5^30 + 5^31 + 4*5^33 +␣
→˓3*5^34 + 4*5^35 + 5^36 + 4*5^37 + 4*5^38 + 3*5^39 + 4*5^41 + 2*5^42 + 3*5^43␣
→˓+ 2*5^44 + 2*5^48 + 3*5^49 + 4*5^50 + 2*5^51 + 5^52 + 4*5^53 + 4*5^54 + 3*5^
→˓55 + 2*5^56 + 3*5^57 + 4*5^58 + 4*5^59 + 5^60 + 3*5^61 + 5^62 + 4*5^63 + 5^65␣
→˓+ 3*5^66 + 2*5^67 + 5^69 + 2*5^70 + 3*5^71 + 3*5^72 + 5^74 + 5^75 + 5^76 +␣
→˓3*5^77 + 4*5^78 + 4*5^79 + 2*5^80 + 3*5^81 + 5^82 + 5^83 + 4*5^84 + 3*5^85 +␣
→˓2*5^86 + 3*5^87 + 5^88 + 2*5^89 + 4*5^90 + 4*5^92 + 3*5^93 + 4*5^94 + 3*5^95␣
→˓+ 2*5^96 + 4*5^97 + 4*5^98 + 2*5^99 + O(5^100)

Check it works at low precision too:

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 2)
2 + 4*5 + O(5^2)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 3)
2 + 4*5 + O(5^3)

TODO: With the old(-er), i.e., = sage-2.4 p-adics we got 5 +𝑂(52) as output, i.e., relative precision 1, but
with the newer p-adics we get relative precision 0 and absolute precision 1.

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_E2(5, 1)
O(5)

Check it works for different models of the same curve (37a), even when the discriminant changes by a power
of p (note that E2 depends on the differential too, which is why it gets scaled in some of the examples below):

sage: X1 = EllipticCurve([-1, 1/4])
sage: X1.j_invariant(), X1.discriminant()
(110592/37, 37)
sage: X1.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X2 = EllipticCurve([0, 0, 1, -1, 0])
sage: X2.j_invariant(), X2.discriminant()
(110592/37, 37)
sage: X2.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

288 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: X3 = EllipticCurve([-1*(2**4), 1/4*(2**6)])
sage: X3.j_invariant(), X3.discriminant() / 2**12
(110592/37, 37)
sage: 2**(-2) * X3.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X4 = EllipticCurve([-1*(7**4), 1/4*(7**6)])
sage: X4.j_invariant(), X4.discriminant() / 7**12
(110592/37, 37)
sage: 7**(-2) * X4.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X5 = EllipticCurve([-1*(5**4), 1/4*(5**6)])
sage: X5.j_invariant(), X5.discriminant() / 5**12
(110592/37, 37)
sage: 5**(-2) * X5.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X6 = EllipticCurve([-1/(5**4), 1/4/(5**6)])
sage: X6.j_invariant(), X6.discriminant() * 5**12
(110592/37, 37)
sage: 5**2 * X6.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

Test check=True vs check=False:

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1, check=False)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1, check=True)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 30, check=False)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12␣
→˓+ 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^
→˓22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + O(5^30)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 30, check=True)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12␣
→˓+ 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^
→˓22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + O(5^30)

Here’s one using the 𝑝1/2 algorithm:

sage: EllipticCurve([-1, 1/4]).padic_E2(3001, 3, algorithm="sqrtp")
1907 + 2819*3001 + 1124*3001^2 + O(3001^3)

padic_height(p, prec=20, sigma=None, check_hypotheses=True)
Compute the cyclotomic p-adic height.

The equation of the curve must be minimal at 𝑝.

INPUT:

• p – prime >= 5 for which the curve has semi-stable reduction

• prec – integer >= 1 (default 20), desired precision of result

16.1. Elliptic curves over the rational numbers 289

Elliptic curves, Release 9.8

• sigma – precomputed value of sigma. If not supplied, this function will call padic_sigma to compute
it.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height makes
sense

OUTPUT: A function that accepts two parameters:

• a Q-rational point on the curve whose height should be computed

• optional boolean flag ‘check’: if False, it skips some input checking, and returns the p-adic height of
that point to the desired precision.

• The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the
literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as
stated in [Mazur-Tate-Teitelbaum].

AUTHORS:

• Jennifer Balakrishnan: original code developed at the 2006 MSRI graduate workshop on modular
forms

• David Harvey (2006-09-13): integrated into Sage, optimised to speed up repeated evaluations of the
returned height function, addressed some thorny precision questions

• David Harvey (2006-09-30): rewrote to use division polynomials for computing denominator of 𝑛𝑃 .

• David Harvey (2007-02): cleaned up according to algorithms in “Efficient Computation of p-adic
Heights”

• Chris Wuthrich (2007-05): added supersingular and multiplicative heights

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h = E.padic_height(5, 10)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

sage: h = E.padic_height(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^
→˓7 + 30*53^8 + 17*53^9 + O(53^10)

Boundary case:

sage: E.padic_height(5, 3)(P)
5 + 5^2 + O(5^3)

A case that works the division polynomial code a little harder:

sage: E.padic_height(5, 10)(5*P)
5^3 + 5^4 + 5^5 + 3*5^8 + 4*5^9 + O(5^10)

Check that answers agree over a range of precisions:

290 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_height(5, max_prec)(P) # long time
sage: for prec in range(1, max_prec): # long time
....: assert E.padic_height(5, prec)(P) == full # long time

A supersingular prime for a curve:

sage: E = EllipticCurve('37a')
sage: E.is_supersingular(3)
True
sage: h = E.padic_height(3, 5)
sage: h(E.gens()[0])
(3 + 3^3 + O(3^6), 2*3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + O(3^7))
sage: E.padic_regulator(5)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14 +␣
→˓5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)
sage: E.padic_regulator(3, 5)
(3 + 2*3^2 + 3^3 + O(3^4), 3^2 + 2*3^3 + 3^4 + O(3^5))

A torsion point in both the good and supersingular cases:

sage: E = EllipticCurve('11a')
sage: P = E.torsion_subgroup().gen(0).element(); P
(5 : 5 : 1)
sage: h = E.padic_height(19, 5)
sage: h(P)
0
sage: h = E.padic_height(5, 5)
sage: h(P)
0

The result is not dependent on the model for the curve:

sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: P = E.gens()[0]
sage: Pm = Em.gens()[0]
sage: h = E.padic_height(7)
sage: hm = Em.padic_height(7)
sage: h(P) == hm(Pm)
True

padic_height_pairing_matrix(p, prec=20, height=None, check_hypotheses=True)
Computes the cyclotomic 𝑝-adic height pairing matrix of this curve with respect to the basis self.gens() for
the Mordell-Weil group for a given odd prime p of good ordinary reduction.

INPUT:

• p – prime >= 5

• prec – answer will be returned modulo 𝑝prec

• height – precomputed height function. If not supplied, this function will call padic_height to compute
it.

16.1. Elliptic curves over the rational numbers 291

Elliptic curves, Release 9.8

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height makes
sense

OUTPUT: The p-adic cyclotomic height pairing matrix of this curve to the given precision.

Todo: remove restriction that curve must be in minimal Weierstrass form. This is currently required for
E.gens().

AUTHORS:

• David Harvey, Liang Xiao, Robert Bradshaw, Jennifer Balakrishnan: original implementation at the
2006 MSRI graduate workshop on modular forms

• David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height
computations

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.padic_height_pairing_matrix(5, 10)
[5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)]

A rank two example:

sage: e =EllipticCurve('389a')
sage: e._set_gens([e(-1, 1), e(1,0)]) # avoid platform dependent gens
sage: e.padic_height_pairing_matrix(5,10)
[3*5 + 2*5^2 + 5^4 + 5^5 + 5^7 + 4*5^9 + O(5^10) 5 + 4*5^
→˓2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5^7 + 5^8 + 2*5^9 + O(5^10)]
[5 + 4*5^2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5^7 + 5^8 + 2*5^9 + O(5^10) ␣
→˓ 4*5 + 2*5^4 + 3*5^6 + 4*5^7 + 4*5^8 + O(5^10)]

An anomalous rank 3 example:

sage: e = EllipticCurve("5077a")
sage: e._set_gens([e(-1,3), e(2,0), e(4,6)])
sage: e.padic_height_pairing_matrix(5,4)
[4 + 3*5 + 4*5^2 + 4*5^3 + O(5^4) 4 + 4*5^2 + 2*5^3 + O(5^4) 3*5 +␣
→˓4*5^2 + 5^3 + O(5^4)]
[4 + 4*5^2 + 2*5^3 + O(5^4) 3 + 4*5 + 3*5^2 + 5^3 + O(5^4) ␣
→˓ 2 + 4*5 + O(5^4)]
[3*5 + 4*5^2 + 5^3 + O(5^4) 2 + 4*5 + O(5^4) 1 + 3*5␣
→˓+ 5^2 + 5^3 + O(5^4)]

padic_height_via_multiply(p, prec=20, E2=None, check_hypotheses=True)
Computes the cyclotomic p-adic height.

The equation of the curve must be minimal at 𝑝.

INPUT:

• p – prime >= 5 for which the curve has good ordinary reduction

• prec – integer >= 2 (default 20), desired precision of result

• E2 – precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The
value supplied must be correct mod 𝑝(𝑝𝑟𝑒𝑐−2) (or slightly higher in the anomalous case; see the code
for details).

292 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height makes
sense

OUTPUT: A function that accepts two parameters:

• a Q-rational point on the curve whose height should be computed

• optional boolean flag ‘check’: if False, it skips some input checking, and returns the p-adic height of
that point to the desired precision.

• The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the
literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as
stated in [Mazur-Tate-Teitelbaum].

AUTHORS:

• David Harvey (2008-01): based on the padic_height() function, using the algorithm of”Computing
p-adic heights via point multiplication”

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h = E.padic_height_via_multiply(5, 10)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

sage: h = E.padic_height_via_multiply(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^
→˓7 + 30*53^8 + 17*53^9 + O(53^10)

Supply the value of E2 manually:

sage: E2 = E.padic_E2(5, 8)
sage: E2
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + O(5^8)
sage: h = E.padic_height_via_multiply(5, 10, E2=E2)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

Boundary case:

sage: E.padic_height_via_multiply(5, 3)(P)
5 + 5^2 + O(5^3)

Check that answers agree over a range of precisions:

sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_height(5, max_prec)(P) # long time
sage: for prec in range(2, max_prec): # long time
....: assert E.padic_height_via_multiply(5, prec)(P) == full # long time

padic_lseries(p, normalize=None, implementation='eclib', precision=None)
Return the 𝑝-adic 𝐿-series of self at 𝑝, which is an object whose approx method computes approximation
to the true 𝑝-adic 𝐿-series to any desired precision.

16.1. Elliptic curves over the rational numbers 293

Elliptic curves, Release 9.8

INPUT:

• p – prime

• normalize – ‘L_ratio’ (default), ‘period’ or ‘none’; this is describes the way the modular symbols are
normalized. See modular_symbol for more details.

• implementation – ‘eclib’ (default), ‘sage’, ‘num’ or ‘pollackstevens’; Whether to use John Cre-
mona’s eclib, the Sage implementation, numerical modular symbols or Pollack-Stevens’ implementa-
tion of overconvergent modular symbols.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.padic_lseries(5); L
5-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational␣
→˓Field
sage: type(L)
<class 'sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary'>

We compute the 3-adic 𝐿-series of two curves of rank 0 and in each case verify the interpolation property
for their leading coefficient (i.e., value at 0):

sage: e = EllipticCurve('11a')
sage: ms = e.modular_symbol()
sage: [ms(1/11), ms(1/3), ms(0), ms(oo)]
[0, -3/10, 1/5, 0]
sage: ms(0)
1/5
sage: L = e.padic_lseries(3)
sage: P = L.series(5)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)
sage: alpha = L.alpha(9); alpha
2 + 3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 3^8 + O(3^9)
sage: R.<x> = QQ[]
sage: f = x^2 - e.ap(3)*x + 3
sage: f(alpha)
O(3^9)
sage: r = e.lseries().L_ratio(); r
1/5
sage: (1 - alpha^(-1))^2 * r
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + O(3^9)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)

Next consider the curve 37b:

sage: e = EllipticCurve('37b')
sage: L = e.padic_lseries(3)
sage: P = L.series(5)
sage: alpha = L.alpha(9); alpha
1 + 2*3 + 3^2 + 2*3^5 + 2*3^7 + 3^8 + O(3^9)
sage: r = e.lseries().L_ratio(); r
1/3
sage: (1 - alpha^(-1))^2 * r

(continues on next page)

294 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

3 + 3^2 + 2*3^4 + 2*3^5 + 2*3^6 + 3^7 + O(3^9)
sage: P(0)
3 + 3^2 + 2*3^4 + 2*3^5 + O(3^6)

We can use Sage modular symbols instead to compute the 𝐿-series:

sage: e = EllipticCurve('11a')
sage: L = e.padic_lseries(3, implementation = 'sage')
sage: L.series(5,prec=10)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7) + (1 + 3 + 2*3^2 + 3^3 + O(3^4))*T +␣
→˓(1 + 2*3 + O(3^4))*T^2 + (3 + 2*3^2 + O(3^3))*T^3 + (2*3 + 3^2 + O(3^3))*T^4␣
→˓+ (2 + 2*3 + 2*3^2 + O(3^3))*T^5 + (1 + 3^2 + O(3^3))*T^6 + (2 + 3^2 + O(3^
→˓3))*T^7 + (2 + 2*3 + 2*3^2 + O(3^3))*T^8 + (2 + O(3^2))*T^9 + O(T^10)

Also the numerical modular symbols can be used. This may allow for much larger conductor in some
instances:

sage: E = EllipticCurve([101,103])
sage: L = E.padic_lseries(5, implementation="num")
sage: L.series(2)
O(5^4) + (3 + O(5))*T + (1 + O(5))*T^2 + (3 + O(5))*T^3 + O(5)*T^4 + O(T^5)

Finally, we can use the overconvergent method of Pollack-Stevens.:

sage: e = EllipticCurve('11a')
sage: L = e.padic_lseries(3, implementation = 'pollackstevens', precision = 6)
sage: L.series(5)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + O(3^6) + (1 + 3 + 2*3^2 + 3^3 + O(3^4))*T + (1 +␣
→˓2*3 + O(3^2))*T^2 + (3 + O(3^2))*T^3 + O(3^0)*T^4 + O(T^5)
sage: L[3]
3 + O(3^2)

Another example with a semistable prime.:

sage: E = EllipticCurve("11a1")
sage: L = E.padic_lseries(11, implementation = 'pollackstevens', precision=3)
sage: L[1]
10 + 3*11 + O(11^2)
sage: L[3]
O(11^0)

padic_regulator(p, prec=20, height=None, check_hypotheses=True)
Compute the cyclotomic 𝑝-adic regulator of this curve.

INPUT:

• p – prime >= 5

• prec – answer will be returned modulo 𝑝prec

• height – precomputed height function. If not supplied, this function will call padic_height to compute
it.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height makes
sense

16.1. Elliptic curves over the rational numbers 295

Elliptic curves, Release 9.8

OUTPUT: The p-adic cyclotomic regulator of this curve, to the requested precision.

If the rank is 0, we output 1.

Todo: Remove restriction that curve must be in minimal Weierstrass form. This is currently required for
E.gens().

AUTHORS:

• Liang Xiao: original implementation at the 2006 MSRI graduate workshop on modular forms

• David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height
computations

• Chris Wuthrich (2007-05-22): added multiplicative and supersingular cases

• David Harvey (2007-09-20): fixed some precision loss that was occurring

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: E.padic_regulator(5, 10)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

sage: E.padic_regulator(53, 10)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^
→˓7 + 30*53^8 + O(53^9)

An anomalous case where the precision drops some:

sage: E = EllipticCurve("5077a")
sage: E.padic_regulator(5, 10)
5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 4*5^7 + 2*5^8 + 5^9 + O(5^10)

Check that answers agree over a range of precisions:

sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_regulator(5, max_prec) # long time
sage: for prec in range(1, max_prec): # long time
....: assert E.padic_regulator(5, prec) == full # long time

A case where the generator belongs to the formal group already (trac ticket #3632):

sage: E = EllipticCurve([37,0])
sage: E.padic_regulator(5,10)
2*5^2 + 2*5^3 + 5^4 + 5^5 + 4*5^6 + 3*5^8 + 4*5^9 + O(5^10)

The result is not dependent on the model for the curve:

sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: E.padic_regulator(7) == Em.padic_regulator(7)
True

Allow a Python int as input:

296 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/3632

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: E.padic_regulator(int(5))
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14 +␣
→˓5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)

padic_sigma(p, N=20, E2=None, check=False, check_hypotheses=True)
Computes the p-adic sigma function with respect to the standard invariant differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3),
as defined by Mazur and Tate, as a power series in the usual uniformiser 𝑡 at the origin.

The equation of the curve must be minimal at 𝑝.

INPUT:

• p – prime >= 5 for which the curve has good ordinary reduction

• N – integer >= 1 (default 20), indicates precision of result; see OUTPUT section for description

• E2 – precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The
value supplied must be correct mod 𝑝𝑁−2.

• check – boolean, whether to perform a consistency check (i.e. verify that the computed sigma satisfies
the defining

• differential equation – note that this does NOT guarantee correctness of all the returned digits,
but it comes pretty close :-))

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic sigma func-
tion makes sense

OUTPUT: A power series 𝑡+ · · · with coefficients in Z𝑝.

The output series will be truncated at 𝑂(𝑡𝑁+1), and the coefficient of 𝑡𝑛 for 𝑛 ≥ 1 will be correct to
precision 𝑂(𝑝𝑁−𝑛+1).

In practice this means the following. If 𝑡0 = 𝑝𝑘𝑢, where 𝑢 is a 𝑝-adic unit with at least𝑁 digits of precision,
and 𝑘 ≥ 1, then the returned series may be used to compute 𝜎(𝑡0) correctly modulo 𝑝𝑁+𝑘 (i.e. with 𝑁
correct 𝑝-adic digits).

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey), which is basically
an optimised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein, Tate).

Running time is soft-𝑂(𝑁2 log 𝑝), plus whatever time is necessary to compute 𝐸2.

AUTHORS:

• David Harvey (2006-09-12)

• David Harvey (2007-02): rewrote

EXAMPLES:

sage: EllipticCurve([-1, 1/4]).padic_sigma(5, 10)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣
→˓O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + O(5^
→˓5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 + O(5^
→˓2))*t^9 + O(5)*t^10 + O(t^11)

Run it with a consistency check:

sage: EllipticCurve("37a").padic_sigma(5, 10, check=True)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣

(continues on next page)

16.1. Elliptic curves over the rational numbers 297

Elliptic curves, Release 9.8

(continued from previous page)

→˓O(5^8))*t^3 + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7))*t^4␣
→˓+ (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 + O(5^5))*t^6␣
→˓+ (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 + (4*5 +␣
→˓O(5^2))*t^9 + (1 + O(5))*t^10 + O(t^11)

Boundary cases:

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_sigma(5, 1)
(1 + O(5))*t + O(t^2)
sage: EllipticCurve([1, 1, 1, 1, 1]).padic_sigma(5, 2)
(1 + O(5^2))*t + (3 + O(5))*t^2 + O(t^3)

Supply your very own value of E2:

sage: X = EllipticCurve("37a")
sage: my_E2 = X.padic_E2(5, 8)
sage: my_E2 = my_E2 + 5**5 # oops!!!
sage: X.padic_sigma(5, 10, E2=my_E2)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 4*5^5 + 2*5^6 +␣
→˓3*5^7 + O(5^8))*t^3 + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^
→˓7))*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 3*5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 +␣
→˓O(5^5))*t^6 + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8␣
→˓+ (4*5 + O(5^2))*t^9 + (1 + O(5))*t^10 + O(t^11)

Check that sigma is “weight 1”.

sage: f = EllipticCurve([-1, 3]).padic_sigma(5, 10)
sage: g = EllipticCurve([-1*(2**4), 3*(2**6)]).padic_sigma(5, 10)
sage: t = f.parent().gen()
sage: f(2*t)/2
(1 + O(5^10))*t + (4 + 3*5 + 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 3*5^6 + 5^7 + O(5^
→˓8))*t^3 + (3 + 3*5^2 + 5^4 + 2*5^5 + O(5^6))*t^5 + (4 + 5 + 3*5^3 + O(5^4))*t^
→˓7 + (4 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)
sage: g
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (4 + 3*5 + 3*5^2 + 3*5^3 + 4*5^4 + 4*5^
→˓5 + 3*5^6 + 5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (3 + 3*5^2 + 5^4 + 2*5^5 + O(5^
→˓6))*t^5 + O(5^5)*t^6 + (4 + 5 + 3*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (4 + 2*5 +␣
→˓O(5^2))*t^9 + O(5)*t^10 + O(t^11)
sage: f(2*t)/2 -g
O(t^11)

Test that it returns consistent results over a range of precision:

sage: max_N = 30 # get up to at least p^2 # long time
sage: E = EllipticCurve([1, 1, 1, 1, 1]) # long time
sage: p = 5 # long time
sage: E2 = E.padic_E2(5, max_N) # long time
sage: max_sigma = E.padic_sigma(p, max_N, E2=E2) # long time
sage: for N in range(3, max_N): # long time
....: sigma = E.padic_sigma(p, N, E2=E2) # long time
....: assert sigma == max_sigma

padic_sigma_truncated(p, N=20, lamb=0, E2=None, check_hypotheses=True)

298 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Compute the p-adic sigma function with respect to the standard invariant differential 𝑑𝑥/(2𝑦+ 𝑎1𝑥+ 𝑎3),
as defined by Mazur and Tate, as a power series in the usual uniformiser 𝑡 at the origin.

The equation of the curve must be minimal at 𝑝.

This function differs from padic_sigma() in the precision profile of the returned power series; see OUT-
PUT below.

INPUT:

• p – prime >= 5 for which the curve has good ordinary reduction

• N – integer >= 2 (default 20), indicates precision of result; see OUTPUT section for description

• lamb – integer >= 0, see OUTPUT section for description

• E2 – precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The
value supplied must be correct mod 𝑝𝑁−2.

• check_hypotheses – boolean, whether to check that this is a curve for which the p-adic sigma func-
tion makes sense

OUTPUT: A power series 𝑡+ · · · with coefficients in Z𝑝.

The coefficient of 𝑡𝑗 for 𝑗 ≥ 1 will be correct to precision 𝑂(𝑝𝑁−2+(3−𝑗)(𝑙𝑎𝑚𝑏+1)).

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey, to appear in LMS
JCM), which is basically an optimised version of the algorithm from “p-adic Heights and Log Convergence”
(Mazur, Stein, Tate), and “Computing p-adic heights via point multiplication” (David Harvey, still draft
form).

Running time is soft-𝑂(𝑁2𝜆−1 log 𝑝), plus whatever time is necessary to compute 𝐸2.

AUTHORS:

• David Harvey (2008-01): wrote based on previous padic_sigma() function

EXAMPLES:

sage: E = EllipticCurve([-1, 1/4])
sage: E.padic_sigma_truncated(5, 10)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣
→˓O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + O(5^
→˓5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 + O(5^
→˓2))*t^9 + O(5)*t^10 + O(t^11)

Note the precision of the 𝑡3 coefficient depends only on 𝑁 , not on lamb:

sage: E.padic_sigma_truncated(5, 10, lamb=2)
O(5^17) + (1 + O(5^14))*t + O(5^11)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +␣
→˓O(5^8))*t^3 + O(5^5)*t^4 + (2 + O(5^2))*t^5 + O(t^6)

Compare against plain padic_sigma() function over a dense range of N and lamb

sage: E = EllipticCurve([1, 2, 3, 4, 7]) # long time
sage: E2 = E.padic_E2(5, 50) # long time
sage: for N in range(2, 10): # long time
....: for lamb in range(10): # long time
....: correct = E.padic_sigma(5, N + 3*lamb, E2=E2) # long time
....: compare = E.padic_sigma_truncated(5, N=N, lamb=lamb, E2=E2) #␣
→˓long time
....: assert compare == correct # long time

16.1. Elliptic curves over the rational numbers 299

Elliptic curves, Release 9.8

pari_curve()

Return the PARI curve corresponding to this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: e = E.pari_curve()
sage: type(e)
<... 'cypari2.gen.Gen'>
sage: e.type()
't_VEC'
sage: e.ellan(10)
[1, -2, -3, 2, -2, 6, -1, 0, 6, 4]

sage: E = EllipticCurve(RationalField(), ['1/3', '2/3'])
sage: e = E.pari_curve()
sage: e[:5]
[0, 0, 0, 1/3, 2/3]

When doing certain computations, PARI caches the results:

sage: E = EllipticCurve('37a1')
sage: _ = E.__dict__.pop('_pari_curve', None) # clear cached data
sage: Epari = E.pari_curve()
sage: Epari
[0, 0, 1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, Vecsmall([1]),␣
→˓[Vecsmall([64, 1])], [0, 0, 0, 0, 0, 0, 0, 0]]
sage: Epari.omega()
[2.99345864623196, -2.45138938198679*I]
sage: Epari
[0, 0, 1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, Vecsmall([1]),␣
→˓[Vecsmall([64, 1])], [[2.99345864623196, -2.45138938198679*I], 0, [0.
→˓837565435283323, 0.269594436405445, -1.10715987168877, 1.37675430809421, 1.
→˓94472530697209, 0.567970998877878]~, 0, 0, 0, 0, 0]]

This shows that the bug uncovered by trac ticket #4715 is fixed:

sage: Ep = EllipticCurve('903b3').pari_curve()

This still works, even when the curve coefficients are large (see trac ticket #13163):

sage: E = EllipticCurve([4382696457564794691603442338788106497, 28, 3992,␣
→˓16777216, 298])
sage: E.pari_curve()
[4382696457564794691603442338788106497, 28, 3992, 16777216, 298, ...]
sage: E.minimal_model()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 -␣
→˓7686423934083797390675981169229171907674183588326184511391146727143672423167091484392497987721106542488224058921302964259990799229848935835464702*x␣
→˓+␣
→˓8202280443553761483773108648734271851215988504820214784899752662100459663011709992446860978259617135893103951840830254045837355547141096270521198994389833928471736723050112419004202643591202131091441454709193394358885␣
→˓over Rational Field

pari_mincurve()

Return the PARI curve corresponding to a minimal model for this elliptic curve.

300 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/4715
https://trac.sagemath.org/13163

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve(RationalField(), ['1/3', '2/3'])
sage: e = E.pari_mincurve()
sage: e[:5]
[0, 0, 0, 27, 486]
sage: E.conductor()
47232
sage: e.ellglobalred()
[47232, [1, 0, 0, 0], 2, [2, 7; 3, 2; 41, 1], [[7, 2, 0, 1], [2, -3, 0, 2], [1,␣
→˓5, 0, 1]]]

period_lattice(embedding=None)
Return the period lattice of the elliptic curve with respect to the differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

INPUT:

• embedding – ignored (for compatibility with the period_lattice function for ellip-
tic_curve_number_field)

OUTPUT:

(period lattice) The PeriodLattice_ell object associated to this elliptic curve (with respect to the natural
embedding of Q into R).

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice()
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field

point_search(height_limit, verbose=False, rank_bound=None)
Search for points on a curve up to an input bound on the naive logarithmic height.

INPUT:

• height_limit – float; bound on naive height

• verbose – boolean (default: False); if True, report on the saturation process otherwise just return
the result

• rank_bound – boolean (optional); if provided, stop saturating once we find this many independent
nontorsion points

OUTPUT: points (list) - list of independent points which generate the subgroup of the Mordell-Weil group
generated by the points found and then saturated.

Warning: height_limit is logarithmic, so increasing by 1 will cause the running time to increase by a
factor of approximately 4.5 (=exp(1.5)).

IMPLEMENTATION: Uses Michael Stoll’s ratpoints module in PARI/GP.

EXAMPLES:

sage: E = EllipticCurve('389a1')
sage: E.point_search(5, verbose=False)
[(-1 : 1 : 1), (0 : 0 : 1)]

16.1. Elliptic curves over the rational numbers 301

Elliptic curves, Release 9.8

Increasing the height_limit takes longer, but finds no more points:

sage: E.point_search(10, verbose=False)
[(-1 : 1 : 1), (0 : 0 : 1)]

In fact this curve has rank 2 so no more than 2 points will ever be output, but we are not using this fact.

sage: E.saturation(_)
([(-1 : 1 : 1), (0 : 0 : 1)], 1, 0.152460177943144)

What this shows is that if the rank is 2 then the points listed do generate the Mordell-Weil group (mod
torsion). Finally,

sage: E.rank()
2

If we only need one independent generator:

sage: E.point_search(5, verbose=False, rank_bound=1)
[(-2 : 0 : 1)]

pollack_stevens_modular_symbol(sign=0, implementation='eclib')
Create the modular symbol attached to the elliptic curve, suitable for overconvergent calculations.

INPUT:

• sign – +1 or -1 or 0 (default), in which case this it is the sum of the two

• implementation – either ‘eclib’ (default) or ‘sage’. This determines classical modular symbols which
implementation of the underlying classical modular symbols is used

EXAMPLES:

sage: E = EllipticCurve('113a1')
sage: symb = E.pollack_stevens_modular_symbol()
sage: symb
Modular symbol of level 113 with values in Sym^0 Q^2
sage: symb.values()
[-1/2, 1, -1, 0, 0, 1, 1, -1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0]

sage: E = EllipticCurve([0,1])
sage: symb = E.pollack_stevens_modular_symbol(+1)
sage: symb.values()
[-1/6, 1/12, 0, 1/6, 1/12, 1/3, -1/12, 0, -1/6, -1/12, -1/4, -1/6, 1/12]

prove_BSD(E, verbosity=0, two_desc='mwrank', proof=None, secs_hi=5, return_BSD=False)
Attempt to prove the Birch and Swinnerton-Dyer conjectural formula for 𝐸, returning a list of primes 𝑝 for
which this function fails to prove BSD(E,p).

Here, BSD(E,p) is the statement: “the Birch and Swinnerton-Dyer formula holds up to a rational number
coprime to 𝑝.”

INPUT:

• E – an elliptic curve

• verbosity – int, how much information about the proof to print.

– 0: print nothing

302 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

– 1: print sketch of proof

– 2: print information about remaining primes

• two_desc – string (default 'mwrank'), what to use for the two-descent. Options are 'mwrank',
'simon', 'sage'

• proof – bool or None (default: None, see proof.elliptic_curve or sage.structure.proof). If False, this
function just immediately returns the empty list.

• secs_hi – maximum number of seconds to try to compute the Heegner index before switching over
to trying to compute the Heegner index bound. (Rank 0 only!)

• return_BSD – bool (default: False) whether to return an object which contains information to recon-
struct a proof

Note: When printing verbose output, phrases such as “by Mazur” are referring to the following list of
papers:

REFERENCES:

• [Cha2005]

• [Jet2008]

• [Kat2004]

• [Kol1991]

• [LW2015]

• [LS]

• [Maz1978]

• [Rub1991]

• [SW2013]

• [GJPST2009]

EXAMPLES:

sage: EllipticCurve('11a').prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 5} by Kolyvagin.
Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich
True for p = 5 by Kolyvagin bound
[]

sage: EllipticCurve('14a').prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
[]

sage: E = EllipticCurve("20a1")
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent

(continues on next page)

16.1. Elliptic curves over the rational numbers 303

Elliptic curves, Release 9.8

(continued from previous page)

True for p not in {2, 3} by Kolyvagin.
Kato further implies that #Sha[3] is trivial.
[]

sage: E = EllipticCurve("50b1")
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3, 5} by Kolyvagin.
Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich
Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
True for p = 5 by Kolyvagin bound
[]
sage: E.prove_BSD(two_desc='simon')
[]

A rank two curve:

sage: E = EllipticCurve('389a')

We know nothing with proof=True:

sage: E.prove_BSD()
Set of all prime numbers: 2, 3, 5, 7, ...

We (think we) know everything with proof=False:

sage: E.prove_BSD(proof=False)
[]

A curve of rank 0 and prime conductor:

sage: E = EllipticCurve('19a')
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
[]

sage: E = EllipticCurve('37a')
sage: E.rank()
1
sage: E._EllipticCurve_rational_field__rank
(1, True)
sage: E.analytic_rank = lambda : 0
sage: E.prove_BSD()
Traceback (most recent call last):
...
RuntimeError: It seems that the rank conjecture does not hold for this curve␣
→˓(Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field)! This may␣
→˓be a counterexample to BSD, but is more likely a bug.

We test the consistency check for the 2-part of Sha:

304 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field
sage: def foo(use_database):
....: return 4
sage: S.an = foo
sage: E.prove_BSD()
Traceback (most recent call last):
...
RuntimeError: Apparent contradiction: 0 <= rank(sha[2]) <= 0, but ord_2(sha_an)␣
→˓= 2

An example with a Tamagawa number at 5:

sage: E = EllipticCurve('123a1')
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 5} by Kolyvagin.
Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich
True for p = 5 by Kolyvagin bound
[]

A curve for which 3 divides the order of the Tate-Shafarevich group:

sage: E = EllipticCurve('681b')
sage: E.prove_BSD(verbosity=2) # long time
p = 2: True by 2-descent...
True for p not in {2, 3} by Kolyvagin....
Remaining primes:
p = 3: irreducible, surjective, non-split multiplicative

(0 <= ord_p <= 2)
ord_p(#Sha_an) = 2

[3]

A curve for which we need to use heegner_index_bound:

sage: E = EllipticCurve('198b')
sage: E.prove_BSD(verbosity=1, secs_hi=1)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
[3]

The return_BSD option gives an object with detailed information about the proof:

sage: E = EllipticCurve('26b')
sage: B = E.prove_BSD(return_BSD=True)
sage: B.two_tor_rk
0
sage: B.N
26
sage: B.gens
[]

(continues on next page)

16.1. Elliptic curves over the rational numbers 305

Elliptic curves, Release 9.8

(continued from previous page)

sage: B.primes
[]
sage: B.heegner_indexes
{-23: 2}

q_eigenform(prec)
Synonym for self.q_expansion(prec).

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.q_eigenform(10)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + O(q^10)
sage: E.q_eigenform(10) == E.q_expansion(10)
True

q_expansion(prec)
Return the 𝑞-expansion to precision prec of the newform attached to this elliptic curve.

INPUT:

• prec – an integer

OUTPUT:

a power series (in the variable ‘q’)

Note: If you want the output to be a modular form and not just a 𝑞-expansion, use modular_form().

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.q_expansion(20)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + 4*q^10
- 5*q^11 - 6*q^12 - 2*q^13 + 2*q^14 + 6*q^15 - 4*q^16 - 12*q^18 + O(q^20)

quadratic_twist(D)

Return the global minimal model of the quadratic twist of this curve by D.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E7=E.quadratic_twist(7); E7
Elliptic Curve defined by y^2 = x^3 - 784*x + 5488 over Rational Field
sage: E7.conductor()
29008
sage: E7.quadratic_twist(7) == E
True

rank(use_database=True, verbose=False, only_use_mwrank=True, algorithm='mwrank_lib', proof=None)
Return the rank of this elliptic curve, assuming no conjectures.

If we fail to provably compute the rank, raises a RuntimeError exception.

INPUT:

306 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• use_database – boolean (default: True); if True, try to look up the rank in the Cremona database

• verbose – (default: False) if specified changes the verbosity of mwrank computations

• algorithm – (default: 'mwrank_lib') one of:

– 'mwrank_shell' – call mwrank shell command

– 'mwrank_lib' – call mwrank c library

• only_use_mwrank – (default: True) if False try using analytic rank methods first

• proof – bool (default: None, see proof.elliptic_curve or sage.structure.proof); note that
results obtained from databases are considered proof=True

OUTPUT: the rank of the elliptic curve as Integer

IMPLEMENTATION: Uses L-functions, mwrank, and databases.

EXAMPLES:

sage: EllipticCurve('11a').rank()
0
sage: EllipticCurve('37a').rank()
1
sage: EllipticCurve('389a').rank()
2
sage: EllipticCurve('5077a').rank()
3
sage: EllipticCurve([1, -1, 0, -79, 289]).rank() # This will use the default␣
→˓proof behavior of True
4
sage: EllipticCurve([0, 0, 1, -79, 342]).rank(proof=False)
5
sage: EllipticCurve([0, 0, 1, -79, 342]).simon_two_descent()[0] # long time␣
→˓(7s on sage.math, 2012)
5

Examples with denominators in defining equations:

sage: E = EllipticCurve([0, 0, 0, 0, -675/4])
sage: E.rank()
0
sage: E = EllipticCurve([0, 0, 1/2, 0, -1/5])
sage: E.rank()
1
sage: E.minimal_model().rank()
1

A large example where mwrank doesn’t determine the result with certainty:

sage: EllipticCurve([1,0,0,0,37455]).rank(proof=False)
0
sage: EllipticCurve([1,0,0,0,37455]).rank(proof=True)
Traceback (most recent call last):
...
RuntimeError: rank not provably correct (lower bound: 0)

16.1. Elliptic curves over the rational numbers 307

../../../../../../../html/en/reference/rings_standard/sage/rings/integer.html#sage.rings.integer.Integer

Elliptic curves, Release 9.8

rank_bound()

Upper bound on the rank of the curve, computed using 2-descent.

In many cases, this is the actual rank of the curve. If the curve has no 2-torsion it is the same as the 2-selmer
rank.

EXAMPLES: The following is the curve 960D1, which has rank 0, but Sha of order 4.

sage: E = EllipticCurve([0, -1, 0, -900, -10098])
sage: E.rank_bound()
0

It gives 0 instead of 2, because it knows Sha is nontrivial. In contrast, for the curve 571A, also with rank 0
and Sha of order 4, we get a worse bound:

sage: E = EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank_bound()
2
sage: E.rank(only_use_mwrank=False) # uses L-function
0

real_components()

Return the number of real components.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.real_components ()
2
sage: E = EllipticCurve('37b')
sage: E.real_components ()
2
sage: E = EllipticCurve('11a')
sage: E.real_components ()
1

reduction(p)
Return the reduction of the elliptic curve at a prime of good reduction.

Note: The actual reduction is done in self.change_ring(GF(p)); the reduction is performed after
changing to a model which is minimal at p.

INPUT:

• p – a (positive) prime number

OUTPUT: an elliptic curve over the finite field F𝑝

EXAMPLES:

sage: E = EllipticCurve('389a1')
sage: E.reduction(2)
Elliptic Curve defined by y^2 + y = x^3 + x^2 over Finite Field of size 2
sage: E.reduction(3)
Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of size 3

(continues on next page)

308 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.reduction(5)
Elliptic Curve defined by y^2 + y = x^3 + x^2 + 3*x over Finite Field of size 5
sage: E.reduction(38)
Traceback (most recent call last):
...
AttributeError: p must be prime.
sage: E.reduction(389)
Traceback (most recent call last):
...
AttributeError: The curve must have good reduction at p.
sage: E = EllipticCurve([5^4,5^6])
sage: E.reduction(5)
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5

regulator(proof=None, precision=53, **kwds)
Return the regulator of this curve, which must be defined over Q.

INPUT:

• proof – bool or None (default: None, see proof.[tab] or sage.structure.proof). Note that results from
databases are considered proof = True

• precision – (int, default 53): the precision in bits of the result

• **kwds – passed to gens() method

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: E.regulator()
0.0511114082399688
sage: EllipticCurve('11a').regulator()
1.00000000000000
sage: EllipticCurve('37a').regulator()
0.0511114082399688
sage: EllipticCurve('389a').regulator()
0.152460177943144
sage: EllipticCurve('5077a').regulator()
0.41714355875838...
sage: EllipticCurve([1, -1, 0, -79, 289]).regulator()
1.50434488827528
sage: EllipticCurve([0, 0, 1, -79, 342]).regulator(proof=False) # long time␣
→˓(6s on sage.math, 2011)
14.790527570131...

root_number(p=None)
Return the root number of this elliptic curve.

This is 1 if the order of vanishing of the L-function 𝐿(𝐸, 𝑠) at 1 is even, and -1 if it is odd.

INPUT:

• 𝑝 – (optional) if given, return the local root number at p

EXAMPLES:

16.1. Elliptic curves over the rational numbers 309

Elliptic curves, Release 9.8

sage: EllipticCurve('11a1').root_number()
1
sage: EllipticCurve('37a1').root_number()
-1
sage: EllipticCurve('389a1').root_number()
1
sage: type(EllipticCurve('389a1').root_number())
<... 'sage.rings.integer.Integer'>

sage: E = EllipticCurve('100a1')
sage: E.root_number(2)
-1
sage: E.root_number(5)
1
sage: E.root_number(7)
1

The root number is cached:

sage: E.root_number(2) is E.root_number(2)
True
sage: E.root_number()
1

satisfies_heegner_hypothesis(D)

Returns True precisely when𝐷 is a fundamental discriminant that satisfies the Heegner hypothesis for this
elliptic curve.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.satisfies_heegner_hypothesis(-7)
True
sage: E.satisfies_heegner_hypothesis(-11)
False

saturation(points, verbose=False, max_prime=-1, min_prime=2)
Given a list of rational points on 𝐸, compute the saturation in 𝐸(𝑄) of the subgroup they generate.

INPUT:

• points (list) – list of points on 𝐸

• verbose (bool) – (default: False) if True, give verbose output

• max_prime – int (default: −1); if −1 (the default), an upper bound is computed for the primes at
which the subgroup may not be saturated, and saturation is performed for all primes up to this bound;
otherwise, the bound used is the minimum of max_prime and the computed bound

• min_prime (int) – (default: 2) only do 𝑝-saturation
at primes 𝑝 greater than or equal to this

Note: To saturate at a single prime 𝑝, set max_prime and min_prime both to 𝑝. One situation where this
is useful is after mapping saturated points from another elliptic curve by a 𝑝-isogeny, since the images may
not be 𝑝-saturated but will be saturated at all other primes.

310 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

• saturation (list) – points that form a basis for the saturation

• index (int) – the index of the group generated by points in their saturation

• regulator (real with default precision) – regulator of saturated points.

ALGORITHM:

Uses Cremona’s eclib package, which computes a bound on the saturation index. To 𝑝-saturate, or prove
𝑝-saturation, we consider the reductions of the points modulo primes 𝑞 of good reduction such that 𝐸(F𝑞)
has order divisible by 𝑝.

Note: In versons of eclib up to v20190909, division of points in eclib was done using floating
point methods, without automatic handling of precision, so that 𝑝-saturation sometimes failed unless
mwrank_set_precision() was called in advance with a suitably high bit precision. Since version
v20210310 of eclib, division is done using exact methods based on division polynomials, and 𝑝-saturation
cannot fail in this way.

Note: The computed index of saturation may be large, in which case saturation may take a long time. For
example, the rank 4 curve EllipticCurve([0,1,1,-9872,374262]) has a saturation index bound of
11816 and takes around 40 seconds to prove saturation.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P=E(0,0)
sage: Q=5*P; Q
(1/4 : -5/8 : 1)
sage: E.saturation([Q])
([(0 : 0 : 1)], 5, 0.0511114082399688)

selmer_rank()

The rank of the 2-Selmer group of the curve.

EXAMPLES: The following is the curve 960D1, which has rank 0, but Sha of order 4.

sage: E = EllipticCurve([0, -1, 0, -900, -10098])
sage: E.selmer_rank()
3

Here the Selmer rank is equal to the 2-torsion rank (=1) plus the 2-rank of Sha (=2), and the rank itself is
zero:

sage: E.rank()
0

In contrast, for the curve 571A, also with rank 0 and Sha of order 4, we get a worse bound:

sage: E = EllipticCurve([0, -1, 1, -929, -10595])
sage: E.selmer_rank()
2
sage: E.rank_bound()
2

16.1. Elliptic curves over the rational numbers 311

Elliptic curves, Release 9.8

To establish that the rank is in fact 0 in this case, we would need to carry out a higher descent:

sage: E.three_selmer_rank() # optional - magma
0

Or use the L-function to compute the analytic rank:

sage: E.rank(only_use_mwrank=False)
0

sha()

Return an object of class ‘sage.schemes.elliptic_curves.sha_tate.Sha’ attached to this elliptic curve.

This can be used in functions related to bounding the order of Sha (The Tate-Shafarevich group of the
curve).

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: S=E.sha()
sage: S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x over␣
→˓Rational Field
sage: S.bound_kolyvagin()
([2], 1)

silverman_height_bound(algorithm='default')
Return the Silverman height bound.

This is a positive real (floating point) number B such that for all points 𝑃 on the curve over any number
field, |ℎ(𝑃) − ℎ̂(𝑃)| ≤ 𝐵, where ℎ(𝑃) is the naive logarithmic height of 𝑃 and ℎ̂(𝑃) is the canonical
height.

INPUT:

• algorithm – one of the following:

– 'default' (default) - compute using a Python implementation in Sage

– 'mwrank' – use a C++ implementation in the mwrank library

Note:
• The CPS_height_bound is often better (i.e. smaller) than the Silverman bound, but it only applies for

points over the base field, whereas the Silverman bound works over all number fields.

• The Silverman bound is also fairly straightforward to compute over number fields, but isn’t imple-
mented here.

• Silverman’s paper is ‘The Difference Between the Weil Height and the Canonical Height on Elliptic
Curves’, Math. Comp., Volume 55, Number 192, pages 723-743. We use a correction by Bremner
with 0.973 replaced by 0.961, as explained in the source code to mwrank (htconst.cc).

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.silverman_height_bound()

(continues on next page)

312 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

4.825400758180918
sage: E.silverman_height_bound(algorithm='mwrank')
4.825400758180918
sage: E.CPS_height_bound()
0.16397076103046915

simon_two_descent(verbose=0, lim1=5, lim3=50, limtriv=3, maxprob=20, limbigprime=30,
known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group 𝐸(Q) and a list of points of infinite
order.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 5) limit on trivial points on quartics

• lim3 – (default: 50) limit on points on ELS quartics

• limtriv – (default: 3) limit on trivial points on 𝐸

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, don’t any probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT: a triple (lower, upper, list) consisting of

• lower (integer) – lower bound on the rank

• upper (integer) – upper bound on the rank

• list – list of points of infinite order in 𝐸(Q)

The integer upper is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimen-
sion of 𝐸(Q)/2𝐸(Q). It is equal to the dimension of the 2-Selmer group except possibly if 𝐸(Q)[2] has
dimension 1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number, due
to the fact that the algorithm does not perform a second descent.

To obtain a list of generators, use E.gens().

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/

EXAMPLES:

We compute the ranks of the curves of lowest known conductor up to rank 8. Amazingly, each of these
computations finishes almost instantly!

sage: E = EllipticCurve('11a1')
sage: E.simon_two_descent()
(0, 0, [])
sage: E = EllipticCurve('37a1')
sage: E.simon_two_descent()
(1, 1, [(0 : 0 : 1)])
sage: E = EllipticCurve('389a1')
sage: E._known_points = [] # clear cached points
sage: E.simon_two_descent()

(continues on next page)

16.1. Elliptic curves over the rational numbers 313

http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 9.8

(continued from previous page)

(2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
sage: E = EllipticCurve('5077a1')
sage: E.simon_two_descent()
(3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])

In this example Simon’s program does not find any points, though it does correctly compute the rank of the
2-Selmer group.

sage: E = EllipticCurve([1, -1, 0, -751055859, -7922219731979])
sage: E.simon_two_descent()
(1, 1, [])

The rest of these entries were taken from Tom Womack’s page http://tom.womack.net/maths/conductors.
htm

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.simon_two_descent()
(4, 4, [(6 : -1 : 1), (4 : 3 : 1), (5 : -2 : 1), (8 : 7 : 1)])
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.simon_two_descent() # long time (9s on sage.math, 2011)
(5, 5, [(5 : 8 : 1), (10 : 23 : 1), (3 : 11 : 1), (-3 : 23 : 1), (0 : 18 : 1)])
sage: E = EllipticCurve([1, 1, 0, -2582, 48720])
sage: r, s, G = E.simon_two_descent(); r,s
(6, 6)
sage: E = EllipticCurve([0, 0, 0, -10012, 346900])
sage: r, s, G = E.simon_two_descent(); r,s
(7, 7)
sage: E = EllipticCurve([0, 0, 1, -23737, 960366])
sage: r, s, G = E.simon_two_descent(); r,s
(8, 8)

Example from trac ticket #10832:

sage: E = EllipticCurve([1,0,0,-6664,86543])
sage: E.simon_two_descent()
(2, 3, [(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)])
sage: E.rank()
2
sage: E.gens()
[(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)]

Example where the lower bound is known to be 1 despite that the algorithm has not found any points of
infinite order

sage: E = EllipticCurve([1, 1, 0, -23611790086, 1396491910863060])
sage: E.simon_two_descent()
(1, 2, [])
sage: E.rank()
1
sage: E.gens() # uses mwrank
[(4311692542083/48594841 : -13035144436525227/338754636611 : 1)]

Example for trac ticket #5153:

314 Chapter 16. Elliptic curves over number fields

http://tom.womack.net/maths/conductors.htm
http://tom.womack.net/maths/conductors.htm
https://trac.sagemath.org/10832
https://trac.sagemath.org/5153

Elliptic curves, Release 9.8

sage: E = EllipticCurve([3,0])
sage: E.simon_two_descent()
(1, 2, [(1 : 2 : 1)])

The upper bound on the 2-Selmer rank returned by this method need not be sharp. In following example,
the upper bound equals the actual 2-Selmer rank plus 2 (see trac ticket #10735):

sage: E = EllipticCurve('438e1')
sage: E.simon_two_descent()
(0, 3, [])
sage: E.selmer_rank() # uses mwrank
1

supersingular_primes(B)
Return a list of all supersingular primes for this elliptic curve up to and possibly including B.

EXAMPLES:

sage: e = EllipticCurve('11a')
sage: e.aplist(20)
[-2, -1, 1, -2, 1, 4, -2, 0]
sage: e.supersingular_primes(1000)
[2, 19, 29, 199, 569, 809]

sage: e = EllipticCurve('27a')
sage: e.aplist(20)
[0, 0, 0, -1, 0, 5, 0, -7]
sage: e.supersingular_primes(97)
[2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89]
sage: e.ordinary_primes(97)
[7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97]
sage: e.supersingular_primes(3)
[2]
sage: e.supersingular_primes(2)
[2]
sage: e.supersingular_primes(1)
[]

tamagawa_exponent(p)
The Tamagawa index of the elliptic curve at p.

This is the index of the component group 𝐸(Q𝑝)/𝐸
0(Q𝑝). It equals the Tamagawa number (as the com-

ponent group is cyclic) except for types 𝐼*𝑚 (𝑚 even) when the group can be 𝐶2 × 𝐶2.

EXAMPLES:

sage: E = EllipticCurve('816a1')
sage: E.tamagawa_number(2)
4
sage: E.tamagawa_exponent(2)
2
sage: E.kodaira_symbol(2)
I2*

16.1. Elliptic curves over the rational numbers 315

https://trac.sagemath.org/10735

Elliptic curves, Release 9.8

sage: E = EllipticCurve('200c4')
sage: E.kodaira_symbol(5)
I4*
sage: E.tamagawa_number(5)
4
sage: E.tamagawa_exponent(5)
2

See trac ticket #4715:

sage: E = EllipticCurve('117a3')
sage: E.tamagawa_exponent(13)
4

tamagawa_number(p)
The Tamagawa number of the elliptic curve at p.

This is the order of the component group 𝐸(Q𝑝)/𝐸
0(Q𝑝).

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.tamagawa_number(11)
5
sage: E = EllipticCurve('37b')
sage: E.tamagawa_number(37)
3

tamagawa_number_old(p)
The Tamagawa number of the elliptic curve at p.

This is the order of the component group 𝐸(Q𝑝)/𝐸
0(Q𝑝).

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.tamagawa_number_old(11)
5
sage: E = EllipticCurve('37b')
sage: E.tamagawa_number_old(37)
3

tamagawa_product()

Return the product of the Tamagawa numbers.

EXAMPLES:

sage: E = EllipticCurve('54a')
sage: E.tamagawa_product ()
3

tate_curve(p)
Create the Tate curve over the 𝑝-adics associated to this elliptic curve.

This Tate curve is a 𝑝-adic curve with split multiplicative reduction of the form 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑠4𝑥+ 𝑠6
which is isomorphic to the given curve over the algebraic closure of Q𝑝. Its points over Q𝑝 are isomorphic
to Q×

𝑝 /𝑞
Z for a certain parameter 𝑞 ∈ Z𝑝.

316 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/4715

Elliptic curves, Release 9.8

INPUT:

• 𝑝 – a prime where the curve has split multiplicative reduction

EXAMPLES:

sage: e = EllipticCurve('130a1')
sage: e.tate_curve(2)
2-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = x^
→˓3 - 33*x + 68 over Rational Field

The input curve must have multiplicative reduction at the prime.

sage: e.tate_curve(3)
Traceback (most recent call last):
...
ValueError: the elliptic curve must have multiplicative reduction at 3

We compute with 𝑝 = 5:

sage: T = e.tate_curve(5); T
5-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = x^
→˓3 - 33*x + 68 over Rational Field

We find the Tate parameter 𝑞:

sage: T.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8)

We compute the ℒ-invariant of the curve:

sage: T.L_invariant(prec=10)
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)

three_selmer_rank(algorithm='UseSUnits')
Return the 3-selmer rank of this elliptic curve, computed using Magma.

INPUT:

• algorithm – ‘Heuristic’ (which is usually much faster in large examples), ‘FindCubeRoots’, or ‘Us-
eSUnits’ (default)

OUTPUT: nonnegative integer

EXAMPLES: A rank 0 curve:

sage: EllipticCurve('11a').three_selmer_rank() # optional - magma
0

A rank 0 curve with rational 3-isogeny but no 3-torsion

sage: EllipticCurve('14a3').three_selmer_rank() # optional - magma
0

A rank 0 curve with rational 3-torsion:

sage: EllipticCurve('14a1').three_selmer_rank() # optional - magma
1

16.1. Elliptic curves over the rational numbers 317

Elliptic curves, Release 9.8

A rank 1 curve with rational 3-isogeny:

sage: EllipticCurve('91b').three_selmer_rank() # optional - magma
2

A rank 0 curve with nontrivial 3-Sha. The Heuristic option makes this about twice as fast as without it.

sage: EllipticCurve('681b').three_selmer_rank(algorithm='Heuristic') # long␣
→˓time (10 seconds); optional - magma
2

torsion_order()

Return the order of the torsion subgroup.

EXAMPLES:

sage: e = EllipticCurve('11a')
sage: e.torsion_order()
5
sage: type(e.torsion_order())
<... 'sage.rings.integer.Integer'>
sage: e = EllipticCurve([1,2,3,4,5])
sage: e.torsion_order()
1
sage: type(e.torsion_order())
<... 'sage.rings.integer.Integer'>

torsion_points()

Return the torsion points of this elliptic curve as a sorted list.

OUTPUT: A list of all the torsion points on this elliptic curve.

EXAMPLES:

sage: EllipticCurve('11a').torsion_points()
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
sage: EllipticCurve('37b').torsion_points()
[(0 : 1 : 0), (8 : -19 : 1), (8 : 18 : 1)]

Some curves with large torsion groups:

sage: E = EllipticCurve([-1386747, 368636886])
sage: T = E.torsion_subgroup(); T
Torsion Subgroup isomorphic to Z/8 + Z/2 associated to the
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over
Rational Field
sage: E.torsion_points()
[(-1293 : 0 : 1),
(-933 : -29160 : 1),
(-933 : 29160 : 1),
(-285 : -27216 : 1),
(-285 : 27216 : 1),
(0 : 1 : 0),
(147 : -12960 : 1),
(147 : 12960 : 1),

(continues on next page)

318 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

(282 : 0 : 1),
(1011 : 0 : 1),
(1227 : -22680 : 1),
(1227 : 22680 : 1),
(2307 : -97200 : 1),
(2307 : 97200 : 1),
(8787 : -816480 : 1),
(8787 : 816480 : 1)]
sage: EllipticCurve('210b5').torsion_points()
[(-41/4 : 37/8 : 1),
(-5 : -103 : 1),
(-5 : 107 : 1),
(0 : 1 : 0),
(10 : -208 : 1),
(10 : 197 : 1),
(37 : -397 : 1),
(37 : 359 : 1),
(100 : -1153 : 1),
(100 : 1052 : 1),
(415 : -8713 : 1),
(415 : 8297 : 1)]
sage: EllipticCurve('210e2').torsion_points()
[(-36 : 18 : 1),
(-26 : -122 : 1),
(-26 : 148 : 1),
(-8 : -122 : 1),
(-8 : 130 : 1),
(0 : 1 : 0),
(4 : -62 : 1),
(4 : 58 : 1),
(31/4 : -31/8 : 1),
(28 : -14 : 1),
(34 : -122 : 1),
(34 : 88 : 1),
(64 : -482 : 1),
(64 : 418 : 1),
(244 : -3902 : 1),
(244 : 3658 : 1)]

torsion_subgroup()

Return the torsion subgroup of this elliptic curve.

OUTPUT: The EllipticCurveTorsionSubgroup instance associated to this elliptic curve.

Note: To see the torsion points as a list, use torsion_points().

EXAMPLES:

sage: EllipticCurve('11a').torsion_subgroup()
Torsion Subgroup isomorphic to Z/5 associated to the Elliptic Curve defined by␣
→˓y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

(continues on next page)

16.1. Elliptic curves over the rational numbers 319

Elliptic curves, Release 9.8

(continued from previous page)

sage: EllipticCurve('37b').torsion_subgroup()
Torsion Subgroup isomorphic to Z/3 associated to the Elliptic Curve defined by␣
→˓y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field

sage: e = EllipticCurve([-1386747,368636886]);e
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over Rational Field
sage: G = e.torsion_subgroup(); G
Torsion Subgroup isomorphic to Z/8 + Z/2 associated to the
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over
Rational Field
sage: G.0*3 + G.1
(1227 : 22680 : 1)
sage: G.1
(282 : 0 : 1)
sage: list(G)
[(0 : 1 : 0), (147 : -12960 : 1), (2307 : -97200 : 1), (-933 : -29160 : 1),␣
→˓(1011 : 0 : 1), (-933 : 29160 : 1), (2307 : 97200 : 1), (147 : 12960 : 1), (-
→˓1293 : 0 : 1), (1227 : 22680 : 1), (-285 : 27216 : 1), (8787 : 816480 : 1),␣
→˓(282 : 0 : 1), (8787 : -816480 : 1), (-285 : -27216 : 1), (1227 : -22680 : 1)]

two_descent(verbose=True, selmer_only=False, first_limit=20, second_limit=8, n_aux=-1,
second_descent=1)

Compute 2-descent data for this curve.

INPUT:

• verbose – (default: True) print what mwrank is doing; if False, no output is printed

• selmer_only – (default: False) selmer_only switch

• first_limit – (default: 20) firstlim is bound on x+z second_limit- (default: 8) secondlim is bound
on log max x,z , i.e. logarithmic

• n_aux – (default: -1) n_aux only relevant for general 2-descent when 2-torsion trivial; n_aux=-1 causes
default to be used (depends on method)

• second_descent – (default: True) second_descent only relevant for descent via 2-isogeny

OUTPUT:

Return True if the descent succeeded, i.e. if the lower bound and the upper bound for the rank are the same.
In this case, generators and the rank are cached. A return value of False indicates that either rational points
were not found, or that Sha[2] is nontrivial and mwrank was unable to determine this for sure.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.two_descent(verbose=False)
True

two_descent_simon(verbose=0, lim1=5, lim3=50, limtriv=3, maxprob=20, limbigprime=30,
known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group 𝐸(Q) and a list of points of infinite
order.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

320 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• lim1 – (default: 5) limit on trivial points on quartics

• lim3 – (default: 50) limit on points on ELS quartics

• limtriv – (default: 3) limit on trivial points on 𝐸

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, don’t any probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT: a triple (lower, upper, list) consisting of

• lower (integer) – lower bound on the rank

• upper (integer) – upper bound on the rank

• list – list of points of infinite order in 𝐸(Q)

The integer upper is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimen-
sion of 𝐸(Q)/2𝐸(Q). It is equal to the dimension of the 2-Selmer group except possibly if 𝐸(Q)[2] has
dimension 1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number, due
to the fact that the algorithm does not perform a second descent.

To obtain a list of generators, use E.gens().

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/

EXAMPLES:

We compute the ranks of the curves of lowest known conductor up to rank 8. Amazingly, each of these
computations finishes almost instantly!

sage: E = EllipticCurve('11a1')
sage: E.simon_two_descent()
(0, 0, [])
sage: E = EllipticCurve('37a1')
sage: E.simon_two_descent()
(1, 1, [(0 : 0 : 1)])
sage: E = EllipticCurve('389a1')
sage: E._known_points = [] # clear cached points
sage: E.simon_two_descent()
(2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
sage: E = EllipticCurve('5077a1')
sage: E.simon_two_descent()
(3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])

In this example Simon’s program does not find any points, though it does correctly compute the rank of the
2-Selmer group.

sage: E = EllipticCurve([1, -1, 0, -751055859, -7922219731979])
sage: E.simon_two_descent()
(1, 1, [])

The rest of these entries were taken from Tom Womack’s page http://tom.womack.net/maths/conductors.
htm

16.1. Elliptic curves over the rational numbers 321

http://www.math.unicaen.fr/~simon/
http://tom.womack.net/maths/conductors.htm
http://tom.womack.net/maths/conductors.htm

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.simon_two_descent()
(4, 4, [(6 : -1 : 1), (4 : 3 : 1), (5 : -2 : 1), (8 : 7 : 1)])
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.simon_two_descent() # long time (9s on sage.math, 2011)
(5, 5, [(5 : 8 : 1), (10 : 23 : 1), (3 : 11 : 1), (-3 : 23 : 1), (0 : 18 : 1)])
sage: E = EllipticCurve([1, 1, 0, -2582, 48720])
sage: r, s, G = E.simon_two_descent(); r,s
(6, 6)
sage: E = EllipticCurve([0, 0, 0, -10012, 346900])
sage: r, s, G = E.simon_two_descent(); r,s
(7, 7)
sage: E = EllipticCurve([0, 0, 1, -23737, 960366])
sage: r, s, G = E.simon_two_descent(); r,s
(8, 8)

Example from trac ticket #10832:

sage: E = EllipticCurve([1,0,0,-6664,86543])
sage: E.simon_two_descent()
(2, 3, [(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)])
sage: E.rank()
2
sage: E.gens()
[(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)]

Example where the lower bound is known to be 1 despite that the algorithm has not found any points of
infinite order

sage: E = EllipticCurve([1, 1, 0, -23611790086, 1396491910863060])
sage: E.simon_two_descent()
(1, 2, [])
sage: E.rank()
1
sage: E.gens() # uses mwrank
[(4311692542083/48594841 : -13035144436525227/338754636611 : 1)]

Example for trac ticket #5153:

sage: E = EllipticCurve([3,0])
sage: E.simon_two_descent()
(1, 2, [(1 : 2 : 1)])

The upper bound on the 2-Selmer rank returned by this method need not be sharp. In following example,
the upper bound equals the actual 2-Selmer rank plus 2 (see trac ticket #10735):

sage: E = EllipticCurve('438e1')
sage: E.simon_two_descent()
(0, 3, [])
sage: E.selmer_rank() # uses mwrank
1

sage.schemes.elliptic_curves.ell_rational_field.cremona_curves(conductors)
Return iterator over all known curves (in database) with conductor in the list of conductors.

322 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/10832
https://trac.sagemath.org/5153
https://trac.sagemath.org/10735

Elliptic curves, Release 9.8

EXAMPLES:

sage: [(E.label(), E.rank()) for E in cremona_curves(srange(35,40))]
[('35a1', 0),
('35a2', 0),
('35a3', 0),
('36a1', 0),
('36a2', 0),
('36a3', 0),
('36a4', 0),
('37a1', 1),
('37b1', 0),
('37b2', 0),
('37b3', 0),
('38a1', 0),
('38a2', 0),
('38a3', 0),
('38b1', 0),
('38b2', 0),
('39a1', 0),
('39a2', 0),
('39a3', 0),
('39a4', 0)]

sage.schemes.elliptic_curves.ell_rational_field.cremona_optimal_curves(conductors)
Return iterator over all known optimal curves (in database) with conductor in the list of conductors.

EXAMPLES:

sage: [(E.label(), E.rank()) for E in cremona_optimal_curves(srange(35,40))]
[('35a1', 0),
('36a1', 0),
('37a1', 1),
('37b1', 0),
('38a1', 0),
('38b1', 0),
('39a1', 0)]

There is one case – 990h3 – when the optimal curve isn’t labeled with a 1:

sage: [e.cremona_label() for e in cremona_optimal_curves([990])]
['990a1', '990b1', '990c1', '990d1', '990e1', '990f1', '990g1', '990h3', '990i1',
→˓'990j1', '990k1', '990l1']

sage.schemes.elliptic_curves.ell_rational_field.elliptic_curve_congruence_graph(curves)
Return the congruence graph for this set of elliptic curves.

INPUT:

• curves – a list of elliptic curves

OUTPUT:

The graph with each curve as a vertex (labelled by its Cremona label) and an edge from 𝐸 to 𝐹 labelled 𝑝 if and
only if 𝐸 is congruent to 𝐹 mod 𝑝

EXAMPLES:

16.1. Elliptic curves over the rational numbers 323

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.ell_rational_field import elliptic_curve_
→˓congruence_graph
sage: curves = list(cremona_optimal_curves([11..30]))
sage: G = elliptic_curve_congruence_graph(curves)
sage: G
Graph on 12 vertices

sage.schemes.elliptic_curves.ell_rational_field.integral_points_with_bounded_mw_coeffs(E,
mw_base,
N,
x_bound)

Return the set of integers 𝑥 which are 𝑥-coordinates of points on the curve 𝐸 which are linear combinations of
the generators (basis and torsion points) with coefficients bounded by 𝑁 .

INPUT:

• E – an elliptic curve

• mw_base – a list of points on 𝐸 (generators)

• N – a positive integer (bound on coefficients)

• x_bound – a positive real number (upper bound on size of x-coordinates)

OUTPUT:

(list) list of integral points on 𝐸 which are linear combinations of the given points with coefficients bounded by
𝑁 in absolute value.

16.2 Tables of elliptic curves of given rank

The default database of curves contains the following data:

324 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Rank Number of curves Maximal conductor
0 30427 9999
1 31871 9999
2 2388 9999
3 836 119888
4 10 1175648
5 5 37396136
6 5 6663562874
7 5 896913586322
8 6 457532830151317
9 7 ~9.612839e+21
10 6 ~1.971057e+21
11 6 ~1.803406e+24
12 1 ~2.696017e+29
14 1 ~3.627533e+37
15 1 ~1.640078e+56
17 1 ~2.750021e+56
19 1 ~1.373776e+65
20 1 ~7.381324e+73
21 1 ~2.611208e+85
22 1 ~2.272064e+79
23 1 ~1.139647e+89
24 1 ~3.257638e+95
28 1 ~3.455601e+141

Note that lists for r>=4 are not exhaustive; there may well be curves of the given rank with conductor less than the listed
maximal conductor, which are not included in the tables.

AUTHORS: - William Stein (2007-10-07): initial version - Simon Spicer (2014-10-24): Added examples of more
high-rank curves

See also the functions cremona_curves() and cremona_optimal_curves() which enable easy looping through the Cre-
mona elliptic curve database.

class sage.schemes.elliptic_curves.ec_database.EllipticCurves

Bases: object

rank(rank, tors=0, n=10, labels=False)
Return a list of at most 𝑛 curves with given rank and torsion order.

INPUT:

• rank (int) – the desired rank

• tors (int, default 0) – the desired torsion order (ignored if 0)

• n (int, default 10) – the maximum number of curves returned.

• labels (bool, default False) – if True, return Cremona labels instead of curves.

OUTPUT:

(list) A list at most 𝑛 of elliptic curves of required rank.

EXAMPLES:

sage: elliptic_curves.rank(n=5, rank=3, tors=2, labels=True)
['59450i1', '59450i2', '61376c1', '61376c2', '65481c1']

16.2. Tables of elliptic curves of given rank 325

Elliptic curves, Release 9.8

sage: elliptic_curves.rank(n=5, rank=0, tors=5, labels=True)
['11a1', '11a3', '38b1', '50b1', '50b2']

sage: elliptic_curves.rank(n=5, rank=1, tors=7, labels=True)
['574i1', '4730k1', '6378c1']

sage: e = elliptic_curves.rank(6)[0]; e.ainvs(), e.conductor()
((1, 1, 0, -2582, 48720), 5187563742)
sage: e = elliptic_curves.rank(7)[0]; e.ainvs(), e.conductor()
((0, 0, 0, -10012, 346900), 382623908456)
sage: e = elliptic_curves.rank(8)[0]; e.ainvs(), e.conductor()
((1, -1, 0, -106384, 13075804), 249649566346838)

For large conductors, the labels are not known:

sage: L = elliptic_curves.rank(6, n=3); L
[Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 2582*x + 48720 over Rational␣
→˓Field,
Elliptic Curve defined by y^2 + y = x^3 - 7077*x + 235516 over Rational Field,
Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 2326*x + 43456 over Rational␣
→˓Field]
sage: L[0].cremona_label()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve defined␣
→˓by y^2 + x*y = x^3 + x^2 - 2582*x + 48720 over Rational Field
sage: elliptic_curves.rank(6, n=3, labels=True)
[]

16.3 Elliptic curves over number fields

An elliptic curve 𝐸 over a number field 𝐾 can be given by a Weierstrass equation whose coefficients lie in 𝐾 or by
using base_extend on an elliptic curve defined over a subfield.

One major difference to elliptic curves over Q is that there might not exist a global minimal equation over 𝐾, when
𝐾 does not have class number one. Another difference is the lack of understanding of modularity for general elliptic
curves over general number fields.

Currently Sage can obtain local information about 𝐸/𝐾𝑣 for finite places 𝑣, it has an interface to Denis Simon’s script
for 2-descent, it can compute the torsion subgroup of the Mordell-Weil group 𝐸(𝐾), and it can work with isogenies
defined over 𝐾.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([0,4+i])
sage: E.discriminant()
-3456*i - 6480
sage: P= E([i,2])
sage: P+P
(-2*i + 9/16 : -9/4*i - 101/64 : 1)

326 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E.has_good_reduction(2+i)
True
sage: E.local_data(4+i)
Local data at Fractional ideal (i + 4):
Reduction type: bad additive
Local minimal model: Elliptic Curve defined by y^2 = x^3 + (i+4) over Number Field in i␣
→˓with defining polynomial x^2 + 1
Minimal discriminant valuation: 2
Conductor exponent: 2
Kodaira Symbol: II
Tamagawa Number: 1
sage: E.tamagawa_product_bsd()
1

sage: E.simon_two_descent()
(1, 1, [(i : 2 : 1)])

sage: E.torsion_order()
1

sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + (i+4) over Number Field␣
→˓in i with defining polynomial x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + (-27*i-
→˓108) over Number Field in i with defining polynomial x^2 + 1]

AUTHORS:

• Robert Bradshaw 2007

• John Cremona

• Chris Wuthrich

REFERENCE:

• [Sil] Silverman, Joseph H. The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics,
106. Springer, 2009.

• [Sil2] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics,
151. Springer, 1994.

class sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field(K, ainvs)
Bases: EllipticCurve_field

Elliptic curve over a number field.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35])
Elliptic Curve defined by y^2 + i*x*y + (i+1)*y = x^3 + (i-1)*x^2 + (24*i+15)*x +␣
→˓(14*i+35) over Number Field in i with defining polynomial x^2 + 1

base_extend(R)
Return the base extension of self to 𝑅.

EXAMPLES:

16.3. Elliptic curves over number fields 327

Elliptic curves, Release 9.8

sage: E = EllipticCurve('11a3')
sage: K = QuadraticField(-5, 'a')
sage: E.base_extend(K)
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a with␣
→˓defining polynomial x^2 + 5 with a = 2.236067977499790?*I

Check that non-torsion points are remembered when extending the base field (see trac ticket #16034):

sage: E = EllipticCurve([1, 0, 1, -1751, -31352])
sage: K.<d> = QuadraticField(5)
sage: E.gens()
[(52 : 111 : 1)]
sage: EK = E.base_extend(K)
sage: EK.gens()
[(52 : 111 : 1)]

cm_discriminant()

Return the CM discriminant of the 𝑗-invariant of this curve, or 0.

OUTPUT:

An integer𝐷which is either 0 if this curve𝐸 does not have Complex Multiplication) (CM), or an imaginary
quadratic discriminant if 𝑗(𝐸) is the 𝑗-invariant of the order with discriminant 𝐷.

Note: If𝐸 has CM but the discriminant𝐷 is not a square in the base field𝐾 then the extra endomorphisms
will not be defined over 𝐾. See also has_rational_cm().

EXAMPLES:

sage: EllipticCurve(j=0).cm_discriminant()
-3
sage: EllipticCurve(j=1).cm_discriminant()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over␣
→˓Rational Field does not have CM
sage: EllipticCurve(j=1728).cm_discriminant()
-4
sage: EllipticCurve(j=8000).cm_discriminant()
-8
sage: K.<a> = QuadraticField(5)
sage: EllipticCurve(j=282880*a + 632000).cm_discriminant()
-20
sage: K.<a> = NumberField(x^3 - 2)
sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).
→˓cm_discriminant()
-108

conductor()

Return the conductor of this elliptic curve as a fractional ideal of the base field.

OUTPUT:

(fractional ideal) The conductor of the curve.

328 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/16034

Elliptic curves, Release 9.8

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35]).conductor()
Fractional ideal (21*i - 3)
sage: K.<a> = NumberField(x^2-x+3)
sage: EllipticCurve([1 + a , -1 + a , 1 + a , -11 + a , 5 -9*a]).conductor()
Fractional ideal (-6*a)

A not so well known curve with everywhere good reduction:

sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a -␣
→˓134364590724198567128296995, 121774567239345229314269094644186997594*a -␣
→˓750668847495706904791115375024037711300])
sage: E.conductor()
Fractional ideal (1)

An example which used to fail (see trac ticket #5307):

sage: K.<w> = NumberField(x^2+x+6)
sage: E = EllipticCurve([w,-1,0,-w-6,0])
sage: E.conductor()
Fractional ideal (86304, w + 5898)

An example raised in trac ticket #11346:

sage: K.<g> = NumberField(x^2 - x - 1)
sage: E1 = EllipticCurve(K,[0,0,0,-1/48,-161/864])
sage: [(p.smallest_integer(),e) for p,e in E1.conductor().factor()]
[(2, 4), (3, 1), (5, 1)]

galois_representation()

The compatible family of the Galois representation attached to this elliptic curve.

Given an elliptic curve 𝐸 over a number field 𝐾 and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛]
points of 𝐸 is a representation of the absolute Galois group of 𝐾. As 𝑛 varies we obtain the Tate module
𝑇𝑝𝐸 which is a a representation of 𝐺𝐾 on a free Z𝑝-module of rank 2. As 𝑝 varies the representations are
compatible.

EXAMPLES:

sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve('11a1').change_ring(K)
sage: rho = E.galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in a␣
→˓with defining polynomial x^2 + 1
sage: rho.is_surjective(3)
True
sage: rho.is_surjective(5) # long time (4s on sage.math, 2014)
False
sage: rho.non_surjective()
[5]

16.3. Elliptic curves over number fields 329

https://trac.sagemath.org/5307
https://trac.sagemath.org/11346

Elliptic curves, Release 9.8

gens(**kwds)
Return some points of infinite order on this elliptic curve.

Contrary to what the name of this method suggests, the points it returns do not always generate a subgroup
of full rank in the Mordell-Weil group, nor are they necessarily linearly independent. Moreover, the number
of points can be smaller or larger than what one could expect after calling rank() or rank_bounds().

Note: The optional parameters control the Simon two descent algorithm; see the documentation of
simon_two_descent() for more details.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on elliptic curve

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT:

A set of points of infinite order given by the Simon two-descent.

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 23, 'a')
sage: E = EllipticCurve(K,[0,0,0,101,0])
sage: E.gens()
[(23831509/8669448*a - 2867471/8669448 : 76507317707/18049790736*a -␣
→˓424166479633/18049790736 : 1),
(-2031032029/969232392*a + 58813561/969232392 : -15575984630401/
→˓21336681877488*a + 451041199309/21336681877488 : 1),
(-186948623/4656964 : 549438861195/10049728312*a : 1)]

It can happen that no points are found if the height bounds used in the search are too small (see trac ticket
#10745):

sage: K.<t> = NumberField(x^4 + x^2 - 7)
sage: E = EllipticCurve(K, [1, 0, 5*t^2 + 16, 0, 0])
sage: E.gens(lim1=1, lim3=1)
[]
sage: E.rank()
1
sage: gg=E.gens(lim3=13); gg # long time (about 4s)
[(... : 1)]

Check that the the point found has infinite order, and that it is on the curve:

330 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/10745
https://trac.sagemath.org/10745

Elliptic curves, Release 9.8

sage: P=gg[0]; P.order() # long time
+Infinity
sage: E.defining_polynomial()(*P) # long time
0

Here is a curve of rank 2:

sage: K.<t> = NumberField(x^2-17)
sage: E = EllipticCurve(K,[-4,0])
sage: E.gens()
[(-1/2*t + 1/2 : -1/2*t + 1/2 : 1), (-t + 3 : -2*t + 10 : 1)]
sage: E.rank()
2

Test that points of finite order are not included (see trac ticket #13593):

sage: E = EllipticCurve("17a3")
sage: K.<t> = NumberField(x^2+3)
sage: EK = E.base_extend(K)
sage: EK.rank()
0
sage: EK.gens()
[]

IMPLEMENTATION:

For curves over quadratic fields which are base-changes from Q, we delegate the work to
gens_quadratic() where methods over Q suffice. Otherwise, we use Denis Simon’s PARI/GP scripts
from http://www.math.unicaen.fr/~simon/.

gens_quadratic(**kwds)
Return generators for the Mordell-Weil group modulo torsion, for a curve which is a base change from Q
to a quadratic field.

EXAMPLES:

sage: E = EllipticCurve([1,2,3,40,50])
sage: E.conductor()
2123582
sage: E.gens()
[(5 : 17 : 1)]
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: EK.gens_quadratic()
[(5 : 17 : 1), (-13 : 48*i + 5 : 1)]

sage: E.change_ring(QuadraticField(3, 'a')).gens_quadratic()
[(5 : 17 : 1), (-1 : 2*a - 1 : 1), (11/4 : 33/4*a - 23/8 : 1)]

sage: K.<a> = QuadraticField(-7)
sage: E = EllipticCurve([0,0,0,197,0])
sage: E.conductor()
2483776
sage: E.gens()

(continues on next page)

16.3. Elliptic curves over number fields 331

https://trac.sagemath.org/13593
http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 9.8

(continued from previous page)

[(47995604297578081/7389879786648100 : -25038161802544048018837479/
→˓635266655830129794121000 : 1)]
sage: K.<a> = QuadraticField(7)
sage: E.change_ring(K).gens_quadratic()
[(-1209642055/59583566*a + 1639995844/29791783 : -377240626321899/
→˓1720892553212*a + 138577803462855/245841793316 : 1),
(1/28 : 393/392*a : 1),
(-61*a + 162 : 1098*a - 2916 : 1)]

sage: E = EllipticCurve([1, a])
sage: E.gens_quadratic()
Traceback (most recent call last):
...
ValueError: gens_quadratic() requires the elliptic curve to be a base change␣
→˓from Q

global_integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1,P2 = K.primes_above(5)
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x␣
→˓+ 3125*i over Number Field in i with defining polynomial x^2 + 1

trac ticket #7935:

sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([a,1/2])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436 over Number Field in a␣
→˓with defining polynomial x^2 - 38

trac ticket #9266:

sage: K.<s> = NumberField(x^2-5)
sage: w = (1+s)/2
sage: E = EllipticCurve(K,[2,w])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2) over Number Field in s␣
→˓with defining polynomial x^2 - 5

trac ticket #12151:

sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/
→˓1296, 634768555/7776*v - 98002625/1296, 0, 0])
sage: M = E.global_integral_model(); M # choice varies, not tested
Elliptic Curve defined by y^2 + (2094779518028859*v-1940492905300351)*x*y +␣
→˓(477997268472544193101178234454165304071127500*v-

(continues on next page)

332 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/7935
https://trac.sagemath.org/9266
https://trac.sagemath.org/12151

Elliptic curves, Release 9.8

(continued from previous page)

→˓442791377441346852919930773849502871958097500)*y = x^3 +␣
→˓(26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2␣
→˓over Number Field in v with defining polynomial x^2 + 161*x - 150

trac ticket #14476:

sage: R.<t> = QQ[]
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
sage: E = EllipticCurve([-43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/
→˓78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 -␣
→˓4074/78125*g^2 - 711/78125*g + 10304/78125, 0,0])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-
→˓44145*g+37638)*y = x^3 + (-954*g^3-1134*g^2+81*g+576)*x^2 over Number Field␣
→˓in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

global_minimal_model(proof=None, semi_global=False)
Return a model of self that is integral, and minimal.

Note: Over fields of class number greater than 1, a global minimal model may not exist. If it does not, set
the parameter semi_global to True to obtain a model minimal at all but one prime.

INPUT:

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

• semi_global (boolean, default False) – if there is no global minimal mode, return a semi-global
minimal model (minimal at all but one prime) instead, if True; raise an error if False. No effect if a
global minimal model exists.

OUTPUT:

A global integral and minimal model, or an integral model minimal at all but one prime of there is no global
minimal model and the flag semi_global is True.

EXAMPLES:

sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a -␣
→˓134364590724198567128296995, 121774567239345229314269094644186997594*a -␣
→˓750668847495706904791115375024037711300])
sage: E2 = E.global_minimal_model()
sage: E2
Elliptic Curve defined by y^2 + a*x*y + (a+1)*y = x^3 + (a+1)*x^2 + (4*a+15)*x␣
→˓+ (4*a+21) over Number Field in a with defining polynomial x^2 - 38
sage: E2.local_data()
[]

See trac ticket #11347:

sage: K.<g> = NumberField(x^2 - x - 1)
sage: E = EllipticCurve(K,[0,0,0,-1/48,161/864]).integral_model().global_

(continues on next page)

16.3. Elliptic curves over number fields 333

https://trac.sagemath.org/14476
https://trac.sagemath.org/11347

Elliptic curves, Release 9.8

(continued from previous page)

→˓minimal_model(); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Number Field in g with␣
→˓defining polynomial x^2 - x - 1
sage: [(p.norm(), e) for p, e in E.conductor().factor()]
[(9, 1), (5, 1)]
sage: [(p.norm(), e) for p, e in E.discriminant().factor()]
[(-5, 2), (9, 1)]

See trac ticket #14472, this used not to work over a relative extension:

sage: K1.<w> = NumberField(x^2+x+1)
sage: m = polygen(K1)
sage: K2.<v> = K1.extension(m^2-w+1)
sage: E = EllipticCurve([0*v,-432])
sage: E.global_minimal_model()
Elliptic Curve defined by y^2 + y = x^3 over Number Field in v with defining␣
→˓polynomial x^2 - w + 1 over its base field

See trac ticket #18662: for fields of class number greater than 1, even when global minimal models did
exist, their computation was not implemented. Now it is:

sage: K.<a> = NumberField(x^2-10)
sage: K.class_number()
2
sage: E = EllipticCurve([0,0,0,-186408*a - 589491, 78055704*a + 246833838])
sage: E.discriminant().norm()
16375845905239507992576
sage: E.discriminant().norm().factor()
2^31 * 3^27
sage: E.has_global_minimal_model()
True
sage: Emin = E.global_minimal_model(); Emin
Elliptic Curve defined by y^2 + (a+1)*x*y + (a+1)*y = x^3 + (-a)*x^2 + (a-12)*x␣
→˓+ (-2*a+2) over Number Field in a with defining polynomial x^2 - 10
sage: Emin.discriminant().norm()
3456
sage: Emin.discriminant().norm().factor()
2^7 * 3^3

If there is no global minimal model, this method will raise an error unless you set the parameter
semi_global to True:

sage: K.<a> = NumberField(x^2-10)
sage: K.class_number()
2
sage: E = EllipticCurve([a,a,0,3*a+8,4*a+3])
sage: E.has_global_minimal_model()
False
sage: E.global_minimal_model()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x +␣
→˓(4*a+3) over Number Field in a with defining polynomial x^2 - 10 has no␣

(continues on next page)

334 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/14472
https://trac.sagemath.org/18662

Elliptic curves, Release 9.8

(continued from previous page)

→˓global minimal model! For a semi-global minimal model use semi_global=True
sage: E.global_minimal_model(semi_global=True)
Elliptic Curve defined by y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over␣
→˓Number Field in a with defining polynomial x^2 - 10

An example of a curve with everywhere good reduction but which has no model with unit discriminant:

sage: K.<a> = NumberField(x^2-x-16)
sage: K.class_number()
2
sage: E = EllipticCurve([0,0,0,-15221331*a - 53748576, -79617688290*a -␣
→˓281140318368])
sage: Emin = E.global_minimal_model(semi_global=True)
sage: Emin.ainvs()
(a, a - 1, a, 605*a - 2728, 15887*a - 71972)
sage: Emin.discriminant()
-17*a - 16
sage: Emin.discriminant().norm()
-4096
sage: Emin.minimal_discriminant_ideal()
Fractional ideal (1)
sage: E.conductor()
Fractional ideal (1)

global_minimality_class()

Return the obstruction to this curve having a global minimal model.

OUTPUT:

An ideal class of the base number field, which is trivial if and only if the elliptic curve has a global minimal
model, and which can be used to find global and semi-global minimal models.

EXAMPLES:

A curve defined over a field of class number 2 with no global minimal model was a nontrivial minimality
class:

sage: K.<a> = NumberField(x^2-10)
sage: K.class_number()
2
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.global_minimality_class()
Fractional ideal class (10, 5*a)
sage: E.global_minimality_class().order()
2

Over the same field, a curve defined by a non-minimal model has trivial class, showing that a global minimal
model does exist:

sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0,0,0,4536*a+14148,-163728*a- 474336])
sage: E.is_global_minimal_model()
False
sage: E.global_minimality_class()
Trivial principal fractional ideal class

16.3. Elliptic curves over number fields 335

Elliptic curves, Release 9.8

Over a field of class number 1 the result is always the trivial class:

sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([0, 0, 0, K(16), K(64)])
sage: E.global_minimality_class()
Trivial principal fractional ideal class

sage: E = EllipticCurve([0, 0, 0, 16, 64])
sage: E.base_field()
Rational Field
sage: E.global_minimality_class()
1

has_additive_reduction(P)
Return True if this elliptic curve has (bad) additive reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has additive reduction at 𝑃 , else False.

EXAMPLES:

sage: E = EllipticCurve('27a1')
sage: [(p,E.has_additive_reduction(p)) for p in prime_range(15)]
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_additive_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_bad_reduction(P)
Return True if this elliptic curve has bad reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has bad reduction at 𝑃 , else False.

Note: This requires determining a local integral minimal model; we do not just check that the discriminant
of the current model has valuation zero.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.has_bad_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

(continues on next page)

336 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_bad_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_cm()

Return whether or not this curve has a CM 𝑗-invariant.

OUTPUT:

True if this curve has CM over the algebraic closure of the base field, otherwise False. See also
cm_discriminant() and has_rational_cm().

Note: Even if 𝐸 has CM in this sense (that its 𝑗-invariant is a CM 𝑗-invariant), if the associated negative
discriminant 𝐷 is not a square in the base field 𝐾, the extra endomorphisms will not be defined over 𝐾.
See also the method has_rational_cm() which tests whether 𝐸 has extra endomorphisms defined over
𝐾 or a given extension of 𝐾.

EXAMPLES:

sage: EllipticCurve(j=0).has_cm()
True
sage: EllipticCurve(j=1).has_cm()
False
sage: EllipticCurve(j=1728).has_cm()
True
sage: EllipticCurve(j=8000).has_cm()
True
sage: K.<a> = QuadraticField(5)
sage: EllipticCurve(j=282880*a + 632000).has_cm()
True
sage: K.<a> = NumberField(x^3 - 2)
sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).
→˓has_cm()
True

has_global_minimal_model()

Return whether this elliptic curve has a global minimal model.

OUTPUT:

Boolean, True iff a global minimal model exists, i.e. an integral model which is minimal at every prime.

EXAMPLES:

sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0,0,0,4536*a+14148,-163728*a-474336])
sage: E.is_global_minimal_model()
False
sage: E.has_global_minimal_model()
True

16.3. Elliptic curves over number fields 337

Elliptic curves, Release 9.8

has_good_reduction(P)
Return True if this elliptic curve has good reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) – True if the curve has good reduction at 𝑃 , else False.

Note: This requires determining a local integral minimal model; we do not just check that the discriminant
of the current model has valuation zero.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.has_good_reduction(p)) for p in prime_range(15)]
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_good_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), True),
(Fractional ideal (2*a + 1), False)]

has_multiplicative_reduction(P)
Return True if this elliptic curve has (bad) multiplicative reduction at the prime 𝑃 .

Note: See also has_split_multiplicative_reduction() and
has_nonsplit_multiplicative_reduction().

INPUT:

• P – a prime ideal of the base field of self, or a field
element generating such an ideal.

OUTPUT:

(bool) True if the curve has multiplicative reduction at 𝑃 , else False.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.has_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

338 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

has_nonsplit_multiplicative_reduction(P)
Return True if this elliptic curve has (bad) non-split multiplicative reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has non-split multiplicative reduction at 𝑃 , else False.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.has_nonsplit_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_nonsplit_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

has_rational_cm(field=None)
Return whether or not this curve has CM defined over its base field or a given extension.

INPUT:

• field – a field, which should be an extension of the base field of the curve. If field is None (the
default), it is taken to be the base field of the curve.

OUTPUT:

True if the ring of endomorphisms of this curve over the given field is larger than Z; otherwise False. See
also cm_discriminant() and has_cm().

Note: If𝐸 has CM but the discriminant𝐷 is not a square in the given field𝐾 then the extra endomorphisms
will not be defined over 𝐾, and this function will return False. See also has_cm(). To obtain the CM
discriminant, use cm_discriminant().

EXAMPLES:

sage: E = EllipticCurve(j=0)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-3
sage: E.has_rational_cm(QuadraticField(D))
True

sage: E = EllipticCurve(j=1728)
sage: E.has_cm()
True
sage: E.has_rational_cm()

(continues on next page)

16.3. Elliptic curves over number fields 339

Elliptic curves, Release 9.8

(continued from previous page)

False
sage: D = E.cm_discriminant(); D
-4
sage: E.has_rational_cm(QuadraticField(D))
True

Higher degree examples:

sage: K.<a> = QuadraticField(5)
sage: E = EllipticCurve(j=282880*a + 632000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: E.cm_discriminant()
-20
sage: E.has_rational_cm(K.extension(x^2+5,'b'))
True

An error is raised if a field is given which is not an extension of the base field:

sage: E.has_rational_cm(QuadraticField(-20))
Traceback (most recent call last):
...
ValueError: Error in has_rational_cm: Number Field in a with defining␣
→˓polynomial x^2 + 20 with a = 4.472135954999579?*I is not an extension field␣
→˓of Number Field in a with defining polynomial x^2 - 5 with a = 2.
→˓236067977499790?

sage: K.<a> = NumberField(x^3 - 2)
sage: E = EllipticCurve(j=31710790944000*a^2 + 39953093016000*a +␣
→˓50337742902000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-108
sage: E.has_rational_cm(K.extension(x^2+108,'b'))
True

has_split_multiplicative_reduction(P)
Return True if this elliptic curve has (bad) split multiplicative reduction at the prime 𝑃 .

INPUT:

• P – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:

(bool) True if the curve has split multiplicative reduction at 𝑃 , else False.

EXAMPLES:

340 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve('14a1')
sage: [(p,E.has_split_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_split_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

height_function()

Return the canonical height function attached to self.

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve(K, '11a3')
sage: E.height_function()
EllipticCurveCanonicalHeight object associated to Elliptic Curve defined by y^2␣
→˓+ y = x^3 + (-1)*x^2 over Number Field in a with defining polynomial x^2 - 5

height_pairing_matrix(points=None, precision=None, normalised=True)
Return the height pairing matrix of the given points.

INPUT:

• points (list or None (default)) – a list of points on this curve, or None, in which case self.gens() will
be used.

• precision (int or None (default)) – number of bits of precision of result, or None, for default RealField
precision.

• normalised (bool, default True) – if True, use normalised heights which are independent of base
change. Otherwise use the non-normalised Néron-Tate height, as required for the regulator in the BSD
conjecture.

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: E.height_pairing_matrix()
[0.0511114082399688]

For rank 0 curves, the result is a valid 0x0 matrix:

sage: EllipticCurve('11a').height_pairing_matrix()
[]
sage: E = EllipticCurve('5077a1')
sage: E.height_pairing_matrix([E.lift_x(x) for x in [-2,-7/4,1]], precision=100)
[1.3685725053539301120518194471 -1.3095767070865761992624519454 -0.
→˓63486715783715592064475542573]
[-1.3095767070865761992624519454 2.7173593928122930896610589220 1.
→˓0998184305667292139777571432]
[-0.63486715783715592064475542573 1.0998184305667292139777571432 0.
→˓66820516565192793503314205089]

(continues on next page)

16.3. Elliptic curves over number fields 341

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve('389a1')
sage: E = EllipticCurve('389a1')
sage: P,Q = E.point([-1,1,1]),E.point([0,-1,1])
sage: E.height_pairing_matrix([P,Q])
[0.686667083305587 0.268478098806726]
[0.268478098806726 0.327000773651605]

Over a number field:

sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^2+47)
sage: EK = E.base_extend(K)
sage: EK.height_pairing_matrix([EK(P),EK(Q)])
[0.686667083305587 0.268478098806726]
[0.268478098806726 0.327000773651605]

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,i])
sage: P = E(-9+4*i,-18-25*i)
sage: Q = E(i,-i)
sage: E.height_pairing_matrix([P,Q])
[2.16941934493768 -0.870059380421505]
[-0.870059380421505 0.424585837470709]
sage: E.regulator_of_points([P,Q])
0.164101403936070

When the parameter normalised is set to False, each height is multiplied by the degree 𝑑 of the base
field, and the regulator of 𝑟 points is multiplied by 𝑑𝑟:

sage: E.height_pairing_matrix([P,Q], normalised=False)
[4.33883868987537 -1.74011876084301]
[-1.74011876084301 0.849171674941418]
sage: E.regulator_of_points([P,Q], normalised=False)
0.656405615744281

integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1,P2 = K.primes_above(5)
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x␣
→˓+ 3125*i over Number Field in i with defining polynomial x^2 + 1

trac ticket #7935:

sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([a,1/2])
sage: E.global_integral_model()

(continues on next page)

342 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/7935

Elliptic curves, Release 9.8

(continued from previous page)

Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436 over Number Field in a␣
→˓with defining polynomial x^2 - 38

trac ticket #9266:

sage: K.<s> = NumberField(x^2-5)
sage: w = (1+s)/2
sage: E = EllipticCurve(K,[2,w])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2) over Number Field in s␣
→˓with defining polynomial x^2 - 5

trac ticket #12151:

sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/
→˓1296, 634768555/7776*v - 98002625/1296, 0, 0])
sage: M = E.global_integral_model(); M # choice varies, not tested
Elliptic Curve defined by y^2 + (2094779518028859*v-1940492905300351)*x*y +␣
→˓(477997268472544193101178234454165304071127500*v-
→˓442791377441346852919930773849502871958097500)*y = x^3 +␣
→˓(26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2␣
→˓over Number Field in v with defining polynomial x^2 + 161*x - 150

trac ticket #14476:

sage: R.<t> = QQ[]
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
sage: E = EllipticCurve([-43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/
→˓78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 -␣
→˓4074/78125*g^2 - 711/78125*g + 10304/78125, 0,0])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-
→˓44145*g+37638)*y = x^3 + (-954*g^3-1134*g^2+81*g+576)*x^2 over Number Field␣
→˓in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

is_Q_curve(maxp=100, certificate=False, verbose=False)
Return True if this is a Q-curve, with optional certificate.

INPUT:

• maxp (int, default 100): bound on primes used for checking necessary local conditions. The result will
not depend on this, but using a larger value may return False faster.

• certificate (bool, default False): if True then a second value is returned giving a certificate for
the Q-curve property.

OUTPUT:

If certificate is False: either True (if 𝐸 is a Q-curve), or False.

If certificate is True: a tuple consisting of a boolean flag as before and a certificate, defined as follows:

• when the flag is True, so 𝐸 is a Q-curve:

– either {‘CM’:𝐷} where𝐷 is a negative discriminant, when𝐸 has potential CM with discriminant
𝐷;

16.3. Elliptic curves over number fields 343

https://trac.sagemath.org/9266
https://trac.sagemath.org/12151
https://trac.sagemath.org/14476

Elliptic curves, Release 9.8

– otherwise {‘CM’: 0, ‘core_poly’: 𝑓 , ‘rho’: 𝜌, ‘r’: 𝑟, ‘N’: 𝑁}, when 𝐸 is a non-CM Q-curve,
where the core polynomial 𝑓 is an irreducible monic polynomial over 𝑄𝑄 of degree 2𝜌, all of
whose roots are 𝑗-invariants of curves isogenous to 𝐸, the core level 𝑁 is a square-free integer
with 𝑟 prime factors which is the LCM of the degrees of the isogenies between these conjugates.
For example, if there exists a curve 𝐸′ isogenous to 𝐸 with 𝑗(𝐸′) = 𝑗 ∈ Q, then the certificate is
{‘CM’:0, ‘r’:0, ‘rho’:0, ‘core_poly’: x-j, ‘N’:1}.

• when the flag is False, so𝐸 is not a Q-curve, the certificate is a prime 𝑝 such that the reductions of𝐸
at the primes dividing 𝑝 are inconsistent with the property of being a Q-curve. See the documentation
for sage.src.schemes.elliptic_curves.Qcurves.is_Q_curve() for details.

ALGORITHM:

See the documentation for sage.src.schemes.elliptic_curves.Qcurves.is_Q_curve(), and
[CrNa2020] for details.

EXAMPLES:

A non-CM curve over Q and a CM curve over Q are both trivially Q-curves:

sage: E = EllipticCurve([1,2,3,4,5])
sage: flag, cert = E.is_Q_curve(certificate=True)
sage: flag
True
sage: cert
{'CM': 0, 'N': 1, 'core_poly': x, 'r': 0, 'rho': 0}

sage: E = EllipticCurve(j=8000)
sage: flag, cert = E.is_Q_curve(certificate=True)
sage: flag
True
sage: cert
{'CM': -8}

A non-Q-curve over a quartic field. The local data at bad primes above 3 is inconsistent:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1]))
sage: E = EllipticCurve([K([-3,-4,1,1]),K([4,-1,-1,0]),K([-2,0,1,0]),K([-621,
→˓778,138,-178]),K([9509,2046,-24728,10380])])
sage: E.is_Q_curve(certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + (a^3+a^2-4*a-3)*x*y + (a^2-
→˓2)*y = x^3 + (-a^2-a+4)*x^2 + (-178*a^3+138*a^2+778*a-621)*x + (10380*a^3-
→˓24728*a^2+2046*a+9509) over Number Field in a with defining polynomial x^4 -␣
→˓5*x^2 + 3 is a Q-curve
No: inconsistency at the 2 primes dividing 3
- potentially multiplicative: [True, False]
(False, 3)

A non-Q-curve over a quadratic field. The local data at bad primes is consistent, but the local test at good
primes above 13 is not:

sage: K.<a> = NumberField(R([-10, 0, 1]))
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,0]),K([-236,40]),K([-1840,
→˓464])])
sage: E.is_Q_curve(certificate=True, verbose=True)

(continues on next page)

344 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

Checking whether Elliptic Curve defined by y^2 + a*x*y = x^3 + (-a-1)*x^2 +␣
→˓(40*a-236)*x + (464*a-1840) over Number Field in a with defining polynomial x^
→˓2 - 10 is a Q-curve
Applying local tests at good primes above p<=100
No: inconsistency at the 2 ordinary primes dividing 13
- Frobenius discriminants mod squares: [-1, -3]
No: local test at p=13 failed
(False, 13)

A quadratic Q-curve with CM discriminant −15 (so the 𝑗-invariant is not in Q):

sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([-1, -1, 1]))
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,1]),K([0,-2]),K([0,1])])
sage: E.is_Q_curve(certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + x*y + a*y = x^3 + (-1)*x^2 + (-
→˓2*a)*x + a over Number Field in a with defining polynomial x^2 - x - 1 is a Q-
→˓curve
Yes: E is CM (discriminant -15)
(True, {'CM': -15})

An example over Q(
√

2,
√

3). The 𝑗-invariant is in Q(
√

6), so computations will be done over that field,
and in fact there is an isogenous curve with rational 𝑗, so we have a so-called rational Q-curve:

sage: K.<a> = NumberField(R([1, 0, -4, 0, 1]))
sage: E = EllipticCurve([K([-2,-4,1,1]),K([0,1,0,0]),K([0,1,0,0]),K([-4780,9170,
→˓1265,-2463]),K([163923,-316598,-43876,84852])])
sage: flag, cert = E.is_Q_curve(certificate=True) # long time
sage: flag # long time
True
sage: cert # long time
{'CM': 0, 'N': 1, 'core_degs': [1], 'core_poly': x - 85184/3, 'r': 0, 'rho': 0}

Over the same field, a so-called strict Q-curve which is not isogenous to one with rational 𝑗, but whose
core field is quadratic. In fact the isogeny class over 𝐾 consists of 6 curves, four with conjugate quartic
𝑗-invariants and 2 with quadratic conjugate 𝑗-invariants in Q(

√
3) (but which are not base-changes from

the quadratic subfield):

sage: E = EllipticCurve([K([0,-3,0,1]),K([1,4,0,-1]),K([0,0,0,0]),K([-2,-16,0,
→˓4]),K([-19,-32,4,8])])
sage: flag, cert = E.is_Q_curve(certificate=True) # long time
sage: flag # long time
True
sage: cert # long time
{'CM': 0,
'N': 2,
'core_degs': [1, 2],
'core_poly': x^2 - 840064*x + 1593413632,
'r': 1,
'rho': 1}

is_global_integral_model()

Return whether self is integral at all primes.

