
Curves
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Curve constructor 1

2 Base class of curves 5

3 Affine curves 13

4 Projective curves 39

5 Rational points of curves 67

6 Closed points of integral curves 75

7 Jacobians of curves 81

8 Plane conics 83

9 Plane quartics 111

10 Riemann surfaces 113

11 Indices and Tables 139

Python Module Index 141

Index 143

i

ii

CHAPTER

ONE

CURVE CONSTRUCTOR

Curves are constructed through the curve constructor, after an ambient space is defined either explicitly or implicitly.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: Curve([y - x^2], A)
Affine Plane Curve over Rational Field defined by -x^2 + y

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: Curve(y^2*z^7 - x^9 - x*z^8)
Projective Plane Curve over Finite Field of size 5 defined by -x^9 + y^2*z^7 - x*z^8

AUTHORS:

• William Stein (2005-11-13)

• David Kohel (2006-01)

• Grayson Jorgenson (2016-06)

sage.schemes.curves.constructor.Curve(F, A=None)
Return the plane or space curve defined by F, where F can be either a multivariate polynomial, a list or tuple of
polynomials, or an algebraic scheme.

If no ambient space is passed in for A, and if F is not an algebraic scheme, a new ambient space is constructed.

Also not specifying an ambient space will cause the curve to be defined in either affine or projective space based
on properties of F. In particular, if F contains a nonhomogeneous polynomial, the curve is affine, and if F consists
of homogeneous polynomials, then the curve is projective.

INPUT:

• F – a multivariate polynomial, or a list or tuple of polynomials, or an algebraic scheme.

• A – (default: None) an ambient space in which to create the curve.

EXAMPLES: A projective plane curve.

sage: x,y,z = QQ['x,y,z'].gens()
sage: C = Curve(x^3 + y^3 + z^3); C
Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
sage: C.genus()
1

Affine plane curves.

1

Curves, Release 9.8

sage: x,y = GF(7)['x,y'].gens()
sage: C = Curve(y^2 + x^3 + x^10); C
Affine Plane Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2
sage: C.genus()
0
sage: x, y = QQ['x,y'].gens()
sage: Curve(x^3 + y^3 + 1)
Affine Plane Curve over Rational Field defined by x^3 + y^3 + 1

A projective space curve.

sage: x,y,z,w = QQ['x,y,z,w'].gens()
sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C
Projective Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4
sage: C.genus()
13

An affine space curve.

sage: x,y,z = QQ['x,y,z'].gens()
sage: C = Curve([y^2 + x^3 + x^10 + z^7, x^2 + y^2]); C
Affine Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2
sage: C.genus()
47

We can also make non-reduced non-irreducible curves.

sage: x,y,z = QQ['x,y,z'].gens()
sage: Curve((x-y)*(x+y))
Projective Conic Curve over Rational Field defined by x^2 - y^2
sage: Curve((x-y)^2*(x+y)^2)
Projective Plane Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4

A union of curves is a curve.

sage: x,y,z = QQ['x,y,z'].gens()
sage: C = Curve(x^3 + y^3 + z^3)
sage: D = Curve(x^4 + y^4 + z^4)
sage: C.union(D)
Projective Plane Curve over Rational Field defined by
x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7

The intersection is not a curve, though it is a scheme.

sage: X = C.intersection(D); X
Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
x^3 + y^3 + z^3,
x^4 + y^4 + z^4

Note that the intersection has dimension 0.

sage: X.dimension()
0
sage: I = X.defining_ideal(); I

(continues on next page)

2 Chapter 1. Curve constructor

Curves, Release 9.8

(continued from previous page)

Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z␣
→˓over Rational Field

If only a polynomial in three variables is given, then it must be homogeneous such that a projective curve is
constructed.

sage: x,y,z = QQ['x,y,z'].gens()
sage: Curve(x^2+y^2)
Projective Conic Curve over Rational Field defined by x^2 + y^2
sage: Curve(x^2+y^2+z)
Traceback (most recent call last):
...
TypeError: x^2 + y^2 + z is not a homogeneous polynomial

An ambient space can be specified to construct a space curve in an affine or a projective space.

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y - x^2, z - x^3], A)
sage: C
Affine Curve over Rational Field defined by -x^2 + y, -x^3 + z
sage: A == C.ambient_space()
True

The defining polynomial must be nonzero unless the ambient space itself is of dimension 1.

sage: P1.<x,y> = ProjectiveSpace(1,GF(5))
sage: S = P1.coordinate_ring()
sage: Curve(S(0), P1)
Projective Line over Finite Field of size 5
sage: Curve(P1)
Projective Line over Finite Field of size 5

sage: A1.<x> = AffineSpace(1, QQ)
sage: R = A1.coordinate_ring()
sage: Curve(R(0), A1)
Affine Line over Rational Field
sage: Curve(A1)
Affine Line over Rational Field

3

Curves, Release 9.8

4 Chapter 1. Curve constructor

CHAPTER

TWO

BASE CLASS OF CURVES

This module defines the base class of curves in Sage.

Curves in Sage are reduced subschemes of dimension 1 of an ambient space. The ambient space is either an affine
space or a projective space.

EXAMPLES:

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([x - y, z - 2])
sage: C
Affine Curve over Rational Field defined by x - y, z - 2
sage: C.dimension()
1

AUTHORS:

• William Stein (2005)

class sage.schemes.curves.curve.Curve_generic(A, polynomials)
Bases: AlgebraicScheme_subscheme

Generic curve class.

EXAMPLES:

sage: A.<x,y,z> = AffineSpace(QQ,3)
sage: C = Curve([x-y,z-2])
sage: loads(C.dumps()) == C
True

change_ring(R)
Return a new curve which is this curve coerced to R.

INPUT:

• R – ring or embedding

OUTPUT: a new curve which is this curve coerced to R

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^2 - y^2, z*y - 4/5*w^2], P)
sage: C.change_ring(QuadraticField(-1))
Projective Curve over Number Field in a with defining polynomial x^2 + 1 with a␣
→˓= 1*I defined by x^2 - y^2, y*z - 4/5*w^2

5

../../../../../../../html/en/reference/schemes/sage/schemes/generic/algebraic_scheme.html#sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme

Curves, Release 9.8

sage: R.<a> = QQ[]
sage: K. = NumberField(a^3 + a^2 - 1)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([K.0*x^2 - x + y^3 - 11], A)
sage: L = K.embeddings(QQbar)
sage: set_verbose(-1) # suppress warnings for slow computation
sage: C.change_ring(L[0])
Affine Plane Curve over Algebraic Field defined by y^3 +
(-0.8774388331233464? - 0.744861766619745?*I)*x^2 - x - 11

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([y*x - 18*x^2 + 17*z^2])
sage: C.change_ring(GF(17))
Projective Plane Curve over Finite Field of size 17 defined by -x^2 + x*y

defining_polynomial()

Return the defining polynomial of the curve.

EXAMPLES:

sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.defining_polynomial()
-x^3 + y^2*z - 17*x*z^2 + y*z^2

dimension()

Return the dimension of the curve.

Curves have dimension one by definition.

EXAMPLES:

sage: x = polygen(QQ)
sage: C = HyperellipticCurve(x^7 + x^4 + x)
sage: C.dimension()
1
sage: from sage.schemes.projective.projective_subscheme import AlgebraicScheme_
→˓subscheme_projective
sage: AlgebraicScheme_subscheme_projective.dimension(C)
1

divisor(v, base_ring=None, check=True, reduce=True)
Return the divisor specified by v.

Warning: The coefficients of the divisor must be in the base ring and the terms must be reduced. If
you set check=False and/or reduce=False it is your responsibility to pass a valid object v.

EXAMPLES:

sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)

6 Chapter 2. Base class of curves

Curves, Release 9.8

divisor_group(base_ring=None)
Return the divisor group of the curve.

INPUT:

• base_ring – the base ring of the divisor group. Usually, this is Z (default) or Q.

OUTPUT: the divisor group of the curve

EXAMPLES:

sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: Cp = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.divisor_group() is Cp.divisor_group()
True

genus()

Return the geometric genus of the curve.

EXAMPLES:

sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.genus()
1

geometric_genus()

Return the geometric genus of the curve.

This is by definition the genus of the normalization of the projective closure of the curve over the algebraic
closure of the base field; the base field must be a prime field.

Note: This calls Singular’s genus command.