16.3. Elliptic curves over number fields 345

Elliptic curves, Release 9.8

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1,P2 = K.primes_above(5)
sage: Emin = E.global_integral_model()
sage: Emin.is_global_integral_model()
True

is_global_minimal_model()

Return whether this elliptic curve is a global minimal model.

OUTPUT:

Boolean, False if E is not integral, or if E is non-minimal at some prime, else True.

EXAMPLES:

sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.is_global_minimal_model()
False
sage: E.non_minimal_primes()
[Fractional ideal (2, a), Fractional ideal (5, a)]

sage: E = EllipticCurve([0,0,0,-3024,46224])
sage: E.is_global_minimal_model()
False
sage: E.non_minimal_primes()
[2, 3]
sage: Emin = E.global_minimal_model()
sage: Emin.is_global_minimal_model()
True

A necessary condition to be a global minimal model is that the model must be globally integral:

sage: E = EllipticCurve([0,0,0,1/2,1/3])
sage: E.is_global_minimal_model()
False
sage: Emin.is_global_minimal_model()
True
sage: Emin.ainvs()
(0, 1, 1, -2, 0)

is_isogenous(other, proof=True, maxnorm=100)
Return whether or not self is isogenous to other.

INPUT:

• other – another elliptic curve.

• proof (default True) – If False, the function will return True whenever the two curves have the same
conductor and are isogenous modulo 𝑝 for all primes 𝑝 of norm up to maxnorm. If True, the function
returns False when the previous condition does not hold, and if it does hold we compute the complete
isogeny class to see if the curves are indeed isogenous.

• maxnorm (integer, default 100) – The maximum norm of primes 𝑝 for which isogeny modulo 𝑝 will be
checked.

346 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: E1 = EllipticCurve(F, [7,8])
sage: E2 = EllipticCurve(F, [0,5,0,1,0])
sage: E3 = EllipticCurve(F, [0,-10,0,21,0])
sage: E1.is_isogenous(E2)
False
sage: E1.is_isogenous(E1)
True
sage: E2.is_isogenous(E2)
True
sage: E2.is_isogenous(E1)
False
sage: E2.is_isogenous(E3)
True

sage: x = polygen(QQ, 'x')
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: E = EllipticCurve('14a1')
sage: EE = EllipticCurve('14a2')
sage: E1 = E.change_ring(F)
sage: E2 = EE.change_ring(F)
sage: E1.is_isogenous(E2)
True

sage: x = polygen(QQ, 'x')
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: k.<a> = NumberField(x^3+7)
sage: E = EllipticCurve(F, [7,8])
sage: EE = EllipticCurve(k, [2, 2])
sage: E.is_isogenous(EE)
Traceback (most recent call last):
...
ValueError: Second argument must be defined over the same number field.

Some examples from Cremona’s 1981 tables:

sage: K.<i> = QuadraticField(-1)
sage: E1 = EllipticCurve([i + 1, 0, 1, -240*i - 400, -2869*i - 2627])
sage: E1.conductor()
Fractional ideal (-4*i - 7)
sage: E2 = EllipticCurve([1+i,0,1,0,0])
sage: E2.conductor()
Fractional ideal (-4*i - 7)
sage: E1.is_isogenous(E2) # long time

(continues on next page)

16.3. Elliptic curves over number fields 347

Elliptic curves, Release 9.8

(continued from previous page)

True
sage: E1.is_isogenous(E2, proof=False) # faster (~170ms)
True

In this case E1 and E2 are in fact 9-isogenous, as may be deduced from the following:

sage: E3 = EllipticCurve([i + 1, 0, 1, -5*i - 5, -2*i - 5])
sage: E3.is_isogenous(E1)
True
sage: E3.is_isogenous(E2)
True
sage: E1.isogeny_degree(E2) # long time
9

is_local_integral_model(*P)
Tests if self is integral at the prime ideal 𝑃 , or at all the primes if 𝑃 is a list or tuple.

INPUT:

• *P – a prime ideal, or a list or tuple of primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: P1,P2 = K.primes_above(5)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: E.is_local_integral_model(P1,P2)
False
sage: Emin = E.local_integral_model(P1,P2)
sage: Emin.is_local_integral_model(P1,P2)
True

isogenies_prime_degree(l=None, algorithm='Billerey', minimal_models=True)
Return a list of ℓ-isogenies from self, where ℓ is a prime.

INPUT:

• l – either None or a prime or a list of primes.

• algorithm (string, default ‘Billerey’) – the algorithm to use to compute the reducible primes when
l is None. Ignored for CM curves or if l is provided. Values are ‘Billerey’ (default), ‘Larson’, and
‘heuristic’.

• minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-
minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) ℓ-isogenies for the given ℓ or if ℓ is None, all isogenies of prime degree (see below for the CM case).

Note: Over Q, the codomains of the isogenies returned are standard minimal models. Over other number
fields they are global minimal models if these exist, otherwise models which are minimal at all but one
prime.

Note: For curves with rational CM, isogenies of primes degree exist for infinitely many primes ℓ, though

348 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

there are only finitely many isogenous curves up to isomorphism. The list returned only includes one
isogeny of prime degree for each codomain.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: isogs = E.isogenies_prime_degree()
sage: [phi.degree() for phi in isogs]
[2, 3]

sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: js = hilbert_class_polynomial(-23).roots(L,multiplicities=False); len(js)
3
sage: E = EllipticCurve(j=js[0])
sage: len(E.isogenies_prime_degree()) # long time
3

Set minimal_models to False to avoid computing minimal models of the isogenous curves, since that can
be time-consuming since it requires computation of the class group:

sage: proof.number_field(False)
sage: K.<z> = CyclotomicField(53)
sage: E = EllipticCurve(K,[0,6,0,2,0])
sage: E.isogenies_prime_degree(2, minimal_models=False)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x␣
→˓over Cyclotomic Field of order 53 and degree 52 to Elliptic Curve defined by␣
→˓y^2 = x^3 + 6*x^2 + (-8)*x + (-48) over Cyclotomic Field of order 53 and␣
→˓degree 52]
sage: E.isogenies_prime_degree(2, minimal_models=True) # not tested (10s)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x␣
→˓over Cyclotomic Field of order 53 and degree 52 to Elliptic Curve defined by␣
→˓y^2 = x^3 + (-20)*x + (-16) over Cyclotomic Field of order 53 and degree 52]

isogeny_class(reducible_primes=None, algorithm='Billerey', minimal_models=True)
Return the isogeny class of this elliptic curve.

INPUT:

• reducible_primes (list of ints, or None (default)) – if not None then this should be a list of primes;
in computing the isogeny class, only composites isogenies of these degrees will be used.

• algorithm (string, default ‘Billerey’) – the algorithm to use to compute the reducible primes. Ignored
for CM curves or if reducible_primes is provided. Values are ‘Billerey’ (default), ‘Larson’, and
‘heuristic’.

• minimal_models (bool, default True) – if True, all curves in the class will be minimal or semi-
minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

An instance of the class sage.schemes.elliptic_curves.isogeny_class.
IsogenyClass_EC_NumberField . From this object may be obtained a list of curves in the class,
a matrix of the degrees of the isogenies between them, and the isogenies themselves.

16.3. Elliptic curves over number fields 349

Elliptic curves, Release 9.8

Note: If using the algorithm ‘heuristic’ for non-CM curves, the result is not guaranteed to be the com-
plete isogeny class, since only reducible primes up to the default bound in reducible_primes_naive()
(currently 1000) are tested. However, no examples of non-CM elliptic curves with reducible primes greater
than 100 have yet been computed so the output is likely to be correct.

Note: By default, the curves in the isogeny class will all be minimal models if these exist (for example,
when the class number is 1); otherwise they will be minimal at all but one prime. This behaviour can
be switched off if desired, for example over fields where the computation of the class group would be too
expensive.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: C = E.isogeny_class(); C
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in i␣
→˓with defining polynomial x^2 + 1 with i = 1*I

The curves in the class (sorted):

sage: [E1.ainvs() for E1 in C]
[(0, 0, 0, 0, -27),
(0, 0, 0, 0, 1),
(i + 1, i, i + 1, -i + 3, 4*i),
(i + 1, i, i + 1, -i + 33, -58*i)]

The matrix of degrees of cyclic isogenies between curves:

sage: C.matrix()
[1 3 6 2]
[3 1 2 6]
[6 2 1 3]
[2 6 3 1]

The array of isogenies themselves is not filled out but only contains those used to construct the class, the
other entries containing the integer 0. This will be changed when the class EllipticCurveIsogeny
allowed composition. In this case we used 2-isogenies to go from 0 to 2 and from 1 to 3, and 3-isogenies
to go from 0 to 1 and from 2 to 3:

sage: isogs = C.isogenies()
sage: [((i,j),isogs[i][j].degree()) for i in range(4) for j in range(4) if␣
→˓isogs[i][j]!=0]
[((0, 1), 3),
((0, 3), 2),
((1, 0), 3),
((1, 2), 2),
((2, 1), 2),
((2, 3), 3),
((3, 0), 2),
((3, 2), 3)]
sage: [((i,j),isogs[i][j].x_rational_map()) for i in range(4) for j in range(4)␣

(continues on next page)

350 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

→˓if isogs[i][j]!=0]
[((0, 1), (1/9*x^3 - 12)/x^2),
((0, 3), (-1/2*i*x^2 + i*x - 12*i)/(x - 3)),
((1, 0), (x^3 + 4)/x^2),
((1, 2), (-1/2*i*x^2 - i*x - 2*i)/(x + 1)),
((2, 1), (1/2*i*x^2 - x)/(x + 3/2*i)),
((2, 3), (x^3 + 4*i*x^2 - 10*x - 10*i)/(x^2 + 4*i*x - 4)),
((3, 0), (1/2*i*x^2 + x + 4*i)/(x - 5/2*i)),
((3, 2), (1/9*x^3 - 4/3*i*x^2 - 34/3*x + 226/9*i)/(x^2 - 8*i*x - 16))]

The isogeny class may be visualized by obtaining its graph and plotting it:

sage: G = C.graph()
sage: G.show(edge_labels=True) # long time

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, 1, 0])
sage: C = E.isogeny_class(); C # long time
Isogeny class of Elliptic Curve defined by y^2 + (i+1)*x*y + i*y = x^3 + (-i)*x^
→˓2 + x over Number Field in i with defining polynomial x^2 + 1 with i = 1*I
sage: len(C) # long time
6
sage: C.matrix() # long time
[1 3 9 18 6 2]
[3 1 3 6 2 6]
[9 3 1 2 6 18]
[18 6 2 1 3 9]
[6 2 6 3 1 3]
[2 6 18 9 3 1]
sage: [E1.ainvs() for E1 in C] # long time
[(i + 1, i - 1, i, -i - 1, -i + 1),
(i + 1, i - 1, i, 14*i + 4, 7*i + 14),
(i + 1, i - 1, i, 59*i + 99, 372*i - 410),
(i + 1, -i, i, -240*i - 399, 2869*i + 2627),
(i + 1, -i, i, -5*i - 4, 2*i + 5),
(i + 1, -i, i, 1, 0)]

An example with CM by
√
−5:

sage: pol = PolynomialRing(QQ,'x')([1,0,3,0,1])
sage: K.<c> = NumberField(pol)
sage: j = 1480640+565760*c^2
sage: E = EllipticCurve(j=j)
sage: E.has_cm()
True
sage: E.has_rational_cm()
True
sage: E.cm_discriminant()
-20
sage: C = E.isogeny_class()
sage: len(C)
2

(continues on next page)

16.3. Elliptic curves over number fields 351

Elliptic curves, Release 9.8

(continued from previous page)

sage: C.matrix()
[1 2]
[2 1]
sage: [E.ainvs() for E in C]
[(0, 0, 0, 83490*c^2 - 147015, -64739840*c^2 - 84465260),
(0, 0, 0, -161535*c^2 + 70785, -62264180*c^3 + 6229080*c)]
sage: C.isogenies()[0][1]
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (83490*c^2-
→˓147015)*x + (-64739840*c^2-84465260) over Number Field in c with defining␣
→˓polynomial x^4 + 3*x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + (-
→˓161535*c^2+70785)*x + (-62264180*c^3+6229080*c) over Number Field in c with␣
→˓defining polynomial x^4 + 3*x^2 + 1

An example with CM by
√
−23 (class number 3):

sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: js = hilbert_class_polynomial(-23).roots(L,multiplicities=False); len(js)
3
sage: E = EllipticCurve(j=js[0])
sage: E.has_rational_cm()
True
sage: len(E.isogenies_prime_degree()) # long time
3
sage: C = E.isogeny_class(); len(C) # long time
6

The reason for the isogeny class having size six while the class number is only 3 is that the class also
contains three curves with CM by the order of discriminant −92 = 4 · (−23), which also has class number
3. The curves in the class are sorted first by CM discriminant (then lexicographically using a-invariants):

sage: [F.cm_discriminant() for F in C] # long time
[-23, -23, -23, -92, -92, -92]

2 splits in the order with discriminant −23, into two primes of order 3 in the class group, each of which
induces a 2-isogeny to a curve with the same endomorphism ring; the third 2-isogeny is to a curve with the
smaller endomorphism ring:

sage: [phi.codomain().cm_discriminant() for phi in E.isogenies_prime_degree()]
→˓# long time
[-92, -23, -23]

sage: C.matrix() # long time # random
[1 2 2 4 4 2]
[2 1 2 4 2 4]
[2 2 1 2 4 4]
[4 4 2 1 3 3]
[4 2 4 3 1 3]
[2 4 4 3 3 1]

The graph of this isogeny class has a shape which does not occur over Q: a triangular prism. Note that
for curves without CM, the graph has an edge between two curves if and only if they are connected by an
isogeny of prime degree, and this degree is uniquely determined by the two curves, but in the CM case

352 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

this property does not hold, since for pairs of curves in the class with the same endomorphism ring 𝑂, the
set of degrees of isogenies between them is the set of integers represented by a primitive integral binary
quadratic form of discriminant disc(𝑂), and this form represents infinitely many primes. In the matrix we
give a small prime represented by the appropriate form. In this example, the matrix is formed by four 3× 3
blocks. The isogenies of degree 2 indicated by the upper left 3×3 block of the matrix could be replaced by
isogenies of any degree represented by the quadratic form 2𝑥2 + 𝑥𝑦 + 3𝑦2 of discriminant −23. Similarly
in the lower right block, the entries of 3 could be represented by any integers represented by the quadratic
form 3𝑥2 + 2𝑥𝑦 + 8𝑦2 of discriminant −92. In the top right block and lower left blocks, by contrast, the
prime entries 2 are unique determined:

sage: G = C.graph() # long time
sage: G.adjacency_matrix() # long time # random
[0 1 1 0 0 1]
[1 0 1 0 1 0]
[1 1 0 1 0 0]
[0 0 1 0 1 1]
[0 1 0 1 0 1]
[1 0 0 1 1 0]
sage: Graph(polytopes.simplex(2).prism().adjacency_matrix()).is_isomorphic(G) #␣
→˓long time
True

To display the graph without any edge labels:

sage: G.show() # not tested

To display the graph with edge labels: by default, for curves with rational CM, the labels are the coefficients
of the associated quadratic forms:

sage: G.show(edge_labels=True) # not tested

For an alternative view, first relabel the edges using only 2 labels to distinguish between isogenies between
curves with the same endomorphism ring and isogenies between curves with different endomorphism rings,
then use a 3-dimensional plot which can be rotated:

sage: for i,j,l in G.edge_iterator(): # long time
....: G.set_edge_label(i, j, l.count(','))
sage: G.show3d(color_by_label=True) # long time

A class number 6 example. First we set up the fields: pol defines the same field as pol26 but is simpler:

sage: pol26 = hilbert_class_polynomial(-4*26)
sage: pol = x^6-x^5+2*x^4+x^3-2*x^2-x-1
sage: K.<a> = NumberField(pol)
sage: L. = K.extension(x^2+26)

Only 2 of the 𝑗-invariants with discriminant -104 are in 𝐾, though all are in 𝐿:

sage: len(pol26.roots(K))
2
sage: len(pol26.roots(L))
6

We create an elliptic curve defined over 𝐾 with one of the 𝑗-invariants in 𝐾:

16.3. Elliptic curves over number fields 353

Elliptic curves, Release 9.8

sage: j1 = pol26.roots(K)[0][0]
sage: E = EllipticCurve(j=j1)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: E.has_rational_cm(L)
True

Over 𝐾 the isogeny class has size 4, with 2 curves for each of the 2 𝐾-rational 𝑗-invariants:

sage: C = E.isogeny_class(); len(C) # long time (~11s)
4
sage: C.matrix() # long time
[1 13 2 26]
[13 1 26 2]
[2 26 1 13]
[26 2 13 1]
sage: len(Set([EE.j_invariant() for EE in C.curves])) # long time
2

Over 𝐿, the isogeny class grows to size 6 (the class number):

sage: EL = E.change_ring(L)
sage: CL = EL.isogeny_class(minimal_models=False) # long time
sage: len(CL) # long time
6
sage: s1 = Set([EE.j_invariant() for EE in CL.curves]) # long time
sage: s2 = Set(pol26.roots(L,multiplicities=False)) # long time
sage: s1 == s2 # long time
True

In each position in the matrix of degrees, we see primes (or 1). In fact the set of degrees of cyclic isogenies
from curve 𝑖 to curve 𝑗 is infinite, and is the set of all integers represented by one of the primitive binary
quadratic forms of discriminant −104, from which we have selected a small prime:

sage: CL.matrix() # long time # random (see :trac:`19229`)
[1 2 3 3 5 5]
[2 1 5 5 3 3]
[3 5 1 3 2 5]
[3 5 3 1 5 2]
[5 3 2 5 1 3]
[5 3 5 2 3 1]

To see the array of binary quadratic forms:

sage: CL.qf_matrix() # long time # random (see :trac:`19229`)
[[[1], [2, 0, 13], [3, -2, 9], [3, -2, 9], [5, -4, 6], [5, -4, 6]],
[[2, 0, 13], [1], [5, -4, 6], [5, -4, 6], [3, -2, 9], [3, -2, 9]],
[[3, -2, 9], [5, -4, 6], [1], [3, -2, 9], [2, 0, 13], [5, -4, 6]],
[[3, -2, 9], [5, -4, 6], [3, -2, 9], [1], [5, -4, 6], [2, 0, 13]],
[[5, -4, 6], [3, -2, 9], [2, 0, 13], [5, -4, 6], [1], [3, -2, 9]],
[[5, -4, 6], [3, -2, 9], [5, -4, 6], [2, 0, 13], [3, -2, 9], [1]]]

354 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

As in the non-CM case, the isogeny class may be visualized by obtaining its graph and plotting it. Since
there are more edges than in the non-CM case, it may be preferable to omit the edge_labels:

sage: G = C.graph()
sage: G.show(edge_labels=False) # long time

It is possible to display a 3-dimensional plot, with colours to represent the different edge labels, in a form
which can be rotated!:

sage: G.show3d(color_by_label=True) # long time

Over larger number fields several options make computations tractable. Here we use algorithm ‘heuristic’
which avoids a rigorous computation of the reducible primes, only testing those less than 1000, and setting
minimal_models to False avoid having to compute the class group of 𝐾. To obtain minimal models set
proof.number_field(False); the class group computation takes an additional 10s:

sage: K.<z> = CyclotomicField(53)
sage: E = EllipticCurve(K,[0,6,0,2,0])
sage: C = E.isogeny_class(algorithm='heuristic', minimal_models=False); C #␣
→˓long time (10s)
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x over␣
→˓Cyclotomic Field of order 53 and degree 52
sage: C.curves # long time
[Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48) over Cyclotomic␣
→˓Field of order 53 and degree 52,
Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x over Cyclotomic Field of␣
→˓order 53 and degree 52]

isogeny_degree(other)
Return the minimal degree of an isogeny between self and other, or 0 if no isogeny exists.

INPUT:

• other – another elliptic curve.

OUTPUT:

(int) The degree of an isogeny from self to other, or 0.

EXAMPLES:

sage: x = QQ['x'].0
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: E = EllipticCurve('14a1')
sage: EE = EllipticCurve('14a2')
sage: E1 = E.change_ring(F)
sage: E2 = EE.change_ring(F)
sage: E1.isogeny_degree(E2) # long time
2
sage: E2.isogeny_degree(E2)
1
sage: E5 = EllipticCurve('14a5').change_ring(F)
sage: E1.isogeny_degree(E5) # long time
6

(continues on next page)

16.3. Elliptic curves over number fields 355

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve('11a1')
sage: [E2.label() for E2 in cremona_curves([11..20]) if E.isogeny_degree(E2)]
['11a1', '11a2', '11a3']

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, 1, 0])
sage: C = E.isogeny_class() # long time
sage: [E.isogeny_degree(F) for F in C] # long time
[2, 6, 18, 9, 3, 1]

kodaira_symbol(P, proof=None)
Return the Kodaira Symbol of this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

OUTPUT:

The Kodaira Symbol of the curve at P, represented as a string.

EXAMPLES:

sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: bad_primes = E.discriminant().support(); bad_primes
[Fractional ideal (-a), Fractional ideal (7/2*a - 81/2), Fractional ideal (-a -␣
→˓52), Fractional ideal (2)]
sage: [E.kodaira_symbol(P) for P in bad_primes]
[I0, I1, I1, II]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve('11a1').change_ring(K)
sage: [E.kodaira_symbol(P) for P in K(11).support()]
[I10]

lll_reduce(points, height_matrix=None, precision=None)
Return an LLL-reduced basis from a given basis, with transform matrix.

INPUT:

• points – a list of points on this elliptic curve, which should be independent.

• height_matrix – the height-pairing matrix of the points, or None. If None, it will be computed.

• precision – number of bits of precision of intermediate computations (default: None, for default
RealField precision; ignored if height_matrix is supplied)

OUTPUT: A tuple (newpoints, U) where U is a unimodular integer matrix, new_points is the transform of
points by U, such that new_points has LLL-reduced height pairing matrix

Note: If the input points are not independent, the output depends on the undocumented behaviour of
PARI’s pari:qflllgram function when applied to a Gram matrix which is not positive definite.

356 Chapter 16. Elliptic curves over number fields

https://pari.math.u-bordeaux.fr/dochtml/help/qflllgram

Elliptic curves, Release 9.8

EXAMPLES:

Some examples over Q:

sage: E = EllipticCurve([0, 1, 1, -2, 42])
sage: Pi = E.gens(); Pi
[(-4 : 1 : 1), (-3 : 5 : 1), (-11/4 : 43/8 : 1), (-2 : 6 : 1)]
sage: Qi, U = E.lll_reduce(Pi)
sage: all(sum(U[i,j]*Pi[i] for i in range(4)) == Qi[j] for j in range(4))
True
sage: sorted(Qi)
[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (0 : 6 : 1)]
sage: U.det()
1
sage: E.regulator_of_points(Pi)
4.59088036960573
sage: E.regulator_of_points(Qi)
4.59088036960574

sage: E = EllipticCurve([1,0,1,-120039822036992245303534619191166796374,
→˓504224992484910670010801799168082726759443756222911415116])
sage: xi = [2005024558054813068,\
-4690836759490453344,\
4700156326649806635,\
6785546256295273860,\
6823803569166584943,\
7788809602110240789,\
27385442304350994620556,\
54284682060285253719/4,\
-94200235260395075139/25,\
-3463661055331841724647/576,\
-6684065934033506970637/676,\
-956077386192640344198/2209,\
-27067471797013364392578/2809,\
-25538866857137199063309/3721,\
-1026325011760259051894331/108241,\
9351361230729481250627334/1366561,\
10100878635879432897339615/1423249,\
11499655868211022625340735/17522596,\
110352253665081002517811734/21353641,\
414280096426033094143668538257/285204544,\
36101712290699828042930087436/4098432361,\
45442463408503524215460183165/5424617104,\
983886013344700707678587482584/141566320009,\
1124614335716851053281176544216033/152487126016]
sage: points = [E.lift_x(x) for x in xi]
sage: newpoints, U = E.lll_reduce(points) # long time (35s on sage.math, 2011)
sage: [P[0] for P in newpoints] # long time
[6823803569166584943, 5949539878899294213, 2005024558054813068,␣
→˓5864879778877955778, 23955263915878682727/4, 5922188321411938518,␣
→˓5286988283823825378, 11465667352242779838, -11451575907286171572,␣
→˓3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, -
→˓5811874164190604461581/625, 26807786527159569093, 7041412654828066743,␣
→˓475656155255883588, 265757454726766017891/49, 7272142121019825303,␣

(continues on next page)

16.3. Elliptic curves over number fields 357

Elliptic curves, Release 9.8

(continued from previous page)

→˓50628679173833693415/4, 6951643522366348968, 6842515151518070703,␣
→˓111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]

An example to show the explicit use of the height pairing matrix:

sage: E = EllipticCurve([0, 1, 1, -2, 42])
sage: Pi = E.gens()
sage: H = E.height_pairing_matrix(Pi,3)
sage: E.lll_reduce(Pi,height_matrix=H)
(

[1 0 0 1]
[0 1 0 1]
[0 0 0 1]

[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (1 : -7 : 1)], [0 0 1 1]
)

Some examples over number fields (see trac ticket #9411):

sage: K.<a> = QuadraticField(-23, 'a')
sage: E = EllipticCurve(K, [0,0,1,-1,0])
sage: P = E(-2,-(a+1)/2)
sage: Q = E(0,-1)
sage: E.lll_reduce([P,Q])
(

[0 1]
[(0 : -1 : 1), (-2 : -1/2*a - 1/2 : 1)], [1 0]
)

sage: K.<a> = QuadraticField(-5)
sage: E = EllipticCurve(K,[0,a])
sage: points = [E.point([-211/841*a - 6044/841,-209584/24389*a + 53634/24389]),
→˓E.point([-17/18*a - 1/9, -109/108*a - 277/108])]
sage: E.lll_reduce(points)
(
[(-a + 4 : -3*a + 7 : 1), (-17/18*a - 1/9 : 109/108*a + 277/108 : 1)],
[1 0]
[1 -1]
)

local_data(P=None, proof=None, algorithm='pari', globally=False)
Local data for this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None, a prime ideal of the base field of self, or an element of the base field that generates a
prime ideal.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

• algorithm (string, default: “pari”) – Ignored unless the base field is Q. If “pari”, use the PARI
C-library pari:ellglobalred implementation of Tate’s algorithm over Q. If “generic”, use the general
number field implementation.

358 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/9411
https://pari.math.u-bordeaux.fr/dochtml/help/ellglobalred

Elliptic curves, Release 9.8

• globally – whether the local algorithm uses global generators for the prime ideals. Default is False,
which will not require any information about the class group. If True, a generator for𝑃 will be used if𝑃
is principal. Otherwise, or if globally is False, the minimal model returned will preserve integrality
at other primes, but not minimality.

OUTPUT:

If 𝑃 is specified, returns the EllipticCurveLocalData object associated to the prime 𝑃 for this curve.
Otherwise, returns a list of such objects, one for each prime 𝑃 in the support of the discriminant of this
model.

Note: The model is not required to be integral on input.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([1 + i, 0, 1, 0, 0])
sage: E.local_data()
[Local data at Fractional ideal (2*i + 1):
Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over␣
→˓Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 1
Conductor exponent: 1
Kodaira Symbol: I1
Tamagawa Number: 1,
Local data at Fractional ideal (-2*i + 3):
Reduction type: bad split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over␣
→˓Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 2
Conductor exponent: 1
Kodaira Symbol: I2
Tamagawa Number: 2]
sage: E.local_data(K.ideal(3))
Local data at Fractional ideal (3):
Reduction type: good
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over␣
→˓Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 0
Conductor exponent: 0
Kodaira Symbol: I0
Tamagawa Number: 1
sage: E.local_data(2*i + 1)
Local data at Fractional ideal (2*i + 1):
Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over␣
→˓Number Field in i with defining polynomial x^2 + 1
Minimal discriminant valuation: 1
Conductor exponent: 1
Kodaira Symbol: I1
Tamagawa Number: 1

An example raised in trac ticket #3897:

16.3. Elliptic curves over number fields 359

https://trac.sagemath.org/3897

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1,1])
sage: E.local_data(3)
Local data at Principal ideal (3) of Integer Ring:
Reduction type: good
Local minimal model: Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational␣
→˓Field
Minimal discriminant valuation: 0
Conductor exponent: 0
Kodaira Symbol: I0
Tamagawa Number: 1

local_integral_model(*P)
Return a model of self which is integral at the prime ideal 𝑃 .

Note: The integrality at other primes is not affected, even if 𝑃 is non-principal.

INPUT:

• *P – a prime ideal, or a list or tuple of primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: P1,P2 = K.primes_above(5)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: E.local_integral_model((P1,P2))
Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x␣
→˓+ 3125*i over Number Field in i with defining polynomial x^2 + 1

local_minimal_model(P, proof=None, algorithm='pari')
Return a model which is integral at all primes and minimal at 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

• algorithm (string, default: “pari”) – Ignored unless the base field is Q. If “pari”, use the PARI
C-library pari:ellglobalred implementation of Tate’s algorithm over Q. If “generic”, use the general
number field implementation.

OUTPUT:

A model of the curve which is minimal (and integral) at 𝑃 .

Note: The model is not required to be integral on input.

For principal 𝑃 , a generator is used as a uniformizer, and integrality or minimality at other primes is not
affected. For non-principal 𝑃 , the minimal model returned will preserve integrality at other primes, but
not minimality.

EXAMPLES:

360 Chapter 16. Elliptic curves over number fields

https://pari.math.u-bordeaux.fr/dochtml/help/ellglobalred

Elliptic curves, Release 9.8

sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 1250*a + 6250, 62500*a + 15625])
sage: P = K.ideal(a)
sage: E.local_minimal_model(P).ainvs()
(0, 1, 0, 2*a - 34, -4*a + 66)

minimal_discriminant_ideal()

Return the minimal discriminant ideal of this elliptic curve.

OUTPUT:

The integral ideal 𝐷 whose valuation at every prime 𝑃 is that of the local minimal model for 𝐸 at 𝑃 . If
𝐸 has a global minimal model, this will be the principal ideal generated by the discriminant of any such
model, but otherwise it can be a proper divisor of the discriminant of any model.

EXAMPLES:

sage: K.<a> = NumberField(x^2-x-57)
sage: K.class_number()
3
sage: E = EllipticCurve([a,-a,a,-5692-820*a,-259213-36720*a])
sage: K.ideal(E.discriminant())
Fractional ideal (90118662980*a + 636812084644)
sage: K.ideal(E.discriminant()).factor()
(Fractional ideal (2))^2 * (Fractional ideal (3, a + 2))^12

Here the minimal discriminant ideal is principal but there is no global minimal model since the quotient is
the 12th power of a non-principal ideal:

sage: E.minimal_discriminant_ideal()
Fractional ideal (4)
sage: E.minimal_discriminant_ideal().factor()
(Fractional ideal (2))^2

If (and only if) the curve has everywhere good reduction the result is the unit ideal:

sage: K.<a> = NumberField(x^2-26)
sage: E = EllipticCurve([a,a-1,a+1,4*a+10,2*a+6])
sage: E.conductor()
Fractional ideal (1)
sage: E.discriminant()
-104030*a - 530451
sage: E.minimal_discriminant_ideal()
Fractional ideal (1)

Over Q, the result returned is an ideal of Z rather than a fractional ideal of Q:

sage: E = EllipticCurve([1,2,3,4,5])
sage: E.minimal_discriminant_ideal()
Principal ideal (10351) of Integer Ring

non_minimal_primes()

Return a list of primes at which this elliptic curve is not minimal.

OUTPUT:

16.3. Elliptic curves over number fields 361

Elliptic curves, Release 9.8

A list of prime ideals (or prime numbers when the base field is Q, empty if this is a global minimal model.

EXAMPLES:

sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.non_minimal_primes()
[Fractional ideal (2, a), Fractional ideal (5, a)]
sage: K.ideal(E.discriminant()).factor()
(Fractional ideal (2, a))^24 * (Fractional ideal (3, a + 1))^5 * (Fractional␣
→˓ideal (3, a + 2))^5 * (Fractional ideal (5, a))^24 * (Fractional ideal (7))
sage: E.minimal_discriminant_ideal().factor()
(Fractional ideal (2, a))^12 * (Fractional ideal (3, a + 1))^5 * (Fractional␣
→˓ideal (3, a + 2))^5 * (Fractional ideal (7))

Over Q, the primes returned are integers, not ideals:

sage: E = EllipticCurve([0,0,0,-3024,46224])
sage: E.non_minimal_primes()
[2, 3]
sage: Emin = E.global_minimal_model()
sage: Emin.non_minimal_primes()
[]

If the model is not globally integral, a ValueError is raised:

sage: E = EllipticCurve([0,0,0,1/2,1/3])
sage: E.non_minimal_primes()
Traceback (most recent call last):
...
ValueError: non_minimal_primes only defined for integral models

period_lattice(embedding)
Return the period lattice of the elliptic curve for the given embedding of its base field with respect to the
differential 𝑑𝑥/(2𝑦 + 𝑎1𝑥+ 𝑎3).

INPUT:

• embedding – an embedding of the base number field into R or C.

Note: The precision of the embedding is ignored: we only use the given embedding to determine which
embedding into QQbar to use. Once the lattice has been initialized, periods can be computed to arbitrary
precision.

EXAMPLES:

First define a field with two real embeddings:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,a,2])
sage: embs = K.embeddings(CC); len(embs)
3

For each embedding we have a different period lattice:

362 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E.period_lattice(embs[0])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2 over␣
→˓Number Field in a with defining polynomial x^3 - 2 with respect to the␣
→˓embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I

sage: E.period_lattice(embs[1])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2 over␣
→˓Number Field in a with defining polynomial x^3 - 2 with respect to the␣
→˓embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> -0.6299605249474365? + 1.091123635971722?*I

sage: E.period_lattice(embs[2])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2 over␣
→˓Number Field in a with defining polynomial x^3 - 2 with respect to the␣
→˓embedding Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> 1.259921049894873?

Although the original embeddings have only the default precision, we can obtain the basis with higher
precision later:

sage: L=E.period_lattice(embs[0])
sage: L.basis()
(1.86405007647981 - 0.903761485143226*I, -0.149344633143919 - 2.
→˓06619546272945*I)

sage: L.basis(prec=100)
(1.8640500764798108425920506200 - 0.90376148514322594749786960975*I, -0.
→˓14934463314391922099120107422 - 2.0661954627294548995621225062*I)

rank(**kwds)
Return the rank of this elliptic curve, if it can be determined.

Note: The optional parameters control the Simon two descent algorithm; see the documentation of
simon_two_descent() for more details.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on elliptic curve

• maxprob – (default: 20)

16.3. Elliptic curves over number fields 363

Elliptic curves, Release 9.8

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT:

If the upper and lower bounds given by Simon two-descent are the same, then the rank has been uniquely
identified and we return this. Otherwise, we raise a ValueError with an error message specifying the upper
and lower bounds.

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 23, 'a')
sage: E = EllipticCurve(K, '37')
sage: E == loads(dumps(E))
True
sage: E.rank()
2

Here is a curve with two-torsion in the Tate-Shafarevich group, so here the bounds given by the algorithm
do not uniquely determine the rank:

sage: E = EllipticCurve("15a5")
sage: K.<t> = NumberField(x^2-6)
sage: EK = E.base_extend(K)
sage: EK.rank(lim1=1, lim3=1, limtriv=1)
Traceback (most recent call last):
...
ValueError: There is insufficient data to determine the rank -
2-descent gave lower bound 0 and upper bound 2

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/.

rank_bounds(**kwds)
Return the lower and upper bounds using simon_two_descent(). The results of simon_two_descent()
are cached.

Note: The optional parameters control the Simon two descent algorithm; see the documentation of
simon_two_descent() for more details.

INPUT:

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on elliptic curve

• maxprob – (default: 20)

364 Chapter 16. Elliptic curves over number fields

http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 9.8

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT:

lower and upper bounds for the rank of the Mordell-Weil group

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 23, 'a')
sage: E = EllipticCurve(K, '37')
sage: E == loads(dumps(E))
True
sage: E.rank_bounds()
(2, 2)

Here is a curve with two-torsion, again the bounds coincide:

sage: Qrt5.<rt5> = NumberField(x^2-5)
sage: E = EllipticCurve([0,5-rt5,0,rt5,0])
sage: E.rank_bounds()
(1, 1)

Finally an example with non-trivial 2-torsion in Sha. So the 2-descent will not be able to determine the
rank, but can only give bounds:

sage: E = EllipticCurve("15a5")
sage: K.<t> = NumberField(x^2-6)
sage: EK = E.base_extend(K)
sage: EK.rank_bounds(lim1=1,lim3=1,limtriv=1)
(0, 2)

IMPLEMENTATION:

Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/.

rational_points(**kwds)
Find rational points on the elliptic curve, all arguments are passed on to sage.schemes.generic.
algebraic_scheme.rational_points().

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.rational_points(bound=8) # long time
[(-1 : -1 : 1),
(-1 : 0 : 1),
(0 : -1 : 1),
(0 : 0 : 1),
(0 : 1 : 0),
(1/4 : -5/8 : 1),
(1/4 : -3/8 : 1),
(1 : -1 : 1),

(continues on next page)

16.3. Elliptic curves over number fields 365

http://www.math.unicaen.fr/~simon/

Elliptic curves, Release 9.8

(continued from previous page)

(1 : 0 : 1),
(2 : -3 : 1),
(2 : 2 : 1)]

Check that trac ticket #26677 is fixed:

sage: E = EllipticCurve("11a1")
sage: E.rational_points(bound=5)
[(0 : 1 : 0), (5 : 5 : 1)]
sage: E.rational_points(bound=6) # long time
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1)]

An example over a number field:

sage: E = EllipticCurve([1,0])
sage: pts = E.rational_points(bound = 2, F = QuadraticField(-1))
sage: pts
[(-a : 0 : 1), (0 : 0 : 1), (0 : 1 : 0), (a : 0 : 1)]
sage: pts[0] + pts[1]
(a : 0 : 1)

real_components(embedding)
Return the number of real components with respect to a real embedding of the base field.

EXAMPLES:

sage: K.<a> = QuadraticField(5)
sage: embs = K.real_embeddings()
sage: E = EllipticCurve([0,1,1,a,a])
sage: [e(E.discriminant()) > 0 for e in embs]
[True, False]
sage: [E.real_components(e) for e in embs]
[2, 1]

reducible_primes(algorithm='Billerey', max_l=None, num_l=None, verbose=False)
Return a finite set of primes ℓ for which 𝐸 has a K-rational ℓ-isogeny.

For curves without CM the list returned is exactly the finite set of primes ℓ for which the mod-ℓ Galois
representation is reducible. For curves with CM this set is infinite; we return a finite list of primes ℓ such
that every curve isogenous to this curve can be obtained by a finite sequence of isogenies of degree one of
the primes in the list.

INPUT:

• algorithm (string) – only relevant for non-CM curves. Either ‘Billerey”, to use the methods of
[Bil2011], ‘Larson’ to use Larson’s implementation using Galois representations, or ‘heuristic’ (see
below).

• max_l (int or None) – only relevant for non-CM curves and algorithms ‘Billerey’ and ‘heuristic. Con-
trols the maximum prime used in either algorithm. If None, use the default for that algorithm.

• num_l (int or None) – only relevant for non-CM curves and algorithm ‘Billerey’. Controls the maxi-
mum number of primes used in the algorithm. If None, use the default for that algorithm.

366 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/26677

Elliptic curves, Release 9.8

Note: The ‘heuristic’ algorithm only checks primes up to the bound max_l. This is faster but not guaran-
teed to be complete. Both the Billerey and Larson algorithms are rigorous.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # long time
[3, 5]
sage: E.reducible_primes() # long time
[3, 5]
sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # CM curves always return [0]
[0]
sage: E.reducible_primes()
[2]
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # long time
[2, 3]
sage: E.reducible_primes()
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f.␣
→˓[Sut2012]
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # ..but there is no 7-isogeny, long time
[7]
sage: rho.reducible_primes() # long time
[]
sage: E.reducible_primes() # long time
[]

reduction(place)
Return the reduction of the elliptic curve at a place of good reduction.

INPUT:

• place – a prime ideal in the base field of the curve

OUTPUT:

An elliptic curve over a finite field, the residue field of the place.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0,0,0,i,i+3])
sage: v = K.fractional_ideal(2*i+3)
sage: EK.reduction(v)
Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Residue field of Fractional␣
→˓ideal (2*i + 3)

(continues on next page)

16.3. Elliptic curves over number fields 367

Elliptic curves, Release 9.8

(continued from previous page)

sage: EK.reduction(K.ideal(1+i))
Traceback (most recent call last):
...
ValueError: The curve must have good reduction at the place.
sage: EK.reduction(K.ideal(2))
Traceback (most recent call last):
...
ValueError: The ideal must be prime.
sage: K=QQ.extension(x^2+x+1,"a")
sage: E = EllipticCurve([1024*K.0,1024*K.0])
sage: E.reduction(2*K)
Elliptic Curve defined by y^2 + (abar+1)*y = x^3 over Residue field in abar of␣
→˓Fractional ideal (2)

regulator_of_points(points=[], precision=None, normalised=True)
Return the regulator of the given points on this curve.

INPUT:

• points – (default: empty list) a list of points on this curve

• precision – int or None (default: None): the precision in bits of the result (default real precision if
None)

• normalised (bool, default True) – if True, use normalised heights which are independent of base
change. Otherwise use the non-normalised Néron-Tate height, as required for the regulator in the BSD
conjecture

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P = E(0,0)
sage: Q = E(1,0)
sage: E.regulator_of_points([P,Q])
0.000000000000000
sage: 2*P == Q
True

sage: E = EllipticCurve('5077a1')
sage: points = [E.lift_x(x) for x in [-2,-7/4,1]]
sage: E.regulator_of_points(points)
0.417143558758384
sage: E.regulator_of_points(points,precision=100)
0.41714355875838396981711954462

sage: E = EllipticCurve('389a')
sage: E.regulator_of_points()
1.00000000000000
sage: points = [P,Q] = [E(-1,1),E(0,-1)]
sage: E.regulator_of_points(points)
0.152460177943144
sage: E.regulator_of_points(points, precision=100)
0.15246017794314375162432475705
sage: E.regulator_of_points(points, precision=200)

(continues on next page)

368 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

0.15246017794314375162432475704945582324372707748663081784028
sage: E.regulator_of_points(points, precision=300)
0.
→˓152460177943143751624324757049455823243727077486630817840280980046053225683562463604114816

Examples over number fields:

sage: K.<a> = QuadraticField(97)
sage: E = EllipticCurve(K,[1,1])
sage: P = E(0,1)
sage: P.height()
0.476223106404866
sage: E.regulator_of_points([P])
0.476223106404866

When the parameter normalised is set to False, each height is multiplied by the degree 𝑑 of the base
field, and the regulator of 𝑟 points is multiplied by 𝑑𝑟:

sage: P.height(normalised=False)
0.952446212809731
sage: E.regulator_of_points([P], normalised=False)
0.952446212809731

sage: E = EllipticCurve('11a1')
sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^2+47)
sage: EK = E.base_extend(K)
sage: T = EK(5,5)
sage: T.order()
5
sage: P = EK(-2, -1/2*t - 1/2)
sage: P.order()
+Infinity
sage: EK.regulator_of_points([P,T]) # random very small output
-1.23259516440783e-32
sage: EK.regulator_of_points([P,T]).abs() < 1e-30
True

sage: E = EllipticCurve('389a1')
sage: P,Q = E.gens()
sage: E.regulator_of_points([P,Q])
0.152460177943144
sage: K.<t> = NumberField(x^2+47)
sage: EK = E.base_extend(K)
sage: EK.regulator_of_points([EK(P),EK(Q)])
0.152460177943144

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,i])
sage: P = E(-9+4*i,-18-25*i)
sage: Q = E(i,-i)
sage: E.height_pairing_matrix([P,Q])

(continues on next page)

16.3. Elliptic curves over number fields 369

Elliptic curves, Release 9.8

(continued from previous page)

[2.16941934493768 -0.870059380421505]
[-0.870059380421505 0.424585837470709]
sage: E.regulator_of_points([P,Q])
0.164101403936070

saturation(points, verbose=False, max_prime=0, one_prime=0, odd_primes_only=False,
lower_ht_bound=None, reg=None, debug=False)

Given a list of rational points on 𝐸 over𝐾, compute the saturation in 𝐸(𝐾) of the subgroup they generate.

INPUT:

• points (list) – list of points on E. Points of finite order are ignored; the remaining points should
be independent, or an error is raised.

• verbose (bool) – (default: False), if True, give verbose output.

• max_prime (int, default 0) – saturation is performed for all primes up to max_prime. If max_prime
is 0, perform saturation at all primes, i.e., compute the true saturation.

• odd_primes_only (bool, default False) – only do saturation at odd primes.

• one_prime (int, default 0) – if nonzero, only do saturation at this prime.

The following two inputs are optional, and may be provided to speed up the computation.

• lower_ht_bound (real, default None) – lower bound of the regulator 𝐸(𝐾), if known.

• reg (real, default None) – regulator of the span of points, if known.

• debug (int, default 0) – used for debugging and testing.

OUTPUT:

• saturation (list) – points that form a basis for the saturation.

• index (int) – the index of the group generated by the input points in their saturation.

• regulator (real with default precision, or None) – regulator of saturated points.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve('389a1')
sage: EK = E.change_ring(K)
sage: P = EK(-1,1); Q = EK(0,-1)

sage: EK.saturation([2*P], max_prime=2)
([(-1 : 1 : 1)], 2, 0.686667083305587)
sage: EK.saturation([12*P], max_prime=2)
([(26/361 : -5720/6859 : 1)], 4, 6.18000374975028)
sage: EK.saturation([12*P], lower_ht_bound=0.1)
([(-1 : 1 : 1)], 12, 0.686667083305587)
sage: EK.saturation([2*P, Q], max_prime=2)
([(-1 : 1 : 1), (0 : -1 : 1)], 2, 0.152460177943144)
sage: EK.saturation([P+Q, P-Q], lower_ht_bound=.1, debug=2)
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
sage: EK.saturation([P+Q, 17*Q], lower_ht_bound=0.1) # long time
([(4 : 8 : 1), (0 : -1 : 1)], 17, 0.152460177943143)

(continues on next page)

370 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: R = EK(i-2,-i-3)
sage: EK.saturation([P+R, P+Q, Q+R], lower_ht_bound=0.1)
([(841/1369*i - 171/1369 : 41334/50653*i - 74525/50653 : 1),
(4 : 8 : 1),
(-1/25*i + 18/25 : -69/125*i - 58/125 : 1)],
2,
0.103174443217351)
sage: EK.saturation([26*Q], lower_ht_bound=0.1)
([(0 : -1 : 1)], 26, 0.327000773651605)

Another number field:

sage: E = EllipticCurve('389a1')
sage: K.<a> = NumberField(x^3-x+1)
sage: EK = E.change_ring(K)
sage: P = EK(-1,1); Q = EK(0,-1)
sage: EK.saturation([P+Q, P-Q], lower_ht_bound=0.1)
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
sage: EK.saturation([3*P, P+5*Q], lower_ht_bound=0.1)
([(-185/2209 : -119510/103823 : 1), (80041/34225 : -26714961/6331625 : 1)],
15,
0.152460177943144)

A different curve:

sage: K.<a> = QuadraticField(3)
sage: E = EllipticCurve('37a1')
sage: EK = E.change_ring(K)
sage: P = EK(0,0); Q = EK(2-a,2*a-4)
sage: EK.saturation([3*P-Q, 3*P+Q], lower_ht_bound=.01)
([(0 : 0 : 1), (1/2*a : -1/4*a - 1/4 : 1)], 6, 0.0317814530725985)

The points must be linearly independent:

sage: EK.saturation([2*P, 3*Q, P-Q])
Traceback (most recent call last):
...
ValueError: points not linearly independent in saturation()

Degenerate case:

sage: EK.saturation([])
([], 1, 1.00000000000000)

ALGORITHM:

For rank 1 subgroups, simply do trial division up to the maximal prime divisor. For higher rank sub-
groups, perform trial division on all linear combinations for small primes, and look for projections
𝐸(𝐾) → ⊕𝐸(𝑘) ⊗ F𝑝 which are either full rank or provide 𝑝-divisible linear combinations, where the 𝑘
here are residue fields of 𝐾.

simon_two_descent(verbose=0, lim1=2, lim3=4, limtriv=2, maxprob=20, limbigprime=30,
known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group 𝐸(𝐾) and a list of points.

16.3. Elliptic curves over number fields 371

Elliptic curves, Release 9.8

This method is used internally by the rank(), rank_bounds() and gens() methods.

INPUT:

• self – an elliptic curve 𝐸 over a number field 𝐾

• verbose – 0, 1, 2, or 3 (default: 0), the verbosity level

• lim1 – (default: 2) limit on trivial points on quartics

• lim3 – (default: 4) limit on points on ELS quartics

• limtriv – (default: 2) limit on trivial points on 𝐸

• maxprob – (default: 20)

• limbigprime – (default: 30) to distinguish between small and large prime numbers. Use probabilistic
tests for large primes. If 0, do not use probabilistic tests.

• known_points – (default: None) list of known points on the curve

OUTPUT: a triple (lower, upper, list) consisting of

• lower (integer) – lower bound on the rank

• upper (integer) – upper bound on the rank

• list – list of points in 𝐸(𝐾)

The integer upper is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimension
of 𝐸(𝐾)/2𝐸(𝐾). It is equal to the dimension of the 2-Selmer group except possibly if 𝐸(𝐾)[2] has
dimension 1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number, due
to the fact that the algorithm does not perform a second descent.

Note: For non-quadratic number fields, this code does return, but it takes a long time.

ALGORITHM:

Uses Denis Simon’s PARI/GP scripts from https://simond.users.lmno.cnrs.fr/.

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 23, 'a')
sage: E = EllipticCurve(K, '37')
sage: E == loads(dumps(E))
True
sage: E.simon_two_descent()
(2, 2, [(0 : 0 : 1), (1/18*a + 7/18 : -5/54*a - 17/54 : 1)])
sage: E.simon_two_descent(lim1=5, lim3=5, limtriv=10, maxprob=7, limbigprime=10)
(2, 2, [(-1 : 0 : 1), (-2 : -1/2*a - 1/2 : 1)])

sage: K.<a> = NumberField(x^2 + 7, 'a')
sage: E = EllipticCurve(K, [0,0,0,1,a]); E
Elliptic Curve defined by y^2 = x^3 + x + a over Number Field in a with␣
→˓defining polynomial x^2 + 7

sage: v = E.simon_two_descent(verbose=1); v
elliptic curve: Y^2 = x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)
Trivial points on the curve = [[1, 1, 0], [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y -␣
→˓2, y^2 + 7), 1]]

(continues on next page)

372 Chapter 16. Elliptic curves over number fields

https://simond.users.lmno.cnrs.fr/

Elliptic curves, Release 9.8

(continued from previous page)

#S(E/K)[2] = 2
#E(K)/2E(K) = 2
#III(E/K)[2] = 1
rank(E/K) = 1
listpoints = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]

(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])

sage: v = E.simon_two_descent(verbose=2)
K = bnfinit(y^2 + 7);
a = Mod(y,K.pol);
bnfellrank(K, [0, 0, 0, 1, a], [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 +␣
→˓7)]]);
...
v = [1, 1, [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]]]
sage: v
(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])

A curve with 2-torsion:

sage: K.<a> = NumberField(x^2 + 7)
sage: E = EllipticCurve(K, '15a')
sage: E.simon_two_descent() # long time (3s on sage.math, 2013), points can␣
→˓vary
(1, 3, [...])

Check that the bug reported in trac ticket #15483 is fixed:

sage: K.<s> = QuadraticField(229)
sage: c4 = 2173 - 235*(1 - s)/2
sage: c6 = -124369 + 15988*(1 - s)/2
sage: E = EllipticCurve([-c4/48, -c6/864])
sage: E.simon_two_descent()
(0, 0, [])

sage: R.<t> = QQ[]
sage: L.<g> = NumberField(t^3 - 9*t^2 + 13*t - 4)
sage: E1 = EllipticCurve(L,[1-g*(g-1),-g^2*(g-1),-g^2*(g-1),0,0])
sage: E1.rank() # long time (about 5 s)
0

sage: K = CyclotomicField(43).subfields(3)[0][0]
sage: E = EllipticCurve(K, '37')
sage: E.simon_two_descent() # long time (4s on sage.math, 2013)
(3,
3,
[(1/8*zeta43_0^2 - 3/8*zeta43_0 - 1/4 : -5/16*zeta43_0^2 + 7/16*zeta43_0 + 1/8␣
→˓: 1),
(0 : 0 : 1)])

tamagawa_exponent(P, proof=None)
Return the Tamagawa index of this elliptic curve at the prime 𝑃 .

INPUT:

16.3. Elliptic curves over number fields 373

https://trac.sagemath.org/15483

Elliptic curves, Release 9.8

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

OUTPUT:

(positive integer) The Tamagawa index of the curve at P.

EXAMPLES:

sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: [E.tamagawa_exponent(P) for P in E.discriminant().support()]
[1, 1, 1, 1]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve('11a1').change_ring(K)
sage: [E.tamagawa_exponent(P) for P in K(11).support()]
[10]

tamagawa_number(P, proof=None)
Return the Tamagawa number of this elliptic curve at the prime 𝑃 .

INPUT:

• P – either None or a prime ideal of the base field of self.

• proof – whether to only use provably correct methods (default controlled by global proof module).
Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

OUTPUT:

(positive integer) The Tamagawa number of the curve at 𝑃 .

EXAMPLES:

sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: [E.tamagawa_number(P) for P in E.discriminant().support()]
[1, 1, 1, 1]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve('11a1').change_ring(K)
sage: [E.tamagawa_number(P) for P in K(11).support()]
[10]

tamagawa_numbers()

Return a list of all Tamagawa numbers for all prime divisors of the conductor (in order).

EXAMPLES:

sage: e = EllipticCurve('30a1')
sage: e.tamagawa_numbers()
[2, 3, 1]
sage: vector(e.tamagawa_numbers())
(2, 3, 1)
sage: K.<a> = NumberField(x^2+3)
sage: eK = e.base_extend(K)

(continues on next page)

374 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: eK.tamagawa_numbers()
[4, 6, 1]

tamagawa_product()

Return the product of the Tamagawa numbers 𝑐𝑣 where 𝑣 runs over all prime ideals of 𝐾.

Note: See also tamagawa_product_bsd(), which includes an additional factor when the model is not glob-
ally minimal, as required by the BSD formula.

OUTPUT:

A positive integer.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([0,2+i])
sage: E.tamagawa_product()
1

sage: E = EllipticCurve([(2*i+1)^2,i*(2*i+1)^7])
sage: E.tamagawa_product()
4

An example over Q:

sage: E = EllipticCurve('30a')
sage: E.tamagawa_product()
6

An example with everywhere good reduction, where the product is empty:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 - 38)
sage: E = EllipticCurve([a, -a + 1, a + 1, -5*a + 15, -5*a + 21])
sage: E.tamagawa_numbers()
[]
sage: E.tamagawa_product()
1

tamagawa_product_bsd()

Given an elliptic curve 𝐸 over a number field 𝐾, this function returns the integer 𝐶(𝐸/𝐾) that appears
in the Birch and Swinnerton-Dyer conjecture accounting for the local information at finite places. If the
model is a global minimal model then 𝐶(𝐸/𝐾) is simply the product of the Tamagawa numbers 𝑐𝑣 where
𝑣 runs over all prime ideals of𝐾. Otherwise, if the model has to be changed at a place 𝑣 a correction factor
appears. The definition is such that 𝐶(𝐸/𝐾) times the periods at the infinite places is invariant under
change of the Weierstrass model. See [Tate1966] and [DD2010] for details.

Note: This definition differs from the definition of tamagawa_product for curves defined over Q. Over
the rational number it is always defined to be the product of the Tamagawa numbers, so the two definitions
only agree when the model is global minimal.

16.3. Elliptic curves over number fields 375

Elliptic curves, Release 9.8

OUTPUT:

A rational number

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([0,2+i])
sage: E.tamagawa_product_bsd()
1

sage: E = EllipticCurve([(2*i+1)^2,i*(2*i+1)^7])
sage: E.tamagawa_product_bsd()
4

An example where the Neron model changes over K:

sage: K.<t> = NumberField(x^5-10*x^3+5*x^2+10*x+1)
sage: E = EllipticCurve(K,'75a1')
sage: E.tamagawa_product_bsd()
5
sage: da = E.local_data()
sage: [dav.tamagawa_number() for dav in da]
[1, 1]

An example over Q (trac ticket #9413):

sage: E = EllipticCurve('30a')
sage: E.tamagawa_product_bsd()
6

torsion_order()

Return the order of the torsion subgroup of this elliptic curve.

OUTPUT:

(integer) the order of the torsion subgroup of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: EK.torsion_order() # long time (2s on sage.math, 2014)
25

sage: E = EllipticCurve('15a1')
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_order()
16

sage: E = EllipticCurve('19a1')
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-7*x+1)
sage: EK = E.base_extend(K)

(continues on next page)

376 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/9413

Elliptic curves, Release 9.8

(continued from previous page)

sage: EK.torsion_order()
9

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0,0,0,i,i+3])
sage: EK.torsion_order()
1

torsion_points()

Return a list of the torsion points of this elliptic curve.

OUTPUT:

(list) A sorted list of the torsion points.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.torsion_points()
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: EK.torsion_points() # long time (1s on sage.math, 2014)
[(0 : 1 : 0),
(t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1),
(1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : -6/11*t^3 - 3/11*t^2 - 26/11*t - 321/
→˓11 : 1),
(1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : 6/11*t^3 + 3/11*t^2 + 26/11*t + 310/
→˓11 : 1),
(t : -1/11*t^3 - 6/11*t^2 - 19/11*t - 59/11 : 1),
(16 : 60 : 1),
(-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : 6/55*t^3 + 3/55*t^2 + 25/11*t + 156/
→˓55 : 1),
(14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : 16/121*t^3 - 69/121*t^2 + 293/
→˓121*t - 46/121 : 1),
(-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : -15/121*t^3 - 156/121*t^2 +␣
→˓232/121*t - 2887/121 : 1),
(10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : -32/121*t^3 - 60/121*t^2 + 261/
→˓121*t + 686/121 : 1),
(5 : 5 : 1),
(-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : -7/121*t^3 + 24/121*t^2 + 197/
→˓121*t + 16/121 : 1),
(3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : 7/55*t^3 - 24/55*t^2 + 9/11*t + 17/55␣
→˓: 1),
(-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : -34/121*t^3 + 27/121*t^2 - 305/
→˓121*t - 829/121 : 1),
(5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : 49/121*t^3 + 129/121*t^2 + 315/
→˓121*t + 86/121 : 1),
(5 : -6 : 1),
(5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : -49/121*t^3 - 129/121*t^2 -␣
→˓315/121*t - 207/121 : 1),
(-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : 34/121*t^3 - 27/121*t^2 + 305/
→˓121*t + 708/121 : 1),

(continues on next page)

16.3. Elliptic curves over number fields 377

Elliptic curves, Release 9.8

(continued from previous page)

(3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : -7/55*t^3 + 24/55*t^2 - 9/11*t - 72/55␣
→˓: 1),
(-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : 7/121*t^3 - 24/121*t^2 - 197/
→˓121*t - 137/121 : 1),
(16 : -61 : 1),
(10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : 32/121*t^3 + 60/121*t^2 - 261/
→˓121*t - 807/121 : 1),
(-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : 15/121*t^3 + 156/121*t^2 -␣
→˓232/121*t + 2766/121 : 1),
(14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : -16/121*t^3 + 69/121*t^2 - 293/
→˓121*t - 75/121 : 1),
(-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : -6/55*t^3 - 3/55*t^2 - 25/11*t - 211/
→˓55 : 1)]

sage: E = EllipticCurve('15a1')
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_points()
[(-7 : -5*t - 2 : 1),
(-7 : 5*t + 8 : 1),
(-13/4 : 9/8 : 1),
(-2 : -2 : 1),
(-2 : 3 : 1),
(-t - 2 : -t - 7 : 1),
(-t - 2 : 2*t + 8 : 1),
(-1 : 0 : 1),
(t : t - 5 : 1),
(t : -2*t + 4 : 1),
(0 : 1 : 0),
(1/2 : -5/4*t - 2 : 1),
(1/2 : 5/4*t + 1/2 : 1),
(3 : -2 : 1),
(8 : -27 : 1),
(8 : 18 : 1)]

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve(K,[0,0,0,0,-1])
sage: EK.torsion_points ()
[(-2 : -3*i : 1), (-2 : 3*i : 1), (0 : -i : 1), (0 : i : 1), (0 : 1 : 0), (1 :␣
→˓0 : 1)]

torsion_subgroup()

Return the torsion subgroup of this elliptic curve.

OUTPUT:

(EllipticCurveTorsionSubgroup) The EllipticCurveTorsionSubgroup associated to this elliptic
curve.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)

(continues on next page)

378 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: EK = E.base_extend(K)
sage: tor = EK.torsion_subgroup() # long time (2s on sage.math, 2014)
sage: tor # long time
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in t␣
→˓with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
sage: tor.gens() # long time
((16 : 60 : 1), (t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1))

sage: E = EllipticCurve('15a1')
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_subgroup()
Torsion Subgroup isomorphic to Z/4 + Z/4 associated to the Elliptic Curve␣
→˓defined by y^2 + x*y + y = x^3 + x^2 + (-10)*x + (-10) over Number Field in t␣
→˓with defining polynomial x^2 + 2*x + 10

sage: E = EllipticCurve('19a1')
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-7*x+1)
sage: EK = E.base_extend(K)
sage: EK.torsion_subgroup()
Torsion Subgroup isomorphic to Z/9 associated to the Elliptic Curve defined by␣
→˓y^2 + y = x^3 + x^2 + (-9)*x + (-15) over Number Field in t with defining␣
→˓polynomial x^9 - 3*x^8 - 4*x^7 + 16*x^6 - 3*x^5 - 21*x^4 + 5*x^3 + 7*x^2 -␣
→˓7*x + 1

sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0,0,0,i,i+3])
sage: EK.torsion_subgroup ()
Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve␣
→˓defined by y^2 = x^3 + i*x + (i+3) over Number Field in i with defining␣
→˓polynomial x^2 + 1 with i = 1*I

16.4 Canonical heights for elliptic curves over number fields

Also, rigorous lower bounds for the canonical height of non-torsion points, implementing the algorithms in [CS2006]
(over Q) and [Tho2010], which also refer to [CPS2006].

AUTHORS:

• Robert Bradshaw (2010): initial version

• John Cremona (2014): added many docstrings and doctests

class sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight(E)
Bases: object

Class for computing canonical heights of points on elliptic curves defined over number fields, including rigorous
lower bounds for the canonical height of non-torsion points.

EXAMPLES:

16.4. Canonical heights for elliptic curves over number fields 379

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.height import EllipticCurveCanonicalHeight
sage: E = EllipticCurve([0,0,0,0,1])
sage: EllipticCurveCanonicalHeight(E)
EllipticCurveCanonicalHeight object associated to Elliptic Curve defined by y^2 = x^
→˓3 + 1 over Rational Field

Normally this object would be created like this:

sage: E.height_function()
EllipticCurveCanonicalHeight object associated to Elliptic Curve defined by y^2 = x^
→˓3 + 1 over Rational Field

B(n, mu)
Return the value 𝐵𝑛(𝜇).

INPUT:

• n (int) – a positive integer

• mu (real) – a positive real number

OUTPUT:

The real value 𝐵𝑛(𝜇) as defined in [Tho2010], section 5.

EXAMPLES:

Example 10.2 from [Tho2010]:

sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()

In [Tho2010] the value is given as 0.772:

sage: RealField(12)(H.B(5, 0.01))
0.777

DE(n)
Return the value 𝐷𝐸(𝑛).

INPUT:

• n (int) – a positive integer

OUTPUT:

The value 𝐷𝐸(𝑛) as defined in [Tho2010], section 4.

EXAMPLES:

sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: [H.DE(n) for n in srange(1,6)]
[0, 2*log(5) + 2*log(2), 0, 2*log(13) + 2*log(5) + 4*log(2), 0]

380 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

ME()

Return the norm of the ideal 𝑀𝐸 .

OUTPUT:

The norm of the ideal 𝑀𝐸 as defined in [Tho2010], section 3.1. This is 1 if 𝐸 is a global minimal model,
and in general measures the non-minimality of 𝐸.

EXAMPLES:

sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.ME()
1
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.height_function().ME()
1
sage: E = EllipticCurve([0,0,0,0,64])
sage: E.height_function().ME()
4096
sage: E.discriminant()/E.minimal_model().discriminant()
4096

S(xi1, xi2, v)
Return the union of intervals 𝑆(𝑣)(𝜉1, 𝜉2).

INPUT:

• xi1, xi2 (real) – real numbers with 𝜉1 ≤ 𝜉2.

• v (embedding) – a real embedding of the field.

OUTPUT:

The union of intervals 𝑆(𝑣)(𝜉1, 𝜉2) defined in [Tho2010] section 6.1.

EXAMPLES:

An example over Q:

sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v)
([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.
→˓775487322608105])

An example over a number field:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(9,10,v)
([0.0781194447253472, 0.0823423732016403] U [0.917657626798360, 0.
→˓921880555274653])

16.4. Canonical heights for elliptic curves over number fields 381

Elliptic curves, Release 9.8

Sn(xi1, xi2, n, v)

Return the union of intervals 𝑆(𝑣)
𝑛 (𝜉1, 𝜉2).

INPUT:

• xi1, xi2 (real) – real numbers with 𝜉1 ≤ 𝜉2.

• n (integer) – a positive integer.

• v (embedding) – a real embedding of the field.

OUTPUT:

The union of intervals 𝑆(𝑣)
𝑛 (𝜉1, 𝜉2) defined in [Tho2010] (Lemma 6.1).

EXAMPLES:

An example over Q:

sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v) , H.Sn(2,3,1,v)
(([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.
→˓775487322608105]),
([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.
→˓775487322608105]))
sage: H.Sn(2,3,6,v)
([0.0374187795653158, 0.0457574702661884] U [0.120909196400478, 0.
→˓129247887101351] U [0.204085446231982, 0.212424136932855] U [0.
→˓287575863067145, 0.295914553768017] U [0.370752112898649, 0.379090803599522]␣
→˓U [0.454242529733812, 0.462581220434684] U [0.537418779565316, 0.
→˓545757470266188] U [0.620909196400478, 0.629247887101351] U [0.
→˓704085446231982, 0.712424136932855] U [0.787575863067145, 0.795914553768017]␣
→˓U [0.870752112898649, 0.879090803599522] U [0.954242529733812, 0.
→˓962581220434684])

An example over a number field:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v) , H.Sn(2,3,1,v)
(([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.
→˓857827934139925]),
([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.
→˓857827934139925]))
sage: H.Sn(2,3,6,v)
([0.0236953443100124, 0.0288076194880974] U [0.137859047178569, 0.
→˓142971322356654] U [0.190362010976679, 0.195474286154764] U [0.
→˓304525713845236, 0.309637989023321] U [0.357028677643346, 0.362140952821431]␣
→˓U [0.471192380511903, 0.476304655689988] U [0.523695344310012, 0.
→˓528807619488097] U [0.637859047178569, 0.642971322356654] U [0.
→˓690362010976679, 0.695474286154764] U [0.804525713845236, 0.809637989023321]␣
→˓U [0.857028677643346, 0.862140952821431] U [0.971192380511903, 0.
→˓976304655689988])

382 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

alpha(v, tol=0.01)
Return the constant 𝛼𝑣 associated to the embedding v.

INPUT:

• v – an embedding of the base field into R or C

OUTPUT:

The constant 𝛼𝑣 . In the notation of [CPS2006] and [Tho2010] (section 3.2), 𝛼3
𝑣 = 𝜖𝑣 . The result is cached

since it only depends on the curve.

EXAMPLES:

Example 1 from [CPS2006]:

sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: alpha = H.alpha(K.places()[0])
sage: alpha
1.12272013439355

Compare with log(𝜖𝑣) = 0.344562... in [CPS2006]:

sage: 3*alpha.log()
0.347263296676126

base_field()

Return the base field.

EXAMPLES:

sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.base_field()
Rational Field

complex_intersection_is_empty(Bk, v, verbose=False, use_half=True)

Returns True iff an intersection of 𝑇 (𝑣)
𝑛 sets is empty.

INPUT:

• Bk (list) – a list of reals.

• v (embedding) – a complex embedding of the number field.

• verbose (boolean, default False) – verbosity flag.

• use_half (boolean, default False) – if True, use only half the fundamental region.

OUTPUT:

True or False, according as the intersection of the unions of intervals 𝑇 (𝑣)
𝑛 (−𝑏, 𝑏) for 𝑏 in the list Bk (see

[Tho2010], section 7) is empty or not. When Bk is the list of 𝑏 =
√︀
𝐵𝑛(𝜇) for 𝑛 = 1, 2, 3, . . . for some

𝜇 > 0 this means that all non-torsion points on 𝐸 with everywhere good reduction have canonical height
strictly greater than 𝜇, by [Tho2010], Proposition 7.8.

EXAMPLES:

16.4. Canonical heights for elliptic curves over number fields 383

Elliptic curves, Release 9.8

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.complex_embeddings()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on 𝐸 with everywhere good reduction
have canonical height strictly greater than 0.02, but fail to prove the same for 0.03. For the first proof, using
only 𝑛 = 1, 2, 3 is not sufficient:

sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3]],v) # long␣
→˓time (~6s)
False
sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3,4]],v)
True
sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1,2,3,4]],v) #␣
→˓long time (4s)
False

Using 𝑛 ≤ 6 enables us to prove the lower bound 0.03. Note that it takes longer when the result is False
than when it is True:

sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1..6]],v)
True

curve()

Return the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.curve()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field

e_p(p)
Return the exponent of the group over the residue field at p.

INPUT:

• p – a prime ideal of 𝐾 (or a prime number if 𝐾 = Q).

OUTPUT:

A positive integer 𝑒𝑝, the exponent of the group of nonsingular points on the reduction of the elliptic curve
modulo 𝑝. The result is cached.

EXAMPLES:

sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.e_p(K.prime_above(2))
2
sage: H.e_p(K.prime_above(3))
10
sage: H.e_p(K.prime_above(5))

(continues on next page)

384 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

9
sage: E.conductor().norm().factor()
2^10 * 20921
sage: p1, p2 = K.primes_above(20921)
sage: E.local_data(p1)
Local data at Fractional ideal (-40*i + 139):
Reduction type: bad split multiplicative
...
sage: H.e_p(p1)
20920
sage: E.local_data(p2)
Local data at Fractional ideal (40*i + 139):
Reduction type: good
...
sage: H.e_p(p2)
20815

fk_intervals(v=None, N=20, domain=Complex Interval Field with 53 bits of precision)
Return a function approximating the Weierstrass function, with error.

INPUT:

• v (embedding) – an embedding of the number field. If None (default) use the real embedding if the
field is Q and raise an error for other fields.

• N (int) – The number of terms to use in the 𝑞-expansion of ℘.

• domain (complex field) – the model of C to use, for example CDF of CIF (default).

OUTPUT:

A pair of functions fk, err which can be evaluated at complex numbers 𝑧 (in the correct domain) to give an
approximation to ℘(𝑧) and an upper bound on the error, respectively. The Weierstrass function returned is
with respect to the normalised lattice [1, 𝜏] associated to the given embedding.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: z = CDF(0.3, 0.4)

Compare the value give by the standard elliptic exponential (scaled since fk is with respect to the normalised
lattice):

sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2 ** 2
-1.82543539306049 - 2.49336319992847*I

to the value given by this function, and see the error:

sage: fk, err = E.height_function().fk_intervals(N=10)
sage: fk(CIF(z))
-1.82543539306049? - 2.49336319992847?*I
sage: err(CIF(z))
2.71750621458744e-31

The same, but in the domain CDF instead of CIF:

16.4. Canonical heights for elliptic curves over number fields 385

Elliptic curves, Release 9.8

sage: fk, err = E.height_function().fk_intervals(N=10, domain=CDF)
sage: fk(z)
-1.8254353930604... - 2.493363199928...*I

min(tol, n_max, verbose=False)
Returns a lower bound for all points of infinite order.

INPUT:

• tol – tolerance in output (see below).

• n_max – how many multiples to use in iteration.

• verbose (boolean, default False) – verbosity flag.

OUTPUT:

A positive real 𝜇 for which it has been established rigorously that every point of infinite order on the elliptic
curve (defined over its ground field) has canonical height greater than 𝜇, and such that it is not possible (at
least without increasing n_max) to prove the same for 𝜇 · tol.

EXAMPLES:

Example 1 from [CS2006] (where the same lower bound of 0.1126 was given):

sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min(.0001, 5)
0.0011263287309893311

Example 10.1 from [Tho2010] (where a lower bound of 0.18 was given):

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,91-26*i,-144-323*i])
sage: H = E.height_function()
sage: H.min(0.1,4) # long time (8.1s)
0.1621049443313762

Example 10.2 from [Tho2010]:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
sage: H.min(0.01,5) # long time (4s)
0.020153685521979152

In this example the point 𝑃 = (0, 0) has height 0.023 so our lower bound is quite good:

sage: P = E((0,0))
sage: P.height()
0.0230242154471211

Example 10.3 from [Tho2010] (where the same bound of 0.0625 is given):

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,-3*a-a^2,a^2])
sage: H = E.height_function()
sage: H.min(0.1,5) # long time (7s)
0.0625

386 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

More examples over Q:

sage: E = EllipticCurve('37a')
sage: h = E.height_function()
sage: h.min(.01, 5)
0.03987318057488725
sage: E.gen(0).height()
0.0511114082399688

After base change the lower bound can decrease:

sage: K.<a> = QuadraticField(-5)
sage: E.change_ring(K).height_function().min(0.5, 10) # long time (8s)
0.04419417382415922

sage: E = EllipticCurve('389a')
sage: h = E.height_function()
sage: h.min(0.1, 5)
0.05731275270029196
sage: [P.height() for P in E.gens()]
[0.686667083305587, 0.327000773651605]

min_gr(tol, n_max, verbose=False)
Returns a lower bound for points of infinite order with good reduction.

INPUT:

• tol – tolerance in output (see below).

• n_max – how many multiples to use in iteration.

• verbose (boolean, default False) – verbosity flag.

OUTPUT:

A positive real 𝜇 for which it has been established rigorously that every point of infinite order on the elliptic
curve (defined over its ground field), which has good reduction at all primes, has canonical height greater
than 𝜇, and such that it is not possible (at least without increasing n_max) to prove the same for 𝜇 · tol.

EXAMPLES:

Example 1 from [CS2006] (where a lower bound of 1.9865 was given):

sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min_gr(.0001, 5)
1.98684388146518

Example 10.1 from [Tho2010] (where a lower bound of 0.18 was given):

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,91-26*i,-144-323*i])
sage: H = E.height_function()
sage: H.min_gr(0.1,4) # long time (8.1s)
0.1621049443313762

Example 10.2 from [Tho2010]:

16.4. Canonical heights for elliptic curves over number fields 387

Elliptic curves, Release 9.8

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
sage: H.min_gr(0.01, 5) # long time
0.020153685521979152

In this example the point 𝑃 = (0, 0) has height 0.023 so our lower bound is quite good:

sage: P = E((0,0))
sage: P.has_good_reduction()
True
sage: P.height()
0.0230242154471211

Example 10.3 from [Tho2010] (where the same bound of 0.25 is given):

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,-3*a-a^2,a^2])
sage: H = E.height_function()
sage: H.min_gr(0.1,5) # long time (7.2s)
0.25

psi(xi, v)
Return the normalised elliptic log of a point with this x-coordinate.

INPUT:

• xi (real) – the real x-coordinate of a point on the curve in the connected component with respect to a
real embedding.

• v (embedding) – a real embedding of the number field.

OUTPUT:

A real number in the interval [0.5,1] giving the elliptic logarithm of a point on 𝐸 with 𝑥-coordinate xi, on
the connected component with respect to the embedding 𝑣, scaled by the real period.

EXAMPLES:

An example over Q:

sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(10/9)
sage: L(P)
1.53151606047462
sage: L(P) / L.real_period()
0.615014189772115
sage: H = E.height_function()
sage: H.psi(10/9,v)
0.615014189772115

An example over a number field:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])

(continues on next page)

388 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: v = K.real_places()[0]
sage: L = E.period_lattice(v)
sage: L(P)
3.51086196882538
sage: L(P) / L.real_period()
0.867385122699931
sage: xP = v(P.xy()[0])
sage: H = E.height_function()
sage: H.psi(xP,v)
0.867385122699931
sage: H.psi(1.23,v)
0.785854718241495

real_intersection_is_empty(Bk, v)

Returns True iff an intersection of 𝑆(𝑣)
𝑛 sets is empty.

INPUT:

• Bk (list) – a list of reals.

• v (embedding) – a real embedding of the number field.

OUTPUT:

True or False, according as the intersection of the unions of intervals 𝑆(𝑣)
𝑛 (−𝑏, 𝑏) for 𝑏 in the list Bk is empty

or not. When Bk is the list of 𝑏 = 𝐵𝑛(𝜇) for 𝑛 = 1, 2, 3, . . . for some 𝜇 > 0 this means that all non-torsion
points on 𝐸 with everywhere good reduction have canonical height strictly greater than 𝜇, by [Tho2010],
Proposition 6.2.

EXAMPLES:

An example over Q:

sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on 𝐸 with everywhere good reduction
have canonical height strictly greater than 0.2, but fail to prove the same for 0.3:

sage: H.real_intersection_is_empty([H.B(n,0.2) for n in srange(1,10)],v)
True
sage: H.real_intersection_is_empty([H.B(n,0.3) for n in srange(1,10)],v)
False

An example over a number field:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on 𝐸 with everywhere good reduction
have canonical height strictly greater than 0.07, but fail to prove the same for 0.08:

16.4. Canonical heights for elliptic curves over number fields 389

Elliptic curves, Release 9.8

sage: H.real_intersection_is_empty([H.B(n,0.07) for n in srange(1,5)],v) # long␣
→˓time (3.3s)
True
sage: H.real_intersection_is_empty([H.B(n,0.08) for n in srange(1,5)],v)
False

tau(v)
Return the normalised upper half-plane parameter 𝜏 for the period lattice with respect to the embedding 𝑣.

INPUT:

• v (embedding) – a real or complex embedding of the number field.

OUTPUT:

(Complex) 𝜏 = 𝜔1/𝜔2 in the fundamental region of the upper half-plane.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: H.tau(QQ.places()[0])
1.22112736076463*I

test_mu(mu, N, verbose=True)
Return True if we can prove that 𝜇 is a lower bound.

INPUT:

• mu (real) – a positive real number

• N (integer) – upper bound on the multiples to be used.

• verbose (boolean, default True) – verbosity flag.

OUTPUT:

True or False, according to whether we succeed in proving that 𝜇 is a lower bound for the canonical
heights of points of infinite order with everywhere good reduction.

Note: A True result is rigorous; False only means that the attempt failed: trying again with larger 𝑁
may yield True.

EXAMPLES:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: H = E.height_function()

This curve does have a point of good reduction whose canonical point is approximately 1.68:

sage: P = E.gens(lim3=5)[0]; P
(1/3*a^2 + a + 5/3 : -2*a^2 - 4/3*a - 5/3 : 1)
sage: P.height()
1.68038085233673
sage: P.has_good_reduction()
True

390 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Using 𝑁 = 5 we can prove that 0.1 is a lower bound (in fact we only need 𝑁 = 2), but not that 0.2 is:

sage: H.test_mu(0.1, 5)
B_1(0.100000000000000) = 1.51580969677387
B_2(0.100000000000000) = 0.932072561526720
True
sage: H.test_mu(0.2, 5)
B_1(0.200000000000000) = 2.04612906979932
B_2(0.200000000000000) = 3.09458988474327
B_3(0.200000000000000) = 27.6251108409484
B_4(0.200000000000000) = 1036.24722370223
B_5(0.200000000000000) = 3.67090854562318e6
False

Since 0.1 is a lower bound we can deduce that the point 𝑃 is either primitive or divisible by either 2 or 3.
In fact it is primitive:

sage: (P.height()/0.1).sqrt()
4.09924487233530
sage: P.division_points(2)
[]
sage: P.division_points(3)
[]

wp_c(v)
Return a bound for the Weierstrass ℘-function.

INPUT:

• v (embedding) – a real or complex embedding of the number field.

OUTPUT:

(Real) 𝑐 > 0 such that

|℘(𝑧) − 𝑧−2| ≤ 𝑐2|𝑧|2

1 − 𝑐|𝑧|2

whenever 𝑐|𝑧|2 < 1. Given the recurrence relations for the Laurent series expansion of ℘, it is easy to see
that there is such a constant 𝑐. [Reference?]

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: H.wp_c(QQ.places()[0])
2.68744508779950

sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.wp_c(K.places()[0])
2.66213425640096

wp_intervals(v=None, N=20, abs_only=False)
Return a function approximating the Weierstrass function.

INPUT:

16.4. Canonical heights for elliptic curves over number fields 391

Elliptic curves, Release 9.8

• v (embedding) – an embedding of the number field. If None (default) use the real embedding if the
field is Q and raise an error for other fields.

• N (int, default 20) – The number of terms to use in the 𝑞-expansion of ℘.

• abs_only (boolean, default False) – flag to determine whether (if True) the error adjustment should
use the absolute value or (if False) the real and imaginary parts.

OUTPUT:

A function wp which can be evaluated at complex numbers 𝑧 to give an approximation to ℘(𝑧). The Weier-
strass function returned is with respect to the normalised lattice [1, 𝜏] associated to the given embedding.
For 𝑧 which are not near a lattice point the function fk is used, otherwise a better approximation is used.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: wp = E.height_function().wp_intervals()
sage: z = CDF(0.3, 0.4)
sage: wp(CIF(z))
-1.82543539306049? - 2.4933631999285?*I

sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
-1.82543539306049 - 2.49336319992847*I

sage: z = CDF(0.3, 0.1)
sage: wp(CIF(z))
8.5918243572165? - 5.4751982004351?*I
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
8.59182435721650 - 5.47519820043503*I

wp_on_grid(v, N, half=False)
Return an array of the values of ℘ on an 𝑁 ×𝑁 grid.

INPUT:

• v (embedding) – an embedding of the number field.

• N (int) – The number of terms to use in the 𝑞-expansion of ℘.

• half (boolean, default False) – if True, use an array of size 𝑁 ×𝑁/2 instead of 𝑁 ×𝑁 .

OUTPUT:

An array of size either 𝑁 ×𝑁/2 or 𝑁 ×𝑁 whose (𝑖, 𝑗) entry is the value of the Weierstrass ℘-function at
(𝑖+ .5)/𝑁 + (𝑗 + .5) * 𝜏/𝑁 , a grid of points in the fundamental region for the lattice [1, 𝜏].

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: v = QQ.places()[0]

The array of values on the grid shows symmetry, since ℘ is even:

sage: H.wp_on_grid(v,4)
array([[25.43920182, 5.28760943, 5.28760943, 25.43920182],

(continues on next page)

392 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

[6.05099485, 1.83757786, 1.83757786, 6.05099485],
[6.05099485, 1.83757786, 1.83757786, 6.05099485],
[25.43920182, 5.28760943, 5.28760943, 25.43920182]])

The array of values on the half-grid:

sage: H.wp_on_grid(v,4,True)
array([[25.43920182, 5.28760943],

[6.05099485, 1.83757786],
[6.05099485, 1.83757786],
[25.43920182, 5.28760943]])

class sage.schemes.elliptic_curves.height.UnionOfIntervals(endpoints)
Bases: object

A class representing a finite union of closed intervals in R which can be scaled, shifted, intersected, etc.

The intervals are represented as an ordered list of their endpoints, which may include −∞ and +∞.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: R = UnionOfIntervals([1,2,3,infinity]); R
([1, 2] U [3, +Infinity])
sage: R + 5
([6, 7] U [8, +Infinity])
sage: ~R
([-Infinity, 1] U [2, 3])
sage: ~R | (10*R + 100)
([-Infinity, 1] U [2, 3] U [110, 120] U [130, +Infinity])

Todo: Unify UnionOfIntervals with the class RealSet introduced by trac ticket #13125; see trac ticket
#16063.

finite_endpoints()

Returns the finite endpoints of this union of intervals.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([0,1]).finite_endpoints()
[0, 1]
sage: UnionOfIntervals([-infinity, 0, 1, infinity]).finite_endpoints()
[0, 1]

classmethod intersection(L)
Return the intersection of a list of UnionOfIntervals.

INPUT:

• L (list) – a list of UnionOfIntervals instances

OUTPUT:

A new UnionOfIntervals instance representing the intersection of the UnionOfIntervals in the list.

16.4. Canonical heights for elliptic curves over number fields 393

https://trac.sagemath.org/13125
https://trac.sagemath.org/16063
https://trac.sagemath.org/16063

Elliptic curves, Release 9.8

Note: This is a class method.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.intersection([A,B])
([2, 3] U [6, 7])

intervals()

Returns the intervals in self, as a list of 2-tuples.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals(list(range(10))).intervals()
[(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)]
sage: UnionOfIntervals([-infinity, pi, 17, infinity]).intervals()
[(-Infinity, pi), (17, +Infinity)]

is_empty()

Returns whether self is empty.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([3,4]).is_empty()
False
sage: all = UnionOfIntervals([-infinity, infinity])
sage: all.is_empty()
False
sage: (~all).is_empty()
True
sage: A = UnionOfIntervals([0,1]) & UnionOfIntervals([2,3])
sage: A.is_empty()
True

static join(L, condition)
Utility function to form the union or intersection of a list of UnionOfIntervals.

INPUT:

• L (list) – a list of UnionOfIntervals instances

• condition (function) – either any or all, or some other boolean function of a list of boolean values.

OUTPUT:

A new UnionOfIntervals instance representing the subset of ‘RR’ equal to those reals in any/all/condition
of the UnionOfIntervals in the list.

Note: This is a static method for the class.

394 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.join([A,B],any) # union
([1, 4] U [5, 8])
sage: A.join([A,B],all) # intersection
([2, 3] U [6, 7])
sage: A.join([A,B],sum) # symmetric difference
([1, 2] U [3, 4] U [5, 6] U [7, 8])

classmethod union(L)
Return the union of a list of UnionOfIntervals.

INPUT:

• L (list) – a list of UnionOfIntervals instances

OUTPUT:

A new UnionOfIntervals instance representing the union of the UnionOfIntervals in the list.

Note: This is a class method.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.union([A,B])
([1, 4] U [5, 8])

sage.schemes.elliptic_curves.height.eps(err, is_real)
Return a Real or Complex interval centered on 0 with radius err.

INPUT:

• err (real) – a positive real number, the radius of the interval

• is_real (boolean) – if True, returns a real interval in RIF, else a complex interval in CIF

OUTPUT:

An element of RIF or CIF (as specified), centered on 0, with given radius.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import eps
sage: eps(0.01, True)
0.0?
sage: eps(0.01, False)
0.0? + 0.0?*I

16.4. Canonical heights for elliptic curves over number fields 395

Elliptic curves, Release 9.8

sage.schemes.elliptic_curves.height.inf_max_abs(f, g, D)

Returns inf𝐷(max(|𝑓 |, |𝑔|)).

INPUT:

• f, g (polynomials) – real univariate polynomials

• D (UnionOfIntervals) – a subset of R

OUTPUT:

A real number approximating the value of inf𝐷(max(|𝑓 |, |𝑔|)).

ALGORITHM:

The extreme values must occur at an endpoint of a subinterval of 𝐷 or at a point where one of 𝑓 , 𝑓 ′, 𝑔, 𝑔′, 𝑓 ± 𝑔
is zero.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import inf_max_abs, UnionOfIntervals
sage: x = polygen(RR)
sage: f = (x-10)^4+1
sage: g = 2*x^3+100
sage: inf_max_abs(f,g,UnionOfIntervals([1,2,3,4,5,6]))
425.638201706391
sage: r0 = (f-g).roots()[0][0]
sage: r0
5.46053402234697
sage: max(abs(f(r0)),abs(g(r0)))
425.638201706391

sage.schemes.elliptic_curves.height.min_on_disk(f, tol, max_iter=10000)
Returns the minimum of a real-valued complex function on a square.

INPUT:

• f – a function from CIF to RIF

• tol (real) – a positive real number

• max_iter (integer, default 10000) – a positive integer bounding the number of iterations to be used

OUTPUT:

A 2-tuple (𝑠, 𝑡), where 𝑡 = 𝑓(𝑠) and 𝑠 is a CIF element contained in the disk |𝑧| ≤ 1, at which 𝑓 takes its
minimum value.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import min_on_disk
sage: f = lambda x: (x^2+100).abs()
sage: s, t = min_on_disk(f, 0.0001)
sage: s, f(s), t
(0.01? + 1.00?*I, 99.01?, 99.0000000000000)

sage.schemes.elliptic_curves.height.nonneg_region(f)
Returns the UnionOfIntervals representing the region where f is non-negative.

INPUT:

• f (polynomial) – a univariate polynomial over R.

396 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

A UnionOfIntervals representing the set {𝑥 ∈ R𝑚𝑖𝑑𝑓(𝑥) ≥ 0}.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import nonneg_region
sage: x = polygen(RR)
sage: nonneg_region(x^2-1)
([-Infinity, -1.00000000000000] U [1.00000000000000, +Infinity])
sage: nonneg_region(1-x^2)
([-1.00000000000000, 1.00000000000000])
sage: nonneg_region(1-x^3)
([-Infinity, 1.00000000000000])
sage: nonneg_region(x^3-1)
([1.00000000000000, +Infinity])
sage: nonneg_region((x-1)*(x-2))
([-Infinity, 1.00000000000000] U [2.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2))
([1.00000000000000, 2.00000000000000])
sage: nonneg_region((x-1)*(x-2)*(x-3))
([1.00000000000000, 2.00000000000000] U [3.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2)*(x-3))
([-Infinity, 1.00000000000000] U [2.00000000000000, 3.00000000000000])
sage: nonneg_region(x^4+1)
([-Infinity, +Infinity])
sage: nonneg_region(-x^4-1)
()

sage.schemes.elliptic_curves.height.rat_term_CIF(z, try_strict=True)
Compute the value of 𝑢/(1 − 𝑢)2 in CIF, where 𝑢 = exp(2𝜋𝑖𝑧).

INPUT:

• z (complex) – a CIF element

• try_strict (bool) – flag

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import rat_term_CIF
sage: z = CIF(0.5,0.2)
sage: rat_term_CIF(z)
-0.172467461182437? + 0.?e-16*I
sage: rat_term_CIF(z, False)
-0.172467461182437? + 0.?e-16*I

16.4. Canonical heights for elliptic curves over number fields 397

Elliptic curves, Release 9.8

16.5 Saturation of Mordell-Weil groups of elliptic curves over number
fields

Points 𝑃1, . . ., 𝑃𝑟 in 𝐸(𝐾), where 𝐸 is an elliptic curve over a number field 𝐾, are said to be 𝑝-saturated if no linear
combination

∑︀
𝑛𝑖𝑃𝑖 is divisible by 𝑝 in 𝐸(𝐾) except trivially when all 𝑛𝑖 are multiples of 𝑝. The points are said to

be saturated if they are 𝑝-saturated at all primes; this is always true for all but finitely many primes since 𝐸(𝐾) is a
finitely-generated Abelian group.

The process of 𝑝-saturating a given set of points is implemented here. The naive algorithm simply checks all
(𝑝𝑟 − 1)/(𝑝 − 1) projective combinations of the points, testing each to see if it can be divided by 𝑝. If this oc-
curs then we replace one of the points and continue. The function p_saturation() does one step of this, while
full_p_saturation() repeats until the points are 𝑝-saturated. A more sophisticated algorithm for 𝑝-saturation is
implemented which is much more efficient for large 𝑝 and 𝑟, and involves computing the reduction of the points mod-
ulo auxiliary primes to obtain linear conditions modulo 𝑝which must be satisfied by the coefficients 𝑎𝑖 of any nontrivial
relation. When the points are already 𝑝-saturated this sieving technique can prove their saturation quickly.

The method saturation() of the class EllipticCurve_number_field applies full 𝑝-saturation at any given set of primes,
or can compute a bound on the primes 𝑝 at which the given points may not be 𝑝-saturated. This involves computing a
lower bound for the canonical height of points of infinite order, together with estimates from the geometry of numbers.

AUTHORS:

• Robert Bradshaw

• John Cremona

class sage.schemes.elliptic_curves.saturation.EllipticCurveSaturator(E, verbose=False)
Bases: SageObject

Class for saturating points on an elliptic curve over a number field.

INPUT:

• E – an elliptic curve defined over a number field, or Q.

• verbose (boolean, default False) – verbosity flag.

Note: This function is not normally called directly by users, who may access the data via methods of the
EllipticCurve classes.

add_reductions(q)
Add reduction data at primes above q if not already there.

INPUT:

• q – a prime number not dividing the defining polynomial of self.__field.

OUTPUT:

Returns nothing, but updates self._reductions dictionary for key q to a dict whose keys are the roots of the
defining polynomial mod q and values tuples (nq, Eq) where Eq is an elliptic curve over 𝐺𝐹 (𝑞) and nq its
cardinality. If q divides the conductor norm or order discriminant nothing is added.

EXAMPLES:

Over Q:

398 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.saturation import EllipticCurveSaturator
sage: E = EllipticCurve('11a1')
sage: saturator = EllipticCurveSaturator(E)
sage: saturator._reductions
{}
sage: saturator.add_reductions(19)
sage: saturator._reductions
{19: {0: (20,
Elliptic Curve defined by y^2 + y = x^3 + 18*x^2 + 9*x + 18 over Finite Field␣
→˓of size 19)}}

Over a number field:

sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 2)
sage: E = EllipticCurve(K, [0,1,0,a,a])
sage: from sage.schemes.elliptic_curves.saturation import EllipticCurveSaturator
sage: saturator = EllipticCurveSaturator(E)
sage: for q in primes(20):
....: saturator.add_reductions(q)
sage: saturator._reductions
{2: {},
3: {},
5: {},
7: {},
11: {3: (16,
Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 3 over Finite Field of size␣
→˓11),
8: (8,
Elliptic Curve defined by y^2 = x^3 + x^2 + 8*x + 8 over Finite Field of size␣
→˓11)},
13: {},
17: {7: (20,
Elliptic Curve defined by y^2 = x^3 + x^2 + 7*x + 7 over Finite Field of size␣
→˓17),
10: (18,
Elliptic Curve defined by y^2 = x^3 + x^2 + 10*x + 10 over Finite Field of size␣
→˓17)},
19: {6: (16,
Elliptic Curve defined by y^2 = x^3 + x^2 + 6*x + 6 over Finite Field of size␣
→˓19),
13: (12,
Elliptic Curve defined by y^2 = x^3 + x^2 + 13*x + 13 over Finite Field of size␣
→˓19)}}

full_p_saturation(Plist, p)
Full 𝑝-saturation of Plist.

INPUT:

• Plist (list) – a list of independent points on one elliptic curve.

• p (integer) – a prime number.

OUTPUT:

(newPlist, exponent) where newPlist has the same length as Plist and spans the 𝑝-saturation of the

16.5. Saturation of Mordell-Weil groups of elliptic curves over number fields 399

Elliptic curves, Release 9.8

span of Plist, which contains that span with index p**exponent.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.saturation import EllipticCurveSaturator
sage: E = EllipticCurve('389a')
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: P = EK(1+i,-1-2*i)
sage: saturator = EllipticCurveSaturator(EK, verbose=True)
sage: saturator.full_p_saturation([8*P],2)
--starting full 2-saturation

Points were not 2-saturated, exponent was 3
([(i + 1 : -2*i - 1 : 1)], 3)

sage: Q = EK(0,0)
sage: R = EK(-1,1)
sage: saturator = EllipticCurveSaturator(EK, verbose=False)
sage: saturator.full_p_saturation([P,Q,R],3)
([(i + 1 : -2*i - 1 : 1), (0 : 0 : 1), (-1 : 1 : 1)], 0)

An example where the points are not 7-saturated and we gain index exponent 1. Running this example with
verbose=True would show that it uses the code for when the reduction has 𝑝-rank 2 (which occurs for the
reduction modulo (16 − 5𝑖)), which uses the Weil pairing:

sage: saturator.full_p_saturation([P,Q+3*R,Q-4*R],7)
([(i + 1 : -2*i - 1 : 1),
(2869/676 : 154413/17576 : 1),
(-7095/502681 : -366258864/356400829 : 1)],
1)

p_saturation(Plist, p, sieve=True)
Checks whether the list of points is 𝑝-saturated.

INPUT:

• Plist (list) – a list of independent points on one elliptic curve.

• p (integer) – a prime number.

• sieve (boolean) – if True, use a sieve (when there are at least 2 points); otherwise test all combinations.

Note: The sieve is much more efficient when the points are saturated and the number of points or the prime
are large.

OUTPUT:

Either False if the points are 𝑝-saturated, or (i, newP) if they are not 𝑝-saturated, in which case after
replacing the i’th point with newP, the subgroup generated contains that generated by Plist with index 𝑝.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.saturation import EllipticCurveSaturator
sage: E = EllipticCurve('389a')
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)

(continues on next page)

400 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: P = EK(1+i,-1-2*i)
sage: saturator = EllipticCurveSaturator(EK)
sage: saturator.p_saturation([P],2)
False
sage: saturator.p_saturation([2*P],2)
(0, (i + 1 : -2*i - 1 : 1))

sage: Q = EK(0,0)
sage: R = EK(-1,1)
sage: saturator.p_saturation([P,Q,R],3)
False

Here we see an example where 19-saturation is proved, with the verbose flag set to True so that we can see
what is going on:

sage: saturator = EllipticCurveSaturator(EK, verbose=True)
sage: saturator.p_saturation([P,Q,R],19)
Using sieve method to saturate...
E has 19-torsion over Finite Field of size 197, projecting points
--> [(15 : 168 : 1), (0 : 0 : 1), (196 : 1 : 1)]
--rank is now 1
E has 19-torsion over Finite Field of size 197, projecting points
--> [(184 : 27 : 1), (0 : 0 : 1), (196 : 1 : 1)]
--rank is now 2
E has 19-torsion over Finite Field of size 293, projecting points
--> [(139 : 16 : 1), (0 : 0 : 1), (292 : 1 : 1)]
--rank is now 3

Reached full rank: points were 19-saturated
False

An example where the points are not 11-saturated:

sage: saturator = EllipticCurveSaturator(EK, verbose=False)
sage: res = saturator.p_saturation([P+5*Q,P-6*Q,R],11); res
(0,
(-5783311/14600041*i + 1396143/14600041 : 37679338314/55786756661*i +␣
→˓3813624227/55786756661 : 1))

That means that the 0’th point may be replaced by the displayed point to achieve an index gain of 11:

sage: saturator.p_saturation([res[1],P-6*Q,R],11)
False

sage.schemes.elliptic_curves.saturation.p_projections(Eq, Plist, p, debug=False)
INPUT:

• 𝐸𝑞 – An elliptic curve over a finite field.

• 𝑃𝑙𝑖𝑠𝑡 – a list of points on 𝐸𝑞.

• 𝑝 – a prime number.

OUTPUT:

A list of 𝑟 ≤ 2 vectors in F𝑝𝑛 , the images of the points in𝐺⊗F𝑝, where 𝑟 is the number of vectors is the 𝑝-rank
of 𝐸𝑞.