EXAMPLES:

Examples of projective curves.

sage: P2 = ProjectiveSpace(2, GF(5), names=['x','y','z'])
sage: x, y, z = P2.coordinate_ring().gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.geometric_genus()

1
sage: C = Curve(y^2*z - x^3)
sage: C.geometric_genus()

0
sage: C = Curve(x^10 + y^7*z^3 + z^10)
sage: C.geometric_genus()

3

Examples of affine curves.

sage: x, y = PolynomialRing(GF(5), 2, 'xy').gens()
sage: C = Curve(y^2 - x^3 - 17*x + y)
sage: C.geometric_genus()

(continues on next page)

7

Curves, Release 9.8

(continued from previous page)

1
sage: C = Curve(y^2 - x^3)
sage: C.geometric_genus()
0
sage: C = Curve(x^10 + y^7 + 1)
sage: C.geometric_genus()
3

intersection_points(C, F=None)
Return the points in the intersection of this curve and the curve C.

If the intersection of these two curves has dimension greater than zero, and if the base ring of this curve is
not a finite field, then an error is returned.

INPUT:

• C – a curve in the same ambient space as this curve

• F – (default: None); field over which to compute the intersection points; if not specified, the base ring
of this curve is used

OUTPUT: a list of points in the ambient space of this curve

EXAMPLES:

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 + a + 1)
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y^2 - w*z, w^3 - y^3], P)
sage: D = Curve([x*y - w*z, z^3 - y^3], P)
sage: C.intersection_points(D, F=K)
[(-b - 1 : -b - 1 : b : 1), (b : b : -b - 1 : 1), (1 : 0 : 0 : 0),
(1 : 1 : 1 : 1)]

sage: A.<x,y> = AffineSpace(GF(7), 2)
sage: C = Curve([y^3 - x^3], A)
sage: D = Curve([-x*y^3 + y^4 - 2*x^3 + 2*x^2*y], A)
sage: C.intersection_points(D)
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 3), (5, 5), (5, 6),
(6, 6)]

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^3 - x^3], A)
sage: D = Curve([-x*y^3 + y^4 - 2*x^3 + 2*x^2*y], A)
sage: C.intersection_points(D)
Traceback (most recent call last):
...
NotImplementedError: the intersection must have dimension zero or
(=Rational Field) must be a finite field

intersects_at(C, P)
Return whether the point P is or is not in the intersection of this curve with the curve C.

INPUT:

• C – a curve in the same ambient space as this curve.

8 Chapter 2. Base class of curves

Curves, Release 9.8

• P – a point in the ambient space of this curve.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^2 - z^2, y^3 - w*x^2], P)
sage: D = Curve([w^2 - 2*x*y + z^2, y^2 - w^2], P)
sage: Q1 = P([1,1,-1,1])
sage: C.intersects_at(D, Q1)
True
sage: Q2 = P([0,0,1,-1])
sage: C.intersects_at(D, Q2)
False

sage: A.<x,y> = AffineSpace(GF(13), 2)
sage: C = Curve([y + 12*x^5 + 3*x^3 + 7], A)
sage: D = Curve([y^2 + 7*x^2 + 8], A)
sage: Q1 = A([9,6])
sage: C.intersects_at(D, Q1)
True
sage: Q2 = A([3,7])
sage: C.intersects_at(D, Q2)
False

is_singular(P=None)
Return whether P is a singular point of this curve, or if no point is passed, whether this curve is singular or
not.

This just uses the is_smooth function for algebraic subschemes.

INPUT:

• P – (default: None) a point on this curve

OUTPUT:

A boolean. If a point P is provided, and if P lies on this curve, returns True if P is a singular point of this
curve, and False otherwise. If no point is provided, returns True or False depending on whether this curve
is or is not singular, respectively.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = P.curve([y^2 - x^2 - z^2, z - w])
sage: C.is_singular()
False

sage: A.<x,y,z> = AffineSpace(GF(11), 3)
sage: C = A.curve([y^3 - z^5, x^5 - y + 1])
sage: Q = A([7,0,0])
sage: C.is_singular(Q)
True

singular_points(F=None)
Return the set of singular points of this curve.