16.5. Saturation of Mordell-Weil groups of elliptic curves over number fields 401

Elliptic curves, Release 9.8

ALGORITHM:

First project onto the 𝑝-primary part of 𝐸𝑞. If that has 𝑝-rank 1 (i.e. is cyclic), use discrete logs there to define
a map to F𝑝, otherwise use the Weil pairing to define two independent maps to F𝑝.

EXAMPLES:

This curve has three independent rational points:

sage: E = EllipticCurve([0,0,1,-7,6])

We reduce modulo 409 where its order is 32 · 72; the 3-primary part is non-cyclic while the 7-primary part is
cyclic of order 49:

sage: F = GF(409)
sage: EF = E.change_ring(F)
sage: G = EF.abelian_group()
sage: G
Additive abelian group isomorphic to Z/147 + Z/3 embedded in Abelian group of␣
→˓points on Elliptic Curve defined by y^2 + y = x^3 + 402*x + 6 over Finite Field␣
→˓of size 409
sage: G.order().factor()
3^2 * 7^2

We construct three points and project them to the 𝑝-primary parts for 𝑝 = 2, 3, 5, 7, yielding 0,2,0,1 vectors of
length 3 modulo 𝑝 respectively. The exact vectors output depend on the computed generators of 𝐺:

sage: Plist = [EF([-2,3]), EF([0,2]), EF([1,0])]
sage: from sage.schemes.elliptic_curves.saturation import p_projections
sage: [(p,p_projections(EF,Plist,p)) for p in primes(11)] # random
[(2, []), (3, [(0, 2, 2), (2, 2, 1)]), (5, []), (7, [(5, 1, 1)])]
sage: [(p,len(p_projections(EF,Plist,p))) for p in primes(11)]
[(2, 0), (3, 2), (5, 0), (7, 1)]

sage.schemes.elliptic_curves.saturation.reduce_mod_q(x, amodq)
The reduction of x modulo the prime ideal defined by amodq.

INPUT:

• x – an element of a number field 𝐾.

• amodq – an element of𝐺𝐹 (𝑞) which is a root mod 𝑞 of the defining polynomial of𝐾. This defines a degree
1 prime ideal 𝑄 = (𝑞, 𝛼− 𝑎) of 𝐾 = Q(𝛼), where 𝑎 mod 𝑞 = “‘𝑎𝑚𝑜𝑑𝑞‘.

OUTPUT:

The image of x in the residue field of 𝐾 at the prime 𝑄.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.saturation import reduce_mod_q
sage: x = polygen(QQ)
sage: pol = x^3 -x^2 -3*x + 1
sage: K.<a> = NumberField(pol)
sage: [(q,[(amodq,reduce_mod_q(1-a+a^4,amodq))
....: for amodq in sorted(pol.roots(GF(q), multiplicities=False))])
....: for q in primes(50,70)]
[(53, []),

(continues on next page)

402 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

(59, [(36, 28)]),
(61, [(40, 35)]),
(67, [(10, 8), (62, 28), (63, 60)])]

16.6 Torsion subgroups of elliptic curves over number fields (includ-
ing Q)

AUTHORS:

• Nick Alexander: original implementation over Q

• Chris Wuthrich: original implementation over number fields

• John Cremona: rewrote p-primary part to use division
polynomials, added some features, unified Number Field and Q code.

class sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup(E)
Bases: AdditiveAbelianGroupWrapper

The torsion subgroup of an elliptic curve over a number field.

EXAMPLES:

Examples over Q:

sage: E = EllipticCurve([-4, 0]); E
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
sage: G = E.torsion_subgroup(); G
Torsion Subgroup isomorphic to Z/2 + Z/2 associated to the Elliptic Curve defined␣
→˓by y^2 = x^3 - 4*x over Rational Field
sage: G.order()
4
sage: G.gen(0)
(-2 : 0 : 1)
sage: G.gen(1)
(0 : 0 : 1)
sage: G.ngens()
2

sage: E = EllipticCurve([17, -120, -60, 0, 0]); E
Elliptic Curve defined by y^2 + 17*x*y - 60*y = x^3 - 120*x^2 over Rational Field
sage: G = E.torsion_subgroup(); G
Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve␣
→˓defined by y^2 + 17*x*y - 60*y = x^3 - 120*x^2 over Rational Field
sage: G.gens()
()
sage: e = EllipticCurve([0, 33076156654533652066609946884,0,\
347897536144342179642120321790729023127716119338758604800,\
1141128154369274295519023032806804247788154621049857648870032370285851781352816640000])
sage: e.torsion_order()
16

Constructing points from the torsion subgroup:

16.6. Torsion subgroups of elliptic curves over number fields (including Q) 403

../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper

Elliptic curves, Release 9.8

sage: E = EllipticCurve('14a1')
sage: T = E.torsion_subgroup()
sage: [E(t) for t in T]
[(0 : 1 : 0),
(9 : 23 : 1),
(2 : 2 : 1),
(1 : -1 : 1),
(2 : -5 : 1),
(9 : -33 : 1)]

An example where the torsion subgroup is not cyclic:

sage: E = EllipticCurve([0,0,0,-49,0])
sage: T = E.torsion_subgroup()
sage: [E(t) for t in T]
[(0 : 1 : 0), (0 : 0 : 1), (-7 : 0 : 1), (7 : 0 : 1)]

An example where the torsion subgroup is trivial:

sage: E = EllipticCurve('37a1')
sage: T = E.torsion_subgroup()
sage: T
Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x over Rational Field
sage: [E(t) for t in T]
[(0 : 1 : 0)]

Examples over other Number Fields:

sage: E = EllipticCurve('11a1')
sage: K.<i> = NumberField(x^2+1)
sage: EK = E.change_ring(K)
sage: from sage.schemes.elliptic_curves.ell_torsion import␣
→˓EllipticCurveTorsionSubgroup
sage: EllipticCurveTorsionSubgroup(EK)
Torsion Subgroup isomorphic to Z/5 associated to the Elliptic Curve defined by y^2␣
→˓+ y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in i with defining␣
→˓polynomial x^2 + 1

sage: E = EllipticCurve('11a1')
sage: K.<i> = NumberField(x^2+1)
sage: EK = E.change_ring(K)
sage: T = EK.torsion_subgroup()
sage: T.ngens()
1
sage: T.gen(0)
(5 : -6 : 1)

Note: this class is normally constructed indirectly as follows:

sage: T = EK.torsion_subgroup(); T
Torsion Subgroup isomorphic to Z/5 associated to the Elliptic Curve defined by y^2␣
→˓+ y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in i with defining␣

(continues on next page)

404 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

→˓polynomial x^2 + 1
sage: type(T)
<class 'sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup_with_
→˓category'>

AUTHORS:

• Nick Alexander: initial implementation over Q.

• Chris Wuthrich: initial implementation over number fields.

• John Cremona: additional features and unification.

curve()

Return the curve of this torsion subgroup.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: K.<i> = NumberField(x^2+1)
sage: EK = E.change_ring(K)
sage: T = EK.torsion_subgroup()
sage: T.curve() is EK
True

points()

Return a list of all the points in this torsion subgroup.

The list is cached.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K,[0,0,0,1,0])
sage: tor = E.torsion_subgroup()
sage: tor.points()
[(0 : 1 : 0), (0 : 0 : 1), (-i : 0 : 1), (i : 0 : 1)]

sage.schemes.elliptic_curves.ell_torsion.torsion_bound(E, number_of_places=20)
Return an upper bound on the order of the torsion subgroup.

INPUT:

• E – an elliptic curve over Q or a number field

• number_of_places (positive integer, default = 20) – the
number of places that will be used to find the bound

OUTPUT:

(integer) An upper bound on the torsion order.

ALGORITHM:

An upper bound on the order of the torsion group of the elliptic curve is obtained by counting points modulo
several primes of good reduction. Note that the upper bound returned by this function is a multiple of the order
of the torsion group, and in general will be greater than the order.

To avoid nontrivial arithmetic in the base field (in particular, to avoid having to compute the maximal order) we
only use prime 𝑃 above rational primes 𝑝 which do not divide the discriminant of the equation order.

16.6. Torsion subgroups of elliptic curves over number fields (including Q) 405

Elliptic curves, Release 9.8

EXAMPLES:

sage: CDB = CremonaDatabase()
sage: from sage.schemes.elliptic_curves.ell_torsion import torsion_bound
sage: [torsion_bound(E) for E in CDB.iter([14])]
[6, 6, 6, 6, 6, 6]
sage: [E.torsion_order() for E in CDB.iter([14])]
[6, 6, 2, 6, 2, 6]

An example over a relative number field (see trac ticket #16011):

sage: R.<x> = QQ[]
sage: F.<a> = QuadraticField(5)
sage: K. = F.extension(x^2-3)
sage: E = EllipticCurve(K,[0,0,0,b,1])
sage: E.torsion_subgroup().order()
1

An example of a base-change curve from Q to a degree 16 field:

sage: from sage.schemes.elliptic_curves.ell_torsion import torsion_bound
sage: f = PolynomialRing(QQ,'x')([5643417737593488384,0,
....: -11114515801179776,0,-455989850911004,0,379781901872,
....: 0,14339154953,0,-1564048,0,-194542,0,-32,0,1])
sage: K = NumberField(f,'a')
sage: E = EllipticCurve(K, [1, -1, 1, 824579, 245512517])
sage: torsion_bound(E)
16
sage: E.torsion_subgroup().invariants()
(4, 4)

16.7 Galois representations attached to elliptic curves

Given an elliptic curve 𝐸 over Q and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of 𝐸 is a representation
of the absolute Galois group 𝐺Q of Q. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a a representation of 𝐺Q

on a free Z𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

Currently sage can decide whether the Galois module 𝐸[𝑝] is reducible, i.e., if 𝐸 admits an isogeny of degree 𝑝, and
whether the image of the representation on 𝐸[𝑝] is surjective onto Aut(𝐸[𝑝]) = 𝐺𝐿2(F𝑝).

The following are the most useful functions for the class GaloisRepresentation.

For the reducibility:

• is_reducible(p)

• is_irreducible(p)

• reducible_primes()

For the image:

• is_surjective(p)

• non_surjective()

• image_type(p)

406 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/16011

Elliptic curves, Release 9.8

For the classification of the representation

• is_semistable(p)

• is_unramified(p, ell)

• is_crystalline(p)

EXAMPLES:

sage: E = EllipticCurve('196a1')
sage: rho = E.galois_representation()
sage: rho.is_irreducible(7)
True
sage: rho.is_reducible(3)
True
sage: rho.is_irreducible(2)
True
sage: rho.is_surjective(2)
False
sage: rho.is_surjective(3)
False
sage: rho.is_surjective(5)
True
sage: rho.reducible_primes()
[3]
sage: rho.non_surjective()
[2, 3]
sage: rho.image_type(2)
'The image is cyclic of order 3.'
sage: rho.image_type(3)
'The image is contained in a Borel subgroup as there is a 3-isogeny.'
sage: rho.image_type(5)
'The image is all of GL_2(F_5).'

For semi-stable curve it is known that the representation is surjective if and only if it is irreducible:

sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[5]
sage: rho.reducible_primes()
[5]

For cm curves it is not true that there are only finitely many primes for which the Galois representation mod p is
surjective onto 𝐺𝐿2(F𝑝):

sage: E = EllipticCurve('27a1')
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[0]
sage: rho.reducible_primes()
[3]
sage: E.has_cm()
True

(continues on next page)

16.7. Galois representations attached to elliptic curves 407

Elliptic curves, Release 9.8

(continued from previous page)

sage: rho.image_type(11)
'The image is contained in the normalizer of a non-split Cartan group. (cm)'

REFERENCES:

• [Ser1972]

• [Ser1987]

• [Coj2005]

AUTHORS:

• chris wuthrich (02/10): moved from ell_rational_field.py.

class sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation(E)
Bases: SageObject

The compatible family of Galois representation attached to an elliptic curve over the rational numbers.

Given an elliptic curve 𝐸 over Q and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of 𝐸 is a represen-
tation of the absolute Galois group. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which is a representation of the
absolute Galois group on a free Z𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

EXAMPLES:

sage: rho = EllipticCurve('11a1').galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

elliptic_curve()

The elliptic curve associated to this representation.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.elliptic_curve() == E
True

image_classes(p, bound=10000)
This function returns, given the representation 𝜌 a list of 𝑝 values that add up to 1, representing the frequency
of the conjugacy classes of the projective image of 𝜌 in 𝑃𝐺𝐿2(F𝑝).

Let 𝑀 be a matrix in 𝐺𝐿2(F𝑝), then define 𝑢(𝑀) = tr(𝑀)2/ det(𝑀), which only depends on the con-
jugacy class of 𝑀 in 𝑃𝐺𝐿2(F𝑝). Hence this defines a map 𝑢 : 𝑃𝐺𝐿2(F𝑝) → F𝑝, which is almost a
bijection between conjugacy classes of the source and F𝑝 (the elements of order 𝑝 and the identity map to
4 and both classes of elements of order 2 map to 0).

This function returns the frequency with which the values of 𝑢 appeared among the images of the Frobenius
elements 𝑎ℓ‘𝑎𝑡‘ℓ for good primes ℓ ̸= 𝑝 below a given bound.

INPUT:

• a prime p

• a natural number bound (optional, default=10000)

OUTPUT:

408 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

• a list of 𝑝 real numbers in the interval [0, 1] adding up to 1

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: rho = E.galois_representation()
sage: rho.image_classes(5)
[0.2095, 0.1516, 0.2445, 0.1728, 0.2217]

sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.image_classes(5)
[0.2467, 0.0000, 0.5049, 0.0000, 0.2484]

sage: EllipticCurve('27a1').galois_representation().image_classes(5)
[0.5839, 0.1645, 0.0000, 0.1702, 0.08143]
sage: EllipticCurve('30a1').galois_representation().image_classes(5)
[0.1956, 0.1801, 0.2543, 0.1728, 0.1972]
sage: EllipticCurve('32a1').galois_representation().image_classes(5)
[0.6319, 0.0000, 0.2492, 0.0000, 0.1189]
sage: EllipticCurve('900a1').galois_representation().image_classes(5)
[0.5852, 0.1679, 0.0000, 0.1687, 0.07824]
sage: EllipticCurve('441a1').galois_representation().image_classes(5)
[0.5860, 0.1646, 0.0000, 0.1679, 0.08150]
sage: EllipticCurve('648a1').galois_representation().image_classes(5)
[0.3945, 0.3293, 0.2388, 0.0000, 0.03749]

sage: EllipticCurve('784h1').galois_representation().image_classes(7)
[0.5049, 0.0000, 0.0000, 0.0000, 0.4951, 0.0000, 0.0000]
sage: EllipticCurve('49a1').galois_representation().image_classes(7)
[0.5045, 0.0000, 0.0000, 0.0000, 0.4955, 0.0000, 0.0000]

sage: EllipticCurve('121c1').galois_representation().image_classes(11)
[0.1001, 0.0000, 0.0000, 0.0000, 0.1017, 0.1953, 0.1993, 0.0000, 0.0000, 0.2010,
→˓ 0.2026]
sage: EllipticCurve('121d1').galois_representation().image_classes(11)
[0.08869, 0.07974, 0.08706, 0.08137, 0.1001, 0.09439, 0.09764, 0.08218, 0.08625,
→˓ 0.1017, 0.1009]

sage: EllipticCurve('441f1').galois_representation().image_classes(13)
[0.08232, 0.1663, 0.1663, 0.1663, 0.08232, 0.0000, 0.1549, 0.0000, 0.0000, 0.
→˓0000, 0.0000, 0.1817, 0.0000]

REMARKS:

Conjugacy classes of subgroups of 𝑃𝐺𝐿2(F5)

For the case 𝑝 = 5, the order of an element determines almost the value of 𝑢:

𝑢 0 1 2 3 4
orders 2 3 4 6 1 or 5

Here we give here the full table of all conjugacy classes of subgroups with the values that image_classes
should give (as bound tends to ∞). Comparing with the output of the above examples, it is now easy to
guess what the image is.

16.7. Galois representations attached to elliptic curves 409

Elliptic curves, Release 9.8

subgroup order frequencies of values of 𝑢
trivial 1 [0.0000, 0.0000, 0.0000, 0.0000, 1.000]
cyclic 2 [0.5000, 0.0000, 0.0000, 0.0000, 0.5000]
cyclic 2 [0.5000, 0.0000, 0.0000, 0.0000, 0.5000]
cyclic 3 [0.0000, 0.6667, 0.0000, 0.0000, 0.3333]
Klein 4 [0.7500, 0.0000, 0.0000, 0.0000, 0.2500]
cyclic 4 [0.2500, 0.0000, 0.5000, 0.0000, 0.2500]
Klein 4 [0.7500, 0.0000, 0.0000, 0.0000, 0.2500]
cyclic 5 [0.0000, 0.0000, 0.0000, 0.0000, 1.000]
cyclic 6 [0.1667, 0.3333, 0.0000, 0.3333, 0.1667]
𝑆3 6 [0.5000, 0.3333, 0.0000, 0.0000, 0.1667]
𝑆3 6 [0.5000, 0.3333, 0.0000, 0.0000, 0.1667]
𝐷4 8 [0.6250, 0.0000, 0.2500, 0.0000, 0.1250]
𝐷5 10 [0.5000, 0.0000, 0.0000, 0.0000, 0.5000]
𝐴4 12 [0.2500, 0.6667, 0.0000, 0.0000, 0.08333]
𝐷6 12 [0.5833, 0.1667, 0.0000, 0.1667, 0.08333]
Borel 20 [0.2500, 0.0000, 0.5000, 0.0000, 0.2500]
𝑆4 24 [0.3750, 0.3333, 0.2500, 0.0000, 0.04167]
𝑃𝑆𝐿2 60 [0.2500, 0.3333, 0.0000, 0.0000, 0.4167]
𝑃𝐺𝐿2 120 [0.2083, 0.1667, 0.2500, 0.1667, 0.2083]

image_type(p)
Return a string describing the image of the mod-p representation. The result is provably correct, but only
indicates what sort of an image we have. If one wishes to determine the exact group one needs to work a
bit harder. The probabilistic method of image_classes or Sutherland’s galrep package can give a very good
guess what the image should be.

INPUT:

• p a prime number

OUTPUT:

• a string.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: rho = E.galois_representation()
sage: rho.image_type(5)
'The image is all of GL_2(F_5).'

sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.image_type(5)
'The image is meta-cyclic inside a Borel subgroup as there is a 5-torsion point␣
→˓on the curve.'

sage: EllipticCurve('27a1').galois_representation().image_type(5)
'The image is contained in the normalizer of a non-split Cartan group. (cm)'
sage: EllipticCurve('30a1').galois_representation().image_type(5)
'The image is all of GL_2(F_5).'
sage: EllipticCurve("324b1").galois_representation().image_type(5)
'The image in PGL_2(F_5) is the exceptional group S_4.'

(continues on next page)

410 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve([0,0,0,-56,4848])
sage: rho = E.galois_representation()

sage: rho.image_type(5)
'The image is contained in the normalizer of a split Cartan group.'

sage: EllipticCurve('49a1').galois_representation().image_type(7)
'The image is contained in a Borel subgroup as there is a 7-isogeny.'

sage: EllipticCurve('121c1').galois_representation().image_type(11)
'The image is contained in a Borel subgroup as there is a 11-isogeny.'
sage: EllipticCurve('121d1').galois_representation().image_type(11)
'The image is all of GL_2(F_11).'
sage: EllipticCurve('441f1').galois_representation().image_type(13)
'The image is contained in a Borel subgroup as there is a 13-isogeny.'

sage: EllipticCurve([1,-1,1,-5,2]).galois_representation().image_type(5)
'The image is contained in the normalizer of a non-split Cartan group.'
sage: EllipticCurve([0,0,1,-25650,1570826]).galois_representation().image_
→˓type(5)
'The image is contained in the normalizer of a split Cartan group.'
sage: EllipticCurve([1,-1,1,-2680,-50053]).galois_representation().image_
→˓type(7) # the dots (...) in the output fix #11937 (installed 'Kash' may␣
→˓give additional output); long time (2s on sage.math, 2014)
'The image is a... group of order 18.'
sage: EllipticCurve([1,-1,0,-107,-379]).galois_representation().image_type(7) ␣
→˓ # the dots (...) in the output fix #11937 (installed 'Kash' may give␣
→˓additional output); long time (1s on sage.math, 2014)
'The image is a... group of order 36.'
sage: EllipticCurve([0,0,1,2580,549326]).galois_representation().image_type(7)
'The image is contained in the normalizer of a split Cartan group.'

Test trac ticket #14577:

sage: EllipticCurve([0, 1, 0, -4788, 109188]).galois_representation().image_
→˓type(13)
'The image in PGL_2(F_13) is the exceptional group S_4.'

Test trac ticket #14752:

sage: EllipticCurve([0, 0, 0, -1129345880,-86028258620304]).galois_
→˓representation().image_type(11)
'The image is contained in the normalizer of a non-split Cartan group.'

For 𝑝 = 2:

sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.image_type(2)
'The image is all of GL_2(F_2), i.e. a symmetric group of order 6.'

sage: rho = EllipticCurve('14a1').galois_representation()
(continues on next page)

16.7. Galois representations attached to elliptic curves 411

https://trac.sagemath.org/14577
https://trac.sagemath.org/14752

Elliptic curves, Release 9.8

(continued from previous page)

sage: rho.image_type(2)
'The image is cyclic of order 2 as there is exactly one rational 2-torsion␣
→˓point.'

sage: rho = EllipticCurve('15a1').galois_representation()
sage: rho.image_type(2)
'The image is trivial as all 2-torsion points are rational.'

sage: rho = EllipticCurve('196a1').galois_representation()
sage: rho.image_type(2)
'The image is cyclic of order 3.'

𝑝 = 3:

sage: rho = EllipticCurve('33a1').galois_representation()
sage: rho.image_type(3)
'The image is all of GL_2(F_3).'

sage: rho = EllipticCurve('30a1').galois_representation()
sage: rho.image_type(3)
'The image is meta-cyclic inside a Borel subgroup as there is a 3-torsion point␣
→˓on the curve.'

sage: rho = EllipticCurve('50b1').galois_representation()
sage: rho.image_type(3)
'The image is contained in a Borel subgroup as there is a 3-isogeny.'

sage: rho = EllipticCurve('3840h1').galois_representation()
sage: rho.image_type(3)
'The image is contained in a dihedral group of order 8.'

sage: rho = EllipticCurve('32a1').galois_representation()
sage: rho.image_type(3)
'The image is a semi-dihedral group of order 16, gap.SmallGroup([16,8]).'

ALGORITHM: Mainly based on Serre’s paper.

is_crystalline(p)
Return true is the 𝑝-adic Galois representation to 𝐺𝐿2(Z𝑝) is crystalline.

For an elliptic curve 𝐸, this is to ask whether 𝐸 has good reduction at 𝑝.

INPUT:

• p a prime

OUTPUT:

• a Boolean

EXAMPLES:

sage: rho = EllipticCurve('64a1').galois_representation()
sage: rho.is_crystalline(5)
True

(continues on next page)

412 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: rho.is_crystalline(2)
False

is_irreducible(p)
Return True if the mod p representation is irreducible.

INPUT:

• p – a prime number

OUTPUT:

• a boolean

EXAMPLES:

sage: rho = EllipticCurve('37b').galois_representation()
sage: rho.is_irreducible(2)
True
sage: rho.is_irreducible(3)
False
sage: rho.is_reducible(2)
False
sage: rho.is_reducible(3)
True

is_ordinary(p)
Return true if the 𝑝-adic Galois representation to𝐺𝐿2(Z𝑝) is ordinary, i.e. if the image of the decomposition
group in Gal(Q̄/Q) above he prime 𝑝 maps into a Borel subgroup.

For an elliptic curve 𝐸, this is to ask whether 𝐸 is ordinary at 𝑝, i.e. good ordinary or multiplicative.

INPUT:

• p a prime

OUTPUT:

• a Boolean

EXAMPLES:

sage: rho = EllipticCurve('11a3').galois_representation()
sage: rho.is_ordinary(11)
True
sage: rho.is_ordinary(5)
True
sage: rho.is_ordinary(19)
False

is_potentially_crystalline(p)
Return true is the 𝑝-adic Galois representation to 𝐺𝐿2(Z𝑝) is potentially crystalline, i.e. if there is a finite
extension 𝐾/Q𝑝 such that the 𝑝-adic representation becomes crystalline.

For an elliptic curve 𝐸, this is to ask whether 𝐸 has potentially good reduction at 𝑝.

INPUT:

• p a prime

16.7. Galois representations attached to elliptic curves 413

Elliptic curves, Release 9.8

OUTPUT:

• a Boolean

EXAMPLES:

sage: rho = EllipticCurve('37b1').galois_representation()
sage: rho.is_potentially_crystalline(37)
False
sage: rho.is_potentially_crystalline(7)
True

is_potentially_semistable(p)
Return true if the 𝑝-adic Galois representation to 𝐺𝐿2(Z𝑝) is potentially semistable.

For an elliptic curve 𝐸, this returns True always

INPUT:

• p a prime

OUTPUT:

• a Boolean

EXAMPLES:

sage: rho = EllipticCurve('27a2').galois_representation()
sage: rho.is_potentially_semistable(3)
True

is_quasi_unipotent(p, ell)
Return true if the Galois representation to 𝐺𝐿2(Z𝑝) is quasi-unipotent at ℓ ̸= 𝑝, i.e. if there is a finite
extension 𝐾/Q such that the inertia group at a place above ℓ in Gal(Q̄/𝐾) maps into a Borel subgroup.

For a Galois representation attached to an elliptic curve 𝐸, this returns always True.

INPUT:

• p a prime

• ell a different prime

OUTPUT:

• Boolean

EXAMPLES:

sage: rho = EllipticCurve('11a3').galois_representation()
sage: rho.is_quasi_unipotent(11,13)
True

is_reducible(p)
Return True if the mod-p representation is reducible. This is equivalent to the existence of an isogeny
defined over Q of degree 𝑝 from the elliptic curve.

INPUT:

• p – a prime number

OUTPUT:

414 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• a boolean

The answer is cached.

EXAMPLES:

sage: rho = EllipticCurve('121a').galois_representation()
sage: rho.is_reducible(7)
False
sage: rho.is_reducible(11)
True
sage: EllipticCurve('11a').galois_representation().is_reducible(5)
True
sage: rho = EllipticCurve('11a2').galois_representation()
sage: rho.is_reducible(5)
True
sage: EllipticCurve('11a2').torsion_order()
1

is_semistable(p)
Return true if the 𝑝-adic Galois representation to 𝐺𝐿2(Z𝑝) is semistable.

For an elliptic curve 𝐸, this is to ask whether 𝐸 has semistable reduction at 𝑝.

INPUT:

• p a prime

OUTPUT:

• a Boolean

EXAMPLES:

sage: rho = EllipticCurve('20a3').galois_representation()
sage: rho.is_semistable(2)
False
sage: rho.is_semistable(3)
True
sage: rho.is_semistable(5)
True

is_surjective(p, A=1000)
Return True if the mod-p representation is surjective onto 𝐴𝑢𝑡(𝐸[𝑝]) = 𝐺𝐿2(F𝑝).

False if it is not, or None if we were unable to determine whether it is or not.

INPUT:

• p (integer) – a prime number

• A (integer) – a bound on the number of 𝑎𝑝 to use

OUTPUT:

• (boolean) – True if the mod-p representation is surjective and False if not.

The answer is cached.

EXAMPLES:

16.7. Galois representations attached to elliptic curves 415

Elliptic curves, Release 9.8

sage: rho = EllipticCurve('37b').galois_representation()
sage: rho.is_surjective(2)
True
sage: rho.is_surjective(3)
False

sage: rho = EllipticCurve('121a1').galois_representation()
sage: rho.non_surjective()
[11]
sage: rho.is_surjective(5)
True
sage: rho.is_surjective(11)
False

sage: rho = EllipticCurve('121d1').galois_representation()
sage: rho.is_surjective(5)
False
sage: rho.is_surjective(11)
True

Here is a case, in which the algorithm does not return an answer:

sage: rho = EllipticCurve([0,0,1,2580,549326]).galois_representation()
sage: rho.is_surjective(7)

In these cases, one can use image_type to get more information about the image:

sage: rho.image_type(7)
'The image is contained in the normalizer of a split Cartan group.'

REMARKS:

1. If 𝑝 ≥ 5 then the mod-p representation is surjective if and only if the p-adic representation is surjective.
When 𝑝 = 2, 3 there are counterexamples. See papers of Dokchitsers and Elkies for more details.

2. For the primes 𝑝 = 2 and 3, this will always answer either True or False. For larger primes it might
give None.

is_unipotent(p, ell)
Return true if the Galois representation to𝐺𝐿2(Z𝑝) is unipotent at ℓ ̸= 𝑝, i.e. if the inertia group at a place
above ℓ in Gal(Q̄/Q) maps into a Borel subgroup.

For a Galois representation attached to an elliptic curve 𝐸, this returns True if 𝐸 has semi-stable reduction
at ℓ.

INPUT:

• p a prime

• ell a different prime

OUTPUT:

• Boolean

EXAMPLES:

416 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: rho = EllipticCurve('120a1').galois_representation()
sage: rho.is_unipotent(2,5)
True
sage: rho.is_unipotent(5,2)
False
sage: rho.is_unipotent(5,7)
True
sage: rho.is_unipotent(5,3)
True
sage: rho.is_unipotent(5,5)
Traceback (most recent call last):
...
ValueError: unipotent is not defined for l = p, use semistable instead.

is_unramified(p, ell)
Return true if the Galois representation to 𝐺𝐿2(Z𝑝) is unramified at ℓ, i.e. if the inertia group at a place
above ℓ in Gal(Q̄/Q) has trivial image in 𝐺𝐿2(Z𝑝).

For a Galois representation attached to an elliptic curve 𝐸, this returns True if ℓ ̸= 𝑝 and 𝐸 has good
reduction at ℓ.

INPUT:

• p a prime

• ell another prime

OUTPUT:

• Boolean

EXAMPLES:

sage: rho = EllipticCurve('20a3').galois_representation()
sage: rho.is_unramified(5,7)
True
sage: rho.is_unramified(5,5)
False
sage: rho.is_unramified(7,5)
False

This says that the 5-adic representation is unramified at 7, but the 7-adic representation is ramified at 5.

non_surjective(A=1000)
Return a list of primes p such that the mod-p representation might not be surjective. If 𝑝 is not in the
returned list, then the mod-p representation is provably surjective.

By a theorem of Serre, there are only finitely many primes in this list, except when the curve has complex
multiplication.

If the curve has CM, we simply return the sequence [0] and do no further computation.

INPUT:

• A – an integer (default 1000). By increasing this parameter the resulting set might get smaller.

OUTPUT:

• list – if the curve has CM, returns [0]. Otherwise, returns a list of primes where mod-p representation
is very likely not surjective. At any prime not in this list, the representation is definitely surjective.

16.7. Galois representations attached to elliptic curves 417

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A
sage: E.galois_representation().non_surjective() # CM curve
[0]

sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.galois_representation().non_surjective()
[5]

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A
sage: E.galois_representation().non_surjective()
[]

sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C
sage: E.galois_representation().non_surjective()
[13]

sage: E = EllipticCurve([1,-1,1,-9965,385220]) # 9999a1
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[2]

sage: E = EllipticCurve('324b1')
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[3, 5]

ALGORITHM: We first find an upper bound 𝐵 on the possible primes. If 𝐸 is semi-stable, we can take
𝐵 = 11 by a result of Mazur. There is a bound by Serre in the case that the 𝑗-invariant is not integral in
terms of the smallest prime of good reduction. Finally there is an unconditional bound by Cojocaru, but
which depends on the conductor of 𝐸. For the prime below that bound we call is_surjective.

reducible_primes()

Return a list of the primes 𝑝 such that the mod-𝑝 representation is reducible. For all other primes the
representation is irreducible.

EXAMPLES:

sage: rho = EllipticCurve('225a').galois_representation()
sage: rho.reducible_primes()
[3]

16.8 Galois representations for elliptic curves over number fields

This file contains the code to compute for which primes the Galois representation attached to an elliptic curve (over an
arbitrary number field) is surjective. The functions in this file are called by the is_surjective and non_surjective
methods of an elliptic curve over a number field.

EXAMPLES:

418 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
False
sage: rho.is_surjective(31) # See Section 5.10 of [Ser1972].
True
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
[3, 5, 29]

sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
sage: E.galois_representation().non_surjective() # long time (2s on sage.math, 2014)
[0]

AUTHORS:

• Eric Larson (2012-05-28): initial version.

• Eric Larson (2014-08-13): added isogeny_bound function.

• John Cremona (2016, 2017): various efficiency improvements to _semistable_reducible_primes

• John Cremona (2017): implementation of Billerey’s algorithm to find all reducible primes

REFERENCES:

• [Ser1972]

• [Sut2012]

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_B_bound(E, max_l=200, num_l=8,
small_prime_bound=0,
debug=False)

Compute Billerey’s bound 𝐵.

We compute 𝐵𝑙 for 𝑙 up to max_l (at most) until num_l nonzero values are found (at most). Return the list
of primes dividing all 𝐵𝑙 computed, excluding those dividing 6 or ramified or of bad reduction or less than
small_prime_bound. If no non-zero values are found return [0].

INPUT:

• E – an elliptic curve over a number field 𝐾, given by a global integral model.

• max_l (int, default 200) – maximum size of primes l to check.

• num_l (int, default 8) – maximum number of primes l to check.

• small_prime_bound (int, default 0) – remove primes less than this from the output.

• debug (bool, default False) – if True prints details.

Note: The purpose of the small_prime_bound is that it is faster to deal with these using the local test; by ignoring
them here, we enable the algorithm to terminate sooner when there are no large reducible primes, which is always
the case in practice.

EXAMPLES:

16.8. Galois representations for elliptic curves over number fields 419

Elliptic curves, Release 9.8

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_
→˓bound
sage: Billerey_B_bound(E)
[5]

If we do not use enough primes 𝑙, extraneous primes will be included which are not reducible primes:

sage: Billerey_B_bound(E, num_l=6)
[5, 7]

Similarly if we do not use large enough primes 𝑙:

sage: Billerey_B_bound(E, max_l=50, num_l=8)
[5, 7]
sage: Billerey_B_bound(E, max_l=100, num_l=8)
[5]

This curve does have a rational 5-isogeny:

sage: len(E.isogenies_prime_degree(5))
1

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_B_l(E, l, B=0)
Return Billerey’s 𝐵𝑙, adapted from the definition in [Bil2011], after (9).

INPUT:

• E – an elliptic curve over a number field 𝐾, given by a global integral model.

• l (int) – a rational prime

• B (int) – 0 or LCM of previous 𝐵𝑙: the prime-to-B part of this 𝐵𝑙 is ignored.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_l
sage: [Billerey_B_l(E,l) for l in primes(15)]
[1123077552537600,
227279663773903886745600,
0,
0,
269247154818492941287713746693964214802283882086400,
0]

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_P_l(E, l)
Return Billerey’s 𝑃 *

𝑙 as defined in [Bil2011], equation (9).

INPUT:

• E – an elliptic curve over a number field 𝐾, given by a global integral model.

• l – a rational prime

EXAMPLES:

420 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_P_l
sage: [Billerey_P_l(E,l) for l in primes(10)]
[x^2 + 8143*x + 16777216,
x^2 + 451358*x + 282429536481,
x^4 - 664299076*x^3 + 205155493652343750*x^2 - 39595310449600219726562500*x +␣
→˓3552713678800500929355621337890625,
x^4 - 207302404*x^3 - 377423798538689366394*x^2 - 39715249826471656586987520004*x +␣
→˓36703368217294125441230211032033660188801]

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_R_bound(E, max_l=200, num_l=8,
small_prime_bound=None,
debug=False)

Compute Billerey’s bound 𝑅.

We compute 𝑅𝑞 for 𝑞 dividing primes ℓ up to max_l (at most) until num_l nonzero values are found (at most).
Return the list of primes dividing all R_q computed, excluding those dividing 6 or ramified or of bad reduction
or less than small_prime_bound. If no non-zero values are found return [0].

INPUT:

• E – an elliptic curve over a number field 𝐾, given by a global integral model.

• max_l (int, default 200) – maximum size of rational primes l for which the primes q above l are checked.

• num_l (int, default 8) – maximum number of rational primes l for which the primes q above l are checked.

• small_prime_bound (int, default 0) – remove primes less than this from the output.

• debug (bool, default False) – if True prints details.

Note: The purpose of the small_prime_bound is that it is faster to deal with these using the local test; by ignoring
them here, we enable the algorithm to terminate sooner when there are no large reducible primes, which is always
the case in practice.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_
→˓bound
sage: Billerey_R_bound(E)
[5]

We may get no bound at all if we do not use enough primes:

sage: Billerey_R_bound(E, max_l=2, debug=False)
[0]

Or we may get a bound but not a good one if we do not use enough primes:

sage: Billerey_R_bound(E, num_l=1, debug=False)
[5, 17, 67, 157]

16.8. Galois representations for elliptic curves over number fields 421

Elliptic curves, Release 9.8

In this case two primes is enough to restrict the set of possible reducible primes to just {5}. This curve does have
a rational 5-isogeny:

sage: Billerey_R_bound(E, num_l=2, debug=False)
[5]
sage: len(E.isogenies_prime_degree(5))
1

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_R_q(E, q, B=0)
Return Billerey’s 𝑅𝑞 , adapted from the definition in [Bil2011], Theorem 2.8.

INPUT:

• E – an elliptic curve over a number field 𝐾, given by a global integral model.

• q – a prime ideal of 𝐾

• B (int) – 0 or LCM of previous 𝑅𝑞: the prime-to-B part of this 𝑅𝑞 is ignored.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_q
sage: [Billerey_R_q(E,K.prime_above(l)) for l in primes(10)]
[1123077552537600,
227279663773903886745600,
51956919562116960000000000000000,
252485933820556361829926400000000]

sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, L, patience=100)
Determine which primes in L might have an image contained in a Borel subgroup, by checking of traces of
Frobenius.

Note: This function will sometimes return primes for which the image is not contained in a Borel subgroup. This
issue cannot always be fixed by increasing patience as it may be a result of a failure of a local-global principle
for isogenies.

INPUT:

• E – EllipticCurve over a number field.

• L – a list of prime numbers.

• patience (int), default 100 – a positive integer bounding the number of traces of Frobenius to use while
trying to prove irreducibility.

OUTPUT:

• list – The list of all primes ℓ in L for which the mod ℓ image might be contained in a Borel subgroup of
𝐺𝐿2(Fℓ).

EXAMPLES:

sage: E = EllipticCurve('11a1') # has a 5-isogeny
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E,
→˓primes(40))
[5]

422 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Example to show that the output may contain primes where the representation is in fact reducible. Over Q the
following is essentially the unique such example by [Sut2012]:

sage: E = EllipticCurve_from_j(2268945/128)
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, [7,␣
→˓11])
[7]

This curve does possess a 7-isogeny modulo every prime of good reduction, but has no rational 7-isogeny:

sage: E.isogenies_prime_degree(7)
[]

A number field example:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, -399-240*i, 2627+2869*i])
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E,␣
→˓primes(20))
[2, 3]

Here the curve really does possess isogenies of degrees 2 and 3:

sage: [len(E.isogenies_prime_degree(l)) for l in [2,3]]
[1, 1]

class sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation(E)
Bases: SageObject

The compatible family of Galois representation attached to an elliptic curve over a number field.

Given an elliptic curve 𝐸 over a number field 𝐾 and a rational prime number 𝑝, the 𝑝𝑛-torsion 𝐸[𝑝𝑛] points of
𝐸 is a representation of the absolute Galois group 𝐺𝐾 of 𝐾. As 𝑛 varies we obtain the Tate module 𝑇𝑝𝐸 which
is a representation of 𝐺𝐾 on a free Z𝑝-module of rank 2. As 𝑝 varies the representations are compatible.

EXAMPLES:

sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve('11a1').change_ring(K)
sage: rho = E.galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve␣
→˓defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in a with␣
→˓defining polynomial x^2 + 1

elliptic_curve()

Return the elliptic curve associated to this representation.

EXAMPLES:

sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
sage: E = EllipticCurve_from_j(a)
sage: rho = E.galois_representation()
sage: rho.elliptic_curve() == E
True

16.8. Galois representations for elliptic curves over number fields 423

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

is_surjective(p, A=100)
Return True if the mod-p representation is (provably) surjective onto 𝐴𝑢𝑡(𝐸[𝑝]) = 𝐺𝐿2(F𝑝). Return
False if it is (probably) not.

INPUT:

• p - int - a prime number.

• A - int - a bound on the number of traces of Frobenius to use
while trying to prove surjectivity.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
False
sage: rho.is_surjective(7) # See Section 5.10 of [Ser1972].
True

If 𝐸 is defined over Q, then the exceptional primes for 𝐸/𝐾 are the same as the exceptional primes for 𝐸,
except for those primes that are ramified in 𝐾/Q or are less than [𝐾 : Q]:

sage: K = NumberField(x**2 + 11, 'a')
sage: E = EllipticCurve([2, 14])
sage: rhoQQ = E.galois_representation()
sage: rhoK = E.change_ring(K).galois_representation()
sage: rhoQQ.is_surjective(2) == rhoK.is_surjective(2)
False
sage: rhoQQ.is_surjective(3) == rhoK.is_surjective(3)
True
sage: rhoQQ.is_surjective(5) == rhoK.is_surjective(5)
True

For CM curves, the mod-p representation is never surjective:

sage: K.<a> = NumberField(x^2-x+1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_cm()
True
sage: rho = E.galois_representation()
sage: any(rho.is_surjective(p) for p in [2,3,5,7])
False

isogeny_bound(A=100)
Return a list of primes 𝑝 including all primes for which the image of the mod-𝑝 representation is contained
in a Borel.

Note: For the actual list of primes 𝑝 at which the representation is reducible see reducible_primes().

INPUT:

• A – int (a bound on the number of traces of Frobenius to use while trying to prove the mod-𝑝 represen-
tation is not contained in a Borel).

424 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

• list – A list of primes which contains (but may not be equal to) all 𝑝 for which the image of the mod-𝑝
representation is contained in a Borel subgroup. At any prime not in this list, the image is definitely
not contained in a Borel. If E has 𝐶𝑀 defined over 𝐾, the list [0] is returned.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # See Section 5.10 of [Ser1972].
[3, 5]
sage: K = NumberField(x**2 + 1, 'a')
sage: EllipticCurve_from_j(K(1728)).galois_representation().isogeny_bound() #␣
→˓CM over K
[0]
sage: EllipticCurve_from_j(K(0)).galois_representation().isogeny_bound() # CM␣
→˓NOT over K
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sut2012]
sage: E.galois_representation().isogeny_bound() # No 7-isogeny, but...
[7]

For curves with rational CM, there are infinitely many primes 𝑝 for which the mod-𝑝 representation is
reducible, and [0] is returned:

sage: K.<a> = NumberField(x^2-x+1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_rational_cm()
True
sage: rho = E.galois_representation()
sage: rho.isogeny_bound()
[0]

An example (an elliptic curve with everywhere good reduction over an imaginary quadratic field with quite
large discriminant), which failed until fixed at trac ticket #21776:

sage: K.<a> = NumberField(x^2 - x + 112941801)
sage: E = EllipticCurve([a+1,a-1,a,-23163076*a + 266044005933275,
→˓57560769602038*a - 836483958630700313803])
sage: E.conductor().norm()
1
sage: GR = E.galois_representation()
sage: GR.isogeny_bound()
[]

non_surjective(A=100)
Return a list of primes 𝑝 including all primes for which the mod-𝑝 representation might not be surjective.

INPUT:

• A – int (a bound on the number of traces of Frobenius to use while trying to prove surjectivity).

OUTPUT:

• list – A list of primes where mod-𝑝 representation is very likely not surjective. At any prime not in
this list, the representation is definitely surjective. If 𝐸 has CM, the list [0] is returned.

16.8. Galois representations for elliptic curves over number fields 425

https://trac.sagemath.org/21776

Elliptic curves, Release 9.8

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.non_surjective() # See Section 5.10 of [Ser1972].
[3, 5, 29]
sage: K = NumberField(x**2 + 3, 'a'); a = K.gen()
sage: E = EllipticCurve([0, -1, 1, -10, -20]).change_ring(K) # X_0(11)
sage: rho = E.galois_representation()
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
[3, 5]
sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
sage: rho = E.galois_representation()
sage: rho.non_surjective()
[0]
sage: K = NumberField(x**2 - 5, 'a'); a = K.gen()
sage: E = EllipticCurve_from_j(146329141248*a - 327201914880) # CM
sage: rho = E.galois_representation()
sage: rho.non_surjective() # long time (3s on sage.math, 2014)
[0]

reducible_primes()

Return a list of primes 𝑝 for which the mod-𝑝 representation is reducible, or [0] for CM curves.

OUTPUT:

• list – A list of those primes 𝑝 for which the mod-𝑝 representation is contained in a Borel subgroup,
i.e. is reducible. If E has CM defined over K, the list [0] is returned (in this case the representation is
reducible for infinitely many primes).

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # See Section 5.10 of [Ser1972].
[3, 5]
sage: rho.reducible_primes()
[3, 5]

sage: K = NumberField(x**2 + 1, 'a')
sage: EllipticCurve_from_j(K(1728)).galois_representation().isogeny_bound() #␣
→˓CM over K
[0]
sage: EllipticCurve_from_j(K(0)).galois_representation().reducible_primes() #␣
→˓CM but NOT over K
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sut2012]
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # ... but there is no 7-isogeny ...
[7]
sage: rho.reducible_primes()
[]

426 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

For curves with rational CM, there are infinitely many primes 𝑝 for which the mod-𝑝 representation is
reducible, and [0] is returned:

sage: K.<a> = NumberField(x^2-x+1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_rational_cm()
True
sage: rho = E.galois_representation()
sage: rho.reducible_primes()
[0]

sage.schemes.elliptic_curves.gal_reps_number_field.deg_one_primes_iter(K,
principal_only=False)

Return an iterator over degree 1 primes of K.

INPUT:

• K – a number field

• principal_only – bool; if True, only yield principal primes

OUTPUT:

An iterator over degree 1 primes of 𝐾 up to the given norm, optionally yielding only principal primes.

EXAMPLES:

sage: K.<a> = QuadraticField(-5)
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import deg_one_primes_
→˓iter
sage: it = deg_one_primes_iter(K)
sage: [next(it) for _ in range(6)]
[Fractional ideal (2, a + 1),
Fractional ideal (3, a + 1),
Fractional ideal (3, a + 2),
Fractional ideal (a),
Fractional ideal (7, a + 3),
Fractional ideal (7, a + 4)]
sage: it = deg_one_primes_iter(K, True)
sage: [next(it) for _ in range(6)]
[Fractional ideal (a),
Fractional ideal (-2*a + 3),
Fractional ideal (2*a + 3),
Fractional ideal (a + 6),
Fractional ideal (a - 6),
Fractional ideal (-3*a + 4)]

sage.schemes.elliptic_curves.gal_reps_number_field.reducible_primes_Billerey(E,
num_l=None,
max_l=None,
verbose=False)

Return a finite set of primes ℓ containing all those for which 𝐸 has a𝐾-rational ell-isogeny, where𝐾 is the base
field of 𝐸: i.e., the mod-ℓ representation is irreducible for all ℓ outside the set returned.

INPUT:

• E – an elliptic curve defined over a number field 𝐾.

16.8. Galois representations for elliptic curves over number fields 427

Elliptic curves, Release 9.8

• max_l (int or None (default)) – the maximum prime ℓ to use for the B-bound and R-bound. If None, a
default value will be used.

• num_l (int or None (default)) – the number of primes ℓ to use for the B-bound and R-bound. If None, a
default value will be used.

Note: If E has CM then [0] is returned. In this case use the function
sage.schemes.elliptic_curves.isogeny_class.possible_isogeny_degrees

We first compute Billeray’s B_bound using at most num_l primes of size up to max_l. If that fails we compute
Billeray’s R_bound using at most num_q primes of size up to max_q.

Provided that one of these methods succeeds in producing a finite list of primes we check these using a local
condition, and finally test that the primes returned actually are reducible. Otherwise we return [0].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_
→˓primes_Billerey
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: reducible_primes_Billerey(E)
[3, 5]
sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: reducible_primes_Billerey(E)
[0]
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
sage: reducible_primes_Billerey(E)
[2, 3]

An example where a prime is not reducible but passes the test:

sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f.␣
→˓[Sut2012]
sage: reducible_primes_Billerey(E)
[7]

sage.schemes.elliptic_curves.gal_reps_number_field.reducible_primes_naive(E, max_l=None,
num_P=None,
verbose=False)

Return locally reducible primes ℓ up to max_l.

The list of primes ℓ returned consists of all those up to max_l such that 𝐸 mod 𝑃 has an ℓ-isogeny, where 𝐾 is
the base field of 𝐸, for num_P primes 𝑃 of 𝐾. In most cases 𝐸 then has a 𝐾-rational ℓ-isogeny, but there are
rare exceptions.

INPUT:

• E – an elliptic curve defined over a number field 𝐾

• max_l (int or None (default)) – the maximum prime ℓ to test.

• num_P (int or None (default)) – the number of primes 𝑃 of 𝐾 to use in testing each ℓ.

EXAMPLES:

428 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_
→˓primes_naive
sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, a^2 - 2, -50*a^2 + 35, 95*a^2 - 67])
sage: reducible_primes_naive(E,num_P=10)
[2, 5, 53, 173, 197, 241, 293, 317, 409, 557, 601, 653, 677, 769, 773, 797]
sage: reducible_primes_naive(E,num_P=15)
[2, 5, 197, 557, 653, 769]
sage: reducible_primes_naive(E,num_P=20)
[2, 5]
sage: reducible_primes_naive(E)
[2, 5]
sage: [phi.degree() for phi in E.isogenies_prime_degree()]
[2, 2, 2, 5]

16.9 Isogeny class of elliptic curves over number fields

AUTHORS:

• David Roe (2012-03-29) – initial version.

• John Cremona (2014-08) – extend to number fields.

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC(E, label=None, empty=False)
Bases: SageObject

Isogeny class of an elliptic curve.

Note: The current implementation chooses a curve from each isomorphism class in the isogeny class. Over Q
this is a unique reduced minimal model in each isomorphism class. Over number fields the model chosen may
change in future.

graph()

Return a graph whose vertices correspond to curves in this class, and whose edges correspond to prime
degree isogenies.

Note: There are only finitely many possible isogeny graphs for curves over Q [Maz1978b]. This function
tries to lay out the graph nicely by special casing each isogeny graph. This could also be done over other
number fields, such as quadratic fields.

Note: The vertices are labeled 1 to n rather than 0 to n-1 to match LMFDB and Cremona labels for curves
over Q.

EXAMPLES:

sage: isocls = EllipticCurve('15a3').isogeny_class()
sage: G = isocls.graph()
sage: sorted(G._pos.items())
[(1, [-0.8660254, 0.5]), (2, [-0.8660254, 1.5]), (3, [-1.7320508, 0]), (4, [0,␣

(continues on next page)

16.9. Isogeny class of elliptic curves over number fields 429

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

→˓0]), (5, [0, -1]), (6, [0.8660254, 0.5]), (7, [0.8660254, 1.5]), (8, [1.
→˓7320508, 0])]

index(C)
Return the index of a curve in this class.

INPUT:

• C – an elliptic curve in this isogeny class.

OUTPUT:

• i – an integer so that the i th curve in the class is isomorphic to C

EXAMPLES:

sage: E = EllipticCurve('990j1')
sage: iso = E.isogeny_class(order="lmfdb") # orders lexicographically on a-
→˓invariants
sage: iso.index(E.short_weierstrass_model())
2

isogenies(fill=False)
Return a list of lists of isogenies and 0s, corresponding to the entries of matrix()

INPUT:

• fill – boolean (default False). Whether to only return prime degree isogenies. Currently only
implemented for fill=False.

OUTPUT:

• a list of lists, where the j th entry of the i th list is either zero or a prime degree isogeny from the i th
curve in this class to the j th curve.

Warning: The domains and codomains of the isogenies will have the same Weierstrass equation as
the curves in this class, but they may not be identical python objects in the current implementation.

EXAMPLES:

sage: isocls = EllipticCurve('15a3').isogeny_class()
sage: f = isocls.isogenies()[0][1]; f
Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 -␣
→˓5*x + 2 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3␣
→˓+ x^2 - 80*x + 242 over Rational Field
sage: f.domain() == isocls.curves[0] and f.codomain() == isocls.curves[1]
True

matrix(fill=True)
Return the matrix whose entries give the minimal degrees of isogenies between curves in this class.

INPUT:

• fill – boolean (default True). If False then the matrix will contain only zeros and prime entries; if
True it will fill in the other degrees.

EXAMPLES:

430 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: isocls = EllipticCurve('15a3').isogeny_class()
sage: isocls.matrix()
[1 2 2 2 4 4 8 8]
[2 1 4 4 8 8 16 16]
[2 4 1 4 8 8 16 16]
[2 4 4 1 2 2 4 4]
[4 8 8 2 1 4 8 8]
[4 8 8 2 4 1 2 2]
[8 16 16 4 8 2 1 4]
[8 16 16 4 8 2 4 1]
sage: isocls.matrix(fill=False)
[0 2 2 2 0 0 0 0]
[2 0 0 0 0 0 0 0]
[2 0 0 0 0 0 0 0]
[2 0 0 0 2 2 0 0]
[0 0 0 2 0 0 0 0]
[0 0 0 2 0 0 2 2]
[0 0 0 0 0 2 0 0]
[0 0 0 0 0 2 0 0]

qf_matrix()

Return the array whose entries are quadratic forms representing the degrees of isogenies between curves in
this class (CM case only).

OUTPUT:

a 2𝑥2 array (list of lists) of list, each of the form [2] or [2,1,3] representing the coefficients of an integral
quadratic form in 1 or 2 variables whose values are the possible isogeny degrees between the i’th and j’th
curve in the class.

EXAMPLES:

sage: pol = PolynomialRing(QQ,'x')([1,0,3,0,1])
sage: K.<c> = NumberField(pol)
sage: j = 1480640+565760*c^2
sage: E = EllipticCurve(j=j)
sage: C = E.isogeny_class()
sage: C.qf_matrix()
[[[1], [2, 2, 3]], [[2, 2, 3], [1]]]

reorder(order)
Return a new isogeny class with the curves reordered.

INPUT:

• order – None, a string or an iterable over all curves in this class. See sage.
schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.
isogeny_class() for more details.

OUTPUT:

• Another IsogenyClass_EC with the curves reordered (and matrices and maps changed as appropri-
ate)

EXAMPLES:

16.9. Isogeny class of elliptic curves over number fields 431

Elliptic curves, Release 9.8

sage: isocls = EllipticCurve('15a1').isogeny_class()
sage: print("\n".join(repr(C) for C in isocls.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over␣
→˓Rational Field
sage: isocls2 = isocls.reorder('lmfdb')
sage: print("\n".join(repr(C) for C in isocls2.curves))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over␣
→˓Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational␣
→˓Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational␣
→˓Field

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField(E, re-
ducible_primes=None,
algo-
rithm='Billerey',
mini-
mal_models=True)

Bases: IsogenyClass_EC

Isogeny classes for elliptic curves over number fields.

copy()

Return a copy (mostly used in reordering).

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: C = E.isogeny_class()
sage: C2 = C.copy()

(continues on next page)

432 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: C is C2
False
sage: C == C2
True

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_Rational(E,
algorithm='sage',
label=None,
empty=False)

Bases: IsogenyClass_EC_NumberField

Isogeny classes for elliptic curves over Q.

copy()

Return a copy (mostly used in reordering).

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: C = E.isogeny_class()
sage: C2 = C.copy()
sage: C is C2
False
sage: C == C2
True

sage.schemes.elliptic_curves.isogeny_class.isogeny_degrees_cm(E, verbose=False)
Return a list of primes ℓ sufficient to generate the isogeny class of 𝐸, where 𝐸 has CM.

INPUT:

• E – An elliptic curve defined over a number field.

OUTPUT:

A finite list of primes ℓ such that every curve isogenous to this curve can be obtained by a finite sequence of
isogenies of degree one of the primes in the list.

ALGORITHM:

For curves with CM by the order 𝑂 of discriminant 𝑑, the Galois representation is always non-surjective and the
curve will admit ℓ-isogenies for infinitely many primes ℓ, but there are only finitely many codomains 𝐸′. The
primes can be divided according to the discriminant 𝑑′ of the CM order 𝑂′ associated to 𝐸: either 𝑂 = 𝑂′, or
one contains the other with index ℓ, since ℓ𝑂 ⊂ 𝑂′ and vice versa.

Case (1): 𝑂 = 𝑂′. The degrees of all isogenies between 𝐸 and 𝐸′ are precisely the integers represented by one
of the classes of binary quadratic forms 𝑄 of discriminant 𝑑. Hence to obtain all possible isomorphism classes
of codomain 𝐸′, we need only use one prime ℓ represented by each such class 𝑄. It would in fact suffice to use
primes represented by forms which generate the class group. Here we simply omit the principal class and one
from each pair of inverse classes, and include a prime represented by each of the remaining forms.

Case (2): [𝑂′ : 𝑂] = ℓ: so 𝑑 = ℓ2𝑑;. We include all prime divisors of 𝑑.

Case (3): [𝑂 : 𝑂′] = ℓ: we may assume that ℓ does not divide 𝑑 as we have already included these, so ℓ either
splits or is inert in 𝑂; the class numbers satisfy ℎ(𝑂′) = (ℓ± 1)ℎ(𝑂) accordingly. We include all primes ℓ such
that ℓ± 1 divides the degree [𝐾 : Q].

For curves with only potential CM we proceed as in the CM case, using 2[𝐾 : Q] instead of [𝐾 : Q].

16.9. Isogeny class of elliptic curves over number fields 433

Elliptic curves, Release 9.8

EXAMPLES:

For curves with CM by a quadratic order of class number greater than 1, we use the structure of the class group
to only give one prime in each ideal class:

sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: j = hilbert_class_polynomial(-23).roots(L,multiplicities=False)[0]
sage: E = EllipticCurve(j=j)
sage: from sage.schemes.elliptic_curves.isogeny_class import isogeny_degrees_cm
sage: isogeny_degrees_cm(E, verbose=True)
CM case, discriminant = -23
initial primes: {2}
upward primes: {}
downward ramified primes: {}
downward split primes: {2, 3}
downward inert primes: {5}
primes generating the class group: [2]
Complete set of primes: {2, 3, 5}
[2, 3, 5]

sage.schemes.elliptic_curves.isogeny_class.possible_isogeny_degrees(E, algorithm='Billerey',
max_l=None, num_l=None,
exact=True,
verbose=False)

Return a list of primes ℓ sufficient to generate the isogeny class of 𝐸.

INPUT:

• E – An elliptic curve defined over a number field.

• algorithm (string, default ‘Billerey’) – Algorithm to be used for non-CM curves: either ‘Billerey’, ‘Lar-
son’, or ‘heuristic’. Only relevant for non-CM curves and base fields other than Q.

• max_l (int or None) – only relevant for non-CM curves and algorithms ‘Billerey’ and ‘heuristic. Controls
the maximum prime used in either algorithm. If None, use the default for that algorithm.

• num_l (int or None) – only relevant for non-CM curves and algorithm ‘Billerey’. Controls the maximum
number of primes used in the algorithm. If None, use the default for that algorithm.

• exact (bool, default True) – if True, perform an additional check that the primes returned are all reducible.
If False, skip this step, in which case some of the primes returned may be irreducible.

OUTPUT:

A finite list of primes ℓ such that every curve isogenous to this curve can be obtained by a finite sequence of
isogenies of degree one of the primes in the list.

ALGORITHM:

For curves without CM, the set may be taken to be the finite set of primes at which the Galois representation is
not surjective, since the existence of an ℓ-isogeny is equivalent to the image of the mod-ℓ Galois representation
being contained in a Borel subgroup. Two rigorous algorithms have been implemented to determine this set,
due to Larson and Billeray respectively. We also provide a non-rigorous ‘heuristic’ algorithm which only tests
reducible primes up to a bound depending on the degree of the base field.

For curves with CM see the documentation for isogeny_degrees_cm().

EXAMPLES:

434 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

For curves without CM we determine the primes at which the mod 𝑝 Galois representation is reducible, i.e.
contained in a Borel subgroup:

sage: from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_
→˓degrees
sage: E = EllipticCurve('11a1')
sage: possible_isogeny_degrees(E)
[5]
sage: possible_isogeny_degrees(E, algorithm='Larson')
[5]
sage: possible_isogeny_degrees(E, algorithm='Billerey')
[5]
sage: possible_isogeny_degrees(E, algorithm='heuristic')
[5]

We check that in this case 𝐸 really does have rational 5-isogenies:

sage: [phi.degree() for phi in E.isogenies_prime_degree()]
[5, 5]

Over an extension field:

sage: E3 = E.change_ring(CyclotomicField(3))
sage: possible_isogeny_degrees(E3)
[5]
sage: [phi.degree() for phi in E3.isogenies_prime_degree()]
[5, 5]

A higher degree example (LMFDB curve 5.5.170701.1-4.1-b1):

sage: K.<a> = NumberField(x^5 - x^4 - 6*x^3 + 4*x + 1)
sage: E = EllipticCurve(K, [a^3 - a^2 - 5*a + 1, a^4 - a^3 - 5*a^2 - a + 1, -a^4 +␣
→˓2*a^3 + 5*a^2 - 5*a - 3, a^4 - a^3 - 5*a^2 - a, -3*a^4 + 4*a^3 + 17*a^2 - 6*a -␣
→˓12])
sage: possible_isogeny_degrees(E, algorithm='heuristic')
[2]
sage: possible_isogeny_degrees(E, algorithm='Billerey')
[2]
sage: possible_isogeny_degrees(E, algorithm='Larson')
[2]

LMFDB curve 4.4.8112.1-108.1-a5:

sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, a^2 - 2, -50*a^2 + 35, 95*a^2 - 67])
sage: possible_isogeny_degrees(E, exact=False, algorithm='Billerey')
[2, 5]
sage: possible_isogeny_degrees(E, exact=False, algorithm='Larson')
[2, 5]
sage: possible_isogeny_degrees(E, exact=False, algorithm='heuristic')
[2, 5]
sage: possible_isogeny_degrees(E)
[2, 5]

This function only returns the primes which are isogeny degrees:

16.9. Isogeny class of elliptic curves over number fields 435

Elliptic curves, Release 9.8

sage: Set(E.isogeny_class().matrix().list())
{1, 2, 4, 5, 20, 10}

For curves with CM by a quadratic order of class number greater than 1, we use the structure of the class group
to only give one prime in each ideal class:

sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: j = hilbert_class_polynomial(-23).roots(L,multiplicities=False)[0]
sage: E = EllipticCurve(j=j)
sage: from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_
→˓degrees
sage: possible_isogeny_degrees(E, verbose=True)
CM case, discriminant = -23
initial primes: {2}
upward primes: {}
downward ramified primes: {}
downward split primes: {2, 3}
downward inert primes: {5}
primes generating the class group: [2]
Complete set of primes: {2, 3, 5}
[2, 3, 5]

16.10 Tate-Shafarevich group

If 𝐸 is an elliptic curve over a global field 𝐾, the Tate-Shafarevich group is the subgroup of elements in 𝐻1(𝐾,𝐸)
which map to zero under every global-to-local restriction map 𝐻1(𝐾,𝐸) → 𝐻1(𝐾𝑣, 𝐸), one for each place 𝑣 of 𝐾.

The group is usually denoted by the Russian letter Sha (cyrillic Sha), in this document it will be denoted by 𝑆ℎ𝑎.

𝑆ℎ𝑎 is known to be an abelian torsion group. It is conjectured that the Tate-Shafarevich group is finite for any elliptic
curve over a global field. But it is not known in general.

A theorem of Kolyvagin and Gross-Zagier using Heegner points shows that if the L-series of an elliptic curve 𝐸/Q
does not vanish at 1 or has a simple zero there, then 𝑆ℎ𝑎 is finite.

A theorem of Kato, together with theorems from Iwasawa theory, allows for certain primes 𝑝 to show that the 𝑝-primary
part of 𝑆ℎ𝑎 is finite and gives an effective upper bound for it.

The (𝑝-adic) conjecture of Birch and Swinnerton-Dyer predicts the order of 𝑆ℎ𝑎 from the leading term of the (𝑝-adic)
L-series of the elliptic curve.

Sage can compute a few things about 𝑆ℎ𝑎. The commands an, an_numerical and an_padic compute the conjectural
order of 𝑆ℎ𝑎 as a real or 𝑝-adic number. With p_primary_bound one can find an upper bound of the size of the 𝑝-
primary part of 𝑆ℎ𝑎. Finally, if the analytic rank is at most 1, then bound_kato and bound_kolyvagin find all primes
for which the theorems of Kato and Kolyvagin respectively do not prove the triviality the 𝑝-primary part of 𝑆ℎ𝑎.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()

(continues on next page)

436 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

([2, 5], 1)
sage: S.an_padic(7,3)
1 + O(7^5)
sage: S.an()
1
sage: S.an_numerical()
1.00000000000000

sage: E = EllipticCurve('389a')
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over␣
→˓Rational Field
sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5)
0
sage: S.an_padic(5)
1 + O(5)
sage: S.an_padic(5,prec=4) # long time (2s on sage.math, 2011)
1 + O(5^3)

AUTHORS:

• William Stein (2007) – initial version

• Chris Wuthrich (April 2009) – reformat docstrings

• Aly Deines, Chris Wuthrich, Jeaninne Van Order (2016-03): Added functionality that tests the Skinner-Urban
condition.

class sage.schemes.elliptic_curves.sha_tate.Sha(E)
Bases: SageObject

The Tate-Shafarevich group associated to an elliptic curve.

If𝐸 is an elliptic curve over a global field𝐾, the Tate-Shafarevich group is the subgroup of elements in𝐻1(𝐾,𝐸)
which map to zero under every global-to-local restriction map 𝐻1(𝐾,𝐸) → 𝐻1(𝐾𝑣, 𝐸), one for each place 𝑣
of 𝐾.

EXAMPLES:

sage: E = EllipticCurve('571a1')
sage: E._set_gens([]) # curve has rank 0, but non-trivial Sha[2]
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()
([2], 1)
sage: S.an_padic(7,3)
4 + O(7^5)
sage: S.an()
4
sage: S.an_numerical()
4.00000000000000

(continues on next page)

16.10. Tate-Shafarevich group 437

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve('389a')
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x␣
→˓over Rational Field
sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5) # long time
0
sage: S.an_padic(5) # long time
1 + O(5)
sage: S.an_padic(5,prec=4) # very long time
1 + O(5^3)

an(use_database=False, descent_second_limit=12)
Returns the Birch and Swinnerton-Dyer conjectural order of 𝑆ℎ𝑎 as a provably correct integer, unless the
analytic rank is > 1, in which case this function returns a numerical value.

INPUT:

• use_database – bool (default: False); if True, try to use any databases installed to lookup the
analytic order of 𝑆ℎ𝑎, if possible. The order of 𝑆ℎ𝑎 is computed if it cannot be looked up.

• descent_second_limit – int (default: 12); limit to use on point searching for the quartic twist in
the hard case

This result is proved correct if the order of vanishing is 0 and the Manin constant is <= 2.

If the optional parameter use_database is True (default: False), this function returns the analytic order
of 𝑆ℎ𝑎 as listed in Cremona’s tables, if this curve appears in Cremona’s tables.

NOTE:

If you come across the following error:

sage: E = EllipticCurve([0, 0, 1, -34874, -2506691])
sage: E.sha().an()
Traceback (most recent call last):
...
RuntimeError: Unable to compute the rank, hence generators, with certainty␣
→˓(lower bound=0, generators found=[]). This could be because Sha(E/Q)[2] is␣
→˓nontrivial.
Try increasing descent_second_limit then trying this command again.

You can increase the descent_second_limit (in the above example, set to the default, 12) option to try
again:

sage: E.sha().an(descent_second_limit=16) # long time (2s on sage.math, 2011)
1

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.sha().an()
1
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.sha().an()

(continues on next page)

438 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

1

sage: EllipticCurve('14a4').sha().an()
1
sage: EllipticCurve('14a4').sha().an(use_database=True) # will be faster if␣
→˓you have large Cremona database installed
1

The smallest conductor curve with nontrivial 𝑆ℎ𝑎:

sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66b3
sage: E.sha().an()
4

The four optimal quotients with nontrivial 𝑆ℎ𝑎 and conductor <= 1000:

sage: E = EllipticCurve([0, -1, 1, -929, -10595]) # 571A
sage: E.sha().an()
4
sage: E = EllipticCurve([1, 1, 0, -1154, -15345]) # 681B
sage: E.sha().an()
9
sage: E = EllipticCurve([0, -1, 0, -900, -10098]) # 960D
sage: E.sha().an()
4
sage: E = EllipticCurve([0, 1, 0, -20, -42]) # 960N
sage: E.sha().an()
4

The smallest conductor curve of rank > 1:

sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.sha().an()
1.00000000000000

The following are examples that require computation of the Mordell- Weil group and regulator:

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.sha().an()
1

sage: E = EllipticCurve("1610f3")
sage: E.sha().an()
4

In this case the input curve is not minimal, and if this function did not transform it to be minimal, it would
give nonsense:

sage: E = EllipticCurve([0,-432*6^2])
sage: E.sha().an()
1

See trac ticket #10096: this used to give the wrong result 6.0000 before since the minimal model was not
used:

16.10. Tate-Shafarevich group 439

https://trac.sagemath.org/10096

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1215*1216,0]) # non-minimal model
sage: E.sha().an() # long time (2s on sage.math, 2011)
1.00000000000000
sage: E.minimal_model().sha().an() # long time (1s on sage.math, 2011)
1.00000000000000

an_numerical(prec=None, use_database=True, proof=None)
Return the numerical analytic order of 𝑆ℎ𝑎, which is a floating point number in all cases.

INPUT:

• prec – integer (default: 53) bits precision – used for the L-series computation, period, regulator, etc.

• use_database – whether the rank and generators should be looked up in the database if possible.
Default is True

• proof – bool or None (default: None, see proof.[tab] or sage.structure.proof) proof option passed onto
regulator and rank computation.

Note: See also the an() command, which will return a provably correct integer when the rank is 0 or 1.

Warning: If the curve’s generators are not known, computing them may be very time-consuming.
Also, computation of the L-series derivative will be time-consuming for large rank and large conductor,
and the computation time for this may increase substantially at greater precision. However, use of very
low precision less than about 10 can cause the underlying PARI library functions to fail.

EXAMPLES:

sage: EllipticCurve('11a').sha().an_numerical()
1.00000000000000
sage: EllipticCurve('37a').sha().an_numerical()
1.00000000000000
sage: EllipticCurve('389a').sha().an_numerical()
1.00000000000000
sage: EllipticCurve('66b3').sha().an_numerical()
4.00000000000000
sage: EllipticCurve('5077a').sha().an_numerical()
1.00000000000000

A rank 4 curve:

sage: EllipticCurve([1, -1, 0, -79, 289]).sha().an_numerical() # long time (3s␣
→˓on sage.math, 2011)
1.00000000000000

A rank 5 curve:

sage: EllipticCurve([0, 0, 1, -79, 342]).sha().an_numerical(prec=10,␣
→˓proof=False) # long time (22s on sage.math, 2011)
1.0

See trac ticket #1115:

440 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/1115

Elliptic curves, Release 9.8

sage: sha = EllipticCurve('37a1').sha()
sage: [sha.an_numerical(prec) for prec in range(40,100,10)] # long time (3s on␣
→˓sage.math, 2013)
[1.0000000000,
1.0000000000000,
1.0000000000000000,
1.0000000000000000000,
1.0000000000000000000000,
1.0000000000000000000000000]

an_padic(p, prec=0, use_twists=True)
Returns the conjectural order of 𝑆ℎ𝑎(𝐸/Q), according to the 𝑝-adic analogue of the Birch and Swinnerton-
Dyer conjecture as formulated in [MTT1986] and [BP1993].

INPUT:

• p – a prime > 3

• prec (optional) – the precision used in the computation of the 𝑝-adic L-Series

• use_twists (default: True) – If True the algorithm may change to a quadratic twist with minimal
conductor to do the modular symbol computations rather than using the modular symbols of the curve
itself. If False it forces the computation using the modular symbols of the curve itself.

OUTPUT: 𝑝-adic number - that conjecturally equals #𝑆ℎ𝑎(𝐸/Q).

If prec is set to zero (default) then the precision is set so that at least the first 𝑝-adic digit of conjectural
#𝑆ℎ𝑎(𝐸/Q) is determined.

EXAMPLES:

Good ordinary examples:

sage: EllipticCurve('11a1').sha().an_padic(5) # rank 0
1 + O(5^22)
sage: EllipticCurve('43a1').sha().an_padic(5) # rank 1
1 + O(5)
sage: EllipticCurve('389a1').sha().an_padic(5,4) # rank 2, long time (2s on␣
→˓sage.math, 2011)
1 + O(5^3)
sage: EllipticCurve('858k2').sha().an_padic(7) # rank 0, non trivial sha,␣
→˓long time (10s on sage.math, 2011)
7^2 + O(7^24)
sage: EllipticCurve('300b2').sha().an_padic(3) # 9 elements in sha, long time␣
→˓(2s on sage.math, 2011)
3^2 + O(3^24)
sage: EllipticCurve('300b2').sha().an_padic(7, prec=6) # long time
2 + 7 + O(7^8)

Exceptional cases:

sage: EllipticCurve('11a1').sha().an_padic(11) # rank 0
1 + O(11^22)
sage: EllipticCurve('130a1').sha().an_padic(5) # rank 1
1 + O(5)

Non-split, but rank 0 case (trac ticket #7331):

16.10. Tate-Shafarevich group 441

https://trac.sagemath.org/7331

Elliptic curves, Release 9.8

sage: EllipticCurve('270b1').sha().an_padic(5) # rank 0, long time (2s on sage.
→˓math, 2011)
1 + O(5^22)

The output has the correct sign:

sage: EllipticCurve('123a1').sha().an_padic(41) # rank 1, long time (3s on sage.
→˓math, 2011)
1 + O(41)

Supersingular cases:

sage: EllipticCurve('34a1').sha().an_padic(5) # rank 0
1 + O(5^22)
sage: EllipticCurve('53a1').sha().an_padic(5) # rank 1, long time (11s on sage.
→˓math, 2011)
1 + O(5)

Cases that use a twist to a lower conductor:

sage: EllipticCurve('99a1').sha().an_padic(5)
1 + O(5)
sage: EllipticCurve('240d3').sha().an_padic(5) # sha has 4 elements here
4 + O(5)
sage: EllipticCurve('448c5').sha().an_padic(7,prec=4, use_twists=False) # long␣
→˓time (2s on sage.math, 2011)
2 + 7 + O(7^6)
sage: EllipticCurve([-19,34]).sha().an_padic(5) # see trac #6455, long time␣
→˓(4s on sage.math, 2011)
1 + O(5)

Test for trac ticket #15737:

sage: E = EllipticCurve([-100,0])
sage: s = E.sha()
sage: s.an_padic(13)
1 + O(13^20)

bound()

Compute a provably correct bound on the order of the Tate-Shafarevich group of this curve. The bound is
either False (no bound) or a list B of primes such that any prime divisor of the order of 𝑆ℎ𝑎 is in this list.

EXAMPLES:

sage: EllipticCurve('37a').sha().bound()
([2], 1)

bound_kato()

Returns a list of primes 𝑝 such that the theorems of Kato’s [Kat2004] and others (e.g., as explained in a
thesis of Grigor Grigorov [Gri2005]) imply that if 𝑝 divides the order of 𝑆ℎ𝑎(𝐸/Q) then 𝑝 is in the list.

If 𝐿(𝐸, 1) = 0, then this function gives no information, so it returns False.

THEOREM: Suppose 𝐿(𝐸, 1) ̸= 0 and 𝑝 ̸= 2 is a prime such that

• 𝐸 does not have additive reduction at 𝑝,

442 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/15737

Elliptic curves, Release 9.8

• either the 𝑝-adic representation is surjective or has its image contained in a Borel subgroup.

Then 𝑜𝑟𝑑𝑝(#𝑆ℎ𝑎(𝐸)) is bounded from above by the 𝑝-adic valuation of𝐿(𝐸, 1) ·#𝐸(Q)2𝑡𝑜𝑟/(Ω𝐸 ·
∏︀
𝑐𝑣).

If the L-series vanishes, the method p_primary_bound can be used instead.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.sha().bound_kato()
[2]
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.sha().bound_kato()
[2]
sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66B3
sage: E.sha().bound_kato()
[2]

For the following curve one really has that 25 divides the order of 𝑆ℎ𝑎 (by [GJPST2009]):

sage: E = EllipticCurve([1, -1, 0, -332311, -73733731]) # 1058D1
sage: E.sha().bound_kato() # long time (about 1 second)
[2, 5, 23]
sage: E.galois_representation().non_surjective() # long time␣
→˓(about 1 second)
[]

For this one, 𝑆ℎ𝑎 is divisible by 7:

sage: E = EllipticCurve([0, 0, 0, -4062871, -3152083138]) # 3364C1
sage: E.sha().bound_kato() # long time (< 10 seconds)
[2, 7, 29]

No information about curves of rank > 0:

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.sha().bound_kato()
False

bound_kolyvagin(D=0, regulator=None, ignore_nonsurj_hypothesis=False)
Given a fundamental discriminant 𝐷 ̸= −3,−4 that satisfies the Heegner hypothesis for 𝐸, return a list of
primes so that Kolyvagin’s theorem (as in Gross’s paper) implies that any prime divisor of 𝑆ℎ𝑎 is in this
list.

INPUT:

• D – (optional) a fundamental discriminant < -4 that satisfies the Heegner hypothesis for𝐸; if not given,
use the first such 𝐷

• regulator – (optional) regulator of 𝐸(𝐾); if not given, will be computed (which could take a long
time)

• ignore_nonsurj_hypothesis (optional: default False) – If True, then gives the bound coming
from Heegner point index, but without any hypothesis on surjectivity of the mod-𝑝 representation.

OUTPUT:

• list – a list of primes such that if 𝑝 divides 𝑆ℎ𝑎(𝐸/𝐾), then 𝑝 is in this list, unless 𝐸/𝐾 has complex
multiplication or analytic rank greater than 2 (in which case we return 0).

16.10. Tate-Shafarevich group 443

Elliptic curves, Release 9.8

• index – the odd part of the index of the Heegner point in the full group of 𝐾-rational points on E. (If
𝐸 has CM, returns 0.)

REMARKS:

1) We do not have to assume that the Manin constant is 1 (or a power of 2). If the Manin constant were
divisible by a prime, that prime would get included in the list of bad primes.

2) We assume the Gross-Zagier theorem is true under the hypothesis that 𝑔𝑐𝑑(𝑁,𝐷) = 1, instead of the
stronger hypothesis 𝑔𝑐𝑑(2 · 𝑁,𝐷) = 1 that is in the original Gross-Zagier paper. That Gross-Zagier
is true when 𝑔𝑐𝑑(𝑁,𝐷) = 1 is “well-known” to the experts, but does not seem to written up well in
the literature.

3) Correctness of the computation is guaranteed using interval arithmetic, under the assumption that the
regulator, square root, and period lattice are computed to precision at least 10−10, i.e., they are correct
up to addition or a real number with absolute value less than 10−10.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.sha().bound_kolyvagin()
([2], 1)
sage: E = EllipticCurve('141a')
sage: E.sha().an()
1
sage: E.sha().bound_kolyvagin()
([2, 7], 49)

We get no information when the curve has rank 2.:

sage: E = EllipticCurve('389a')
sage: E.sha().bound_kolyvagin()
(0, 0)
sage: E = EllipticCurve('681b')
sage: E.sha().an()
9
sage: E.sha().bound_kolyvagin()
([2, 3], 9)

p_primary_bound(p)
Return a provable upper bound for the order of the 𝑝-primary part 𝑆ℎ𝑎(𝐸)(𝑝) of the Tate-Shafarevich
group.

INPUT:

• p – a prime > 2

OUTPUT:

• e – a non-negative integer such that 𝑝𝑒 is an upper bound for the order of 𝑆ℎ𝑎(𝐸)(𝑝)

In particular, if this algorithm does not fail, then it proves that the 𝑝-primary part of 𝑆ℎ𝑎 is finite. This
works also for curves of rank > 1.

Note also that this bound is sharp if one assumes the main conjecture of Iwasawa theory of elliptic curves.
One may use the method p_primary_order for checking if the extra conditions hold under which the main
conjecture is known by the work of Skinner and Urban. This then returns the provable 𝑝-primary part of
the Tate-Shafarevich group.

Currently the algorithm is only implemented when the following conditions are verified:

444 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• The 𝑝-adic Galois representation must be surjective or must have its image contained in a Borel sub-
group.

• The reduction at 𝑝 is not allowed to be additive.

• If the reduction at 𝑝 is non-split multiplicative, then the rank must be 0.

• If 𝑝 = 3, then the reduction at 3 must be good ordinary or split multiplicative, and the rank must be 0.

ALGORITHM:

The algorithm is described in [SW2013]. The results for the reducible case can be found in [Wu2004]. The
main ingredient is Kato’s result on the main conjecture in Iwasawa theory.

EXAMPLES:

sage: e = EllipticCurve('11a3')
sage: e.sha().p_primary_bound(3)
0
sage: e.sha().p_primary_bound(5)
0
sage: e.sha().p_primary_bound(7)
0
sage: e.sha().p_primary_bound(11)
0
sage: e.sha().p_primary_bound(13)
0

sage: e = EllipticCurve('389a1')
sage: e.sha().p_primary_bound(5)
0
sage: e.sha().p_primary_bound(7)
0
sage: e.sha().p_primary_bound(11)
0
sage: e.sha().p_primary_bound(13)
0

sage: e = EllipticCurve('858k2')
sage: e.sha().p_primary_bound(3) # long time (10s on sage.math, 2011)
0

Some checks for trac ticket #6406 and trac ticket #16959:

sage: e.sha().p_primary_bound(7) # long time
2

sage: E = EllipticCurve('608b1')
sage: E.sha().p_primary_bound(5)
Traceback (most recent call last):
...
ValueError: The p-adic Galois representation is not surjective or reducible.␣
→˓Current knowledge about Euler systems does not provide an upper bound in this␣
→˓case. Try an_padic for a conjectural bound.

sage: E.sha().an_padic(5) # long time
1 + O(5^22)

(continues on next page)

16.10. Tate-Shafarevich group 445

https://trac.sagemath.org/6406
https://trac.sagemath.org/16959

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve("5040bi1")
sage: E.sha().p_primary_bound(5) # long time
0

p_primary_order(p)
Return the order of the 𝑝-primary part of the Tate-Shafarevich group.

This uses the result of Skinner and Urban [SU2014] on the main conjecture in Iwasawa theory. In partic-
ular the elliptic curve must have good ordinary reduction at 𝑝, the residual Galois representation must be
surjective. Furthermore there must be an auxiliary prime ℓ dividing the conductor of the curve exactly once
such that the residual representation is ramified at 𝑝.

INPUT:

• 𝑝 – an odd prime

OUTPUT:

• 𝑒 – a non-negative integer such that 𝑝𝑒 is the order of the 𝑝-primary order if the conditions are satisfied
and raises a ValueError otherwise.

EXAMPLES:

sage: E = EllipticCurve("389a1") # rank 2
sage: E.sha().p_primary_order(5)
0
sage: E = EllipticCurve("11a1")
sage: E.sha().p_primary_order(7)
0
sage: E.sha().p_primary_order(5)
Traceback (most recent call last):
...
ValueError: The order is not provably known using Skinner-Urban.
Try running p_primary_bound to get a bound.

two_selmer_bound()

This returns the 2-rank, i.e. the F2-dimension of the 2-torsion part of 𝑆ℎ𝑎, provided we can determine the
rank of 𝐸.

EXAMPLES:

sage: sh = EllipticCurve('571a1').sha()
sage: sh.two_selmer_bound()
2
sage: sh.an()
4

sage: sh = EllipticCurve('66a1').sha()
sage: sh.two_selmer_bound()
0
sage: sh.an()
1

sage: sh = EllipticCurve('960d1').sha()
(continues on next page)

446 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: sh.two_selmer_bound()
2
sage: sh.an()
4

16.11 Complex multiplication for elliptic curves

This module implements the functions

• hilbert_class_polynomial

• cm_j_invariants

• cm_orders

• discriminants_with_bounded_class_number

• cm_j_invariants_and_orders

• largest_fundamental_disc_with_class_number

AUTHORS:

• Robert Bradshaw

• John Cremona

• William Stein

sage.schemes.elliptic_curves.cm.cm_j_invariants(proof=None)
Return a list of all CM 𝑗-invariants in the field 𝐾.

INPUT:

• K – a number field

• proof – (default: proof.number_field())

OUTPUT:

(list) – A list of CM 𝑗-invariants in the field 𝐾.

EXAMPLES:

sage: cm_j_invariants(QQ)
[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375,␣
→˓0, 1728, 8000, 54000, 287496, 16581375]

Over imaginary quadratic fields there are no more than over 𝑄𝑄:

sage: cm_j_invariants(QuadraticField(-1, 'i'))
[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375,␣
→˓0, 1728, 8000, 54000, 287496, 16581375]

Over real quadratic fields there may be more, for example:

sage: len(cm_j_invariants(QuadraticField(5, 'a')))
31

16.11. Complex multiplication for elliptic curves 447

Elliptic curves, Release 9.8

Over number fields K of many higher degrees this also works:

sage: K.<a> = NumberField(x^3 - 2)
sage: cm_j_invariants(K)
[-262537412640768000, -147197952000, -884736000,
-884736, -32768, 8000, -3375, 16581375, 1728, 287496, 0,
54000, -12288000,
31710790944000*a^2 + 39953093016000*a + 50337742902000]
sage: K.<a> = NumberField(x^4 - 2)
sage: len(cm_j_invariants(K))
23

sage.schemes.elliptic_curves.cm.cm_j_invariants_and_orders(proof=None)
Return a list of all CM 𝑗-invariants in the field 𝐾, together with the associated orders.

INPUT:

• K – a number field

• proof – (default: proof.number_field())

OUTPUT:

(list) A list of 3-tuples (𝐷, 𝑓, 𝑗) where 𝑗 is a CM 𝑗-invariant in 𝐾 with quadratic fundamental discriminant 𝐷
and conductor 𝑓 .

EXAMPLES:

sage: cm_j_invariants_and_orders(QQ)
[(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728), (-
→˓7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -
→˓884736), (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -
→˓262537412640768000)]

Over an imaginary quadratic field there are no more than over 𝑄𝑄:

sage: cm_j_invariants_and_orders(QuadraticField(-1, 'i'))
[(-163, 1, -262537412640768000), (-67, 1, -147197952000),
(-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768),
(-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728),
(-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000)]

Over real quadratic fields there may be more:

sage: v = cm_j_invariants_and_orders(QuadraticField(5,'a')); len(v)
31
sage: [(D, f) for D, f, j in v if j not in QQ]
[(-235, 1), (-235, 1), (-115, 1), (-115, 1), (-40, 1), (-40, 1),
(-35, 1), (-35, 1), (-20, 1), (-20, 1), (-15, 1), (-15, 1), (-15, 2),
(-15, 2), (-4, 5), (-4, 5), (-3, 5), (-3, 5)]

Over number fields K of many higher degrees this also works:

sage: K.<a> = NumberField(x^3 - 2)
sage: cm_j_invariants_and_orders(K)
[(-163, 1, -262537412640768000), (-67, 1, -147197952000),
(-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768),

(continues on next page)

448 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

(-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728),
(-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000),
(-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]

sage.schemes.elliptic_curves.cm.cm_orders(proof=None)
Return a list of all pairs (𝐷, 𝑓) where there is a CM order of discriminant 𝐷𝑓2 with class number h, with 𝐷 a
fundamental discriminant.

INPUT:

• ℎ – positive integer

• proof – (default: proof.number_field())

OUTPUT:

• list of 2-tuples (𝐷, 𝑓)

EXAMPLES:

sage: cm_orders(0)
[]
sage: v = cm_orders(1); v
[(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1),␣
→˓(-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: type(v[0][0]), type(v[0][1])
(<... 'sage.rings.integer.Integer'>, <... 'sage.rings.integer.Integer'>)
sage: v = cm_orders(2); v
[(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2),␣
→˓(-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-
→˓52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1),
→˓ (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: len(v)
29
sage: set([hilbert_class_polynomial(D*f^2).degree() for D,f in v])
{2}

Any degree up to 100 is implemented, but may be prohibitively slow:

sage: cm_orders(3)
[(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1), (-43,
→˓ 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-
→˓283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883,␣
→˓1), (-907, 1)]
sage: len(cm_orders(4))
84

sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(B=None,
proof=None)

Return dictionary with keys class numbers ℎ ≤ ℎ𝑚𝑎𝑥 and values the list of all pairs (𝐷, 𝑓), with 𝐷 < 0 a
fundamental discriminant such that𝐷𝑓2 has class number ℎ. If the optional bound 𝐵 is given, return only those
pairs with fundamental |𝐷| ≤ 𝐵, though 𝑓 can still be arbitrarily large.

INPUT:

• hmax – integer

16.11. Complex multiplication for elliptic curves 449

Elliptic curves, Release 9.8

• 𝐵 – integer or None; if None returns all pairs

• proof – this code calls the PARI function pari:qfbclassno, so it could give wrong answers when
proof``==``False. The default is whatever proof.number_field() is. If proof==False and 𝐵
is None, at least the number of discriminants is correct, since it is double checked with Watkins’s table.

OUTPUT:

• dictionary

In case 𝐵 is not given, we use Mark Watkins’s: “Class numbers of imaginary quadratic fields” to compute a 𝐵
that captures all ℎ up to ℎ𝑚𝑎𝑥 (only available for ℎ𝑚𝑎𝑥 ≤ 100).

EXAMPLES:

sage: v = sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(3)
sage: sorted(v)
[1, 2, 3]
sage: v[1]
[(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1),␣
→˓(-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: v[2]
[(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2), (-
→˓11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-
→˓52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1),
→˓ (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: v[3]
[(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1), (-43,
→˓ 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-
→˓283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883,␣
→˓1), (-907, 1)]
sage: v = sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(8,
→˓ proof=False)
sage: sorted(len(v[h]) for h in v)
[13, 25, 29, 29, 38, 84, 101, 208]

Find all class numbers for discriminant up to 50:

sage: sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_
→˓number(hmax=5, B=50)
{1: [(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11,␣
→˓1), (-19, 1), (-43, 1)], 2: [(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3),
→˓ (-7, 4), (-8, 3), (-8, 2), (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-
→˓35, 1), (-40, 1)], 3: [(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1),␣
→˓(-31, 2), (-31, 1), (-43, 2)], 4: [(-3, 13), (-3, 11), (-3, 8), (-4, 10), (-4, 8),
→˓ (-4, 7), (-4, 6), (-7, 8), (-7, 6), (-7, 3), (-8, 6), (-8, 4), (-11, 5), (-15,␣
→˓4), (-19, 5), (-19, 3), (-20, 3), (-20, 2), (-24, 2), (-35, 3), (-39, 2), (-39,␣
→˓1), (-40, 2), (-43, 3)], 5: [(-47, 2), (-47, 1)]}

sage.schemes.elliptic_curves.cm.hilbert_class_polynomial(algorithm=None)
Return the Hilbert class polynomial for discriminant 𝐷.

INPUT:

• D (int) – a negative integer congruent to 0 or 1 modulo 4.

• algorithm (string, default None).

450 Chapter 16. Elliptic curves over number fields

https://pari.math.u-bordeaux.fr/dochtml/help/qfbclassno

Elliptic curves, Release 9.8

OUTPUT:

(integer polynomial) The Hilbert class polynomial for the discriminant 𝐷.

ALGORITHM:

• If algorithm = “arb” (default): Use Arb’s implementation which uses complex interval arithmetic.

• If algorithm = “sage”: Use complex approximations to the roots.

• If algorithm = “magma”: Call the appropriate Magma function (if available).

AUTHORS:

• Sage implementation originally by Eduardo Ocampo Alvarez and AndreyTimofeev

• Sage implementation corrected by John Cremona (using corrected precision bounds from Andreas Enge)

• Magma implementation by David Kohel

EXAMPLES:

sage: hilbert_class_polynomial(-4)
x - 1728
sage: hilbert_class_polynomial(-7)
x + 3375
sage: hilbert_class_polynomial(-23)
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
sage: hilbert_class_polynomial(-37*4)
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-37*4, algorithm="magma") # optional - magma
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-163)
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="sage")
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="magma") # optional - magma
x + 262537412640768000

sage.schemes.elliptic_curves.cm.is_cm_j_invariant(method='new')
Return whether or not this is a CM 𝑗-invariant.

INPUT:

• j – an element of a number field 𝐾

OUTPUT:

A pair (bool, (d,f)) which is either (False, None) if 𝑗 is not a CM j-invariant or (True, (d,f)) if 𝑗 is the 𝑗-invariant
of the imaginary quadratic order of discriminant 𝐷 = 𝑑𝑓2 where 𝑑 is the associated fundamental discriminant
and 𝑓 the index.

Note: The current implementation makes use of the classification of all orders of class number up to 100, and
hence will raise an error if 𝑗 is an algebraic integer of degree greater than this. It would be possible to implement
a more general version, using the fact that 𝑑 must be supported on the primes dividing the discriminant of the
minimal polynomial of 𝑗.

EXAMPLES:

16.11. Complex multiplication for elliptic curves 451

Elliptic curves, Release 9.8

sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
sage: is_cm_j_invariant(0)
(True, (-3, 1))
sage: is_cm_j_invariant(8000)
(True, (-8, 1))

sage: K.<a> = QuadraticField(5)
sage: is_cm_j_invariant(282880*a + 632000)
(True, (-20, 1))
sage: K.<a> = NumberField(x^3 - 2)
sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
(True, (-3, 6))

sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(h)
Return largest absolute value of any fundamental discriminant with class number ℎ, and the number of funda-
mental discriminants with that class number. This is known for ℎ up to 100, by work of Mark Watkins.

INPUT:

• ℎ – integer

EXAMPLES:

sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(0)
(0, 0)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(1)
(163, 9)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(2)
(427, 18)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(10)
(13843, 87)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_
→˓number(100)
(1856563, 1736)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_
→˓number(101)
Traceback (most recent call last):
...
NotImplementedError: largest discriminant not known for class number 101

16.12 Testing whether elliptic curves over number fields are Q-curves

AUTHORS:

• John Cremona (February 2021)

The code here implements the algorithm of Cremona and Najman presented in [CrNa2020].

sage.schemes.elliptic_curves.Qcurves.Step4Test(E, B, oldB=0, verbose=False)
Apply local Q-curve test to E at all primes up to B.

INPUT:

• 𝐸 (elliptic curve): an elliptic curve defined over a number field

452 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• 𝐵 (integer): upper bound on primes to test

• 𝑜𝑙𝑑𝐵 (integer, default 0): lower bound on primes to test

• 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 (boolean, default False): verbosity flag

OUTPUT:

Either (False, 𝑝), if the local test at 𝑝 proves that 𝐸 is not a Q-curve, or (True, 0) if all local tests at primes
between oldB and B fail to prove that 𝐸 is not a Q-curve.

ALGORITHM (see [CrNa2020] for details):

This local test at 𝑝 only applies if 𝐸 has good reduction at all of the primes lying above 𝑝 in the base field 𝐾 of
𝐸. It tests whether (1) 𝐸 is either ordinary at all 𝑃 | 𝑝, or supersingular at all; (2) if ordinary at all, it tests that
the squarefree part of 𝑎2𝑃 − 4𝑁(𝑃) is the same for all 𝑃 | 𝑝.

EXAMPLES:

A non-Q-curve over a quartic field (with LMFDB label ‘4.4.8112.1-12.1-a1’) fails this test at 𝑝 = 13:

sage: from sage.schemes.elliptic_curves.Qcurves import Step4Test
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1]))
sage: E = EllipticCurve([K([-3,-4,1,1]),K([4,-1,-1,0]),K([-2,0,1,0]),K([-621,778,
→˓138,-178]),K([9509,2046,-24728,10380])])
sage: Step4Test(E, 100, verbose=True)
No: inconsistency at the 2 ordinary primes dividing 13
- Frobenius discriminants mod squares: [-3, -1]
(False, 13)

A Q-curve over a sextic field (with LMFDB label ‘6.6.1259712.1-64.1-a6’) passes this test for all 𝑝 < 100:

sage: from sage.schemes.elliptic_curves.Qcurves import Step4Test
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([-3, 0, 9, 0, -6, 0, 1]))
sage: E = EllipticCurve([K([1,-3,0,1,0,0]),K([5,-3,-6,1,1,0]),K([1,-3,0,1,0,0]),K([-
→˓139,-129,331,277,-76,-63]),K([2466,1898,-5916,-4582,1361,1055])])
sage: Step4Test(E, 100, verbose=True)
(True, 0)

sage.schemes.elliptic_curves.Qcurves.conjugacy_test(jlist, verbose=False)
Test whether a list of algebraic numbers contains a complete conjugacy class of 2-power degree.

INPUT:

• 𝑗𝑙𝑖𝑠𝑡 (list): a list of algebraic numbers in the same field

• 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 (boolean, default False): verbosity flag

OUTPUT:

A possibly empty list of irreducible polynomials over Q of 2-power degree all of whose roots are in the list.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.Qcurves import conjugacy_test
sage: conjugacy_test([3])
[x - 3]
sage: K.<a> = QuadraticField(2)

(continues on next page)

16.12. Testing whether elliptic curves over number fields are Q-curves 453

Elliptic curves, Release 9.8

(continued from previous page)

sage: conjugacy_test([K(3), a])
[x - 3]
sage: conjugacy_test([K(3), 3+a])
[x - 3]
sage: conjugacy_test([3+a])
[]
sage: conjugacy_test([3+a, 3-a])
[x^2 - 6*x + 7]
sage: x = polygen(QQ)
sage: f = x^3-3
sage: K.<a> = f.splitting_field()
sage: js = f.roots(K, multiplicities=False)
sage: conjugacy_test(js)
[]
sage: f = x^4-3
sage: K.<a> = NumberField(f)
sage: js = f.roots(K, multiplicities=False)
sage: conjugacy_test(js)
[]
sage: K.<a> = f.splitting_field()
sage: js = f.roots(K, multiplicities=False)
sage: conjugacy_test(js)
[x^4 - 3]

sage.schemes.elliptic_curves.Qcurves.is_Q_curve(E, maxp=100, certificate=False, verbose=False)
Return whether E is a Q-curve, with optional certificate.

INPUT:

• E (elliptic curve) – an elliptic curve over a number field.

• maxp (int, default 100): bound on primes used for checking necessary local conditions. The result will not
depend on this, but using a larger value may return False faster.

• certificate (bool, default False): if True then a second value is returned giving a certificate for the
Q-curve property.

OUTPUT:

If certificate is False: either True (if 𝐸 is a Q-curve), or False.

If certificate is True: a tuple consisting of a boolean flag as before and a certificate, defined as follows:

• when the flag is True, so 𝐸 is a Q-curve:

– either {‘CM’:𝐷} where 𝐷 is a negative discriminant, when 𝐸 has potential CM with discriminant 𝐷;

– otherwise {‘CM’: 0, ‘core_poly’: 𝑓 , ‘rho’: 𝜌, ‘r’: 𝑟, ‘N’: 𝑁}, when 𝐸 is a non-CM Q-curve, where
the core polynomial 𝑓 is an irreducible monic polynomial over 𝑄𝑄 of degree 2𝜌, all of whose roots
are 𝑗-invariants of curves isogenous to𝐸, the core level𝑁 is a square-free integer with 𝑟 prime factors
which is the LCM of the degrees of the isogenies between these conjugates. For example, if there
exists a curve 𝐸′ isogenous to 𝐸 with 𝑗(𝐸′) = 𝑗 ∈ Q, then the certificate is {‘CM’:0, ‘r’:0, ‘rho’:0,
‘core_poly’: x-j, ‘N’:1}.

• when the flag is False, so 𝐸 is not a Q-curve, the certificate is a prime 𝑝 such that the reductions of 𝐸 at
the primes dividing 𝑝 are inconsistent with the property of being a Q-curve. See the ALGORITHM section
for details.

454 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

ALGORITHM:

See [CrNa2020] for details.

1. If 𝐸 has rational 𝑗-invariant, or has CM, then return True.

2. Replace 𝐸 by a curve defined over 𝐾 = Q(𝑗(𝐸)). Let 𝑁 be the conductor norm.

3. For all primes 𝑝 | 𝑁 check that the valuations of 𝑗 at all 𝑃 | 𝑝 are either all negative or all non-negative; if
not, return False.

4. For 𝑝 ≤ 𝑚𝑎𝑥𝑝, 𝑝 ̸| 𝑁 , check that either 𝐸 is ordinary mod 𝑃 for all 𝑃 | 𝑝, or 𝐸 is supersingular mod 𝑃 for
all 𝑃 | 𝑝; if neither, return False. If all are ordinary, check that the integers 𝑎𝑃 (𝐸)2 − 4𝑁(𝑃) have the same
square-free part; if not, return False.

5. Compute the 𝐾-isogeny class of 𝐸 using the “heuristic” option (which is faster, but not guaranteed to be
complete). Check whether the set of 𝑗-invariants of curves in the class of 2-power degree contains a complete
Galois orbit. If so, return True.

6. Otherwise repeat step 4 for more primes, and if still undecided, repeat Step 5 without the “heuristic” option,
to get the complete 𝐾-isogeny class (which will probably be no bigger than before). Now return True if the set
of 𝑗-invariants of curves in the class contains a complete Galois orbit, otherwise return False.

EXAMPLES:

A non-CM curve over Q and a CM curve over Q are both trivially Q-curves:

sage: from sage.schemes.elliptic_curves.Qcurves import is_Q_curve
sage: E = EllipticCurve([1,2,3,4,5])
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{'CM': 0, 'N': 1, 'core_poly': x, 'r': 0, 'rho': 0}

sage: E = EllipticCurve(j=8000)
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{'CM': -8}

A non-Q-curve over a quartic field. The local data at bad primes above 3 is inconsistent:

sage: from sage.schemes.elliptic_curves.Qcurves import is_Q_curve
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1]))
sage: E = EllipticCurve([K([-3,-4,1,1]),K([4,-1,-1,0]),K([-2,0,1,0]),K([-621,778,
→˓138,-178]),K([9509,2046,-24728,10380])])
sage: is_Q_curve(E, certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + (a^3+a^2-4*a-3)*x*y + (a^2-2)*y =␣
→˓x^3 + (-a^2-a+4)*x^2 + (-178*a^3+138*a^2+778*a-621)*x + (10380*a^3-24728*a^
→˓2+2046*a+9509) over Number Field in a with defining polynomial x^4 - 5*x^2 + 3 is␣
→˓a Q-curve
No: inconsistency at the 2 primes dividing 3
- potentially multiplicative: [True, False]
(False, 3)

16.12. Testing whether elliptic curves over number fields are Q-curves 455

Elliptic curves, Release 9.8

A non-Q-curve over a quadratic field. The local data at bad primes is consistent, but the local test at good primes
above 13 is not:

sage: K.<a> = NumberField(R([-10, 0, 1]))
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,0]),K([-236,40]),K([-1840,464])])
sage: is_Q_curve(E, certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + a*x*y = x^3 + (-a-1)*x^2 + (40*a-
→˓236)*x + (464*a-1840) over Number Field in a with defining polynomial x^2 - 10 is␣
→˓a Q-curve
Applying local tests at good primes above p<=100
No: inconsistency at the 2 ordinary primes dividing 13
- Frobenius discriminants mod squares: [-1, -3]
No: local test at p=13 failed
(False, 13)

A quadratic Q-curve with CM discriminant −15 (𝑗-invariant not in Q):

sage: from sage.schemes.elliptic_curves.Qcurves import is_Q_curve
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(R([-1, -1, 1]))
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,1]),K([0,-2]),K([0,1])])
sage: is_Q_curve(E, certificate=True, verbose=True)
Checking whether Elliptic Curve defined by y^2 + x*y + a*y = x^3 + (-1)*x^2 + (-
→˓2*a)*x + a over Number Field in a with defining polynomial x^2 - x - 1 is a Q-
→˓curve
Yes: E is CM (discriminant -15)
(True, {'CM': -15})

An example over Q(
√

2,
√

3). The 𝑗-invariant is in Q(
√

6), so computations will be done over that field, and in
fact there is an isogenous curve with rational 𝑗, so we have a so-called rational Q-curve:

sage: K.<a> = NumberField(R([1, 0, -4, 0, 1]))
sage: E = EllipticCurve([K([-2,-4,1,1]),K([0,1,0,0]),K([0,1,0,0]),K([-4780,9170,
→˓1265,-2463]),K([163923,-316598,-43876,84852])])
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{'CM': 0, 'N': 1, 'core_degs': [1], 'core_poly': x - 85184/3, 'r': 0, 'rho': 0}

Over the same field, a so-called strict Q-curve which is not isogenous to one with rational 𝑗, but whose core field
is quadratic. In fact the isogeny class over 𝐾 consists of 6 curves, four with conjugate quartic 𝑗-invariants and 2
with quadratic conjugate 𝑗-invariants in Q(

√
3) (but which are not base-changes from the quadratic subfield):

sage: E = EllipticCurve([K([0,-3,0,1]),K([1,4,0,-1]),K([0,0,0,0]),K([-2,-16,0,4]),
→˓K([-19,-32,4,8])])
sage: flag, cert = is_Q_curve(E, certificate=True)
sage: flag
True
sage: cert
{'CM': 0,
'N': 2,
'core_degs': [1, 2],
'core_poly': x^2 - 840064*x + 1593413632,

(continues on next page)

456 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

'r': 1,
'rho': 1}

The following relate to elliptic curves over local nonarchimedean fields.

16.13 Local data for elliptic curves over number fields

Let 𝐸 be an elliptic curve over a number field 𝐾 (including Q). There are several local invariants at a finite place 𝑣
that can be computed via Tate’s algorithm (see [Sil1994] IV.9.4 or [Tate1975]).

These include the type of reduction (good, additive, multiplicative), a minimal equation of 𝐸 over 𝐾𝑣 , the Tamagawa
number 𝑐𝑣 , defined to be the index [𝐸(𝐾𝑣) : 𝐸0(𝐾𝑣)] of the points with good reduction among the local points, and
the exponent of the conductor 𝑓𝑣 .

The functions in this file will typically be called by using local_data.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([(2+i)^2,(2+i)^7])
sage: pp = K.fractional_ideal(2+i)
sage: da = E.local_data(pp)
sage: da.has_bad_reduction()
True
sage: da.has_multiplicative_reduction()
False
sage: da.kodaira_symbol()
I0*
sage: da.tamagawa_number()
4
sage: da.minimal_model()
Elliptic Curve defined by y^2 = x^3 + (4*i+3)*x + (-29*i-278) over Number Field in i␣
→˓with defining polynomial x^2 + 1

An example to show how the Neron model can change as one extends the field:

sage: E = EllipticCurve([0,-1])
sage: E.local_data(2)
Local data at Principal ideal (2) of Integer Ring:
Reduction type: bad additive
Local minimal model: Elliptic Curve defined by y^2 = x^3 - 1 over Rational Field
Minimal discriminant valuation: 4
Conductor exponent: 4
Kodaira Symbol: II
Tamagawa Number: 1

sage: EK = E.base_extend(K)
sage: EK.local_data(1+i)
Local data at Fractional ideal (i + 1):
Reduction type: bad additive
Local minimal model: Elliptic Curve defined by y^2 = x^3 + (-1) over Number Field in i␣
→˓with defining polynomial x^2 + 1

(continues on next page)

16.13. Local data for elliptic curves over number fields 457

Elliptic curves, Release 9.8

(continued from previous page)

Minimal discriminant valuation: 8
Conductor exponent: 2
Kodaira Symbol: IV*
Tamagawa Number: 3

Or how the minimal equation changes:

sage: E = EllipticCurve([0,8])
sage: E.is_minimal()
True
sage: EK = E.base_extend(K)
sage: da = EK.local_data(1+i)
sage: da.minimal_model()
Elliptic Curve defined by y^2 = x^3 + (-i) over Number Field in i with defining␣
→˓polynomial x^2 + 1

AUTHORS:

• John Cremona: First version 2008-09-21 (refactoring code from ell_number_field.py and
ell_rational_field.py)

• Chris Wuthrich: more documentation 2010-01

class sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData(E, P, proof=None,
algorithm='pari',
globally=False)

Bases: SageObject

The class for the local reduction data of an elliptic curve.

Currently supported are elliptic curves defined over Q, and elliptic curves defined over a number field, at an
arbitrary prime or prime ideal.

INPUT:

• E – an elliptic curve defined over a number field, or Q.

• P – a prime ideal of the field, or a prime integer if the field is Q.

• proof (bool)– if True, only use provably correct methods (default controlled by global proof module). Note
that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag
are in number fields.

• algorithm (string, default: “pari”) – Ignored unless the base field is Q. If “pari”, use the PARI C-library
ellglobalred implementation of Tate’s algorithm over Q. If “generic”, use the general number field
implementation.

Note: This function is not normally called directly by users, who may access the data via methods of the
EllipticCurve classes.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve('14a1')
sage: EllipticCurveLocalData(E,2)
Local data at Principal ideal (2) of Integer Ring:

(continues on next page)

458 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over␣
→˓Rational Field
Minimal discriminant valuation: 6
Conductor exponent: 1
Kodaira Symbol: I6
Tamagawa Number: 2

bad_reduction_type()

Return the type of bad reduction of this reduction data.

OUTPUT:

(int or None):

• +1 for split multiplicative reduction

• -1 for non-split multiplicative reduction

• 0 for additive reduction

• None for good reduction

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).bad_reduction_type()) for p in prime_range(15)]
[(2, -1), (3, None), (5, None), (7, 1), (11, None), (13, None)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).bad_reduction_type()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), None), (Fractional ideal (2*a + 1), 0)]

conductor_valuation()

Return the valuation of the conductor from this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.conductor_valuation()
2

discriminant_valuation()

Return the valuation of the minimal discriminant from this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E

(continues on next page)

16.13. Local data for elliptic curves over number fields 459

Elliptic curves, Release 9.8

(continued from previous page)

Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.discriminant_valuation()
4

has_additive_reduction()

Return True if there is additive reduction.

EXAMPLES:

sage: E = EllipticCurve('27a1')
sage: [(p,E.local_data(p).has_additive_reduction()) for p in prime_range(15)]
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_additive_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_bad_reduction()

Return True if there is bad reduction.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_bad_reduction()) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_bad_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), True)]

has_good_reduction()

Return True if there is good reduction.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_good_reduction()) for p in prime_range(15)]
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_good_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), True),
(Fractional ideal (2*a + 1), False)]

460 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

has_multiplicative_reduction()

Return True if there is multiplicative reduction.

Note: See also has_split_multiplicative_reduction() and
has_nonsplit_multiplicative_reduction().

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_multiplicative_reduction()) for p in prime_
→˓range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_multiplicative_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

has_nonsplit_multiplicative_reduction()

Return True if there is non-split multiplicative reduction.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_nonsplit_multiplicative_reduction()) for p in␣
→˓prime_range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_nonsplit_multiplicative_reduction()) for p in␣
→˓[P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1),␣
→˓False)]

has_split_multiplicative_reduction()

Return True if there is split multiplicative reduction.

EXAMPLES:

sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_split_multiplicative_reduction()) for p in prime_
→˓range(15)]
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]

sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_split_multiplicative_reduction()) for p in [P17a,

(continues on next page)

16.13. Local data for elliptic curves over number fields 461

Elliptic curves, Release 9.8

(continued from previous page)

→˓P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
(Fractional ideal (2*a + 1), False)]

kodaira_symbol()

Return the Kodaira symbol from this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.kodaira_symbol()
IV

minimal_model(reduce=True)
Return the (local) minimal model from this local reduction data.

INPUT:

• reduce – (default: True) if set to True and if the initial elliptic curve had globally integral coefficients,
then the elliptic curve returned by Tate’s algorithm will be “reduced” as specified in _reduce_model()
for curves over number fields.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.minimal_model()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: data.minimal_model() == E.local_minimal_model(2)
True

To demonstrate the behaviour of the parameter reduce:

sage: K.<a> = NumberField(x^3+x+1)
sage: E = EllipticCurve(K, [0, 0, a, 0, 1])
sage: E.local_data(K.ideal(a-1)).minimal_model()
Elliptic Curve defined by y^2 + a*y = x^3 + 1 over Number Field in a with␣
→˓defining polynomial x^3 + x + 1
sage: E.local_data(K.ideal(a-1)).minimal_model(reduce=False)
Elliptic Curve defined by y^2 + (a+2)*y = x^3 + 3*x^2 + 3*x + (-a+1) over␣
→˓Number Field in a with defining polynomial x^3 + x + 1

sage: E = EllipticCurve([2, 1, 0, -2, -1])
sage: E.local_data(ZZ.ideal(2), algorithm="generic").minimal_model(reduce=False)
Elliptic Curve defined by y^2 + 2*x*y + 2*y = x^3 + x^2 - 4*x - 2 over Rational␣
→˓Field
sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model(reduce=False)

(continues on next page)

462 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
ValueError: the argument reduce must not be False if algorithm=pari is used
sage: E.local_data(ZZ.ideal(2), algorithm="generic").minimal_model()
Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field
sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model()
Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field

trac ticket #14476:

sage: t = QQ['t'].0
sage: K.<g> = NumberField(t^4 - t^3-3*t^2 - t +1)
sage: E = EllipticCurve([-2*g^3 + 10/3*g^2 + 3*g - 2/3, -11/9*g^3 + 34/9*g^2 -␣
→˓7/3*g + 4/9, -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9, 0, 0])
sage: vv = K.fractional_ideal(g^2 - g - 2)
sage: E.local_data(vv).minimal_model()
Elliptic Curve defined by y^2 + (-2*g^3+10/3*g^2+3*g-2/3)*x*y + (-11/9*g^3+34/
→˓9*g^2-7/3*g+4/9)*y = x^3 + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*x^2 over Number␣
→˓Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

prime()

Return the prime ideal associated with this local reduction data.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.prime()
Principal ideal (2) of Integer Ring

tamagawa_exponent()

Return the Tamagawa index from this local reduction data.

This is the exponent of 𝐸(𝐾𝑣)/𝐸
0(𝐾𝑣); in most cases it is the same as the Tamagawa index.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve('816a1')
sage: data = EllipticCurveLocalData(E,2)
sage: data.kodaira_symbol()
I2*
sage: data.tamagawa_number()
4
sage: data.tamagawa_exponent()
2

sage: E = EllipticCurve('200c4')
sage: data = EllipticCurveLocalData(E,5)
sage: data.kodaira_symbol()

(continues on next page)

16.13. Local data for elliptic curves over number fields 463

https://trac.sagemath.org/14476

Elliptic curves, Release 9.8

(continued from previous page)

I4*
sage: data.tamagawa_number()
4
sage: data.tamagawa_exponent()
2

tamagawa_number()

Return the Tamagawa number from this local reduction data.

This is the index [𝐸(𝐾𝑣) : 𝐸0(𝐾𝑣)].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import␣
→˓EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.tamagawa_number()
3

sage.schemes.elliptic_curves.ell_local_data.check_prime(K, P)
Function to check that 𝑃 determines a prime of 𝐾, and return that ideal.

INPUT:

• K – a number field (including Q).

• P – an element of K or a (fractional) ideal of K.

OUTPUT:

• If K is Q: the prime integer equal to or which generates 𝑃 .

• If K is not Q: the prime ideal equal to or generated by 𝑃 .

Note: If 𝑃 is not a prime and does not generate a prime, a TypeError is raised.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
sage: check_prime(QQ,3)
3
sage: check_prime(QQ,QQ(3))
3
sage: check_prime(QQ,ZZ.ideal(31))
31
sage: K.<a> = NumberField(x^2-5)
sage: check_prime(K,a)
Fractional ideal (a)
sage: check_prime(K,a+1)
Fractional ideal (a + 1)
sage: [check_prime(K,P) for P in K.primes_above(31)]
[Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
sage: L. = NumberField(x^2+3)

(continues on next page)

464 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: check_prime(K, L.ideal(5))
Traceback (most recent call last):
...
TypeError: The ideal Fractional ideal (5) is not a prime ideal of Number Field in a␣
→˓with defining polynomial x^2 - 5
sage: check_prime(K, L.ideal(b))
Traceback (most recent call last):
...
TypeError: No compatible natural embeddings found for Number Field in a with␣
→˓defining polynomial x^2 - 5 and Number Field in b with defining polynomial x^2 + 3

16.14 Kodaira symbols

Kodaira symbols encode the type of reduction of an elliptic curve at a (finite) place.

The standard notation for Kodaira Symbols is as a string which is one of Im, II, III, IV, I*m, II*, III*, IV*, where 𝑚
denotes a non-negative integer. These have been encoded by single integers by different people. For convenience we
give here the conversion table between strings, the eclib coding and the PARI encoding.

Kodaira Symbol Eclib coding PARI Coding
I0 0 1
I*0 1 −1
Im (𝑚 > 0) 10𝑚 𝑚+ 4
I*m (𝑚 > 0) 10𝑚+ 1 −(𝑚+ 4)
II 2 2
III 3 3
IV 4 4
II* 7 −2
III* 6 −3
IV* 5 −4

AUTHORS:

• David Roe <roed@math.harvard.edu>

• John Cremona

sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol(symbol)
Return the specified Kodaira symbol.

INPUT:

• symbol (string or integer) – Either a string of the form “I0”, “I1”, . . . , “In”, “II”, “III”, “IV”, “I0*”, “I1*”,
. . . , “In*”, “II*”, “III*”, or “IV*”, or an integer encoding a Kodaira symbol using PARI’s conventions.

OUTPUT:

(KodairaSymbol) The corresponding Kodaira symbol.

EXAMPLES:

sage: KS = KodairaSymbol
sage: [KS(n) for n in range(1,10)]

(continues on next page)

16.14. Kodaira symbols 465

mailto:roed@math.harvard.edu

Elliptic curves, Release 9.8

(continued from previous page)

[I0, II, III, IV, I1, I2, I3, I4, I5]
sage: [KS(-n) for n in range(1,10)]
[I0*, II*, III*, IV*, I1*, I2*, I3*, I4*, I5*]
sage: all(KS(str(KS(n))) == KS(n) for n in range(-10,10) if n != 0)
True

class sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol_class(symbol)
Bases: SageObject

Class to hold a Kodaira symbol of an elliptic curve over a 𝑝-adic local field.

Users should use the KodairaSymbol() function to construct Kodaira Symbols rather than use the class con-
structor directly.

16.15 Tate’s parametrisation of 𝑝-adic curves with multiplicative re-
duction

Let 𝐸 be an elliptic curve defined over the 𝑝-adic numbers Q𝑝. Suppose that 𝐸 has multiplicative reduction, i.e. that
the 𝑗-invariant of 𝐸 has negative valuation, say 𝑛. Then there exists a parameter 𝑞 in Z𝑝 of valuation 𝑛 such that the
points of 𝐸 defined over the algebraic closure Q̄𝑝 are in bijection with Q̄×

𝑝 / 𝑞
Z. More precisely there exists the series

𝑠4(𝑞) and 𝑠6(𝑞) such that the 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑠4(𝑞)𝑥 + 𝑠6(𝑞) curve is isomorphic to 𝐸 over Q̄𝑝 (or over Q𝑝 if the
reduction is split multiplicative). There is a 𝑝-adic analytic map from Q̄×

𝑝 to this curve with kernel 𝑞Z. Points of good
reduction correspond to points of valuation 0 in Q̄×

𝑝 .

See chapter V of [Sil1994] for more details.

AUTHORS:

• Chris Wuthrich (23/05/2007): first version

• William Stein (2007-05-29): added some examples; editing.

• Chris Wuthrich (04/09): reformatted docstrings.

class sage.schemes.elliptic_curves.ell_tate_curve.TateCurve(E, p)
Bases: SageObject

Tate’s 𝑝-adic uniformisation of an elliptic curve with multiplicative reduction.

Note: Some of the methods of this Tate curve only work when the reduction is split multiplicative over Q𝑝.

EXAMPLES:

sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5); eq
5-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = x^3 -␣
→˓33*x + 68 over Rational Field
sage: eq == loads(dumps(eq))
True

REFERENCES: [Sil1994]

466 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

E2(prec=20)
Return the value of the 𝑝-adic Eisenstein series of weight 2 evaluated on the elliptic curve having split
multiplicative reduction.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.E2(prec=10)
4 + 2*5^2 + 2*5^3 + 5^4 + 2*5^5 + 5^7 + 5^8 + 2*5^9 + O(5^10)

sage: T = EllipticCurve('14').tate_curve(7)
sage: T.E2(30)
2 + 4*7 + 7^2 + 3*7^3 + 6*7^4 + 5*7^5 + 2*7^6 + 7^7 + 5*7^8 + 6*7^9 + 5*7^10 +␣
→˓2*7^11 + 6*7^12 + 4*7^13 + 3*7^15 + 5*7^16 + 4*7^17 + 4*7^18 + 2*7^20 + 7^21␣
→˓+ 5*7^22 + 4*7^23 + 4*7^24 + 3*7^25 + 6*7^26 + 3*7^27 + 6*7^28 + O(7^30)

L_invariant(prec=20)
Return the mysterious ℒ-invariant associated to an elliptic curve with split multiplicative reduction.

One instance where this constant appears is in the exceptional case of the 𝑝-adic Birch and Swinnerton-Dyer
conjecture as formulated in [MTT1986]. See [Col2004] for a detailed discussion.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.L_invariant(prec=10)
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)

curve(prec=20)
Return the 𝑝-adic elliptic curve of the form 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑠4𝑥+ 𝑠6.

This curve with split multiplicative reduction is isomorphic to the given curve over the algebraic closure of
Q𝑝.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.curve(prec=5)
Elliptic Curve defined by y^2 + (1+O(5^5))*x*y = x^3 +
(2*5^4+5^5+2*5^6+5^7+3*5^8+O(5^9))*x +
(2*5^3+5^4+2*5^5+5^7+O(5^8)) over 5-adic
Field with capped relative precision 5

is_split()

Return True if the given elliptic curve has split multiplicative reduction.

EXAMPLES:

16.15. Tate’s parametrisation of 𝑝-adic curves with multiplicative reduction 467

Elliptic curves, Release 9.8

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.is_split()
True

sage: eq = EllipticCurve('37a1').tate_curve(37)
sage: eq.is_split()
False

lift(P, prec=20)
Given a point 𝑃 in the formal group of the elliptic curve𝐸 with split multiplicative reduction, this produces
an element 𝑢 in Q×

𝑝 mapped to the point 𝑃 by the Tate parametrisation. The algorithm return the unique
such element in 1 + 𝑝Z𝑝.

INPUT:

• P – a point on the elliptic curve.

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5)
sage: P = e([-6,10])
sage: l = eq.lift(12*P, prec=10); l
1 + 4*5 + 5^3 + 5^4 + 4*5^5 + 5^6 + 5^7 + 4*5^8 + 5^9 + O(5^10)

Now we map the lift l back and check that it is indeed right.:

sage: eq.parametrisation_onto_original_curve(l)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7) : 2*5^-3 + 5^-1 +␣
→˓4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^10))
sage: e5 = e.change_ring(Qp(5,9))
sage: e5(12*P)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7) : 2*5^-3 + 5^-1 +␣
→˓4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^9))

original_curve()

Return the elliptic curve the Tate curve was constructed from.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.original_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68
over Rational Field

padic_height(prec=20)
Return the canonical 𝑝-adic height function on the original curve.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

OUTPUT:

• A function that can be evaluated on rational points of 𝐸.

468 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

EXAMPLES:

sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5)
sage: h = eq.padic_height(prec=10)
sage: P = e.gens()[0]
sage: h(P)
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + O(5^9)

Check that it is a quadratic function:

sage: h(3*P)-3^2*h(P)
O(5^9)

padic_regulator(prec=20)
Compute the canonical 𝑝-adic regulator on the extended Mordell-Weil group as in [MTT1986] (with the
correction of [Wer1998] and sign convention in [SW2013].)

The 𝑝-adic Birch and Swinnerton-Dyer conjecture predicts that this value appears in the formula for the
leading term of the 𝑝-adic L-function.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.padic_regulator()
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + 3*5^9 + 3*5^10 + 3*5^12 + 4*5^
→˓13 + 3*5^15 + 2*5^16 + 3*5^18 + 4*5^19 + 4*5^20 + 3*5^21 + 4*5^22 + O(5^23)

parameter(prec=20)
Return the Tate parameter 𝑞 such that the curve is isomorphic over the algebraic closure of Q𝑝 to the curve
Q×
𝑝 /𝑞

Z.

INPUT:

• prec – the 𝑝-adic precision, default is 20.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8)

parametrisation_onto_original_curve(u, prec=None)
Given an element 𝑢 in Q×

𝑝 , this computes its image on the original curve under the 𝑝-adic uniformisation
of 𝐸.

INPUT:

• u – a non-zero 𝑝-adic number.

• prec – the 𝑝-adic precision, default is the relative precision of u otherwise 20.

EXAMPLES:

16.15. Tate’s parametrisation of 𝑝-adic curves with multiplicative reduction 469

Elliptic curves, Release 9.8

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parametrisation_onto_original_curve(1+5+5^2+O(5^10))
(4*5^-2 + 4*5^-1 + 4 + 2*5^3 + 3*5^4 + 2*5^6 + O(5^7) :
3*5^-3 + 5^-2 + 4*5^-1 + 1 + 4*5 + 5^2 + 3*5^5 + O(5^6) :
1 + O(5^10))
sage: eq.parametrisation_onto_original_curve(1+5+5^2+O(5^10), prec=20)
Traceback (most recent call last):
...
ValueError: requested more precision than the precision of u

Here is how one gets a 4-torsion point on 𝐸 over Q5:

sage: R = Qp(5,30)
sage: i = R(-1).sqrt()
sage: T = eq.parametrisation_onto_original_curve(i, prec=30); T
(2 + 3*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + 5^12 + 3*5^13 +␣
→˓3*5^14 + 5^15 + 4*5^17 + 5^18 + 3*5^19 + 2*5^20 + 4*5^21 + 5^22 + 3*5^23 +␣
→˓3*5^24 + 4*5^25 + 3*5^26 + 3*5^27 + 3*5^28 + 3*5^29 + O(5^30) : 3*5 + 5^2 + 5^
→˓4 + 3*5^5 + 3*5^7 + 2*5^8 + 4*5^9 + 5^10 + 2*5^11 + 4*5^13 + 2*5^14 + 4*5^15␣
→˓+ 4*5^16 + 3*5^17 + 2*5^18 + 4*5^20 + 2*5^21 + 2*5^22 + 4*5^23 + 4*5^24 + 4*5^
→˓25 + 5^26 + 3*5^27 + 2*5^28 + O(5^30) : 1 + O(5^30))
sage: 4*T
(0 : 1 + O(5^30) : 0)

parametrisation_onto_tate_curve(u, prec=None)
Given an element 𝑢 in Q×

𝑝 , this computes its image on the Tate curve under the 𝑝-adic uniformisation of
𝐸.

INPUT:

• u – a non-zero 𝑝-adic number.

• prec – the 𝑝-adic precision, default is the relative precision of u otherwise 20.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10), prec=10)
(5^-2 + 4*5^-1 + 1 + 2*5 + 3*5^2 + 2*5^5 + 3*5^6 + O(5^7) : 4*5^-3 + 2*5^-1 + 4␣
→˓+ 2*5 + 3*5^4 + 2*5^5 + O(5^6) : 1 + O(5^10))
sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10))
(5^-2 + 4*5^-1 + 1 + 2*5 + 3*5^2 + 2*5^5 + 3*5^6 + O(5^7) : 4*5^-3 + 2*5^-1 + 4␣
→˓+ 2*5 + 3*5^4 + 2*5^5 + O(5^6) : 1 + O(5^10))
sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10), prec=20)
Traceback (most recent call last):
...
ValueError: requested more precision than the precision of u

prime()

Return the residual characteristic 𝑝.

EXAMPLES:

sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.original_curve()

(continues on next page)

470 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68
over Rational Field
sage: eq.prime()
5

Analytic properties over C.

16.16 Weierstrass ℘-function for elliptic curves

The Weierstrass ℘ function associated to an elliptic curve over a field 𝑘 is a Laurent series of the form

℘(𝑧) =
1

𝑧2
+ 𝑐2 · 𝑧2 + 𝑐4 · 𝑧4 + · · · .

If the field is contained in C, then this is the series expansion of the map from C to 𝐸(C) whose kernel is the period
lattice of 𝐸.

Over other fields, like finite fields, this still makes sense as a formal power series with coefficients in 𝑘 - at least its first
𝑝 − 2 coefficients where 𝑝 is the characteristic of 𝑘. It can be defined via the formal group as 𝑥 + 𝑐 in the variable
𝑧 = log𝐸(𝑡) for a constant 𝑐 such that the constant term 𝑐0 in ℘(𝑧) is zero.

EXAMPLES:

sage: E = EllipticCurve([0,1])
sage: E.weierstrass_p()
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)

REFERENCES:

• [BMSS2006]

AUTHORS:

• Dan Shumov 04/09: original implementation

• Chris Wuthrich 11/09: major restructuring

• Jeroen Demeyer (2014-03-06): code clean up, fix characteristic bound for quadratic algorithm (see trac ticket
#15855)

sage.schemes.elliptic_curves.ell_wp.compute_wp_fast(k, A, B, m)

Computes the Weierstrass function of an elliptic curve defined by short Weierstrass model: 𝑦2 = 𝑥3 +𝐴𝑥+𝐵.
It does this with as fast as polynomial of degree 𝑚 can be multiplied together in the base ring, i.e. 𝑂(𝑀(𝑛)) in
the notation of [BMSS2006].

Let 𝑝 be the characteristic of the underlying field: Then we must have either 𝑝 = 0, or 𝑝 > 𝑚+ 3.

INPUT:

• k – the base field of the curve

• A – and

• B – as the coefficients of the short Weierstrass model 𝑦2 = 𝑥3 +𝐴𝑥+𝐵, and

• m – the precision to which the function is computed to.

16.16. Weierstrass ℘-function for elliptic curves 471

https://trac.sagemath.org/15855
https://trac.sagemath.org/15855

Elliptic curves, Release 9.8

OUTPUT:

the Weierstrass ℘ function as a Laurent series to precision 𝑚.

ALGORITHM:

This function uses the algorithm described in section 3.3 of [BMSS2006].

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast
sage: compute_wp_fast(QQ, 1, 8, 7)
z^-2 - 1/5*z^2 - 8/7*z^4 + 1/75*z^6 + O(z^7)

sage: k = GF(37)
sage: compute_wp_fast(k, k(1), k(8), 5)
z^-2 + 22*z^2 + 20*z^4 + O(z^5)

sage.schemes.elliptic_curves.ell_wp.compute_wp_pari(E, prec)
Computes the Weierstrass ℘-function with the ellwp function from PARI.

EXAMPLES:

sage: E = EllipticCurve([0,1])
sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari
sage: compute_wp_pari(E, prec=20)
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)
sage: compute_wp_pari(E, prec=30)
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + 3/38548055*z^22 - 4/8364927935*z^28 +␣
→˓O(z^30)

sage.schemes.elliptic_curves.ell_wp.compute_wp_quadratic(k, A, B, prec)
Compute the truncated Weierstrass function of an elliptic curve defined by short Weierstrass model: 𝑦2 = 𝑥3 +
𝐴𝑥+𝐵. Uses an algorithm that is of complexity 𝑂(𝑝𝑟𝑒𝑐2).

Let p be the characteristic of the underlying field. Then we must have either p = 0, or p > prec + 2.

INPUT:

• k – the field of definition of the curve

• A – and

• B – the coefficients of the elliptic curve

• prec – the precision to which we compute the series.

OUTPUT:

A Laurent series approximating the Weierstrass ℘-function to precision prec.

ALGORITHM:

This function uses the algorithm described in section 3.2 of [BMSS2006].

EXAMPLES:

sage: E = EllipticCurve([7,0])
sage: E.weierstrass_p(prec=10, algorithm='quadratic')
z^-2 - 7/5*z^2 + 49/75*z^6 + O(z^10)

(continues on next page)

472 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(GF(103),[1,2])
sage: E.weierstrass_p(algorithm='quadratic')
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + 55*z^10 + 73*z^12 + 11*z^14 + 17*z^16 +␣
→˓50*z^18 + O(z^20)

sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_quadratic
sage: compute_wp_quadratic(E.base_ring(), E.a4(), E.a6(), prec=10)
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + O(z^10)

sage.schemes.elliptic_curves.ell_wp.solve_linear_differential_system(a, b, c, alpha)
Solves a system of linear differential equations: 𝑎𝑓 ′ + 𝑏𝑓 = 𝑐 and 𝑓 ′(0) = 𝛼 where 𝑎, 𝑏, and 𝑐 are power series
in one variable and 𝛼 is a constant in the coefficient ring.

ALGORITHM:

due to Brent and Kung ‘78.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_
→˓system
sage: k = GF(17)
sage: R.<x> = PowerSeriesRing(k)
sage: a = 1+x+O(x^7); b = x+O(x^7); c = 1+x^3+O(x^7); alpha = k(3)
sage: f = solve_linear_differential_system(a,b,c,alpha)
sage: f
3 + x + 15*x^2 + x^3 + 10*x^5 + 3*x^6 + 13*x^7 + O(x^8)
sage: a*f.derivative()+b*f - c
O(x^7)
sage: f(0) == alpha
True

sage.schemes.elliptic_curves.ell_wp.weierstrass_p(E, prec=20, algorithm=None)
Compute the Weierstrass ℘-function on an elliptic curve.

INPUT:

• E – an elliptic curve

• prec – precision

• algorithm – string or None (default: None): a choice of algorithm among "pari", "fast",
"quadratic"; or None to let this function determine the best algorithm to use.

OUTPUT:

a Laurent series in one variable 𝑧 with coefficients in the base field 𝑘 of 𝐸.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)

(continues on next page)

16.16. Weierstrass ℘-function for elliptic curves 473

Elliptic curves, Release 9.8

(continued from previous page)

z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)

sage: E.weierstrass_p(prec=8, algorithm='pari')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='quadratic')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)

sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: E.weierstrass_p(prec=6, algorithm='fast')
z^-2 + 2*z^2 + 3*z^4 + O(z^6)
sage: E.weierstrass_p(prec=7, algorithm='fast')
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via the fast algorithm, the␣
→˓characteristic (11) of the underlying field must be greater than prec + 4 = 11
sage: E.weierstrass_p(prec=8)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='quadratic')
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='pari')
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=9)
Traceback (most recent call last):
...
NotImplementedError: currently no algorithms for computing the Weierstrass p-
→˓function for that characteristic / precision pair is implemented. Lower the␣
→˓precision below char(k) - 2
sage: E.weierstrass_p(prec=9, algorithm="quadratic")
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via the quadratic algorithm,␣
→˓the characteristic (11) of the underlying field must be greater than prec + 2 = 11
sage: E.weierstrass_p(prec=9, algorithm='pari')
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via pari, the characteristic␣
→˓(11) of the underlying field must be greater than prec + 2 = 11

16.17 Period lattices of elliptic curves and related functions

Let 𝐸 be an elliptic curve defined over a number field 𝐾 (including Q). We attach a period lattice (a discrete rank 2
subgroup of C) to each embedding of 𝐾 into C.

In the case of real embeddings, the lattice is stable under complex conjugation and is called a real lattice. These have
two types: rectangular, (the real curve has two connected components and positive discriminant) or non-rectangular
(one connected component, negative discriminant).

The periods are computed to arbitrary precision using the AGM (Gauss’s Arithmetic-Geometric Mean).

EXAMPLES:

474 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])

First we try a real embedding:

sage: emb = K.embeddings(RealField())[0]
sage: L = E.period_lattice(emb); L
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a over␣
→˓Number Field in a with defining polynomial x^3 - 2 with respect to the embedding Ring␣
→˓morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Real Field
Defn: a |--> 1.259921049894873?

The first basis period is real:

sage: L.basis()
(3.81452977217855, 1.90726488608927 + 1.34047785962440*I)
sage: L.is_real()
True

For a basis 𝜔1, 𝜔2 normalised so that 𝜔1/𝜔2 is in the fundamental region of the upper half-plane, use the function
normalised_basis() instead:

sage: L.normalised_basis()
(1.90726488608927 - 1.34047785962440*I, -1.90726488608927 - 1.34047785962440*I)

Next a complex embedding:

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb); L
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + x^2 + a*x + a over␣
→˓Number Field in a with defining polynomial x^3 - 2 with respect to the embedding Ring␣
→˓morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I

In this case, the basis 𝜔1, 𝜔2 is always normalised so that 𝜏 = 𝜔1/𝜔2 is in the fundamental region in the upper half
plane:

sage: w1,w2 = L.basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I
sage: L.normalised_basis()
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.428378776460622*I)

We test that bug trac ticket #8415 (caused by a PARI bug fixed in v2.3.5) is OK:

sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-7)

(continues on next page)

16.17. Period lattices of elliptic curves and related functions 475

https://trac.sagemath.org/8415

Elliptic curves, Release 9.8

(continued from previous page)

sage: EK = E.change_ring(K)
sage: EK.period_lattice(K.complex_embeddings()[0])
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over␣
→˓Number Field in a with defining polynomial x^2 + 7 with a = 2.645751311064591?*I with␣
→˓respect to the embedding Ring morphism:
From: Number Field in a with defining polynomial x^2 + 7 with a = 2.645751311064591?*I
To: Algebraic Field
Defn: a |--> -2.645751311064591?*I

REFERENCES:

• [CT2013]

AUTHORS:

• ?: initial version.

• John Cremona:

– Adapted to handle real embeddings of number fields, September 2008.

– Added basis_matrix function, November 2008

– Added support for complex embeddings, May 2009.

– Added complex elliptic logs, March 2010; enhanced, October 2010.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice(base_ring, rank, degree,
sparse=False,
coordinate_ring=None,
category=None)

Bases: FreeModule_generic_pid

The class for the period lattice of an algebraic variety.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell(E, embedding=None)
Bases: PeriodLattice

The class for the period lattice of an elliptic curve.

Currently supported are elliptic curves defined over Q, and elliptic curves defined over a number field with a real
or complex embedding, where the lattice constructed depends on that embedding.

basis(prec=None, algorithm='sage')
Return a basis for this period lattice as a 2-tuple.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embed-
dings).

OUTPUT:

(tuple of Complex) (𝜔1, 𝜔2) where the lattice is Z𝜔1+Z𝜔2. If the lattice is real then 𝜔1 is real and positive,
ℑ(𝜔2) > 0 andℜ(𝜔1/𝜔2) is either 0 (for rectangular lattices) or 1

2 (for non-rectangular lattices). Otherwise,
𝜔1/𝜔2 is in the fundamental region of the upper half-plane. If the latter normalisation is required for real
lattices, use the function normalised_basis() instead.

EXAMPLES:

476 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/modules/sage/modules/free_module.html#sage.modules.free_module.FreeModule_generic_pid

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis()
(2.99345864623196, 2.45138938198679*I)

This shows that the issue reported at trac ticket #3954 is fixed:

sage: E = EllipticCurve('37a')
sage: b1 = E.period_lattice().basis(prec=30)
sage: b2 = E.period_lattice().basis(prec=30)
sage: b1 == b2
True

This shows that the issue reported at trac ticket #4064 is fixed:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis(prec=30)[0].parent()
Real Field with 30 bits of precision
sage: E.period_lattice().basis(prec=100)[0].parent()
Real Field with 100 bits of precision

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis(64)
(3.81452977217854509, 1.90726488608927255 + 1.34047785962440202*I)

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: w1,w2 = L.basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.
→˓428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I

basis_matrix(prec=None, normalised=False)
Return the basis matrix of this period lattice.

INPUT:

• prec (int or None``(default)) -- real precision in bits (default real precision
if ``None).

• normalised (bool, default False) – if True and the embedding is real, use the normalised basis (see
normalised_basis()) instead of the default.

OUTPUT:

A 2x2 real matrix whose rows are the lattice basis vectors, after identifying C with R2.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis_matrix()

(continues on next page)

16.17. Period lattices of elliptic curves and related functions 477

https://trac.sagemath.org/3954
https://trac.sagemath.org/4064

Elliptic curves, Release 9.8

(continued from previous page)

[2.99345864623196 0.000000000000000]
[0.000000000000000 2.45138938198679]

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis_matrix(64)
[3.81452977217854509 0.000000000000000000]
[1.90726488608927255 1.34047785962440202]

See trac ticket #4388:

sage: L = EllipticCurve('11a1').period_lattice()
sage: L.basis_matrix()
[1.26920930427955 0.000000000000000]
[0.634604652139777 1.45881661693850]
sage: L.basis_matrix(normalised=True)
[0.634604652139777 -1.45881661693850]
[-1.26920930427955 0.000000000000000]

sage: L = EllipticCurve('389a1').period_lattice()
sage: L.basis_matrix()
[2.49021256085505 0.000000000000000]
[0.000000000000000 1.97173770155165]
sage: L.basis_matrix(normalised=True)
[2.49021256085505 0.000000000000000]
[0.000000000000000 -1.97173770155165]

complex_area(prec=None)
Return the area of a fundamental domain for the period lattice of the elliptic curve.

INPUT:

• prec (int or None``(default)) -- real precision in bits (default real precision
if ``None).

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().complex_area()
7.33813274078958

sage: K.<a> = NumberField(x^3-2)
sage: embs = K.embeddings(ComplexField())
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]
sage: [E.period_lattice(emb).complex_area() for emb in embs]
[6.02796894766694, 6.02796894766694, 5.11329270448345]

coordinates(z, rounding=None)
Return the coordinates of a complex number w.r.t. the lattice basis

478 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/4388

Elliptic curves, Release 9.8

INPUT:

• z (complex) – A complex number.

• rounding (default None) – whether and how to round the
output (see below).

OUTPUT:

When rounding is None (the default), returns a tuple of reals 𝑥, 𝑦 such that 𝑧 = 𝑥𝑤1 + 𝑦𝑤2 where 𝑤1,
𝑤2 are a basis for the lattice (normalised in the case of complex embeddings).

When rounding is ‘round’, returns a tuple of integers 𝑛1, 𝑛2 which are the closest integers to the 𝑥, 𝑦
defined above. If 𝑧 is in the lattice these are the coordinates of 𝑧 with respect to the lattice basis.

When rounding is ‘floor’, returns a tuple of integers 𝑛1, 𝑛2 which are the integer parts to the 𝑥, 𝑦 defined
above. These are used in reduce()

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: L.coordinates(zP)
(0.19249290511394227352563996419, 0.50000000000000000000000000000)
sage: sum([x*w for x,w in zip(L.coordinates(zP), L.basis(prec=100))])
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I

sage: L.coordinates(12*w1+23*w2)
(12.000000000000000000000000000, 23.000000000000000000000000000)
sage: L.coordinates(12*w1+23*w2, rounding='floor')
(11, 22)
sage: L.coordinates(12*w1+23*w2, rounding='round')
(12, 23)

curve()

Return the elliptic curve associated with this period lattice.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.curve() is E
True

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: L.curve() is E
True

sage: L = E.period_lattice(K.embeddings(ComplexField())[0])
sage: L.curve() is E
True

16.17. Period lattices of elliptic curves and related functions 479

Elliptic curves, Release 9.8

e_log_RC(xP, yP, prec=None, reduce=True)
Return the elliptic logarithm of a real or complex point.

• xP, yP (real or complex) – Coordinates of a point on the embedded elliptic curve associated with this
period lattice.

• prec (default: None) – real precision in bits (default real precision if None).

• reduce (default: True) – if True, the result is reduced with respect to the period lattice basis.

OUTPUT:

(complex number) The elliptic logarithm of the point (𝑥𝑃, 𝑦𝑃) with respect to this period lattice. If 𝐸 is
the elliptic curve and 𝜎 : 𝐾 → C the embedding, the returned value 𝑧 is such that 𝑧 (mod 𝐿) maps to
(𝑥𝑃, 𝑦𝑃) = 𝜎(𝑃) under the standard Weierstrass isomorphism from C/𝐿 to 𝜎(𝐸). If reduce is True,
the output is reduced so that it is in the fundamental period parallelogram with respect to the normalised
lattice basis.

ALGORITHM:

Uses the complex AGM. See [CT2013] for details.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: P = E([-1,1])
sage: xP, yP = [RR(c) for c in P.xy()]

The elliptic log from the real coordinates:

sage: L.e_log_RC(xP, yP)
0.479348250190219 + 0.985868850775824*I

The same elliptic log from the algebraic point:

sage: L(P)
0.479348250190219 + 0.985868850775824*I

A number field example:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: L(P)
3.51086196882538
sage: xP, yP = [v(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
3.51086196882538

Elliptic logs of real points which do not come from algebraic points:

sage: ER = EllipticCurve([v(ai) for ai in E.a_invariants()])
sage: P = ER.lift_x(12.34)
sage: xP, yP = P.xy()
sage: xP, yP

(continues on next page)

480 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

(12.3400000000000, 43.3628968710567)
sage: L.e_log_RC(xP, yP)
3.76298229503967
sage: xP, yP = ER.lift_x(0).xy()
sage: L.e_log_RC(xP, yP)
2.69842609082114

Elliptic logs of complex points:

sage: v = K.complex_embeddings()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: L(P)
1.68207104397706 - 1.87873661686704*I
sage: xP, yP = [v(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
1.68207104397706 - 1.87873661686704*I
sage: EC = EllipticCurve([v(ai) for ai in E.a_invariants()])
sage: xP, yP = EC.lift_x(0).xy()
sage: L.e_log_RC(xP, yP)
1.03355715602040 - 0.867257428417356*I

ei()

Return the x-coordinates of the 2-division points of the elliptic curve associated with this period lattice, as
elements of QQbar.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.ei()
[-1.107159871688768?, 0.2695944364054446?, 0.8375654352833230?]

In the following example, we should have one purely real 2-division point coordinate, and two conjugate
purely imaginary coordinates.

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: x1,x2,x3 = L.ei()
sage: abs(x1.real())+abs(x2.real())<1e-14
True
sage: x1.imag(),x2.imag(),x3
(-1.122462048309373?, 1.122462048309373?, -1.000000000000000?)

sage: L = E.period_lattice(K.embeddings(ComplexField())[0])
sage: L.ei()
[-1.000000000000000? + 0.?e-1...*I,
-0.9720806486198328? - 0.561231024154687?*I,
0.9720806486198328? + 0.561231024154687?*I]

elliptic_exponential(z, to_curve=True)
Return the elliptic exponential of a complex number.

16.17. Period lattices of elliptic curves and related functions 481

Elliptic curves, Release 9.8

INPUT:

• z (complex) – A complex number (viewed modulo this period lattice).

• to_curve (bool, default True): see below.

OUTPUT:

• If to_curve is False, a 2-tuple of real or complex numbers representing the point (𝑥, 𝑦) =
(℘(𝑧), ℘′(𝑧)) where ℘ denotes the Weierstrass ℘-function with respect to this lattice.

• If to_curve is True, the point (𝑋,𝑌) = (𝑥−𝑏2/12, 𝑦− (𝑎1(𝑥−𝑏2/12)−𝑎3)/2) as a point in𝐸(R)
or 𝐸(C), with (𝑥, 𝑦) = (℘(𝑧), ℘′(𝑧)) as above, where 𝐸 is the elliptic curve over R or C whose
period lattice this is.

• If the lattice is real and 𝑧 is also real then the output is a pair of real numbers if to_curve is True, or
a point in 𝐸(R) if to_curve is False.

Note: The precision is taken from that of the input z.

EXAMPLES:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E(1,-2)
sage: L = E.period_lattice()
sage: z = L(P); z
1.17044757240090
sage: L.elliptic_exponential(z)
(0.999999999999999 : -2.00000000000000 : 1.00000000000000)
sage: _.curve()
Elliptic Curve defined by y^2 + 1.00000000000000*x*y + 1.00000000000000*y = x^3␣
→˓+ 1.00000000000000*x^2 - 8.00000000000000*x + 6.00000000000000 over Real␣
→˓Field with 53 bits of precision
sage: L.elliptic_exponential(z,to_curve=False)
(1.41666666666667, -2.00000000000000)
sage: z = L(P,prec=201); z
1.17044757240089592298992188482371493504472561677451007994189
sage: L.elliptic_exponential(z)
(1.000 : -2.
→˓000 : 1.
→˓000)

Examples over number fields:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3-2)
sage: embs = K.embeddings(CC)
sage: E = EllipticCurve('37a')
sage: EK = E.change_ring(K)
sage: Li = [EK.period_lattice(e) for e in embs]
sage: P = EK(-1,-1)
sage: Q = EK(a-1,1-a^2)
sage: zi = [L.elliptic_logarithm(P) for L in Li]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[0])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[1])]

(continues on next page)

482 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[2])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]

sage: zi = [L.elliptic_logarithm(Q) for L in Li]
sage: Li[0].elliptic_exponential(zi[0])
(-1.62996052494744 - 1.09112363597172*I : 1.79370052598410 - 1.37472963699860*I␣
→˓: 1.00000000000000)
sage: [embs[0](c) for c in Q]
[-1.62996052494744 - 1.09112363597172*I, 1.79370052598410 - 1.37472963699860*I,␣
→˓1.00000000000000]
sage: Li[1].elliptic_exponential(zi[1])
(-1.62996052494744 + 1.09112363597172*I : 1.79370052598410 + 1.37472963699860*I␣
→˓: 1.00000000000000)
sage: [embs[1](c) for c in Q]
[-1.62996052494744 + 1.09112363597172*I, 1.79370052598410 + 1.37472963699860*I,␣
→˓1.00000000000000]
sage: [c.real() for c in Li[2].elliptic_exponential(zi[2])]
[0.259921049894873, -0.587401051968199, 1.00000000000000]
sage: [embs[2](c) for c in Q]
[0.259921049894873, -0.587401051968200, 1.00000000000000]

Test to show that trac ticket #8820 is fixed:

sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-5)
sage: L = E.change_ring(K).period_lattice(K.places()[0])
sage: L.elliptic_exponential(CDF(.1,.1))
(0.0000142854026029... - 49.9960001066650*I : 249.520141250950 + 250.
→˓019855549131*I : 1.00000000000000)
sage: L.elliptic_exponential(CDF(.1,.1), to_curve=False)
(0.0000142854026029447 - 49.9960001066650*I, 500.040282501900 + 500.
→˓039711098263*I)

𝑧 = 0 is treated as a special case:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: L = E.period_lattice()
sage: L.elliptic_exponential(0)
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
sage: L.elliptic_exponential(0, to_curve=False)
(+infinity, +infinity)

sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-5)
sage: L = E.change_ring(K).period_lattice(K.places()[0])
sage: P = L.elliptic_exponential(0); P
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
sage: P.parent()
Abelian group of points on Elliptic Curve defined by y^2 + 1.00000000000000*y =␣
→˓x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision

Very small 𝑧 are handled properly (see trac ticket #8820):

16.17. Period lattices of elliptic curves and related functions 483

https://trac.sagemath.org/8820
https://trac.sagemath.org/8820

Elliptic curves, Release 9.8

sage: K.<a> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,a,0])
sage: L = E.period_lattice(K.complex_embeddings()[0])
sage: L.elliptic_exponential(1e-100)
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)

The elliptic exponential of 𝑧 is returned as (0 : 1 : 0) if the coordinates of z with respect to the period lattice
are approximately integral:

sage: (100/log(2.0,10))/0.8
415.241011860920
sage: L.elliptic_exponential((RealField(415)(1e-100))).is_zero()
True
sage: L.elliptic_exponential((RealField(420)(1e-100))).is_zero()
False

elliptic_logarithm(P, prec=None, reduce=True)
Return the elliptic logarithm of a point.

INPUT:

• P (point) – A point on the elliptic curve associated with this period lattice.

• prec (default: None) – real precision in bits (default real precision if None).

• reduce (default: True) – if True, the result is reduced with respect to the period lattice basis.

OUTPUT:

(complex number) The elliptic logarithm of the point 𝑃 with respect to this period lattice. If𝐸 is the elliptic
curve and 𝜎 : 𝐾 → C the embedding, the returned value 𝑧 is such that 𝑧 (mod 𝐿) maps to 𝜎(𝑃) under
the standard Weierstrass isomorphism from C/𝐿 to 𝜎(𝐸). If reduce is True, the output is reduced so that
it is in the fundamental period parallelogram with respect to the normalised lattice basis.

ALGORITHM:

Uses the complex AGM. See [CT2013] for details.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: E.discriminant() > 0
True
sage: L.real_flag
1
sage: P = E([-1,1])
sage: P.is_on_identity_component ()
False
sage: L.elliptic_logarithm(P, prec=96)
0.4793482501902193161295330101 + 0.9858688507758241022112038491*I
sage: Q=E([3,5])
sage: Q.is_on_identity_component()
True
sage: L.elliptic_logarithm(Q, prec=96)
1.931128271542559442488585220

Note that this is actually the inverse of the Weierstrass isomorphism:

484 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: L.elliptic_exponential(_) # abs tol 1e-26
(3.000000000000000000000000000 : 5.000000000000000000000000000 : 1.
→˓000000000000000000000000000)

An example with negative discriminant, and a torsion point:

sage: E = EllipticCurve('11a1')
sage: L = E.period_lattice()
sage: E.discriminant() < 0
True
sage: L.real_flag
-1
sage: P = E([16,-61])
sage: L.elliptic_logarithm(P)
0.253841860855911
sage: L.real_period() / L.elliptic_logarithm(P)
5.00000000000000

An example where precision is problematic:

sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) #18074g1
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])
sage: L = E.period_lattice()
sage: L.ei()
[5334.003952567705? - 1.964393150436?e-6*I, 5334.003952567705? + 1.964393150436?
→˓e-6*I, -10668.25790513541?]
sage: L.elliptic_logarithm(P,prec=100)
0.27656204014107061464076203097

Some complex examples, taken from the paper by Cremona and Thongjunthug:

sage: K.<i> = QuadraticField(-1)
sage: a4 = 9*i-10
sage: a6 = 21-i
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: e1 = 3-2*i; e2 = 1+i; e3 = -4+i
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2-i,4+2*i)

By default, the output is reduced with respect to the normalised lattice basis, so that its coordinates with
respect to that basis lie in the interval [0,1):

sage: z = L.elliptic_logarithm(P,prec=100); z
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I
sage: L.coordinates(z)
(0.46247636364807931766105406092, 0.79497588726808704200760395829)

Using reduce=False this step can be omitted. In this case the coordinates are usually in the interval
[-0.5,0.5), but this is not guaranteed. This option is mainly for testing purposes:

sage: z = L.elliptic_logarithm(P,prec=100, reduce=False); z
0.57002153834710752778063503023 + 0.46476340520469798857457031393*I

(continues on next page)

16.17. Period lattices of elliptic curves and related functions 485

Elliptic curves, Release 9.8

(continued from previous page)

sage: L.coordinates(z)
(0.46247636364807931766105406092, -0.20502411273191295799239604171)

The elliptic logs of the 2-torsion points are half-periods:

sage: L.elliptic_logarithm(E(e1,0),prec=100)
0.64607575874356525952487867052 + 0.22379609053909448304176885364*I
sage: L.elliptic_logarithm(E(e2,0),prec=100)
0.71330686725892253793705940192 - 0.40481924028150941053684639367*I
sage: L.elliptic_logarithm(E(e3,0),prec=100)
0.067231108515357278412180731396 - 0.62861533082060389357861524731*I

We check this by doubling and seeing that the resulting coordinates are integers:

sage: L.coordinates(2*L.elliptic_logarithm(E(e1,0),prec=100))
(1.0000000000000000000000000000, 0.00000000000000000000000000000)
sage: L.coordinates(2*L.elliptic_logarithm(E(e2,0),prec=100))
(1.0000000000000000000000000000, 1.0000000000000000000000000000)
sage: L.coordinates(2*L.elliptic_logarithm(E(e3,0),prec=100))
(0.00000000000000000000000000000, 1.0000000000000000000000000000)

sage: a4 = -78*i + 104
sage: a6 = -216*i - 312
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(3+2*i,14-7*i)
sage: L.elliptic_logarithm(P)
0.297147783912228 - 0.546125549639461*I
sage: L.coordinates(L.elliptic_logarithm(P))
(0.628653378040238, 0.371417754610223)
sage: e1 = 1+3*i; e2 = -4-12*i; e3=-e1-e2
sage: L.coordinates(L.elliptic_logarithm(E(e1,0)))
(0.500000000000000, 0.500000000000000)
sage: L.coordinates(L.elliptic_logarithm(E(e2,0)))
(1.00000000000000, 0.500000000000000)
sage: L.coordinates(L.elliptic_logarithm(E(e3,0)))
(0.500000000000000, 0.000000000000000)

gens(prec=None, algorithm='sage')
Return a basis for this period lattice as a 2-tuple.

This is an alias for basis(). See the docstring there for a more in-depth explanation and further examples.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embed-
dings).

OUTPUT:

(tuple of Complex) (𝜔1, 𝜔2) where the lattice is Z𝜔1+Z𝜔2. If the lattice is real then 𝜔1 is real and positive,
ℑ(𝜔2) > 0 andℜ(𝜔1/𝜔2) is either 0 (for rectangular lattices) or 1

2 (for non-rectangular lattices). Otherwise,

486 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

𝜔1/𝜔2 is in the fundamental region of the upper half-plane. If the latter normalisation is required for real
lattices, use the function normalised_basis() instead.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().gens()
(2.99345864623196, 2.45138938198679*I)

sage: E.period_lattice().gens(prec = 100)
(2.9934586462319596298320099794, 2.4513893819867900608542248319*I)

is_real()

Return True if this period lattice is real.

EXAMPLES:

sage: f = EllipticCurve('11a')
sage: f.period_lattice().is_real()
True

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,0,i,2*i])
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: L.is_real()
False

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]

ALGORITHM:

The lattice is real if it is associated to a real embedding; such lattices are stable under conjugation.

is_rectangular()

Return True if this period lattice is rectangular.

Note: Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

sage: f = EllipticCurve('11a')
sage: f.period_lattice().basis()
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)
sage: f.period_lattice().is_rectangular()
False

sage: f = EllipticCurve('37b')
sage: f.period_lattice().basis()
(1.08852159290423, 1.76761067023379*I)

(continues on next page)

16.17. Period lattices of elliptic curves and related functions 487

Elliptic curves, Release 9.8

(continued from previous page)

sage: f.period_lattice().is_rectangular()
True

ALGORITHM:

The period lattice is rectangular precisely if the discriminant of the Weierstrass equation is positive, or
equivalently if the number of real components is 2.

normalised_basis(prec=None, algorithm='sage')
Return a normalised basis for this period lattice as a 2-tuple.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embed-
dings).

OUTPUT:

(tuple of Complex) (𝜔1, 𝜔2) where the lattice has the form Z𝜔1 + Z𝜔2. The basis is normalised so that
𝜔1/𝜔2 is in the fundamental region of the upper half-plane. For an alternative normalisation for real lattices
(with the first period real), use the function basis() instead.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().normalised_basis()
(2.99345864623196, -2.45138938198679*I)

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.normalised_basis(64)
(1.90726488608927255 - 1.34047785962440202*I, -1.90726488608927255 - 1.
→˓34047785962440202*I)

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: w1,w2 = L.normalised_basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.
→˓428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I

omega(prec=None, bsd_normalise=False)
Return the real or complex volume of this period lattice.

INPUT:

• prec (int or None``(default)) -- real precision in bits (default real precision
if ``None)

• bsd_normalise (bool, default False) – flag to use BSD normalisation in the complex case.

488 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

(real) For real lattices, this is the real period times the number of connected components. For non-real
lattices it is the complex area, or double the area if bsd_normalise is True.

Note: If the curve is given by a global minimal Weierstrass equation, then with bsd_normalise = True,
this gives the correct period in the BSD conjecture: the product of this quantity over all embeddings appears
in the BSD formula. In general a correction factor is required to make allowance for the model.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().omega()
5.98691729246392

This is not a minimal model:

sage: E = EllipticCurve([0,-432*6^2])
sage: E.period_lattice().omega()
0.486109385710056

If you were to plug the above omega into the BSD conjecture, you would get an incorrect value, out by a
factor of 2. The following works though:

sage: F = E.minimal_model()
sage: F.period_lattice().omega()
0.972218771420113

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.omega(64)
3.81452977217854509

A complex example (taken from J.E.Cremona and E.Whitley, Periods of cusp forms and elliptic curves
over imaginary quadratic fields, Mathematics of Computation 62 No. 205 (1994), 407-429). See trac
ticket #29645 and trac ticket #29782:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: L = E.period_lattice(K.embeddings(CC)[0])
sage: L.omega()
8.80694160502647
sage: L.omega(prec=200)
8.8069416050264741493250743632295462227858630765392114070032
sage: L.omega(bsd_normalise=True)
17.6138832100529

real_period(prec=None, algorithm='sage')
Return the real period of this period lattice.

INPUT:

• prec (int or None (default)) – real precision in bits (default real precision if None)

16.17. Period lattices of elliptic curves and related functions 489

https://trac.sagemath.org/29645
https://trac.sagemath.org/29645
https://trac.sagemath.org/29782

Elliptic curves, Release 9.8

• algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embed-
dings).

Note: Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().real_period()
2.99345864623196

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.real_period(64)
3.81452977217854509

reduce(z)
Reduce a complex number modulo the lattice

INPUT:

• z (complex) – A complex number.

OUTPUT:

(complex) the reduction of 𝑧 modulo the lattice, lying in the fundamental period parallelogram with respect
to the lattice basis. For curves defined over the reals (i.e. real embeddings) the output will be real when
possible.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: z = zP+10*w1-20*w2; z
25.381473858740770069343110929 - 38.448885180257139986236950114*I
sage: L.reduce(z)
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: L.elliptic_logarithm(2*P)
0.958696500380439
sage: L.reduce(L.elliptic_logarithm(2*P))
0.958696500380439
sage: L.reduce(L.elliptic_logarithm(2*P)+10*w1-20*w2)
0.958696500380444

sigma(z, prec=None, flag=0)
Return the value of the Weierstrass sigma function for this elliptic curve period lattice.

INPUT:

490 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• z – a complex number

• prec (default: None) – real precision in bits
(default real precision if None).

• flag –

0: (default) ???;

1: computes an arbitrary determination of log(sigma(z))

2, 3: same using the product expansion instead of theta series. ???

Note: The reason for the ???’s above, is that the PARI documentation for ellsigma is very vague. Also this
is only implemented for curves defined over Q.

Todo: This function does not use any of the PeriodLattice functions and so should be moved to
ell_rational_field.

EXAMPLES:

sage: EllipticCurve('389a1').period_lattice().sigma(CC(2,1))
2.60912163570108 - 0.200865080824587*I

tau(prec=None, algorithm='sage')
Return the upper half-plane parameter in the fundamental region.

INPUT:

• prec (default: None) – precision in bits (default precision if None).

• algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embed-
dings).

OUTPUT:

(Complex) 𝜏 = 𝜔1/𝜔2 where the lattice has the form Z𝜔1 + Z𝜔2, normalised so that 𝜏 = 𝜔1/𝜔2 is in the
fundamental region of the upper half-plane.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.tau()
1.22112736076463*I

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: tau = L.tau(); tau
-0.338718341018919 + 0.940887817679340*I
sage: tau.abs()
1.00000000000000
sage: -0.5 <= tau.real() <= 0.5

(continues on next page)

16.17. Period lattices of elliptic curves and related functions 491

Elliptic curves, Release 9.8

(continued from previous page)

True

sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: tau = L.tau(); tau
0.387694505032876 + 1.30821088214407*I
sage: tau.abs()
1.36444961115933
sage: -0.5 <= tau.real() <= 0.5
True

sage.schemes.elliptic_curves.period_lattice.extended_agm_iteration(a, b, c)
Internal function for the extended AGM used in elliptic logarithm computation.

INPUT:

• a, b, c (real or complex) – three real or complex numbers.

OUTPUT:

(3-tuple) (𝑎0, 𝑏0, 𝑐0), the limit of the iteration (𝑎, 𝑏, 𝑐) ↦→ ((𝑎+ 𝑏)/2,
√
𝑎𝑏, (𝑐+

√︀
(𝑐2 + 𝑏2 − 𝑎2))/2).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import extended_agm_iteration
sage: extended_agm_iteration(RR(1),RR(2),RR(3))
(1.45679103104691, 1.45679103104691, 3.21245294970054)
sage: extended_agm_iteration(CC(1,2),CC(2,3),CC(3,4))
(1.46242448156430 + 2.47791311676267*I,
1.46242448156430 + 2.47791311676267*I,
3.22202144343535 + 4.28383734262540*I)

sage.schemes.elliptic_curves.period_lattice.normalise_periods(w1, w2)
Normalise the period basis (𝑤1, 𝑤2) so that 𝑤1/𝑤2 is in the fundamental region.

INPUT:

• w1,w2 (complex) – two complex numbers with non-real ratio

OUTPUT:

(tuple) ((𝜔′
1, 𝜔

′
2), [𝑎, 𝑏, 𝑐, 𝑑]) where 𝑎, 𝑏, 𝑐, 𝑑 are integers such that

• 𝑎𝑑− 𝑏𝑐 = ±1;

• (𝜔′
1, 𝜔

′
2) = (𝑎𝜔1 + 𝑏𝜔2, 𝑐𝜔1 + 𝑑𝜔2);

• 𝜏 = 𝜔′
1/𝜔

′
2 is in the upper half plane;

• |𝜏 | ≥ 1 and |ℜ(𝜏)| ≤ 1
2 .

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau, normalise_
→˓periods
sage: w1 = CC(1.234, 3.456)
sage: w2 = CC(1.234, 3.456000001)
sage: w1/w2 # in lower half plane!
0.999999999743367 - 9.16334785827644e-11*I

(continues on next page)

492 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: w1w2, abcd = normalise_periods(w1,w2)
sage: a,b,c,d = abcd
sage: w1w2 == (a*w1+b*w2, c*w1+d*w2)
True
sage: w1w2[0]/w1w2[1]
1.23400010389203e9*I
sage: a*d-b*c # note change of orientation
-1

sage.schemes.elliptic_curves.period_lattice.reduce_tau(tau)
Transform a point in the upper half plane to the fundamental region.

INPUT:

• tau (complex) – a complex number with positive imaginary part

OUTPUT:

(tuple) (𝜏 ′, [𝑎, 𝑏, 𝑐, 𝑑]) where 𝑎, 𝑏, 𝑐, 𝑑 are integers such that

• 𝑎𝑑− 𝑏𝑐 = 1;

• 𝜏 ‘ = (𝑎𝜏 + 𝑏)/(𝑐𝜏 + 𝑑);

• |𝜏 ′| ≥ 1;

• |ℜ(𝜏 ′)| ≤ 1
2 .

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau
sage: reduce_tau(CC(1.23,3.45))
(0.230000000000000 + 3.45000000000000*I, [1, -1, 0, 1])
sage: reduce_tau(CC(1.23,0.0345))
(-0.463960069171512 + 1.35591888067914*I, [-5, 6, 4, -5])
sage: reduce_tau(CC(1.23,0.0000345))
(0.130000000001761 + 2.89855072463768*I, [13, -16, 100, -123])

16.18 Regions in fundamental domains of period lattices

This module is used to represent sub-regions of a fundamental parallelogram of the period lattice of an elliptic curve,
used in computing minimum height bounds.

In particular, these are the approximating sets S^{(v)} in section 3.2 of Thotsaphon Thongjunthug’s Ph.D. Thesis and
paper [Tho2010].

AUTHORS:

• Robert Bradshaw (2010): initial version

• John Cremona (2014): added some docstrings and doctests

class sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion

Bases: object

EXAMPLES:

16.18. Regions in fundamental domains of period lattices 493

Elliptic curves, Release 9.8

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: S = PeriodicRegion(CDF(2), CDF(2*I), np.zeros((4, 4)))
sage: S.plot()
Graphics object consisting of 1 graphics primitive
sage: data = np.zeros((4, 4))
sage: data[1,1] = True
sage: S = PeriodicRegion(CDF(2), CDF(2*I+1), data)
sage: S.plot()
Graphics object consisting of 5 graphics primitives

border(raw=True)
Returns the boundary of this region as set of tile boundaries.

If raw is true, returns a list with respect to the internal bitmap, otherwise returns complex intervals covering
the border.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1, 1] = True
sage: PeriodicRegion(CDF(1), CDF(I), data).border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]

sage: PeriodicRegion(CDF(1), CDF(I), data).border(raw=False)
[0.25000000000000000? + 1.?*I,
0.50000000000000000? + 1.?*I,
1.? + 0.25000000000000000?*I,
1.? + 0.50000000000000000?*I]
sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border(raw=False)
[0.3? + 1.?*I,
0.8? + 1.?*I,
1.? + 0.25000000000000000?*I,
1.? + 0.50000000000000000?*I]

sage: data[1:3, 2] = True
sage: PeriodicRegion(CDF(1), CDF(I), data).border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 0), (1, 3, 1), (3, 2, 0), (2, 2, 1),␣
→˓(2, 3, 1)]

contract(corners=True)
Opposite (but not inverse) of expand; removes neighbors of complement.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((10, 10))

(continues on next page)

494 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: data[1:4,1:4] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.plot()
Graphics object consisting of 13 graphics primitives
sage: S.contract().plot()
Graphics object consisting of 5 graphics primitives
sage: S.contract().data.sum()
1
sage: S.contract().contract().is_empty()
True

data

ds()

Returns the sides of each parallelogram tile.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False)
sage: S.ds()
(0.5, 0.25*I)
sage: _ = S._ensure_full()
sage: S.ds()
(0.5, 0.25*I)

sage: data = np.zeros((8, 8))
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.ds()
(0.125, 0.0625 + 0.125*I)

expand(corners=True)
Returns a region containing this region by adding all neighbors of internal tiles.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1,1] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.plot()
Graphics object consisting of 5 graphics primitives
sage: S.expand().plot()
Graphics object consisting of 13 graphics primitives
sage: S.expand().data
array([[1, 1, 1, 0],

[1, 1, 1, 0],
[1, 1, 1, 0],

(continues on next page)

16.18. Regions in fundamental domains of period lattices 495

Elliptic curves, Release 9.8

(continued from previous page)

[0, 0, 0, 0]], dtype=int8)
sage: S.expand(corners=False).plot()
Graphics object consisting of 13 graphics primitives
sage: S.expand(corners=False).data
array([[0, 1, 0, 0],

[1, 1, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 0]], dtype=int8)

full

innermost_point()

Returns a point well inside the region, specifically the center of (one of) the last tile(s) to be removed on
contraction.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((10, 10))
sage: data[1:4, 1:4] = True
sage: data[1, 0:8] = True
sage: S = PeriodicRegion(CDF(1), CDF(I+1/2), data)
sage: S.innermost_point()
0.375 + 0.25*I
sage: S.plot() + point(S.innermost_point())
Graphics object consisting of 24 graphics primitives

is_empty()

Returns whether this region is empty.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty()
True
sage: data[1,1] = True
sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty()
False

plot(**kwds)
Plots this region in the fundamental lattice. If full is False plots only the lower half. Note that the true
nature of this region is periodic.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((10, 10))

(continues on next page)

496 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: data[2, 2:8] = True
sage: data[2:5, 2] = True
sage: data[3, 3] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: plot(S) + plot(S.expand(), rgbcolor=(1, 0, 1), thickness=2)
Graphics object consisting of 46 graphics primitives

refine(condition=None, times=1)
Recursive function to refine the current tiling.

INPUT:

• condition (function, default None) – if not None, only keep tiles in the refinement which satisfy the
condition.

• times (int, default 1) – the number of times to refine; each refinement step halves the mesh size.

OUTPUT:

The refined PeriodicRegion.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False)
sage: S.ds()
(0.5, 0.25*I)
sage: S = S.refine()
sage: S.ds()
(0.25, 0.125*I)
sage: S = S.refine(2)
sage: S.ds()
(0.125, 0.0625*I)

verify(condition)
Given a condition that should hold for every line segment on the boundary, verify that it actually does so.

INPUT:

• condition (function) – a boolean-valued function on C.

OUTPUT:

True or False according to whether the condition holds for all lines on the boundary.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import␣
→˓PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1, 1] = True
sage: S = PeriodicRegion(CDF(1), CDF(I), data)
sage: S.border()

(continues on next page)

16.18. Regions in fundamental domains of period lattices 497

Elliptic curves, Release 9.8

(continued from previous page)

[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: condition = lambda z: z.real().abs()<1/2
sage: S.verify(condition)
False
sage: condition = lambda z: z.real().abs()<1
sage: S.verify(condition)
True

w1

w2

Modularity and 𝐿-series over Q.

16.19 Modular parametrization of elliptic curves over Q

By the work of Taylor–Wiles et al. it is known that there is a surjective morphism

𝜑𝐸 : 𝑋0(𝑁) → 𝐸.

from the modular curve 𝑋0(𝑁), where 𝑁 is the conductor of 𝐸. The map sends the cusp ∞ to the origin of 𝐸.

EXAMPLES:

sage: phi = EllipticCurve('11a1').modular_parametrization()
sage: phi
Modular parameterization from the upper half plane to Elliptic Curve defined by y^2 + y␣
→˓= x^3 - x^2 - 10*x - 20 over Rational Field
sage: phi(0.5+CDF(I))
(285684.320516... + 7.0...e-11*I : 1.526964169...e8 + 5.6...e-8*I : 1.00000000000000)
sage: phi.power_series(prec = 7)
(q^-2 + 2*q^-1 + 4 + 5*q + 8*q^2 + q^3 + 7*q^4 + O(q^5), -q^-3 - 3*q^-2 - 7*q^-1 - 13 -␣
→˓17*q - 26*q^2 - 19*q^3 + O(q^4))

AUTHORS:

• Chris Wuthrich (02/10): moved from ell_rational_field.py.

class sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization(E)
Bases: object

This class represents the modular parametrization of an elliptic curve

𝜑𝐸 : 𝑋0(𝑁) → 𝐸.

Evaluation is done by passing through the lattice representation of 𝐸.

EXAMPLES:

sage: phi = EllipticCurve('11a1').modular_parametrization()
sage: phi
Modular parameterization from the upper half plane to Elliptic Curve defined by y^2␣
→˓+ y = x^3 - x^2 - 10*x - 20 over Rational Field

498 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

curve()

Return the curve associated to this modular parametrization.

EXAMPLES:

sage: E = EllipticCurve('15a')
sage: phi = E.modular_parametrization()
sage: phi.curve() is E
True

map_to_complex_numbers(z, prec=None)
Evaluate self at a point 𝑧 ∈ 𝑋0(𝑁) where 𝑧 is given by a representative in the upper half plane, returning
a point in the complex numbers.

All computations are done with prec bits of precision. If prec is not given, use the precision of 𝑧. Use
self(z) to compute the image of z on the Weierstrass equation of the curve.

EXAMPLES:

sage: E = EllipticCurve('37a'); phi = E.modular_parametrization()
sage: tau = (sqrt(7)*I - 17)/74
sage: z = phi.map_to_complex_numbers(tau); z
0.929592715285395 - 1.22569469099340*I
sage: E.elliptic_exponential(z)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
sage: phi(tau)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)

power_series(prec=20)
Return the power series of this modular parametrization.

The curve must be a minimal model. The prec parameter determines the number of significant terms. This
means that X will be given up to O(q^(prec-2)) and Y will be given up to O(q^(prec-3)).

OUTPUT: A list of two Laurent series [X(x),Y(x)] of degrees -2, -3 respectively, which satisfy the equa-
tion of the elliptic curve. There are modular functions on Γ0(𝑁) where 𝑁 is the conductor.

The series should satisfy the differential equation

d𝑋

2𝑌 + 𝑎1𝑋 + 𝑎3
=
𝑓(𝑞) d𝑞

𝑞

where 𝑓 is self.curve().q_expansion().

EXAMPLES:

sage: E = EllipticCurve('389a1')
sage: phi = E.modular_parametrization()
sage: X,Y = phi.power_series(prec=10)
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^7␣
→˓+ O(q^8)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 -␣
→˓528*q^6 + O(q^7)
sage: X,Y = phi.power_series()
sage: X

(continues on next page)

16.19. Modular parametrization of elliptic curves over Q 499

Elliptic curves, Release 9.8

(continued from previous page)

q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^7␣
→˓+ 173*q^8 + 251*q^9 + 379*q^10 + 560*q^11 + 824*q^12 + 1199*q^13 + 1773*q^14␣
→˓+ 2548*q^15 + 3722*q^16 + 5374*q^17 + O(q^18)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 -␣
→˓528*q^6 - 861*q^7 - 1383*q^8 - 2218*q^9 - 3472*q^10 - 5451*q^11 - 8447*q^12 -␣
→˓13020*q^13 - 19923*q^14 - 30403*q^15 - 46003*q^16 + O(q^17)

The following should give 0, but only approximately:

sage: q = X.parent().gen()
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True

Note that below we have to change variable from 𝑥 to 𝑞:

sage: a1,_,a3,_,_ = E.a_invariants()
sage: f = E.q_expansion(17)
sage: q = f.parent().gen()
sage: f/q == (X.derivative()/(2*Y+a1*X+a3))
True

16.20 Modular symbols attached to elliptic curves over Q

To an elliptic curve 𝐸 over the rational numbers with conductor 𝑁 , one can associate a space of modular symbols of
level 𝑁 , because 𝐸 is known to be modular. The space is two-dimensional and contains a subspace on which complex
conjugation acts as multiplication by +1 and one on which it acts by −1.

There are three implementations of modular symbols, two within Sage and one in Cremona’s eclib library. One can
choose here which one is used.

Associated to 𝐸 there is a canonical generator in each space. They are maps [.]+ and [.]−, both Q → Q. They are
normalized such that

[𝑟]+Ω+ + [𝑟]−Ω− =

∫︁ 𝑟

∞
2𝜋𝑖𝑓(𝑧)𝑑𝑧

where 𝑓 is the newform associated to the isogeny class of 𝐸 and Ω+ is the smallest positive period of the Néron
differential of 𝐸 and Ω− is the smallest positive purely imaginary period. Note that it depends on 𝐸 rather than on its
isogeny class.

From eclib version v20161230, both plus and minus symbols are available and are correctly normalized. In the
Sage implementation, the computation of the space provides initial generators which are not necessarily correctly
normalized; here we implement two methods that try to find the correct scaling factor.

Modular symbols are used to compute 𝑝-adic 𝐿-functions.

EXAMPLES:

sage: E = EllipticCurve("19a1")
sage: m = E.modular_symbol()
sage: m(0)
1/3
sage: m(1/17)

(continues on next page)

500 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

-2/3
sage: m2 = E.modular_symbol(-1, implementation="sage")
sage: m2(0)
0
sage: m2(1/5)
1/2

sage: V = E.modular_symbol_space()
sage: V
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2 for␣
→˓Gamma_0(19) of weight 2 with sign 1 over Rational Field
sage: V.q_eigenform(30)
q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + 3*q^11 + 4*q^12 - 4*q^13 - 6*q^15 + 4*q^16 - 3*q^
→˓17 + q^19 - 6*q^20 + 2*q^21 + 4*q^25 + 4*q^27 + 2*q^28 + 6*q^29 + O(q^30)

For more details on modular symbols consult the following

REFERENCES:

• [MTT1986]

• [Cre1997]

• [SW2013]

AUTHORS:

• William Stein (2007): first version

• Chris Wuthrich (2008): add scaling and reference to eclib

• John Cremona (2016): reworked eclib interface

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol

Bases: SageObject

A modular symbol attached to an elliptic curve, which is the mapQ → Q obtained by sending 𝑟 to the normalized
symmetrized (or anti-symmetrized) integral ∞ to 𝑟.

This is as defined in [MTT1986], but normalized to depend on the curve and not only its isogeny class as in
[SW2013].

See the documentation of E.modular_symbol() in elliptic curves over the rational numbers for help.

base_ring()

Return the base ring for this modular symbol.

EXAMPLES:

sage: m = EllipticCurve('11a1').modular_symbol()
sage: m.base_ring()
Rational Field

elliptic_curve()

Return the elliptic curve of this modular symbol.

EXAMPLES:

16.20. Modular symbols attached to elliptic curves over Q 501

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

sage: m = EllipticCurve('11a1').modular_symbol()
sage: m.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sign()

Return the sign of this elliptic curve modular symbol.

EXAMPLES:

sage: m = EllipticCurve('11a1').modular_symbol()
sage: m.sign()
1
sage: m = EllipticCurve('11a1').modular_symbol(sign=-1, implementation="sage")
sage: m.sign()
-1

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E, sign, nap=1000)
Bases: ModularSymbol

Modular symbols attached to 𝐸 using eclib.

Note that the normalization used within eclib differs from the normalization chosen here by a factor of 2 in
the case of elliptic curves with negative discriminant (with one real component) since the convention there is to
write the above integral as [𝑟]+𝑥 + [𝑟]−𝑦𝑖, where the lattice is ⟨2𝑥, 𝑥+ 𝑦𝑖⟩, so that Ω+ = 2𝑥 and Ω− = 2𝑦𝑖.
We allow for this below.

INPUT:

• E – an elliptic curve

• sign – an integer, -1 or 1

• nap – (int, default 1000): the number of ap of E to use in determining the normalisation of the modular
symbols.

EXAMPLES:

sage: import sage.schemes.elliptic_curves.ell_modular_symbols
sage: E = EllipticCurve('11a1')
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined␣
→˓by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: M(0)
1/5
sage: E = EllipticCurve('11a2')
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M(0)
1

This is a rank 1 case with vanishing positive twists:

sage: E = EllipticCurve('121b1')
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M(0)
0
sage: M(1/7)

(continues on next page)

502 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

1/2

sage: M = EllipticCurve('121d1').modular_symbol(implementation="eclib")
sage: M(0)
2

sage: E = EllipticCurve('15a1')
sage: [C.modular_symbol(implementation="eclib")(0) for C in E.isogeny_class()]
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]

Since trac ticket #10256, the interface for negative modular symbols in eclib is available:

sage: E = EllipticCurve('11a1')
sage: Mplus = E.modular_symbol(+1); Mplus
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined␣
→˓by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mplus(1/i) for i in [1..11]]
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
sage: Mminus = E.modular_symbol(-1); Mminus
Modular symbol with sign -1 over Rational Field attached to Elliptic Curve defined␣
→˓by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mminus(1/i) for i in [1..11]]
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]

The scaling factor relative to eclib’s normalization is 1/2 for curves of negative discriminant:

sage: [E.discriminant() for E in cremona_curves([14])]
[-21952, 941192, -1835008, -28, 25088, 98]
sage: [E.modular_symbol()._scaling for E in cremona_curves([14])]
[1/2, 1, 1/2, 1/2, 1, 1]

TESTS (for trac ticket #10236):

sage: E = EllipticCurve('11a1')
sage: m = E.modular_symbol(implementation="eclib")
sage: m(1/7)
7/10
sage: m(0)
1/5

If nap is too small, the normalization in eclib used to be incorrect (see trac ticket #31317), but since eclib
version v20210310 the value of nap is increased automatically by eclib:

sage: from sage.schemes.elliptic_curves.ell_modular_symbols import␣
→˓ModularSymbolECLIB
sage: E = EllipticCurve('1590g1')
sage: m = ModularSymbolECLIB(E, sign=+1, nap=300)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

These values are correct, and increasing nap has no effect. The correct values may verified by the numerical
implementation:

16.20. Modular symbols attached to elliptic curves over Q 503

https://trac.sagemath.org/10256
https://trac.sagemath.org/10236
https://trac.sagemath.org/31317

Elliptic curves, Release 9.8

sage: m = ModularSymbolECLIB(E, sign=+1, nap=400)
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]
sage: m = E.modular_symbol(implementation='num')
sage: [m(a/5) for a in [1..4]]
[13/2, -13/2, -13/2, 13/2]

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E, sign, normal-
ize='L_ratio')

Bases: ModularSymbol

Modular symbols attached to 𝐸 using sage.

INPUT:

• E – an elliptic curve

• sign – an integer, -1 or 1

• normalize – either ‘L_ratio’ (default), ‘period’, or ‘none’; For ‘L_ratio’, the modular symbol is correctly
normalized by comparing it to the quotient of 𝐿(𝐸, 1) by the least positive period for the curve and some
small twists. The normalization ‘period’ uses the integral_period_map for modular symbols and is known
to be equal to the above normalization up to the sign and a possible power of 2. For ‘none’, the modular
symbol is almost certainly not correctly normalized, i.e. all values will be a fixed scalar multiple of what
they should be. But the initial computation of the modular symbol is much faster, though evaluation of it
after computing it won’t be any faster.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: import sage.schemes.elliptic_curves.ell_modular_symbols
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1)
sage: M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined␣
→˓by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: M(0)
1/5
sage: E = EllipticCurve('11a2')
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1)
sage: M(0)
1
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,-1)
sage: M(1/3)
1/2

This is a rank 1 case with vanishing positive twists. The modular symbol is adjusted by -2:

sage: E = EllipticCurve('121b1')
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,-1,
→˓normalize='L_ratio')
sage: M(1/3)
1
sage: M._scaling
1

sage: M = EllipticCurve('121d1').modular_symbol(implementation="sage")
(continues on next page)

504 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: M(0)
2
sage: M = EllipticCurve('121d1').modular_symbol(implementation="sage", normalize=
→˓'none')
sage: M(0)
1

sage: E = EllipticCurve('15a1')
sage: [C.modular_symbol(implementation="sage", normalize='L_ratio')(0) for C in E.
→˓isogeny_class()]
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]
sage: [C.modular_symbol(implementation="sage", normalize='period')(0) for C in E.
→˓isogeny_class()]
[1/8, 1/16, 1/8, 1/4, 1/16, 1/32, 1/4, 1/2]
sage: [C.modular_symbol(implementation="sage", normalize='none')(0) for C in E.
→˓isogeny_class()]
[1, 1, 1, 1, 1, 1, 1, 1]

sage.schemes.elliptic_curves.ell_modular_symbols.modular_symbol_space(E, sign, base_ring,
bound=None)

Creates the space of modular symbols of a given sign over a give base_ring, attached to the isogeny class of the
elliptic curve E.

INPUT:

• E – an elliptic curve over Q

• sign – integer, -1, 0, or 1

• base_ring – ring

• bound – (default: None) maximum number of Hecke operators to use to cut out modular symbols factor.
If None, use enough to provably get the correct answer.

OUTPUT: a space of modular symbols

EXAMPLES:

sage: import sage.schemes.elliptic_curves.ell_modular_symbols
sage: E = EllipticCurve('11a1')
sage: M = sage.schemes.elliptic_curves.ell_modular_symbols.modular_symbol_space(E,-
→˓1,GF(37))
sage: M
Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over␣
→˓Finite Field of size 37

16.20. Modular symbols attached to elliptic curves over Q 505

Elliptic curves, Release 9.8

16.21 Modular symbols by numerical integration

We describe here the method for computing modular symbols by numerical approximations of the integral of the
modular form on a path between cusps.

More precisely, let 𝐸 be an elliptic curve and 𝑓 the newform associated to the isogeny class of 𝐸. If

𝜆(𝑟 → 𝑟′) = 2𝜋𝑖

∫︁ 𝑟′

𝑟

𝑓(𝜏)𝑑𝜏

then the modular symbol [𝑟]+ is defined as the quotient of the real part of 𝜆(∞ → 𝑟) by the least positive real period
of 𝐸. Similarly for the negative modular symbol, it is the quotient of the imaginary part of the above by the smallest
positive imaginary part of a period on the imaginary axis.

The theorem of Manin-Drinfeld shows that the modular symbols are rational numbers with small denominator. They are
used for the computation of special values of the L-function of𝐸 twisted by Dirichlet characters and for the computation
of 𝑝-adic L-functions.

ALGORITHM:

The implementation of modular symbols in eclib and directly in sage uses the algorithm described in Cremona’s book
[Cre1997] and Stein’s book [St2007]. First the space of all modular symbols of the given level is computed, then the
space corresponding to the given newform is determined. Even if these initial steps may take a while, the evaluation
afterwards is instantaneous. All computations are done with rational numbers and hence are exact.

Instead the method used here (see [Wu2018] for details) is by evaluating the above integrals 𝜆(𝑟 → 𝑟′) by numerical
approximation. Since we know precise bounds on the denominator, we can make rigorous estimates on the error to
guarantee that the result is proven to be the correct rational number.

The paths over which we integrate are split up and Atkin-Lehner operators are used to compute the badly converging
part of the integrals by using the Fourier expansion at other cusps than ∞.

Note: There is one assumption for the correctness of these computations: The Manin constant for the 𝑋0-optimal
curve should be 1 if the curve lies outside the Cremona tables. This is known for all curves in the Cremona table, but
only conjectured for general curves.

EXAMPLES:

The most likely usage for the code is through the functions modular_symbol with implementation set to “num” and
through modular_symbol_numerical:

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation = "num")
sage: M(0)
0
sage: M(1/123)
4
sage: Mn = E.modular_symbol_numerical(sign=-1, prec=30)
sage: Mn(3/123) # abs tol 1e-11
3.00000000000018

In more details. A numerical modular symbols M is created from an elliptic curve with a chosen sign (though the other
sign will also be accessible, too):

sage: E = EllipticCurve([101,103])
sage: E.conductor()

(continues on next page)

506 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

35261176
sage: M = E.modular_symbol(implementation="num", sign=-1)
sage: M
Numerical modular symbol attached to Elliptic Curve defined by y^2 = x^3 + 101*x + 103␣
→˓over Rational Field

We can then compute the value [13/17]− and [1/17]+ by calling the function M. The value of [0]+ = 0 tells us that the
rank of this curve is positive:

sage: M(13/17)
-1/2
sage: M(1/17,sign=+1)
-3
sage: M(0, sign=+1)
0

One can compute the numerical approximation to these rational numbers to any proven binary precision:

sage: M.approximative_value(13/17, prec=2) #abs tol 1e-4
-0.500003172770455
sage: M.approximative_value(13/17, prec=4) #abs tol 1e-6
-0.500000296037388
sage: M.approximative_value(0, sign=+1, prec=6) #abs tol 1e-8
0.000000000000000

There are a few other things that one can do with M. The Manin symbol 𝑀(𝑐 : 𝑑) for a point (𝑐 : 𝑑) in the projective
line can be computed.:

sage: M.manin_symbol(1,5)
-1

In some cases useful, there is a function that returns all [𝑎/𝑚]+ for a fixed denominator 𝑚. This is rather quicker for
small 𝑚 than computing them individually:

sage: M.all_values_for_one_denominator(7)
{1/7: 0, 2/7: 3/2, 3/7: 3/2, 4/7: -3/2, 5/7: -3/2, 6/7: 0}

Finally a word of warning. The algorithm is fast when the cusps involved are unitary. If the curve is semistable, all
cusps are unitary. But rational numbers with a prime 𝑝 dividing the denominator once, but the conductor more than
once, are very difficult. For instance for the above example, a seemingly harmless command like M(1/2) would take a
very very long time to return a value. However it is possible to compute them for smaller conductors:

sage: E = EllipticCurve("664a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(1/2)
0

The problem with non-unitary cusps is dealt with rather easily when one can twist to a semistable curve, like in this
example:

sage: C = EllipticCurve("11a1")
sage: E = C.quadratic_twist(101)
sage: M = E.modular_symbol(implementation="num")

(continues on next page)

16.21. Modular symbols by numerical integration 507

Elliptic curves, Release 9.8

(continued from previous page)

sage: M(1/101)
41

AUTHORS:

• Chris Wuthrich (2013-16)

class sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical

Bases: object

This class assigning to an elliptic curve over Q a modular symbol. Unlike the other implementations this class
does not precompute a basis for this space. Instead at each call, it evaluates the integral using numerical approx-
imation. All bounds are very strictly implemented and the output is a correct proven rational number.

INPUT:

• E – an elliptic curve over the rational numbers.

• sign – either -1 or +1 (default). This sets the default value of sign throughout the class. Both are still
accessible.

OUTPUT: a modular symbol

EXAMPLES:

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(0)
0
sage: M(77/57)
-1
sage: M(33/37, -1)
2
sage: M = E.modular_symbol(sign=-1, implementation="num")
sage: M(2/7)
2

sage: from sage.schemes.elliptic_curves.mod_sym_num \
....: import ModularSymbolNumerical
sage: M = ModularSymbolNumerical(EllipticCurve("11a1"))
sage: M(1/3, -1)
1/2
sage: M(1/2)
-4/5

all_values_for_one_denominator(m, sign=0)
Given an integer m and a sign, this returns the modular symbols [𝑎/𝑚] for all 𝑎 coprime to𝑚 using partial
sums. This is much quicker than computing them one by one.

This will only work if 𝑚 is relatively small and if the cusps 𝑎/𝑚 are unitary.

INPUT:

• m – a natural number

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

OUTPUT: a dictionary of fractions with denominator 𝑚 giving rational numbers.

EXAMPLES:

508 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve('5077a1')
sage: M = E.modular_symbol(implementation="num")
sage: M.all_values_for_one_denominator(7)
{1/7: 3, 2/7: 0, 3/7: -3, 4/7: -3, 5/7: 0, 6/7: 3}
sage: [M(a/7) for a in [1..6]]
[3, 0, -3, -3, 0, 3]
sage: M.all_values_for_one_denominator(3,-1)
{1/3: 4, 2/3: -4}

sage: E = EllipticCurve('11a1')
sage: M = E.modular_symbol(implementation="num")
sage: M.all_values_for_one_denominator(12)
{1/12: 1/5, 5/12: -23/10, 7/12: -23/10, 11/12: 1/5}
sage: M.all_values_for_one_denominator(12, -1)
{1/12: 0, 5/12: 1/2, 7/12: -1/2, 11/12: 0}

sage: E = EllipticCurve('20a1')
sage: M = E.modular_symbol(implementation="num")
sage: M.all_values_for_one_denominator(4)
{1/4: 0, 3/4: 0}
sage: M.all_values_for_one_denominator(8)
{1/8: 1/2, 3/8: -1/2, 5/8: -1/2, 7/8: 1/2}

approximative_value(r, sign=0, prec=20, use_twist=True)
The numerical modular symbol evaluated at rational.

It returns a real number, which should be equal to a rational number to the given binary precision prec. In
practice the precision is often much higher. See the examples below.

INPUT:

• r – a rational (or integer)

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

• prec – an integer (default 20)

• use_twist – True (default) allows to use a quadratic twist of the curve to lower the conductor.

OUTPUT: a real number

EXAMPLES:

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.approximative_value(123/567) # abs tol 1e-11
-4.00000000000845
sage: M.approximative_value(123/567,prec=2) # abs tol 1e-9
-4.00002815242902

sage: E = EllipticCurve([11,88])
sage: E.conductor()
1715296
sage: M = E.modular_symbol(implementation="num")
sage: M.approximative_value(0,prec=2) # abs tol 1e-11
-0.0000176374317982166
sage: M.approximative_value(1/7,prec=2) # abs tol 1e-11

(continues on next page)

16.21. Modular symbols by numerical integration 509

Elliptic curves, Release 9.8

(continued from previous page)

0.999981178147778
sage: M.approximative_value(1/7,prec=10) # abs tol 1e-11
0.999999972802649

clear_cache()

Clear the cached values in all methods of this class

EXAMPLES:

sage: E = EllipticCurve("11a1")
sage: M = E.modular_symbol(implementation="num")
sage: M(0)
1/5
sage: M.clear_cache()
sage: M(0)
1/5

elliptic_curve()

Return the elliptic curve of this modular symbol.

EXAMPLES:

sage: E = EllipticCurve("15a4")
sage: M = E.modular_symbol(implementation="num")
sage: M.elliptic_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational␣
→˓Field

manin_symbol(u, v, sign=0)
Given a pair (𝑢, 𝑣) presenting a point in P1(Z/𝑁Z) and hence a coset of Γ0(𝑁), this computes the value
of the Manin symbol 𝑀(𝑢 : 𝑣).

INPUT:

• u – an integer

• v – an integer such that (𝑢 : 𝑣) is a projective point modulo 𝑁

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: M = E.modular_symbol(implementation="num")
sage: M.manin_symbol(1,3)
-1/2
sage: M.manin_symbol(1,3, sign=-1)
-1/2
sage: M.manin_symbol(1,5)
1
sage: M.manin_symbol(1,5)
1

sage: E = EllipticCurve('14a1')
sage: M = E.modular_symbol(implementation="num")

(continues on next page)

510 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: M.manin_symbol(1,2)
-1/2
sage: M.manin_symbol(17,6)
-1/2
sage: M.manin_symbol(-1,12)
-1/2

transportable_symbol(r, rr, sign=0)
Return the symbol [𝑟′]+− [𝑟]+ where 𝑟′ = 𝛾(𝑟) for some 𝛾 ∈ Γ0(𝑁). These symbols can be computed by
transporting the path into the upper half plane close to one of the unitary cusps. Here we have implemented
it only to move close to 𝑖∞ and 0.

INPUT:

• r and rr – two rational numbers

• sign – optional either +1 or -1, or 0 (default), in which case the sign passed to the class is taken.

OUTPUT: a rational number

EXAMPLES:

sage: E = EllipticCurve("11a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.transportable_symbol(0/1,-2/7)
-1/2

sage: E = EllipticCurve("37a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.transportable_symbol(0/1,-1/19)
0
sage: M.transportable_symbol(0/1,-1/19,-1)
0

sage: E = EllipticCurve("5077a1")
sage: M = E.modular_symbol(implementation="num")
sage: M.transportable_symbol(0/1,-35/144)
-3
sage: M.transportable_symbol(0/1,-35/144,-1)
0
sage: M.transportable_symbol(0/1, -7/31798)
0
sage: M.transportable_symbol(0/1, -7/31798, -1)
-5

16.21. Modular symbols by numerical integration 511

Elliptic curves, Release 9.8

16.22 𝐿-series for elliptic curves

AUTHORS:

• Simon Spicer (2014-08-15): Added LFunctionZeroSum class interface method

• Jeroen Demeyer (2013-10-17): Compute L series with arbitrary precision instead of floats.

• William Stein et al. (2005 and later)

class sage.schemes.elliptic_curves.lseries_ell.Lseries_ell(E)
Bases: SageObject

An elliptic curve 𝐿-series.

L1_vanishes()

Returns whether or not 𝐿(𝐸, 1) = 0. The result is provably correct if the Manin constant of the associated
optimal quotient is <= 2. This hypothesis on the Manin constant is true for all curves of conductor <= 40000
(by Cremona) and all semistable curves (i.e., squarefree conductor).

ALGORITHM: see L_ratio().

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.lseries().L1_vanishes()
False
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.lseries().L1_vanishes()
False
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve))
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny)
sage: E.lseries().L1_vanishes()
False

AUTHORS: William Stein, 2005-04-20.

L_ratio()

Return the ratio 𝐿(𝐸, 1)/Ω as an exact rational number.

The result is provably correct if the Manin constant of the associated optimal quotient is ≤ 2. This hypoth-
esis on the Manin constant is true for all semistable curves (i.e., squarefree conductor), by a theorem of
Mazur from his Rational Isogenies of Prime Degree paper.

EXAMPLES:

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.lseries().L_ratio()
1/5
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)

(continues on next page)

512 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.lseries().L_ratio()
1/25
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.lseries().L_ratio()
0
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.lseries().L_ratio()
0
sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve))
sage: E.lseries().L_ratio()
0
sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny)
sage: E.lseries().L_ratio()
1
sage: E = EllipticCurve(RationalField(), [1, 0, 0, 1/24624, 1/886464])
sage: E.lseries().L_ratio()
2

See trac ticket #3651 and trac ticket #15299:

sage: EllipticCurve([0,0,0,-193^2,0]).sha().an()
4
sage: EllipticCurve([1, 0, 1, -131, 558]).sha().an() # long time
1.00000000000000

ALGORITHM: Compute the root number. If it is -1 then𝐿(𝐸, 𝑠) vanishes to odd order at 1, hence vanishes.
If it is +1, use a result about modular symbols and Mazur’s Rational Isogenies paper to determine a provably
correct bound (assuming Manin constant is <= 2) so that we can determine whether 𝐿(𝐸, 1) = 0.

AUTHORS: William Stein, 2005-04-20.

at1(k=None, prec=None)
Compute 𝐿(𝐸, 1) using 𝑘 terms of the series for 𝐿(𝐸, 1) as explained in Section 7.5.3 of Henri Cohen’s
book A Course in Computational Algebraic Number Theory. If the argument 𝑘 is not specified, then it
defaults to

√
𝑁 , where 𝑁 is the conductor.

INPUT:

• k – number of terms of the series. If zero or None, use 𝑘 =
√
𝑁 , where 𝑁 is the conductor.

• prec – numerical precision in bits. If zero or None, use a reasonable automatic default.

OUTPUT:

A tuple of real numbers (L, err) where L is an approximation for 𝐿(𝐸, 1) and err is a bound on the
error in the approximation.

This function is disjoint from the PARI pari:elllseries command, which is for a similar purpose. To use that
command (via the PARI C library), simply type E.pari_mincurve().elllseries(1).

ALGORITHM:

• Compute the root number eps. If it is -1, return 0.

• Compute the Fourier coefficients 𝑎𝑛, for 𝑛 up to and including 𝑘.