INPUT:

9

Curves, Release 9.8

• F – (default: None) field over which to find the singular points; if not given, the base ring of this curve
is used

OUTPUT: a list of points in the ambient space of this curve

EXAMPLES:

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y^2 - x^5, x - z], A)
sage: C.singular_points()
[(0, 0, 0)]

sage: R.<a> = QQ[]
sage: K. = NumberField(a^8 - a^4 + 1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([359/12*x*y^2*z^2 + 2*y*z^4 + 187/12*y^3*z^2 + x*z^4\
+ 67/3*x^2*y*z^2 + 117/4*y^5 + 9*x^5 + 6*x^3*z^2 + 393/4*x*y^4\
+ 145*x^2*y^3 + 115*x^3*y^2 + 49*x^4*y], P)
sage: sorted(C.singular_points(K), key=str)
[(-1/2*b^5 - 1/2*b^3 + 1/2*b - 1 : 1 : 0),
(-2/3*b^4 + 1/3 : 0 : 1),
(-b^6 : b^6 : 1),
(1/2*b^5 + 1/2*b^3 - 1/2*b - 1 : 1 : 0),
(2/3*b^4 - 1/3 : 0 : 1),
(b^6 : -b^6 : 1)]

singular_subscheme()

Return the subscheme of singular points of this curve.

OUTPUT:

• a subscheme in the ambient space of this curve.

EXAMPLES:

sage: A.<x,y> = AffineSpace(CC, 2)
sage: C = Curve([y^4 - 2*x^5 - x^2*y], A)
sage: C.singular_subscheme()
Closed subscheme of Affine Space of dimension 2 over Complex Field
with 53 bits of precision defined by:
(-2.00000000000000)*x^5 + y^4 - x^2*y,
(-10.0000000000000)*x^4 + (-2.00000000000000)*x*y,
4.00000000000000*y^3 - x^2

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y^8 - x^2*z*w^5, w^2 - 2*y^2 - x*z], P)
sage: C.singular_subscheme()
Closed subscheme of Projective Space of dimension 3 over Rational
Field defined by:
y^8 - x^2*z*w^5,
-2*y^2 - x*z + w^2,
-x^3*y*z^4 + 3*x^2*y*z^3*w^2 - 3*x*y*z^2*w^4 + 8*x*y*z*w^5 + y*z*w^6,
x^2*z*w^5,
-5*x^2*z^2*w^4 - 4*x*z*w^6,
x^4*y*z^3 - 3*x^3*y*z^2*w^2 + 3*x^2*y*z*w^4 - 4*x^2*y*w^5 - x*y*w^6,

(continues on next page)

10 Chapter 2. Base class of curves

Curves, Release 9.8

(continued from previous page)

-2*x^3*y*z^3*w + 6*x^2*y*z^2*w^3 - 20*x^2*y*z*w^4 - 6*x*y*z*w^5 +
2*y*w^7,
-5*x^3*z*w^4 - 2*x^2*w^6

union(other)
Return the union of self and other.

EXAMPLES:

sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C1 = Curve(z - x)
sage: C2 = Curve(y - x)
sage: C1.union(C2).defining_polynomial()
x^2 - x*y - x*z + y*z

11

Curves, Release 9.8

12 Chapter 2. Base class of curves

CHAPTER

THREE

AFFINE CURVES

Affine curves in Sage are curves in an affine space or an affine plane.

EXAMPLES:

We can construct curves in either an affine plane:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y - x^2], A); C
Affine Plane Curve over Rational Field defined by -x^2 + y

or in higher dimensional affine space:

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = Curve([y - x^2, z - w^3, w - y^4], A); C
Affine Curve over Rational Field defined by -x^2 + y, -w^3 + z, -y^4 + w

3.1 Integral affine curves over finite fields

If the curve is defined over a finite field and integral, that is reduced and irreducible, its function field is tightly coupled
with the curve so that advanced computations based on Sage’s global function field machinery are available.

EXAMPLES:

sage: k.<a> = GF(2)
sage: A.<x,y,z> = AffineSpace(k, 3)
sage: C = Curve([x^2 + x - y^3, y^4 - y - z^3], A)
sage: C.genus()
10
sage: C.function_field()
Function field in z defined by z^9 + x^8 + x^6 + x^5 + x^4 + x^3 + x

Closed points of arbitrary degree can be computed:

sage: C.closed_points()
[Point (x, y, z), Point (x + 1, y, z)]
sage: C.closed_points(2)
[Point (x^2 + x + 1, y + 1, z),
Point (y^2 + y + 1, x + y, z),
Point (y^2 + y + 1, x + y + 1, z)]
sage: p = _[0]

(continues on next page)