16.22. 𝐿-series for elliptic curves 513

https://trac.sagemath.org/3651
https://trac.sagemath.org/15299
https://pari.math.u-bordeaux.fr/dochtml/help/elllseries

Elliptic curves, Release 9.8

• Compute the sum

2 ·
𝑘∑︁

𝑛=1

𝑎𝑛
𝑛

· exp(−2 * 𝑝𝑖 * 𝑛/
√
𝑁),

where 𝑁 is the conductor of 𝐸.

• Compute a bound on the tail end of the series, which is

2𝑒−2𝜋(𝑘+1)/
√
𝑁/(1 − 𝑒−2𝜋/

√
𝑁).

For a proof see [Grigov-Jorza-Patrascu-Patrikis-Stein].

EXAMPLES:

sage: L, err = EllipticCurve('11a1').lseries().at1()
sage: L, err
(0.253804, 0.000181444)
sage: parent(L)
Real Field with 24 bits of precision
sage: E = EllipticCurve('37b')
sage: E.lseries().at1()
(0.7257177, 0.000800697)
sage: E.lseries().at1(100)
(0.7256810619361527823362055410263965487367603361763, 1.52469e-45)
sage: L,err = E.lseries().at1(100, prec=128)
sage: L
0.72568106193615278233620554102639654873
sage: parent(L)
Real Field with 128 bits of precision
sage: err
1.70693e-37
sage: parent(err)
Real Field with 24 bits of precision and rounding RNDU

Rank 1 through 3 elliptic curves:

sage: E = EllipticCurve('37a1')
sage: E.lseries().at1()
(0.0000000, 0.000000)
sage: E = EllipticCurve('389a1')
sage: E.lseries().at1()
(-0.001769566, 0.00911776)
sage: E = EllipticCurve('5077a1')
sage: E.lseries().at1()
(0.0000000, 0.000000)

deriv_at1(k=None, prec=None)
Compute 𝐿′(𝐸, 1) using 𝑘 terms of the series for 𝐿′(𝐸, 1), under the assumption that 𝐿(𝐸, 1) = 0.

The algorithm used is from Section 7.5.3 of Henri Cohen’s book A Course in Computational Algebraic
Number Theory.

INPUT:

• k – number of terms of the series. If zero or None, use 𝑘 =
√
𝑁 , where 𝑁 is the conductor.

• prec – numerical precision in bits. If zero or None, use a reasonable automatic default.

514 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

A tuple of real numbers (L1, err) where L1 is an approximation for 𝐿′(𝐸, 1) and err is a bound on the
error in the approximation.

Warning: This function only makes sense if 𝐿(𝐸) has positive order of vanishing at 1, or equivalently
if 𝐿(𝐸, 1) = 0.

ALGORITHM:

• Compute the root number eps. If it is 1, return 0.

• Compute the Fourier coefficients 𝑎𝑛, for 𝑛 up to and including 𝑘.

• Compute the sum

2 ·
𝑘∑︁

𝑛=1

(𝑎𝑛/𝑛) · 𝐸1(2𝜋𝑛/
√
𝑁),

where 𝑁 is the conductor of 𝐸, and 𝐸1 is the exponential integral function.

• Compute a bound on the tail end of the series, which is

2𝑒−2𝜋(𝑘+1)/
√
𝑁/(1 − 𝑒−2𝜋/

√
𝑁).

For a proof see [Grigorov-Jorza-Patrascu-Patrikis-Stein]. This is exactly the same as the bound for the
approximation to 𝐿(𝐸, 1) produced by at1().

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.lseries().deriv_at1()
(0.3059866, 0.000801045)
sage: E.lseries().deriv_at1(100)
(0.3059997738340523018204836833216764744526377745903, 1.52493e-45)
sage: E.lseries().deriv_at1(1000)
(0.305999773834052301820483683321676474452637774590771998..., 2.75031e-449)

With less numerical precision, the error is bounded by numerical accuracy:

sage: L,err = E.lseries().deriv_at1(100, prec=64)
sage: L,err
(0.305999773834052302, 5.55318e-18)
sage: parent(L)
Real Field with 64 bits of precision
sage: parent(err)
Real Field with 24 bits of precision and rounding RNDU

Rank 2 and rank 3 elliptic curves:

sage: E = EllipticCurve('389a1')
sage: E.lseries().deriv_at1()
(0.0000000, 0.000000)
sage: E = EllipticCurve((1, 0, 1, -131, 558)) # curve 59450i1
sage: E.lseries().deriv_at1()

(continues on next page)

16.22. 𝐿-series for elliptic curves 515

Elliptic curves, Release 9.8

(continued from previous page)

(-0.00010911444, 0.142428)
sage: E.lseries().deriv_at1(4000)
(6.990...e-50, 1.31318e-43)

dokchitser(prec=53, max_imaginary_part=0, max_asymp_coeffs=40, algorithm=None)
Return an interface for computing with the 𝐿-series of this elliptic curve.

This provides a way to compute Taylor expansions and higher derivatives of 𝐿-series.

INPUT:

• prec – optional integer (default 53) bits precision

• max_imaginary_part – optional real number (default 0)

• max_asymp_coeffs – optional integer (default 40)

• algorithm – optional string: ‘gp’ (default), ‘pari’ or ‘magma’

If algorithm is “gp”, this returns an interface to Tim Dokchitser’s program for computing with the L-
functions.

If algorithm is “pari”, this returns instead an interface to Pari’s own general implementation of L-functions.

Note: If algorithm=’magma’, then the precision is in digits rather than bits and the object returned is a
Magma L-series, which has different functionality from the Sage L-series.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.lseries().dokchitser()
sage: L(2)
0.381575408260711
sage: L = E.lseries().dokchitser(algorithm='magma') # optional - magma
sage: L.Evaluate(2) # optional - magma
0.38157540826071121129371040958008663667709753398892116

If the curve has too large a conductor, it is not possible to compute with the 𝐿-series using this command.
Instead a RuntimeError is raised:

sage: e = EllipticCurve([1,1,0,-63900,-1964465932632])
sage: L = e.lseries().dokchitser(15, algorithm='gp')
Traceback (most recent call last):
...
RuntimeError: unable to create L-series, due to precision or other limits in␣
→˓PARI

Using the “pari” algorithm:

sage: E = EllipticCurve('37a')
sage: L = E.lseries().dokchitser(algorithm="pari")
sage: L(2)
0.381575408260711

516 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

elliptic_curve()

Return the elliptic curve that this 𝐿-series is attached to.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.lseries()
sage: L.elliptic_curve ()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sympow(n, prec)
Return 𝐿(𝑆𝑦𝑚(𝑛)(𝐸, edge)) to prec digits of precision.

INPUT:

• n – integer

• prec – integer

OUTPUT:

• (string) – real number to prec digits of precision as a string.

Note: Before using this function for the first time for a given n, you may have to type sympow('-new_data
<n>'), where <n> is replaced by your value of n. This command takes a long time to run.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: a = E.lseries().sympow(2,16) # not tested - requires precomputing
→˓"sympow('-new_data 2')"
sage: a # not tested
'2.492262044273650E+00'
sage: RR(a) # not tested
2.49226204427365

sympow_derivs(n, prec, d)
Return 0-th to 𝑑-th derivatives of 𝐿(𝑆𝑦𝑚(𝑛)(𝐸, edge)) to prec digits of precision.

INPUT:

• n – integer

• prec – integer

• d – integer

OUTPUT:

• a string, exactly as output by sympow

Note: To use this function you may have to run a few commands like sympow('-new_data 1d2'), each
which takes a few minutes. If this function fails it will indicate what commands have to be run.

EXAMPLES:

16.22. 𝐿-series for elliptic curves 517

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: print(E.lseries().sympow_derivs(1,16,2)) # not tested -- requires␣
→˓precomputing "sympow('-new_data 2')"
sympow 1.018 RELEASE (c) Mark Watkins --- see README and COPYING for details
Minimal model of curve is [0,0,1,-1,0]
At 37: Inertia Group is C1 MULTIPLICATIVE REDUCTION
Conductor is 37
sp 1: Conductor at 37 is 1+0, root number is 1
sp 1: Euler factor at 37 is 1+1*x
1st sym power conductor is 37, global root number is -1
NT 1d0: 35
NT 1d1: 32
NT 1d2: 28
Maximal number of terms is 35
Done with small primes 1049
Computed: 1d0 1d1 1d2
Checked out: 1d1
1n0: 3.837774351482055E-01
1w0: 3.777214305638848E-01
1n1: 3.059997738340522E-01
1w1: 3.059997738340524E-01
1n2: 1.519054910249753E-01
1w2: 1.545605024269432E-01

taylor_series(a=1, prec=53, series_prec=6, var='z')
Return the Taylor series of this 𝐿-series about 𝑎 to the given precision (in bits) and the number of terms.

The output is a series in var, where you should view var as equal to 𝑠− 𝑎. Thus this function returns the
formal power series whose coefficients are 𝐿(𝑛)(𝑎)/𝑛!.

INPUT:

• a – complex number

• prec – integer, precision in bits (default 53)

• series_prec – integer (default 6)

• var – variable (default ‘z’)

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.lseries()
sage: L.taylor_series(series_prec=3) # abs tol 1e-14
-1.27685190980159e-23 + (7.23588070754027e-24)*z + 0.759316500288427*z^2 + O(z^
→˓3) # 32-bit
1.34667664606157e-19 + (-7.63157535163667e-20)*z + 0.759316500288427*z^2 + O(z^
→˓3) # 64-bit

twist_values(s, dmin, dmax)
Return values of 𝐿(𝐸, 𝑠, 𝜒𝑑) for each quadratic character 𝜒𝑑 for 𝑑min ≤ 𝑑 ≤ 𝑑max.

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:

518 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• s – complex numbers

• dmin – integer

• dmax – integer

OUTPUT:

• list of pairs (𝑑, 𝐿(𝐸, 𝑠, 𝜒𝑑))

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: vals = E.lseries().twist_values(1, -12, -4)
sage: vals[0][0]
-11
sage: vals[0][1] # abs tol 1e-8
1.47824342 + 0.0*I
sage: vals[1][0]
-8
sage: vals[1][1] # abs tol 1e-8
0.0 + 0.0*I
sage: vals[2][0]
-7
sage: vals[2][1] # abs tol 1e-8
1.85307619 + 0.0*I
sage: vals[3][0]
-4
sage: vals[3][1] # abs tol 1e-8
2.45138938 + 0.0*I
sage: F = E.quadratic_twist(-8)
sage: F.rank()
1
sage: F = E.quadratic_twist(-7)
sage: F.rank()
0

twist_zeros(n, dmin, dmax)
Return first 𝑛 real parts of nontrivial zeros of 𝐿(𝐸, 𝑠, 𝜒𝑑) for each quadratic character 𝜒𝑑 with 𝑑min ≤ 𝑑 ≤
𝑑max.

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:

• n – integer

• dmin – integer

• dmax – integer

OUTPUT:

• dict – keys are the discriminants 𝑑, and
values are list of corresponding zeros.

EXAMPLES:

16.22. 𝐿-series for elliptic curves 519

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: E.lseries().twist_zeros(3, -4, -3) # long time
{-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.
→˓45853219]}

values_along_line(s0, s1, number_samples)
Return values of 𝐿(𝐸, 𝑠) at number_samples equally-spaced sample points along the line from 𝑠0 to 𝑠1
in the complex plane.

Note: The 𝐿-series is normalized so that the center of the critical strip is 1.

INPUT:

• s0, s1 – complex numbers

• number_samples – integer

OUTPUT:

list – list of pairs (𝑠, 𝐿(𝐸, 𝑠)), where the 𝑠 are
equally spaced sampled points on the line from s0 to s1.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.lseries().values_along_line(1, 0.5 + 20*I, 5)
[(0.500000000, ...),
(0.400000000 + 4.00000000*I, 3.31920245 - 2.60028054*I),
(0.300000000 + 8.00000000*I, -0.886341185 - 0.422640337*I),
(0.200000000 + 12.0000000*I, -3.50558936 - 0.108531690*I),
(0.100000000 + 16.0000000*I, -3.87043288 - 1.88049411*I)]

zero_sums(N=None)
Return an LFunctionZeroSum class object for efficient computation of sums over the zeros of self.

This can be used to bound analytic rank from above without having to compute with the 𝐿-series directly.

INPUT:

• N – (default: None) If not None, the conductor of the elliptic curve attached to self. This is passable
so that zero sum computations can be done on curves for which the conductor has been precomputed.

OUTPUT:

A LFunctionZeroSum_EllipticCurve instance.

EXAMPLES:

sage: E = EllipticCurve("5077a")
sage: E.lseries().zero_sums()
Zero sum estimator for L-function attached to Elliptic Curve defined by y^2 + y␣
→˓= x^3 - 7*x + 6 over Rational Field

zeros(n)
Return the imaginary parts of the first 𝑛 nontrivial zeros on the critical line of the 𝐿-function in the upper
half plane, as 32-bit reals.

EXAMPLES:

520 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: E.lseries().zeros(2)
[0.000000000, 5.00317001]

sage: a = E.lseries().zeros(20) # long time
sage: point([(1,x) for x in a]) # graph (long time)
Graphics object consisting of 1 graphics primitive

AUTHORS: Uses Rubinstein’s L-functions calculator.

zeros_in_interval(x, y, stepsize)
Return the imaginary parts of (most of) the nontrivial zeros on the critical line ℜ(𝑠) = 1 with positive
imaginary part between x and y, along with a technical quantity for each.

INPUT:

• x– positive floating point number

• y– positive floating point number

• stepsize – positive floating point number

OUTPUT:

• list of pairs (zero, S(T)).

Rubinstein writes: The first column outputs the imaginary part of the zero, the second column a quantity
related to S(T) (it increases roughly by 2 whenever a sign change, i.e. pair of zeros, is missed). Higher up
the critical strip you should use a smaller stepsize so as not to miss zeros.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.lseries().zeros_in_interval(6, 10, 0.1) # long time
[(6.87039122, 0.248922780), (8.01433081, -0.140168533), (9.93309835, -0.
→˓129943029)]

16.23 Heegner points on elliptic curves over the rational numbers

AUTHORS:

• William Stein (August 2009)– most of the initial version

• Robert Bradshaw (July 2009) – an early version of some specific code

EXAMPLES:

sage: E = EllipticCurve('433a')
sage: P = E.heegner_point(-8,3)
sage: z = P.point_exact(201); z
(-4/3 : 1/9*a : 1)
sage: parent(z)
Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Number␣
→˓Field in a with defining polynomial x^2 - 12*x + 111
sage: parent(z[0]).discriminant()
-3
sage: E.quadratic_twist(-3).rank()

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 521

Elliptic curves, Release 9.8

(continued from previous page)

1
sage: K.<a> = QuadraticField(-8)
sage: K.factor(3)
(Fractional ideal (1/2*a + 1)) * (Fractional ideal (-1/2*a + 1))

Next try an inert prime:

sage: K.factor(5)
Fractional ideal (5)
sage: P = E.heegner_point(-8,5)
sage: z = P.point_exact(300)
sage: z[0].charpoly().factor()
(x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100)^2
sage: z[1].charpoly().factor()
x^12 - x^11 + 6/5*x^10 - 33/40*x^9 - 89/320*x^8 + 3287/800*x^7 - 5273/1600*x^6 + 993/
→˓4000*x^5 + 823/320*x^4 - 2424/625*x^3 + 12059/12500*x^2 + 3329/25000*x + 123251/250000
sage: f = P.x_poly_exact(300); f
x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100
sage: f.discriminant().factor()
-1 * 2^-9 * 5^-9 * 7^2 * 281^2 * 1021^2

We find some Mordell-Weil generators in the rank 1 case using Heegner points:

sage: E = EllipticCurve('43a'); P = E.heegner_point(-7)
sage: P.x_poly_exact()
x
sage: P.point_exact()
(0 : 0 : 1)

sage: E = EllipticCurve('997a')
sage: E.rank()
1
sage: E.heegner_discriminants_list(10)
[-19, -23, -31, -35, -39, -40, -52, -55, -56, -59]
sage: P = E.heegner_point(-19)
sage: P.x_poly_exact()
x - 141/49
sage: P.point_exact()
(141/49 : -162/343 : 1)

Here we find that the Heegner point generates a subgroup of index 3:

sage: E = EllipticCurve('92b1')
sage: E.heegner_discriminants_list(1)
[-7]
sage: P = E.heegner_point(-7); z = P.point_exact(); z
(0 : 1 : 1)
sage: E.regulator()
0.0498083972980648
sage: z.height()
0.448275575682583
sage: P = E(1,1); P # a generator
(1 : 1 : 1)

(continues on next page)

522 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: -3*P
(0 : 1 : 1)
sage: E.tamagawa_product()
3

The above is consistent with the following analytic computation:

sage: E.heegner_index(-7)
3.0000?

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphism(parent)
Bases: SageObject

An abstract automorphism of a ring class field.

Todo: make GaloisAutomorphism derive from GroupElement, so that one gets powers for free, etc.

domain()

Return the domain of this automorphism.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_
→˓conjugation()
sage: s.domain()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

parent()

Return the parent of this automorphism, which is a Galois group of a ring class field.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_
→˓conjugation()
sage: s.parent()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(parent)
Bases: GaloisAutomorphism

The complex conjugation automorphism of a ring class field.

EXAMPLES:

sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_
→˓conjugation()
sage: conj
Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of␣
→˓conductor 5
sage: conj.domain()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

16.23. Heegner points on elliptic curves over the rational numbers 523

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

order()

EXAMPLES:

sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_
→˓conjugation()
sage: conj.order()
2

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm(parent,
quadratic_form,
alpha=None)

Bases: GaloisAutomorphism

An automorphism of a ring class field defined by a quadratic form.

EXAMPLES:

sage: H = heegner_points(389,-20,3)
sage: sigma = H.ring_class_field().galois_group(H.quadratic_field())[0]; sigma
Class field automorphism defined by x^2 + 45*y^2
sage: type(sigma)
<class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm'>
sage: loads(dumps(sigma)) == sigma
True

alpha()

Optional data that specified element corresponding element of (𝒪𝐾/𝑐𝒪𝐾)*/(Z/𝑐Z)*, via class field the-
ory.

This is a generator of the ideal corresponding to this automorphism.

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on␣
→˓the database being installed or not)
[1, 1/2*sqrt_minus_52 + 1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 - 1]
sage: sorted([x^2 for x in orb]) # this is just for testing
[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, 1]

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on␣
→˓the database being installed or not)
[1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 1/2*sqrt_minus_52 - 1, 1/2*sqrt_
→˓minus_52 - 2, -1/2*sqrt_minus_52 - 2]
sage: sorted([x^2 for x in orb]) # just for testing
[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, -2*sqrt_minus_52 - 9, 2*sqrt_
→˓minus_52 - 9, 1]

ideal()

Return ideal of ring of integers of quadratic imaginary field corresponding to this quadratic form. This is
the ideal

524 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

𝐼 =
(︁
𝐴, −𝐵+𝑐

√
𝐷

2

)︁
𝒪𝐾 .

EXAMPLES:

sage: E = EllipticCurve('389a'); F= E.heegner_point(-20,3).ring_class_field()
sage: G = F.galois_group(F.quadratic_field())
sage: G[1].ideal()
Fractional ideal (2, 1/2*sqrt_minus_20 + 1)
sage: [s.ideal().gens() for s in G]
[(1, 3/2*sqrt_minus_20), (2, 3/2*sqrt_minus_20 - 1), (5, 3/2*sqrt_minus_20), (7,
→˓ 3/2*sqrt_minus_20 - 2)]

order()

Return the multiplicative order of this Galois group automorphism.

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: sorted([g.order() for g in G])
[1, 2, 4, 4]
sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: sorted([g.order() for g in G])
[1, 2, 3, 3, 6, 6]

p1_element()

Return element of the projective line corresponding to this automorphism.

This only makes sense if this automorphism is in the Galois group Gal(𝐾𝑐/𝐾1).

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: sorted([g.p1_element() for g in G])
[(0, 1), (1, 0), (1, 1), (1, 2)]

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: sorted([g.p1_element() for g in G])
[(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)]

quadratic_form()

Return reduced quadratic form corresponding to this Galois automorphism.

EXAMPLES:

sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.
→˓quadratic_field())[0]
sage: s.quadratic_form()
x^2 + 45*y^2

16.23. Heegner points on elliptic curves over the rational numbers 525

Elliptic curves, Release 9.8

class sage.schemes.elliptic_curves.heegner.GaloisGroup(field, base=Rational Field)
Bases: SageObject

A Galois group of a ring class field.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
12
sage: G.complex_conjugation()
Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of␣
→˓conductor 5

base_field()

Return the base field, which the field fixed by all the automorphisms in this Galois group.

EXAMPLES:

sage: x = heegner_point(37,-7,5)
sage: Kc = x.ring_class_field(); Kc
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: K = x.quadratic_field()
sage: G = Kc.galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.base_field()
Rational Field
sage: G.cardinality()
12
sage: Kc.absolute_degree()
12
sage: G = Kc.galois_group(K); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over␣
→˓Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_
→˓7 = 2.645751311064591?*I
sage: G.cardinality()
6
sage: G.base_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7␣
→˓= 2.645751311064591?*I
sage: G = Kc.galois_group(Kc); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over␣
→˓Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
1
sage: G.base_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

cardinality()

Return the cardinality of this Galois group.

EXAMPLES:

526 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

sage: E = EllipticCurve('389a')
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
12
sage: G = E.heegner_point(-7).ring_class_field().galois_group()
sage: G.cardinality()
2
sage: G = E.heegner_point(-7,55).ring_class_field().galois_group()
sage: G.cardinality()
120

complex_conjugation()

Return the automorphism of self determined by complex conjugation. The base field must be the rational
numbers.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
sage: G.complex_conjugation()
Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)]␣
→˓of conductor 5

field()

Return the ring class field that this Galois group acts on.

EXAMPLES:

sage: G = heegner_point(389,-7,5).ring_class_field().galois_group()
sage: G.field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

is_kolyvagin()

Return True if conductor 𝑐 is prime to the discriminant of the quadratic field, 𝑐 is squarefree and each prime
dividing 𝑐 is inert.

EXAMPLES:

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: K5.galois_group(K1).is_kolyvagin()
True
sage: K7 = heegner_points(389,-52,7).ring_class_field()
sage: K7.galois_group(K1).is_kolyvagin()
False
sage: K25 = heegner_points(389,-52,25).ring_class_field()
sage: K25.galois_group(K1).is_kolyvagin()
False

kolyvagin_generators()

Assuming this Galois group𝐺 is of the form𝐺 = Gal(𝐾𝑐/𝐾1), with 𝑐 = 𝑝1 . . . 𝑝𝑛 satisfying the Kolyvagin
hypothesis, this function returns noncanonical choices of lifts of generators for each of the cyclic factors of
𝐺 corresponding to the primes dividing 𝑐. Thus the 𝑖-th returned valued is an element of 𝐺 that maps to
the identity element of Gal(𝐾𝑝/𝐾1) for all 𝑝 ̸= 𝑝𝑖 and to a choice of generator of Gal(𝐾𝑝𝑖/𝐾1).

16.23. Heegner points on elliptic curves over the rational numbers 527

Elliptic curves, Release 9.8

OUTPUT:

• list of elements of self

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: G.kolyvagin_generators()
(Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2,)

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: G.kolyvagin_generators()
(Class field automorphism defined by 17*x^2 - 14*x*y + 22*y^2,)

lift_of_hilbert_class_field_galois_group()

Assuming this Galois group𝐺 is of the form𝐺 = Gal(𝐾𝑐/𝐾), this function returns noncanonical choices
of lifts of the elements of the quotient group Gal(𝐾1/𝐾).

OUTPUT:

• tuple of elements of self

EXAMPLES:

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: G = K5.galois_group(K5.quadratic_field())
sage: G.lift_of_hilbert_class_field_galois_group()
(Class field automorphism defined by x^2 + 325*y^2, Class field automorphism␣
→˓defined by 2*x^2 + 2*x*y + 163*y^2)
sage: G.cardinality()
12
sage: K5.quadratic_field().class_number()
2

class sage.schemes.elliptic_curves.heegner.HeegnerPoint(N, D, c)
Bases: SageObject

A Heegner point of level 𝑁 , discriminant 𝐷 and conductor 𝑐 is any point on a modular curve or elliptic curve
that is concocted in some way from a quadratic imaginary 𝜏 in the upper half plane with ∆(𝜏) = 𝐷𝑐 = ∆(𝑁𝜏).

EXAMPLES:

sage: x = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,13); x
Heegner point of level 389, discriminant -7, and conductor 13
sage: type(x)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
sage: loads(dumps(x)) == x
True

conductor()

Return the conductor of this Heegner point.

EXAMPLES:

528 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

sage: heegner_point(389,-7,5).conductor()
5
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P
Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of␣
→˓conductor 37
sage: P.conductor()
7
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.conductor()
5

discriminant()

Return the discriminant of the quadratic imaginary field associated to this Heegner point.

EXAMPLES:

sage: heegner_point(389,-7,5).discriminant()
-7
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P
Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of␣
→˓conductor 37
sage: P.discriminant()
-67
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.discriminant()
-7

level()

Return the level of this Heegner point, which is the level of the modular curve 𝑋0(𝑁) on which this is a
Heegner point.

EXAMPLES:

sage: heegner_point(389,-7,5).level()
389

quadratic_field()

Return the quadratic number field of discriminant 𝐷.

EXAMPLES:

sage: x = heegner_point(37,-7,5)
sage: x.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7␣
→˓= 2.645751311064591?*I

sage: E = EllipticCurve('37a'); P = E.heegner_point(-40)
sage: P.quadratic_field()
Number Field in sqrt_minus_40 with defining polynomial x^2 + 40 with sqrt_minus_
→˓40 = 6.324555320336759?*I
sage: P.quadratic_field() is P.quadratic_field()
True
sage: type(P.quadratic_field())
<class 'sage.rings.number_field.number_field.NumberField_quadratic_with_category
→˓'>

16.23. Heegner points on elliptic curves over the rational numbers 529

Elliptic curves, Release 9.8

quadratic_order()

Return the order in the quadratic imaginary field of conductor 𝑐, where 𝑐 is the conductor of this Heegner
point.

EXAMPLES:

sage: heegner_point(389,-7,5).quadratic_order()
Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with␣
→˓sqrt_minus_7 = 2.645751311064591?*I
sage: heegner_point(389,-7,5).quadratic_order().basis()
[1, 5*sqrt_minus_7]

sage: E = EllipticCurve('37a'); P = E.heegner_point(-40,11)
sage: P.quadratic_order()
Order in Number Field in sqrt_minus_40 with defining polynomial x^2 + 40 with␣
→˓sqrt_minus_40 = 6.324555320336759?*I
sage: P.quadratic_order().basis()
[1, 11*sqrt_minus_40]

ring_class_field()

Return the ring class field associated to this Heegner point. This is an extension 𝐾𝑐 over 𝐾, where 𝐾 is
the quadratic imaginary field and 𝑐 is the conductor associated to this Heegner point. This Heegner point
is defined over 𝐾𝑐 and the Galois group 𝐺𝑎𝑙(𝐾𝑐/𝐾) acts transitively on the Galois conjugates of this
Heegner point.

EXAMPLES:

sage: E = EllipticCurve('389a'); K.<a> = QuadraticField(-5)
sage: len(K.factor(5))
1
sage: len(K.factor(23))
2
sage: E.heegner_point(-7, 5).ring_class_field().degree_over_K()
6
sage: E.heegner_point(-7, 23).ring_class_field().degree_over_K()
22
sage: E.heegner_point(-7, 5*23).ring_class_field().degree_over_K()
132
sage: E.heegner_point(-7, 5^2).ring_class_field().degree_over_K()
30
sage: E.heegner_point(-7, 7).ring_class_field().degree_over_K()
7

class sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve(E, x, check=True)
Bases: HeegnerPoint

A Heegner point on a curve associated to an order in a quadratic imaginary field.

EXAMPLES:

sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
sage: type(P)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve'>

530 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

conjugates_over_K()

Return the 𝐺𝑎𝑙(𝐾𝑐/𝐾) conjugates of this Heegner point.

EXAMPLES:

sage: E = EllipticCurve('77a')
sage: y = E.heegner_point(-52,5); y
Heegner point of discriminant -52 and conductor 5 on elliptic curve of␣
→˓conductor 77
sage: print([z.quadratic_form() for z in y.conjugates_over_K()])
[77*x^2 + 52*x*y + 13*y^2, 154*x^2 + 206*x*y + 71*y^2, 539*x^2 + 822*x*y +␣
→˓314*y^2, 847*x^2 + 1284*x*y + 487*y^2, 1001*x^2 + 52*x*y + y^2, 1078*x^2 +␣
→˓822*x*y + 157*y^2, 1309*x^2 + 360*x*y + 25*y^2, 1309*x^2 + 2054*x*y + 806*y^2,
→˓ 1463*x^2 + 976*x*y + 163*y^2, 2233*x^2 + 2824*x*y + 893*y^2, 2387*x^2 +␣
→˓2054*x*y + 442*y^2, 3619*x^2 + 3286*x*y + 746*y^2]
sage: y.quadratic_form()
77*x^2 + 52*x*y + 13*y^2

curve()

Return the elliptic curve on which this is a Heegner point.

EXAMPLES:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: P.curve() is E
True

heegner_point_on_X0N()

Return Heegner point on 𝑋0(𝑁) that maps to this Heegner point on 𝐸.

EXAMPLES:

sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓37
sage: P.heegner_point_on_X0N()
Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_
→˓0(37)

kolyvagin_cohomology_class(n=None)
Return the Kolyvagin class associated to this Heegner point.

INPUT:

• 𝑛 – positive integer that divides the gcd of 𝑎𝑝 and 𝑝+ 1 for all 𝑝 dividing the conductor. If 𝑛 is None,
choose the largest valid 𝑛.

EXAMPLES:

sage: y = EllipticCurve('389a').heegner_point(-7,5)
sage: y.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])

16.23. Heegner points on elliptic curves over the rational numbers 531

Elliptic curves, Release 9.8

kolyvagin_point()

Return the Kolyvagin point corresponding to this Heegner point.

This is the point obtained by applying the Kolyvagin operator 𝐽𝑐𝐼𝑐 in the group ring of the Galois group to
this Heegner point. It is a point that defines an element of 𝐻1(𝐾,𝐸[𝑛]), under certain hypotheses on 𝑛.

EXAMPLES:

sage: E = EllipticCurve('37a1'); y = E.heegner_point(-7); y
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P = y.kolyvagin_point(); P
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-15
(-3.36910401903861e-16 - 2.22076195576076e-16*I : 3.33066907387547e-16 + 2.
→˓22076195576075e-16*I : 1.00000000000000)

map_to_complex_numbers(prec=53)
Return the point in the subfield 𝑀 of the complex numbers (well defined only modulo the period lattice)
corresponding to this Heegner point.

EXAMPLES:

We compute a nonzero Heegner point over a ring class field on a curve of rank 2:

sage: E = EllipticCurve('389a'); y = E.heegner_point(-7,5)
sage: y.map_to_complex_numbers()
1.49979679635196 + 0.369156204821526*I
sage: y.map_to_complex_numbers(100)
1.4997967963519640592142411892 + 0.36915620482152626830089145962*I
sage: y.map_to_complex_numbers(10)
1.5 + 0.37*I

Here we see that the Heegner point is 0 since it lies in the lattice:

sage: E = EllipticCurve('389a'); y = E.heegner_point(-7)
sage: y.map_to_complex_numbers(10)
0.0034 - 3.9*I
sage: y.map_to_complex_numbers()
4.71844785465692e-15 - 3.94347540310330*I
sage: E.period_lattice().basis()
(2.49021256085505, 1.97173770155165*I)
sage: 2*E.period_lattice().basis()[1]
3.94347540310330*I

You can also directly coerce to the complex field:

sage: E = EllipticCurve('389a'); y = E.heegner_point(-7)
sage: z = ComplexField(100)(y); z # real part approx. 0
-... - 3.9434754031032964088448153963*I
sage: E.period_lattice().elliptic_exponential(z)
(0.00000000000000000000000000000 : 1.0000000000000000000000000000 : 0.
→˓00000000000000000000000000000)

numerical_approx(prec=53, algorithm=None)
Return a numerical approximation to this Heegner point computed using a working precision of prec bits.

532 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Warning: The answer is not provably correct to prec bits! A priori, due to rounding and other errors,
it is possible that not a single digit is correct.

INPUT:

• prec – (default: None) the working precision

EXAMPLES:

sage: E = EllipticCurve('37a'); P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-15
(-3.36910401903861e-16 - 2.22076195576076e-16*I : 3.33066907387547e-16 + 2.
→˓22076195576075e-16*I : 1.00000000000000)
sage: P.numerical_approx(10) # expect random digits
(0.0030 - 0.0028*I : -0.0030 + 0.0028*I : 1.0)
sage: P.numerical_approx(100)[0] # expect random digits
8.4...e-31 + 6.0...e-31*I
sage: E = EllipticCurve('37a'); P = E.heegner_point(-40); P
Heegner point of discriminant -40 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(-3.15940603400359e-16 + 1.41421356237309*I : 1.00000000000000 - 1.
→˓41421356237309*I : 1.00000000000000)

A rank 2 curve, where all Heegner points of conductor 1 are 0:

sage: E = EllipticCurve('389a'); E.rank()
2
sage: P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 389
sage: P.numerical_approx()
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)

However, Heegner points of bigger conductor are often nonzero:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389
sage: numerical_approx(P)
(0.675507556926807 + 0.344749649302635*I : -0.377142931401887 + 0.
→˓843366227137146*I : 1.00000000000000)
sage: P.numerical_approx()
(0.6755075569268... + 0.3447496493026...*I : -0.3771429314018... + 0.
→˓8433662271371...*I : 1.00000000000000)
sage: E.heegner_point(-7, 11).numerical_approx()
(0.1795583794118... + 0.02035501750912...*I : -0.5573941377055... + 0.
→˓2738940831635...*I : 1.00000000000000)
sage: E.heegner_point(-7, 13).numerical_approx()
(1.034302915374... - 3.302744319777...*I : 1.323937875767... + 6.908264226850...
→˓*I : 1.00000000000000)

We find (probably) the defining polynomial of the 𝑥-coordinate of 𝑃 , which defines a class field. The shape
of the discriminant below is strong confirmation – but not proof – that this polynomial is correct:

16.23. Heegner points on elliptic curves over the rational numbers 533

Elliptic curves, Release 9.8

sage: f = P.numerical_approx(70)[0].algdep(6); f
1225*x^6 + 1750*x^5 - 21675*x^4 - 380*x^3 + 110180*x^2 - 129720*x + 48771
sage: f.discriminant().factor()
2^6 * 3^2 * 5^11 * 7^4 * 13^2 * 19^6 * 199^2 * 719^2 * 26161^2

point_exact(prec=53, algorithm='lll', var='a', optimize=False)
Return exact point on the elliptic curve over a number field defined by computing this Heegner point to the
given number of bits of precision. A ValueError is raised if the precision is clearly insignificant to define a
point on the curve.

Warning: It is in theory possible for this function to not raise a ValueError, find a point on the curve,
but via some very unlikely coincidence that point is not actually this Heegner point.

Warning: Currently we make an arbitrary choice of 𝑦-coordinate for the lift of the 𝑥-coordinate.

INPUT:

• prec – integer (default: 53)

• algorithm – see the description of the algorithm parameter for the x_poly_exact method.

• var – string (default: ‘a’)

• optimize – bool (default; False) if True, try to optimize defining polynomial for the number field
that the point is defined over. Off by default, since this can be very expensive.

EXAMPLES:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389
sage: z = P.point_exact(200, optimize=True)
sage: z[1].charpoly()
x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 -␣
→˓483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 +␣
→˓1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/
→˓367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625
sage: f = P.numerical_approx(500)[1].algdep(12); f / f.leading_coefficient()
x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 -␣
→˓483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 +␣
→˓1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/
→˓367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625

sage: E = EllipticCurve('5077a')
sage: P = E.heegner_point(-7)
sage: P.point_exact(prec=100)
(0 : 1 : 0)

quadratic_form()

Return the integral primitive positive definite binary quadratic form associated to this Heegner point.

EXAMPLES:

534 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: EllipticCurve('389a').heegner_point(-7, 5).quadratic_form()
389*x^2 + 147*x*y + 14*y^2

sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2

satisfies_kolyvagin_hypothesis(n=None)
Return True if this Heegner point and 𝑛 satisfy the Kolyvagin hypothesis, i.e., that each prime dividing the
conductor 𝑐 of self is inert in K and coprime to 𝑁𝐷. Moreover, if 𝑛 is not None, also check that for each
prime 𝑝 dividing 𝑐 we have that 𝑛| gcd(𝑎𝑝(𝐸), 𝑝+ 1).

INPUT:

𝑛 – positive integer

EXAMPLES:

sage: EllipticCurve('389a').heegner_point(-7).satisfies_kolyvagin_hypothesis()
True
sage: EllipticCurve('389a').heegner_point(-7,5).satisfies_kolyvagin_hypothesis()
True
sage: EllipticCurve('389a').heegner_point(-7,11).satisfies_kolyvagin_
→˓hypothesis()
False

tau()

Return 𝜏 in the upper half plane that maps via the modular parametrization to this Heegner point.

EXAMPLES:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5)
sage: P.tau()
5/778*sqrt_minus_7 - 147/778

x_poly_exact(prec=53, algorithm='lll')
Return irreducible polynomial over the rational numbers satisfied by the 𝑥 coordinate of this Heegner point.
A ValueError is raised if the precision is clearly insignificant to define a point on the curve.

Warning: It is in theory possible for this function to not raise a ValueError, find a polynomial, but via
some very unlikely coincidence that point is not actually this Heegner point.

INPUT:

• prec – integer (default: 53)

• algorithm – ‘conjugates’ or ‘lll’ (default); if
‘conjugates’, compute numerically all the conjugates y[i] of the Heegner point and construct the
characteristic polynomial as the product 𝑓(𝑋) = (𝑋 − 𝑦[𝑖]). If ‘lll’, compute only one of the
conjugates y[0], then uses the LLL algorithm to guess 𝑓(𝑋).

EXAMPLES:

We compute some 𝑥-coordinate polynomials of some conductor 1 Heegner points:

16.23. Heegner points on elliptic curves over the rational numbers 535

Elliptic curves, Release 9.8

sage: E = EllipticCurve('37a')
sage: v = E.heegner_discriminants_list(10)
sage: [E.heegner_point(D).x_poly_exact() for D in v]
[x, x, x^2 + 2, x^5 - x^4 + x^3 + x^2 - 2*x + 1, x - 6, x^7 - 2*x^6 + 9*x^5 -␣
→˓10*x^4 - x^3 + 8*x^2 - 5*x + 1, x^3 + 5*x^2 + 10*x + 4, x^4 - 10*x^3 + 10*x^2␣
→˓+ 12*x - 12, x^8 - 5*x^7 + 7*x^6 + 13*x^5 - 10*x^4 - 4*x^3 + x^2 - 5*x + 7, x^
→˓6 - 2*x^5 + 11*x^4 - 24*x^3 + 30*x^2 - 16*x + 4]

We compute 𝑥-coordinate polynomials for some Heegner points of conductor bigger than 1 on a rank 2
curve:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389
sage: P.x_poly_exact()
Traceback (most recent call last):
...
ValueError: insufficient precision to determine Heegner point (fails␣
→˓discriminant test)
sage: P.x_poly_exact(120)
x^6 + 10/7*x^5 - 867/49*x^4 - 76/245*x^3 + 3148/35*x^2 - 25944/245*x + 48771/
→˓1225
sage: E.heegner_point(-7,11).x_poly_exact(500)
x^10 + 282527/52441*x^9 + 27049007420/2750058481*x^8 - 22058564794/2750058481*x^
→˓7 - 140054237301/2750058481*x^6 + 696429998952/30250643291*x^5 +␣
→˓2791387923058/30250643291*x^4 - 3148473886134/30250643291*x^3 + 1359454055022/
→˓30250643291*x^2 - 250620385365/30250643291*x + 181599685425/332757076201

Here we compute a Heegner point of conductor 5 on a rank 3 curve:

sage: E = EllipticCurve('5077a'); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓5077
sage: P.x_poly_exact(500)
x^6 + 1108754853727159228/72351048803252547*x^5 + 88875505551184048168/
→˓1953478317687818769*x^4 - 2216200271166098662132/3255797196146364615*x^3 +␣
→˓14941627504168839449851/9767391588439093845*x^2 - 3456417460183342963918/
→˓3255797196146364615*x + 1306572835857500500459/5426328660243941025

See trac ticket #34121:

sage: E = EllipticCurve('11a1')
sage: P = E.heegner_point(-7)
sage: PE = P.point_exact()
sage: PE
(a : -4*a + 3 : 1)
sage: all(c.parent().disc() == -7 for c in PE)
True

class sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N(N, D, c=1, f=None, check=True)
Bases: HeegnerPoint

A Heegner point as a point on the modular curve 𝑋0(𝑁), which we view as the upper half plane modulo the
action of Γ0(𝑁).

536 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/34121

Elliptic curves, Release 9.8

EXAMPLES:

sage: x = heegner_point(37,-7,5); x
Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)
sage: type(x)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N'>
sage: x.level()
37
sage: x.conductor()
5
sage: x.discriminant()
-7
sage: x.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7 = 2.
→˓645751311064591?*I
sage: x.quadratic_form()
37*x^2 + 11*x*y + 2*y^2
sage: x.quadratic_order()
Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_
→˓minus_7 = 2.645751311064591?*I
sage: x.tau()
5/74*sqrt_minus_7 - 11/74
sage: loads(dumps(x)) == x
True

atkin_lehner_act(Q=None)
Given an integer Q dividing the level N such that gcd(𝑄,𝑁/𝑄) = 1, returns the image of this Heegner
point under the Atkin-Lehner operator 𝑊𝑄.

INPUT:

• 𝑄 – positive divisor of 𝑁 ; if not given, default to 𝑁

EXAMPLES:

sage: x = heegner_point(389,-7,5)
sage: x.atkin_lehner_act()
Heegner point 5/199168*sqrt(-7) - 631/199168 of discriminant -7 and conductor 5␣
→˓on X_0(389)

sage: x = heegner_point(45,D=-11,c=1); x
Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
sage: x.atkin_lehner_act(5)
Heegner point 1/90*sqrt(-11) + 23/90 of discriminant -11 on X_0(45)
sage: y = x.atkin_lehner_act(9); y
Heegner point 1/90*sqrt(-11) - 23/90 of discriminant -11 on X_0(45)
sage: z = y.atkin_lehner_act(9); z
Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
sage: z == x
True

galois_orbit_over_K()

Return the 𝐺𝑎𝑙(𝐾𝑐/𝐾)-orbit of this Heegner point.

EXAMPLES:

16.23. Heegner points on elliptic curves over the rational numbers 537

Elliptic curves, Release 9.8

sage: x = heegner_point(389,-7,3); x
Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_
→˓0(389)
sage: x.galois_orbit_over_K()
[Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_
→˓0(389), Heegner point 3/1556*sqrt(-7) - 223/1556 of discriminant -7 and␣
→˓conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 1001/1556 of␣
→˓discriminant -7 and conductor 3 on X_0(389), Heegner point 3/3112*sqrt(-7) -␣
→˓223/3112 of discriminant -7 and conductor 3 on X_0(389)]

map_to_curve(E)
Return the image of this Heegner point on the elliptic curve 𝐸, which must also have conductor 𝑁 , where
𝑁 is the level of self.

EXAMPLES:

sage: x = heegner_point(389,-7,5); x
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389)
sage: y = x.map_to_curve(EllipticCurve('389a')); y
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389
sage: y.curve().cremona_label()
'389a1'
sage: y.heegner_point_on_X0N()
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389)

You can also directly apply the modular parametrization of the elliptic curve:

sage: x = heegner_point(37,-7); x
Heegner point 1/74*sqrt(-7) - 17/74 of discriminant -7 on X_0(37)
sage: E = EllipticCurve('37a'); phi = E.modular_parametrization()
sage: phi(x)
Heegner point of discriminant -7 on elliptic curve of conductor 37

plot(**kwds)
Draw a point at (𝑥, 𝑦) where this Heegner point is represented by the point 𝜏 = 𝑥 + 𝑖𝑦 in the upper half
plane.

The kwds get passed onto the point plotting command.

EXAMPLES:

sage: heegner_point(389,-7,1).plot(pointsize=50)
Graphics object consisting of 1 graphics primitive

quadratic_form()

Return the integral primitive positive-definite binary quadratic form associated to this Heegner point.

EXAMPLES:

sage: heegner_point(389,-7,5).quadratic_form()
389*x^2 + 147*x*y + 14*y^2

538 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

reduced_quadratic_form()

Return reduced binary quadratic corresponding to this Heegner point.

EXAMPLES:

sage: x = heegner_point(389,-7,5)
sage: x.quadratic_form()
389*x^2 + 147*x*y + 14*y^2
sage: x.reduced_quadratic_form()
4*x^2 - x*y + 11*y^2

tau()

Return an element tau in the upper half plane that corresponds to this particular Heegner point.

Actually, tau is in the quadratic imaginary field K associated to this Heegner point.

EXAMPLES:

sage: x = heegner_point(37,-7,5); tau = x.tau(); tau
5/74*sqrt_minus_7 - 11/74
sage: 37 * tau.minpoly()
37*x^2 + 11*x + 2
sage: x.quadratic_form()
37*x^2 + 11*x*y + 2*y^2

class sage.schemes.elliptic_curves.heegner.HeegnerPoints(N)

Bases: SageObject

The set of Heegner points with given parameters.

EXAMPLES:

sage: H = heegner_points(389); H
Set of all Heegner points on X_0(389)
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'>
sage: isinstance(H, sage.schemes.elliptic_curves.heegner.HeegnerPoints)
True

level()

Return the level 𝑁 of the modular curve 𝑋0(𝑁).

EXAMPLES:

sage: heegner_points(389).level()
389

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level(N)

Bases: HeegnerPoints

Return the infinite set of all Heegner points on 𝑋0(𝑁) for all quadratic imaginary fields.

EXAMPLES:

sage: H = heegner_points(11); H
Set of all Heegner points on X_0(11)
sage: type(H)

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 539

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'>
sage: loads(dumps(H)) == H
True

discriminants(n=10, weak=False)
Return the first 𝑛 quadratic imaginary discriminants that satisfy the Heegner hypothesis for 𝑁 .

INPUT:

• 𝑛 – nonnegative integer

• weak – bool (default: False); if True only require weak Heegner hypothesis, which is the same as
usual but without the condition that gcd(𝐷,𝑁) = 1.

EXAMPLES:

sage: X = heegner_points(37)
sage: X.discriminants(5)
[-7, -11, -40, -47, -67]

The default is 10:

sage: X.discriminants()
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: X.discriminants(15)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -115, -120, -123, -127]

The discriminant -111 satisfies only the weak Heegner hypothesis, since it is divisible by 37:

sage: X.discriminants(15,weak=True)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -111, -115, -120, -123]

reduce_mod(ell)
Return object that allows for computation with Heegner points of level 𝑁 modulo the prime ℓ, represented
using quaternion algebras.

INPUT:

• ℓ – prime

EXAMPLES:

sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc(N, D)

Bases: HeegnerPoints

Set of Heegner points of given level and all conductors associated to a quadratic imaginary field.

EXAMPLES:

sage: H = heegner_points(389,-7); H
Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc'>
sage: H._repr_()

(continues on next page)

540 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

'Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]'
sage: H.discriminant()
-7
sage: H.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7 = 2.
→˓645751311064591?*I
sage: H.kolyvagin_conductors()
[1, 3, 5, 13, 15, 17, 19, 31, 39, 41]

sage: loads(dumps(H)) == H
True

discriminant()

Return the discriminant of the quadratic imaginary extension 𝐾.

EXAMPLES:

sage: heegner_points(389,-7).discriminant()
-7

kolyvagin_conductors(r=None, n=10, E=None, m=None)
Return the first 𝑛 conductors that are squarefree products of distinct primes inert in the quadratic imaginary
field 𝐾 = Q(

√
𝐷). If 𝑟 is specified, return only conductors that are a product of 𝑟 distinct primes all inert

in 𝐾. If 𝑟 = 0, always return the list [1], no matter what.

If the optional elliptic curve 𝐸 and integer 𝑚 are given, then only include conductors 𝑐 such that for each
prime divisor 𝑝 of 𝑐 we have 𝑚 | gcd(𝑎𝑝(𝐸), 𝑝+ 1).

INPUT:

• 𝑟 – (default: None) nonnegative integer or None

• 𝑛 – positive integer

• 𝐸 – an elliptic curve

• 𝑚 – a positive integer

EXAMPLES:

sage: H = heegner_points(389,-7)
sage: H.kolyvagin_conductors(0)
[1]
sage: H.kolyvagin_conductors(1)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61]
sage: H.kolyvagin_conductors(1,15)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97, 101]
sage: H.kolyvagin_conductors(1,5)
[3, 5, 13, 17, 19]
sage: H.kolyvagin_conductors(1,5,EllipticCurve('389a'),3)
[5, 17, 41, 59, 83]
sage: H.kolyvagin_conductors(2,5,EllipticCurve('389a'),3)
[85, 205, 295, 415, 697]

quadratic_field()

Return the quadratic imaginary field 𝐾 = Q(
√
𝐷).

16.23. Heegner points on elliptic curves over the rational numbers 541

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7␣
→˓= 2.645751311064591?*I

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond(N, D, c=1)
Bases: HeegnerPoints_level, HeegnerPoints_level_disc

The set of Heegner points of given level, discriminant, and conductor.

EXAMPLES:

sage: H = heegner_points(389,-7,5); H
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond'>
sage: H.discriminant()
-7
sage: H.level()
389

sage: len(H.points())
12
sage: H.points()[0]
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389)
sage: H.betas()
(147, 631)

sage: H.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7 = 2.
→˓645751311064591?*I
sage: H.ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

sage: H.kolyvagin_conductors()
[1, 3, 5, 13, 15, 17, 19, 31, 39, 41]
sage: H.satisfies_kolyvagin_hypothesis()
True

sage: H = heegner_points(389,-7,5)
sage: loads(dumps(H)) == H
True

betas()

Return the square roots of 𝐷𝑐2 modulo 4𝑁 all reduced mod 2𝑁 , without multiplicity.

EXAMPLES:

sage: X = heegner_points(45,-11,1); X
All Heegner points of conductor 1 on X_0(45) associated to QQ[sqrt(-11)]
sage: [x.quadratic_form() for x in X]
[45*x^2 + 13*x*y + y^2,

(continues on next page)

542 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

45*x^2 + 23*x*y + 3*y^2,
45*x^2 + 67*x*y + 25*y^2,
45*x^2 + 77*x*y + 33*y^2]
sage: X.betas()
(13, 23, 67, 77)
sage: X.points(13)
(Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45),)
sage: [x.quadratic_form() for x in X.points(13)]
[45*x^2 + 13*x*y + y^2]

conductor()

Return the level of the conductor.

EXAMPLES:

sage: heegner_points(389,-7,5).conductor()
5

plot(*args, **kwds)
Returns plot of all the representatives in the upper half plane of the Heegner points in this set of Heegner
points.

The inputs to this function get passed onto the point command.

EXAMPLES:

sage: heegner_points(389,-7,5).plot(pointsize=50, rgbcolor='red')
Graphics object consisting of 12 graphics primitives
sage: heegner_points(53,-7,15).plot(pointsize=50, rgbcolor='purple')
Graphics object consisting of 48 graphics primitives

points(beta=None)
Return the Heegner points in self. If 𝛽 is given, return only those Heegner points with given 𝛽, i.e., whose
quadratic form has 𝐵 congruent to 𝛽 modulo 2𝑁 .

Use self.beta() to get a list of betas.

EXAMPLES:

sage: H = heegner_points(389,-7,5); H
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
sage: H.points()
(Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389), ..., Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and␣
→˓conductor 5 on X_0(389))
sage: H.betas()
(147, 631)
sage: [x.tau() for x in H.points(147)]
[5/778*sqrt_minus_7 - 147/778, 5/1556*sqrt_minus_7 - 147/1556, 5/1556*sqrt_
→˓minus_7 - 925/1556, 5/3112*sqrt_minus_7 - 1703/3112, 5/3112*sqrt_minus_7 -␣
→˓2481/3112, 5/5446*sqrt_minus_7 - 21/778]

sage: [x.tau() for x in H.points(631)]
[5/778*sqrt_minus_7 - 631/778, 5/1556*sqrt_minus_7 - 631/1556, 5/1556*sqrt_

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 543

Elliptic curves, Release 9.8

(continued from previous page)

→˓minus_7 - 1409/1556, 5/3112*sqrt_minus_7 - 631/3112, 5/3112*sqrt_minus_7 -␣
→˓1409/3112, 5/5446*sqrt_minus_7 - 757/778]

The result is cached and is a tuple (since it is immutable):

sage: H.points() is H.points()
True
sage: type(H.points())
<... 'tuple'>

ring_class_field()

Return the ring class field associated to this set of Heegner points. This is an extension 𝐾𝑐 over 𝐾, where
𝐾 is the quadratic imaginary field and 𝑐 the conductor associated to this Heegner point. This Heegner
point is defined over𝐾𝑐 and the Galois group𝐺𝑎𝑙(𝐾𝑐/𝐾) acts transitively on the Galois conjugates of this
Heegner point.

EXAMPLES:

sage: heegner_points(389,-7,5).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

satisfies_kolyvagin_hypothesis()

Return True if self satisfies the Kolyvagin hypothesis, i.e., that each prime dividing the conductor 𝑐 of
self is inert in 𝐾 and coprime to 𝑁𝐷.

EXAMPLES:

The prime 5 is inert, but the prime 11 is not:

sage: heegner_points(389,-7,5).satisfies_kolyvagin_hypothesis()
True
sage: heegner_points(389,-7,11).satisfies_kolyvagin_hypothesis()
False

class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg(level, ell)
Bases: SageObject

Heegner points viewed as supersingular points on the modular curve 𝑋0(𝑁)/Fℓ.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(13); H
Heegner points on X_0(11) over F_13
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg'>
sage: loads(dumps(H)) == H
True

brandt_module()

Return the Brandt module of right ideal classes that we used to represent the set of supersingular points on
the modular curve.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).brandt_module()
Brandt module of dimension 2 of level 3*11 of weight 2 over Rational Field

544 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

cyclic_subideal_p1(I, c)
Compute dictionary mapping 2-tuples that defined normalized elements of 𝑃 1(Z/𝑐Z)

INPUT:

• 𝐼 – right ideal of Eichler order or in quaternion algebra

• 𝑐 – square free integer (currently must be odd prime
and coprime to level, discriminant, characteristic, etc.

OUTPUT:

• dictionary mapping 2-tuples (u,v) to ideals

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: I = H.brandt_module().right_ideals()[0]
sage: sorted(H.cyclic_subideal_p1(I,3).items())
[((0, 1),
Fractional ideal (2 + 2*j + 32*k, 2*i + 8*j + 82*k, 12*j + 60*k, 132*k)),
((1, 0),
Fractional ideal (2 + 10*j + 28*k, 2*i + 4*j + 62*k, 12*j + 60*k, 132*k)),
((1, 1),
Fractional ideal (2 + 2*j + 76*k, 2*i + 4*j + 106*k, 12*j + 60*k, 132*k)),
((1, 2),
Fractional ideal (2 + 10*j + 116*k, 2*i + 8*j + 38*k, 12*j + 60*k, 132*k))]

sage: len(H.cyclic_subideal_p1(I,17))
18

ell()

Return the prime ℓ modulo which we are working.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).ell()
3

galois_group_over_hilbert_class_field(D, c)
Return the Galois group of the extension of ring class fields 𝐾𝑐 over the Hilbert class field 𝐾1 of the
quadratic imaginary field of discriminant 𝐷.

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor (square-free integer)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.galois_group_over_hilbert_class_field(D, c)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41 over␣
→˓Hilbert class field of QQ[sqrt(-7)]

galois_group_over_quadratic_field(D, c)
Return the Galois group of the extension of ring class fields 𝐾𝑐 over the quadratic imaginary field 𝐾 of
discriminant 𝐷.

16.23. Heegner points on elliptic curves over the rational numbers 545

Elliptic curves, Release 9.8

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor (square-free integer)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.galois_group_over_quadratic_field(D, c)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41 over␣
→˓Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_
→˓7 = 2.645751311064591?*I

heegner_conductors(D, n=5)
Return the first𝑛 negative fundamental discriminants coprime to𝑁ℓ such that ℓ is inert in the corresponding
quadratic imaginary field and that field satisfies the Heegner hypothesis.

INPUT:

• 𝐷 – negative integer; a fundamental Heegner discriminant

• 𝑛 – positive integer (default: 5)

OUTPUT:

• list

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3)
sage: H.heegner_conductors(-7)
[1, 2, 4, 5, 8]
sage: H.heegner_conductors(-7, 10)
[1, 2, 4, 5, 8, 10, 13, 16, 17, 19]

heegner_discriminants(n=5)
Return the first𝑛 negative fundamental discriminants coprime to𝑁ℓ such that ℓ is inert in the corresponding
quadratic imaginary field and that field satisfies the Heegner hypothesis, and 𝑁 is the level.

INPUT:

• 𝑛 – positive integer (default: 5)

OUTPUT:

• list

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3)
sage: H.heegner_discriminants()
[-7, -19, -40, -43, -52]
sage: H.heegner_discriminants(10)
[-7, -19, -40, -43, -52, -79, -127, -139, -151, -184]

heegner_divisor(D, c=1)
Return Heegner divisor as an element of the Brandt module corresponding to the discriminant 𝐷 and
conductor 𝑐, which both must be coprime to 𝑁ℓ.

546 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

More precisely, we compute the sum of the reductions of the Gal(𝐾1/𝐾)-conjugates of each choice of 𝑦1,
where the choice comes from choosing the ideal 𝒩 . Then we apply the Hecke operator 𝑇𝑐 to this sum.

INPUT:

• 𝐷 – discriminant (negative integer)

• 𝑐 – conductor (positive integer)

OUTPUT:

• Brandt module element

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: H.heegner_discriminants()
[-8, -39, -43, -51, -79]
sage: H.heegner_divisor(-8)
(1, 0, 0, 1, 0, 0)
sage: H.heegner_divisor(-39)
(1, 2, 2, 1, 2, 0)
sage: H.heegner_divisor(-43)
(1, 0, 0, 1, 0, 0)
sage: H.heegner_divisor(-51)
(1, 0, 0, 1, 0, 2)
sage: H.heegner_divisor(-79)
(3, 2, 2, 3, 0, 0)

sage: sum(H.heegner_divisor(-39).element())
8
sage: QuadraticField(-39,'a').class_number()
4

kolyvagin_cyclic_subideals(I, p, alpha_quaternion)
Return list of pairs (𝐽, 𝑛) where 𝐽 runs through the cyclic subideals of 𝐼 of index (Z/𝑝Z)2, and 𝐽 ∼ 𝛼𝑛(𝐽0)
for some fixed choice of cyclic subideal 𝐽0.

INPUT:

• 𝐼 – right ideal of the quaternion algebra

• 𝑝 – prime number

• alpha_quaternion – image in the quaternion algebra
of generator 𝛼 for (𝒪𝐾/𝑐𝒪𝐾)*/(Z/𝑐Z)*.

OUTPUT:

• list of 2-tuples

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c=5
sage: H = heegner_points(N).reduce_mod(ell)
sage: I = H.brandt_module().right_ideals()[49]
sage: f = H.optimal_embeddings(D, 1, I.left_order())[1]
sage: g = H.kolyvagin_generators(f.domain().number_field(), c)
sage: alpha_quaternion = f(g[0]); alpha_quaternion
1 - 77/192*i - 5/128*j - 137/384*k

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 547

Elliptic curves, Release 9.8

(continued from previous page)

sage: H.kolyvagin_cyclic_subideals(I, 5, alpha_quaternion)
[(Fractional ideal (2 + 2/3*i + 364*j + 231928/3*k, 4/3*i + 946*j + 69338/3*k,␣
→˓1280*j + 49920*k, 94720*k), 0),
(Fractional ideal (2 + 2/3*i + 108*j + 31480/3*k, 4/3*i + 434*j + 123098/3*k,␣
→˓1280*j + 49920*k, 94720*k), 1),
(Fractional ideal (2 + 2/3*i + 876*j + 7672/3*k, 4/3*i + 434*j + 236762/3*k,␣
→˓1280*j + 49920*k, 94720*k), 2),
(Fractional ideal (2 + 2/3*i + 364*j + 61432/3*k, 4/3*i + 178*j + 206810/3*k,␣
→˓1280*j + 49920*k, 94720*k), 3),
(Fractional ideal (2 + 2/3*i + 876*j + 178168/3*k, 4/3*i + 1202*j + 99290/3*k,␣
→˓1280*j + 49920*k, 94720*k), 4),
(Fractional ideal (2 + 2/3*i + 1132*j + 208120/3*k, 4/3*i + 946*j + 183002/3*k,
→˓ 1280*j + 49920*k, 94720*k), 5)]

kolyvagin_generator(K, p)
Return element in 𝐾 that maps to the multiplicative generator for the quotient group

(𝒪𝐾/𝑝𝒪𝐾)*/(Z/𝑝Z)*

of the form
√
𝐷 + 𝑛 with 𝑛 ≥ 1 minimal.

INPUT:

• 𝐾 – quadratic imaginary field

• 𝑝 – inert prime

EXAMPLES:

sage: N = 37; D = -7; ell = 17; p=5
sage: H = heegner_points(N).reduce_mod(ell)
sage: I = H.brandt_module().right_ideals()[49]
sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
sage: H.kolyvagin_generator(f.domain().number_field(), 5)
a + 1

This function requires that p be prime, but kolyvagin_generators works in general:

sage: H.kolyvagin_generator(f.domain().number_field(), 5*17)
Traceback (most recent call last):
...
NotImplementedError: p must be prime
sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
[-34*a + 1, 35*a + 106]

kolyvagin_generators(K, c)
Return elements in 𝒪𝐾 that map to multiplicative generators for the factors of the quotient group

(𝒪𝐾/𝑐𝒪𝐾)*/(Z/𝑐Z)*

corresponding to the prime divisors of c. Each generator is of the form
√
𝐷 + 𝑛 with 𝑛 ≥ 1 minimal.

INPUT:

• 𝐾 – quadratic imaginary field

• 𝑐 – square free product of inert prime

EXAMPLES:

548 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: N = 37; D = -7; ell = 17; p=5
sage: H = heegner_points(N).reduce_mod(ell)
sage: I = H.brandt_module().right_ideals()[49]
sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
[-34*a + 1, 35*a + 106]

kolyvagin_point_on_curve(D, c, E, p, bound=10)
Compute image of the Kolyvagin divisor 𝑃𝑐 in 𝐸(Fℓ2)/𝑝𝐸(Fℓ2).

Note that this image is by definition only well defined up to scalars. However, doing multiple computations
will always yield the same result, and working modulo different ℓ is compatible (since we always choose
the same generator for Gal(𝐾𝑐/𝐾1)).

INPUT:

• 𝐷 – fundamental negative discriminant

• 𝑐 – conductor

• 𝐸 – elliptic curve of conductor the level of self

• 𝑝 – odd prime number such that we consider image in
𝐸(Fℓ2)/𝑝𝐸(Fℓ2)

• bound – integer (default: 10)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.kolyvagin_point_on_curve(D, c, EllipticCurve('37a'), p)
[1, 1]

kolyvagin_sigma_operator(D, c, r, bound=None)
Return the action of the Kolyvagin sigma operator on the 𝑟-th basis vector.

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor (square-free integer, need not be prime)

• 𝑟 – nonnegative integer

• bound – (default: None), if given, controls precision of computation of theta series, which could impact
performance, but does not impact correctness

EXAMPLES:

We first try to verify Kolyvagin’s conjecture for a rank 2 curve by working modulo 5, but we are unlucky
with 𝑐 = 17:

sage: N = 389; D = -7; ell = 5; c = 17; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: E = EllipticCurve('389a')
sage: V = H.modp_dual_elliptic_curve_factor(E, q, 5) # long time (4s on sage.
→˓math, 2012)
sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 549

Elliptic curves, Release 9.8

(continued from previous page)

sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()] #␣
→˓long time
[0, 0]
sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()] #␣
→˓long time
[0, 0]

Next we try again with 𝑐 = 41 and this does work, in that we get something nonzero, when dotting with V:

sage: c = 41
sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()] #␣
→˓long time
[2, 0]
sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()] #␣
→˓long time
[1, 0]

By the way, the above is the first ever provable verification of Kolyvagin’s conjecture for any curve of rank
at least 2.

Another example, but where the curve has rank 1:

sage: N = 37; D = -7; ell = 17; c = 41; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.heegner_divisor(D,1).element().nonzero_positions()
[49, 51]
sage: k49 = H.kolyvagin_sigma_operator(D, c, 49); k49
(79, 32, 31, 11, 53, 37, 1, 23, 15, 7, 0, 0, 0, 64, 32, 34, 53, 0, 27, 27, 0, 0,
→˓ 0, 26, 0, 0, 18, 0, 22, 0, 53, 19, 27, 10, 0, 0, 0, 30, 35, 38, 0, 0, 0, 53,␣
→˓0, 0, 4, 0, 0, 0, 0, 0)
sage: k51 = H.kolyvagin_sigma_operator(D, c, 51); k51
(20, 12, 57, 0, 0, 0, 0, 52, 23, 15, 0, 7, 0, 0, 19, 4, 0, 73, 11, 0, 104, 31,␣
→˓0, 38, 31, 0, 0, 31, 5, 47, 0, 27, 35, 0, 57, 32, 24, 10, 0, 8, 0, 31, 41, 0,␣
→˓0, 0, 16, 0, 0, 0, 0, 0)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V
Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
Basis matrix:
2 x 52 dense matrix over Ring of integers modulo 3
sage: [b.dot_product(k49.element().change_ring(GF(q))) for b in V.basis()]
[1, 1]
sage: [b.dot_product(k51.element().change_ring(GF(q))) for b in V.basis()]
[1, 1]

An example with 𝑐 a product of two primes:

sage: N = 389; D = -7; ell = 5; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 5)
sage: k = H.kolyvagin_sigma_operator(D, 17*41, 104) # long time
sage: k # long time
(990, 656, 219, ..., 246, 534, 1254)

(continues on next page)

550 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: [b.dot_product(k.element().change_ring(GF(3))) for b in V.basis()] #␣
→˓long time (but only because depends on something slow)
[0, 0]

left_orders()

Return the left orders associated to the representative right ideals in the Brandt module.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).left_orders()
[Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis␣
→˓(1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k),
Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis␣
→˓(1/2 + 1/2*j + 7*k, 1/4*i + 1/2*j + 63/4*k, j + 14*k, 22*k)]

level()

Return the level.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).level()
11

modp_dual_elliptic_curve_factor(E, p, bound=10)
Return the factor of the Brandt module space modulo 𝑝 corresponding to the elliptic curve 𝐸, cut out using
Hecke operators up to bound.

INPUT:

• 𝐸 – elliptic curve of conductor equal to the level of self

• 𝑝 – prime number

• 𝑏𝑜𝑢𝑛𝑑 – positive integer (default: 10)

EXAMPLES:

sage: N = 37; D = -7; ell = 17; c = 41; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V
Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
Basis matrix:
2 x 52 dense matrix over Ring of integers modulo 3

modp_splitting_data(p)
Return mod 𝑝 splitting data for the quaternion algebra at the unramified prime 𝑝. This is a pair of 2 × 2
matrices 𝐴, 𝐵 over the finite field F𝑝 such that if the quaternion algebra has generators 𝑖, 𝑗, 𝑘, then the
homomorphism sending 𝑖 to 𝐴 and 𝑗 to 𝐵 maps any maximal order homomorphically onto the ring of
2 × 2 matrices.

Because of how the homomorphism is defined, we must assume that the prime 𝑝 is odd.

INPUT:

• 𝑝 – unramified odd prime

OUTPUT:

16.23. Heegner points on elliptic curves over the rational numbers 551

Elliptic curves, Release 9.8

• 2-tuple of matrices over finite field

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: H.quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: I, J = H.modp_splitting_data(13)
sage: I
[0 12]
[1 0]
sage: J
[7 3]
[3 6]
sage: I^2
[12 0]
[0 12]
sage: J^2
[6 0]
[0 6]
sage: I*J == -J*I
True

The following is a good test because of the asserts in the code:

sage: v = [H.modp_splitting_data(p) for p in primes(13,200)]

Some edge cases:

sage: H.modp_splitting_data(11)
(
[0 10] [6 1]
[1 0], [1 5]
)

Proper error handling:

sage: H.modp_splitting_data(7)
Traceback (most recent call last):
...
ValueError: p (=7) must be an unramified prime

sage: H.modp_splitting_data(2)
Traceback (most recent call last):
...
ValueError: p must be odd

modp_splitting_map(p)
Return (algebra) map from the (𝑝-integral) quaternion algebra to the set of 2 × 2 matrices over F𝑝.

INPUT:

• 𝑝 – prime number

EXAMPLES:

552 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: H = heegner_points(11).reduce_mod(7)
sage: f = H.modp_splitting_map(13)
sage: B = H.quaternion_algebra(); B
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: i,j,k = H.quaternion_algebra().gens()
sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k
sage: f(a*b)
[12 3]
[10 5]
sage: f(a)*f(b)
[12 3]
[10 5]

optimal_embeddings(D, c, R)
INPUT:

• 𝐷 – negative fundamental discriminant

• 𝑐 – integer coprime

• 𝑅 – Eichler order

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3)
sage: R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 1, R)
[Embedding sending sqrt(-7) to i - j - k,
Embedding sending sqrt(-7) to -i + j + k]
sage: H.optimal_embeddings(-7, 2, R)
[Embedding sending 2*sqrt(-7) to 5*i - k,
Embedding sending 2*sqrt(-7) to -5*i + k,
Embedding sending 2*sqrt(-7) to 2*i - 2*j - 2*k,
Embedding sending 2*sqrt(-7) to -2*i + 2*j + 2*k]

quadratic_field(D)

Return our fixed choice of quadratic imaginary field of discriminant 𝐷.

INPUT:

• 𝐷 – fundamental discriminant

OUTPUT:

• a quadratic number field

EXAMPLES:

sage: H = heegner_points(389).reduce_mod(5)
sage: H.quadratic_field(-7)
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7␣
→˓= 2.645751311064591?*I

quaternion_algebra()

Return the rational quaternion algebra used to implement self.

EXAMPLES:

16.23. Heegner points on elliptic curves over the rational numbers 553

Elliptic curves, Release 9.8

sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field

rational_kolyvagin_divisor(D, c)
Return the Kolyvagin divisor as an element of the Brandt module corresponding to the discriminant𝐷 and
conductor 𝑐, which both must be coprime to 𝑁ℓ.

INPUT:

• 𝐷 – discriminant (negative integer)

• 𝑐 – conductor (positive integer)

OUTPUT:

• Brandt module element (or tuple of them)

EXAMPLES:

sage: N = 389; D = -7; ell = 5; c = 17; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: k = H.rational_kolyvagin_divisor(D, c); k # long time (5s on sage.math,␣
→˓2013)
(2, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 9, 11, 0, 6, 0, 0, 7, 0, 0, 0, 0,␣
→˓14, 12, 13, 15, 17, 0, 0, 0, 0, 8, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓5, 0, 0, 0, 0, 3, 0,␣
→˓0, 0, 0, 0, 0, 1, 0,␣
→˓0, 0,␣
→˓0, 0, 0)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 2)
sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()] #␣
→˓long time
[0, 0]
sage: k = H.rational_kolyvagin_divisor(D, 59)
sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()]
[2, 0]

right_ideals()

Return representative right ideals in the Brandt module.

EXAMPLES:

sage: heegner_points(11).reduce_mod(3).right_ideals()
(Fractional ideal (2 + 2*j + 28*k, 2*i + 26*k, 4*j + 12*k, 44*k),
Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 38*k, 8*j + 24*k, 88*k))

satisfies_heegner_hypothesis(D, c=1)
The fundamental discriminant 𝐷 must be coprime to 𝑁ℓ, and must define a quadratic imaginary field 𝐾
in which ℓ is inert. Also, all primes dividing 𝑁 must split in 𝐾, and 𝑐 must be squarefree and coprime to
𝑁𝐷ℓ.

INPUT:

• 𝐷 – negative integer

• 𝑐 – positive integer (default: 1)

OUTPUT:

554 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• bool

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(7)
sage: H.satisfies_heegner_hypothesis(-5)
False
sage: H.satisfies_heegner_hypothesis(-7)
False
sage: H.satisfies_heegner_hypothesis(-8)
True
sage: [D for D in [-1,-2..-100] if H.satisfies_heegner_hypothesis(D)]
[-8, -39, -43, -51, -79, -95]

class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding(D, c, R, beta)
Bases: SageObject

The homomorphism 𝒪 → 𝑅, where 𝒪 is the order of conductor 𝑐 in the quadratic field of discriminant 𝐷, and
𝑅 is an Eichler order in a quaternion algebra.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[1]; f
Embedding sending 2*sqrt(-7) to -5*i + k
sage: type(f)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding'>
sage: loads(dumps(f)) == f
True

beta()

Return the element 𝛽 in the quaternion algebra order that 𝑐
√
𝐷 maps to.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[1].beta()
-5*i + k

codomain()

Return the codomain of this embedding.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].codomain()
Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis␣
→˓(1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k)

conjugate()

Return the conjugate of this embedding, which is also an embedding.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[1]

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 555

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

sage: f.conjugate()
Embedding sending 2*sqrt(-7) to 5*i - k
sage: f
Embedding sending 2*sqrt(-7) to -5*i + k

domain()

Return the domain of this embedding.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].domain()
Order in Number Field in a with defining polynomial x^2 + 7 with a = 2.
→˓645751311064591?*I

domain_conductor()

Return the conductor of the domain.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].domain_conductor()
2

domain_gen()

Return the specific generator 𝑐
√
𝐷 for the domain order.

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[0]
sage: f.domain_gen()
2*a
sage: f.domain_gen()^2
-28

matrix()

Return matrix over Q of this morphism, with respect to the basis 1, 𝑐
√
𝐷 of the domain and the basis

1, 𝑖, 𝑗, 𝑘 of the ambient rational quaternion algebra (which contains the domain).

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 1, R)[1]; f
Embedding sending sqrt(-7) to -i + j + k
sage: f.matrix()
[1 0 0 0]
[0 -1 1 1]
sage: f.conjugate().matrix()
[1 0 0 0]
[0 1 -1 -1]

class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass(kolyvagin_point, n)
Bases: SageObject

556 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

A Kolyvagin cohomology class in 𝐻1(𝐾,𝐸[𝑛]) or 𝐻1(𝐾,𝐸)[𝑛] attached to a Heegner point.

EXAMPLES:

sage: y = EllipticCurve('37a').heegner_point(-7)
sage: c = y.kolyvagin_cohomology_class(3); c
Kolyvagin cohomology class c(1) in H^1(K,E[3])
sage: type(c)
<class 'sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn'>
sage: loads(dumps(c)) == c
True
sage: y.kolyvagin_cohomology_class(5)
Kolyvagin cohomology class c(1) in H^1(K,E[5])

conductor()

Return the integer 𝑐 such that this cohomology class is associated to the Heegner point 𝑦𝑐.

EXAMPLES:

sage: y = EllipticCurve('37a').heegner_point(-7,5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.conductor()
5

heegner_point()

Return the Heegner point 𝑦𝑐 to which this cohomology class is associated.

EXAMPLES:

sage: y = EllipticCurve('37a').heegner_point(-7,5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.heegner_point()
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓37

kolyvagin_point()

Return the Kolyvagin point 𝑃𝑐 to which this cohomology class is associated.

EXAMPLES:

sage: y = EllipticCurve('37a').heegner_point(-7,5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.kolyvagin_point()
Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of␣
→˓conductor 37

n()

Return the integer 𝑛 so that this is a cohomology class in 𝐻1(𝐾,𝐸[𝑛]) or 𝐻1(𝐾,𝐸)[𝑛].

EXAMPLES:

sage: y = EllipticCurve('37a').heegner_point(-7)
sage: t = y.kolyvagin_cohomology_class(3); t
Kolyvagin cohomology class c(1) in H^1(K,E[3])
sage: t.n()
3

16.23. Heegner points on elliptic curves over the rational numbers 557

Elliptic curves, Release 9.8

class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn(kolyvagin_point, n)
Bases: KolyvaginCohomologyClass

EXAMPLES:

class sage.schemes.elliptic_curves.heegner.KolyvaginPoint(heegner_point)
Bases: HeegnerPoint

A Kolyvagin point.

EXAMPLES:

We create a few Kolyvagin points:

sage: EllipticCurve('11a1').kolyvagin_point(-7)
Kolyvagin point of discriminant -7 on elliptic curve of conductor 11
sage: EllipticCurve('37a1').kolyvagin_point(-7)
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: EllipticCurve('37a1').kolyvagin_point(-67)
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: EllipticCurve('389a1').kolyvagin_point(-7, 5)
Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor␣
→˓389

One can also associated a Kolyvagin point to a Heegner point:

sage: y = EllipticCurve('37a1').heegner_point(-7); y
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: y.kolyvagin_point()
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37

curve()

Return the elliptic curve over Q on which this Kolyvagin point sits.

EXAMPLES:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67, 3)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

heegner_point()

This Kolyvagin point𝑃𝑐 is associated to some Heegner point 𝑦𝑐 via Kolyvagin’s construction. This function
returns that point 𝑦𝑐.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: y = P.heegner_point(); y
Heegner point of discriminant -67 on elliptic curve of conductor 37
sage: y.kolyvagin_point() is P
True

index(*args, **kwds)
Return index of this Kolyvagin point in the full group of 𝐾𝑐 rational points on 𝐸.

558 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

When the conductor is 1, this is computed numerically using the Gross-Zagier formula and explicit point
search, and it may be off by 2. See the documentation for E.heegner_index, where𝐸 is the curve attached
to self.

EXAMPLES:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67); P.index()
6

kolyvagin_cohomology_class(n=None)
INPUT:

• 𝑛 – positive integer that divides the gcd of 𝑎𝑝 and 𝑝+ 1 for all 𝑝 dividing the conductor. If 𝑛 is None,
choose the largest valid 𝑛.

EXAMPLES:

sage: y = EllipticCurve('389a').heegner_point(-7,5)
sage: P = y.kolyvagin_point()
sage: P.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])

sage: y = EllipticCurve('37a').heegner_point(-7,5).kolyvagin_point()
sage: y.kolyvagin_cohomology_class()
Kolyvagin cohomology class c(5) in H^1(K,E[2])

mod(p, prec=53)
Return the trace of the reduction𝑄modulo a prime over 𝑝 of this Kolyvagin point as an element of 𝐸(F𝑝),
where 𝑝 is any prime that is inert in 𝐾 that is coprime to 𝑁𝐷𝑐.

The point 𝑄 is only well defined up to an element of (𝑝+ 1)𝐸(F𝑝), i.e., it gives a well defined element of
the abelian group 𝐸(F𝑝)/(𝑝+ 1)𝐸(F𝑝).

See [St2011b], Proposition 5.4 for a proof of the above well-definedness assertion.

EXAMPLES:

A Kolyvagin point on a rank 1 curve:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
sage: P.mod(2)
(1 : 1 : 1)
sage: P.mod(3)
(1 : 0 : 1)
sage: P.mod(5)
(2 : 2 : 1)
sage: P.mod(7)
(6 : 0 : 1)
sage: P.trace_to_real_numerical()
(1.61355529131986 : -2.18446840788880 : 1.00000000000000)
sage: P._trace_exact_conductor_1() # the actual point we're reducing
(1357/841 : -53277/24389 : 1)
sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt()
12.0000000000000

Here the Kolyvagin point is a torsion point (since 𝐸 has rank 1), and we reduce it modulo several primes.:

16.23. Heegner points on elliptic curves over the rational numbers 559

Elliptic curves, Release 9.8

sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7)
sage: P.mod(3,70) # long time (4s on sage.math, 2013)
(1 : 2 : 1)
sage: P.mod(5,70)
(1 : 4 : 1)
sage: P.mod(7,70)
Traceback (most recent call last):
...
ValueError: p must be coprime to conductors and discriminant
sage: P.mod(11,70)
Traceback (most recent call last):
...
ValueError: p must be coprime to conductors and discriminant
sage: P.mod(13,70)
(3 : 4 : 1)

numerical_approx(prec=53)
Return a numerical approximation to this Kolyvagin point using prec bits of working precision.

INPUT:

• prec – precision in bits (default: 53)

EXAMPLES:

sage: P = EllipticCurve('37a1').kolyvagin_point(-7); P
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx() # approx. (0 : 0 : 1)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
sage: P.numerical_approx(100)[0].abs() < 2.0^-99
True

sage: P = EllipticCurve('389a1').kolyvagin_point(-7, 5); P
Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of␣
→˓conductor 389

Numerical approximation is only implemented for points of conductor 1:

sage: P.numerical_approx()
Traceback (most recent call last):
...
NotImplementedError

plot(prec=53, *args, **kwds)
Plot a Kolyvagin point 𝑃1 if it is defined over the rational numbers.

EXAMPLES:

sage: E = EllipticCurve('37a'); P = E.heegner_point(-11).kolyvagin_point()
sage: P.plot(prec=30, pointsize=50, rgbcolor='red') + E.plot()
Graphics object consisting of 3 graphics primitives

point_exact(prec=53)
INPUT:

• prec – precision in bits (default: 53)

560 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

EXAMPLES:

A rank 1 curve:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
sage: P.point_exact()
(6 : -15 : 1)
sage: P.point_exact(40)
(6 : -15 : 1)
sage: P.point_exact(20)
Traceback (most recent call last):
...
RuntimeError: insufficient precision to find exact point

A rank 0 curve:

sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7)
sage: P.point_exact()
(-1/2*sqrt_minus_7 + 1/2 : -2*sqrt_minus_7 - 2 : 1)

A rank 2 curve:

sage: E = EllipticCurve('389a1'); P = E.kolyvagin_point(-7)
sage: P.point_exact()
(0 : 1 : 0)

satisfies_kolyvagin_hypothesis(n=None)
Return True if this Kolyvagin point satisfies the Heegner hypothesis for 𝑛, so that it defines a Galois
equivariant element of 𝐸(𝐾𝑐)/𝑛𝐸(𝐾𝑐).

EXAMPLES:

sage: y = EllipticCurve('389a').heegner_point(-7,5); P = y.kolyvagin_point()
sage: P.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])
sage: P.satisfies_kolyvagin_hypothesis(3)
True
sage: P.satisfies_kolyvagin_hypothesis(5)
False
sage: P.satisfies_kolyvagin_hypothesis(7)
False
sage: P.satisfies_kolyvagin_hypothesis(11)
False

trace_to_real_numerical(prec=53)
Return the trace of this Kolyvagin point down to the real numbers, computed numerically using prec bits
of working precision.

EXAMPLES:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
sage: PP = P.numerical_approx()
sage: [c.real() for c in PP]
[6.00000000000000, -15.0000000000000, 1.00000000000000]
sage: all(c.imag().abs() < 1e-14 for c in PP)

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 561

Elliptic curves, Release 9.8

(continued from previous page)

True
sage: P.trace_to_real_numerical()
(1.61355529131986 : -2.18446840788880 : 1.00000000000000)
sage: P.trace_to_real_numerical(prec=80) # abs tol 1e-21
(1.6135552913198573127230 : -2.1844684078888023289187 : 1.
→˓0000000000000000000000)

class sage.schemes.elliptic_curves.heegner.RingClassField(D, c, check=True)
Bases: SageObject

A Ring class field of a quadratic imaginary field of given conductor.

Note: This is a ring class field, not a ray class field. In general, the ring class field of given conductor is a
subfield of the ray class field of the same conductor.

EXAMPLES:

sage: heegner_point(37,-7).ring_class_field()
Hilbert class field of QQ[sqrt(-7)]
sage: heegner_point(37,-7,5).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: heegner_point(37,-7,55).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 55

absolute_degree()

Return the absolute degree of this field over Q.

EXAMPLES:

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.absolute_degree()
12
sage: K.degree_over_K()
6

conductor()

Return the conductor of this ring class field.

EXAMPLES:

sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
sage: K5.conductor()
5

degree_over_H()

Return the degree of this field over the Hilbert class field 𝐻 of 𝐾.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: E.heegner_point(-59).ring_class_field().degree_over_H()
1
sage: E.heegner_point(-59).ring_class_field().degree_over_K()

(continues on next page)

562 Chapter 16. Elliptic curves over number fields

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

3
sage: QuadraticField(-59,'a').class_number()
3

Some examples in which prime dividing c is inert:

sage: heegner_point(37,-7,3).ring_class_field().degree_over_H()
4
sage: heegner_point(37,-7,3^2).ring_class_field().degree_over_H()
12
sage: heegner_point(37,-7,3^3).ring_class_field().degree_over_H()
36

The prime dividing c is split. For example, in the first case 𝑂𝐾/𝑐𝑂𝐾 is isomorphic to a direct sum of two
copies of GF(2), so the units are trivial:

sage: heegner_point(37,-7,2).ring_class_field().degree_over_H()
1
sage: heegner_point(37,-7,4).ring_class_field().degree_over_H()
2
sage: heegner_point(37,-7,8).ring_class_field().degree_over_H()
4

Now c is ramified:

sage: heegner_point(37,-7,7).ring_class_field().degree_over_H()
7
sage: heegner_point(37,-7,7^2).ring_class_field().degree_over_H()
49

Check that trac ticket #15218 is solved:

sage: E = EllipticCurve("19a");
sage: s = E.heegner_point(-3,2).ring_class_field().galois_group().complex_
→˓conjugation()
sage: H = s.domain(); H.absolute_degree()
2

degree_over_K()

Return the relative degree of this ring class field over the quadratic imaginary field 𝐾.

EXAMPLES:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7,5)
sage: K5 = P.ring_class_field(); K5
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: K5.degree_over_K()
6
sage: type(K5.degree_over_K())
<... 'sage.rings.integer.Integer'>

sage: E = EllipticCurve('389a'); E.heegner_point(-20).ring_class_field().degree_
→˓over_K()

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 563

https://trac.sagemath.org/15218

Elliptic curves, Release 9.8

(continued from previous page)

2
sage: E.heegner_point(-20,3).ring_class_field().degree_over_K()
4
sage: kronecker(-20,11)
-1
sage: E.heegner_point(-20,11).ring_class_field().degree_over_K()
24

degree_over_Q()

Return the absolute degree of this field over Q.

EXAMPLES:

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.absolute_degree()
12
sage: K.degree_over_K()
6

discriminant_of_K()

Return the discriminant of the quadratic imaginary field 𝐾 contained in self.

EXAMPLES:

sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
sage: K5.discriminant_of_K()
-7

galois_group(base=Rational Field)
Return the Galois group of self over base.

INPUT:

• base – (default: Q) a subfield of self or Q

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: A = E.heegner_point(-7,5).ring_class_field()
sage: A.galois_group()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: B = E.heegner_point(-7).ring_class_field()
sage: C = E.heegner_point(-7,15).ring_class_field()
sage: A.galois_group()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: A.galois_group(B)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over␣
→˓Hilbert class field of QQ[sqrt(-7)]
sage: A.galois_group().cardinality()
12
sage: A.galois_group(B).cardinality()
6
sage: C.galois_group(A)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 15 over␣

(continues on next page)

564 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

→˓Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: C.galois_group(A).cardinality()
4

is_subfield(M)

Return True if this ring class field is a subfield of the ring class field𝑀 . If𝑀 is not a ring class field, then
a TypeError is raised.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: A = E.heegner_point(-7,5).ring_class_field()
sage: B = E.heegner_point(-7).ring_class_field()
sage: C = E.heegner_point(-20).ring_class_field()
sage: D = E.heegner_point(-7,15).ring_class_field()
sage: B.is_subfield(A)
True
sage: B.is_subfield(B)
True
sage: B.is_subfield(D)
True
sage: B.is_subfield(C)
False
sage: A.is_subfield(B)
False
sage: A.is_subfield(D)
True

quadratic_field()

Return the quadratic imaginary field 𝐾 = Q(
√
𝐷).

EXAMPLES:

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 with sqrt_minus_7␣
→˓= 2.645751311064591?*I

ramified_primes()

Return the primes of Z that ramify in this ring class field.

EXAMPLES:

sage: E = EllipticCurve('389a'); K55 = E.heegner_point(-7,55).ring_class_field()
sage: K55.ramified_primes()
[5, 7, 11]
sage: E.heegner_point(-7).ring_class_field().ramified_primes()
[7]

sage.schemes.elliptic_curves.heegner.class_number(D)

Return the class number of the quadratic field with fundamental discriminant 𝐷.

INPUT:

• 𝐷 – integer

16.23. Heegner points on elliptic curves over the rational numbers 565

Elliptic curves, Release 9.8

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.class_number(-20)
2
sage: sage.schemes.elliptic_curves.heegner.class_number(-23)
3
sage: sage.schemes.elliptic_curves.heegner.class_number(-163)
1

A ValueError is raised when 𝐷 is not a fundamental discriminant:

sage: sage.schemes.elliptic_curves.heegner.class_number(-5)
Traceback (most recent call last):
...
ValueError: D (=-5) must be a fundamental discriminant

sage.schemes.elliptic_curves.heegner.ell_heegner_discriminants(self, bound)
Return the list of self’s Heegner discriminants between -1 and -bound.

INPUT:

• bound (int) – upper bound for -discriminant

OUTPUT: The list of Heegner discriminants between -1 and -bound for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants(30) # indirect doctest
[-7, -8, -19, -24]

sage.schemes.elliptic_curves.heegner.ell_heegner_discriminants_list(self, n)
Return the list of self’s first 𝑛 Heegner discriminants smaller than -5.

INPUT:

• n (int) – the number of discriminants to compute

OUTPUT: The list of the first n Heegner discriminants smaller than -5 for the given elliptic curve.

EXAMPLES:

sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants_list(4) # indirect doctest
[-7, -8, -19, -24]

sage.schemes.elliptic_curves.heegner.ell_heegner_point(self, D, c=1, f=None, check=True)

Returns the Heegner point on this curve associated to the quadratic imaginary field 𝐾 = Q(
√
𝐷).

If the optional parameter 𝑐 is given, returns the higher Heegner point associated to the order of conductor 𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• 𝑓 – binary quadratic form or 3-tuple (𝐴,𝐵,𝐶) of coefficients of 𝐴𝑋2 +𝐵𝑋𝑌 + 𝐶𝑌 2

• check – bool (default: True)

566 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

OUTPUT:

The Heegner point 𝑦𝑐.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: P = E.heegner_point(-7); P # indirect doctest
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P.point_exact()
(0 : 0 : 1)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E.heegner_point(-40).point_exact(); P
(a : -a + 1 : 1)
sage: P = E.heegner_point(-47).point_exact(); P
(a : a^4 + a - 1 : 1)
sage: P[0].parent()
Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1

Working out the details manually:

sage: P = E.heegner_point(-47).numerical_approx(prec=200)
sage: f = algdep(P[0], 5); f
x^5 - x^4 + x^3 + x^2 - 2*x + 1
sage: f.discriminant().factor()
47^2

The Heegner hypothesis is checked:

sage: E = EllipticCurve('389a'); P = E.heegner_point(-5,7);
Traceback (most recent call last):
...
ValueError: N (=389) and D (=-5) must satisfy the Heegner hypothesis

We can specify the quadratic form:

sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2

sage.schemes.elliptic_curves.heegner.heegner_index(self, D, min_p=2, prec=5,
descent_second_limit=12,
verbose_mwrank=False, check_rank=True)

Return an interval that contains the index of the Heegner point 𝑦𝐾 in the group of 𝐾-rational points modulo
torsion on this elliptic curve, computed using the Gross-Zagier formula and/or a point search, or possibly half
the index if the rank is greater than one.

If the curve has rank > 1, then the returned index is infinity.

Note: If min_p is bigger than 2 then the index can be off by any prime less than min_p. This function returns
the index divided by 2 exactly when the rank of 𝐸(𝐾) is greater than 1 and 𝐸(Q)/𝑡𝑜𝑟 ⊕ 𝐸𝐷(Q)/𝑡𝑜𝑟 has index

16.23. Heegner points on elliptic curves over the rational numbers 567

Elliptic curves, Release 9.8

2 in 𝐸(𝐾)/𝑡𝑜𝑟, where the second factor undergoes a twist.

INPUT:

• D (int) – Heegner discriminant

• min_p (int) – (default: 2) only rule out primes = min_p dividing the index.

• verbose_mwrank (bool) – (default: False); print lots of mwrank search status information when com-
puting regulator

• prec (int) – (default: 5), use prec*sqrt(N) + 20 terms of L-series in computations, where N is the
conductor.

• descent_second_limit – (default: 12)- used in 2-descent when computing regulator of the twist

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: an interval that contains the index, or half the index

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.heegner_discriminants(50)
[-7, -8, -19, -24, -35, -39, -40, -43]
sage: E.heegner_index(-7)
1.00000?

sage: E = EllipticCurve('37b')
sage: E.heegner_discriminants(100)
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: E.heegner_index(-95) # long time (1 second)
2.00000?

This tests doing direct computation of the Mordell-Weil group.

sage: EllipticCurve('675b').heegner_index(-11)
3.0000?

Currently discriminants -3 and -4 are not supported:

sage: E.heegner_index(-3)
Traceback (most recent call last):
...
ArithmeticError: Discriminant (=-3) must not be -3 or -4.

The curve 681b returns the true index, which is 3:

sage: E = EllipticCurve('681b')
sage: I = E.heegner_index(-8); I
3.0000?

In fact, whenever the returned index has a denominator of 2, the true index is got by multiplying the returned
index by 2. Unfortunately, this is not an if and only if condition, i.e., sometimes the index must be multiplied by
2 even though the denominator is not 2.

This example demonstrates the descent_second_limit option, which can be used to fine tune the 2-descent
used to compute the regulator of the twist:

568 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage: E = EllipticCurve([1,-1,0,-1228,-16267])
sage: E.heegner_index(-8)
Traceback (most recent call last):
...
RuntimeError: ...

However when we search higher, we find the points we need:

sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False) # long time
2.00000?

Two higher rank examples (of ranks 2 and 3):

sage: E = EllipticCurve('389a')
sage: E.heegner_index(-7)
+Infinity
sage: E = EllipticCurve('5077a')
sage: E.heegner_index(-7)
+Infinity
sage: E.heegner_index(-7, check_rank=False)
0.001?
sage: E.heegner_index(-7, check_rank=False).lower() == 0
True

sage.schemes.elliptic_curves.heegner.heegner_index_bound(self, D=0, prec=5, max_height=None)
Assume self has rank 0.

Return a list 𝑣 of primes such that if an odd prime 𝑝 divides the index of the Heegner point in the group of rational
points modulo torsion, then 𝑝 is in 𝑣.

If 0 is in the interval of the height of the Heegner point computed to the given prec, then this function returns
𝑣 = 0. This does not mean that the Heegner point is torsion, just that it is very likely torsion.

If we obtain no information from a search up to max_height, e.g., if the Siksek et al. bound is bigger than
max_height, then we return 𝑣 = −1.

INPUT:

• D (int) – (default: 0) Heegner discriminant; if 0, use the first discriminant -4 that satisfies the Heegner
hypothesis

• verbose (bool) – (default: True)

• prec (int) – (default: 5), use 𝑝𝑟𝑒𝑐 ·
√︀

(𝑁) + 20 terms of 𝐿-series in computations, where 𝑁 is the
conductor.

• max_height (float) – should be = 21; bound on logarithmic naive height used in point searches. Make
smaller to make this function faster, at the expense of possibly obtaining a worse answer. A good range is
between 13 and 21.

OUTPUT:

• v – list or int (bad primes or 0 or -1)

• D – the discriminant that was used (this is useful if 𝐷 was automatically selected).

• exact – either False, or the exact Heegner index (up to factors of 2)

EXAMPLES:

16.23. Heegner points on elliptic curves over the rational numbers 569

Elliptic curves, Release 9.8

sage: E = EllipticCurve('11a1')
sage: E.heegner_index_bound()
([2], -7, 2)

sage.schemes.elliptic_curves.heegner.heegner_point(N, D=None, c=1)
Return a specific Heegner point of level𝑁 with given discriminant and conductor. If𝐷 is not specified, then the
first valid Heegner discriminant is used. If 𝑐 is not given, then 𝑐 = 1 is used.

INPUT:

• 𝑁 – level (positive integer)

• 𝐷 – discriminant (optional: default first valid 𝐷)

• 𝑐 – conductor (positive integer, optional, default: 1)

EXAMPLES:

sage: heegner_point(389)
Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
sage: heegner_point(389,-7)
Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
sage: heegner_point(389,-7,5)
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_
→˓0(389)
sage: heegner_point(389,-20)
Heegner point 1/778*sqrt(-20) - 165/389 of discriminant -20 on X_0(389)

sage.schemes.elliptic_curves.heegner.heegner_point_height(self, D, prec=2, check_rank=True)
Use the Gross-Zagier formula to compute the Neron-Tate canonical height over 𝐾 of the Heegner point corre-
sponding to 𝐷, as an interval (it is computed to some precision using 𝐿-functions).

If the curve has rank at least 2, then the returned height is the exact Sage integer 0.

INPUT:

• D (int) – fundamental discriminant (=/= -3, -4)

• prec (int) – (default: 2), use 𝑝𝑟𝑒𝑐 ·
√︀

(𝑁) + 20 terms of 𝐿-series in computations, where 𝑁 is the
conductor.

• check_rank – whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: Interval that contains the height of the Heegner point.

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.heegner_point_height(-7)
0.22227?

Some higher rank examples:

sage: E = EllipticCurve('389a')
sage: E.heegner_point_height(-7)
0
sage: E = EllipticCurve('5077a')
sage: E.heegner_point_height(-7)
0

(continues on next page)

570 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: E.heegner_point_height(-7,check_rank=False)
0.0000?

sage.schemes.elliptic_curves.heegner.heegner_points(N, D=None, c=None)
Return all Heegner points of given level 𝑁 . Can also restrict to Heegner points with specified discriminant 𝐷
and optionally conductor 𝑐.

INPUT:

• 𝑁 – level (positive integer)

• 𝐷 – discriminant (negative integer)

• 𝑐 – conductor (positive integer)

EXAMPLES:

sage: heegner_points(389,-7)
Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]
sage: heegner_points(389,-7,1)
All Heegner points of conductor 1 on X_0(389) associated to QQ[sqrt(-7)]
sage: heegner_points(389,-7,5)
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]

sage.schemes.elliptic_curves.heegner.heegner_sha_an(self, D, prec=53)

Return the conjectural (analytic) order of Sha for E over the field 𝐾 = Q(
√
𝐷).

INPUT:

• 𝐷 – negative integer; the Heegner discriminant

• prec – integer (default: 53); bits of precision to compute analytic order of Sha

OUTPUT:

(floating point number) an approximation to the conjectural order of Sha.

Note: Often you’ll want to do proof.elliptic_curve(False) when using this function, since often the
twisted elliptic curves that come up have enormous conductor, and Sha is nontrivial, which makes provably
finding the Mordell-Weil group using 2-descent difficult.

EXAMPLES:

An example where E has conductor 11:

sage: E = EllipticCurve('11a')
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

The cache works:

sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7) # long time
True

Lower precision:

16.23. Heegner points on elliptic curves over the rational numbers 571

Elliptic curves, Release 9.8

sage: E.heegner_sha_an(-7,10) # long time
1.0

Checking that the cache works for any precision:

sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10) # long time
True

Next we consider a rank 1 curve with nontrivial Sha over the quadratic imaginary field 𝐾; however, there is no
Sha for 𝐸 over Q or for the quadratic twist of 𝐸:

sage: E = EllipticCurve('37a')
sage: E.heegner_sha_an(-40) # long time
4.00000000000000
sage: E.quadratic_twist(-40).sha().an() # long time
1
sage: E.sha().an() # long time
1

A rank 2 curve:

sage: E = EllipticCurve('389a') # long time
sage: E.heegner_sha_an(-7) # long time
1.00000000000000

If we remove the hypothesis that 𝐸(𝐾) has rank 1 in Conjecture 2.3 in [GZ1986] page 311, then that conjecture
is false, as the following example shows:

sage: E = EllipticCurve('65a') # long time
sage: E.heegner_sha_an(-56) # long time
1.00000000000000
sage: E.torsion_order() # long time
2
sage: E.tamagawa_product() # long time
1
sage: E.quadratic_twist(-56).rank() # long time
2

sage.schemes.elliptic_curves.heegner.is_inert(D, p)

Return True if p is an inert prime in the field Q(
√
𝐷).

INPUT:

• 𝐷 – fundamental discriminant

• 𝑝 – prime integer

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,3)
True
sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,7)
False
sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,11)
False

572 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

sage.schemes.elliptic_curves.heegner.is_kolyvagin_conductor(N, E, D, r, n, c)
Return True if 𝑐 is a Kolyvagin conductor for level 𝑁 , discriminant 𝐷, mod 𝑛, etc., i.e., 𝑐 is divisible by exactly
𝑟 prime factors, is coprime to𝑁𝐷, each prime dividing 𝑐 is inert, and if𝐸 is not None then 𝑛| gcd(𝑝+1, 𝑎𝑝(𝐸))
for each prime 𝑝 dividing 𝑐.

INPUT:

• 𝑁 – level (positive integer)

• 𝐸 – elliptic curve or None

• 𝐷 – negative fundamental discriminant

• 𝑟 – number of prime factors (nonnegative integer) or None

• 𝑛 – torsion order (i.e., do we get class in (𝐸(𝐾𝑐)/𝑛𝐸(𝐾𝑐))
𝐺𝑎𝑙(𝐾𝑐/𝐾)?)

• 𝑐 – conductor (positive integer)

EXAMPLES:

sage: from sage.schemes.elliptic_curves.heegner import is_kolyvagin_conductor
sage: is_kolyvagin_conductor(389,None,-7,1,None,5)
True
sage: is_kolyvagin_conductor(389,None,-7,1,None,7)
False
sage: is_kolyvagin_conductor(389,None,-7,1,None,11)
False
sage: is_kolyvagin_conductor(389,EllipticCurve('389a'),-7,1,3,5)
True
sage: is_kolyvagin_conductor(389,EllipticCurve('389a'),-7,1,11,5)
False

sage.schemes.elliptic_curves.heegner.is_ramified(D, p)

Return True if p is a ramified prime in the field Q(
√
𝐷).

INPUT:

• 𝐷 – fundamental discriminant

• 𝑝 – prime integer

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,2)
False
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,7)
True
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-1,2)
True

sage.schemes.elliptic_curves.heegner.is_split(D, p)

Return True if p is a split prime in the field Q(
√
𝐷).

INPUT:

• 𝐷 – fundamental discriminant

• 𝑝 – prime integer

EXAMPLES:

16.23. Heegner points on elliptic curves over the rational numbers 573

Elliptic curves, Release 9.8

sage: sage.schemes.elliptic_curves.heegner.is_split(-7,3)
False
sage: sage.schemes.elliptic_curves.heegner.is_split(-7,7)
False
sage: sage.schemes.elliptic_curves.heegner.is_split(-7,11)
True

sage.schemes.elliptic_curves.heegner.kolyvagin_point(self, D, c=1, check=True)

Return the Kolyvagin point on this curve associated to the quadratic imaginary field𝐾 = Q(
√
𝐷) and conductor

𝑐.

INPUT:

• 𝐷 – a Heegner discriminant

• 𝑐 – (default: 1) conductor, must be coprime to 𝐷𝑁

• check – bool (default: True)

OUTPUT:

The Kolyvagin point 𝑃 of conductor 𝑐.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(6.00000000000000 : -15.0000000000000 : 1.00000000000000)
sage: P.index()
6
sage: g = E((0,-1,1)) # a generator
sage: E.regulator() == E.regulator_of_points([g])
True
sage: 6*g
(6 : -15 : 1)

sage.schemes.elliptic_curves.heegner.kolyvagin_reduction_data(E, q, first_only=True)
Given an elliptic curve of positive rank and a prime 𝑞, this function returns data about how to use Kolyvagin’s
𝑞-torsion Heegner point Euler system to do computations with this curve. See the precise description of the
output below.

INPUT:

• 𝐸 – elliptic curve over Q of rank 1 or 2

• 𝑞 – an odd prime that does not divide the order of the
rational torsion subgroup of 𝐸

• first_only – bool (default: True) whether two only return
the first prime that one can work modulo to get data about the Euler system

OUTPUT in the rank 1 case or when the default flag first_only=True:

• ℓ – first good odd prime satisfying the Kolyvagin
condition that 𝑞 divides gcd(a_{ell},ell+1)` and the reduction map is surjective to 𝐸(Fℓ)/𝑞𝐸(Fℓ)

574 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

• 𝐷 – discriminant of the first quadratic imaginary field
𝐾 that satisfies the Heegner hypothesis for 𝐸 such that both ℓ is inert in 𝐾, and the twist 𝐸𝐷 has
analytic rank ≤ 1

• ℎ𝐷 – the class number of 𝐾

• the dimension of the Brandt module 𝐵(ℓ,𝑁), where 𝑁 is the conductor of 𝐸

OUTPUT in the rank 2 case:

• ℓ1 – first prime (as above in the rank 1 case) where reduction map is surjective

• ℓ2 – second prime (as above) where reduction map is surjective

• 𝐷 – discriminant of the first quadratic imaginary field
𝐾 that satisfies the Heegner hypothesis for 𝐸 such that both ℓ1 and ℓ2 are simultaneously inert in 𝐾,
and the twist 𝐸𝐷 has analytic rank ≤ 1

• ℎ𝐷 – the class number of 𝐾

• the dimension of the Brandt module 𝐵(ℓ1, 𝑁), where 𝑁 is the conductor of 𝐸

• the dimension of the Brandt module 𝐵(ℓ2, 𝑁)

EXAMPLES:

Import this function:

sage: from sage.schemes.elliptic_curves.heegner import kolyvagin_reduction_data

A rank 1 example:

sage: kolyvagin_reduction_data(EllipticCurve('37a1'),3)
(17, -7, 1, 52)

A rank 3 example:

sage: kolyvagin_reduction_data(EllipticCurve('5077a1'),3)
(11, -47, 5, 4234)
sage: H = heegner_points(5077, -47)
sage: [c for c in H.kolyvagin_conductors(2,10,EllipticCurve('5077a1'),3) if c%11]
[667, 943, 1189, 2461]
sage: factor(667)
23 * 29

A rank 4 example (the first Kolyvagin class that we could try to compute would be 𝑃23·29·41, and would require
working in a space of dimension 293060 (so prohibitive at present):

sage: E = elliptic_curves.rank(4)[0]
sage: kolyvagin_reduction_data(E,3) # long time
(11, -71, 7, 293060)
sage: H = heegner_points(293060, -71)
sage: H.kolyvagin_conductors(1,4,E,3)
[11, 17, 23, 41]

The first rank 2 example:

sage: kolyvagin_reduction_data(EllipticCurve('389a'),3)
(5, -7, 1, 130)

(continues on next page)

16.23. Heegner points on elliptic curves over the rational numbers 575

Elliptic curves, Release 9.8

(continued from previous page)

sage: kolyvagin_reduction_data(EllipticCurve('389a'),3, first_only=False)
(5, 17, -7, 1, 130, 520)

A large 𝑞 = 7:

sage: kolyvagin_reduction_data(EllipticCurve('1143c1'),7, first_only=False)
(13, 83, -59, 3, 1536, 10496)

Additive reduction:

sage: kolyvagin_reduction_data(EllipticCurve('2350g1'),5, first_only=False)
(19, 239, -311, 19, 6480, 85680)

sage.schemes.elliptic_curves.heegner.make_monic(f)
Return a monic integral polynomial 𝑔 and an integer 𝑑 such that if 𝛼 is a root of 𝑔, then 𝛼/𝑑 is a root of 𝑓 . In
other words, 𝑐𝑓(𝑥) = 𝑔(𝑑𝑥) for some scalar 𝑐.

INPUT:

• f – polynomial over the rational numbers

OUTPUT:

a monic integral polynomial and an integer

EXAMPLES:

sage: from sage.schemes.elliptic_curves.heegner import make_monic
sage: R.<x> = QQ[]
sage: make_monic(3*x^3 + 14*x^2 - 7*x + 5)
(x^3 + 14*x^2 - 21*x + 45, 3)

In this example we verify that make_monic does what we claim it does:

sage: K.<a> = NumberField(x^3 + 17*x - 3)
sage: f = (a/7+2/3).minpoly(); f
x^3 - 2*x^2 + 247/147*x - 4967/9261
sage: g, d = make_monic(f); (g, d)
(x^3 - 42*x^2 + 741*x - 4967, 21)
sage: K. = NumberField(g)
sage: (b/d).minpoly()
x^3 - 2*x^2 + 247/147*x - 4967/9261

sage.schemes.elliptic_curves.heegner.nearby_rational_poly(f, **kwds)
Return a polynomial whose coefficients are rational numbers close to the coefficients of 𝑓 .

INPUT:

• 𝑓 – polynomial with real floating point entries

• **kwds – passed on to nearby_rational method

EXAMPLES:

sage: R.<x> = RR[]
sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.
→˓2, max_error=10e-16)

(continues on next page)

576 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

21/10*X^2 + 7/2*X - 6/5
sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.
→˓2, max_error=10e-17)
4728779608739021/2251799813685248*X^2 + 7/2*X - 5404319552844595/4503599627370496
sage: RR(4728779608739021/2251799813685248 - 21/10)
8.88178419700125e-17

sage.schemes.elliptic_curves.heegner.quadratic_order(D, c, names='a')
Return order of conductor 𝑐 in quadratic field with fundamental discriminant 𝐷.

INPUT:

• 𝐷 – fundamental discriminant

• 𝑐 – conductor

• names – string (default: ‘a’)

OUTPUT:

• order 𝑅 of conductor 𝑐 in an imaginary quadratic field

• the element 𝑐
√
𝐷 as an element of 𝑅

The generator for the field is named ‘a’ by default.

EXAMPLES:

sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3)
(Order in Number Field in a with defining polynomial x^2 + 7 with a = 2.
→˓645751311064591?*I,
3*a)
sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3,'alpha')
(Order in Number Field in alpha with defining polynomial x^2 + 7 with alpha = 2.
→˓645751311064591?*I,
3*alpha)

sage.schemes.elliptic_curves.heegner.satisfies_heegner_hypothesis(self, D)

Returns True precisely when 𝐷 is a fundamental discriminant that satisfies the Heegner hypothesis for this
elliptic curve.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.satisfies_heegner_hypothesis(-7)
True
sage: E.satisfies_heegner_hypothesis(-11)
False

sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis(N, D)

Check that 𝐷 satisfies the weak Heegner hypothesis relative to 𝑁 . This is all that is needed to define Heegner
points.

The condition is that 𝐷 < 0 is a fundamental discriminant and that each unramified prime dividing 𝑁 splits in
𝐾 = Q(

√
𝐷) and each ramified prime exactly divides 𝑁 . We also do not require that 𝐷 < −4.

INPUT:

• 𝑁 – positive integer

16.23. Heegner points on elliptic curves over the rational numbers 577

Elliptic curves, Release 9.8

• 𝐷 – negative integer

EXAMPLES:

sage: s = sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis
sage: s(37,-7)
True
sage: s(37,-37)
False
sage: s(37,-37*4)
True
sage: s(100,-4)
False
sage: [D for D in [-1,-2,..,-40] if s(37,D)]
[-3, -4, -7, -11, -40]
sage: [D for D in [-1,-2,..,-100] if s(37,D)]
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: EllipticCurve('37a').heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]

sage.schemes.elliptic_curves.heegner.simplest_rational_poly(f, prec)
Return a polynomial whose coefficients are as simple as possible rationals that are also close to the coefficients
of f.

INPUT:

• 𝑓 – polynomial with real floating point entries

• prec – positive integer

EXAMPLES:

sage: R.<x> = RR[]
sage: sage.schemes.elliptic_curves.heegner.simplest_rational_poly(2.1*x^2 + 3.5*x -␣
→˓1.2, 53)
21/10*X^2 + 7/2*X - 6/5

16.24 𝑝-adic 𝐿-functions of elliptic curves

To an elliptic curve𝐸 over the rational numbers and a prime 𝑝, one can associate a 𝑝-adic L-function; at least if𝐸 does
not have additive reduction at 𝑝. This function is defined by interpolation of L-values of 𝐸 at twists. Through the main
conjecture of Iwasawa theory it should also be equal to a characteristic series of a certain Selmer group.

If 𝐸 is ordinary, then it is an element of the Iwasawa algebra Λ(Z×
𝑝) = Z𝑝[∆][[𝑇]], where ∆ is the group of (𝑝− 1)-st

roots of unity in Z×
𝑝 , and 𝑇 = [𝛾] − 1 where 𝛾 = 1 + 𝑝 is a generator of 1 + 𝑝Z𝑝. (There is a slightly different

description for 𝑝 = 2.)

One can decompose this algebra as the direct product of the subalgebras corresponding to the characters of ∆, which
are simply the powers 𝜏𝜂 (0 ≤ 𝜂 ≤ 𝑝− 2) of the Teichmueller character 𝜏 : ∆ → Z×

𝑝 . Projecting the L-function into
these components gives 𝑝− 1 power series in 𝑇 , each with coefficients in Z𝑝.

If 𝐸 is supersingular, the series will have coefficients in a quadratic extension of Q𝑝, and the coefficients will be
unbounded. In this case we have only implemented the series for 𝜂 = 0. We have also implemented the 𝑝-adic L-series
as formulated by Perrin-Riou [BP1993], which has coefficients in the Dieudonné module 𝐷𝑝𝐸 = 𝐻1

𝑑𝑅(𝐸/Q𝑝) of 𝐸.
There is a different description by Pollack [Pol2003] which is not available here.

578 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

According to the 𝑝-adic version of the Birch and Swinnerton-Dyer conjecture [MTT1986], the order of vanishing of
the 𝐿-function at the trivial character (i.e. of the series for 𝜂 = 0 at 𝑇 = 0) is just the rank of 𝐸(Q), or this rank plus
one if the reduction at 𝑝 is split multiplicative.

See [SW2013] for more details.

AUTHORS:

• William Stein (2007-01-01): first version

• Chris Wuthrich (22/05/2007): changed minor issues and added supersingular things

• Chris Wuthrich (11/2008): added quadratic_twists

• David Loeffler (01/2011): added nontrivial Teichmueller components

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseries(E, p, implementation='eclib',
normalize='L_ratio')

Bases: SageObject

The 𝑝-adic L-series of an elliptic curve.

EXAMPLES:

An ordinary example:

sage: e = EllipticCurve('389a')
sage: L = e.padic_lseries(5)
sage: L.series(0)
Traceback (most recent call last):
...
ValueError: n (=0) must be a positive integer
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(5^4) + O(5)*T + (4 + O(5))*T^2 + (2 + O(5))*T^3 + (3 + O(5))*T^4 + O(T^5)
sage: L.series(3, prec=10)
O(5^5) + O(5^2)*T + (4 + 4*5 + O(5^2))*T^2 + (2 + 4*5 + O(5^2))*T^3 + (3 + O(5^
→˓2))*T^4 + (1 + O(5))*T^5 + O(5)*T^6 + (4 + O(5))*T^7 + (2 + O(5))*T^8 + O(5)*T^9␣
→˓+ O(T^10)
sage: L.series(2,quadratic_twist=-3)
2 + 4*5 + 4*5^2 + O(5^4) + O(5)*T + (1 + O(5))*T^2 + (4 + O(5))*T^3 + O(5)*T^4 +␣
→˓O(T^5)

A prime p such that E[p] is reducible:

sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.series(1)
5 + O(5^2) + O(T)
sage: L.series(2)
5 + 4*5^2 + O(5^3) + O(5^0)*T + O(5^0)*T^2 + O(5^0)*T^3 + O(5^0)*T^4 + O(T^5)
sage: L.series(3)
5 + 4*5^2 + 4*5^3 + O(5^4) + O(5)*T + O(5)*T^2 + O(5)*T^3 + O(5)*T^4 + O(T^5)

An example showing the calculation of nontrivial Teichmueller twists:

sage: E = EllipticCurve('11a1')
sage: lp = E.padic_lseries(7)

(continues on next page)

16.24. 𝑝-adic 𝐿-functions of elliptic curves 579

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

sage: lp.series(4,eta=1)
3 + 7^3 + 6*7^4 + 3*7^5 + O(7^6) + (2*7 + 7^2 + O(7^3))*T + (1 + 5*7^2 + O(7^3))*T^
→˓2 + (4 + 4*7 + 4*7^2 + O(7^3))*T^3 + (4 + 3*7 + 7^2 + O(7^3))*T^4 + O(T^5)
sage: lp.series(4,eta=2)
5 + 6*7 + 4*7^2 + 2*7^3 + 3*7^4 + 2*7^5 + O(7^6) + (6 + 4*7 + 7^2 + O(7^3))*T + (3␣
→˓+ 2*7^2 + O(7^3))*T^2 + (1 + 4*7 + 7^2 + O(7^3))*T^3 + (6 + 6*7 + 6*7^2 + O(7^
→˓3))*T^4 + O(T^5)
sage: lp.series(4,eta=3)
O(7^6) + (5 + 4*7 + 2*7^2 + O(7^3))*T + (6 + 5*7 + 2*7^2 + O(7^3))*T^2 + (5*7 + O(7^
→˓3))*T^3 + (7 + 4*7^2 + O(7^3))*T^4 + O(T^5)

(Note that the last series vanishes at 𝑇 = 0, which is consistent with

sage: E.quadratic_twist(-7).rank()
1

This proves that 𝐸 has rank 1 over Q(𝜁7).)

alpha(prec=20)
Return a 𝑝-adic root 𝛼 of the polynomial 𝑥2 − 𝑎𝑝𝑥+ 𝑝 with 𝑜𝑟𝑑𝑝(𝛼) < 1. In the ordinary case this is just
the unit root.

INPUT:

• prec – positive integer, the 𝑝-adic precision of the root.

EXAMPLES:

Consider the elliptic curve 37a:

sage: E = EllipticCurve('37a')

An ordinary prime:

sage: L = E.padic_lseries(5)
sage: alpha = L.alpha(10); alpha
3 + 2*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + O(5^10)
sage: alpha^2 - E.ap(5)*alpha + 5
O(5^10)

A supersingular prime:

sage: L = E.padic_lseries(3)
sage: alpha = L.alpha(10); alpha
alpha + O(alpha^21)
sage: alpha^2 - E.ap(3)*alpha + 3
O(alpha^22)

A reducible prime:

sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.alpha(5)
1 + 4*5 + 3*5^2 + 2*5^3 + 4*5^4 + O(5^5)

580 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

elliptic_curve()

Return the elliptic curve to which this 𝑝-adic L-series is associated.

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

measure(a, n, prec, quadratic_twist=1, sign=1)
Return the measure on Z×

𝑝 defined by

𝜇+
𝐸,𝛼(𝑎+ 𝑝𝑛Z𝑝) = 1

𝛼𝑛

[︁
𝑎
𝑝𝑛

]︁+
− 1

𝛼𝑛+1

[︁
𝑎

𝑝𝑛−1

]︁+
where [·]+ is the modular symbol. This is used to define this 𝑝-adic L-function (at least when the reduction
is good).

The optional argument sign allows the minus symbol [·]− to be substituted for the plus symbol.

The optional argument quadratic_twist replaces 𝐸 by the twist in the above formula, but the twisted
modular symbol is computed using a sum over modular symbols of 𝐸 rather than finding the modular
symbols for the twist. Quadratic twists are only implemented if the sign is +1.

Note that the normalization is not correct at this stage: use _quotient_of periods and _quotient_of
periods_to_twist to correct.

Note also that this function does not check if the condition on the quadratic_twist=D is satisfied. So the
result will only be correct if for each prime ℓ dividing 𝐷, we have 𝑜𝑟𝑑ℓ(𝑁) <= 𝑜𝑟𝑑ℓ(𝐷), where 𝑁 is the
conductor of the curve.

INPUT:

• a – an integer

• n – a non-negative integer

• prec – an integer

• quadratic_twist (default = 1) – a fundamental discriminant of a quadratic field, should be coprime
to the conductor of 𝐸

• sign (default = 1) – an integer, which should be ±1.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.padic_lseries(5)
sage: L.measure(1,2, prec=9)
2 + 3*5 + 4*5^3 + 2*5^4 + 3*5^5 + 3*5^6 + 4*5^7 + 4*5^8 + O(5^9)
sage: L.measure(1,2, quadratic_twist=8,prec=15)
O(5^15)
sage: L.measure(1,2, quadratic_twist=-4,prec=15)
4 + 4*5 + 4*5^2 + 3*5^3 + 2*5^4 + 5^5 + 3*5^6 + 5^8 + 2*5^9 + 3*5^12 + 2*5^13 +␣
→˓4*5^14 + O(5^15)

sage: E = EllipticCurve('11a1')
sage: a = E.quadratic_twist(-3).padic_lseries(5).measure(1,2,prec=15)
sage: b = E.padic_lseries(5).measure(1,2, quadratic_twist=-3,prec=15)
sage: a == b * E.padic_lseries(5)._quotient_of_periods_to_twist(-3)
True

16.24. 𝑝-adic 𝐿-functions of elliptic curves 581

Elliptic curves, Release 9.8

modular_symbol(r, sign=1, quadratic_twist=1)
Return the modular symbol evaluated at 𝑟.

This is used to compute this 𝑝-adic L-series.

Note that the normalization is not correct at this stage: use _quotient_of periods_to_twist to correct.

Note also that this function does not check if the condition on the quadratic_twist=D is satisfied. So the
result will only be correct if for each prime ℓ dividing 𝐷, we have 𝑜𝑟𝑑ℓ(𝑁) <= 𝑜𝑟𝑑ℓ(𝐷), where 𝑁 is the
conductor of the curve.

INPUT:

• r – a cusp given as either a rational number or oo

• sign – +1 (default) or -1 (only implemented without twists)

• quadratic_twist – a fundamental discriminant of a quadratic field or +1 (default)

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: lp = E.padic_lseries(5)
sage: [lp.modular_symbol(r) for r in [0,1/5,oo,1/11]]
[1/5, 6/5, 0, 0]
sage: [lp.modular_symbol(r,sign=-1) for r in [0,1/3,oo,1/7]]
[0, 1/2, 0, -1/2]
sage: [lp.modular_symbol(r,quadratic_twist=-20) for r in [0,1/5,oo,1/11]]
[1, 1, 0, 1/2]

sage: E = EllipticCurve('20a1')
sage: Et = E.quadratic_twist(-4)
sage: lpt = Et.padic_lseries(5)
sage: eta = lpt._quotient_of_periods_to_twist(-4)
sage: lpt.modular_symbol(0) == lp.modular_symbol(0,quadratic_twist=-4) / eta
True

order_of_vanishing()

Return the order of vanishing of this 𝑝-adic L-series.

The output of this function is provably correct, due to a theorem of Kato [Kat2004].

Note: currently 𝑝 must be a prime of good ordinary reduction.

REFERENCES:

• [MTT1986]

• [Kat2004]

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(3)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.order_of_vanishing()
0

(continues on next page)

582 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: L = EllipticCurve('37a').padic_lseries(5)
sage: L.order_of_vanishing()
1
sage: L = EllipticCurve('43a').padic_lseries(3)
sage: L.order_of_vanishing()
1
sage: L = EllipticCurve('37b').padic_lseries(3)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve('389a').padic_lseries(3)
sage: L.order_of_vanishing()
2
sage: L = EllipticCurve('389a').padic_lseries(5)
sage: L.order_of_vanishing()
2
sage: L = EllipticCurve('5077a').padic_lseries(5, implementation = 'eclib')
sage: L.order_of_vanishing()
3

prime()

Return the prime 𝑝 as in ‘p-adic L-function’.

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.prime()
5

teichmuller(prec)
Return Teichmuller lifts to the given precision.

INPUT:

• prec – a positive integer.

OUTPUT:

• a list of 𝑝-adic numbers, the cached Teichmuller lifts

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(7)
sage: L.teichmuller(1)
[0, 1, 2, 3, 4, 5, 6]
sage: L.teichmuller(2)
[0, 1, 30, 31, 18, 19, 48]

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary(E, p,
implementation='eclib',
normalize='L_ratio')

Bases: pAdicLseries

is_ordinary()

Return True if the elliptic curve that this L-function is attached to is ordinary.

EXAMPLES:

16.24. 𝑝-adic 𝐿-functions of elliptic curves 583

Elliptic curves, Release 9.8

sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.is_ordinary()
True

is_supersingular()

Return True if the elliptic curve that this L function is attached to is supersingular.

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.is_supersingular()
False

power_series(n=2, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series, in the component corresponding to the 𝜂-th power of
the Teichmueller character, as a power series in 𝑇 (corresponding to 𝛾 − 1 with 𝛾 = 1 + 𝑝 as a generator
of 1 + 𝑝Z𝑝). Each coefficient is a 𝑝-adic number whose precision is provably correct.

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1 − 1/𝛼)2𝐿(𝐸, 1)/Ω𝐸
where 𝛼 is the unit root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period
of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots
of unity in Z×

𝑝)

power_series() is identical to series.

EXAMPLES:

We compute some 𝑝-adic L-functions associated to the elliptic curve 11a:

sage: E = EllipticCurve('11a')
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(3)
2 + 3 + 3^2 + 2*3^3 + O(3^5) + (1 + 3 + O(3^2))*T + (1 + 2*3 + O(3^2))*T^2 +␣
→˓O(3)*T^3 + O(3)*T^4 + O(T^5)

Another example at a prime of bad reduction, where the 𝑝-adic L-function has an extra 0 (compared to the
non 𝑝-adic L-function):

sage: E = EllipticCurve('11a')
sage: p = 11
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)

(continues on next page)

584 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

(continued from previous page)

sage: L.series(2)
O(11^4) + (10 + O(11))*T + (6 + O(11))*T^2 + (2 + O(11))*T^3 + (5 + O(11))*T^4␣
→˓+ O(T^5)

We compute a 𝑝-adic L-function that vanishes to order 2:

sage: E = EllipticCurve('389a')
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(3^4) + O(3)*T + (2 + O(3))*T^2 + O(T^3)
sage: L.series(3)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 +␣
→˓O(T^5)

Checks if the precision can be changed (trac ticket #5846):

sage: L.series(3,prec=4)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + O(T^4)
sage: L.series(3,prec=6)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 +␣
→˓(1 + O(3))*T^5 + O(T^6)

Rather than computing the 𝑝-adic L-function for the curve ‘15523a1’, one can compute it as a
quadratic_twist:

sage: E = EllipticCurve('43a1')
sage: lp = E.padic_lseries(3)
sage: lp.series(2,quadratic_twist=-19)
2 + 2*3 + 2*3^2 + O(3^4) + (1 + O(3))*T + (1 + O(3))*T^2 + O(T^3)
sage: E.quadratic_twist(-19).label() # optional -- database_cremona_ellcurve
'15523a1'

This proves that the rank of ‘15523a1’ is zero, even if mwrank cannot determine this.

We calculate the 𝐿-series in the nontrivial Teichmueller components:

sage: L = EllipticCurve('110a1').padic_lseries(5, implementation="sage")
sage: for j in [0..3]: print(L.series(4, eta=j))
O(5^6) + (2 + 2*5 + 2*5^2 + O(5^3))*T + (5 + 5^2 + O(5^3))*T^2 + (4 + 4*5 + 2*5^
→˓2 + O(5^3))*T^3 + (1 + 5 + 3*5^2 + O(5^3))*T^4 + O(T^5)
4 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + O(5^6) + (1 + 3*5 + 4*5^2 + O(5^3))*T + (3 +␣
→˓4*5 + 3*5^2 + O(5^3))*T^2 + (3 + 3*5^2 + O(5^3))*T^3 + (1 + 2*5 + 2*5^2 + O(5^
→˓3))*T^4 + O(T^5)
2 + O(5^6) + (1 + 5 + O(5^3))*T + (2 + 4*5 + 3*5^2 + O(5^3))*T^2 + (4 + 5 + 2*5^
→˓2 + O(5^3))*T^3 + (4 + O(5^3))*T^4 + O(T^5)
3 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + O(5^6) + (1 + 2*5 + 4*5^2 + O(5^3))*T +␣
→˓(1 + 4*5 + O(5^3))*T^2 + (3 + 2*5 + 2*5^2 + O(5^3))*T^3 + (5 + 5^2 + O(5^
→˓3))*T^4 + O(T^5)

16.24. 𝑝-adic 𝐿-functions of elliptic curves 585

https://trac.sagemath.org/5846

Elliptic curves, Release 9.8

It should now also work with 𝑝 = 2 (trac ticket #20798):

sage: E = EllipticCurve("53a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(7)
O(2^8) + (1 + 2^2 + 2^3 + O(2^5))*T + (1 + 2^3 + O(2^4))*T^2 + (2^2 + 2^3 + O(2^
→˓4))*T^3 + (2 + 2^2 + O(2^3))*T^4 + O(T^5)

sage: E = EllipticCurve("109a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(6)
2^2 + 2^6 + O(2^7) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 +␣
→˓O(2^2))*T^4 + O(T^5)

Check that twists by odd Teichmuller characters are ok (trac ticket #32258):

sage: E = EllipticCurve("443c1")
sage: lp = E.padic_lseries(17, implementation="num")
sage: l8 = lp.series(2,eta=8,prec=3)
sage: l8.list()[0] - 1/lp.alpha()
O(17^4)
sage: lp = E.padic_lseries(2, implementation="num")
sage: l1 = lp.series(8,eta=1,prec=3)
sage: l1.list()[0] - 4/lp.alpha()^2
O(2^9)

series(n=2, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series, in the component corresponding to the 𝜂-th power of
the Teichmueller character, as a power series in 𝑇 (corresponding to 𝛾 − 1 with 𝛾 = 1 + 𝑝 as a generator
of 1 + 𝑝Z𝑝). Each coefficient is a 𝑝-adic number whose precision is provably correct.

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1 − 1/𝛼)2𝐿(𝐸, 1)/Ω𝐸
where 𝛼 is the unit root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period
of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots
of unity in Z×

𝑝)

power_series() is identical to series.

EXAMPLES:

We compute some 𝑝-adic L-functions associated to the elliptic curve 11a:

sage: E = EllipticCurve('11a')
sage: p = 3
sage: E.is_ordinary(p)
True

(continues on next page)

586 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/20798
https://trac.sagemath.org/32258

Elliptic curves, Release 9.8

(continued from previous page)

sage: L = E.padic_lseries(p)
sage: L.series(3)
2 + 3 + 3^2 + 2*3^3 + O(3^5) + (1 + 3 + O(3^2))*T + (1 + 2*3 + O(3^2))*T^2 +␣
→˓O(3)*T^3 + O(3)*T^4 + O(T^5)

Another example at a prime of bad reduction, where the 𝑝-adic L-function has an extra 0 (compared to the
non 𝑝-adic L-function):

sage: E = EllipticCurve('11a')
sage: p = 11
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(2)
O(11^4) + (10 + O(11))*T + (6 + O(11))*T^2 + (2 + O(11))*T^3 + (5 + O(11))*T^4␣
→˓+ O(T^5)

We compute a 𝑝-adic L-function that vanishes to order 2:

sage: E = EllipticCurve('389a')
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(3^4) + O(3)*T + (2 + O(3))*T^2 + O(T^3)
sage: L.series(3)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 +␣
→˓O(T^5)

Checks if the precision can be changed (trac ticket #5846):

sage: L.series(3,prec=4)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + O(T^4)
sage: L.series(3,prec=6)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 +␣
→˓(1 + O(3))*T^5 + O(T^6)

Rather than computing the 𝑝-adic L-function for the curve ‘15523a1’, one can compute it as a
quadratic_twist:

sage: E = EllipticCurve('43a1')
sage: lp = E.padic_lseries(3)
sage: lp.series(2,quadratic_twist=-19)
2 + 2*3 + 2*3^2 + O(3^4) + (1 + O(3))*T + (1 + O(3))*T^2 + O(T^3)
sage: E.quadratic_twist(-19).label() # optional -- database_cremona_ellcurve
'15523a1'

This proves that the rank of ‘15523a1’ is zero, even if mwrank cannot determine this.

We calculate the 𝐿-series in the nontrivial Teichmueller components:

16.24. 𝑝-adic 𝐿-functions of elliptic curves 587

https://trac.sagemath.org/5846

Elliptic curves, Release 9.8

sage: L = EllipticCurve('110a1').padic_lseries(5, implementation="sage")
sage: for j in [0..3]: print(L.series(4, eta=j))
O(5^6) + (2 + 2*5 + 2*5^2 + O(5^3))*T + (5 + 5^2 + O(5^3))*T^2 + (4 + 4*5 + 2*5^
→˓2 + O(5^3))*T^3 + (1 + 5 + 3*5^2 + O(5^3))*T^4 + O(T^5)
4 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + O(5^6) + (1 + 3*5 + 4*5^2 + O(5^3))*T + (3 +␣
→˓4*5 + 3*5^2 + O(5^3))*T^2 + (3 + 3*5^2 + O(5^3))*T^3 + (1 + 2*5 + 2*5^2 + O(5^
→˓3))*T^4 + O(T^5)
2 + O(5^6) + (1 + 5 + O(5^3))*T + (2 + 4*5 + 3*5^2 + O(5^3))*T^2 + (4 + 5 + 2*5^
→˓2 + O(5^3))*T^3 + (4 + O(5^3))*T^4 + O(T^5)
3 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + O(5^6) + (1 + 2*5 + 4*5^2 + O(5^3))*T +␣
→˓(1 + 4*5 + O(5^3))*T^2 + (3 + 2*5 + 2*5^2 + O(5^3))*T^3 + (5 + 5^2 + O(5^
→˓3))*T^4 + O(T^5)

It should now also work with 𝑝 = 2 (trac ticket #20798):

sage: E = EllipticCurve("53a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(7)
O(2^8) + (1 + 2^2 + 2^3 + O(2^5))*T + (1 + 2^3 + O(2^4))*T^2 + (2^2 + 2^3 + O(2^
→˓4))*T^3 + (2 + 2^2 + O(2^3))*T^4 + O(T^5)

sage: E = EllipticCurve("109a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(6)
2^2 + 2^6 + O(2^7) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 +␣
→˓O(2^2))*T^4 + O(T^5)

Check that twists by odd Teichmuller characters are ok (trac ticket #32258):

sage: E = EllipticCurve("443c1")
sage: lp = E.padic_lseries(17, implementation="num")
sage: l8 = lp.series(2,eta=8,prec=3)
sage: l8.list()[0] - 1/lp.alpha()
O(17^4)
sage: lp = E.padic_lseries(2, implementation="num")
sage: l1 = lp.series(8,eta=1,prec=3)
sage: l1.list()[0] - 4/lp.alpha()^2
O(2^9)

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular(E, p, implementa-
tion='eclib',
normal-
ize='L_ratio')

Bases: pAdicLseries

Dp_valued_height(prec=20)
Return the canonical 𝑝-adic height with values in the Dieudonné module 𝐷𝑝(𝐸).

It is defined to be

ℎ𝜂 · 𝜔 − ℎ𝜔 · 𝜂

where ℎ𝜂 is made out of the sigma function of Bernardi and ℎ𝜔 is 𝑙𝑜𝑔2𝐸 .

The answer v is given as v[1]*omega + v[2]*eta. The coordinates of v are dependent of the Weierstrass
equation.

588 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/20798
https://trac.sagemath.org/32258

Elliptic curves, Release 9.8

EXAMPLES:

sage: E = EllipticCurve('53a')
sage: L = E.padic_lseries(5)
sage: h = L.Dp_valued_height(7)
sage: h(E.gens()[0])
(3*5 + 5^2 + 2*5^3 + 3*5^4 + 4*5^5 + 5^6 + 5^7 + O(5^8), 5^2 + 4*5^4 + 2*5^7 +␣
→˓3*5^8 + O(5^9))

Dp_valued_regulator(prec=20, v1=0, v2=0)
Return the canonical 𝑝-adic regulator with values in the Dieudonné module 𝐷𝑝(𝐸) as defined by Perrin-
Riou using the 𝑝-adic height with values in 𝐷𝑝(𝐸).

The result is written in the basis 𝜔, 𝜙(𝜔), and hence the coordinates of the result are independent of the
chosen Weierstrass equation.

Note: The definition here is corrected with respect to Perrin-Riou’s article [PR2003]. See [SW2013].

EXAMPLES:

sage: E = EllipticCurve('43a')
sage: L = E.padic_lseries(7)
sage: L.Dp_valued_regulator(7)
(5*7 + 6*7^2 + 4*7^3 + 4*7^4 + 7^5 + 4*7^7 + O(7^8), 4*7^2 + 2*7^3 + 3*7^4 + 7^
→˓5 + 6*7^6 + 4*7^7 + O(7^8))

Dp_valued_series(n=3, quadratic_twist=1, prec=5)
Return a vector of two components which are p-adic power series.

The answer v is such that

(1 − 𝜙)−2 · 𝐿𝑝(𝐸, 𝑇) = v[1] ·𝜔+ v[2] ·𝜙(𝜔)

as an element of the Dieudonné module 𝐷𝑝(𝐸) = 𝐻1
𝑑𝑅(𝐸/Q𝑝) where 𝜔 is the invariant differential and

𝜙 is the Frobenius on 𝐷𝑝(𝐸).

According to the 𝑝-adic Birch and Swinnerton-Dyer conjecture [BP1993] this function has a zero of order
rank of 𝐸(Q) and it’s leading term is contains the order of the Tate-Shafarevich group, the Tamagawa
numbers, the order of the torsion subgroup and the 𝐷𝑝-valued 𝑝-adic regulator.

INPUT:

• n – (default: 3) a positive integer

• prec – (default: 5) a positive integer

EXAMPLES:

sage: E = EllipticCurve('14a')
sage: L = E.padic_lseries(5)
sage: L.Dp_valued_series(4) # long time (9s on sage.math, 2011)
(1 + 4*5 + O(5^2) + (4 + O(5))*T + (1 + O(5))*T^2 + (4 + O(5))*T^3 + (2 +␣
→˓O(5))*T^4 + O(T^5), 5^2 + O(5^3) + O(5^2)*T + (4*5 + O(5^2))*T^2 + (2*5 + O(5^
→˓2))*T^3 + (2 + 2*5 + O(5^2))*T^4 + O(T^5))

bernardi_sigma_function(prec=20)
Return the 𝑝-adic sigma function of Bernardi in terms of 𝑧 = 𝑙𝑜𝑔(𝑡).

16.24. 𝑝-adic 𝐿-functions of elliptic curves 589

Elliptic curves, Release 9.8

This is the same as padic_sigma with E2 = 0.

EXAMPLES:

sage: E = EllipticCurve('14a')
sage: L = E.padic_lseries(5)
sage: L.bernardi_sigma_function(prec=5) # Todo: some sort of consistency check!?
z + 1/24*z^3 + 29/384*z^5 - 8399/322560*z^7 - 291743/92897280*z^9 + O(z^10)

frobenius(prec=20, algorithm='mw')
Return a geometric Frobenius 𝜙 on the Dieudonné module𝐷𝑝(𝐸) with respect to the basis 𝜔, the invariant
differential, and 𝜂 = 𝑥𝜔.

It satisfies 𝜙2 − 𝑎𝑝/𝑝𝜙+ 1/𝑝 = 0.

INPUT:

• prec – (default: 20) a positive integer

• algorithm – either ‘mw’ (default) for Monsky-Washnitzer or ‘approx’ for the algorithm described by
Bernardi and Perrin-Riou (much slower and not fully tested)

EXAMPLES:

sage: E = EllipticCurve('14a')
sage: L = E.padic_lseries(5)
sage: phi = L.frobenius(5)
sage: phi
[2 + 5^2 + 5^4 + O(5^5) 3*5^-1 + 3 + 5 + 4*5^2 + 5^3 + O(5^
→˓4)]
[3 + 3*5^2 + 4*5^3 + 3*5^4 + O(5^5) 3 + 4*5 + 3*5^2 + 4*5^3 + 3*5^4 + O(5^
→˓5)]
sage: -phi^2
[5^-1 + O(5^4) O(5^4)]
[O(5^5) 5^-1 + O(5^4)]

is_ordinary()

Return True if the elliptic curve that this L-function is attached to is ordinary.

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(19)
sage: L.is_ordinary()
False

is_supersingular()

Return True if the elliptic curve that this L function is attached to is supersingular.

EXAMPLES:

sage: L = EllipticCurve('11a').padic_lseries(19)
sage: L.is_supersingular()
True

power_series(n=3, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series as a power series in 𝑇 (corresponding to 𝛾 − 1 with
𝛾 = 1 + 𝑝 as a generator of 1 + 𝑝Z𝑝). Each coefficient is an element of a quadratic extension of the 𝑝-adic
number whose precision is provably correct.

590 Chapter 16. Elliptic curves over number fields

Elliptic curves, Release 9.8

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1 − 1/𝛼)2𝐿(𝐸, 1)/Ω𝐸
where 𝛼 is a root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots
of unity in Z×

𝑝)

OUTPUT:

a power series with coefficients in a quadratic ramified extension of the 𝑝-adic numbers generated by a root
𝑎𝑙𝑝ℎ𝑎 of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸.

ALIAS: power_series is identical to series.

EXAMPLES:

A supersingular example, where we must compute to higher precision to see anything:

sage: e = EllipticCurve('37a')
sage: L = e.padic_lseries(3); L
3-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational␣
→˓Field
sage: L.series(2)
O(T^3)
sage: L.series(4) # takes a long time (several seconds)
O(alpha) + (alpha^-2 + O(alpha^0))*T + (alpha^-2 + O(alpha^0))*T^2 + O(T^5)
sage: L.alpha(2).parent()
3-adic Eisenstein Extension Field in alpha defined by x^2 + 3*x + 3

An example where we only compute the leading term (trac ticket #15737):

sage: E = EllipticCurve("17a1")
sage: L = E.padic_lseries(3)
sage: L.series(4,prec=1)
alpha^-2 + alpha^-1 + 2 + 2*alpha + ... + O(alpha^38) + O(T)

It works also for 𝑝 = 2:

sage: E = EllipticCurve("11a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(10)
O(alpha^-3) + (alpha^-4 + O(alpha^-3))*T + (alpha^-4 + O(alpha^-3))*T^2 +␣
→˓(alpha^-5 + alpha^-4 + O(alpha^-3))*T^3 + (alpha^-4 + O(alpha^-3))*T^4 + O(T^
→˓5)

series(n=3, quadratic_twist=1, prec=5, eta=0)
Return the 𝑛-th approximation to the 𝑝-adic L-series as a power series in 𝑇 (corresponding to 𝛾 − 1 with
𝛾 = 1 + 𝑝 as a generator of 1 + 𝑝Z𝑝). Each coefficient is an element of a quadratic extension of the 𝑝-adic
number whose precision is provably correct.

16.24. 𝑝-adic 𝐿-functions of elliptic curves 591

https://trac.sagemath.org/15737

Elliptic curves, Release 9.8

Here the normalization of the 𝑝-adic L-series is chosen such that 𝐿𝑝(𝐸, 1) = (1 − 1/𝛼)2𝐿(𝐸, 1)/Ω𝐸
where 𝛼 is a root of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸 and Ω𝐸 is the Néron period of 𝐸.

INPUT:

• n – (default: 2) a positive integer

• quadratic_twist – (default: +1) a fundamental discriminant of a quadratic field, coprime to the
conductor of the curve

• prec – (default: 5) maximal number of terms of the series to compute; to compute as many as possible
just give a very large number for prec; the result will still be correct.

• eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots
of unity in Z×

𝑝)

OUTPUT:

a power series with coefficients in a quadratic ramified extension of the 𝑝-adic numbers generated by a root
𝑎𝑙𝑝ℎ𝑎 of the characteristic polynomial of Frobenius on 𝑇𝑝𝐸.

ALIAS: power_series is identical to series.

EXAMPLES:

A supersingular example, where we must compute to higher precision to see anything:

sage: e = EllipticCurve('37a')
sage: L = e.padic_lseries(3); L
3-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational␣
→˓Field
sage: L.series(2)
O(T^3)
sage: L.series(4) # takes a long time (several seconds)
O(alpha) + (alpha^-2 + O(alpha^0))*T + (alpha^-2 + O(alpha^0))*T^2 + O(T^5)
sage: L.alpha(2).parent()
3-adic Eisenstein Extension Field in alpha defined by x^2 + 3*x + 3

An example where we only compute the leading term (trac ticket #15737):

sage: E = EllipticCurve("17a1")
sage: L = E.padic_lseries(3)
sage: L.series(4,prec=1)
alpha^-2 + alpha^-1 + 2 + 2*alpha + ... + O(alpha^38) + O(T)

It works also for 𝑝 = 2:

sage: E = EllipticCurve("11a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(10)
O(alpha^-3) + (alpha^-4 + O(alpha^-3))*T + (alpha^-4 + O(alpha^-3))*T^2 +␣
→˓(alpha^-5 + alpha^-4 + O(alpha^-3))*T^3 + (alpha^-4 + O(alpha^-3))*T^4 + O(T^
→˓5)

592 Chapter 16. Elliptic curves over number fields

https://trac.sagemath.org/15737

CHAPTER

SEVENTEEN

TO BE SORTED

17.1 Descent on elliptic curves over Q with a 2-isogeny

sage.schemes.elliptic_curves.descent_two_isogeny.test_els(a, b, c, d, e)
Doctest function for cdef int everywhere_locally_soluble(mpz_t, mpz_t, mpz_t, mpz_t, mpz_t).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_els
sage: for _ in range(1000):
....: a,b,c,d,e = randint(1,1000), randint(1,1000), randint(1,1000), randint(1,
→˓1000), randint(1,1000)
....: if pari.Pol([a,b,c,d,e]).hyperellratpoints(1000, 1):
....: try:
....: if not test_els(a,b,c,d,e):
....: print("This never happened", a, b, c, d, e)
....: except ValueError:
....: continue

sage.schemes.elliptic_curves.descent_two_isogeny.test_padic_square(a, p)
Doctest function for cdef int padic_square(mpz_t, unsigned long).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_padic_
→˓square as ps
sage: for i in [1..300]:
....: for p in prime_range(100):
....: if not Qp(p)(i).is_square()==bool(ps(i,p)):
....: print(i, p)

sage.schemes.elliptic_curves.descent_two_isogeny.test_qpls(a, b, c, d, e, p)
Testing function for Qp_soluble.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_qpls as tq
sage: tq(1,2,3,4,5,7)
1

sage.schemes.elliptic_curves.descent_two_isogeny.test_valuation(a, p)
Doctest function for cdef long valuation(mpz_t, mpz_t).

593

Elliptic curves, Release 9.8

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_valuation␣
→˓as tv
sage: for i in [1..20]:
....: print('{:>10} {} {} {}'.format(str(factor(i)), tv(i,2), tv(i,3), tv(i,5)))

1 0 0 0
2 1 0 0
3 0 1 0

2^2 2 0 0
5 0 0 1

2 * 3 1 1 0
7 0 0 0

2^3 3 0 0
3^2 0 2 0

2 * 5 1 0 1
11 0 0 0

2^2 * 3 2 1 0
13 0 0 0

2 * 7 1 0 0
3 * 5 0 1 1
2^4 4 0 0
17 0 0 0

2 * 3^2 1 2 0
19 0 0 0

2^2 * 5 2 0 1

sage.schemes.elliptic_curves.descent_two_isogeny.two_descent_by_two_isogeny(E,
global_limit_small=10,
global_limit_large=10000,
verbosity=0,
selmer_only=0,
proof=1)

Given an elliptic curve E with a two-isogeny phi : E –> E’ and dual isogeny phi’, runs a two-isogeny descent on
E, returning n1, n2, n1’ and n2’. Here n1 is the number of quartic covers found with a rational point, and n2 is
the number which are ELS.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_
→˓two_isogeny
sage: E = EllipticCurve('14a')
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0
sage: E = EllipticCurve('65a')
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
1
sage: x,y = var('x,y')
sage: E = EllipticCurve(y^2 == x^3 + x^2 - 25*x + 39)
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
2

(continues on next page)

594 Chapter 17. To be sorted

Elliptic curves, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(y^2 + x*y + y == x^3 - 131*x + 558)
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
3

Using the verbosity option:

sage: E = EllipticCurve('14a')
sage: two_descent_by_two_isogeny(E, verbosity=1)
2-isogeny
Results:
2 <= #E(Q)/phi'(E'(Q)) <= 2
2 <= #E'(Q)/phi(E(Q)) <= 2
#Sel^(phi')(E'/Q) = 2
#Sel^(phi)(E/Q) = 2
1 <= #Sha(E'/Q)[phi'] <= 1
1 <= #Sha(E/Q)[phi] <= 1
1 <= #Sha(E/Q)[2], #Sha(E'/Q)[2] <= 1
0 <= rank of E(Q) = rank of E'(Q) <= 0
(2, 2, 2, 2)

Handling curves whose discriminants involve larger than wordsize primes:

sage: E = EllipticCurve('14a')
sage: E = E.quadratic_twist(next_prime(10^20))
sage: E
Elliptic Curve defined by y^2 = x^3 + x^2 +␣
→˓716666666666666667225666666666666666775672*x -␣
→˓391925925925925926384240370370370370549019837037037037060249356 over Rational␣
→˓Field
sage: E.discriminant().factor()
-1 * 2^18 * 7^3 * 100000000000000000039^6
sage: log(100000000000000000039.0, 2.0)
66.438...
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0

sage.schemes.elliptic_curves.descent_two_isogeny.two_descent_by_two_isogeny_work(c, d,
global_limit_small=10,
global_limit_large=10000,
ver-
bosity=0,
selmer_only=0,
proof=1)

Do all the work in doing a two-isogeny descent.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_
→˓two_isogeny_work
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(13,128)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank

(continues on next page)

17.1. Descent on elliptic curves over Q with a 2-isogeny 595

Elliptic curves, Release 9.8

(continued from previous page)

0
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(1,-16)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
1
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(10,8)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
2
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(85,320)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
3

17.2 Elliptic curves with prescribed good reduction

Construction of elliptic curves with good reduction outside a finite set of primes

A theorem of Shafarevich states that, over a number field 𝐾, given any finite set 𝑆 of primes of 𝐾, there are (up
to isomorphism) only a finite set of elliptic curves defined over 𝐾 with good reduction at all primes outside 𝑆. An
explicit form of the theorem with an algorithm for finding this finite set was given in “Finding all elliptic curves with
good reduction outside a given set of primes” by John Cremona and Mark Lingham, Experimental Mathematics 16
No.3 (2007), 303-312. The method requires computation of the class and unit groups of𝐾 as well as all the 𝑆-integral
points on a collection of auxiliary elliptic curves defined over 𝐾.

This implementation (April 2009) is only for the case 𝐾 = Q, where in many cases the de-
termination of the necessary sets of 𝑆-integral points is possible. The main user-level function is
EllipticCurves_with_good_reduction_outside_S(), defined in constructor.py. Users should note carefully
the following points:

(1) the number of auxiliary curves to be considered is exponential in the size of 𝑆 (specifically, 2.6𝑠 where 𝑠 = |𝑆|).

(2) For some of the auxiliary curves it is impossible at present to provably find all the 𝑆-integral points using the current
algorithms, which rely on first finding a basis for their Mordell-Weil groups using 2-descent. A warning is output in
cases where the set of points (and hence the final output) is not guaranteed to be complete. Using the proof=False
flag suppresses these warnings.

EXAMPLES: We find all elliptic curves with good reduction outside 2, listing the label of each:

sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([2])] # long␣
→˓time (5s on sage.math, 2013)
['32a1',
'32a2',
'32a3',
'32a4',
'64a1',
'64a2',
'64a3',
'64a4',
'128a1',
'128a2',
'128b1',
'128b2',
'128c1',
'128c2',

(continues on next page)

596 Chapter 17. To be sorted

Elliptic curves, Release 9.8

(continued from previous page)

'128d1',
'128d2',
'256a1',
'256a2',
'256b1',
'256b2',
'256c1',
'256c2',
'256d1',
'256d2']

Secondly we try the same with 𝑆 = 11; note that warning messages are printed without proof=False (unless the
optional database is installed: two of the auxiliary curves whose Mordell-Weil bases are required have conductors
13068 and 52272 so are in the database):

sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([11],␣
→˓proof=False)] # long time (13s on sage.math, 2011)
['11a1', '11a2', '11a3', '121a1', '121a2', '121b1', '121b2', '121c1', '121c2', '121d1',
→˓'121d2', '121d3']

AUTHORS:

• John Cremona (6 April 2009): initial version (over Q only).

sage.schemes.elliptic_curves.ell_egros.curve_key(E1)
Comparison key for elliptic curves over Q.

The key is a tuple:

• if the curve is in the database: (conductor, 0, label, number)

• otherwise: (conductor, 1, a_invariants)

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import curve_key
sage: E = EllipticCurve_from_j(1728)
sage: curve_key(E)
(32, 0, 0, 2)
sage: E = EllipticCurve_from_j(1729)
sage: curve_key(E)
(2989441, 1, (1, 0, 0, -36, -1))

sage.schemes.elliptic_curves.ell_egros.egros_from_j(j, S=[])
Given a rational j and a list of primes S, returns a list of elliptic curves overQwith j-invariant j and good reduction
outside S, by checking all relevant quadratic twists.

INPUT:

• j – a rational number.

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-
primes.

17.2. Elliptic curves with prescribed good reduction 597

Elliptic curves, Release 9.8

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant equal to 𝑗 and with good reduction at all primes
outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j
sage: [e.label() for e in egros_from_j(0,[3])]
['27a1', '27a3', '243a1', '243a2', '243b1', '243b2']
sage: [e.label() for e in egros_from_j(1728,[2])]
['32a1', '32a2', '64a1', '64a4', '256b1', '256b2', '256c1', '256c2']
sage: elist=egros_from_j(-4096/11,[11])
sage: [e.label() for e in elist]
['11a3', '121d1']

sage.schemes.elliptic_curves.ell_egros.egros_from_j_0(S=[])
Given a list of primes S, returns a list of elliptic curves over Q with j-invariant 0 and good reduction outside S,
by checking all relevant sextic twists.

INPUT:

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-
primes.

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant equal to 0 and with good reduction at all primes
outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_0
sage: egros_from_j_0([])
[]
sage: egros_from_j_0([2])
[]
sage: [e.label() for e in egros_from_j_0([3])]
['27a1', '27a3', '243a1', '243a2', '243b1', '243b2']
sage: len(egros_from_j_0([2,3,5])) # long time (8s on sage.math, 2013)
432

sage.schemes.elliptic_curves.ell_egros.egros_from_j_1728(S=[])
Given a list of primes S, returns a list of elliptic curves over Q with j-invariant 1728 and good reduction outside
S, by checking all relevant quartic twists.

INPUT:

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-
primes.

OUTPUT:

598 Chapter 17. To be sorted

Elliptic curves, Release 9.8

A sorted list of all elliptic curves defined over Q with 𝑗-invariant equal to 1728 and with good reduction at all
primes outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_1728
sage: egros_from_j_1728([])
[]
sage: egros_from_j_1728([3])
[]
sage: [e.cremona_label() for e in egros_from_j_1728([2])]
['32a1', '32a2', '64a1', '64a4', '256b1', '256b2', '256c1', '256c2']

sage.schemes.elliptic_curves.ell_egros.egros_from_jlist(jlist, S=[])
Given a list of rational j and a list of primes S, returns a list of elliptic curves over Q with j-invariant in the list
and good reduction outside S.

INPUT:

• j – list of rational numbers.

• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-
primes.

OUTPUT:

A sorted list of all elliptic curves defined over Q with 𝑗-invariant in the list jlist and with good reduction at
all primes outside the list S.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j, egros_from_
→˓jlist
sage: jlist=egros_get_j([3])
sage: elist=egros_from_jlist(jlist,[3])
sage: [e.label() for e in elist]
['27a1', '27a2', '27a3', '27a4', '243a1', '243a2', '243b1', '243b2']
sage: [e.ainvs() for e in elist]
[(0, 0, 1, 0, -7),
(0, 0, 1, -270, -1708),
(0, 0, 1, 0, 0),
(0, 0, 1, -30, 63),
(0, 0, 1, 0, -1),
(0, 0, 1, 0, 20),
(0, 0, 1, 0, 2),
(0, 0, 1, 0, -61)]

sage.schemes.elliptic_curves.ell_egros.egros_get_j(S=[], proof=None, verbose=False)
Returns a list of rational 𝑗 such that all elliptic curves defined over Q with good reduction outside 𝑆 have 𝑗-
invariant in the list, sorted by height.

INPUT:

• S – list of primes (default: empty list).

17.2. Elliptic curves with prescribed good reduction 599

Elliptic curves, Release 9.8

• proof – True/False (default True): the MW basis for auxiliary curves will be computed with this proof
flag.

• verbose – True/False (default False``): if True, some details of the computation will be output.

Note: Proof flag: The algorithm used requires determining all S-integral points on several auxiliary curves,
which in turn requires the computation of their generators. This is not always possible (even in theory) using
current knowledge.

The value of this flag is passed to the function which computes generators of various auxiliary elliptic curves, in
order to find their S-integral points. Set to False if the default (True) causes warning messages, but note that
you can then not rely on the set of invariants returned being complete.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j
sage: egros_get_j([])
[1728]
sage: egros_get_j([2]) # long time (3s on sage.math, 2013)
[128, 432, -864, 1728, 3375/2, -3456, 6912, 8000, 10976, -35937/4, 287496, -
→˓784446336, -189613868625/128]
sage: egros_get_j([3]) # long time (3s on sage.math, 2013)
[0, -576, 1536, 1728, -5184, -13824, 21952/9, -41472, 140608/3, -12288000]
sage: jlist=egros_get_j([2,3]); len(jlist) # long time (30s)
83

sage.schemes.elliptic_curves.ell_egros.is_possible_j(j, S=[])
Tests if the rational 𝑗 is a possible 𝑗-invariant of an elliptic curve with good reduction outside 𝑆.

Note: The condition used is necessary but not sufficient unless S contains both 2 and 3.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_egros import is_possible_j
sage: is_possible_j(0,[])
False
sage: is_possible_j(1728,[])
True
sage: is_possible_j(-4096/11,[11])
True

17.3 Elliptic curves over padic fields

class sage.schemes.elliptic_curves.ell_padic_field.EllipticCurve_padic_field(K, ainvs)
Bases: EllipticCurve_field , HyperellipticCurve_padic_field

Elliptic curve over a padic field.

EXAMPLES:

600 Chapter 17. To be sorted

Elliptic curves, Release 9.8

sage: Qp=pAdicField(17)
sage: E=EllipticCurve(Qp,[2,3]); E
Elliptic Curve defined by y^2 = x^3 + (2+O(17^20))*x + (3+O(17^20)) over 17-adic␣
→˓Field with capped relative precision 20
sage: E == loads(dumps(E))
True

frobenius(P=None)
Return the Frobenius as a function on the group of points of this elliptic curve.

EXAMPLES:

sage: Qp = pAdicField(13)
sage: E = EllipticCurve(Qp,[1,1])
sage: type(E.frobenius())
<... 'function'>
sage: point = E(0,1)
sage: E.frobenius(point)
(0 : 1 + O(13^20) : 1 + O(13^20))

Check that trac ticket #29709 is fixed:

sage: Qp = pAdicField(13)
sage: E = EllipticCurve(Qp,[0,0,1,0,1])
sage: E.frobenius(E(1,1))
Traceback (most recent call last):
...
NotImplementedError: Curve must be in weierstrass normal form.
sage: E = EllipticCurve(Qp,[0,1,0,0,1])
sage: E.frobenius(E(0,1))
(0 : 1 + O(13^20) : 1 + O(13^20))

17.4 Denis Simon’s PARI scripts

sage.schemes.elliptic_curves.gp_simon.init()

Function to initialize the gp process

sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E, verbose=0, lim1=None, lim3=None,
limtriv=None, maxprob=20,
limbigprime=30, known_points=[])

Interface to Simon’s gp script for two-descent.

Note: Users should instead run E.simon_two_descent()

EXAMPLES:

sage: import sage.schemes.elliptic_curves.gp_simon
sage: E=EllipticCurve('389a1')
sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
(2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])

17.4. Denis Simon’s PARI scripts 601

https://trac.sagemath.org/29709

Elliptic curves, Release 9.8

17.5 Elliptic curves with congruent mod-5 representation

AUTHORS:

• Alice Silverberg and Karl Rubin – original PARI/GP version

• William Stein – Sage version

sage.schemes.elliptic_curves.mod5family.mod5family(a, b)
Formulas for computing the family of elliptic curves with congruent mod-5 representation.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.mod5family import mod5family
sage: mod5family(0,1)
Elliptic Curve defined by y^2 = x^3 + (t^30+30*t^29+435*t^28+4060*t^27+27405*t^
→˓26+142506*t^25+593775*t^24+2035800*t^23+5852925*t^22+14307150*t^21+30045015*t^
→˓20+54627300*t^19+86493225*t^18+119759850*t^17+145422675*t^16+155117520*t^
→˓15+145422675*t^14+119759850*t^13+86493225*t^12+54627300*t^11+30045015*t^
→˓10+14307150*t^9+5852925*t^8+2035800*t^7+593775*t^6+142506*t^5+27405*t^4+4060*t^
→˓3+435*t^2+30*t+1) over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field

17.6 Morphism to bring a genus-one curve into Weierstrass form

You should use EllipticCurve_from_cubic() or EllipticCurve_from_curve() to construct the transformation
starting with a cubic or with a genus one curve.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True); f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-w : 3*u : 1/3*u + 1/3*v)

sage: finv = f.inverse(); finv
Scheme morphism:
From: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
To: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
Defn: Defined on coordinates by sending (x : y : z) to

(1/3*y : -1/3*y + 3*z : -x)

sage: (u^3 + v^3 + w^3)(f.inverse().defining_polynomials()) * f.inverse().post_
→˓rescaling()
-x^3 + y^2*z - 9*y*z^2 + 27*z^3

sage: E = finv.domain()
sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
u^3 + v^3 + w^3

(continues on next page)

602 Chapter 17. To be sorted

Elliptic curves, Release 9.8

(continued from previous page)

sage: f([1,-1,0])
(0 : 1 : 0)
sage: f([1,0,-1])
(3 : 9 : 1)
sage: f([0,1,-1])
(3 : 0 : 1)

class sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformation(domain,
codomain,
defin-
ing_polynomials,
post_multiplication)

Bases: SchemeMorphism_polynomial

A morphism of a genus-one curve to/from the Weierstrass form.

INPUT:

• domain, codomain – two schemes, one of which is an elliptic curve.

• defining_polynomials – triplet of polynomials that define the transformation.

• post_multiplication – a polynomial to homogeneously rescale after substituting the defining polyno-
mials.

EXAMPLES:

sage: P2.<u,v,w> = ProjectiveSpace(2,QQ)
sage: C = P2.subscheme(u^3 + v^3 + w^3)
sage: E = EllipticCurve([2, -1, -1/3, 1/3, -1/27])
sage: from sage.schemes.elliptic_curves.weierstrass_transform import␣
→˓WeierstrassTransformation
sage: f = WeierstrassTransformation(C, E, [w, -v-w, -3*u-3*v], 1); f
Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 + 2*x*y - 1/3*y = x^3 - x^2 + 1/3*x - 1/27

over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(w : -v - w : -3*u - 3*v)

sage: f([-1, 1, 0])
(0 : 1 : 0)
sage: f([-1, 0, 1])
(1/3 : -1/3 : 1)
sage: f([0,-1, 1])
(1/3 : 0 : 1)

sage: A2.<a,b> = AffineSpace(2,QQ)
sage: C = A2.subscheme(a^3 + b^3 + 1)
sage: f = WeierstrassTransformation(C, E, [1, -b-1, -3*a-3*b], 1); f
Scheme morphism:
From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined␣

→˓by:
(continues on next page)

17.6. Morphism to bring a genus-one curve into Weierstrass form 603

../../../../../../../html/en/reference/schemes/sage/schemes/generic/morphism.html#sage.schemes.generic.morphism.SchemeMorphism_polynomial

Elliptic curves, Release 9.8

(continued from previous page)

a^3 + b^3 + 1
To: Elliptic Curve defined by y^2 + 2*x*y - 1/3*y

= x^3 - x^2 + 1/3*x - 1/27 over Rational Field
Defn: Defined on coordinates by sending (a, b) to

(1 : -b - 1 : -3*a - 3*b)
sage: f([-1,0])
(1/3 : -1/3 : 1)
sage: f([0,-1])
(1/3 : 0 : 1)

post_rescaling()

Return the homogeneous rescaling to apply after the coordinate substitution.

OUTPUT:

A polynomial. See the example below.

EXAMPLES:

sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+7*b^3+64*c^3
sage: P = [2,2,-1]
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True).inverse()
sage: f.post_rescaling()
-1/7

So here is what it does. If we just plug in the coordinate transformation, we get the defining polynomial
up to scale. This method returns the overall rescaling of the equation to bring the result into the standard
form:

sage: cubic(f.defining_polynomials())
7*x^3 - 7*y^2*z + 1806336*y*z^2 - 155373797376*z^3
sage: cubic(f.defining_polynomials()) * f.post_rescaling()
-x^3 + y^2*z - 258048*y*z^2 + 22196256768*z^3

sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse(domain,
codomain,
defin-
ing_polynomials,
post_multiplication,
inv_defining_polynomials,
inv_post_multiplication)

Construct morphism of a genus-one curve to/from the Weierstrass form with its inverse.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True); f
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to
(-w : 3*u : 1/3*u + 1/3*v)

(continues on next page)

604 Chapter 17. To be sorted

Elliptic curves, Release 9.8

(continued from previous page)

Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field␣

→˓defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 + 2*x*y + 1/3*y

= x^3 - x^2 - 1/3*x - 1/27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to

(-w : -v + w : 3*u + 3*v)

class sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse_class(domain,
codomain,
defin-
ing_polynomials,
post_multiplication)

Bases: WeierstrassTransformation

inverse()

Return the inverse.

OUTPUT:

A morphism in the opposite direction. This may be a rational inverse or an analytic inverse.

EXAMPLES:

sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True)
sage: f.inverse()
Scheme morphism:
From: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
To: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
Defn: Defined on coordinates by sending (x : y : z) to
(1/3*y : -1/3*y + 3*z : -x)

17.6. Morphism to bring a genus-one curve into Weierstrass form 605

Elliptic curves, Release 9.8

606 Chapter 17. To be sorted

CHAPTER

EIGHTEEN

HYPERELLIPTIC CURVES

18.1 Hyperelliptic curve constructor

AUTHORS:

• David Kohel (2006): initial version

• Anna Somoza (2019-04): dynamic class creation

sage.schemes.hyperelliptic_curves.constructor.HyperellipticCurve(f, h=0, names=None,
PP=None,
check_squarefree=True)

Returns the hyperelliptic curve 𝑦2+ℎ𝑦 = 𝑓 , for univariate polynomials ℎ and 𝑓 . If ℎ is not given, then it defaults
to 0.

INPUT:

• f - univariate polynomial

• h - optional univariate polynomial

• names (default: ["x","y"]) - names for the coordinate functions

• check_squarefree (default: True) - test if the input defines a hyperelliptic curve when f is homogenized
to degree 2𝑔 + 2 and h to degree 𝑔 + 1 for some g.

Warning: When setting check_squarefree=False or using a base ring that is not a field, the output
curves are not to be trusted. For example, the output of is_singular is always False, without this being
properly tested in that case.

Note: The words “hyperelliptic curve” are normally only used for curves of genus at least two, but this class
allows more general smooth double covers of the projective line (conics and elliptic curves), even though the
class is not meant for those and some outputs may be incorrect.

EXAMPLES:

Basic examples:

sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 + x + 1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: HyperellipticCurve(x^19 + x + 1, x-2)

(continues on next page)

607

Elliptic curves, Release 9.8

(continued from previous page)

Hyperelliptic Curve over Rational Field defined by y^2 + (x - 2)*y = x^19 + x + 1

sage: k.<a> = GF(9); R.<x> = k[]
sage: HyperellipticCurve(x^3 + x - 1, x+a)
Hyperelliptic Curve over Finite Field in a of size 3^2 defined by y^2 + (x + a)*y =␣
→˓x^3 + x + 2

Characteristic two:

sage: P.<x> = GF(8,'a')[]
sage: HyperellipticCurve(x^7+1, x)
Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + x*y = x^7 +␣
→˓1
sage: HyperellipticCurve(x^8+x^7+1, x^4+1)
Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + (x^4 + 1)*y␣
→˓= x^8 + x^7 + 1

sage: HyperellipticCurve(x^8+1, x)
Traceback (most recent call last):
...
ValueError: Not a hyperelliptic curve: highly singular at infinity.

sage: HyperellipticCurve(x^8+x^7+1, x^4)
Traceback (most recent call last):
...
ValueError: Not a hyperelliptic curve: singularity in the provided affine patch.

sage: F.<t> = PowerSeriesRing(FiniteField(2))
sage: P.<x> = PolynomialRing(FractionField(F))
sage: HyperellipticCurve(x^5+t, x)
Hyperelliptic Curve over Laurent Series Ring in t over Finite Field of size 2␣
→˓defined by y^2 + x*y = x^5 + t

We can change the names of the variables in the output:

sage: k.<a> = GF(9); R.<x> = k[]
sage: HyperellipticCurve(x^3 + x - 1, x+a, names=['X','Y'])
Hyperelliptic Curve over Finite Field in a of size 3^2 defined by Y^2 + (X + a)*Y =␣
→˓X^3 + X + 2

This class also allows curves of genus zero or one, which are strictly speaking not hyperelliptic:

sage: P.<x> = QQ[]
sage: HyperellipticCurve(x^2+1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^2 + 1
sage: HyperellipticCurve(x^4-1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^4 - 1
sage: HyperellipticCurve(x^3+2*x+2)
Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + 2*x + 2

Double roots:

608 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage: P.<x> = GF(7)[]
sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1))
Traceback (most recent call last):
...
ValueError: Not a hyperelliptic curve: singularity in the provided affine patch.

sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1), check_squarefree=False)
Hyperelliptic Curve over Finite Field of size 7 defined by y^2 = x^12 + 5*x^10 +␣
→˓4*x^9 + x^8 + 3*x^7 + 3*x^6 + 2*x^4 + 3*x^3 + 6*x^2 + 4*x + 3

The input for a (smooth) hyperelliptic curve of genus 𝑔 should not contain polynomials of degree greater than
2𝑔+ 2. In the following example, the hyperelliptic curve has genus 2 and there exists a model 𝑦2 = 𝐹 of degree
6, so the model 𝑦2 + 𝑦ℎ = 𝑓 of degree 200 is not allowed.:

sage: P.<x> = QQ[]
sage: h = x^100
sage: F = x^6+1
sage: f = F-h^2/4
sage: HyperellipticCurve(f, h)
Traceback (most recent call last):
...
ValueError: Not a hyperelliptic curve: highly singular at infinity.

sage: HyperellipticCurve(F)
Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 1

An example with a singularity over an inseparable extension of the base field:

sage: F.<t> = GF(5)[]
sage: P.<x> = F[]
sage: HyperellipticCurve(x^5+t)
Traceback (most recent call last):
...
ValueError: Not a hyperelliptic curve: singularity in the provided affine patch.

Input with integer coefficients creates objects with the integers as base ring, but only checks smoothness over Q,
not over Spec(Z). In other words, it is checked that the discriminant is non-zero, but it is not checked whether
the discriminant is a unit in Z*.:

sage: P.<x> = ZZ[]
sage: HyperellipticCurve(3*x^7+6*x+6)
Hyperelliptic Curve over Integer Ring defined by y^2 = 3*x^7 + 6*x + 6

18.2 Hyperelliptic curves over a general ring

EXAMPLES:

sage: P.<x> = GF(5)[]
sage: f = x^5 - 3*x^4 - 2*x^3 + 6*x^2 + 3*x - 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Finite Field of size 5 defined by y^2 = x^5 + 2*x^4 + 3*x^3 + x^
→˓2 + 3*x + 4

18.2. Hyperelliptic curves over a general ring 609

Elliptic curves, Release 9.8

sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2

sage: D = C.affine_patch(0)
sage: D.defining_polynomials()[0].parent()
Multivariate Polynomial Ring in x1, x2 over Rational Field

class sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic(PP,
f,
h=None,
names=None,
genus=None)

Bases: ProjectivePlaneCurve

base_extend(R)
Returns this HyperellipticCurve over a new base ring R.

EXAMPLES:

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 - 10*x + 9)
sage: K = Qp(3,5)
sage: L.<a> = K.extension(x^30-3)
sage: HK = H.change_ring(K)
sage: HL = HK.change_ring(L); HL
Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30␣
→˓- 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 +␣
→˓2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210)

sage: R.<x> = FiniteField(7)[]
sage: H = HyperellipticCurve(x^8 + x + 5)
sage: H.base_extend(FiniteField(7^2, 'a'))
Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x␣
→˓+ 5

change_ring(R)
Returns this HyperellipticCurve over a new base ring R.

EXAMPLES:

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 - 10*x + 9)
sage: K = Qp(3,5)
sage: L.<a> = K.extension(x^30-3)
sage: HK = H.change_ring(K)
sage: HL = HK.change_ring(L); HL
Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30␣
→˓- 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 +␣
→˓2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210)

(continues on next page)

610 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curves, Release 9.8

(continued from previous page)

sage: R.<x> = FiniteField(7)[]
sage: H = HyperellipticCurve(x^8 + x + 5)
sage: H.base_extend(FiniteField(7^2, 'a'))
Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x␣
→˓+ 5

genus()

has_odd_degree_model()

Return True if an odd degree model of self exists over the field of definition; False otherwise.

Use odd_degree_model to calculate an odd degree model.

EXAMPLES:

sage: x = QQ['x'].0
sage: HyperellipticCurve(x^5 + x).has_odd_degree_model()
True
sage: HyperellipticCurve(x^6 + x).has_odd_degree_model()
True
sage: HyperellipticCurve(x^6 + x + 1).has_odd_degree_model()
False

hyperelliptic_polynomials(K=None, var='x')
EXAMPLES:

sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1, x^3/5); C
Hyperelliptic Curve over Rational Field defined by y^2 + 1/5*x^3*y = x^3 + x - 1
sage: C.hyperelliptic_polynomials()
(x^3 + x - 1, 1/5*x^3)

invariant_differential()

Returns 𝑑𝑥/2𝑦, as an element of the Monsky-Washnitzer cohomology of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: C.invariant_differential()
1 dx/2y

is_singular()

Returns False, because hyperelliptic curves are smooth projective curves, as checked on construction.

EXAMPLES:

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5+1)
sage: H.is_singular()
False

A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane
projective curve. This can be seen in the following example.:

18.2. Hyperelliptic curves over a general ring 611

Elliptic curves, Release 9.8

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5+2)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: H.is_singular()
False
sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve
sage: ProjectivePlaneCurve.is_singular(H)
True

is_smooth()

Returns True, because hyperelliptic curves are smooth projective curves, as checked on construction.

EXAMPLES:

sage: R.<x> = GF(13)[]
sage: H = HyperellipticCurve(x^8+1)
sage: H.is_smooth()
True

A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane
projective curve. This can be seen in the following example.:

sage: R.<x> = GF(27, 'a')[]
sage: H = HyperellipticCurve(x^10+2)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: H.is_smooth()
True
sage: from sage.schemes.curves.projective_curve import ProjectivePlaneCurve
sage: ProjectivePlaneCurve.is_smooth(H)
False

jacobian()

lift_x(x, all=False)

local_coord(P, prec=20, name='t')
Calls the appropriate local_coordinates function

INPUT:

• P – a point on self

• prec – desired precision of the local coordinates

• name – generator of the power series ring (default: t)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)), where 𝑡 is the local parameter at 𝑃

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: H.local_coord(H(1 ,6), prec=5)

(continues on next page)

612 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

(1 + t + O(t^5), 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5))
sage: H.local_coord(H(4, 0), prec=7)
(4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7), t + O(t^7))
sage: H.local_coord(H(0, 1, 0), prec=5)
(t^-2 + 23*t^2 - 18*t^4 - 569*t^6 + O(t^7), t^-5 + 46*t^-1 - 36*t - 609*t^3 +␣
→˓1656*t^5 + O(t^6))

AUTHOR:
• Jennifer Balakrishnan (2007-12)

local_coordinates_at_infinity(prec=20, name='t')
For the genus 𝑔 hyperelliptic curve 𝑦2 = 𝑓(𝑥), return (𝑥(𝑡), 𝑦(𝑡)) such that (𝑦(𝑡))2 = 𝑓(𝑥(𝑡)), where
𝑡 = 𝑥𝑔/𝑦 is the local parameter at infinity

INPUT:

• prec – desired precision of the local coordinates

• name – generator of the power series ring (default: t)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)) and 𝑡 = 𝑥𝑔/𝑦 is the local parameter at infinity

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-5*x^2+1)
sage: x,y = H.local_coordinates_at_infinity(10)
sage: x
t^-2 + 5*t^4 - t^8 - 50*t^10 + O(t^12)
sage: y
t^-5 + 10*t - 2*t^5 - 75*t^7 + 50*t^11 + O(t^12)

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-x+1)
sage: x,y = H.local_coordinates_at_infinity(10)
sage: x
t^-2 + t^2 - t^4 - t^6 + 3*t^8 + O(t^12)
sage: y
t^-3 + t - t^3 - t^5 + 3*t^7 - 10*t^11 + O(t^12)

AUTHOR:

• Jennifer Balakrishnan (2007-12)

local_coordinates_at_nonweierstrass(P, prec=20, name='t')
For a non-Weierstrass point 𝑃 = (𝑎, 𝑏) on the hyperelliptic curve 𝑦2 = 𝑓(𝑥), return (𝑥(𝑡), 𝑦(𝑡)) such that
(𝑦(𝑡))2 = 𝑓(𝑥(𝑡)), where 𝑡 = 𝑥− 𝑎 is the local parameter.

INPUT:

• P = (a, b) – a non-Weierstrass point on self

• prec – desired precision of the local coordinates

• name – gen of the power series ring (default: t)

18.2. Hyperelliptic curves over a general ring 613

Elliptic curves, Release 9.8

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)) and 𝑡 = 𝑥− 𝑎 is the local parameter at 𝑃

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: P = H(1,6)
sage: x,y = H.local_coordinates_at_nonweierstrass(P,prec=5)
sage: x
1 + t + O(t^5)
sage: y
6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5)
sage: Q = H(-2,12)
sage: x,y = H.local_coordinates_at_nonweierstrass(Q,prec=5)
sage: x
-2 + t + O(t^5)
sage: y
12 - 19/2*t - 19/32*t^2 + 61/256*t^3 - 5965/24576*t^4 + O(t^5)

AUTHOR:

• Jennifer Balakrishnan (2007-12)

local_coordinates_at_weierstrass(P, prec=20, name='t')
For a finite Weierstrass point on the hyperelliptic curve 𝑦2 = 𝑓(𝑥), returns (𝑥(𝑡), 𝑦(𝑡)) such that (𝑦(𝑡))2 =
𝑓(𝑥(𝑡)), where 𝑡 = 𝑦 is the local parameter.

INPUT:

• P – a finite Weierstrass point on self

• prec – desired precision of the local coordinates

• name – gen of the power series ring (default: 𝑡)

OUTPUT:

(𝑥(𝑡), 𝑦(𝑡)) such that 𝑦(𝑡)2 = 𝑓(𝑥(𝑡)) and 𝑡 = 𝑦 is the local parameter at 𝑃

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: A = H(4, 0)
sage: x, y = H.local_coordinates_at_weierstrass(A, prec=7)
sage: x
4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7)
sage: y
t + O(t^7)
sage: B = H(-5, 0)
sage: x, y = H.local_coordinates_at_weierstrass(B, prec=5)
sage: x
-5 + 1/1260*t^2 + 887/2000376000*t^4 + O(t^5)
sage: y
t + O(t^5)

AUTHOR:

614 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

• Jennifer Balakrishnan (2007-12)

• Francis Clarke (2012-08-26)

monsky_washnitzer_gens()

odd_degree_model()

Return an odd degree model of self, or raise ValueError if one does not exist over the field of definition.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5)); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 10*x^4 + 31*x^2␣
→˓+ 30
sage: H.odd_degree_model()
Traceback (most recent call last):
...
ValueError: No odd degree model exists over field of definition

sage: K2 = QuadraticField(-2, 'a')
sage: Hp2 = H.change_ring(K2).odd_degree_model(); Hp2
Hyperelliptic Curve over Number Field in a with defining polynomial x^2 + 2␣
→˓with a = 1.414213562373095?*I defined by y^2 = 6*a*x^5 - 29*x^4 - 20*x^2 +␣
→˓6*a*x + 1

sage: K3 = QuadraticField(-3, 'b')
sage: Hp3 = H.change_ring(QuadraticField(-3, 'b')).odd_degree_model(); Hp3
Hyperelliptic Curve over Number Field in b with defining polynomial x^2 + 3␣
→˓with b = 1.732050807568878?*I defined by y^2 = -4*b*x^5 - 14*x^4 - 20*b*x^3 -␣
→˓35*x^2 + 6*b*x + 1

Of course, Hp2 and Hp3 are isomorphic over the composite
extension. One consequence of this is that odd degree models
reduced over "different" fields should have the same number of
points on their reductions. 43 and 67 split completely in the
compositum, so when we reduce we find:

sage: P2 = K2.factor(43)[0][0]
sage: P3 = K3.factor(43)[0][0]
sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849
sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849
sage: H.change_ring(GF(43)).odd_degree_model().frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849

sage: P2 = K2.factor(67)[0][0]
sage: P3 = K3.factor(67)[0][0]
sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
sage: H.change_ring(GF(67)).odd_degree_model().frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489

18.2. Hyperelliptic curves over a general ring 615

Elliptic curves, Release 9.8

rational_points(**kwds)
Find rational points on the hyperelliptic curve, all arguments are passed on to sage.schemes.generic.
algebraic_scheme.rational_points().

EXAMPLES:

For the LMFDB genus 2 curve 932.𝑎.3728.1 < ℎ𝑡𝑡𝑝𝑠 : //𝑤𝑤𝑤.𝑙𝑚𝑓𝑑𝑏.𝑜𝑟𝑔/𝐺𝑒𝑛𝑢𝑠2𝐶𝑢𝑟𝑣𝑒/𝑄/932/𝑎/3728/1 >:

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 0, 1, -2,␣
→˓1]), R([1]));
sage: C.rational_points(bound=8)
[(-1 : -3 : 1),
(-1 : 2 : 1),
(0 : -1 : 1),
(0 : 0 : 1),
(0 : 1 : 0),
(1/2 : -5/8 : 1),
(1/2 : -3/8 : 1),
(1 : -1 : 1),
(1 : 0 : 1)]

Check that trac ticket #29509 is fixed for the LMFDB genus 2 curve 169.𝑎.169.1 < ℎ𝑡𝑡𝑝𝑠 :
//𝑤𝑤𝑤.𝑙𝑚𝑓𝑑𝑏.𝑜𝑟𝑔/𝐺𝑒𝑛𝑢𝑠2𝐶𝑢𝑟𝑣𝑒/𝑄/169/𝑎/169/1 >:

sage: C = HyperellipticCurve(R([0, 0, 0, 0, 1, 1]), R([1, 1, 0, 1]));
sage: C.rational_points(bound=10)
[(-1 : 0 : 1),
(-1 : 1 : 1),
(0 : -1 : 1),
(0 : 0 : 1),
(0 : 1 : 0)]

An example over a number field:

sage: R.<x> = PolynomialRing(QuadraticField(2));
sage: C = HyperellipticCurve(R([1, 0, 0, 0, 0, 1]));
sage: C.rational_points(bound=2)
[(-1 : 0 : 1),
(0 : -1 : 1),
(0 : 1 : 0),
(0 : 1 : 1),
(1 : -a : 1),
(1 : a : 1)]

sage.schemes.hyperelliptic_curves.hyperelliptic_generic.is_HyperellipticCurve(C)
EXAMPLES:

sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1); C
Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + x - 1
sage: sage.schemes.hyperelliptic_curves.hyperelliptic_generic.is_
→˓HyperellipticCurve(C)
True

616 Chapter 18. Hyperelliptic curves

https://trac.sagemath.org/29509

Elliptic curves, Release 9.8

18.3 Hyperelliptic curves over a finite field

EXAMPLES:

sage: K.<a> = GF(9, 'a')
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - x^5 - 2, x^2 + a)
sage: C._points_fast_sqrt()
[(0 : 1 : 0), (a + 1 : a : 1), (a + 1 : a + 1 : 1), (2 : a + 1 : 1), (2*a : 2*a + 2 : 1),
→˓ (2*a : 2*a : 1), (1 : a + 1 : 1)]

AUTHORS:

• David Kohel (2006)

• Robert Bradshaw (2007)

• Alyson Deines, Marina Gresham, Gagan Sekhon, (2010)

• Daniel Krenn (2011)

• Jean-Pierre Flori, Jan Tuitman (2013)

• Kiran Kedlaya (2016)

• Dean Bisogno (2017): Fixed Hasse-Witt computation

class sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field(PP,
f,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic, ProjectivePlaneCurve_finite_field

Cartier_matrix()

INPUT:

• E : Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• M: The matrix 𝑀 = (𝑐𝑝𝑖−𝑗), where 𝑐𝑖 are the coefficients of 𝑓(𝑥)(𝑝−1)/2 =
∑︀
𝑐𝑖𝑥

𝑖

REFERENCES:

N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic 𝑝 > 2.

EXAMPLES:

sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.Cartier_matrix()
[0 0 2]
[0 0 0]
[0 1 0]

sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.Cartier_matrix()
[0 3]

(continues on next page)

18.3. Hyperelliptic curves over a finite field 617

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field

Elliptic curves, Release 9.8

(continued from previous page)

[0 0]

sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.Cartier_matrix()
[0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0]

Hasse_Witt()

INPUT:

• E : Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• N : The matrix 𝑁 = 𝑀𝑀𝑝 . . .𝑀𝑝𝑔−1 where 𝑀 = 𝑐𝑝𝑖−𝑗 , and 𝑓(𝑥)(𝑝−1)/2 =
∑︀
𝑐𝑖𝑥

𝑖

Reference-N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic 𝑝 > 2.

EXAMPLES:

sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.Hasse_Witt()
[0 0 0]
[0 0 0]
[0 0 0]

sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.Hasse_Witt()
[0 0]
[0 0]

sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.Hasse_Witt()
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]

(continues on next page)

618 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]

a_number()

INPUT:

• E: Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• a : a-number

EXAMPLES:

sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.a_number()
1

sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.a_number()
1

sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.a_number()
5

cardinality(extension_degree=1)
Count points on a single extension of the base field.

EXAMPLES:

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5)
sage: H.cardinality()
106
sage: H.cardinality(15)
1160968955369992567076405831000
sage: H.cardinality(100)
270481382942152609326719471080753083367793838278100277689020104911710151430673927943945601434674459120495370826289654897190781715493352266982697064575800553229661690000887425442240414673923744999504000

sage: K = GF(37)
sage: R.<t> = PolynomialRing(K)

(continues on next page)

18.3. Hyperelliptic curves over a finite field 619

Elliptic curves, Release 9.8

(continued from previous page)

sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5)
sage: H.cardinality()
40
sage: H.cardinality(2)
1408
sage: H.cardinality(3)
50116

The following example shows that trac ticket #20391 has been resolved:

sage: F=GF(23)
sage: x=polygen(F)
sage: C=HyperellipticCurve(x^8+1)
sage: C.cardinality()
24

cardinality_exhaustive(extension_degree=1, algorithm=None)
Count points on a single extension of the base field by enumerating over x and solving the resulting quadratic
equation for y.

EXAMPLES:

sage: K.<a> = GF(9, 'a')
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - 1, x^2 + a)
sage: C.cardinality_exhaustive()
7

sage: K = GF(next_prime(1<<10))
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_exhaustive()
1025

sage: P.<x> = PolynomialRing(GF(9,'a'))
sage: H = HyperellipticCurve(x^5+x^2+1)
sage: H.count_points(5)
[18, 78, 738, 6366, 60018]

sage: F.<a> = GF(4); P.<x> = F[]
sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1)
sage: H.count_points(6)
[2, 24, 74, 256, 1082, 4272]

cardinality_hypellfrob(extension_degree=1, algorithm=None)
Count points on a single extension of the base field using the hypellfrob program.

EXAMPLES:

sage: K = GF(next_prime(1<<10))
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_hypellfrob()

(continues on next page)

620 Chapter 18. Hyperelliptic curves

https://trac.sagemath.org/20391

Elliptic curves, Release 9.8

(continued from previous page)

1025

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_hypellfrob()
50162
sage: H.cardinality_hypellfrob(3)
124992471088310

count_points(n=1)
Count points over finite fields.

INPUT:

• n – integer.

OUTPUT:

An integer. The number of points over F𝑞, . . . ,F𝑞𝑛 on a hyperelliptic curve over a finite field F𝑞 .

Warning: This is currently using exhaustive search for hyperelliptic curves over non-prime fields,
which can be awfully slow.

EXAMPLES:

sage: P.<x> = PolynomialRing(GF(3))
sage: C = HyperellipticCurve(x^3+x^2+1)
sage: C.count_points(4)
[6, 12, 18, 96]
sage: C.base_extend(GF(9,'a')).count_points(2)
[12, 96]

sage: K = GF(2**31-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 3*t + 5)
sage: H.count_points() # long time, 2.4 sec on a Corei7
[2147464821]
sage: H.count_points(n=2) # long time, 30s on a Corei7
[2147464821, 4611686018988310237]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5)
sage: H.count_points(n=6)
[112, 16360, 2045356, 260199160, 33038302802, 4195868633548]

sage: P.<x> = PolynomialRing(GF(3))
sage: H = HyperellipticCurve(x^3+x^2+1)
sage: C1 = H.count_points(4); C1
[6, 12, 18, 96]
sage: C2 = sage.schemes.generic.scheme.Scheme.count_points(H,4); C2 # long time,
→˓ 2s on a Corei7

(continues on next page)

18.3. Hyperelliptic curves over a finite field 621

Elliptic curves, Release 9.8

(continued from previous page)

[6, 12, 18, 96]
sage: C1 == C2 # long time, because we need C2 to be defined
True

sage: P.<x> = PolynomialRing(GF(9,'a'))
sage: H = HyperellipticCurve(x^5+x^2+1)
sage: H.count_points(5)
[18, 78, 738, 6366, 60018]

sage: F.<a> = GF(4); P.<x> = F[]
sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1)
sage: H.count_points(6)
[2, 24, 74, 256, 1082, 4272]

This example shows that trac ticket #20391 is resolved:

sage: x = polygen(GF(4099))
sage: H = HyperellipticCurve(x^6 + x + 1)
sage: H.count_points(1)
[4106]

count_points_exhaustive(n=1, naive=False)
Count the number of points on the curve over the first 𝑛 extensions of the base field by exhaustive search
if 𝑛 if smaller than 𝑔, the genus of the curve, and by computing the frobenius polynomial after performing
exhaustive search on the first 𝑔 extensions if 𝑛 > 𝑔 (unless naive == True).

EXAMPLES:

sage: K = GF(5)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.count_points_exhaustive(n=5)
[9, 27, 108, 675, 3069]

When 𝑛 > 𝑔, the frobenius polynomial is computed from the numbers of points of the curve over the first
𝑔 extension, so that computing the number of points on extensions of degree 𝑛 > 𝑔 is not much more
expensive than for 𝑛 == 𝑔:

sage: H.count_points_exhaustive(n=15)
[9,
27,
108,
675,
3069,
16302,
78633,
389475,
1954044,
9768627,
48814533,
244072650,
1220693769,

(continues on next page)

622 Chapter 18. Hyperelliptic curves

https://trac.sagemath.org/20391

Elliptic curves, Release 9.8

(continued from previous page)

6103414827,
30517927308]

This behavior can be disabled by passing naive=True:

sage: H.count_points_exhaustive(n=6, naive=True) # long time, 7s on a Corei7
[9, 27, 108, 675, 3069, 16302]

count_points_frobenius_polynomial(n=1, f=None)
Count the number of points on the curve over the first 𝑛 extensions of the base field by computing the
frobenius polynomial.

EXAMPLES:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^19 + t + 1)

The following computation takes a long time as the complete characteristic polynomial of the frobenius is
computed:

sage: H.count_points_frobenius_polynomial(3) # long time, 20s on a Corei7 (when␣
→˓computed before the following test of course)
[49491, 2500024375, 124992509154249]

As the polynomial is cached, further computations of number of points are really fast:

sage: H.count_points_frobenius_polynomial(19) # long time, because of the␣
→˓previous test
[49491,
2500024375,
124992509154249,
6249500007135192947,
312468751250758776051811,
15623125093747382662737313867,
781140631562281338861289572576257,
39056250437482500417107992413002794587,
1952773465623687539373429411200893147181079,
97636720507718753281169963459063147221761552935,
4881738388665429945305281187129778704058864736771824,
244082037694882831835318764490138139735446240036293092851,
12203857802706446708934102903106811520015567632046432103159713,
610180686277519628999996211052002771035439565767719719151141201339,
30508424133189703930370810556389262704405225546438978173388673620145499,
1525390698235352006814610157008906752699329454643826047826098161898351623931,
76268009521069364988723693240288328729528917832735078791261015331201838856825193,
→˓

3813324208043947180071195938321176148147244128062172555558715783649006587868272993991,
→˓

190662397077989315056379725720120486231213267083935859751911720230901597698389839098903847]

count_points_hypellfrob(n=1, N=None, algorithm=None)
Count the number of points on the curve over the first 𝑛 extensions of the base field using the hypellfrob
program.

18.3. Hyperelliptic curves over a finite field 623

Elliptic curves, Release 9.8

This only supports prime fields of large enough characteristic.

EXAMPLES:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^21 + 3*t^5 + 5)
sage: H.count_points_hypellfrob()
[49804]
sage: H.count_points_hypellfrob(2)
[49804, 2499799038]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^11 + 3*t^5 + 5)
sage: H.count_points_hypellfrob()
[127]
sage: H.count_points_hypellfrob(n=5)
[127, 16335, 2045701, 260134299, 33038098487]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5)
sage: H.count_points(n=6)
[112, 16360, 2045356, 260199160, 33038302802, 4195868633548]

The base field should be prime:

sage: K.<z> = GF(19**10)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + (z+1)*t^5 + 1)
sage: H.count_points_hypellfrob()
Traceback (most recent call last):
...
ValueError: hypellfrob does not support non-prime fields

and the characteristic should be large enough:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.count_points_hypellfrob()
Traceback (most recent call last):
...
ValueError: p=7 should be greater than (2*g+1)(2*N-1)=27

count_points_matrix_traces(n=1, M=None, N=None)
Count the number of points on the curve over the first 𝑛 extensions of the base field by computing traces
of powers of the frobenius matrix. This requires less 𝑝-adic precision than computing the charpoly of the
matrix when 𝑛 < 𝑔 where 𝑔 is the genus of the curve.

EXAMPLES:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)

(continues on next page)

624 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: H = HyperellipticCurve(t^19 + t + 1)
sage: H.count_points_matrix_traces(3)
[49491, 2500024375, 124992509154249]

frobenius_matrix(N=None, algorithm='hypellfrob')
Compute 𝑝-adic frobenius matrix to precision 𝑝𝑁 . If 𝑁 not supplied, a default value is selected, which is
the minimum needed to recover the charpoly unambiguously.

Note: Currently only implemented using hypellfrob, which means it only works over the prime field
𝐺𝐹 (𝑝), and requires 𝑝 > (2𝑔 + 1)(2𝑁 − 1).

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_matrix()
[1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)]
[1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)]
[1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)]
[1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]

The hypellfrob program doesn’t support non-prime fields:

sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented for␣
→˓hyperelliptic curves defined over prime fields.

nor too small characteristic:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-1)␣
→˓= 81

frobenius_matrix_hypellfrob(N=None)
Compute 𝑝-adic frobenius matrix to precision 𝑝𝑁 . If 𝑁 not supplied, a default value is selected, which is
the minimum needed to recover the charpoly unambiguously.

Note: Implemented using hypellfrob, which means it only works over the prime field 𝐺𝐹 (𝑝), and
requires 𝑝 > (2𝑔 + 1)(2𝑁 − 1).

EXAMPLES:

18.3. Hyperelliptic curves over a finite field 625

Elliptic curves, Release 9.8

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_matrix_hypellfrob()
[1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)]
[1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)]
[1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)]
[1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]

The hypellfrob program doesn’t support non-prime fields:

sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_matrix_hypellfrob()
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented for␣
→˓hyperelliptic curves defined over prime fields.

nor too small characteristic:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_matrix_hypellfrob()
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-1)␣
→˓= 81

frobenius_polynomial()

Compute the charpoly of frobenius, as an element of Z[𝑥].

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Slightly larger example:

sage: K = GF(2003)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
sage: H.frobenius_polynomial()
x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027

626 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

Curves defined over a non-prime field of odd characteristic, or an odd prime field which is too small com-
pared to the genus, are supported via PARI:

sage: K.<z> = GF(23**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^3 + z*t + 4)
sage: H.frobenius_polynomial()
x^2 - 15*x + 12167

sage: K.<z> = GF(3**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z**3)
sage: H.frobenius_polynomial()
x^4 - 3*x^3 + 10*x^2 - 81*x + 729

Over prime fields of odd characteristic, ℎ may be non-zero:

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 27*t + 3, t)
sage: H.frobenius_polynomial()
x^4 + 2*x^3 - 58*x^2 + 202*x + 10201

Over prime fields of odd characteristic, 𝑓 may have even degree:

sage: H = HyperellipticCurve(t^6 + 27*t + 3)
sage: H.frobenius_polynomial()
x^4 + 25*x^3 + 322*x^2 + 2525*x + 10201

In even characteristic, the naive algorithm could cover all cases because we can easily check for squareness
in quotient rings of polynomial rings over finite fields but these rings unfortunately do not support iteration:

sage: K.<z> = GF(2**5)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z**3, t)
sage: H.frobenius_polynomial()
x^4 - x^3 + 16*x^2 - 32*x + 1024

frobenius_polynomial_cardinalities(a=None)
Compute the charpoly of frobenius, as an element of Z[𝑥], by computing the number of points on the curve
over 𝑔 extensions of the base field where 𝑔 is the genus of the curve.

Warning: This is highly inefficient when the base field or the genus of the curve are large.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_cardinalities()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

18.3. Hyperelliptic curves over a finite field 627

Elliptic curves, Release 9.8

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_cardinalities()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Curve over a non-prime field:

sage: K.<z> = GF(7**2)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z^2)
sage: H.frobenius_polynomial_cardinalities()
x^4 + 8*x^3 + 70*x^2 + 392*x + 2401

This method may actually be useful when ℎ𝑦𝑝𝑒𝑙𝑙𝑓𝑟𝑜𝑏 does not work:

sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_polynomial_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-1)␣
→˓= 81
sage: H.frobenius_polynomial_cardinalities()
x^8 - 5*x^7 + 7*x^6 + 36*x^5 - 180*x^4 + 252*x^3 + 343*x^2 - 1715*x + 2401

frobenius_polynomial_matrix(M=None, algorithm='hypellfrob')
Compute the charpoly of frobenius, as an element of Z[𝑥], by computing the charpoly of the frobenius
matrix.

This is currently only supported when the base field is prime and large enough using the hypellfrob
library.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_matrix()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_matrix()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Curves defined over larger prime fields:

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^5 + 1)
sage: H.frobenius_polynomial_matrix()
x^8 + 281*x^7 + 55939*x^6 + 14144175*x^5 + 3156455369*x^4 + 707194605825*x^3 +␣
→˓139841906155939*x^2 + 35122892542149719*x + 6249500014999800001
sage: H = HyperellipticCurve(t^15 + t^5 + 1)

(continues on next page)

628 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: H.frobenius_polynomial_matrix() # long time, 8s on a Corei7
x^14 - 76*x^13 + 220846*x^12 - 12984372*x^11 + 24374326657*x^10 -␣
→˓1203243210304*x^9 + 1770558798515792*x^8 - 74401511415210496*x^7 +␣
→˓88526169366991084208*x^6 - 3007987702642212810304*x^5 +␣
→˓3046608028331197124223343*x^4 - 81145833008762983138584372*x^3 +␣
→˓69007473838551978905211279154*x^2 - 1187357507124810002849977200076*x +␣
→˓781140631562281254374947500349999

This hypellfrob program doesn’t support non-prime fields:

sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_polynomial_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented for␣
→˓hyperelliptic curves defined over prime fields.

frobenius_polynomial_pari()

Compute the charpoly of frobenius, as an element of Z[𝑥], by calling the PARI function
hyperellcharpoly.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_pari()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_pari()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Slightly larger example:

sage: K = GF(2003)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
sage: H.frobenius_polynomial_pari()
x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027

Curves defined over a non-prime field are supported as well:

sage: K.<a> = GF(7^2)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + a*t + 1)
sage: H.frobenius_polynomial_pari()
x^4 + 4*x^3 + 84*x^2 + 196*x + 2401

sage: K.<z> = GF(23**3)
(continues on next page)

18.3. Hyperelliptic curves over a finite field 629

Elliptic curves, Release 9.8

(continued from previous page)

sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^3 + z*t + 4)
sage: H.frobenius_polynomial_pari()
x^2 - 15*x + 12167

Over prime fields of odd characteristic, ℎ may be non-zero:

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 27*t + 3, t)
sage: H.frobenius_polynomial_pari()
x^4 + 2*x^3 - 58*x^2 + 202*x + 10201

p_rank()

INPUT:

• E : Hyperelliptic Curve of the form 𝑦2 = 𝑓(𝑥) over a finite field, F𝑞
OUTPUT:

• pr :p-rank

EXAMPLES:

sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.p_rank()
0

sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.p_rank()
0

sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.p_rank()
0

points()

All the points on this hyperelliptic curve.

EXAMPLES:

sage: x = polygen(GF(7))
sage: C = HyperellipticCurve(x^7 - x^2 - 1)
sage: C.points()
[(0 : 1 : 0), (2 : 5 : 1), (2 : 2 : 1), (3 : 0 : 1), (4 : 6 : 1), (4 : 1 : 1),␣
→˓(5 : 0 : 1), (6 : 5 : 1), (6 : 2 : 1)]

sage: x = polygen(GF(121, 'a'))
sage: C = HyperellipticCurve(x^5 + x - 1, x^2 + 2)
sage: len(C.points())
122

630 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

Conics are allowed (the issue reported at trac ticket #11800 has been resolved):

sage: R.<x> = GF(7)[]
sage: H = HyperellipticCurve(3*x^2 + 5*x + 1)
sage: H.points()
[(0 : 6 : 1), (0 : 1 : 1), (1 : 4 : 1), (1 : 3 : 1), (2 : 4 : 1), (2 : 3 : 1),␣
→˓(3 : 6 : 1), (3 : 1 : 1)]

The method currently lists points on the plane projective model, that is the closure in P2 of the curve defined
by 𝑦2 + ℎ𝑦 = 𝑓 . This means that one point (0 : 1 : 0) at infinity is returned if the degree of the curve is at
least 4 and deg(𝑓) > deg(ℎ) + 1. This point is a singular point of the plane model. Later implementations
may consider a smooth model instead since that would be a more relevant object. Then, for a curve whose
only singularity is at (0 : 1 : 0), the point at infinity would be replaced by a number of rational points of
the smooth model. We illustrate this with an example of a genus 2 hyperelliptic curve:

sage: R.<x>=GF(11)[]
sage: H = HyperellipticCurve(x*(x+1)*(x+2)*(x+3)*(x+4)*(x+5))
sage: H.points()
[(0 : 1 : 0), (0 : 0 : 1), (1 : 7 : 1), (1 : 4 : 1), (5 : 7 : 1), (5 : 4 : 1),␣
→˓(6 : 0 : 1), (7 : 0 : 1), (8 : 0 : 1), (9 : 0 : 1), (10 : 0 : 1)]

The plane model of the genus 2 hyperelliptic curve in the above example is the curve in P2 defined by
𝑦2𝑧4 = 𝑔(𝑥, 𝑧) where 𝑔(𝑥, 𝑧) = 𝑥(𝑥 + 𝑧)(𝑥 + 2𝑧)(𝑥 + 3𝑧)(𝑥 + 4𝑧)(𝑥 + 5𝑧). This model has one point
at infinity (0 : 1 : 0) which is also the only singular point of the plane model. In contrast, the hyperelliptic
curve is smooth and imbeds via the equation 𝑦2 = 𝑔(𝑥, 𝑧) into weighted projected space P(1, 3, 1). The
latter model has two points at infinity: (1 : 1 : 0) and (1 : −1 : 0).

zeta_function()

Compute the zeta function of the hyperelliptic curve.

EXAMPLES:

sage: F = GF(2); R.<t> = F[]
sage: H = HyperellipticCurve(t^9 + t, t^4)
sage: H.zeta_function()
(16*x^8 + 8*x^7 + 8*x^6 + 4*x^5 + 6*x^4 + 2*x^3 + 2*x^2 + x + 1)/(2*x^2 - 3*x +␣
→˓1)

sage: F.<a> = GF(4); R.<t> = F[]
sage: H = HyperellipticCurve(t^5 + t^3 + t^2 + t + 1, t^2 + t + 1)
sage: H.zeta_function()
(16*x^4 + 8*x^3 + x^2 + 2*x + 1)/(4*x^2 - 5*x + 1)

sage: F.<a> = GF(9); R.<t> = F[]
sage: H = HyperellipticCurve(t^5 + a*t)
sage: H.zeta_function()
(81*x^4 + 72*x^3 + 32*x^2 + 8*x + 1)/(9*x^2 - 10*x + 1)

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.zeta_function()
(1369*x^4 + 37*x^3 - 52*x^2 + x + 1)/(37*x^2 - 38*x + 1)

A quadratic twist:

18.3. Hyperelliptic curves over a finite field 631

https://trac.sagemath.org/11800

Elliptic curves, Release 9.8

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.zeta_function()
(1369*x^4 - 37*x^3 - 52*x^2 - x + 1)/(37*x^2 - 38*x + 1)

18.4 Hyperelliptic curves over a 𝑝-adic field

class sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field(PP,
f,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic, ProjectivePlaneCurve_field

P_to_S(P, S)
Given a finite Weierstrass point 𝑃 and a point 𝑆 in the same disc, computes the Coleman integrals
{
∫︀ 𝑆
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

INPUT:

• P: finite Weierstrass point

• S: point in disc of P

OUTPUT:

Coleman integrals {
∫︀ 𝑆
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,4)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: HJ = HK.curve_over_ram_extn(10)
sage: S = HK.get_boundary_point(HJ,P)
sage: HK.P_to_S(P, S)
(2*a + 4*a^3 + 2*a^11 + 4*a^13 + 2*a^17 + 2*a^19 + a^21 + 4*a^23 + a^25 + 2*a^
→˓27 + 2*a^29 + 3*a^31 + 4*a^33 + O(a^35), a^-5 + 2*a + 2*a^3 + a^7 + 3*a^11 +␣
→˓a^13 + 3*a^15 + 3*a^17 + 2*a^19 + 4*a^21 + 4*a^23 + 4*a^25 + 2*a^27 + a^29 +␣
→˓a^31 + O(a^33))

AUTHOR:

• Jennifer Balakrishnan

S_to_Q(S, Q)

Given 𝑆 a point on self over an extension field, computes the Coleman integrals {
∫︀ 𝑄
𝑆
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

one should be able to feed `S,Q` into coleman_integral, but currently that segfaults
INPUT:

• S: a point with coordinates in an extension of Q𝑝 (with unif. a)

• Q: a non-Weierstrass point defined over Q𝑝

632 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field

Elliptic curves, Release 9.8

OUTPUT:

the Coleman integrals {
∫︀ 𝑄
𝑆
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0 in terms of 𝑎

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: J.<a> = K.extension(x^20-5)
sage: HJ = H.change_ring(J)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: S = HK.get_boundary_point(HJ,P)
sage: P_to_S = HK.P_to_S(P,S)
sage: S_to_Q = HJ.S_to_Q(S,Q)
sage: P_to_S + S_to_Q
(2*a^40 + a^80 + a^100 + O(a^105), a^20 + 2*a^40 + 4*a^60 + 2*a^80 + O(a^103))
sage: HK.coleman_integrals_on_basis(P,Q)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + O(5^7), 5 + 2*5^2 + 4*5^3 + 2*5^4 + 5^6 + O(5^7))

AUTHOR:

• Jennifer Balakrishnan

coleman_integral(w, P, Q, algorithm='None')

Return the Coleman integral
∫︀ 𝑄
𝑃
𝑤.

INPUT:

• w differential (if one of P,Q is Weierstrass, w must be odd)

• P point on self

• Q point on self

• algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integral
∫︀ 𝑄
𝑃
𝑤

EXAMPLES:

Example of Leprevost from Kiran Kedlaya The first two should be zero as (𝑃 − 𝑄) = 30(𝑃 − 𝑄) in the
Jacobian and 𝑑𝑥/2𝑦 and 𝑥𝑑𝑥/2𝑦 are holomorphic.

sage: K = pAdicField(11, 6)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C(-1, 1); P1 = C(-1, -1)
sage: Q = C(0, 1/4); Q1 = C(0, -1/4)
sage: x, y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coleman_integral(P, Q)
O(11^6)
sage: C.coleman_integral(x*w, P, Q)

(continues on next page)

18.4. Hyperelliptic curves over a 𝑝-adic field 633

Elliptic curves, Release 9.8

(continued from previous page)

O(11^6)
sage: C.coleman_integral(x^2*w, P, Q)
7*11 + 6*11^2 + 3*11^3 + 11^4 + 5*11^5 + O(11^6)

sage: p = 71; m = 4
sage: K = pAdicField(p, m)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C(-1, 1); P1 = C(-1, -1)
sage: Q = C(0, 1/4); Q1 = C(0, -1/4)
sage: x, y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.integrate(P, Q), (x*w).integrate(P, Q)
(O(71^4), O(71^4))
sage: R, R1 = C.lift_x(4, all=True)
sage: w.integrate(P, R)
21*71 + 67*71^2 + 27*71^3 + O(71^4)
sage: w.integrate(P, R) + w.integrate(P1, R1)
O(71^4)

A simple example, integrating dx:

sage: R.<x> = QQ['x']
sage: E= HyperellipticCurve(x^3-4*x+4)
sage: K = Qp(5,10)
sage: EK = E.change_ring(K)
sage: P = EK(2, 2)
sage: Q = EK.teichmuller(P)
sage: x, y = EK.monsky_washnitzer_gens()
sage: EK.coleman_integral(x.diff(), P, Q)
5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: Q[0] - P[0]
5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)

Yet another example:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x*(x-1)*(x+9))
sage: K = Qp(7,10)
sage: HK = H.change_ring(K)
sage: import sage.schemes.hyperelliptic_curves.monsky_washnitzer as mw
sage: M_frob, forms = mw.matrix_of_frobenius_hyperelliptic(HK)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: f = forms[0]
sage: S = HK(9,36)
sage: Q = HK.teichmuller(S)
sage: P = HK(-1,4)
sage: b = x*w*w._coeff.parent()(f)
sage: HK.coleman_integral(b,P,Q)
7 + 7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^6 + 5*7^7 + 3*7^8 + 4*7^9 + 4*7^10 + O(7^11)

634 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3+1)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: w = HK.invariant_differential()
sage: P = HK(0,1)
sage: Q = HK.lift_x(5)
sage: x,y = HK.monsky_washnitzer_gens()
sage: (2*y*w).coleman_integral(P,Q)
5 + O(5^9)
sage: xloc,yloc,zloc = HK.local_analytic_interpolation(P,Q)
sage: I2 = (xloc.derivative()/(2*yloc)).integral()
sage: I2.polynomial()(1) - I2(0)
3*5 + 2*5^2 + 2*5^3 + 5^4 + 4*5^6 + 5^7 + O(5^9)
sage: HK.coleman_integral(w,P,Q)
3*5 + 2*5^2 + 2*5^3 + 5^4 + 4*5^6 + 5^7 + O(5^9)

Integrals involving Weierstrass points:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: negP = HK(0,-3)
sage: T = HK(0,1,0)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: HK.coleman_integral(w*x^3,S,T)
0
sage: HK.coleman_integral(w*x^3,T,S)
0
sage: HK.coleman_integral(w,S,P)
2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9)
sage: HK.coleman_integral(w,T,P)
2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9)
sage: HK.coleman_integral(w*x^3,T,P)
5^2 + 2*5^3 + 3*5^6 + 3*5^7 + O(5^8)
sage: HK.coleman_integral(w*x^3,S,P)
5^2 + 2*5^3 + 3*5^6 + 3*5^7 + O(5^8)
sage: HK.coleman_integral(w, P, negP, algorithm='teichmuller')
5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 3*5^6 + 2*5^7 + 4*5^8 + O(5^9)
sage: HK.coleman_integral(w, P, negP)
5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 3*5^6 + 2*5^7 + 4*5^8 + O(5^9)

AUTHORS:

• Robert Bradshaw (2007-03)

• Kiran Kedlaya (2008-05)

• Jennifer Balakrishnan (2010-02)

coleman_integral_P_to_S(w, P, S)

18.4. Hyperelliptic curves over a 𝑝-adic field 635

Elliptic curves, Release 9.8

Given a finite Weierstrass point 𝑃 and a point 𝑆 in the same disc, computes the Coleman integral
∫︀ 𝑆
𝑃
𝑤

INPUT:

• w: differential

• P: Weierstrass point

• S: point in the same disc of P (S is defined over an extension of Q𝑝; coordinates of S are given in terms
of uniformizer 𝑎)

OUTPUT:

Coleman integral
∫︀ 𝑆
𝑃
𝑤 in terms of 𝑎

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,4)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: J.<a> = K.extension(x^10-5)
sage: HJ = H.change_ring(J)
sage: S = HK.get_boundary_point(HJ,P)
sage: x,y = HK.monsky_washnitzer_gens()
sage: S[0]-P[0] == HK.coleman_integral_P_to_S(x.diff(),P,S)
True
sage: HK.coleman_integral_P_to_S(HK.invariant_differential(),P,S) == HK.P_to_
→˓S(P,S)[0]
True

AUTHOR:

• Jennifer Balakrishnan

coleman_integral_S_to_Q(w, S, Q)

Compute the Coleman integral
∫︀ 𝑄
𝑆
𝑤

one should be able to feed `S,Q` into coleman_integral, but currently that segfaults
INPUT:

• w: a differential

• S: a point with coordinates in an extension of Q𝑝

• Q: a non-Weierstrass point defined over Q𝑝

OUTPUT:

the Coleman integral
∫︀ 𝑄
𝑆
𝑤

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: J.<a> = K.extension(x^20-5)
sage: HJ = H.change_ring(J)

(continues on next page)

636 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: x,y = HK.monsky_washnitzer_gens()
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: S = HK.get_boundary_point(HJ,P)
sage: P_to_S = HK.coleman_integral_P_to_S(y.diff(),P,S)
sage: S_to_Q = HJ.coleman_integral_S_to_Q(y.diff(),S,Q)
sage: P_to_S + S_to_Q
3 + O(a^119)
sage: HK.coleman_integral(y.diff(),P,Q)
3 + O(5^6)

AUTHOR:

• Jennifer Balakrishnan

coleman_integral_from_weierstrass_via_boundary(w, P, Q, d)

Computes the Coleman integral
∫︀ 𝑄
𝑃
𝑤 via a boundary point in the disc of 𝑃 , defined over a degree 𝑑

extension

INPUT:

• w: a differential

• P: a Weierstrass point

• Q: a non-Weierstrass point

• d: degree of extension where coordinates of boundary point lie

OUTPUT:

the Coleman integral
∫︀ 𝑄
𝑃
𝑤, written in terms of the uniformizer 𝑎 of the degree 𝑑 extension

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: x,y = HK.monsky_washnitzer_gens()
sage: HK.coleman_integral_from_weierstrass_via_boundary(y.diff(),P,Q,20)
3 + O(a^119)
sage: HK.coleman_integral(y.diff(),P,Q)
3 + O(5^6)
sage: w = HK.invariant_differential()
sage: HK.coleman_integral_from_weierstrass_via_boundary(w,P,Q,20)
2*a^40 + a^80 + a^100 + O(a^105)
sage: HK.coleman_integral(w,P,Q)
2*5^2 + 5^4 + 5^5 + 3*5^6 + O(5^7)

AUTHOR:

• Jennifer Balakrishnan

coleman_integrals_on_basis(P, Q, algorithm=None)

Computes the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

18.4. Hyperelliptic curves over a 𝑝-adic field 637

Elliptic curves, Release 9.8

INPUT:

• P point on self

• Q point on self

• algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(2)
sage: Q = C.lift_x(3)
sage: C.coleman_integrals_on_basis(P, Q)
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5), 3␣
→˓+ 10*11 + 5*11^2 + 9*11^3 + 4*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^
→˓5))
sage: C.coleman_integrals_on_basis(P, Q, algorithm='teichmuller')
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5), 3␣
→˓+ 10*11 + 5*11^2 + 9*11^3 + 4*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^
→˓5))

sage: K = pAdicField(11,5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.coleman_integrals_on_basis(P, Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8), 3*11 + 10*11^2 + 8*11^3␣
→˓+ 9*11^4 + 7*11^5 + O(11^6), 4*11^-1 + 2 + 6*11 + 6*11^2 + 7*11^3 + O(11^4),␣
→˓11^-3 + 6*11^-2 + 2*11^-1 + 2 + O(11^2))

sage: R = C(0,1/4)
sage: a = C.coleman_integrals_on_basis(P,R) # long time (7s on sage.math, 2011)
sage: b = C.coleman_integrals_on_basis(R,Q) # long time (9s on sage.math, 2011)
sage: c = C.coleman_integrals_on_basis(P,Q) # long time
sage: a+b == c # long time
True

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: T = HK(0,1,0)
sage: Q = HK.lift_x(5^-2)
sage: R = HK.lift_x(4*5^-2)
sage: HK.coleman_integrals_on_basis(S,P)

(continues on next page)

638 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^4␣
→˓+ 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(T,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^4␣
→˓+ 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(P,S) == -HK.coleman_integrals_on_basis(S,P)
True
sage: HK.coleman_integrals_on_basis(S,Q)
(4*5 + 4*5^2 + 4*5^3 + O(5^4), 5^-1 + O(5^3))
sage: HK.coleman_integrals_on_basis(Q,R)
(4*5 + 2*5^2 + 2*5^3 + 2*5^4 + 5^5 + 5^6 + 5^7 + 3*5^8 + O(5^9), 2*5^-1 + 4 +␣
→˓4*5 + 4*5^2 + 4*5^3 + 2*5^4 + 3*5^5 + 2*5^6 + O(5^7))
sage: HK.coleman_integrals_on_basis(S,R) == HK.coleman_integrals_on_basis(S,Q)␣
→˓+ HK.coleman_integrals_on_basis(Q,R)
True
sage: HK.coleman_integrals_on_basis(T,T)
(0, 0)
sage: HK.coleman_integrals_on_basis(S,T)
(0, 0)

AUTHORS:

• Robert Bradshaw (2007-03): non-Weierstrass points

• Jennifer Balakrishnan and Robert Bradshaw (2010-02): Weierstrass points

coleman_integrals_on_basis_hyperelliptic(P, Q, algorithm=None)

Computes the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

INPUT:

• P point on self

• Q point on self

• algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(2)
sage: Q = C.lift_x(3)
sage: C.coleman_integrals_on_basis(P, Q)
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5), 3␣
→˓+ 10*11 + 5*11^2 + 9*11^3 + 4*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^
→˓5))
sage: C.coleman_integrals_on_basis(P, Q, algorithm='teichmuller')
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5), 3␣
→˓+ 10*11 + 5*11^2 + 9*11^3 + 4*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^
→˓5))

18.4. Hyperelliptic curves over a 𝑝-adic field 639

Elliptic curves, Release 9.8

sage: K = pAdicField(11,5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.coleman_integrals_on_basis(P, Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8), 3*11 + 10*11^2 + 8*11^3␣
→˓+ 9*11^4 + 7*11^5 + O(11^6), 4*11^-1 + 2 + 6*11 + 6*11^2 + 7*11^3 + O(11^4),␣
→˓11^-3 + 6*11^-2 + 2*11^-1 + 2 + O(11^2))

sage: R = C(0,1/4)
sage: a = C.coleman_integrals_on_basis(P,R) # long time (7s on sage.math, 2011)
sage: b = C.coleman_integrals_on_basis(R,Q) # long time (9s on sage.math, 2011)
sage: c = C.coleman_integrals_on_basis(P,Q) # long time
sage: a+b == c # long time
True

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: T = HK(0,1,0)
sage: Q = HK.lift_x(5^-2)
sage: R = HK.lift_x(4*5^-2)
sage: HK.coleman_integrals_on_basis(S,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^4␣
→˓+ 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(T,P)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^4␣
→˓+ 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(P,S) == -HK.coleman_integrals_on_basis(S,P)
True
sage: HK.coleman_integrals_on_basis(S,Q)
(4*5 + 4*5^2 + 4*5^3 + O(5^4), 5^-1 + O(5^3))
sage: HK.coleman_integrals_on_basis(Q,R)
(4*5 + 2*5^2 + 2*5^3 + 2*5^4 + 5^5 + 5^6 + 5^7 + 3*5^8 + O(5^9), 2*5^-1 + 4 +␣
→˓4*5 + 4*5^2 + 4*5^3 + 2*5^4 + 3*5^5 + 2*5^6 + O(5^7))
sage: HK.coleman_integrals_on_basis(S,R) == HK.coleman_integrals_on_basis(S,Q)␣
→˓+ HK.coleman_integrals_on_basis(Q,R)
True
sage: HK.coleman_integrals_on_basis(T,T)
(0, 0)
sage: HK.coleman_integrals_on_basis(S,T)
(0, 0)

AUTHORS:

• Robert Bradshaw (2007-03): non-Weierstrass points

• Jennifer Balakrishnan and Robert Bradshaw (2010-02): Weierstrass points

curve_over_ram_extn(deg)

640 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

Return self over Q𝑝(𝑝
(1/𝑑𝑒𝑔)).

INPUT:

• deg: the degree of the ramified extension

OUTPUT:

self over Q𝑝(𝑝
(1/𝑑𝑒𝑔))

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: K = Qp(11,5)
sage: HK = H.change_ring(K)
sage: HL = HK.curve_over_ram_extn(2)
sage: HL
Hyperelliptic Curve over 11-adic Eisenstein Extension Field in a defined by x^2␣
→˓- 11 defined by (1 + O(a^10))*y^2 = (1 + O(a^10))*x^5 + (10 + 8*a^2 + 10*a^4␣
→˓+ 10*a^6 + 10*a^8 + O(a^10))*x^3 + (7 + a^2 + O(a^10))*x^2 + (7 + 3*a^2 + O(a^
→˓10))*x

AUTHOR:

• Jennifer Balakrishnan

find_char_zero_weier_point(Q)

Given 𝑄 a point on self in a Weierstrass disc, finds the center of the Weierstrass disc (if defined over
self.base_ring())

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(5^-2)
sage: S = HK(1,0)
sage: T = HK(0,1,0)
sage: HK.find_char_zero_weier_point(P)
(1 + O(5^8) : 0 : 1 + O(5^8))
sage: HK.find_char_zero_weier_point(Q)
(0 : 1 + O(5^8) : 0)
sage: HK.find_char_zero_weier_point(S)
(1 + O(5^8) : 0 : 1 + O(5^8))
sage: HK.find_char_zero_weier_point(T)
(0 : 1 + O(5^8) : 0)

AUTHOR:

• Jennifer Balakrishnan

frobenius(P=None)
Returns the 𝑝-th power lift of Frobenius of 𝑃

EXAMPLES:

18.4. Hyperelliptic curves over a 𝑝-adic field 641

Elliptic curves, Release 9.8

sage: K = Qp(11, 5)
sage: R.<x> = K[]
sage: E = HyperellipticCurve(x^5 - 21*x - 20)
sage: P = E.lift_x(2)
sage: E.frobenius(P)
(2 + 10*11 + 5*11^2 + 11^3 + O(11^5) : 5 + 9*11 + 2*11^2 + 2*11^3 + O(11^5) : 1␣
→˓+ O(11^5))
sage: Q = E.teichmuller(P); Q
(2 + 10*11 + 4*11^2 + 9*11^3 + 11^4 + O(11^5) : 5 + 9*11 + 6*11^2 + 11^3 + 6*11^
→˓4 + O(11^5) : 1 + O(11^5))
sage: E.frobenius(Q)
(2 + 10*11 + 4*11^2 + 9*11^3 + 11^4 + O(11^5) : 5 + 9*11 + 6*11^2 + 11^3 + 6*11^
→˓4 + O(11^5) : 1 + O(11^5))

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: Q = H(0,0)
sage: u,v = H.local_coord(Q,prec=100)
sage: K = Qp(11,5)
sage: L.<a> = K.extension(x^20-11)
sage: HL = H.change_ring(L)
sage: S = HL(u(a),v(a))
sage: HL.frobenius(S)
(8*a^22 + 10*a^42 + 4*a^44 + 2*a^46 + 9*a^48 + 8*a^50 + a^52 + 7*a^54 +
7*a^56 + 5*a^58 + 9*a^62 + 5*a^64 + a^66 + 6*a^68 + a^70 + 6*a^74 +
2*a^76 + 2*a^78 + 4*a^82 + 5*a^84 + 2*a^86 + 7*a^88 + a^90 + 6*a^92 +
a^96 + 5*a^98 + 2*a^102 + 2*a^106 + 6*a^108 + 8*a^110 + 3*a^112 +
a^114 + 8*a^116 + 10*a^118 + 3*a^120 + O(a^122) :
a^11 + 7*a^33 + 7*a^35 + 4*a^37 + 6*a^39 + 9*a^41 + 8*a^43 + 8*a^45 +
a^47 + 7*a^51 + 4*a^53 + 5*a^55 + a^57 + 7*a^59 + 5*a^61 + 9*a^63 +
4*a^65 + 10*a^69 + 3*a^71 + 2*a^73 + 9*a^75 + 10*a^77 + 6*a^79 +
10*a^81 + 7*a^85 + a^87 + 4*a^89 + 8*a^91 + a^93 + 8*a^95 + 2*a^97 +
7*a^99 + a^101 + 3*a^103 + 6*a^105 + 7*a^107 + 4*a^109 + O(a^111) :
1 + O(a^100))

AUTHORS:

• Robert Bradshaw and Jennifer Balakrishnan (2010-02)

get_boundary_point(curve_over_extn, P)
Given self over an extension field, find a point in the disc of 𝑃 near the boundary

INPUT:

• curve_over_extn: self over a totally ramified extension

• P: Weierstrass point

OUTPUT:

a point in the disc of 𝑃 near the boundary

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)

(continues on next page)

642 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: K = Qp(3,6)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: J.<a> = K.extension(x^30-3)
sage: HJ = H.change_ring(J)
sage: S = HK.get_boundary_point(HJ,P)
sage: S
(1 + 2*a^2 + 2*a^6 + 2*a^18 + a^32 + a^34 + a^36 + 2*a^38 + 2*a^40 + a^42 + 2*a^
→˓44 + a^48 + 2*a^50 + 2*a^52 + a^54 + a^56 + 2*a^60 + 2*a^62 + a^70 + 2*a^72 +␣
→˓a^76 + 2*a^78 + a^82 + a^88 + a^96 + 2*a^98 + 2*a^102 + a^104 + 2*a^106 + a^
→˓108 + 2*a^110 + a^112 + 2*a^116 + a^126 + 2*a^130 + 2*a^132 + a^144 + 2*a^148␣
→˓+ 2*a^150 + a^152 + 2*a^154 + a^162 + a^164 + a^166 + a^168 + a^170 + a^176 +␣
→˓a^178 + O(a^180) : a + O(a^180) : 1 + O(a^180))

AUTHOR:

• Jennifer Balakrishnan

is_in_weierstrass_disc(P)
Checks if 𝑃 is in a Weierstrass disc

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK(0,3)
sage: HK.is_in_weierstrass_disc(P)
False
sage: Q = HK(0,1,0)
sage: HK.is_in_weierstrass_disc(Q)
True
sage: S = HK(1,0)
sage: HK.is_in_weierstrass_disc(S)
True
sage: T = HK.lift_x(1+3*5^2); T
(1 + 3*5^2 + O(5^8) : 2*5 + 4*5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7) : 1 + O(5^8))
sage: HK.is_in_weierstrass_disc(T)
True

AUTHOR:

• Jennifer Balakrishnan (2010-02)

is_same_disc(P, Q)

Checks if 𝑃,𝑄 are in same residue disc

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)

(continues on next page)

18.4. Hyperelliptic curves over a 𝑝-adic field 643

Elliptic curves, Release 9.8

(continued from previous page)

sage: Q = HK.lift_x(5^-2)
sage: S = HK(1,0)
sage: HK.is_same_disc(P,Q)
False
sage: HK.is_same_disc(P,S)
True
sage: HK.is_same_disc(Q,S)
False

is_weierstrass(P)
Checks if 𝑃 is a Weierstrass point (i.e., fixed by the hyperelliptic involution)

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK(0,3)
sage: HK.is_weierstrass(P)
False
sage: Q = HK(0,1,0)
sage: HK.is_weierstrass(Q)
True
sage: S = HK(1,0)
sage: HK.is_weierstrass(S)
True
sage: T = HK.lift_x(1+3*5^2); T
(1 + 3*5^2 + O(5^8) : 2*5 + 4*5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7) : 1 + O(5^8))
sage: HK.is_weierstrass(T)
False

AUTHOR:

• Jennifer Balakrishnan (2010-02)

local_analytic_interpolation(P, Q)

For points 𝑃 , 𝑄 in the same residue disc, this constructs an interpolation from 𝑃 to 𝑄 (in homogeneous
coordinates) in a power series in the local parameter 𝑡, with precision equal to the 𝑝-adic precision of the
underlying ring.

INPUT:

• P and Q points on self in the same residue disc

OUTPUT:

Returns a point 𝑋(𝑡) = (𝑥(𝑡) : 𝑦(𝑡) : 𝑧(𝑡)) such that:

(1) 𝑋(0) = 𝑃 and 𝑋(1) = 𝑄 if 𝑃,𝑄 are not in the infinite disc

(2) 𝑋(𝑃 [0]𝑔/𝑃 [1]) = 𝑃 and 𝑋(𝑄[0]𝑔/𝑄[1]) = 𝑄 if 𝑃,𝑄 are in the infinite disc

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)

(continues on next page)

644 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: K = Qp(5,8)
sage: HK = H.change_ring(K)

A non-Weierstrass disc:

sage: P = HK(0,3)
sage: Q = HK(5, 3 + 3*5^2 + 2*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8))
sage: x,y,z, = HK.local_analytic_interpolation(P,Q)
sage: x(0) == P[0], x(1) == Q[0], y(0) == P[1], y.polynomial()(1) == Q[1]
(True, True, True, True)

A finite Weierstrass disc:

sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(1 + 3*5^2)
sage: x,y,z = HK.local_analytic_interpolation(P,Q)
sage: x(0) == P[0], x.polynomial()(1) == Q[0], y(0) == P[1], y(1) == Q[1]
(True, True, True, True)

The infinite disc:

sage: P = HK.lift_x(5^-2)
sage: Q = HK.lift_x(4*5^-2)
sage: x,y,z = HK.local_analytic_interpolation(P,Q)
sage: x = x/z
sage: y = y/z
sage: x(P[0]/P[1]) == P[0]
True
sage: x(Q[0]/Q[1]) == Q[0]
True
sage: y(P[0]/P[1]) == P[1]
True
sage: y(Q[0]/Q[1]) == Q[1]
True

An error if points are not in the same disc:

sage: x,y,z = HK.local_analytic_interpolation(P,HK(1,0))
Traceback (most recent call last):
...
ValueError: (5^-2 + O(5^6) : 5^-3 + 4*5^2 + 5^3 + 3*5^4 + O(5^5) : 1 + O(5^8))␣
→˓and (1 + O(5^8) : 0 : 1 + O(5^8)) are not in the same residue disc

AUTHORS:

• Robert Bradshaw (2007-03)

• Jennifer Balakrishnan (2010-02)

newton_sqrt(f, x0, prec)
Takes the square root of the power series 𝑓 by Newton’s method

NOTE:

this function should eventually be moved to 𝑝-adic power series ring

18.4. Hyperelliptic curves over a 𝑝-adic field 645

Elliptic curves, Release 9.8

INPUT:

• f – power series with coefficients in Q𝑝 or an extension

• x0 – seeds the Newton iteration

• prec – precision

OUTPUT: the square root of 𝑓

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: Q = H(0,0)
sage: u,v = H.local_coord(Q,prec=100)
sage: K = Qp(11,5)
sage: HK = H.change_ring(K)
sage: L.<a> = K.extension(x^20-11)
sage: HL = H.change_ring(L)
sage: S = HL(u(a),v(a))
sage: f = H.hyperelliptic_polynomials()[0]
sage: y = HK.newton_sqrt(f(u(a)^11), a^11,5)
sage: y^2 - f(u(a)^11)
O(a^122)

AUTHOR:

• Jennifer Balakrishnan

residue_disc(P)
Gives the residue disc of 𝑃

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: HK.residue_disc(P)
(1 : 0 : 1)
sage: Q = HK(0,3)
sage: HK.residue_disc(Q)
(0 : 3 : 1)
sage: S = HK.lift_x(5^-2)
sage: HK.residue_disc(S)
(0 : 1 : 0)
sage: T = HK(0,1,0)
sage: HK.residue_disc(T)
(0 : 1 : 0)

AUTHOR:

• Jennifer Balakrishnan

teichmuller(P)
Find a Teichm:uller point in the same residue class of 𝑃 .

646 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

Because this lift of frobenius acts as 𝑥 ↦→ 𝑥𝑝, take the Teichmuller lift of 𝑥 and then find a matching 𝑦 from
that.

EXAMPLES:

sage: K = pAdicField(7, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: E.frobenius(P) == P
False
sage: TP = E.teichmuller(P); TP
(0 : 2 + 3*7 + 3*7^2 + 3*7^4 + O(7^5) : 1 + O(7^5))
sage: E.frobenius(TP) == TP
True
sage: (TP[0] - P[0]).valuation() > 0, (TP[1] - P[1]).valuation() > 0
(True, True)

tiny_integrals(F, P, Q)

Evaluate the integrals of 𝑓𝑖𝑑𝑥/2𝑦 from 𝑃 to 𝑄 for each 𝑓𝑖 in 𝐹 by formally integrating a power series in a
local parameter 𝑡

𝑃 and 𝑄 MUST be in the same residue disc for this result to make sense.

INPUT:

• F a list of functions 𝑓𝑖
• P a point on self

• Q a point on self (in the same residue disc as P)

OUTPUT:

The integrals
∫︀ 𝑄
𝑃
𝑓𝑖𝑑𝑥/2𝑦

EXAMPLES:

sage: K = pAdicField(17, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: TP = E.teichmuller(P);
sage: x,y = E.monsky_washnitzer_gens()
sage: E.tiny_integrals([1,x],P, TP) == E.tiny_integrals_on_basis(P,TP)
True

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.tiny_integrals([1],P,Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8))

Note that this fails if the points are not in the same residue disc:

sage: S = C(0,1/4)
sage: C.tiny_integrals([1,x,x^2,x^3],P,S)
Traceback (most recent call last):

(continues on next page)

18.4. Hyperelliptic curves over a 𝑝-adic field 647

Elliptic curves, Release 9.8

(continued from previous page)

...
ValueError: (11^-2 + O(11^3) : 11^-5 + 8*11^-2 + O(11^0) : 1 + O(11^5)) and (0␣
→˓: 3 + 8*11 + 2*11^2 + 8*11^3 + 2*11^4 + O(11^5) : 1 + O(11^5)) are not in the␣
→˓same residue disc

tiny_integrals_on_basis(P, Q)

Evaluate the integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0 by formally integrating a power series in a local parameter 𝑡. 𝑃
and 𝑄 MUST be in the same residue disc for this result to make sense.

INPUT:

• P a point on self

• Q a point on self (in the same residue disc as P)

OUTPUT:

The integrals {
∫︀ 𝑄
𝑃
𝑥𝑖𝑑𝑥/2𝑦}2𝑔−1

𝑖=0

EXAMPLES:

sage: K = pAdicField(17, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: TP = E.teichmuller(P);
sage: E.tiny_integrals_on_basis(P, TP)
(17 + 14*17^2 + 17^3 + 8*17^4 + O(17^5), 16*17 + 5*17^2 + 8*17^3 + 14*17^4 +␣
→˓O(17^5))

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.tiny_integrals_on_basis(P,Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8), 3*11 + 10*11^2 + 8*11^3␣
→˓+ 9*11^4 + 7*11^5 + O(11^6), 4*11^-1 + 2 + 6*11 + 6*11^2 + 7*11^3 + O(11^4),␣
→˓11^-3 + 6*11^-2 + 2*11^-1 + 2 + O(11^2))

Note that this fails if the points are not in the same residue disc:

sage: S = C(0,1/4)
sage: C.tiny_integrals_on_basis(P,S)
Traceback (most recent call last):
...
ValueError: (11^-2 + O(11^3) : 11^-5 + 8*11^-2 + O(11^0) : 1 + O(11^5)) and (0␣
→˓: 3 + 8*11 + 2*11^2 + 8*11^3 + 2*11^4 + O(11^5) : 1 + O(11^5)) are not in the␣
→˓same residue disc

weierstrass_points()

Return the Weierstrass points of self defined over self.base_ring(), that is, the point at infinity and those
points in the support of the divisor of 𝑦

EXAMPLES:

648 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: C.weierstrass_points()
[(0 : 1 + O(11^5) : 0), (7 + 10*11 + 4*11^3 + O(11^5) : 0 : 1 + O(11^5))]

18.5 Hyperelliptic curves over the rationals

class sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field(PP,
f,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic, ProjectivePlaneCurve_field

lseries(prec=53)
Return the L-series of this hyperelliptic curve of genus 2.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: C = HyperellipticCurve(x^2+x, x^3+x^2+1)
sage: C.lseries()
PARI L-function associated to Hyperelliptic Curve
over Rational Field defined by y^2 + (x^3 + x^2 + 1)*y = x^2 + x

matrix_of_frobenius(p, prec=20)

18.6 Mestre’s algorithm

This file contains functions that:

• create hyperelliptic curves from the Igusa-Clebsch invariants (over Q and finite fields)

• create Mestre’s conic from the Igusa-Clebsch invariants

AUTHORS:

• Florian Bouyer

• Marco Streng

sage.schemes.hyperelliptic_curves.mestre.HyperellipticCurve_from_invariants(i, reduced=True,
precision=None,
algo-
rithm='default')

Returns a hyperelliptic curve with the given Igusa-Clebsch invariants up to scaling.

The output is a curve over the field in which the Igusa-Clebsch invariants are given. The output curve is unique
up to isomorphism over the algebraic closure. If no such curve exists over the given field, then raise a ValueError.

INPUT:

• i - list or tuple of length 4 containing the four Igusa-Clebsch invariants: I2,I4,I6,I10.

18.5. Hyperelliptic curves over the rationals 649

../../../../../../../html/en/reference/curves/sage/schemes/curves/projective_curve.html#sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field

Elliptic curves, Release 9.8

• reduced - Boolean (default = True) If True, tries to reduce the polynomial defining the hyperelliptic curve
using the function reduce_polynomial() (see the reduce_polynomial() documentation for more de-
tails).

• precision - integer (default = None) Which precision for real and complex numbers should the reduction
use. This only affects the reduction, not the correctness. If None, the algorithm uses the default 53 bit
precision.

• algorithm - 'default' or 'magma'. If set to 'magma', uses Magma to parameterize Mestre’s conic
(needs Magma to be installed).

OUTPUT:

A hyperelliptic curve object.

EXAMPLES:

Examples over the rationals:

sage: HyperellipticCurve_from_invariants([3840,414720,491028480,2437709561856])
Traceback (most recent call last):
...
NotImplementedError: Reduction of hyperelliptic curves not yet implemented. See␣
→˓trac #14755 and #14756.
sage: HyperellipticCurve_from_invariants([3840,414720,491028480,2437709561856],
→˓reduced = False)
Hyperelliptic Curve over Rational Field defined by y^2 = -46656*x^6 + 46656*x^5 -␣
→˓19440*x^4 + 4320*x^3 - 540*x^2 + 4410*x - 1
sage: HyperellipticCurve_from_invariants([21, 225/64, 22941/512, 1])
Traceback (most recent call last):
...
NotImplementedError: Reduction of hyperelliptic curves not yet implemented. See␣
→˓trac #14755 and #14756.

An example over a finite field:

sage: H = HyperellipticCurve_from_invariants([GF(13)(1),3,7,5]); H
Hyperelliptic Curve over Finite Field of size 13 defined by ...
sage: H.igusa_clebsch_invariants()
(4, 9, 6, 11)

An example over a number field:

sage: K = QuadraticField(353, 'a')
sage: H = HyperellipticCurve_from_invariants([21, 225/64, 22941/512, 1], reduced =␣
→˓false)
sage: f = K['x'](H.hyperelliptic_polynomials()[0])

If the Mestre Conic defined by the Igusa-Clebsch invariants has no rational points, then there exists no hyperel-
liptic curve over the base field with the given invariants.:

sage: HyperellipticCurve_from_invariants([1,2,3,4])
Traceback (most recent call last):
...
ValueError: No such curve exists over Rational Field as there are no rational␣
→˓points on Projective Conic Curve over Rational Field defined by -2572155000*u^2 -␣

(continues on next page)

650 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

→˓317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w + 39276887040*v*w +␣
→˓2736219686912*w^2

Mestre’s algorithm only works for generic curves of genus two, so another algorithm is needed for those curves
with extra automorphism. See also trac ticket #12199:

sage: P.<x> = QQ[]
sage: C = HyperellipticCurve(x^6+1)
sage: i = C.igusa_clebsch_invariants()
sage: HyperellipticCurve_from_invariants(i)
Traceback (most recent call last):
...
TypeError: F (=0) must have degree 2

Igusa-Clebsch invariants also only work over fields of characteristic different from 2, 3, and 5, so another algo-
rithm will be needed for fields of those characteristics. See also trac ticket #12200:

sage: P.<x> = GF(3)[]
sage: HyperellipticCurve(x^6+x+1).igusa_clebsch_invariants()
Traceback (most recent call last):
...
NotImplementedError: Invariants of binary sextics/genus 2 hyperelliptic curves not␣
→˓implemented in characteristics 2, 3, and 5
sage: HyperellipticCurve_from_invariants([GF(5)(1),1,0,1])
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(0, 5) does not exist

ALGORITHM:

This is Mestre’s algorithm [Mes1991]. Our implementation is based on the formulae on page 957 of [LY2001],
cross-referenced with [Wam1999b] to correct typos.

First construct Mestre’s conic using the Mestre_conic() function. Parametrize the conic if possible. Let
𝑓1, 𝑓2, 𝑓3 be the three coordinates of the parametrization of the conic by the projective line, and change them
into one variable by letting 𝐹𝑖 = 𝑓𝑖(𝑡, 1). Note that each 𝐹𝑖 has degree at most 2.

Then construct a sextic polynomial 𝑓 =
∑︀

0<=𝑖,𝑗,𝑘<=3 𝑐𝑖𝑗𝑘 * 𝐹𝑖 * 𝐹𝑗 * 𝐹𝑘, where 𝑐𝑖𝑗𝑘 are defined as rational
functions in the invariants (see the source code for detailed formulae for 𝑐𝑖𝑗𝑘). The output is the hyperelliptic
curve 𝑦2 = 𝑓 .

sage.schemes.hyperelliptic_curves.mestre.Mestre_conic(i, xyz=False, names='u,v,w')
Return the conic equation from Mestre’s algorithm given the Igusa-Clebsch invariants.

It has a rational point if and only if a hyperelliptic curve corresponding to the invariants exists.

INPUT:

• i - list or tuple of length 4 containing the four Igusa-Clebsch invariants: I2, I4, I6, I10

• xyz - Boolean (default: False) if True, the algorithm also returns three invariants x,y,z used in Mestre’s
algorithm

• names (default: ‘u,v,w’) - the variable names for the Conic

OUTPUT:

A Conic object

18.6. Mestre’s algorithm 651

https://trac.sagemath.org/12199
https://trac.sagemath.org/12200

Elliptic curves, Release 9.8

EXAMPLES:

A standard example:

sage: Mestre_conic([1,2,3,4])
Projective Conic Curve over Rational Field defined by -2572155000*u^2 -␣
→˓317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w + 39276887040*v*w +␣
→˓2736219686912*w^2

Note that the algorithm works over number fields as well:

sage: k = NumberField(x^2-41,'a')
sage: a = k.an_element()
sage: Mestre_conic([1,2+a,a,4+a])
Projective Conic Curve over Number Field in a with defining polynomial x^2 - 41␣
→˓defined by (-801900000*a + 343845000)*u^2 + (855360000*a + 15795864000)*u*v +␣
→˓(312292800000*a + 1284808579200)*v^2 + (624585600000*a + 2569617158400)*u*w +␣
→˓(15799910400*a + 234573143040)*v*w + (2034199306240*a + 16429854656512)*w^2

And over finite fields:

sage: Mestre_conic([GF(7)(10),GF(7)(1),GF(7)(2),GF(7)(3)])
Projective Conic Curve over Finite Field of size 7 defined by -2*u*v - v^2 - 2*u*w␣
→˓+ 2*v*w - 3*w^2

An example with xyz:

sage: Mestre_conic([5,6,7,8], xyz=True)
(Projective Conic Curve over Rational Field defined by -415125000*u^2 +␣
→˓608040000*u*v + 33065136000*v^2 + 66130272000*u*w + 240829440*v*w + 10208835584*w^
→˓2, 232/1125, -1072/16875, 14695616/2109375)

ALGORITHM:

The formulas are taken from pages 956 - 957 of [LY2001] and based on pages 321 and 332 of [Mes1991].

See the code or [LY2001] for the detailed formulae defining x, y, z and L.

18.7 Computation of Frobenius matrix on Monsky-Washnitzer coho-
mology

The most interesting functions to be exported here are matrix_of_frobenius() and adjusted_prec().

Currently this code is limited to the case 𝑝 ≥ 5 (no 𝐺𝐹 (𝑝𝑛) for 𝑛 > 1), and only handles the elliptic curve case (not
more general hyperelliptic curves).

REFERENCES:

• [Ked2001]

• [Edix]

AUTHORS:

• David Harvey and Robert Bradshaw: initial code developed at the 2006 MSRI graduate workshop, working with
Jennifer Balakrishnan and Liang Xiao

652 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

• David Harvey (2006-08): cleaned up, rewrote some chunks, lots more documentation, added Newton iteration
method, added more complete ‘trace trick’, integrated better into Sage.

• David Harvey (2007-02): added algorithm with sqrt(p) complexity (removed in May 2007 due to better C++
implementation)

• Robert Bradshaw (2007-03): keep track of exact form in reduction algorithms

• Robert Bradshaw (2007-04): generalization to hyperelliptic curves

• Julian Rueth (2014-05-09): improved caching

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential(parent,
val,
off-
set=0)

Bases: ModuleElement

An element of the Monsky-Washnitzer ring of differentials, of the form 𝐹𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: MW = C.invariant_differential().parent()
sage: MW(x)
x dx/2y
sage: MW(y)
y*1 dx/2y
sage: MW(x, 10)
y^10*x dx/2y

coeff()

Return 𝐴, where this element is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w
1 dx/2y
sage: w.coeff()
1
sage: (x*y*w).coeff()
y*x

coeffs(R=None)
Used to obtain the raw coefficients of a differential, see SpecialHyperellipticQuotientElement.
coeffs()

INPUT:

• R – An (optional) base ring in which to cast the coefficients

OUTPUT:

The raw coefficients of 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 653

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Elliptic curves, Release 9.8

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coeffs()
([(1, 0, 0, 0, 0)], 0)
sage: (x*w).coeffs()
([(0, 1, 0, 0, 0)], 0)
sage: (y*w).coeffs()
([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)
sage: (y^-2*w).coeffs()
([(1, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)

coleman_integral(P, Q)

Compute the definite integral of self from 𝑃 to 𝑄.

INPUT:

• 𝑃 , 𝑄 – two points on the underlying curve

OUTPUT:∫︀ 𝑄
𝑃

self

EXAMPLES:

sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)

sage: Q = E([3,58332])
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True

extract_pow_y(k)
Return the power of 𝑦 in 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: A = y^5 - x*y^3
sage: A.extract_pow_y(5)
[1, 0, 0, 0, 0]
sage: (A * C.invariant_differential()).extract_pow_y(5)
[1, 0, 0, 0, 0]

654 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

integrate(P, Q)

Compute the definite integral of self from 𝑃 to 𝑄.

INPUT:

• 𝑃 , 𝑄 – two points on the underlying curve

OUTPUT:∫︀ 𝑄
𝑃

self

EXAMPLES:

sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)

sage: Q = E([3,58332])
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True

max_pow_y()

Return the maximum power of 𝑦 in 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.max_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.max_pow_y()
5

min_pow_y()

Return the minimum power of 𝑦 in 𝐴 where self is 𝐴𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.min_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.min_pow_y()
4

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 655

Elliptic curves, Release 9.8

reduce()

Use homology relations to find 𝑎 and 𝑓 such that this element is equal to 𝑎+ 𝑑𝑓 , where 𝑎 is given in terms
of the 𝑥𝑖𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = (y*x).diff()
sage: w.reduce()
(y*x, 0 dx/2y)

sage: w = x^4 * C.invariant_differential()
sage: w.reduce()
(1/5*y*1, 4/5*1 dx/2y)

sage: w = sum(QQ.random_element() * x^i * y^j for i in [0..4] for j in [-3..3])␣
→˓* C.invariant_differential()
sage: f, a = w.reduce()
sage: f.diff() + a - w
0 dx/2y

reduce_fast(even_degree_only=False)
Use homology relations to find 𝑎 and 𝑓 such that this element is equal to 𝑎+ 𝑑𝑓 , where 𝑎 is given in terms
of the 𝑥𝑖𝑑𝑥/2𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^3-4*x+4)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.diff().reduce_fast()
(x, (0, 0))
sage: y.diff().reduce_fast()
(y*1, (0, 0))
sage: (y^-1).diff().reduce_fast()
((y^-1)*1, (0, 0))
sage: (y^-11).diff().reduce_fast()
((y^-11)*1, (0, 0))
sage: (x*y^2).diff().reduce_fast()
(y^2*x, (0, 0))

reduce_neg_y()

Use homology relations to eliminate negative powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

656 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

reduce_neg_y_fast(even_degree_only=False)
Use homology relations to eliminate negative powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x, y = E.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y_fast()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_fast()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

It leaves non-negative powers of 𝑦 alone:

sage: y.diff()
(-3*1 + 5*x^4) dx/2y
sage: y.diff().reduce_neg_y_fast()
(0, (-3*1 + 5*x^4) dx/2y)

reduce_neg_y_faster(even_degree_only=False)
Use homology relations to eliminate negative powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_faster()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

reduce_pos_y()

Use homology relations to eliminate positive powers of 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^3-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^2).diff().reduce_pos_y()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)

reduce_pos_y_fast(even_degree_only=False)
Use homology relations to eliminate positive powers of 𝑦.

EXAMPLES:

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 657

Elliptic curves, Release 9.8

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^3-4*x+4)
sage: x, y = E.monsky_washnitzer_gens()
sage: y.diff().reduce_pos_y_fast()
(y*1, 0 dx/2y)
sage: (y^2).diff().reduce_pos_y_fast()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y_fast()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y_fast()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing(base_ring)
Bases: UniqueRepresentation, Module

A ring of Monsky–Washnitzer differentials over base_ring.

Element

alias of MonskyWashnitzerDifferential

Q()

Return 𝑄(𝑥) where the model of the underlying hyperelliptic curve of self is given by 𝑦2 = 𝑄(𝑥).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4

base_extend(R)
Return a new differential ring which is self base-extended to 𝑅.

INPUT:

• R – ring

OUTPUT:

Self, base-extended to 𝑅.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4) over␣
→˓Rational Field
sage: MW.base_extend(Qp(5,5)).base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5 + (1 +␣

(continues on next page)

658 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/modules/sage/modules/module.html#sage.modules.module.Module

Elliptic curves, Release 9.8

(continued from previous page)

→˓4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + 4 + O(5^5))
over 5-adic Field with capped relative precision 5

change_ring(R)
Return a new differential ring which is self with the coefficient ring changed to 𝑅.

INPUT:

• R – ring of coefficients

OUTPUT:

self with the coefficient ring changed to 𝑅.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4) over␣
→˓Rational Field
sage: MW.change_ring(Qp(5,5)).base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5 + (1 +␣
→˓4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + 4 + O(5^5))
over 5-adic Field with capped relative precision 5

degree()

Return the degree of 𝑄(𝑥), where the model of the underlying hyperelliptic curve of self is given by
𝑦2 = 𝑄(𝑥).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4
sage: MW.degree()
5

dimension()

Return the dimension of self.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: K = Qp(7,5)
sage: CK = C.change_ring(K)
sage: MW = CK.invariant_differential().parent()
sage: MW.dimension()
4

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 659

Elliptic curves, Release 9.8

frob_Q(p)
Return and cache 𝑄(𝑥𝑝), which is used in computing the image of 𝑦 under a 𝑝-power lift of Frobenius to
𝐴†.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.frob_Q(3)
-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3
sage: MW.Q()(MW.x_to_p(3))
-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3
sage: MW.frob_Q(11) is MW.frob_Q(11)
True

frob_basis_elements(prec, p)
Return the action of a 𝑝-power lift of Frobenius on the basis.

{𝑑𝑥/2𝑦, 𝑥𝑑𝑥/2𝑦, ..., 𝑥𝑑−2𝑑𝑥/2𝑦},

where 𝑑 is the degree of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: prec = 1
sage: p = 5
sage: MW = C.invariant_differential().parent()
sage: MW.frob_basis_elements(prec,p)
[((92000*y^-14-74200*y^-12+32000*y^-10-8000*y^-8+1000*y^-6-50*y^-4)*1
- (194400*y^-14-153600*y^-12+57600*y^-10-9600*y^-8+600*y^-6)*x
+ (204800*y^-14-153600*y^-12+38400*y^-10-3200*y^-8)*x^2
- (153600*y^-14-76800*y^-12+9600*y^-10)*x^3
+ (63950*y^-14-18550*y^-12+1600*y^-10-400*y^-8+50*y^-6+5*y^-4)*x^4) dx/2y,
(-(1391200*y^-14-941400*y^-12+302000*y^-10-76800*y^-8+14400*y^-6-1320*y^-
→˓4+30*y^-2)*1
+ (2168800*y^-14-1402400*y^-12+537600*y^-10-134400*y^-8+16800*y^-6-720*y^-4)*x
- (1596800*y^-14-1433600*y^-12+537600*y^-10-89600*y^-8+5600*y^-6)*x^2
+ (1433600*y^-14-1075200*y^-12+268800*y^-10-22400*y^-8)*x^3
- (870200*y^-14-445350*y^-12+63350*y^-10-3200*y^-8+600*y^-6-30*y^-4-5*y^-2)*x^

→˓4) dx/2y,
((19488000*y^-14-15763200*y^-12+4944400*y^-10-913800*y^-8+156800*y^-6-22560*y^-
→˓4+1480*y^-2-10)*1
- (28163200*y^-14-18669600*y^-12+5774400*y^-10-1433600*y^-8+268800*y^-6-

→˓25440*y^-4+760*y^-2)*x
+ (15062400*y^-14-12940800*y^-12+5734400*y^-10-1433600*y^-8+179200*y^-6-

→˓8480*y^-4)*x^2
- (12121600*y^-14-11468800*y^-12+4300800*y^-10-716800*y^-8+44800*y^-6)*x^3
+ (9215200*y^-14-6952400*y^-12+1773950*y^-10-165750*y^-8+5600*y^-6-720*y^-

→˓4+10*y^-2+5)*x^4) dx/2y,
(-(225395200*y^-14-230640000*y^-12+91733600*y^-10-18347400*y^-8+2293600*y^-6-
→˓280960*y^-4+31520*y^-2-1480-10*y^2)*1

(continues on next page)

660 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

+ (338048000*y^-14-277132800*y^-12+89928000*y^-10-17816000*y^-8+3225600*y^-6-
→˓472320*y^-4+34560*y^-2-720)*x
- (172902400*y^-14-141504000*y^-12+58976000*y^-10-17203200*y^-8+3225600*y^-6-

→˓314880*y^-4+11520*y^-2)*x^2
+ (108736000*y^-14-109760000*y^-12+51609600*y^-10-12902400*y^-8+1612800*y^-6-

→˓78720*y^-4)*x^3
- (85347200*y^-14-82900000*y^-12+31251400*y^-10-5304150*y^-8+367350*y^-6-

→˓8480*y^-4+760*y^-2+10-5*y^2)*x^4) dx/2y]

frob_invariant_differential(prec, p)
Kedlaya’s algorithm allows us to calculate the action of Frobenius on the Monsky-Washnitzer cohomology.
First we lift 𝜑 to 𝐴† by setting

𝜑(𝑥) = 𝑥𝑝, 𝜑(𝑦) = 𝑦𝑝

√︃
1 +

𝑄(𝑥𝑝) −𝑄(𝑥)𝑝

𝑄(𝑥)𝑝
.

Pulling back the differential 𝑑𝑥/2𝑦, we get

𝜑*(𝑑𝑥/2𝑦) = 𝑝𝑥𝑝−1𝑦(𝜑(𝑦))−1𝑑𝑥/2𝑦 = 𝑝𝑥𝑝−1𝑦1−𝑝

√︃
1 +

𝑄(𝑥𝑝) −𝑄(𝑥)𝑝

𝑄(𝑥)𝑝
𝑑𝑥/2𝑦.

Use Newton’s method to calculate the square root.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: prec = 2
sage: p = 7
sage: MW = C.invariant_differential().parent()
sage: MW.frob_invariant_differential(prec,p)
((67894400*y^-20-81198880*y^-18+40140800*y^-16-10035200*y^-14+1254400*y^-12-
→˓62720*y^-10)*1
- (119503944*y^-20-116064242*y^-18+43753472*y^-16-7426048*y^-14+514304*y^-12-
→˓12544*y^-10+1568*y^-8-70*y^-6-7*y^-4)*x
+ (78905288*y^-20-61014016*y^-18+16859136*y^-16-2207744*y^-14+250880*y^-12-
→˓37632*y^-10+3136*y^-8-70*y^-6)*x^2
- (39452448*y^-20-26148752*y^-18+8085490*y^-16-2007040*y^-14+376320*y^-12-
→˓37632*y^-10+1568*y^-8)*x^3
+ (21102144*y^-20-18120592*y^-18+8028160*y^-16-2007040*y^-14+250880*y^-12-
→˓12544*y^-10)*x^4) dx/2y

helper_matrix()

We use this to solve for the linear combination of 𝑥𝑖𝑦𝑗 needed to clear all terms with 𝑦𝑗−1.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.helper_matrix()
[256/2101 320/2101 400/2101 500/2101 625/2101]
[-625/8404 -64/2101 -80/2101 -100/2101 -125/2101]

(continues on next page)

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 661

Elliptic curves, Release 9.8

(continued from previous page)

[-125/2101 -625/8404 -64/2101 -80/2101 -100/2101]
[-100/2101 -125/2101 -625/8404 -64/2101 -80/2101]
[-80/2101 -100/2101 -125/2101 -625/8404 -64/2101]

invariant_differential()

Return 𝑑𝑥/2𝑦 as an element of self.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.invariant_differential()
1 dx/2y

x_to_p(p)
Return and cache 𝑥𝑝, reduced via the relations coming from the defining polynomial of the hyperelliptic
curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.x_to_p(3)
x^3
sage: MW.x_to_p(5)
-(4-y^2)*1 + 4*x
sage: MW.x_to_p(101) is MW.x_to_p(101)
True

sage.schemes.hyperelliptic_curves.monsky_washnitzer.
MonskyWashnitzerDifferentialRing_class

alias of MonskyWashnitzerDifferentialRing

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing(Q, lau-
rent_series=False)

Bases: CommutativeAlgebra

Specialised class for representing the quotient ring 𝑅[𝑥, 𝑇]/(𝑇 −𝑥3 − 𝑎𝑥− 𝑏), where 𝑅 is an arbitrary commu-
tative base ring (in which 2 and 3 are invertible), 𝑎 and 𝑏 are elements of that ring.

Polynomials are represented internally in the form 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 where the 𝑝𝑖 are polynomials in 𝑇 . Multi-

plication of polynomials always reduces high powers of 𝑥 (i.e. beyond 𝑥2) to powers of 𝑇 .

Hopefully this ring is faster than a general quotient ring because it uses the special structure of this ring to speed
multiplication (which is the dominant operation in the frobenius matrix calculation). I haven’t actually tested
this theory though. . .

Todo: Eventually we will want to run this in characteristic 3, so we need to: (a) Allow 𝑄(𝑥) to contain an 𝑥2
term, and (b) Remove the requirement that 3 be invertible. Currently this is used in the Toom-Cook algorithm to
speed multiplication.

EXAMPLES:

662 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.CommutativeAlgebra

Elliptic curves, Release 9.8

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R
SpecialCubicQuotientRing over Ring of integers modulo 125
with polynomial T = x^3 + 124*x + 94

Get generators:

sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2

Coercions:

sage: R(7)
(7) + (0)*x + (0)*x^2

Create elements directly from polynomials:

sage: A = R.poly_ring()
sage: A
Univariate Polynomial Ring in T over Ring of integers modulo 125
sage: z = A.gen()
sage: R.create_element(z^2, z+1, 3)
(T^2) + (T + 1)*x + (3)*x^2

Some arithmetic:

sage: x^3
(T + 31) + (1)*x + (0)*x^2
sage: 3 * x**15 * T**2 + x - T
(3*T^7 + 90*T^6 + 110*T^5 + 20*T^4 + 58*T^3 + 26*T^2 + 124*T) +
(15*T^6 + 110*T^5 + 35*T^4 + 63*T^2 + 1)*x +
(30*T^5 + 40*T^4 + 8*T^3 + 38*T^2)*x^2

Retrieve coefficients (output is zero-padded):

sage: x^10
(3*T^2 + 61*T + 8) + (T^3 + 93*T^2 + 12*T + 40)*x + (3*T^2 + 61*T + 9)*x^2
sage: (x^10).coeffs()
[[8, 61, 3, 0], [40, 12, 93, 1], [9, 61, 3, 0]]

Todo: write an example checking multiplication of these polynomials against Sage’s ordinary quotient ring
arithmetic. I cannot seem to get the quotient ring stuff happening right now. . .

Element

alias of SpecialCubicQuotientRingElement

create_element(check, *args)
Create the element 𝑝0 + 𝑝1 * 𝑥+ 𝑝2 * 𝑥2, where the 𝑝𝑖 are polynomials in 𝑇 .

INPUT:

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 663

Elliptic curves, Release 9.8

• p0, p1, p2 – coefficients; must be coercible into poly_ring()

• check – bool (default True): whether to carry out coercion

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: A, z = R.poly_ring().objgen()
sage: R.create_element(z^2, z+1, 3) # indirect doctest
(T^2) + (T + 1)*x + (3)*x^2

gens()

Return a list [x, T] where x and T are the generators of the ring (as element of this ring).

Note: I have no idea if this is compatible with the usual Sage ‘gens’ interface.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2

one()

Return the unit of self.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R.one()
(1) + (0)*x + (0)*x^2

poly_ring()

Return the underlying polynomial ring in 𝑇 .

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R.poly_ring()
Univariate Polynomial Ring in T over Ring of integers modulo 125

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement(parent,
p0,
p1,
p2,
check=True)

Bases: CommutativeAlgebraElement

An element of a SpecialCubicQuotientRing.

664 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.CommutativeAlgebraElement

Elliptic curves, Release 9.8

coeffs()

Return list of three lists of coefficients, corresponding to the 𝑥0, 𝑥1, 𝑥2 coefficients.

The lists are zero padded to the same length. The list entries belong to the base ring.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: p = R.create_element(t, t^2 - 2, 3)
sage: p.coeffs()
[[0, 1, 0], [123, 0, 1], [3, 0, 0]]

scalar_multiply(scalar)
Multiply this element by a scalar, i.e. just multiply each coefficient of 𝑥𝑗 by the scalar.

INPUT:

• scalar – either an element of base_ring, or an element of poly_ring.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.scalar_multiply(2)
(4) + (2*T)*x + (2*T^2 + 119)*x^2
sage: f.scalar_multiply(t)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2

shift(n)
Return this element multiplied by 𝑇𝑛.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.shift(1)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2
sage: f.shift(2)
(2*T^2) + (T^3)*x + (T^4 + 122*T^2)*x^2

square()

Return the square of the element.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 665

Elliptic curves, Release 9.8

sage: f = R.create_element(1 + 2*t + 3*t^2, 4 + 7*t + 9*t^2, 3 + 5*t + 11*t^2)
sage: f.square()
(73*T^5 + 16*T^4 + 38*T^3 + 39*T^2 + 70*T + 120) + (121*T^5 + 113*T^4 + 73*T^3␣
→˓+ 8*T^2 + 51*T + 61)*x + (18*T^4 + 60*T^3 + 22*T^2 + 108*T + 31)*x^2

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement(parent,
val=0,
off-
set=0,
check=True)

Bases: CommutativeAlgebraElement

Element in the Hyperelliptic quotient ring.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-36*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: MW(x+x**2+y-77)
-(77-y)*1 + x + x^2

change_ring(R)
Return the same element after changing the base ring to 𝑅.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-36*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: z = MW(x+x**2+y-77)
sage: z.change_ring(AA).parent()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 36*x + 1) over␣
→˓Algebraic Real Field

coeffs(R=None)
Return the raw coefficients of this element.

INPUT:

• R – an (optional) base-ring in which to cast the coefficients

OUTPUT:

• coeffs – a list of coefficients of powers of 𝑥 for each power of 𝑦

• n – an offset indicating the power of 𝑦 of the first list element

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.coeffs()
([(0, 1, 0, 0, 0)], 0)

(continues on next page)

666 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.CommutativeAlgebraElement

Elliptic curves, Release 9.8

(continued from previous page)

sage: y.coeffs()
([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)

sage: a = sum(n*x^n for n in range(5)); a
x + 2*x^2 + 3*x^3 + 4*x^4
sage: a.coeffs()
([(0, 1, 2, 3, 4)], 0)
sage: a.coeffs(Qp(7))
([(0, 1 + O(7^20), 2 + O(7^20), 3 + O(7^20), 4 + O(7^20))], 0)
sage: (a*y).coeffs()
([(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)], 0)
sage: (a*y^-2).coeffs()
([(0, 1, 2, 3, 4), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)

Note that the coefficient list is transposed compared to how they are stored and printed:

sage: a*y^-2
(y^-2)*x + (2*y^-2)*x^2 + (3*y^-2)*x^3 + (4*y^-2)*x^4

A more complicated example:

sage: a = x^20*y^-3 - x^11*y^2; a
(y^-3-4*y^-1+6*y-4*y^3+y^5)*1 - (12*y^-3-36*y^-1+36*y+y^2-12*y^3-2*y^4+y^6)*x
+ (54*y^-3-108*y^-1+54*y+6*y^2-6*y^4)*x^2 - (108*y^-3-108*y^-1+9*y^2)*x^3 +␣
→˓(81*y^-3)*x^4
sage: raw, offset = a.coeffs()
sage: a.min_pow_y()
-3
sage: offset
-3
sage: raw
[(1, -12, 54, -108, 81),
(0, 0, 0, 0, 0),
(-4, 36, -108, 108, 0),
(0, 0, 0, 0, 0),
(6, -36, 54, 0, 0),
(0, -1, 6, -9, 0),
(-4, 12, 0, 0, 0),
(0, 2, -6, 0, 0),
(1, 0, 0, 0, 0),
(0, -1, 0, 0, 0)]
sage: sum(c * x^i * y^(j+offset) for j, L in enumerate(raw) for i, c in␣
→˓enumerate(L)) == a
True

Can also be used to construct elements:

sage: a.parent()(raw, offset) == a
True

diff()

Return the differential of self.

EXAMPLES:

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 667

Elliptic curves, Release 9.8

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).diff()
(-(9-2*y)*1 + 15*x^4) dx/2y

extract_pow_y(k)
Return the coefficients of 𝑦𝑘 in self as a list.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y+9*x*y).extract_pow_y(1)
[3, 9, 0, 0, 0]

max_pow_y()

Return the maximal degree of self with respect to 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).max_pow_y()
1

min_pow_y()

Return the minimal degree of self with respect to 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).min_pow_y()
0

truncate_neg(n)
Return self minus its terms of degree less than 𝑛 wrt 𝑦.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y+7*x*2*y**4).truncate_neg(1)
3*y*1 + 14*y^4*x

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing(Q,
R=None,
in-
vert_y=True)

Bases: UniqueRepresentation, CommutativeAlgebra

668 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.CommutativeAlgebra

Elliptic curves, Release 9.8

The special hyperelliptic quotient ring.

Element

alias of SpecialHyperellipticQuotientElement

Q()

Return the defining polynomial of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-2*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().Q()
x^5 - 2*x + 1

base_extend(R)
Return the base extension of self to the ring R if possible.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().base_extend(UniversalCyclotomicField())
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1) over␣
→˓Universal Cyclotomic Field
sage: x.parent().base_extend(ZZ)
Traceback (most recent call last):
...
TypeError: no such base extension

change_ring(R)
Return the analog of self over the ring R.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().change_ring(ZZ)
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1) over␣
→˓Integer Ring

curve()

Return the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().curve()
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - 3*x + 1

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 669

Elliptic curves, Release 9.8

degree()

Return the degree of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().degree()
5

gens()

Return the generators of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().gens()
(x, y*1)

is_field(proof=True)
Return False as self is not a field.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().is_field()
False

monomial(i, j, b=None)
Return 𝑏𝑦𝑗𝑥𝑖, computed quickly.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial(4,5)
y^5*x^4

monomial_diff_coeffs(i, j)
Compute coefficients of the basis representation of 𝑑(𝑥𝑖𝑦𝑗).

The key here is that the formula for 𝑑(𝑥𝑖𝑦𝑗) is messy in terms of 𝑖, but varies nicely with 𝑗.

𝑑(𝑥𝑖𝑦𝑗) = 𝑦𝑗−1(2𝑖𝑥𝑖−1𝑦2 + 𝑗(𝐴𝑖(𝑥) +𝐵𝑖(𝑥)𝑦2))
𝑑𝑥

2𝑦
,

where 𝐴,𝐵 have degree at most 𝑛 − 1 for each 𝑖. Pre-compute 𝐴𝑖, 𝐵𝑖 for each 𝑖 the “hard” way, and the
rest are easy.

EXAMPLES:

670 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial_diff_coeffs(2,3)
((0, -15, 36, 0, 0), (0, 19, 0, 0, 0))

monomial_diff_coeffs_matrices()

Compute tables of coefficients of the basis representation of 𝑑(𝑥𝑖𝑦𝑗) for small 𝑖, 𝑗.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial_diff_coeffs_matrices()
(
[0 5 0 0 0] [0 2 0 0 0]
[0 0 5 0 0] [0 0 4 0 0]
[0 0 0 5 0] [0 0 0 6 0]
[0 0 0 0 5] [0 0 0 0 8]
[0 0 0 0 0], [0 0 0 0 0]
)

monsky_washnitzer()

Return the stored Monsky-Washnitzer differential ring.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: type(x.parent().monsky_washnitzer())
<class 'sage.schemes.hyperelliptic_curves.monsky_washnitzer.
→˓MonskyWashnitzerDifferentialRing_with_category'>

one()

Return the unit of self.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().one()
1

prime()

Return the stored prime number 𝑝.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()

(continues on next page)

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 671

Elliptic curves, Release 9.8

(continued from previous page)

sage: x.parent().prime() is None
True

x()

Return the generator 𝑥 of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().x()
x

y()

Return the generator 𝑦 of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().y()
y*1

zero()

Return the zero of self.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().zero()
0

sage.schemes.hyperelliptic_curves.monsky_washnitzer.
SpecialHyperellipticQuotientRing_class

alias of SpecialHyperellipticQuotientRing

sage.schemes.hyperelliptic_curves.monsky_washnitzer.adjusted_prec(p, prec)
Compute how much precision is required in matrix_of_frobenius to get an answer correct to prec 𝑝-adic
digits.

The issue is that the algorithm used in matrix_of_frobenius() sometimes performs divisions by 𝑝, so preci-
sion is lost during the algorithm.

The estimate returned by this function is based on Kedlaya’s result (Lemmas 2 and 3 of [Ked2001]), which
implies that if we start with𝑀 𝑝-adic digits, the total precision loss is at most 1 + ⌊log𝑝(2𝑀 − 3)⌋ 𝑝-adic digits.
(This estimate is somewhat less than the amount you would expect by naively counting the number of divisions
by 𝑝.)

INPUT:

• p – a prime p >= 5

• prec – integer, desired output precision, prec >= 1

672 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

OUTPUT: adjusted precision (usually slightly more than prec)

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import adjusted_prec
sage: adjusted_prec(5,2)
3

sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_newton(Q, p, M)

Compute the action of Frobenius on 𝑑𝑥/𝑦 and on 𝑥𝑑𝑥/𝑦, using Newton’s method (as suggested in Kedlaya’s
paper [Ked2001]).

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds 𝐹0 and 𝐹1 in the quotient ring 𝑅[𝑥, 𝑇]/(𝑇 −𝑄(𝑥)), such that

𝐹 (𝑑𝑥/𝑦) = 𝑇−𝑟𝐹0𝑑𝑥/𝑦, and 𝐹 (𝑥𝑑𝑥/𝑦) = 𝑇−𝑟𝐹1𝑑𝑥/𝑦

where

𝑟 = ((2𝑀 − 3)𝑝− 1)/2.

(Here 𝑇 is 𝑦2 = 𝑧−2, and 𝑅 is the coefficient ring of 𝑄.)

𝐹0 and 𝐹1 are computed in the SpecialCubicQuotientRing associated to 𝑄, so all powers of 𝑥𝑗 for 𝑗 ≥ 3 are
reduced to powers of 𝑇 .

INPUT:

• Q – cubic polynomial of the form 𝑄(𝑥) = 𝑥3 + 𝑎𝑥+ 𝑏, whose coefficient ring is a 𝑍/(𝑝𝑀)𝑍-algebra

• p – residue characteristic of the p-adic field

• M – p-adic precision of the coefficient ring (this will be used to determine the number of Newton iterations)

OUTPUT:

• F0, F1 – elements of SpecialCubicQuotientRing(Q), as described above

• r – non-negative integer, as described above

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_
→˓expansion_by_newton
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: frobenius_expansion_by_newton(Q,5,3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3
+ 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,
(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50)
+ (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x
+ (15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_series(Q, p, M)

Compute the action of Frobenius on 𝑑𝑥/𝑦 and on 𝑥𝑑𝑥/𝑦, using a series expansion.

(This function computes the same thing as frobenius_expansion_by_newton(), using a different method. Theo-
retically the Newton method should be asymptotically faster, when the precision gets large. However, in practice,
this functions seems to be marginally faster for moderate precision, so I’m keeping it here until I figure out exactly
why it is faster.)

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 673

Elliptic curves, Release 9.8

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds F0 and F1 in the quotient ring𝑅[𝑥, 𝑇]/(𝑇−𝑄(𝑥)), such that𝐹 (𝑑𝑥/𝑦) = 𝑇−𝑟𝐹0𝑑𝑥/𝑦,
and 𝐹 (𝑥𝑑𝑥/𝑦) = 𝑇−𝑟𝐹1𝑑𝑥/𝑦 where 𝑟 = ((2𝑀 − 3)𝑝 − 1)/2. (Here 𝑇 is 𝑦2 = 𝑧−2, and 𝑅 is the coefficient
ring of 𝑄.)

𝐹0 and 𝐹1 are computed in the SpecialCubicQuotientRing associated to 𝑄, so all powers of 𝑥𝑗 for 𝑗 ≥ 3 are
reduced to powers of 𝑇 .

It uses the sum

𝐹0 =

𝑀−2∑︁
𝑘=0

(︂
−1/2

𝑘

)︂
𝑝𝑥𝑝−1𝐸𝑘𝑇 (𝑀−2−𝑘)𝑝

and
𝐹1 = 𝑥𝑝𝐹0,

𝑤ℎ𝑒𝑟𝑒‘𝐸 = 𝑄(𝑥𝑝) −𝑄(𝑥)𝑝‘.

INPUT:

• Q – cubic polynomial of the form 𝑄(𝑥) = 𝑥3 + 𝑎𝑥+ 𝑏, whose coefficient ring is a Z/(𝑝𝑀)Z -algebra

• p – residue characteristic of the 𝑝-adic field

• M – 𝑝-adic precision of the coefficient ring (this will be used to determine the number of terms in the series)

OUTPUT:

• F0, F1 – elements of SpecialCubicQuotientRing(Q), as described above

• r – non-negative integer, as described above

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_
→˓expansion_by_series
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: frobenius_expansion_by_series(Q,5,3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3
+ 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,
(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50)
+ (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x
+ (15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.helper_matrix(Q)

Compute the (constant) matrix used to calculate the linear combinations of the 𝑑(𝑥𝑖𝑦𝑗) needed to eliminate the
negative powers of 𝑦 in the cohomology (i.e. in reduce_negative()).

INPUT:

• Q – cubic polynomial

EXAMPLES:

sage: t = polygen(QQ,'t')
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import helper_matrix
sage: helper_matrix(t**3-4*t-691)
[64/12891731 -16584/12891731 4297329/12891731]
[6219/12891731 -32/12891731 8292/12891731]
[-24/12891731 6219/12891731 -32/12891731]

674 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage.schemes.hyperelliptic_curves.monsky_washnitzer.lift(x)
Try to call x.lift(), presumably from the 𝑝-adics to ZZ.

If this fails, it assumes the input is a power series, and tries to lift it to a power series over QQ.

This function is just a very kludgy solution to the problem of trying to make the reduction code (below) work
over both Zp and Zp[[t]].

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import lift
sage: l = lift(Qp(13)(131)); l
131
sage: l.parent()
Integer Ring

sage: x=PowerSeriesRing(Qp(17),'x').gen()
sage: l = lift(4+5*x+17*x**6); l
4 + 5*t + 17*t^6
sage: l.parent()
Power Series Ring in t over Rational Field

sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius(Q, p, M, trace=None,
com-
pute_exact_forms=False)

Compute the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦).

INPUT:

• Q – cubic polynomial𝑄(𝑥) = 𝑥3 + 𝑎𝑥+ 𝑏 defining an elliptic curve 𝐸 by 𝑦2 = 𝑄(𝑥). The coefficient ring
of 𝑄 should be a Z/(𝑝𝑀)Z-algebra in which the matrix of frobenius will be constructed.

• p – prime >= 5 for which E has good reduction

• M – integer >= 2; 𝑝 -adic precision of the coefficient ring

• trace – (optional) the trace of the matrix, if known in advance. This is easy to compute because it is just
the 𝑎𝑝 of the curve. If the trace is supplied, matrix_of_frobenius will use it to speed the computation (i.e.
we know the determinant is 𝑝, so we have two conditions, so really only column of the matrix needs to
be computed. it is actually a little more complicated than that, but that’s the basic idea.) If trace=None,
then both columns will be computed independently, and you can get a strong indication of correctness by
verifying the trace afterwards.

Warning: THE RESULT WILL NOT NECESSARILY BE CORRECT TO M p-ADIC DIGITS. If
you want prec digits of precision, you need to use the function adjusted_prec(), and then you need to
reduce the answer mod 𝑝prec at the end.

OUTPUT:

2 × 2 matrix of Frobenius acting on Monsky-Washnitzer cohomology, with entries in the coefficient ring of Q.

EXAMPLES:

A simple example:

sage: p = 5
sage: prec = 3

(continues on next page)

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 675

Elliptic curves, Release 9.8

(continued from previous page)

sage: M = monsky_washnitzer.adjusted_prec(p, prec); M
4
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A
[340 62]
[70 533]

But the result is only accurate to prec digits:

sage: B = A.change_ring(Integers(p**prec))
sage: B
[90 62]
[70 33]

Check trace (123 = -2 mod 125) and determinant:

sage: B.det()
5
sage: B.trace()
123
sage: EllipticCurve([-1, 1/4]).ap(5)
-2

Try using the trace to speed up the calculation:

sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4),
....: p, M, -2)
sage: A
[90 62]
[320 533]

Hmmm. . . it looks different, but that’s because the trace of our first answer was only -2 modulo 53, not -2 modulo
55. So the right answer is:

sage: A.change_ring(Integers(p**prec))
[90 62]
[70 33]

Check it works with only one digit of precision:

sage: p = 5
sage: prec = 1
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A.change_ring(Integers(p))
[0 2]
[0 3]

Here is an example that is particularly badly conditioned for using the trace trick:

676 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M)
sage: A.change_ring(Integers(p**prec))
[1144 176]
[847 185]

The problem here is that the top-right entry is divisible by 11, and the bottom-left entry is divisible by 112. So
when you apply the trace trick, neither 𝐹 (𝑑𝑥/𝑦) nor 𝐹 (𝑥𝑑𝑥/𝑦) is enough to compute the whole matrix to the
desired precision, even if you try increasing the target precision by one. Nevertheless, matrix_of_frobenius
knows how to get the right answer by evaluating 𝐹 ((𝑥+ 1)𝑑𝑥/𝑦) instead:

sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M, -2)
sage: A.change_ring(Integers(p**prec))
[1144 176]
[847 185]

The running time is about O(p*prec**2) (times some logarithmic factors), so it is feasible to run on fairly large
primes, or precision (or both?!?!):

sage: p = 10007
sage: prec = 2
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(# long time
....: x^3 - x + R(1/4), p, M) # long time
sage: B = A.change_ring(Integers(p**prec)); B # long time
[74311982 57996908]
[95877067 25828133]
sage: B.det() # long time
10007
sage: B.trace() # long time
66
sage: EllipticCurve([-1, 1/4]).ap(10007) # long time
66

sage: p = 5
sage: prec = 300
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(# long time
....: x^3 - x + R(1/4), p, M) # long time
sage: B = A.change_ring(Integers(p**prec)) # long time
sage: B.det() # long time
5
sage: -B.trace() # long time
2
sage: EllipticCurve([-1, 1/4]).ap(5) # long time
-2

Let us check consistency of the results for a range of precisions:

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 677

Elliptic curves, Release 9.8

sage: p = 5
sage: max_prec = 60
sage: M = monsky_washnitzer.adjusted_prec(p, max_prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M) #␣
→˓long time
sage: A = A.change_ring(Integers(p**max_prec)) # long time
sage: result = [] # long time
sage: for prec in range(1, max_prec): # long time
....: M = monsky_washnitzer.adjusted_prec(p, prec) # long time
....: R.<x> = PolynomialRing(Integers(p^M),'x') # long time
....: B = monsky_washnitzer.matrix_of_frobenius(# long time
....: x^3 - x + R(1/4), p, M) # long time
....: B = B.change_ring(Integers(p**prec)) # long time
....: result.append(B == A.change_ring(# long time
....: Integers(p**prec))) # long time
sage: result == [True] * (max_prec - 1) # long time
True

The remaining examples discuss what happens when you take the coefficient ring to be a power series ring; i.e.
in effect you’re looking at a family of curves.

The code does in fact work. . .

sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: S.<t> = PowerSeriesRing(Integers(p**M), default_prec=4)
sage: a = 7 + t + 3*t^2
sage: b = 8 - 6*t + 17*t^2
sage: R.<x> = PolynomialRing(S)
sage: Q = x**3 + a*x + b
sage: A = monsky_washnitzer.matrix_of_frobenius(Q, p, M) # long time
sage: B = A.change_ring(PowerSeriesRing(Integers(p**prec), 't', default_prec=4)) ␣
→˓ # long time
sage: B # long time
[1144 + 264*t + 841*t^2 + 1025*t^3 + O(t^4) 176 + 1052*t + 216*t^2 + 523*t^3 + O(t^
→˓4)]
[847 + 668*t + 81*t^2 + 424*t^3 + O(t^4) 185 + 341*t + 171*t^2 + 642*t^3 + O(t^
→˓4)]

The trace trick should work for power series rings too, even in the badly-conditioned case. Unfortunately I do
not know how to compute the trace in advance, so I am not sure exactly how this would help. Also, I suspect
the running time will be dominated by the expansion, so the trace trick will not really speed things up anyway.
Another problem is that the determinant is not always p:

sage: B.det() # long time
11 + 484*t^2 + 451*t^3 + O(t^4)

However, it appears that the determinant always has the property that if you substitute t - 11t, you do get the
constant series p (mod p**prec). Similarly for the trace. And since the parameter only really makes sense when
it is divisible by p anyway, perhaps this is not a problem after all.

678 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius_hyperelliptic(Q,
p=None,
prec=None,
M=None)

Compute the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis
(𝑑𝑥/2𝑦, 𝑥𝑑𝑥/2𝑦, ...𝑥𝑑−2𝑑𝑥/2𝑦), where 𝑑 is the degree of 𝑄.

INPUT:

• Q – monic polynomial 𝑄(𝑥)

• p – prime ≥ 5 for which 𝐸 has good reduction

• prec – (optional) 𝑝-adic precision of the coefficient ring

• M – (optional) adjusted 𝑝-adic precision of the coefficient ring

OUTPUT:

(𝑑−1) x (𝑑−1) matrix𝑀 of Frobenius on Monsky-Washnitzer cohomology, and list of differentials {f_i } such
that

𝜑*(𝑥𝑖𝑑𝑥/2𝑦) = 𝑑𝑓𝑖 +𝑀 [𝑖] * 𝑣𝑒𝑐(𝑑𝑥/2𝑦, ..., 𝑥𝑑−2𝑑𝑥/2𝑦)

EXAMPLES:

sage: p = 5
sage: prec = 3
sage: R.<x> = QQ['x']
sage: A,f = monsky_washnitzer.matrix_of_frobenius_hyperelliptic(x^5 - 2*x + 3, p,␣
→˓prec)
sage: A
[4*5 + O(5^3) 5 + 2*5^2 + O(5^3) 2 + 3*5 + 2*5^2 + O(5^3) 2 +␣
→˓5 + 5^2 + O(5^3)]
[3*5 + 5^2 + O(5^3) 3*5 + O(5^3) 4*5 + O(5^3) ␣
→˓2 + 5^2 + O(5^3)]
[4*5 + 4*5^2 + O(5^3) 3*5 + 2*5^2 + O(5^3) 5 + 3*5^2 + O(5^3) 2*5␣
→˓+ 2*5^2 + O(5^3)]
[5^2 + O(5^3) 5 + 4*5^2 + O(5^3) 4*5 + 3*5^2 + O(5^3) ␣
→˓ 2*5 + O(5^3)]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_all(Q, p, coeffs, offset,
compute_exact_form=False)

Apply cohomology relations to reduce all terms to a linear combination of 𝑑𝑥/𝑦 and 𝑥𝑑𝑥/𝑦.

INPUT:

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖𝑡ℎ list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

• A, B - pair such that the input differential is cohomologous to (A + Bx) dx/y.

Note: The algorithm operates in-place, so the data in coeffs is destroyed.

EXAMPLES:

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 679

Elliptic curves, Release 9.8

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_all(Q, 5, coeffs, 1)
(21, 106)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_negative(Q, p, coeffs, offset,
exact_form=None)

Apply cohomology relations to incorporate negative powers of 𝑦 into the 𝑦0 term.

INPUT:

• p – prime

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖𝑡ℎ list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

The reduction is performed in-place. The output is placed in coeffs[offset]. Note that coeffs[i] will be meaningless
for i offset after this function is finished.

EXAMPLES:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[10, 15, 20], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 5, coeffs, 3)
sage: coeffs[3]
[28, 52, 9]

sage: R.<x> = Integers(7^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[7, 14, 21], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 7, coeffs, 3)
sage: coeffs[3]
[245, 332, 9]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_positive(Q, p, coeffs, offset,
exact_form=None)

Apply cohomology relations to incorporate positive powers of 𝑦 into the 𝑦0 term.

INPUT:

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖𝑡ℎ list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

The reduction is performed in-place. The output is placed in coeffs[offset]. Note that coeffs[i] will be meaningless
for i offset after this function is finished.

680 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

EXAMPLES:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)

sage: coeffs = [[1, 2, 3], [10, 15, 20]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
[16, 102, 88]

sage: coeffs = [[9, 8, 7], [10, 15, 20]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
[24, 108, 92]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_zero(Q, coeffs, offset,
exact_form=None)

Apply cohomology relation to incorporate 𝑥2𝑦0 term into 𝑥0𝑦0 and 𝑥1𝑦0 terms.

INPUT:

• Q – cubic polynomial

• coeffs – list of length 3 lists. The 𝑖𝑡ℎ list [a, b, c] represents 𝑦2(𝑖−𝑜𝑓𝑓𝑠𝑒𝑡)(𝑎+ 𝑏𝑥+ 𝑐𝑥2)𝑑𝑥/𝑦.

• offset – nonnegative integer

OUTPUT:

The reduction is performed in-place. The output is placed in coeffs[offset]. This method completely ignores
coeffs[i] for i != offset.

EXAMPLES:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_zero(Q, coeffs, 1)
sage: coeffs[1]
[6, 5, 0]

sage.schemes.hyperelliptic_curves.monsky_washnitzer.transpose_list(input)
INPUT:

• input – a list of lists, each list of the same length

OUTPUT:

• output – a list of lists such that output[i][j] = input[j][i]

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import transpose_list
sage: L = [[1, 2], [3, 4], [5, 6]]
sage: transpose_list(L)
[[1, 3, 5], [2, 4, 6]]

18.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 681

Elliptic curves, Release 9.8

18.8 Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic
curve over a

largish prime finite field

This is a wrapper for the matrix() function in hypellfrob.cpp.

AUTHOR:

• David Harvey (2007-05)

• David Harvey (2007-12): rewrote for hypellfrob version 2.0

sage.schemes.hyperelliptic_curves.hypellfrob.hypellfrob(p, N, Q)

Compute the matrix of Frobenius acting on the Monsky-Washnitzer cohomology of a hyperelliptic curve 𝑦2 =
𝑄(𝑥), with respect to the basis 𝑥𝑖𝑑𝑥/𝑦, 0 ≤ 𝑖 < 2𝑔.

INPUT:

• p – a prime

• Q – a monic polynomial in Z[𝑥] of odd degree. Must have no multiple roots mod p.

• N – precision parameter; the output matrix will be correct modulo 𝑝𝑁 .

PRECONDITIONS:

Must have 𝑝 > (2𝑔 + 1)(2𝑁 − 1), where 𝑔 = (deg(𝑄) − 1)/2 is the genus of the curve.

ALGORITHM:

Described in “Kedlaya’s algorithm in larger characteristic” by David Harvey. Running time is theoretically soft-
𝑂(𝑝1/2𝑁5/2𝑔3).

Todo: Remove the restriction on 𝑝. Probably by merging in Robert’s code, which eventually needs a fast
C++/NTL implementation.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^5 + 2*x^2 + x + 1; p = 101
sage: M = hypellfrob(p, 4, f); M
[91844754 + O(101^4) 38295665 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^
→˓4)]
[93514789 + O(101^4) 48987424 + O(101^4) 53287857 + O(101^4) 61431148 + O(101^
→˓4)]
[77916046 + O(101^4) 60656459 + O(101^4) 101244586 + O(101^4) 56237448 + O(101^
→˓4)]
[58643832 + O(101^4) 81727988 + O(101^4) 85294589 + O(101^4) 70104432 + O(101^
→˓4)]
sage: -M.trace()
7 + O(101^4)
sage: sum(legendre_symbol(f(i), p) for i in range(p))
7
sage: ZZ(M.det())
10201

(continues on next page)

682 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: M = hypellfrob(p, 1, f); M
[O(101) O(101) 93 + O(101) 62 + O(101)]
[O(101) O(101) 55 + O(101) 19 + O(101)]
[O(101) O(101) 65 + O(101) 42 + O(101)]
[O(101) O(101) 89 + O(101) 29 + O(101)]

AUTHORS:

• David Harvey (2007-05)

• David Harvey (2007-12): updated for hypellfrob version 2.0

sage.schemes.hyperelliptic_curves.hypellfrob.interval_products(M0, M1, target)
Given a matrix 𝑀 with coefficients linear polynomials over Z/𝑁Z and a list of integers 𝑎0 < 𝑏0 ≤ 𝑎1 < 𝑏1 ≤
· · · ≤ 𝑎𝑛 < 𝑏𝑛 compute the matrices \prod_{t = a_i + 1}^{b_i} M(t) for 𝑖 = 0 to 𝑛.

This is a wrapper for code in the hypellfrob package.

INPUT:

• M0, M1 – matrices over Z/𝑁Z, so that 𝑀 = 𝑀0 +𝑀1 * 𝑥

• target – a list of integers

ALGORITHM:

Described in [Harv2007]. Based on the work of Bostan-Gaudry-Schost [BGS2007].

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import interval_products
sage: interval_products(Matrix(Integers(9), 2,2, [1,0,1,0]),
....: Matrix(Integers(9), 2, 2, [1, 1, 0, 2]),[0,2,2,4])
[
[7 8] [5 4]
[5 1], [2 7]
]
sage: [prod(Matrix(Integers(9), 2, 2, [t + 1, t, 1, 2*t])
....: for t in range(2*i + 1, 2*i + 1 + 2)) for i in range(2)]
[
[7 8] [5 4]
[5 1], [2 7]
]

An example with larger modulus:

sage: interval_products(Matrix(Integers(3^8), 1, 1, [1]),
....: Matrix(Integers(3^8), 1, 1, [1]), [2,4])
[[20]]
sage: [prod(Matrix(Integers(3^8), 1, 1, [t + 1]) for t in range(3,5))]
[[20]]

An even larger modulus:

sage: interval_products(Matrix(Integers(3^18), 1, 1, [1]),
....: Matrix(Integers(3^18), 1, 1, [1]), [2,4])
[[20]]

(continues on next page)

18.8. Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve over a 683

Elliptic curves, Release 9.8

(continued from previous page)

sage: [prod(Matrix(Integers(3^18), 1, 1, [t + 1]) for t in range(3,5))]
[[20]]

AUTHORS:

• David Harvey (2007-12): Original code

• Alex J. Best (2018-02): Wrapper

REFERENCES:

18.9 Jacobian of a general hyperelliptic curve

class sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic(C)
Bases: Jacobian_generic

EXAMPLES:

sage: FF = FiniteField(2003)
sage: R.<x> = PolynomialRing(FF)
sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: a = x**2 + 376*x + 245; b = 1015*x + 1368
sage: X = J(FF)
sage: D = X([a,b])
sage: D
(x^2 + 376*x + 245, y + 988*x + 635)
sage: J(0)
(1)
sage: D == J([a,b])
True
sage: D == D + J(0)
True

An more extended example, demonstrating arithmetic in J(QQ) and J(K) for a number field K/QQ.

sage: P.<x> = PolynomialRing(QQ)
sage: f = x^5 - x + 1; h = x
sage: C = HyperellipticCurve(f,h,'u,v')
sage: C
Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1
sage: PP = C.ambient_space()
sage: PP
Projective Space of dimension 2 over Rational Field
sage: C.defining_polynomial()
-x0^5 + x0*x1*x2^3 + x1^2*x2^3 + x0*x2^4 - x2^5
sage: C(QQ)
Set of rational points of Hyperelliptic Curve over Rational Field defined by v^2 +␣
→˓u*v = u^5 - u + 1
sage: K.<t> = NumberField(x^2-2)
sage: C(K)

(continues on next page)

684 Chapter 18. Hyperelliptic curves

../../../../../../../html/en/reference/curves/sage/schemes/jacobians/abstract_jacobian.html#sage.schemes.jacobians.abstract_jacobian.Jacobian_generic

Elliptic curves, Release 9.8

(continued from previous page)

Set of rational points of Hyperelliptic Curve over Number Field in t with defining␣
→˓polynomial x^2 - 2 defined by v^2 + u*v = u^5 - u + 1
sage: P = C(QQ)(0,1,1); P
(0 : 1 : 1)
sage: P == C(0,1,1)
True
sage: C(0,1,1).parent()
Set of rational points of Hyperelliptic Curve over Rational Field defined by v^2 +␣
→˓u*v = u^5 - u + 1
sage: P1 = C(K)(P)
sage: P2 = C(K)([2,4*t-1,1])
sage: P3 = C(K)([-1/2,1/8*(7*t+2),1])
sage: P1, P2, P3
((0 : 1 : 1), (2 : 4*t - 1 : 1), (-1/2 : 7/8*t + 1/4 : 1))
sage: J = C.jacobian()
sage: J
Jacobian of Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u␣
→˓+ 1
sage: Q = J(QQ)(P); Q
(u, v - 1)
sage: for i in range(6): Q*i
(1)
(u, v - 1)
(u^2, v + u - 1)
(u^2, v + 1)
(u, v + 1)
(1)
sage: Q1 = J(K)(P1); print("%s -> %s"%(P1, Q1))
(0 : 1 : 1) -> (u, v - 1)
sage: Q2 = J(K)(P2); print("%s -> %s"%(P2, Q2))
(2 : 4*t - 1 : 1) -> (u - 2, v - 4*t + 1)
sage: Q3 = J(K)(P3); print("%s -> %s"%(P3, Q3))
(-1/2 : 7/8*t + 1/4 : 1) -> (u + 1/2, v - 7/8*t - 1/4)
sage: R.<x> = PolynomialRing(K)
sage: Q4 = J(K)([x^2-t,R(1)])
sage: for i in range(4): Q4*i
(1)
(u^2 - t, v - 1)
(u^2 + (-3/4*t - 9/16)*u + 1/2*t + 1/4, v + (-1/32*t - 57/64)*u + 1/2*t + 9/16)
(u^2 + (1352416/247009*t - 1636930/247009)*u - 1156544/247009*t + 1900544/247009, v␣
→˓+ (-2326345442/122763473*t + 3233153137/122763473)*u + 2439343104/122763473*t -␣
→˓3350862929/122763473)
sage: R2 = Q2*5; R2
(u^2 - 3789465233/116983808*u - 267915823/58491904, v + (-233827256513849/
→˓1789384327168*t + 1/2)*u - 15782925357447/894692163584*t)
sage: R3 = Q3*5; R3
(u^2 + 5663300808399913890623/14426454798950909645952*u - 26531814176395676231273/
→˓28852909597901819291904, v + (253155440321645614070860868199103/
→˓2450498420175733688903836378159104*t + 1/2)*u +␣
→˓2427708505064902611513563431764311/4900996840351467377807672756318208*t)
sage: R4 = Q4*5; R4
(u^2 - 3789465233/116983808*u - 267915823/58491904, v + (233827256513849/

(continues on next page)

18.9. Jacobian of a general hyperelliptic curve 685

Elliptic curves, Release 9.8

(continued from previous page)

→˓1789384327168*t + 1/2)*u + 15782925357447/894692163584*t)

Thus we find the following identity:

sage: 5*Q2 + 5*Q4
(1)

Moreover the following relation holds in the 5-torsion subgroup:

sage: Q2 + Q4 == 2*Q1
True

dimension()

Return the dimension of this Jacobian.

OUTPUT:

Integer

EXAMPLES:

sage: k.<a> = GF(9); R.<x> = k[]
sage: HyperellipticCurve(x^3 + x - 1, x+a).jacobian().dimension()
1
sage: g = HyperellipticCurve(x^6 + x - 1, x+a).jacobian().dimension(); g
2
sage: type(g)
<... 'sage.rings.integer.Integer'>

geometric_endomorphism_algebra_is_field(B=200, proof=False)
Return whether the geometric endomorphism algebra is a field.

This implies that the Jacobian of the curve is geometrically simple. It is based on Algorithm 4.10 from
[Lom2019]

INPUT:

• B – (default: 200) the bound which appears in the statement of the algorithm from [Lom2019]

• proof – (default: False) whether or not to insist on a provably correct answer. This is related to the
warning in the docstring of this module: if this function returns False, then strictly speaking this
has not been proven to be False until one has exhibited a non-trivial endomorphism, which these
methods are not designed to carry out. If one is convinced that this method should return True, but it
is returning False, then this can be exhibited by increasing 𝐵.

OUTPUT:

Boolean indicating whether or not the geometric endomorphism algebra is a field.

EXAMPLES:

This is LMFDB curve 262144.d.524288.2 which has QM. Although its Jacobian is geometrically simple,
the geometric endomorphism algebra is not a field:

sage: R.<x> = QQ[]
sage: f = x^5 + x^4 + 4*x^3 + 8*x^2 + 5*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()

(continues on next page)

686 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

sage: J.geometric_endomorphism_algebra_is_field()
False

This is LMFDB curve 50000.a.200000.1:

sage: f = 8*x^5 + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_algebra_is_field()
True

geometric_endomorphism_ring_is_ZZ(B=200, proof=False)
Return whether the geometric endomorphism ring of self is the integer ring Z.

INPUT:

• B – (default: 200) the bound which appears in the statement of the algorithm from [Lom2019]

• proof – (default: False) whether or not to insist on a provably correct answer. This is related to the
warning in the module docstring of 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛𝑒𝑛𝑑𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠.𝑝𝑦: if this function returns False,
then strictly speaking this has not been proven to be False until one has exhibited a non-trivial endo-
morphism, which the methods in that module are not designed to carry out. If one is convinced that
this method should return True, but it is returning False, then this can be exhibited by increasing 𝐵.

OUTPUT:

Boolean indicating whether or not the geometric endomorphism ring is isomorphic to the integer ring.

EXAMPLES:

This is LMFDB curve 603.a.603.2:

sage: R.<x> = QQ[]
sage: f = 4*x^5 + x^4 - 4*x^3 + 2*x^2 + 4*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
True

This is LMFDB curve 1152.a.147456.1 whose geometric endomorphism ring is isomorphic to the group
of 2x2 matrices over Q:

sage: f = x^6 - 2*x^4 + 2*x^2 - 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 20736.k.373248.1 whose geometric endomorphism ring is isomorphic to the group
of 2x2 matrices over a CM field:

sage: f = x^6 + 8
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

18.9. Jacobian of a general hyperelliptic curve 687

Elliptic curves, Release 9.8

This is LMFDB curve 708.a.181248.1:

sage: R.<x> = QQ[]
sage: f = -3*x^6 - 16*x^5 + 36*x^4 + 194*x^3 - 164*x^2 - 392*x - 143
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
True

This is LMFDB curve 10609.a.10609.1 whose geometric endomorphism ring is an order in a real quadratic
field:

sage: f = x^6 + 2*x^4 + 2*x^3 + 5*x^2 + 6*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 160000.c.800000.1 whose geometric endomorphism ring is an order in a CM field:

sage: f = x^5 - 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 262144.d.524288.2 whose geometric endomorphism ring is an order in a quaternion
algebra:

sage: f = x^5 + x^4 + 4*x^3 + 8*x^2 + 5*x + 1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

This is LMFDB curve 578.a.2312.1 whose geometric endomorphism ring is Q×Q:

sage: f = 4*x^5 - 7*x^4 + 10*x^3 - 7*x^2 + 4*x
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: J.geometric_endomorphism_ring_is_ZZ()
False

point(mumford, check=True)

688 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

18.10 Jacobian of a hyperelliptic curve of genus 2

class sage.schemes.hyperelliptic_curves.jacobian_g2.HyperellipticJacobian_g2(C)
Bases: HyperellipticJacobian_generic

kummer_surface()

18.11 Rational point sets on a Jacobian

EXAMPLES:

sage: x = QQ['x'].0
sage: f = x^5 + x + 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: C(QQ)
Set of rational points of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 +␣
→˓x + 1
sage: P = C([0,1,1])
sage: J = C.jacobian(); J
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: Q = J(QQ)(P); Q
(x, y - 1)
sage: Q + Q
(x^2, y - 1/2*x - 1)
sage: Q*3
(x^2 - 1/64*x + 1/8, y + 255/512*x + 65/64)

sage: F.<a> = GF(3)
sage: R.<x> = F[]
sage: f = x^5-1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: X = J(F)
sage: a = x^2-x+1
sage: b = -x +1
sage: c = x-1
sage: d = 0
sage: D1 = X([a,b])
sage: D1
(x^2 + 2*x + 1, y + x + 2)
sage: D2 = X([c,d])
sage: D2
(x + 2, y)
sage: D1+D2
(x^2 + 2*x + 2, y + 2*x + 1)

class sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes(Y,
X,
**kwds)

Bases: SchemeHomset_points

18.10. Jacobian of a hyperelliptic curve of genus 2 689

../../../../../../../html/en/reference/schemes/sage/schemes/generic/homset.html#sage.schemes.generic.homset.SchemeHomset_points

Elliptic curves, Release 9.8

base_extend(R)

curve()

value_ring()

Return S for a homset X(T) where T = Spec(S).

18.12 Jacobian ‘morphism’ as a class in the Picard group

This module implements the group operation in the Picard group of a hyperelliptic curve, represented as divisors in
Mumford representation, using Cantor’s algorithm.

A divisor on the hyperelliptic curve 𝑦2+𝑦ℎ(𝑥) = 𝑓(𝑥) is stored in Mumford representation, that is, as two polynomials
𝑢(𝑥) and 𝑣(𝑥) such that:

• 𝑢(𝑥) is monic,

• 𝑢(𝑥) divides 𝑓(𝑥) − ℎ(𝑥)𝑣(𝑥) − 𝑣(𝑥)2,

• 𝑑𝑒𝑔(𝑣(𝑥)) < 𝑑𝑒𝑔(𝑢(𝑥)) ≤ 𝑔.

REFERENCES:

A readable introduction to divisors, the Picard group, Mumford representation, and Cantor’s algorithm:

• J. Scholten, F. Vercauteren. An Introduction to Elliptic and Hyperelliptic Curve Cryptography and the NTRU
Cryptosystem. To appear in B. Preneel (Ed.) State of the Art in Applied Cryptography - COSIC ‘03, Lecture
Notes in Computer Science, Springer 2004.

A standard reference in the field of cryptography:

• R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren, Handbook of Elliptic and
Hyperelliptic Curve Cryptography. CRC Press, 2005.

EXAMPLES: The following curve is the reduction of a curve whose Jacobian has complex multiplication.

sage: x = GF(37)['x'].gen()
sage: H = HyperellipticCurve(x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x); H
Hyperelliptic Curve over Finite Field of size 37 defined
by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x

At this time, Jacobians of hyperelliptic curves are handled differently than elliptic curves:

sage: J = H.jacobian(); J
Jacobian of Hyperelliptic Curve over Finite Field of size 37 defined
by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x
sage: J = J(J.base_ring()); J
Set of rational points of Jacobian of Hyperelliptic Curve over Finite Field
of size 37 defined by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x

Points on the Jacobian are represented by Mumford’s polynomials. First we find a couple of points on the curve:

sage: P1 = H.lift_x(2); P1
(2 : 11 : 1)
sage: Q1 = H.lift_x(10); Q1
(10 : 18 : 1)

Observe that 2 and 10 are the roots of the polynomials in x, respectively:

690 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

sage: P = J(P1); P
(x + 35, y + 26)
sage: Q = J(Q1); Q
(x + 27, y + 19)

sage: P + Q
(x^2 + 25*x + 20, y + 13*x)
sage: (x^2 + 25*x + 20).roots(multiplicities=False)
[10, 2]

Frobenius satisfies

𝑥4 + 12 * 𝑥3 + 78 * 𝑥2 + 444 * 𝑥+ 1369

on the Jacobian of this reduction and the order of the Jacobian is 𝑁 = 1904.

sage: 1904*P
(1)
sage: 34*P == 0
True
sage: 35*P == P
True
sage: 33*P == -P
True

sage: Q*1904
(1)
sage: Q*238 == 0
True
sage: Q*239 == Q
True
sage: Q*237 == -Q
True

class sage.schemes.hyperelliptic_curves.jacobian_morphism.JacobianMorphism_divisor_class_field(parent,
polys,
check=True)

Bases: AdditiveGroupElement, SchemeMorphism

An element of a Jacobian defined over a field, i.e. in 𝐽(𝐾) = Pic0𝐾(𝐶).

scheme()

Return the scheme this morphism maps to; or, where this divisor lives.

Warning: Although a pointset is defined over a specific field, the scheme returned may be over a
different (usually smaller) field. The example below demonstrates this: the pointset is determined over
a number field of absolute degree 2 but the scheme returned is defined over the rationals.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: f = x^5 + x

(continues on next page)

18.12. Jacobian ‘morphism’ as a class in the Picard group 691

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AdditiveGroupElement
../../../../../../../html/en/reference/schemes/sage/schemes/generic/morphism.html#sage.schemes.generic.morphism.SchemeMorphism

Elliptic curves, Release 9.8

(continued from previous page)

sage: H = HyperellipticCurve(f)
sage: F.<a> = NumberField(x^2 - 2, 'a')
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Number Field in a with defining polynomial x^2 - 2 defined
by y^2 = x^5 + x

sage: P = J(H.lift_x(F(1)))
sage: P.scheme()
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_composition(D1, D2, f, h, genus)
EXAMPLES:

sage: F.<a> = GF(7^2, 'a')
sage: x = F['x'].gen()
sage: f = x^7 + x^2 + a
sage: H = HyperellipticCurve(f, 2*x); H
Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 + 2*x*y = x^7␣
→˓+ x^2 + a
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Finite Field in a of size 7^2 defined by y^2 + 2*x*y = x^7 + x^2 + a

sage: Q = J(H.lift_x(F(1))); Q
(x + 6, y + 2*a + 2)
sage: 10*Q # indirect doctest
(x^3 + (3*a + 1)*x^2 + (2*a + 5)*x + a + 5, y + (4*a + 5)*x^2 + (a + 1)*x + 6*a + 3)
sage: 7*8297*Q
(1)

sage: Q = J(H.lift_x(F(a+1))); Q
(x + 6*a + 6, y + 2*a)
sage: 7*8297*Q # indirect doctest
(1)

A test over a prime field:

sage: F = GF(next_prime(10^30))
sage: x = F['x'].gen()
sage: f = x^7 + x^2 + 1
sage: H = HyperellipticCurve(f, 2*x); H
Hyperelliptic Curve over Finite Field of size 1000000000000000000000000000057␣
→˓defined by y^2 + 2*x*y = x^7 + x^2 + 1
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Finite Field of size 1000000000000000000000000000057 defined
by y^2 + 2*x*y = x^7 + x^2 + 1
sage: Q = J(H.lift_x(F(1))); Q
(x + 1000000000000000000000000000056, y + 1000000000000000000000000000056)
sage: 10*Q # indirect doctest

(continues on next page)

692 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

(x^3 + 150296037169838934997145567227*x^2 + 377701248971234560956743242408*x +␣
→˓509456150352486043408603286615, y + 514451014495791237681619598519*x^2 +␣
→˓875375621665039398768235387900*x + 861429240012590886251910326876)
sage: 7*8297*Q
(x^3 + 35410976139548567549919839063*x^2 + 26230404235226464545886889960*x +␣
→˓681571430588959705539385624700, y + 999722365017286747841221441793*x^2 +␣
→˓262703715994522725686603955650*x + 626219823403254233972118260890)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_composition_simple(D1, D2, f,
genus)

Given 𝐷1 and 𝐷2 two reduced Mumford divisors on the Jacobian of the curve 𝑦2 = 𝑓(𝑥), computes a represen-
tative 𝐷1 +𝐷2.

Warning: The representative computed is NOT reduced! Use cantor_reduction_simple() to reduce
it.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: f = x^5 + x
sage: H = HyperellipticCurve(f); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x

sage: F.<a> = NumberField(x^2 - 2, 'a')
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Number Field in a with defining polynomial x^2 - 2 defined
by y^2 = x^5 + x

sage: P = J(H.lift_x(F(1))); P
(x - 1, y - a)
sage: Q = J(H.lift_x(F(0))); Q
(x, y)
sage: 2*P + 2*Q # indirect doctest
(x^2 - 2*x + 1, y - 3/2*a*x + 1/2*a)
sage: 2*(P + Q) # indirect doctest
(x^2 - 2*x + 1, y - 3/2*a*x + 1/2*a)
sage: 3*P # indirect doctest
(x^2 - 25/32*x + 49/32, y - 45/256*a*x - 315/256*a)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_reduction(a, b, f, h, genus)
Return the unique reduced divisor linearly equivalent to (𝑎, 𝑏) on the curve 𝑦2 + 𝑦ℎ(𝑥) = 𝑓(𝑥).

See the docstring of sage.schemes.hyperelliptic_curves.jacobian_morphism for information about
divisors, linear equivalence, and reduction.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: f = x^5 - x
sage: H = HyperellipticCurve(f, x); H

(continues on next page)

18.12. Jacobian ‘morphism’ as a class in the Picard group 693

Elliptic curves, Release 9.8

(continued from previous page)

Hyperelliptic Curve over Rational Field defined by y^2 + x*y = x^5 - x
sage: J = H.jacobian()(QQ); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Rational Field defined by y^2 + x*y = x^5 - x

The following point is 2-torsion:

sage: Q = J(H.lift_x(0)); Q
(x, y)
sage: 2*Q # indirect doctest
(1)

The next point is not 2-torsion:

sage: P = J(H.lift_x(-1)); P
(x + 1, y - 1)
sage: 2 * J(H.lift_x(-1)) # indirect doctest
(x^2 + 2*x + 1, y - 3*x - 4)
sage: 3 * J(H.lift_x(-1)) # indirect doctest
(x^2 - 487*x - 324, y - 10754*x - 7146)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_reduction_simple(a, b, f, genus)
Return the unique reduced divisor linearly equivalent to (𝑎, 𝑏) on the curve 𝑦2 = 𝑓(𝑥).

See the docstring of sage.schemes.hyperelliptic_curves.jacobian_morphism for information about
divisors, linear equivalence, and reduction.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: f = x^5 - x
sage: H = HyperellipticCurve(f); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x
sage: J = H.jacobian()(QQ); J
Set of rational points of Jacobian of Hyperelliptic Curve over Rational Field
defined by y^2 = x^5 - x

The following point is 2-torsion:

sage: P = J(H.lift_x(-1)); P
(x + 1, y)
sage: 2 * P # indirect doctest
(1)

694 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

18.13 Hyperelliptic curves of genus 2 over a general ring

class sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2(PP, f,
h=None,
names=None,
genus=None)

Bases: HyperellipticCurve_generic

absolute_igusa_invariants_kohel()

Return the three absolute Igusa invariants used by Kohel [KohECHIDNA].

See also:
sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_kohel()
(0, 0, 0)
sage: HyperellipticCurve(x^5 - x + 1, x^2).absolute_igusa_invariants_kohel()
(-1030567/178769, 259686400/178769, 20806400/178769)
sage: HyperellipticCurve((x^5 - x + 1)(3*x + 1), (x^2)(3*x + 1)).absolute_igusa_
→˓invariants_kohel()
(-1030567/178769, 259686400/178769, 20806400/178769)

absolute_igusa_invariants_wamelen()

Return the three absolute Igusa invariants used by van Wamelen [Wam1999].

EXAMPLES:

sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_wamelen()
(0, 0, 0)
sage: HyperellipticCurve((x^5 - 1)(x - 2), (x^2)(x - 2)).absolute_igusa_
→˓invariants_wamelen()
(0, 0, 0)

clebsch_invariants()

Return the Clebsch invariants (𝐴,𝐵,𝐶,𝐷) of Mestre, p 317, [Mes1991].

See also:
sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).clebsch_invariants()
(0, -2048/375, -4096/25, -4881645568/84375)
sage: HyperellipticCurve(f(2*x)).clebsch_invariants()
(0, -8388608/375, -1073741824/25, -5241627016305836032/84375)

sage: HyperellipticCurve(f, x).clebsch_invariants()
(-8/15, 17504/5625, -23162896/140625, -420832861216768/7119140625)

(continues on next page)

18.13. Hyperelliptic curves of genus 2 over a general ring 695

Elliptic curves, Release 9.8

(continued from previous page)

sage: HyperellipticCurve(f(2*x), 2*x).clebsch_invariants()
(-512/15, 71696384/5625, -6072014209024/140625, -451865844002031331704832/
→˓7119140625)

igusa_clebsch_invariants()

Return the Igusa-Clebsch invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 of Igusa and Clebsch [IJ1960].

See also:
sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x + 2
sage: HyperellipticCurve(f).igusa_clebsch_invariants()
(-640, -20480, 1310720, 52160364544)
sage: HyperellipticCurve(f(2*x)).igusa_clebsch_invariants()
(-40960, -83886080, 343597383680, 56006764965979488256)

sage: HyperellipticCurve(f, x).igusa_clebsch_invariants()
(-640, 17920, -1966656, 52409511936)
sage: HyperellipticCurve(f(2*x), 2*x).igusa_clebsch_invariants()
(-40960, 73400320, -515547070464, 56274284941110411264)

is_odd_degree()

Return True if the curve is an odd degree model.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).is_odd_degree()
True

jacobian()

Return the Jacobian of the hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).jacobian()
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x^4␣
→˓+ 3

kummer_morphism()

Return the morphism of an odd degree hyperelliptic curve to the Kummer surface of its Jacobian.

This could be extended to an even degree model if a prescribed embedding in its Jacobian is fixed.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).kummer_morphism() # not tested

696 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

18.14 Compute invariants of quintics and sextics via ‘Ueber-
schiebung’

Todo:
• Implement invariants in small positive characteristic.

• Cardona-Quer and additional invariants for classifying automorphism groups.

AUTHOR:

• Nick Alexander

sage.schemes.hyperelliptic_curves.invariants.Ueberschiebung(f, g, k)
Return the differential operator (𝑓𝑔)𝑘.

This is defined by Mestre on page 315 [Mes1991]:

(𝑓𝑔)𝑘 =
(𝑚− 𝑘)!(𝑛− 𝑘)!

𝑚!𝑛!

(︂
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
− 𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

)︂𝑘
.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import Ueberschiebung as ub
sage: R.<x, y> = QQ[]
sage: ub(x, y, 0)
x*y
sage: ub(x^5 + 1, x^5 + 1, 1)
0
sage: ub(x^5 + 5*x + 1, x^5 + 5*x + 1, 0)
x^10 + 10*x^6 + 2*x^5 + 25*x^2 + 10*x + 1

sage.schemes.hyperelliptic_curves.invariants.absolute_igusa_invariants_kohel(f)
Given a sextic form 𝑓 , return the three absolute Igusa invariants used by Kohel [KohECHIDNA].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import absolute_igusa_
→˓invariants_kohel
sage: R.<x> = QQ[]
sage: absolute_igusa_invariants_kohel(x^5 - 1)
(0, 0, 0)
sage: absolute_igusa_invariants_kohel(x^5 - x)
(100, -20000, -2000)

The following example can be checked against Kohel’s database [KohECHIDNA]

sage: i1, i2, i3 = absolute_igusa_invariants_kohel(-x^5 + 3*x^4 + 2*x^3 - 6*x^2 -␣
→˓3*x + 1)
sage: list(map(factor, (i1, i2, i3)))
[2^2 * 3^5 * 5 * 31, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]
sage: list(map(factor, (150660, 28343520, 9762768)))
[2^2 * 3^5 * 5 * 31, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]

18.14. Compute invariants of quintics and sextics via ‘Ueberschiebung’ 697

Elliptic curves, Release 9.8

sage.schemes.hyperelliptic_curves.invariants.absolute_igusa_invariants_wamelen(f)
Given a sextic form 𝑓 , return the three absolute Igusa invariants used by van Wamelen [Wam1999].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

REFERENCES:

• [Wam1999]

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import absolute_igusa_
→˓invariants_wamelen
sage: R.<x> = QQ[]
sage: absolute_igusa_invariants_wamelen(x^5 - 1)
(0, 0, 0)

The following example can be checked against van Wamelen’s paper:

sage: i1, i2, i3 = absolute_igusa_invariants_wamelen(-x^5 + 3*x^4 + 2*x^3 - 6*x^2 -␣
→˓3*x + 1)
sage: list(map(factor, (i1, i2, i3)))
[2^7 * 3^15, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]

sage.schemes.hyperelliptic_curves.invariants.clebsch_invariants(f)
Given a sextic form 𝑓 , return the Clebsch invariants (𝐴,𝐵,𝐶,𝐷) of Mestre, p 317, [Mes1991].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_invariants
sage: R.<x, y> = QQ[]
sage: clebsch_invariants(x^6 + y^6)
(2, 2/3, -2/9, 0)
sage: R.<x> = QQ[]
sage: clebsch_invariants(x^6 + x^5 + x^4 + x^2 + 2)
(62/15, 15434/5625, -236951/140625, 229930748/791015625)

sage: magma(x^6 + 1).ClebschInvariants() # optional - magma
[2, 2/3, -2/9, 0]
sage: magma(x^6 + x^5 + x^4 + x^2 + 2).ClebschInvariants() # optional - magma
[62/15, 15434/5625, -236951/140625, 229930748/791015625]

sage.schemes.hyperelliptic_curves.invariants.clebsch_to_igusa(A, B, C, D)

Convert Clebsch invariants 𝐴,𝐵,𝐶,𝐷 to Igusa invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_to_igusa,␣
→˓igusa_to_clebsch
sage: clebsch_to_igusa(2, 3, 4, 5)
(-240, 17370, 231120, -103098906)
sage: igusa_to_clebsch(*clebsch_to_igusa(2, 3, 4, 5))
(2, 3, 4, 5)

sage: Cs = tuple(map(GF(31), (2, 3, 4, 5))); Cs
(continues on next page)

698 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

(continued from previous page)

(2, 3, 4, 5)
sage: clebsch_to_igusa(*Cs)
(8, 10, 15, 26)
sage: igusa_to_clebsch(*clebsch_to_igusa(*Cs))
(2, 3, 4, 5)

sage.schemes.hyperelliptic_curves.invariants.differential_operator(f, g, k)
Return the differential operator (𝑓𝑔)𝑘 symbolically in the polynomial ring in dfdx, dfdy, dgdx, dgdy.

This is defined by Mestre on p 315 [Mes1991]:

(𝑓𝑔)𝑘 =
(𝑚− 𝑘)!(𝑛− 𝑘)!

𝑚!𝑛!

(︂
𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
− 𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

)︂𝑘
.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import differential_operator
sage: R.<x, y> = QQ[]
sage: differential_operator(x, y, 0)
1
sage: differential_operator(x, y, 1)
-dfdy*dgdx + dfdx*dgdy
sage: differential_operator(x*y, x*y, 2)
1/4*dfdy^2*dgdx^2 - 1/2*dfdx*dfdy*dgdx*dgdy + 1/4*dfdx^2*dgdy^2
sage: differential_operator(x^2*y, x*y^2, 2)
1/36*dfdy^2*dgdx^2 - 1/18*dfdx*dfdy*dgdx*dgdy + 1/36*dfdx^2*dgdy^2
sage: differential_operator(x^2*y, x*y^2, 4)
1/576*dfdy^4*dgdx^4 - 1/144*dfdx*dfdy^3*dgdx^3*dgdy + 1/96*dfdx^2*dfdy^2*dgdx^
→˓2*dgdy^2 - 1/144*dfdx^3*dfdy*dgdx*dgdy^3 + 1/576*dfdx^4*dgdy^4

sage.schemes.hyperelliptic_curves.invariants.diffsymb(U, f, g)
Given a differential operator U in dfdx, dfdy, dgdx, dgdy, represented symbolically by U, apply it to f, g.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import diffsymb
sage: R.<x, y> = QQ[]
sage: S.<dfdx, dfdy, dgdx, dgdy> = QQ[]
sage: [diffsymb(dd, x^2, y*0 + 1) for dd in S.gens()]
[2*x, 0, 0, 0]
sage: [diffsymb(dd, x*0 + 1, y^2) for dd in S.gens()]
[0, 0, 0, 2*y]
sage: [diffsymb(dd, x^2, y^2) for dd in S.gens()]
[2*x*y^2, 0, 0, 2*x^2*y]

sage: diffsymb(dfdx + dfdy*dgdy, y*x^2, y^3)
2*x*y^4 + 3*x^2*y^2

sage.schemes.hyperelliptic_curves.invariants.diffxy(f, x, xtimes, y, ytimes)
Differentiate a polynomial f, xtimes with respect to x, and `ytimes with respect to y.

EXAMPLES:

18.14. Compute invariants of quintics and sextics via ‘Ueberschiebung’ 699

Elliptic curves, Release 9.8

sage: R.<u, v> = QQ[]
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3, u, 0, v, 0)
u^2*v^3
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3, u, 2, v, 1)
6*v^2
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3, u, 2, v, 2)
12*v
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3 + u^4*v^4, u, 2,␣
→˓v, 2)
144*u^2*v^2 + 12*v

sage.schemes.hyperelliptic_curves.invariants.igusa_clebsch_invariants(f)
Given a sextic form 𝑓 , return the Igusa-Clebsch invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 of Igusa and Clebsch [IJ1960].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import igusa_clebsch_
→˓invariants
sage: R.<x, y> = QQ[]
sage: igusa_clebsch_invariants(x^6 + y^6)
(-240, 1620, -119880, -46656)
sage: R.<x> = QQ[]
sage: igusa_clebsch_invariants(x^6 + x^5 + x^4 + x^2 + 2)
(-496, 6220, -955932, -1111784)

sage: magma(x^6 + 1).IgusaClebschInvariants() # optional - magma
[-240, 1620, -119880, -46656]
sage: magma(x^6 + x^5 + x^4 + x^2 + 2).IgusaClebschInvariants() # optional - magma
[-496, 6220, -955932, -1111784]

sage.schemes.hyperelliptic_curves.invariants.igusa_to_clebsch(I2, I4, I6, I10)
Convert Igusa invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 to Clebsch invariants 𝐴,𝐵,𝐶,𝐷.

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_to_igusa,␣
→˓igusa_to_clebsch
sage: igusa_to_clebsch(-2400, 173700, 23112000, -10309890600)
(20, 342/5, 2512/5, 43381012/1125)
sage: clebsch_to_igusa(*igusa_to_clebsch(-2400, 173700, 23112000, -10309890600))
(-2400, 173700, 23112000, -10309890600)

sage: Is = tuple(map(GF(31), (-2400, 173700, 23112000, -10309890600))); Is
(18, 7, 12, 27)
sage: igusa_to_clebsch(*Is)
(20, 25, 25, 12)
sage: clebsch_to_igusa(*igusa_to_clebsch(*Is))
(18, 7, 12, 27)

sage.schemes.hyperelliptic_curves.invariants.ubs(f)
Given a sextic form 𝑓 , return a dictionary of the invariants of Mestre, p 317 [Mes1991].

𝑓 may be homogeneous in two variables or inhomogeneous in one.

700 Chapter 18. Hyperelliptic curves

Elliptic curves, Release 9.8

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import ubs
sage: x = QQ['x'].0
sage: ubs(x^6 + 1)
{'A': 2,
'B': 2/3,
'C': -2/9,
'D': 0,
'Delta': -2/3*x^2*h^2,
'f': x^6 + h^6,
'i': 2*x^2*h^2,
'y1': 0,
'y2': 0,
'y3': 0}

sage: R.<u, v> = QQ[]
sage: ubs(u^6 + v^6)
{'A': 2,
'B': 2/3,
'C': -2/9,
'D': 0,
'Delta': -2/3*u^2*v^2,
'f': u^6 + v^6,
'i': 2*u^2*v^2,
'y1': 0,
'y2': 0,
'y3': 0}

sage: R.<t> = GF(31)[]
sage: ubs(t^6 + 2*t^5 + t^2 + 3*t + 1)
{'A': 0,
'B': -12,
'C': -15,
'D': -15,
'Delta': -10*t^4 + 12*t^3*h + 7*t^2*h^2 - 5*t*h^3 + 2*h^4,
'f': t^6 + 2*t^5*h + t^2*h^4 + 3*t*h^5 + h^6,
'i': -4*t^4 + 10*t^3*h + 2*t^2*h^2 - 9*t*h^3 - 7*h^4,
'y1': 4*t^2 - 10*t*h - 13*h^2,
'y2': 6*t^2 - 4*t*h + 2*h^2,
'y3': 4*t^2 - 4*t*h - 9*h^2}

18.15 Kummer surfaces over a general ring

class sage.schemes.hyperelliptic_curves.kummer_surface.KummerSurface(J)
Bases: AlgebraicScheme_subscheme_projective

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^5 + x + 1
sage: X = HyperellipticCurve(f)

(continues on next page)

18.15. Kummer surfaces over a general ring 701

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_subscheme.html#sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective

Elliptic curves, Release 9.8

(continued from previous page)

sage: J = Jacobian(X)
sage: K = KummerSurface(J); K
Closed subscheme of Projective Space of dimension 3 over Rational Field defined by:
X0^4 - 4*X0*X1^3 + 4*X0^2*X1*X2 - 4*X0*X1^2*X2 + 2*X0^2*X2^2 + X2^4 - 4*X0^3*X3 -␣
→˓2*X0^2*X1*X3 - 2*X1*X2^2*X3 + X1^2*X3^2 - 4*X0*X2*X3^2

18.16 Conductor and reduction types for genus 2 curves

AUTHORS:

• Qing Liu and Henri Cohen (1994-1998): wrote genus2reduction C program

• William Stein (2006-03-05): wrote Sage interface to genus2reduction

• Jeroen Demeyer (2014-09-17): replace genus2reduction program by PARI library call (trac ticket #15808)

ACKNOWLEDGMENT: (From Liu’s website:) Many thanks to Henri Cohen who started writing this program. After
this program is available, many people pointed out to me (mathematical as well as programming) bugs : B. Poonen, E.
Schaefer, C. Stahlke, M. Stoll, F. Villegas. So thanks to all of them. Thanks also go to Ph. Depouilly who help me to
compile the program.

Also Liu has given me explicit permission to include genus2reduction with Sage and for people to modify the C source
code however they want.

class sage.interfaces.genus2reduction.Genus2reduction

Bases: SageObject

Conductor and Reduction Types for Genus 2 Curves.

Use R = genus2reduction(Q, P) to obtain reduction information about the Jacobian of the projective smooth
curve defined by 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥). Type R? for further documentation and a description of how to interpret
the local reduction data.

EXAMPLES:

sage: x = QQ['x'].0
sage: R = genus2reduction(x^3 - 2*x^2 - 2*x + 1, -5*x^5)
sage: R.conductor
1416875
sage: factor(R.conductor)
5^4 * 2267

The discriminant is always minimal:

sage: factor(R.minimal_disc)
2^3 * 5^5 * 2267

Printing R summarizes all the information computed about the curve

sage: R
Reduction data about this proper smooth genus 2 curve:

y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
A Minimal Equation:

y^2 ...
Minimal Discriminant: 56675000

(continues on next page)

702 Chapter 18. Hyperelliptic curves

https://trac.sagemath.org/15808
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

(continued from previous page)

Conductor: 1416875
Local Data:

p=2
(potential) stable reduction: (II), j=1
p=5
(potential) stable reduction: (I)
reduction at p: [V] page 156, (3), f=4
p=2267
(potential) stable reduction: (II), j=432
reduction at p: [I{1-0-0}] page 170, (1), f=1

Here are some examples of curves with modular Jacobians:

sage: R = genus2reduction(x^3 + x + 1, -2*x^5 - 3*x^2 + 2*x - 2)
sage: factor(R.conductor)
23^2
sage: factor(genus2reduction(x^3 + 1, -x^5 - 3*x^4 + 2*x^2 + 2*x - 2).conductor)
29^2
sage: factor(genus2reduction(x^3 + x + 1, x^5 + 2*x^4 + 2*x^3 + x^2 - x - 1).
→˓conductor)
5^6

EXAMPLES:

sage: genus2reduction(0, x^6 + 3*x^3 + 63)
Reduction data about this proper smooth genus 2 curve:

y^2 = x^6 + 3*x^3 + 63
A Minimal Equation:

y^2 ...
Minimal Discriminant: -10628388316852992
Conductor: 2893401
Local Data:

p=2
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
p=3
(potential) stable reduction: (I)
reduction at p: [III{9}] page 184, (3)^2, f=10
p=7
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
reduction at p: [I{0}-II-0] page 159, (1), f=2

In the above example, Liu remarks that in fact at 𝑝 = 2, the reduction is [II-II-0] page 163, (1), 𝑓 = 8. So the
conductor of J(C) is actually 2 · 2893401 = 5786802.

A MODULAR CURVE:

Consider the modular curve 𝑋1(13) defined by an equation

𝑦2 + (𝑥3 − 𝑥2 − 1)𝑦 = 𝑥2 − 𝑥.

We have:

sage: genus2reduction(x^3-x^2-1, x^2 - x)
Reduction data about this proper smooth genus 2 curve:

(continues on next page)

18.16. Conductor and reduction types for genus 2 curves 703

Elliptic curves, Release 9.8

(continued from previous page)

y^2 + (x^3 - x^2 - 1)*y = x^2 - x
A Minimal Equation:

y^2 ...
Minimal Discriminant: -169
Conductor: 169
Local Data:

p=13
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
reduction at p: [I{0}-II-0] page 159, (1), f=2

So the curve has good reduction at 2. At 𝑝 = 13, the stable reduction is union of two elliptic curves, and both of
them have 0 as modular invariant. The reduction at 13 is of type [I_0-II-0] (see Namikawa-Ueno, page 159). It
is an elliptic curve with a cusp. The group of connected components of the Neron model of 𝐽(𝐶) is trivial, and
the exponent of the conductor of 𝐽(𝐶) at 13 is 𝑓 = 2. The conductor of 𝐽(𝐶) is 132. (Note: It is a theorem of
Conrad-Edixhoven-Stein that the component group of 𝐽(𝑋1(𝑝)) is trivial for all primes 𝑝.)

class sage.interfaces.genus2reduction.ReductionData(pari_result, P, Q, Pmin, Qmin, minimal_disc,
local_data, conductor)

Bases: SageObject

Reduction data for a genus 2 curve.

How to read local_data attribute, i.e., if this class is R, then the following is the meaning of R.
local_data[p].

For each prime number 𝑝 dividing the discriminant of 𝑦2 +𝑄(𝑥)𝑦 = 𝑃 (𝑥), there are two lines.

The first line contains information about the stable reduction after field extension. Here are the meanings of the
symbols of stable reduction:

(I) The stable reduction is smooth (i.e. the curve has potentially good reduction).

(II) The stable reduction is an elliptic curve 𝐸 with an ordinary double point. 𝑗 mod 𝑝 is the modular invariant
of 𝐸.

(III) The stable reduction is a projective line with two ordinary double points.

(IV) The stable reduction is two projective lines crossing transversally at three points.

(V) The stable reduction is the union of two elliptic curves𝐸1 and𝐸2 intersecting transversally at one point. Let
𝑗1, 𝑗2 be their modular invariants, then 𝑗1 + 𝑗2 and 𝑗1𝑗2 are computed (they are numbers mod 𝑝).

(VI) The stable reduction is the union of an elliptic curve 𝐸 and a projective line which has an ordinary double
point. These two components intersect transversally at one point. 𝑗 mod 𝑝 is the modular invariant of 𝐸.

(VII) The stable reduction is as above, but the two components are both singular.

In the cases (I) and (V), the Jacobian 𝐽(𝐶) has potentially good reduction. In the cases (III), (IV) and (VII),
𝐽(𝐶) has potentially multiplicative reduction. In the two remaining cases, the (potential) semi-abelian reduction
of 𝐽(𝐶) is extension of an elliptic curve (with modular invariant 𝑗 mod 𝑝) by a torus.

The second line contains three data concerning the reduction at 𝑝 without any field extension.

1. The first symbol describes the REDUCTION AT 𝑝 of 𝐶. We use the symbols of Namikawa-Ueno for
the type of the reduction (Namikawa, Ueno:”The complete classification of fibers in pencils of curves of
genus two”, Manuscripta Math., vol. 9, (1973), pages 143-186.) The reduction symbol is followed by the
corresponding page number (or just an indication) in the above article. The lower index is printed by ,
for instance, [I2-II-5] means [I_2-II-5]. Note that if 𝐾 and 𝐾 ′ are Kodaira symbols for singular fibers of
elliptic curves, [K-K’-m] and [K’-K-m] are the same type. Finally, [K-K’-1] (not the same as [K-K’-1]) is

704 Chapter 18. Hyperelliptic curves

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Elliptic curves, Release 9.8

[K’-K-alpha] in the notation of Namikawa-Ueno. The figure [2I_0-m] in Namikawa-Ueno, page 159 must
be denoted by [2I_0-(m+1)].

2. The second datum is the GROUP OF CONNECTED COMPONENTS (over an ALGEBRAIC CLOSURE
(!) of F𝑝) of the Neron model of J(C). The symbol (n) means the cyclic group with n elements. When n=0,
(0) is the trivial group (1). Hn is isomorphic to (2)x(2) if n is even and to (4) otherwise.

Note - The set of rational points of Φ can be computed using Theorem 1.17 in S. Bosch and Q. Liu “Rational
points of the group of components of a Neron model”, Manuscripta Math. 98 (1999), 275-293.

3. Finally, 𝑓 is the exponent of the conductor of 𝐽(𝐶) at 𝑝.

Warning: Be careful regarding the formula:

valuation of the naive minimal discriminant = 𝑓 + 𝑛− 1 + 11𝑐(𝑋).

(Q. Liu : “Conducteur et discriminant minimal de courbes de genre 2”, Compositio Math. 94 (1994) 51-79,
Theoreme 2) is valid only if the residual field is algebraically closed as stated in the paper. So this equality does
not hold in general over Q𝑝. The fact is that the minimal discriminant may change after unramified extension.
One can show however that, at worst, the change will stabilize after a quadratic unramified extension (Q. Liu
: “Modèles entiers de courbes hyperelliptiques sur un corps de valuation discrète”, Trans. AMS 348 (1996),
4577-4610, Section 7.2, Proposition 4).

sage.interfaces.genus2reduction.divisors_to_string(divs)
Convert a list of numbers (representing the orders of cyclic groups in the factorization of a finite abelian group)
to a string according to the format shown in the examples.

INPUT:

• divs – a (possibly empty) list of numbers

OUTPUT: a string representation of these numbers

EXAMPLES:

sage: from sage.interfaces.genus2reduction import divisors_to_string
sage: print(divisors_to_string([]))
(1)
sage: print(divisors_to_string([5]))
(5)
sage: print(divisors_to_string([5]*6))
(5)^6
sage: print(divisors_to_string([2,3,4]))
(2)x(3)x(4)
sage: print(divisors_to_string([6,2,2]))
(6)x(2)^2

18.16. Conductor and reduction types for genus 2 curves 705

Elliptic curves, Release 9.8

706 Chapter 18. Hyperelliptic curves

CHAPTER

NINETEEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

707

../genindex.html
../py-modindex.html
../search.html

Elliptic curves, Release 9.8

708 Chapter 19. Indices and Tables

BIBLIOGRAPHY

[Harv2007] David Harvey. Kedlaya’s algorithm in larger characteristic, arXiv math/0610973.

[BGS2007] Alin Bostan, Pierrick Gaudry, and Eric Schost, Linear recurrences with polynomial coefficients and ap-
plication to integer factorization and Cartier-Manin operator, SIAM Journal on Computing 36 (2007),
no. 6, 1777-1806

709

https://arxiv.org/abs/math/0610973

Elliptic curves, Release 9.8

710 Bibliography

PYTHON MODULE INDEX

i
sage.interfaces.genus2reduction, 702

s
sage.schemes.elliptic_curves.cm, 447
sage.schemes.elliptic_curves.constructor, 1
sage.schemes.elliptic_curves.descent_two_isogeny,

593
sage.schemes.elliptic_curves.ec_database, 324
sage.schemes.elliptic_curves.ell_curve_isogeny,

153
sage.schemes.elliptic_curves.ell_egros, 596
sage.schemes.elliptic_curves.ell_field, 89
sage.schemes.elliptic_curves.ell_finite_field,

111
sage.schemes.elliptic_curves.ell_generic, 59
sage.schemes.elliptic_curves.ell_local_data,

457
sage.schemes.elliptic_curves.ell_modular_symbols,

500
sage.schemes.elliptic_curves.ell_number_field,

326
sage.schemes.elliptic_curves.ell_padic_field,

600
sage.schemes.elliptic_curves.ell_point, 23
sage.schemes.elliptic_curves.ell_rational_field,

231
sage.schemes.elliptic_curves.ell_tate_curve,

466
sage.schemes.elliptic_curves.ell_torsion, 403
sage.schemes.elliptic_curves.ell_wp, 471
sage.schemes.elliptic_curves.formal_group,

133
sage.schemes.elliptic_curves.gal_reps, 406
sage.schemes.elliptic_curves.gal_reps_number_field,

418
sage.schemes.elliptic_curves.gp_simon, 601
sage.schemes.elliptic_curves.heegner, 521
sage.schemes.elliptic_curves.height, 379
sage.schemes.elliptic_curves.hom, 141
sage.schemes.elliptic_curves.hom_composite,

183

sage.schemes.elliptic_curves.hom_frobenius,
197

sage.schemes.elliptic_curves.hom_scalar, 191
sage.schemes.elliptic_curves.hom_velusqrt,

175
sage.schemes.elliptic_curves.isogeny_class,

429
sage.schemes.elliptic_curves.isogeny_small_degree,

203
sage.schemes.elliptic_curves.jacobian, 19
sage.schemes.elliptic_curves.kodaira_symbol,

465
sage.schemes.elliptic_curves.lseries_ell, 512
sage.schemes.elliptic_curves.mod5family, 602
sage.schemes.elliptic_curves.mod_sym_num, 506
sage.schemes.elliptic_curves.modular_parametrization,

498
sage.schemes.elliptic_curves.padic_lseries,

578
sage.schemes.elliptic_curves.period_lattice,

474
sage.schemes.elliptic_curves.period_lattice_region,

493
sage.schemes.elliptic_curves.Qcurves, 452
sage.schemes.elliptic_curves.saturation, 398
sage.schemes.elliptic_curves.sha_tate, 436
sage.schemes.elliptic_curves.weierstrass_morphism,

149
sage.schemes.elliptic_curves.weierstrass_transform,

602
sage.schemes.hyperelliptic_curves.constructor,

607
sage.schemes.hyperelliptic_curves.hypellfrob,

682
sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field,

617
sage.schemes.hyperelliptic_curves.hyperelliptic_g2,

695
sage.schemes.hyperelliptic_curves.hyperelliptic_generic,

609
sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field,

632

711

Elliptic curves, Release 9.8

sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field,
649

sage.schemes.hyperelliptic_curves.invariants,
697

sage.schemes.hyperelliptic_curves.jacobian_g2,
689

sage.schemes.hyperelliptic_curves.jacobian_generic,
684

sage.schemes.hyperelliptic_curves.jacobian_homset,
689

sage.schemes.hyperelliptic_curves.jacobian_morphism,
690

sage.schemes.hyperelliptic_curves.kummer_surface,
701

sage.schemes.hyperelliptic_curves.mestre, 649
sage.schemes.hyperelliptic_curves.monsky_washnitzer,

652

712 Python Module Index

INDEX

A
a1() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 60
a2() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 60
a3() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 60
a4() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 60
a6() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 60
a_invariants() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 60
a_number() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field

method), 619
abelian_group() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field

method), 112
abelian_variety() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 236
absolute_degree() (sage.schemes.elliptic_curves.heegner.RingClassField

method), 562
absolute_igusa_invariants_kohel() (in module

sage.schemes.hyperelliptic_curves.invariants),
697

absolute_igusa_invariants_kohel()
(sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2
method), 695

absolute_igusa_invariants_wamelen() (in module
sage.schemes.hyperelliptic_curves.invariants),
697

absolute_igusa_invariants_wamelen()
(sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2
method), 695

add_reductions() (sage.schemes.elliptic_curves.saturation.EllipticCurveSaturator
method), 398

additive_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 25

additive_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
method), 39

additive_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 43

adjusted_prec() (in module

sage.schemes.hyperelliptic_curves.monsky_washnitzer),
672

ainvs() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 61

all_values_for_one_denominator()
(sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical
method), 508

alpha() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm
method), 524

alpha() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 382

alpha() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 580

an() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 236

an() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 438

an_numerical() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 440

an_padic() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 441

analytic_rank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 236

analytic_rank_upper_bound()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 238

anlist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 241

antilogarithm() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 241

ap() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 242

aplist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 242

approximative_value()
(sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical
method), 509

archimedean_local_height()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 43

are_projectively_equivalent() (in module
sage.schemes.elliptic_curves.constructor), 14

713

Elliptic curves, Release 9.8

as_morphism() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 141

at1() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 513

ate_pairing() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 26

atkin_lehner_act() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N
method), 537

automorphisms() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 61

B
B() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight

method), 380
b2() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 62
b4() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 62
b6() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 62
b8() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 63
b_invariants() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 63
bad_reduction_type()

(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 459

base_extend() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 63

base_extend() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 327

base_extend() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 610

base_extend() (sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes
method), 689

base_extend() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 658

base_extend() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 669

base_field() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 89

base_field() (sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 526

base_field() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 383

base_ring() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 64

base_ring() (sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol
method), 501

baseWI (class in sage.schemes.elliptic_curves.weierstrass_morphism),
151

basis() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 476

basis_matrix() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 477

bernardi_sigma_function()
(sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 589

beta() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding
method), 555

betas() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond
method), 542

Billerey_B_bound() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
419

Billerey_B_l() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
420

Billerey_P_l() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
420

Billerey_R_bound() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
421

Billerey_R_q() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
422

border() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 494

bound() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 442

bound_kato() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 442

bound_kolyvagin() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 443

brandt_module() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 544

C
c4() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 64
c6() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 64
c_invariants() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 64
cantor_composition() (in module

sage.schemes.hyperelliptic_curves.jacobian_morphism),
692

cantor_composition_simple() (in module
sage.schemes.hyperelliptic_curves.jacobian_morphism),
693

cantor_reduction() (in module
sage.schemes.hyperelliptic_curves.jacobian_morphism),
693

cantor_reduction_simple() (in module
sage.schemes.hyperelliptic_curves.jacobian_morphism),
694

714 Index

Elliptic curves, Release 9.8

cardinality() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 113

cardinality() (sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 526

cardinality() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 619

cardinality_bsgs() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 115

cardinality_exhaustive()
(sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 116

cardinality_exhaustive()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 620

cardinality_hypellfrob()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 620

cardinality_pari() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 116

Cartier_matrix() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 617

change_ring() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 65

change_ring() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 610

change_ring() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 659

change_ring() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 666

change_ring() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 669

change_weierstrass_model()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 65

check_prime() (in module
sage.schemes.elliptic_curves.ell_local_data),
464

chord_and_tangent() (in module
sage.schemes.elliptic_curves.constructor),
15

class_number() (in module
sage.schemes.elliptic_curves.heegner), 565

clear_cache() (sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical
method), 510

clebsch_invariants() (in module
sage.schemes.hyperelliptic_curves.invariants),
698

clebsch_invariants()
(sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2
method), 695

clebsch_to_igusa() (in module
sage.schemes.hyperelliptic_curves.invariants),
698

cm_discriminant() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field

method), 328
cm_discriminant() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 242
cm_j_invariants() (in module

sage.schemes.elliptic_curves.cm), 447
cm_j_invariants_and_orders() (in module

sage.schemes.elliptic_curves.cm), 448
cm_orders() (in module

sage.schemes.elliptic_curves.cm), 449
codomain() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding

method), 555
coeff() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential

method), 653
coefficients_from_j() (in module

sage.schemes.elliptic_curves.constructor),
15

coefficients_from_Weierstrass_polynomial()
(in module sage.schemes.elliptic_curves.constructor),
15

coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 653

coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement
method), 664

coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 666

coleman_integral() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 633

coleman_integral() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 654

coleman_integral_from_weierstrass_via_boundary()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 637

coleman_integral_P_to_S()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 635

coleman_integral_S_to_Q()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 636

coleman_integrals_on_basis()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 637

coleman_integrals_on_basis_hyperelliptic()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 639

compare_via_evaluation() (in module
sage.schemes.elliptic_curves.hom), 147

complex_area() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 478

complex_conjugation()
(sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 527

complex_intersection_is_empty()
(sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 383

Index 715

Elliptic curves, Release 9.8

compute_codomain_formula() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
163

compute_codomain_kohel() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
163

compute_intermediate_curves() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
164

compute_isogeny_kernel_polynomial() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
165

compute_isogeny_starks() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
166

compute_model() (in module
sage.schemes.elliptic_curves.ell_field), 110

compute_sequence_of_maps() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
167

compute_vw_kohel_even_deg1() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
168

compute_vw_kohel_even_deg3() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
169

compute_vw_kohel_odd() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
169

compute_wp_fast() (in module
sage.schemes.elliptic_curves.ell_wp), 471

compute_wp_pari() (in module
sage.schemes.elliptic_curves.ell_wp), 472

compute_wp_quadratic() (in module
sage.schemes.elliptic_curves.ell_wp), 472

conductor() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 328

conductor() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 243

conductor() (sage.schemes.elliptic_curves.heegner.HeegnerPoint
method), 528

conductor() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond
method), 543

conductor() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass
method), 557

conductor() (sage.schemes.elliptic_curves.heegner.RingClassField
method), 562

conductor_valuation()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 459

congruence_number()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 243

conjugacy_test() (in module

sage.schemes.elliptic_curves.Qcurves), 453
conjugate() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding

method), 555
conjugates_over_K()

(sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 530

contract() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 494

coordinates() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 478

copy() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField
method), 432

copy() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_Rational
method), 433

count_points() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 116

count_points() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 621

count_points_exhaustive()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 622

count_points_frobenius_polynomial()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 623

count_points_hypellfrob()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 623

count_points_matrix_traces()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 624

CPS_height_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 232

create_element() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing
method), 663

create_key_and_extra_args()
(sage.schemes.elliptic_curves.constructor.EllipticCurveFactory
method), 4

create_object() (sage.schemes.elliptic_curves.constructor.EllipticCurveFactory
method), 5

cremona_curves() (in module
sage.schemes.elliptic_curves.ell_rational_field),
322

cremona_label() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 244

cremona_optimal_curves() (in module
sage.schemes.elliptic_curves.ell_rational_field),
323

curve() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 29

curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 467

curve() (sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup
method), 405

curve() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup

716 Index

Elliptic curves, Release 9.8

method), 133
curve() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve

method), 531
curve() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint

method), 558
curve() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight

method), 384
curve() (sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization

method), 498
curve() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell

method), 479
curve() (sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes

method), 690
curve() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

method), 669
curve_key() (in module

sage.schemes.elliptic_curves.ell_egros), 597
curve_over_ram_extn()

(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 640

cyclic_subideal_p1()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 544

D
data (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion

attribute), 495
database_attributes()

(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 245

database_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 245

DE() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 380

deg_one_primes_iter() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
427

degree() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 141

degree() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius
method), 199

degree() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 193

degree() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 659

degree() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 669

degree_over_H() (sage.schemes.elliptic_curves.heegner.RingClassField
method), 562

degree_over_K() (sage.schemes.elliptic_curves.heegner.RingClassField
method), 563

degree_over_Q() (sage.schemes.elliptic_curves.heegner.RingClassField
method), 564

deriv_at1() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 514

descend_to() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 89

diff() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 667

differential() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup
method), 133

differential_operator() (in module
sage.schemes.hyperelliptic_curves.invariants),
699

diffsymb() (in module
sage.schemes.hyperelliptic_curves.invariants),
699

diffxy() (in module sage.schemes.hyperelliptic_curves.invariants),
699

dimension() (sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic
method), 686

dimension() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 659

discrete_log() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
method), 40

discriminant() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 65

discriminant() (sage.schemes.elliptic_curves.heegner.HeegnerPoint
method), 529

discriminant() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc
method), 541

discriminant_of_K()
(sage.schemes.elliptic_curves.heegner.RingClassField
method), 564

discriminant_valuation()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 459

discriminants() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level
method), 540

discriminants_with_bounded_class_number() (in
module sage.schemes.elliptic_curves.cm), 449

division_field() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 90

division_points() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 29

division_polynomial()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 66

division_polynomial_0()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 67

divisors_to_string() (in module
sage.interfaces.genus2reduction), 705

dokchitser() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 516

domain() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphism
method), 523

Index 717

Elliptic curves, Release 9.8

domain() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding
method), 556

domain_conductor() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding
method), 556

domain_gen() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding
method), 556

Dp_valued_height() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 588

Dp_valued_regulator()
(sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 589

Dp_valued_series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 589

ds() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 495

dual() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny
method), 159

dual() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 142

dual() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
method), 185

dual() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius
method), 199

dual() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 193

dual() (sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt
method), 177

dual() (sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism
method), 149

E
E2() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve

method), 466
e_log_RC() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell

method), 479
e_p() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight

method), 384
egros_from_j() (in module

sage.schemes.elliptic_curves.ell_egros), 597
egros_from_j_0() (in module

sage.schemes.elliptic_curves.ell_egros), 598
egros_from_j_1728() (in module

sage.schemes.elliptic_curves.ell_egros), 598
egros_from_jlist() (in module

sage.schemes.elliptic_curves.ell_egros), 599
egros_get_j() (in module

sage.schemes.elliptic_curves.ell_egros), 599
ei() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell

method), 481
Element (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing

attribute), 658
Element (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing

attribute), 663

Element (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
attribute), 669

ell() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 545

ell_heegner_discriminants() (in module
sage.schemes.elliptic_curves.heegner), 566

ell_heegner_discriminants_list() (in module
sage.schemes.elliptic_curves.heegner), 566

ell_heegner_point() (in module
sage.schemes.elliptic_curves.heegner), 566

elliptic_curve() (sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol
method), 501

elliptic_curve() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 408

elliptic_curve() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation
method), 423

elliptic_curve() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 516

elliptic_curve() (sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical
method), 510

elliptic_curve() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 580

elliptic_curve_congruence_graph() (in module
sage.schemes.elliptic_curves.ell_rational_field),
323

elliptic_exponential()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 246

elliptic_exponential()
(sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 481

elliptic_logarithm()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 45

elliptic_logarithm()
(sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 484

EllipticCurve_field (class in
sage.schemes.elliptic_curves.ell_field), 89

EllipticCurve_finite_field (class in
sage.schemes.elliptic_curves.ell_finite_field),
111

EllipticCurve_from_c4c6() (in module
sage.schemes.elliptic_curves.constructor),
6

EllipticCurve_from_cubic() (in module
sage.schemes.elliptic_curves.constructor),
6

EllipticCurve_from_j() (in module
sage.schemes.elliptic_curves.constructor),
11

EllipticCurve_from_Weierstrass_polynomial()
(in module sage.schemes.elliptic_curves.constructor),
5

718 Index

Elliptic curves, Release 9.8

EllipticCurve_generic (class in
sage.schemes.elliptic_curves.ell_generic),
59

EllipticCurve_number_field (class in
sage.schemes.elliptic_curves.ell_number_field),
327

EllipticCurve_padic_field (class in
sage.schemes.elliptic_curves.ell_padic_field),
600

EllipticCurve_rational_field (class in
sage.schemes.elliptic_curves.ell_rational_field),
231

EllipticCurveCanonicalHeight (class in
sage.schemes.elliptic_curves.height), 379

EllipticCurveFactory (class in
sage.schemes.elliptic_curves.constructor),
1

EllipticCurveFormalGroup (class in
sage.schemes.elliptic_curves.formal_group),
133

EllipticCurveHom (class in
sage.schemes.elliptic_curves.hom), 141

EllipticCurveHom_composite (class in
sage.schemes.elliptic_curves.hom_composite),
184

EllipticCurveHom_frobenius (class in
sage.schemes.elliptic_curves.hom_frobenius),
198

EllipticCurveHom_scalar (class in
sage.schemes.elliptic_curves.hom_scalar),
193

EllipticCurveHom_velusqrt (class in
sage.schemes.elliptic_curves.hom_velusqrt),
177

EllipticCurveIsogeny (class in
sage.schemes.elliptic_curves.ell_curve_isogeny),
154

EllipticCurveLocalData (class in
sage.schemes.elliptic_curves.ell_local_data),
458

EllipticCurvePoint (class in
sage.schemes.elliptic_curves.ell_point), 24

EllipticCurvePoint_field (class in
sage.schemes.elliptic_curves.ell_point), 25

EllipticCurvePoint_finite_field (class in
sage.schemes.elliptic_curves.ell_point), 39

EllipticCurvePoint_number_field (class in
sage.schemes.elliptic_curves.ell_point), 42

EllipticCurves (class in
sage.schemes.elliptic_curves.ec_database),
325

EllipticCurves_with_good_reduction_outside_S()
(in module sage.schemes.elliptic_curves.constructor),
12

EllipticCurveSaturator (class in
sage.schemes.elliptic_curves.saturation),
398

EllipticCurveTorsionSubgroup (class in
sage.schemes.elliptic_curves.ell_torsion),
403

eps() (in module sage.schemes.elliptic_curves.height),
395

eval_modular_form()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 247

expand() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 495

extended_agm_iteration() (in module
sage.schemes.elliptic_curves.period_lattice),
492

extract_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 654

extract_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 668

F
factors() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite

method), 185
faltings_height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 247
FastEllipticPolynomial (class in

sage.schemes.elliptic_curves.hom_velusqrt),
180

field() (sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 527

fill_isogeny_matrix() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
170

fill_ss_j_dict() (in module
sage.schemes.elliptic_curves.ell_finite_field),
130

find_char_zero_weier_point()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 641

find_post_isomorphism() (in module
sage.schemes.elliptic_curves.hom), 148

finite_endpoints() (sage.schemes.elliptic_curves.height.UnionOfIntervals
method), 393

fk_intervals() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 385

formal() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 70

formal() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 142

formal() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
method), 186

formal_group() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 70

Index 719

Elliptic curves, Release 9.8

Fricke_module() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
203

Fricke_polynomial() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
203

frob_basis_elements()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 660

frob_invariant_differential()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 661

frob_Q() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 659

frobenius() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 117

frobenius() (sage.schemes.elliptic_curves.ell_padic_field.EllipticCurve_padic_field
method), 601

frobenius() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 590

frobenius() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 641

frobenius_endomorphism()
(sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 117

frobenius_expansion_by_newton() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
673

frobenius_expansion_by_series() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
673

Frobenius_filter() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
422

frobenius_isogeny()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 70

frobenius_matrix() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 625

frobenius_matrix_hypellfrob()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 625

frobenius_order() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 118

frobenius_polynomial()
(sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 118

frobenius_polynomial()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 626

frobenius_polynomial_cardinalities()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 627

frobenius_polynomial_matrix()

(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 628

frobenius_polynomial_pari()
(sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 629

from_factors() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
class method), 186

full (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
attribute), 496

full_p_saturation()
(sage.schemes.elliptic_curves.saturation.EllipticCurveSaturator
method), 399

G
galois_group() (sage.schemes.elliptic_curves.heegner.RingClassField

method), 564
galois_group_over_hilbert_class_field()

(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 545

galois_group_over_quadratic_field()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 545

galois_orbit_over_K()
(sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N
method), 537

galois_representation()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 329

galois_representation()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 248

GaloisAutomorphism (class in
sage.schemes.elliptic_curves.heegner), 523

GaloisAutomorphismComplexConjugation (class in
sage.schemes.elliptic_curves.heegner), 523

GaloisAutomorphismQuadraticForm (class in
sage.schemes.elliptic_curves.heegner), 524

GaloisGroup (class in
sage.schemes.elliptic_curves.heegner), 525

GaloisRepresentation (class in
sage.schemes.elliptic_curves.gal_reps), 408

GaloisRepresentation (class in
sage.schemes.elliptic_curves.gal_reps_number_field),
423

gen() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 71

gens() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 118

gens() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 71

gens() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 329

gens() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 249

720 Index

Elliptic curves, Release 9.8

gens() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 486

gens() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing
method), 664

gens() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 670

gens_certain() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 250

gens_quadratic() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 331

genus() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 93

genus() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 611

Genus2reduction (class in
sage.interfaces.genus2reduction), 702

geometric_endomorphism_algebra_is_field()
(sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic
method), 686

geometric_endomorphism_ring_is_ZZ()
(sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic
method), 687

get_boundary_point()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 642

global_integral_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 332

global_integral_model()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 250

global_minimal_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 333

global_minimality_class()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 335

graph() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC
method), 429

group_law() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup
method), 134

H
has_additive_reduction()

(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 460

has_additive_reduction()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 336

has_bad_reduction()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 460

has_bad_reduction()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field

method), 336
has_cm() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field

method), 337
has_cm() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 250
has_finite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field

method), 31
has_finite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field

method), 41
has_finite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field

method), 47
has_global_minimal_model()

(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 337

has_good_reduction()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 460

has_good_reduction()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 337

has_good_reduction()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 47

has_good_reduction_outside_S()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 251

has_infinite_order()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 31

has_infinite_order()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 48

has_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 460

has_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 338

has_nonsplit_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 461

has_nonsplit_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 338

has_odd_degree_model()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 611

has_rational_cm() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 339

has_rational_cm() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 251

has_split_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 461

Index 721

Elliptic curves, Release 9.8

has_split_multiplicative_reduction()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 340

hasse_invariant() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 93

Hasse_Witt() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 618

heegner_conductors()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 546

heegner_discriminants()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 252

heegner_discriminants()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 546

heegner_discriminants_list()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 252

heegner_divisor() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 546

heegner_index() (in module
sage.schemes.elliptic_curves.heegner), 567

heegner_index() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 253

heegner_index_bound() (in module
sage.schemes.elliptic_curves.heegner), 569

heegner_index_bound()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 254

heegner_point() (in module
sage.schemes.elliptic_curves.heegner), 570

heegner_point() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 255

heegner_point() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass
method), 557

heegner_point() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 558

heegner_point_height() (in module
sage.schemes.elliptic_curves.heegner), 570

heegner_point_height()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 256

heegner_point_on_X0N()
(sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 531

heegner_points() (in module
sage.schemes.elliptic_curves.heegner), 571

heegner_sha_an() (in module
sage.schemes.elliptic_curves.heegner), 571

heegner_sha_an() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 257

HeegnerPoint (class in
sage.schemes.elliptic_curves.heegner), 528

HeegnerPointOnEllipticCurve (class in
sage.schemes.elliptic_curves.heegner), 530

HeegnerPointOnX0N (class in
sage.schemes.elliptic_curves.heegner), 536

HeegnerPoints (class in
sage.schemes.elliptic_curves.heegner), 539

HeegnerPoints_level (class in
sage.schemes.elliptic_curves.heegner), 539

HeegnerPoints_level_disc (class in
sage.schemes.elliptic_curves.heegner), 540

HeegnerPoints_level_disc_cond (class in
sage.schemes.elliptic_curves.heegner), 542

HeegnerQuatAlg (class in
sage.schemes.elliptic_curves.heegner), 544

HeegnerQuatAlgEmbedding (class in
sage.schemes.elliptic_curves.heegner), 555

height() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 48

height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 258

height_function() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 341

height_pairing_matrix()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 341

helper_matrix() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
674

helper_matrix() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 661

hilbert_class_polynomial() (in module
sage.schemes.elliptic_curves.cm), 450

hypellfrob() (in module
sage.schemes.hyperelliptic_curves.hypellfrob),
682

hyperelliptic_polynomials()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 71

hyperelliptic_polynomials()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 611

HyperellipticCurve() (in module
sage.schemes.hyperelliptic_curves.constructor),
607

HyperellipticCurve_finite_field (class in
sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field),
617

HyperellipticCurve_from_invariants() (in mod-
ule sage.schemes.hyperelliptic_curves.mestre),
649

HyperellipticCurve_g2 (class in
sage.schemes.hyperelliptic_curves.hyperelliptic_g2),
695

HyperellipticCurve_generic (class in

722 Index

Elliptic curves, Release 9.8

sage.schemes.hyperelliptic_curves.hyperelliptic_generic),
610

HyperellipticCurve_padic_field (class in
sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field),
632

HyperellipticCurve_rational_field (class in
sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field),
649

HyperellipticJacobian_g2 (class in
sage.schemes.hyperelliptic_curves.jacobian_g2),
689

HyperellipticJacobian_generic (class in
sage.schemes.hyperelliptic_curves.jacobian_generic),
684

I
ideal() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm

method), 524
identity_morphism() (in module

sage.schemes.elliptic_curves.weierstrass_morphism),
152

igusa_clebsch_invariants() (in module
sage.schemes.hyperelliptic_curves.invariants),
700

igusa_clebsch_invariants()
(sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2
method), 696

igusa_to_clebsch() (in module
sage.schemes.hyperelliptic_curves.invariants),
700

image_classes() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 408

image_type() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 410

index() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 558

index() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC
method), 430

inf_max_abs() (in module
sage.schemes.elliptic_curves.height), 395

init() (in module sage.schemes.elliptic_curves.gp_simon),
601

innermost_point() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 496

integral_model() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 342

integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 258

integral_points() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 259

integral_points_with_bounded_mw_coeffs() (in
module sage.schemes.elliptic_curves.ell_rational_field),
324

integral_short_weierstrass_model()

(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 260

integral_x_coords_in_interval()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 260

integrate() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 654

intersection() (sage.schemes.elliptic_curves.height.UnionOfIntervals
class method), 393

interval_products() (in module
sage.schemes.hyperelliptic_curves.hypellfrob),
683

intervals() (sage.schemes.elliptic_curves.height.UnionOfIntervals
method), 394

invariant_differential()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 611

invariant_differential()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 662

inverse() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup
method), 134

inverse() (sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse_class
method), 605

is_cm_j_invariant() (in module
sage.schemes.elliptic_curves.cm), 451

is_crystalline() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 412

is_divisible_by() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 31

is_EllipticCurve() (in module
sage.schemes.elliptic_curves.ell_generic),
88

is_empty() (sage.schemes.elliptic_curves.height.UnionOfIntervals
method), 394

is_empty() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 496

is_field() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 670

is_finite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 32

is_global_integral_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 345

is_global_integral_model()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 261

is_global_minimal_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 346

is_good() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 261

is_HyperellipticCurve() (in module
sage.schemes.hyperelliptic_curves.hyperelliptic_generic),

Index 723

Elliptic curves, Release 9.8

616
is_identity() (sage.schemes.elliptic_curves.weierstrass_morphism.baseWI

method), 151
is_in_weierstrass_disc()

(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 643

is_inert() (in module
sage.schemes.elliptic_curves.heegner), 572

is_injective() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 143

is_injective() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
method), 187

is_injective() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius
method), 200

is_injective() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 193

is_integral() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 261

is_irreducible() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 413

is_isogenous() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 94

is_isogenous() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 120

is_isogenous() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 346

is_isogenous() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 261

is_isomorphic() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 71

is_j_supersingular() (in module
sage.schemes.elliptic_curves.ell_finite_field),
130

is_kernel_polynomial() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
204

is_kolyvagin() (sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 527

is_kolyvagin_conductor() (in module
sage.schemes.elliptic_curves.heegner), 572

is_local_integral_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 348

is_local_integral_model()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 262

is_minimal() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 262

is_normalized() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 143

is_odd_degree() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2
method), 696

is_on_curve() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 72

is_on_identity_component()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 52

is_ordinary() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 121

is_ordinary() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 263

is_ordinary() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 413

is_ordinary() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary
method), 583

is_ordinary() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 590

is_p_integral() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 263

is_p_minimal() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 263

is_possible_j() (in module
sage.schemes.elliptic_curves.ell_egros), 600

is_potentially_crystalline()
(sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 413

is_potentially_semistable()
(sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 414

is_Q_curve() (in module
sage.schemes.elliptic_curves.Qcurves), 454

is_Q_curve() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 343

is_quadratic_twist()
(sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 95

is_quartic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 96

is_quasi_unipotent()
(sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 414

is_ramified() (in module
sage.schemes.elliptic_curves.heegner), 573

is_real() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 487

is_rectangular() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 487

is_reducible() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 414

is_same_disc() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 643

is_semistable() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 264

is_semistable() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 415

is_separable() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny
method), 161

is_separable() (sage.schemes.elliptic_curves.hom.EllipticCurveHom

724 Index

Elliptic curves, Release 9.8

method), 145
is_separable() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite

method), 187
is_separable() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius

method), 200
is_separable() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar

method), 194
is_separable() (sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt

method), 178
is_separable() (sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism

method), 149
is_sextic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field

method), 97
is_singular() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

method), 611
is_smooth() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

method), 612
is_split() (in module

sage.schemes.elliptic_curves.heegner), 573
is_split() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve

method), 467
is_subfield() (sage.schemes.elliptic_curves.heegner.RingClassField

method), 565
is_supersingular() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field

method), 122
is_supersingular() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 264
is_supersingular() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary

method), 584
is_supersingular() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular

method), 590
is_surjective() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation

method), 415
is_surjective() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation

method), 423
is_surjective() (sage.schemes.elliptic_curves.hom.EllipticCurveHom

method), 145
is_unipotent() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation

method), 416
is_unramified() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation

method), 417
is_weierstrass() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field

method), 644
is_x_coord() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 72
is_zero() (sage.schemes.elliptic_curves.hom.EllipticCurveHom

method), 145
isogenies() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC

method), 430
isogenies_13_0() (in module

sage.schemes.elliptic_curves.isogeny_small_degree),
206

isogenies_13_1728() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),

207
isogenies_2() (in module

sage.schemes.elliptic_curves.isogeny_small_degree),
209

isogenies_3() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
210

isogenies_5_0() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
210

isogenies_5_1728() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
211

isogenies_7_0() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
213

isogenies_7_1728() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
215

isogenies_prime_degree() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
216

isogenies_prime_degree()
(sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 97

isogenies_prime_degree()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 348

isogenies_prime_degree()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 264

isogenies_prime_degree_general() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
218

isogenies_prime_degree_genus_0() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
221

isogenies_prime_degree_genus_plus_0() (in mod-
ule sage.schemes.elliptic_curves.isogeny_small_degree),
222

isogenies_prime_degree_genus_plus_0_j0() (in
module sage.schemes.elliptic_curves.isogeny_small_degree),
225

isogenies_prime_degree_genus_plus_0_j1728()
(in module sage.schemes.elliptic_curves.isogeny_small_degree),
226

isogenies_sporadic_Q() (in module
sage.schemes.elliptic_curves.isogeny_small_degree),
228

isogeny() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 102

isogeny_bound() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation
method), 424

isogeny_class() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field

Index 725

Elliptic curves, Release 9.8

method), 349
isogeny_class() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 265
isogeny_codomain() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field

method), 104
isogeny_codomain_from_kernel() (in module

sage.schemes.elliptic_curves.ell_curve_isogeny),
171

isogeny_degree() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 355

isogeny_degree() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 268

isogeny_degrees_cm() (in module
sage.schemes.elliptic_curves.isogeny_class),
433

isogeny_ell_graph()
(sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 104

isogeny_graph() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 270

IsogenyClass_EC (class in
sage.schemes.elliptic_curves.isogeny_class),
429

IsogenyClass_EC_NumberField (class in
sage.schemes.elliptic_curves.isogeny_class),
432

IsogenyClass_EC_Rational (class in
sage.schemes.elliptic_curves.isogeny_class),
433

isomorphism_to() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 73

isomorphisms() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 74

J
j_invariant() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

method), 74
Jacobian() (in module

sage.schemes.elliptic_curves.jacobian), 19
jacobian() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2

method), 696
jacobian() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

method), 612
Jacobian_of_curve() (in module

sage.schemes.elliptic_curves.jacobian), 20
Jacobian_of_equation() (in module

sage.schemes.elliptic_curves.jacobian), 20
JacobianHomset_divisor_classes (class in

sage.schemes.hyperelliptic_curves.jacobian_homset),
689

JacobianMorphism_divisor_class_field (class in
sage.schemes.hyperelliptic_curves.jacobian_morphism),
691

join() (sage.schemes.elliptic_curves.height.UnionOfIntervals
static method), 394

K
kernel_polynomial()

(sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny
method), 161

kernel_polynomial()
(sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 146

kernel_polynomial()
(sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
method), 187

kernel_polynomial()
(sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius
method), 200

kernel_polynomial()
(sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 194

kernel_polynomial()
(sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt
method), 178

kernel_polynomial()
(sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism
method), 150

kodaira_symbol() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 462

kodaira_symbol() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 356

kodaira_symbol() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 271

kodaira_type() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 271

kodaira_type_old() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 271

KodairaSymbol() (in module
sage.schemes.elliptic_curves.kodaira_symbol),
465

KodairaSymbol_class (class in
sage.schemes.elliptic_curves.kodaira_symbol),
466

kolyvagin_cohomology_class()
(sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 531

kolyvagin_cohomology_class()
(sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 559

kolyvagin_conductors()
(sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc
method), 541

kolyvagin_cyclic_subideals()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 547

kolyvagin_generator()

726 Index

Elliptic curves, Release 9.8

(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 548

kolyvagin_generators()
(sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 527

kolyvagin_generators()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 548

kolyvagin_point() (in module
sage.schemes.elliptic_curves.heegner), 574

kolyvagin_point() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 271

kolyvagin_point() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 531

kolyvagin_point() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass
method), 557

kolyvagin_point_on_curve()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 549

kolyvagin_reduction_data() (in module
sage.schemes.elliptic_curves.heegner), 574

kolyvagin_sigma_operator()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 549

KolyvaginCohomologyClass (class in
sage.schemes.elliptic_curves.heegner), 556

KolyvaginCohomologyClassEn (class in
sage.schemes.elliptic_curves.heegner), 557

KolyvaginPoint (class in
sage.schemes.elliptic_curves.heegner), 558

kummer_morphism() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2.HyperellipticCurve_g2
method), 696

kummer_surface() (sage.schemes.hyperelliptic_curves.jacobian_g2.HyperellipticJacobian_g2
method), 689

KummerSurface (class in
sage.schemes.hyperelliptic_curves.kummer_surface),
701

L
L1_vanishes() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell

method), 512
L_invariant() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve

method), 467
L_ratio() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell

method), 512
label() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 272
Lambda() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 232
largest_fundamental_disc_with_class_number()

(in module sage.schemes.elliptic_curves.cm),
452

left_orders() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 551

level() (sage.schemes.elliptic_curves.heegner.HeegnerPoint
method), 529

level() (sage.schemes.elliptic_curves.heegner.HeegnerPoints
method), 539

level() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 551

lift() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer),
674

lift() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 468

lift_of_hilbert_class_field_galois_group()
(sage.schemes.elliptic_curves.heegner.GaloisGroup
method), 528

lift_x() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 75

lift_x() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 612

lll_reduce() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 356

lmfdb_page() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 272

local_analytic_interpolation()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 644

local_coord() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 612

local_coordinates_at_infinity()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 613

local_coordinates_at_nonweierstrass()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 613

local_coordinates_at_weierstrass()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 614

local_data() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 358

local_integral_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 360

local_integral_model()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 273

local_minimal_model()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 360

log() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup
method), 135

lseries() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 273

lseries() (sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field
method), 649

Lseries_ell (class in
sage.schemes.elliptic_curves.lseries_ell),

Index 727

Elliptic curves, Release 9.8

512
lseries_gross_zagier()

(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 273

M
make_default() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite

static method), 188
make_monic() (in module

sage.schemes.elliptic_curves.heegner), 576
manin_constant() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 274
manin_symbol() (sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical

method), 510
map_to_complex_numbers()

(sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 532

map_to_complex_numbers()
(sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization
method), 499

map_to_curve() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N
method), 538

matrix() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding
method), 556

matrix() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC
method), 430

matrix_of_frobenius() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
675

matrix_of_frobenius()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 274

matrix_of_frobenius()
(sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field
method), 649

matrix_of_frobenius_hyperelliptic() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
678

max_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 655

max_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 668

ME() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 380

measure() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 581

Mestre_conic() (in module
sage.schemes.hyperelliptic_curves.mestre),
651

min() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 386

min_gr() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 387

min_on_disk() (in module
sage.schemes.elliptic_curves.height), 396

min_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 655

min_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 668

minimal_discriminant_ideal()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 361

minimal_model() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 462

minimal_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 275

minimal_quadratic_twist()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 276

mod() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 559

mod5family() (in module
sage.schemes.elliptic_curves.mod5family),
602

mod5family() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 277

modp_dual_elliptic_curve_factor()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 551

modp_splitting_data()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 551

modp_splitting_map()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 552

modular_degree() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 277

modular_form() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 278

modular_parametrization()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 279

modular_symbol() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 279

modular_symbol() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 581

modular_symbol_numerical()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 282

modular_symbol_space() (in module
sage.schemes.elliptic_curves.ell_modular_symbols),
505

modular_symbol_space()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 283

ModularParameterization (class in
sage.schemes.elliptic_curves.modular_parametrization),

728 Index

Elliptic curves, Release 9.8

498
ModularSymbol (class in

sage.schemes.elliptic_curves.ell_modular_symbols),
501

ModularSymbolECLIB (class in
sage.schemes.elliptic_curves.ell_modular_symbols),
502

ModularSymbolNumerical (class in
sage.schemes.elliptic_curves.mod_sym_num),
508

ModularSymbolSage (class in
sage.schemes.elliptic_curves.ell_modular_symbols),
504

module
sage.interfaces.genus2reduction, 702
sage.schemes.elliptic_curves.cm, 447
sage.schemes.elliptic_curves.constructor,

1
sage.schemes.elliptic_curves.descent_two_isogeny,

593
sage.schemes.elliptic_curves.ec_database,

324
sage.schemes.elliptic_curves.ell_curve_isogeny,

153
sage.schemes.elliptic_curves.ell_egros,

596
sage.schemes.elliptic_curves.ell_field,

89
sage.schemes.elliptic_curves.ell_finite_field,

111
sage.schemes.elliptic_curves.ell_generic,

59
sage.schemes.elliptic_curves.ell_local_data,

457
sage.schemes.elliptic_curves.ell_modular_symbols,

500
sage.schemes.elliptic_curves.ell_number_field,

326
sage.schemes.elliptic_curves.ell_padic_field,

600
sage.schemes.elliptic_curves.ell_point,

23
sage.schemes.elliptic_curves.ell_rational_field,

231
sage.schemes.elliptic_curves.ell_tate_curve,

466
sage.schemes.elliptic_curves.ell_torsion,

403
sage.schemes.elliptic_curves.ell_wp, 471
sage.schemes.elliptic_curves.formal_group,

133
sage.schemes.elliptic_curves.gal_reps,

406
sage.schemes.elliptic_curves.gal_reps_number_field,

418
sage.schemes.elliptic_curves.gp_simon,

601
sage.schemes.elliptic_curves.heegner, 521
sage.schemes.elliptic_curves.height, 379
sage.schemes.elliptic_curves.hom, 141
sage.schemes.elliptic_curves.hom_composite,

183
sage.schemes.elliptic_curves.hom_frobenius,

197
sage.schemes.elliptic_curves.hom_scalar,

191
sage.schemes.elliptic_curves.hom_velusqrt,

175
sage.schemes.elliptic_curves.isogeny_class,

429
sage.schemes.elliptic_curves.isogeny_small_degree,

203
sage.schemes.elliptic_curves.jacobian, 19
sage.schemes.elliptic_curves.kodaira_symbol,

465
sage.schemes.elliptic_curves.lseries_ell,

512
sage.schemes.elliptic_curves.mod5family,

602
sage.schemes.elliptic_curves.mod_sym_num,

506
sage.schemes.elliptic_curves.modular_parametrization,

498
sage.schemes.elliptic_curves.padic_lseries,

578
sage.schemes.elliptic_curves.period_lattice,

474
sage.schemes.elliptic_curves.period_lattice_region,

493
sage.schemes.elliptic_curves.Qcurves, 452
sage.schemes.elliptic_curves.saturation,

398
sage.schemes.elliptic_curves.sha_tate,

436
sage.schemes.elliptic_curves.weierstrass_morphism,

149
sage.schemes.elliptic_curves.weierstrass_transform,

602
sage.schemes.hyperelliptic_curves.constructor,

607
sage.schemes.hyperelliptic_curves.hypellfrob,

682
sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field,

617
sage.schemes.hyperelliptic_curves.hyperelliptic_g2,

695
sage.schemes.hyperelliptic_curves.hyperelliptic_generic,

609

Index 729

Elliptic curves, Release 9.8

sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field,
632

sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field,
649

sage.schemes.hyperelliptic_curves.invariants,
697

sage.schemes.hyperelliptic_curves.jacobian_g2,
689

sage.schemes.hyperelliptic_curves.jacobian_generic,
684

sage.schemes.hyperelliptic_curves.jacobian_homset,
689

sage.schemes.hyperelliptic_curves.jacobian_morphism,
690

sage.schemes.hyperelliptic_curves.kummer_surface,
701

sage.schemes.hyperelliptic_curves.mestre,
649

sage.schemes.hyperelliptic_curves.monsky_washnitzer,
652

monomial() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 670

monomial_diff_coeffs()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 670

monomial_diff_coeffs_matrices()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 671

monsky_washnitzer()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 671

monsky_washnitzer_gens()
(sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 615

MonskyWashnitzerDifferential (class in
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
653

MonskyWashnitzerDifferentialRing (class in
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
658

MonskyWashnitzerDifferentialRing_class (in
module sage.schemes.hyperelliptic_curves.monsky_washnitzer),
662

montgomery_model() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 77

mult_by_n() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup
method), 135

multiplication_by_m()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 80

multiplication_by_m_isogeny()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 81

mwrank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 283
mwrank_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 285

N
n() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass

method), 557
nearby_rational_poly() (in module

sage.schemes.elliptic_curves.heegner), 576
negation_morphism() (in module

sage.schemes.elliptic_curves.weierstrass_morphism),
152

newform() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 285

newton_sqrt() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 645

ngens() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 285

non_archimedean_local_height()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 53

non_minimal_primes()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 361

non_surjective() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 417

non_surjective() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation
method), 425

nonneg_region() (in module
sage.schemes.elliptic_curves.height), 396

normalise_periods() (in module
sage.schemes.elliptic_curves.period_lattice),
492

normalised_basis() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 488

Np() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 233

numerical_approx() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 532

numerical_approx() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 560

O
odd_degree_model() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

method), 615
omega() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell

method), 488
one() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing

method), 664
one() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

method), 671
optimal_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 286

730 Index

Elliptic curves, Release 9.8

optimal_embeddings()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 553

order() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 122

order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 33

order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
method), 41

order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 54

order() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation
method), 523

order() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm
method), 525

order_of_vanishing()
(sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 582

ordinary_primes() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 286

original_curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 468

P
p1_element() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm

method), 525
p_primary_bound() (sage.schemes.elliptic_curves.sha_tate.Sha

method), 444
p_primary_order() (sage.schemes.elliptic_curves.sha_tate.Sha

method), 446
p_projections() (in module

sage.schemes.elliptic_curves.saturation),
401

p_rank() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 630

p_saturation() (sage.schemes.elliptic_curves.saturation.EllipticCurveSaturator
method), 400

P_to_S() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 632

padic_E2() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 287

padic_elliptic_logarithm()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
method), 42

padic_elliptic_logarithm()
(sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 55

padic_height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 289

padic_height() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 468

padic_height_pairing_matrix()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 291

padic_height_via_multiply()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 292

padic_lseries() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 293

padic_regulator() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 295

padic_regulator() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 469

padic_sigma() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 297

padic_sigma_truncated()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 298

pAdicLseries (class in
sage.schemes.elliptic_curves.padic_lseries),
579

pAdicLseriesOrdinary (class in
sage.schemes.elliptic_curves.padic_lseries),
583

pAdicLseriesSupersingular (class in
sage.schemes.elliptic_curves.padic_lseries),
588

parameter() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 469

parametrisation_onto_original_curve()
(sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 469

parametrisation_onto_tate_curve()
(sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 470

parent() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphism
method), 523

pari_curve() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 82

pari_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 299

pari_mincurve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 300

period_lattice() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 362

period_lattice() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 301

PeriodicRegion (class in
sage.schemes.elliptic_curves.period_lattice_region),
493

PeriodLattice (class in
sage.schemes.elliptic_curves.period_lattice),
476

PeriodLattice_ell (class in
sage.schemes.elliptic_curves.period_lattice),
476

plot() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 124

Index 731

Elliptic curves, Release 9.8

plot() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 83

plot() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 33

plot() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N
method), 538

plot() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond
method), 543

plot() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 560

plot() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 496

point() (sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic
method), 688

point_exact() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 534

point_exact() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 560

point_search() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 301

points() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 124

points() (sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup
method), 405

points() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond
method), 543

points() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 630

pollack_stevens_modular_symbol()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 302

poly_ring() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing
method), 664

possible_isogeny_degrees() (in module
sage.schemes.elliptic_curves.isogeny_class),
434

post_rescaling() (sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformation
method), 604

power_series() (sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization
method), 499

power_series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary
method), 584

power_series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 590

prime() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 463

prime() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve
method), 470

prime() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 583

prime() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing
method), 671

projective_point() (in module
sage.schemes.elliptic_curves.constructor),

16
prove_BSD() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 302
Psi() (in module sage.schemes.elliptic_curves.isogeny_small_degree),

203
psi() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight

method), 388
Psi2() (in module sage.schemes.elliptic_curves.isogeny_small_degree),

204

Q
Q() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing

method), 658
Q() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

method), 669
q_eigenform() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 306
q_expansion() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 306
qf_matrix() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC

method), 431
quadratic_field() (sage.schemes.elliptic_curves.heegner.HeegnerPoint

method), 529
quadratic_field() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc

method), 541
quadratic_field() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg

method), 553
quadratic_field() (sage.schemes.elliptic_curves.heegner.RingClassField

method), 565
quadratic_form() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm

method), 525
quadratic_form() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve

method), 534
quadratic_form() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N

method), 538
quadratic_order() (in module

sage.schemes.elliptic_curves.heegner), 577
quadratic_order() (sage.schemes.elliptic_curves.heegner.HeegnerPoint

method), 529
quadratic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field

method), 107
quadratic_twist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

method), 306
quartic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field

method), 108
quaternion_algebra()

(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 553

R
ramified_primes() (sage.schemes.elliptic_curves.heegner.RingClassField

method), 565
random_element() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field

method), 125

732 Index

Elliptic curves, Release 9.8

random_point() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 126

rank() (sage.schemes.elliptic_curves.ec_database.EllipticCurves
method), 325

rank() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 363

rank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 306

rank_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 307

rank_bounds() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 364

rat_term_CIF() (in module
sage.schemes.elliptic_curves.height), 397

rational_kolyvagin_divisor()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 554

rational_maps() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny
method), 162

rational_maps() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 146

rational_maps() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
method), 188

rational_maps() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius
method), 201

rational_maps() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 194

rational_maps() (sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt
method), 179

rational_maps() (sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism
method), 150

rational_points() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 127

rational_points() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 365

rational_points() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic
method), 615

real_components() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 366

real_components() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 308

real_intersection_is_empty()
(sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 389

real_period() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 489

reduce() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 490

reduce() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 655

reduce_all() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
679

reduce_fast() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential

method), 656
reduce_mod() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level

method), 540
reduce_mod_q() (in module

sage.schemes.elliptic_curves.saturation),
402

reduce_neg_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 656

reduce_neg_y_fast()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 656

reduce_neg_y_faster()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 657

reduce_negative() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
680

reduce_pos_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 657

reduce_pos_y_fast()
(sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential
method), 657

reduce_positive() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
680

reduce_tau() (in module
sage.schemes.elliptic_curves.period_lattice),
493

reduce_zero() (in module
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
681

reduced_quadratic_form()
(sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N
method), 538

reducible_primes() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 366

reducible_primes() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation
method), 418

reducible_primes() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation
method), 426

reducible_primes_Billerey() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
427

reducible_primes_naive() (in module
sage.schemes.elliptic_curves.gal_reps_number_field),
428

reduction() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 367

reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field
method), 56

reduction() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 308

ReductionData (class in
sage.interfaces.genus2reduction), 704

Index 733

Elliptic curves, Release 9.8

refine() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 497

regulator() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 309

regulator_of_points()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 368

reorder() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC
method), 431

residue_disc() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 646

right_ideals() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 554

ring_class_field() (sage.schemes.elliptic_curves.heegner.HeegnerPoint
method), 530

ring_class_field() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond
method), 544

RingClassField (class in
sage.schemes.elliptic_curves.heegner), 562

root_number() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 309

rst_transform() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 84

S
S() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight

method), 381
S_integral_points()

(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 233

S_to_Q() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 632

sage.interfaces.genus2reduction
module, 702

sage.schemes.elliptic_curves.cm
module, 447

sage.schemes.elliptic_curves.constructor
module, 1

sage.schemes.elliptic_curves.descent_two_isogeny
module, 593

sage.schemes.elliptic_curves.ec_database
module, 324

sage.schemes.elliptic_curves.ell_curve_isogeny
module, 153

sage.schemes.elliptic_curves.ell_egros
module, 596

sage.schemes.elliptic_curves.ell_field
module, 89

sage.schemes.elliptic_curves.ell_finite_field
module, 111

sage.schemes.elliptic_curves.ell_generic
module, 59

sage.schemes.elliptic_curves.ell_local_data
module, 457

sage.schemes.elliptic_curves.ell_modular_symbols
module, 500

sage.schemes.elliptic_curves.ell_number_field
module, 326

sage.schemes.elliptic_curves.ell_padic_field
module, 600

sage.schemes.elliptic_curves.ell_point
module, 23

sage.schemes.elliptic_curves.ell_rational_field
module, 231

sage.schemes.elliptic_curves.ell_tate_curve
module, 466

sage.schemes.elliptic_curves.ell_torsion
module, 403

sage.schemes.elliptic_curves.ell_wp
module, 471

sage.schemes.elliptic_curves.formal_group
module, 133

sage.schemes.elliptic_curves.gal_reps
module, 406

sage.schemes.elliptic_curves.gal_reps_number_field
module, 418

sage.schemes.elliptic_curves.gp_simon
module, 601

sage.schemes.elliptic_curves.heegner
module, 521

sage.schemes.elliptic_curves.height
module, 379

sage.schemes.elliptic_curves.hom
module, 141

sage.schemes.elliptic_curves.hom_composite
module, 183

sage.schemes.elliptic_curves.hom_frobenius
module, 197

sage.schemes.elliptic_curves.hom_scalar
module, 191

sage.schemes.elliptic_curves.hom_velusqrt
module, 175

sage.schemes.elliptic_curves.isogeny_class
module, 429

sage.schemes.elliptic_curves.isogeny_small_degree
module, 203

sage.schemes.elliptic_curves.jacobian
module, 19

sage.schemes.elliptic_curves.kodaira_symbol
module, 465

sage.schemes.elliptic_curves.lseries_ell
module, 512

sage.schemes.elliptic_curves.mod5family
module, 602

sage.schemes.elliptic_curves.mod_sym_num
module, 506

sage.schemes.elliptic_curves.modular_parametrization
module, 498

734 Index

Elliptic curves, Release 9.8

sage.schemes.elliptic_curves.padic_lseries
module, 578

sage.schemes.elliptic_curves.period_lattice
module, 474

sage.schemes.elliptic_curves.period_lattice_region
module, 493

sage.schemes.elliptic_curves.Qcurves
module, 452

sage.schemes.elliptic_curves.saturation
module, 398

sage.schemes.elliptic_curves.sha_tate
module, 436

sage.schemes.elliptic_curves.weierstrass_morphism
module, 149

sage.schemes.elliptic_curves.weierstrass_transform
module, 602

sage.schemes.hyperelliptic_curves.constructor
module, 607

sage.schemes.hyperelliptic_curves.hypellfrob
module, 682

sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field
module, 617

sage.schemes.hyperelliptic_curves.hyperelliptic_g2
module, 695

sage.schemes.hyperelliptic_curves.hyperelliptic_generic
module, 609

sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field
module, 632

sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field
module, 649

sage.schemes.hyperelliptic_curves.invariants
module, 697

sage.schemes.hyperelliptic_curves.jacobian_g2
module, 689

sage.schemes.hyperelliptic_curves.jacobian_generic
module, 684

sage.schemes.hyperelliptic_curves.jacobian_homset
module, 689

sage.schemes.hyperelliptic_curves.jacobian_morphism
module, 690

sage.schemes.hyperelliptic_curves.kummer_surface
module, 701

sage.schemes.hyperelliptic_curves.mestre
module, 649

sage.schemes.hyperelliptic_curves.monsky_washnitzer
module, 652

satisfies_heegner_hypothesis() (in module
sage.schemes.elliptic_curves.heegner), 577

satisfies_heegner_hypothesis()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 310

satisfies_heegner_hypothesis()
(sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg
method), 554

satisfies_kolyvagin_hypothesis()
(sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 535

satisfies_kolyvagin_hypothesis()
(sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond
method), 544

satisfies_kolyvagin_hypothesis()
(sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 561

satisfies_weak_heegner_hypothesis() (in module
sage.schemes.elliptic_curves.heegner), 577

saturation() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 370

saturation() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 310

scalar_multiplication()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 84

scalar_multiply() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement
method), 665

scale_curve() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 85

scaling_factor() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny
method), 162

scaling_factor() (sage.schemes.elliptic_curves.hom.EllipticCurveHom
method), 146

scaling_factor() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite
method), 188

scaling_factor() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius
method), 201

scaling_factor() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 195

scaling_factor() (sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt
method), 179

scaling_factor() (sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism
method), 150

scheme() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 33

scheme() (sage.schemes.hyperelliptic_curves.jacobian_morphism.JacobianMorphism_divisor_class_field
method), 691

selmer_rank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 311

series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary
method), 586

series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular
method), 591

set_order() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 128

set_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 34

sextic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 108

Sha (class in sage.schemes.elliptic_curves.sha_tate), 437
sha() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field

Index 735

Elliptic curves, Release 9.8

method), 312
shift() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement

method), 665
short_weierstrass_model()

(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 85

sigma() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup
method), 136

sigma() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 490

sign() (sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol
method), 502

silverman_height_bound()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 312

simon_two_descent() (in module
sage.schemes.elliptic_curves.gp_simon),
601

simon_two_descent()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 371

simon_two_descent()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 313

simplest_rational_poly() (in module
sage.schemes.elliptic_curves.heegner), 578

Sn() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 381

solve_linear_differential_system() (in module
sage.schemes.elliptic_curves.ell_wp), 473

SpecialCubicQuotientRing (class in
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
662

SpecialCubicQuotientRingElement (class in
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
664

SpecialHyperellipticQuotientElement (class in
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
666

SpecialHyperellipticQuotientRing (class in
sage.schemes.hyperelliptic_curves.monsky_washnitzer),
668

SpecialHyperellipticQuotientRing_class (in
module sage.schemes.hyperelliptic_curves.monsky_washnitzer),
672

split_kernel_polynomial() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
171

square() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement
method), 665

Step4Test() (in module
sage.schemes.elliptic_curves.Qcurves), 452

supersingular_j_polynomial() (in module
sage.schemes.elliptic_curves.ell_finite_field),

131
supersingular_primes()

(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 315

sympow() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 517

sympow_derivs() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 517

T
tamagawa_exponent()

(sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 463

tamagawa_exponent()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 373

tamagawa_exponent()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 315

tamagawa_number() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData
method), 464

tamagawa_number() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 374

tamagawa_number() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 316

tamagawa_number_old()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 316

tamagawa_numbers() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 374

tamagawa_product() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 375

tamagawa_product() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 316

tamagawa_product_bsd()
(sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 375

tangent_at_smooth_point() (in module
sage.schemes.elliptic_curves.constructor),
16

tate_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 316

tate_pairing() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 35

TateCurve (class in sage.schemes.elliptic_curves.ell_tate_curve),
466

tau() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve
method), 535

tau() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N
method), 539

tau() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 390

tau() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell
method), 491

736 Index

Elliptic curves, Release 9.8

taylor_series() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 518

teichmuller() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries
method), 583

teichmuller() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 646

test_els() (in module
sage.schemes.elliptic_curves.descent_two_isogeny),
593

test_mu() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 390

test_padic_square() (in module
sage.schemes.elliptic_curves.descent_two_isogeny),
593

test_qpls() (in module
sage.schemes.elliptic_curves.descent_two_isogeny),
593

test_valuation() (in module
sage.schemes.elliptic_curves.descent_two_isogeny),
593

three_selmer_rank()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 317

tiny_integrals() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 647

tiny_integrals_on_basis()
(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 648

torsion_bound() (in module
sage.schemes.elliptic_curves.ell_torsion),
405

torsion_order() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 376

torsion_order() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 318

torsion_points() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 377

torsion_points() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 318

torsion_polynomial()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 86

torsion_subgroup() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field
method), 378

torsion_subgroup() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 319

trace_of_frobenius()
(sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field
method), 129

trace_to_real_numerical()
(sage.schemes.elliptic_curves.heegner.KolyvaginPoint
method), 561

transportable_symbol()
(sage.schemes.elliptic_curves.mod_sym_num.ModularSymbolNumerical

method), 511
transpose_list() (in module

sage.schemes.hyperelliptic_curves.monsky_washnitzer),
681

truncate_neg() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement
method), 668

tuple() (sage.schemes.elliptic_curves.weierstrass_morphism.baseWI
method), 152

twist_values() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 518

twist_zeros() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 519

two_descent() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 320

two_descent_by_two_isogeny() (in module
sage.schemes.elliptic_curves.descent_two_isogeny),
594

two_descent_by_two_isogeny_work() (in module
sage.schemes.elliptic_curves.descent_two_isogeny),
595

two_descent_simon()
(sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field
method), 320

two_division_polynomial()
(sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic
method), 88

two_selmer_bound() (sage.schemes.elliptic_curves.sha_tate.Sha
method), 446

two_torsion_part() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
172

two_torsion_rank() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field
method), 109

U
ubs() (in module sage.schemes.hyperelliptic_curves.invariants),

700
Ueberschiebung() (in module

sage.schemes.hyperelliptic_curves.invariants),
697

unfill_isogeny_matrix() (in module
sage.schemes.elliptic_curves.ell_curve_isogeny),
172

union() (sage.schemes.elliptic_curves.height.UnionOfIntervals
class method), 395

UnionOfIntervals (class in
sage.schemes.elliptic_curves.height), 393

V
value_ring() (sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes

method), 690
values_along_line()

(sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 520

Index 737

Elliptic curves, Release 9.8

verify() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
method), 497

W
w() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup

method), 137
w1 (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion

attribute), 498
w2 (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion

attribute), 498
weierstrass_p() (in module

sage.schemes.elliptic_curves.ell_wp), 473
weierstrass_p() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field

method), 109
weierstrass_points()

(sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 648

WeierstrassIsomorphism (class in
sage.schemes.elliptic_curves.weierstrass_morphism),
149

WeierstrassTransformation (class in
sage.schemes.elliptic_curves.weierstrass_transform),
603

WeierstrassTransformationWithInverse() (in
module sage.schemes.elliptic_curves.weierstrass_transform),
604

WeierstrassTransformationWithInverse_class
(class in sage.schemes.elliptic_curves.weierstrass_transform),
605

weil_pairing() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 37

wp_c() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 391

wp_intervals() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 391

wp_on_grid() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight
method), 392

X
x() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup

method), 138
x() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

method), 672
x_poly_exact() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve

method), 535
x_rational_map() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny

method), 162
x_rational_map() (sage.schemes.elliptic_curves.hom.EllipticCurveHom

method), 147
x_rational_map() (sage.schemes.elliptic_curves.hom_composite.EllipticCurveHom_composite

method), 189
x_rational_map() (sage.schemes.elliptic_curves.hom_frobenius.EllipticCurveHom_frobenius

method), 201

x_rational_map() (sage.schemes.elliptic_curves.hom_scalar.EllipticCurveHom_scalar
method), 195

x_rational_map() (sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt
method), 179

x_rational_map() (sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism
method), 151

x_to_p() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing
method), 662

xy() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field
method), 38

Y
y() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup

method), 138
y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

method), 672

Z
zero() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

method), 672
zero_sums() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell

method), 520
zeros() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell

method), 520
zeros_in_interval()

(sage.schemes.elliptic_curves.lseries_ell.Lseries_ell
method), 521

zeta_function() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 631

738 Index

	Elliptic curve constructor
	Construct elliptic curves as Jacobians
	Points on elliptic curves
	Elliptic curves over a general ring
	Elliptic curves over a general field
	Elliptic curves over finite fields
	Formal groups of elliptic curves
	Elliptic-curve morphisms
	Isomorphisms between Weierstrass models of elliptic curves
	Isogenies
	√élu algorithm for elliptic-curve isogenies
	Composite morphisms of elliptic curves
	Scalar-multiplication morphisms of elliptic curves
	Frobenius isogenies of elliptic curves
	Isogenies of small prime degree
	Elliptic curves over number fields
	Elliptic curves over the rational numbers
	Tables of elliptic curves of given rank
	Elliptic curves over number fields
	Canonical heights for elliptic curves over number fields
	Saturation of Mordell-Weil groups of elliptic curves over number fields
	Torsion subgroups of elliptic curves over number fields (including Q)
	Galois representations attached to elliptic curves
	Galois representations for elliptic curves over number fields
	Isogeny class of elliptic curves over number fields
	Tate-Shafarevich group
	Complex multiplication for elliptic curves
	Testing whether elliptic curves over number fields are Q-curves
	Local data for elliptic curves over number fields
	Kodaira symbols
	Tate’s parametrisation of p-adic curves with multiplicative reduction
	Weierstrass -function for elliptic curves
	Period lattices of elliptic curves and related functions
	Regions in fundamental domains of period lattices
	Modular parametrization of elliptic curves over Q
	Modular symbols attached to elliptic curves over Q
	Modular symbols by numerical integration
	L-series for elliptic curves
	Heegner points on elliptic curves over the rational numbers
	p-adic L-functions of elliptic curves

	To be sorted
	Descent on elliptic curves over Q with a 2-isogeny
	Elliptic curves with prescribed good reduction
	Elliptic curves over padic fields
	Denis Simon’s PARI scripts
	Elliptic curves with congruent mod-5 representation
	Morphism to bring a genus-one curve into Weierstrass form

	Hyperelliptic curves
	Hyperelliptic curve constructor
	Hyperelliptic curves over a general ring
	Hyperelliptic curves over a finite field
	Hyperelliptic curves over a p-adic field
	Hyperelliptic curves over the rationals
	Mestre’s algorithm
	Computation of Frobenius matrix on Monsky-Washnitzer cohomology
	Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve over a
	Jacobian of a general hyperelliptic curve
	Jacobian of a hyperelliptic curve of genus 2
	Rational point sets on a Jacobian
	Jacobian ‘morphism’ as a class in the Picard group
	Hyperelliptic curves of genus 2 over a general ring
	Compute invariants of quintics and sextics via ‘Ueberschiebung’
	Kummer surfaces over a general ring
	Conductor and reduction types for genus 2 curves

	Indices and Tables
	Bibliography
	Python Module Index
	Index