13

Curves, Release 9.8

(continued from previous page)

sage: p.places()
[Place (x^2 + x + 1, (1/(x^4 + x^2 + 1))*z^7 + (1/(x^4 + x^2 + 1))*z^6 + 1)]

The places at infinity correspond to the extra closed points of the curve’s projective closure:

sage: C.places_at_infinity()
[Place (1/x, 1/x*z)]

It is easy to transit to and from the function field of the curve:

sage: fx = C(x)
sage: fy = C(y)
sage: fx^2 + fx - fy^3
0
sage: fx.divisor()
-9*Place (1/x, 1/x*z)
+ 9*Place (x, z)
sage: p, = fx.zeros()
sage: C.place_to_closed_point(p)
Point (x, y, z)
sage: _.rational_point()
(0, 0, 0)
sage: _.closed_point()
Point (x, y, z)
sage: _.place()
Place (x, z)

3.2 Integral affine curves over Q

An integral curve overQ is equipped also with the function field. Unlike over finite fields, it is not possible to enumerate
closed points.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve(x^2 + y^2 -1)
sage: p = C(0,1)
sage: p
(0, 1)
sage: p.closed_point()
Point (x, y - 1)
sage: pl = _.place()
sage: C.parametric_representation(pl)
(s + ..., 1 - 1/2*s^2 - 1/8*s^4 - 1/16*s^6 + ...)
sage: sx, sy = _
sage: sx = sx.polynomial(10); sx
s
sage: sy = sy.polynomial(10); sy
-7/256*s^10 - 5/128*s^8 - 1/16*s^6 - 1/8*s^4 - 1/2*s^2 + 1
sage: s = var('s')
sage: P1 = parametric_plot([sx, sy], (s, -1, 1), color='red')

(continues on next page)

14 Chapter 3. Affine curves

Curves, Release 9.8

(continued from previous page)

sage: P2 = C.plot((x, -1, 1), (y, 0, 2)) # half circle
sage: P1 + P2
Graphics object consisting of 2 graphics primitives

AUTHORS:

• William Stein (2005-11-13)

• David Joyner (2005-11-13)

• David Kohel (2006-01)

• Grayson Jorgenson (2016-08)

• Kwankyu Lee (2019-05): added integral affine curves

class sage.schemes.curves.affine_curve.AffineCurve(A, X)
Bases: Curve_generic, AlgebraicScheme_subscheme_affine

Affine curves.

EXAMPLES:

sage: R.<v> = QQ[]
sage: K.<u> = NumberField(v^2 + 3)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = Curve([z - u*x^2, y^2], A); C
Affine Curve over Number Field in u with defining polynomial v^2 + 3
defined by (-u)*x^2 + z, y^2

sage: A.<x,y,z> = AffineSpace(GF(7), 3)
sage: C = Curve([x^2 - z, z - 8*x], A); C
Affine Curve over Finite Field of size 7 defined by x^2 - z, -x + z

projective_closure(i=0, PP=None)
Return the projective closure of this affine curve.

INPUT:

• i – (default: 0) the index of the affine coordinate chart of the projective space that the affine ambient
space of this curve embeds into.

• PP – (default: None) ambient projective space to compute the projective closure in. This is constructed
if it is not given.

OUTPUT:

• a curve in projective space.

EXAMPLES:

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y-x^2,z-x^3], A)
sage: C.projective_closure()
Projective Curve over Rational Field defined by x1^2 - x0*x2,
x1*x2 - x0*x3, x2^2 - x1*x3

3.2. Integral affine curves over Q 15

../../../../../../../html/en/reference/schemes/sage/schemes/affine/affine_subscheme.html#sage.schemes.affine.affine_subscheme.AlgebraicScheme_subscheme_affine

Curves, Release 9.8

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y - x^2, z - x^3], A)
sage: C.projective_closure()
Projective Curve over Rational Field defined by
x1^2 - x0*x2, x1*x2 - x0*x3, x2^2 - x1*x3

sage: A.<x,y> = AffineSpace(CC, 2)
sage: C = Curve(y - x^3 + x - 1, A)
sage: C.projective_closure(1)
Projective Plane Curve over Complex Field with 53 bits of precision defined by
x0^3 - x0*x1^2 + x1^3 - x1^2*x2

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y - x^2], A)
sage: C.projective_closure(1, P).ambient_space() == P
True

class sage.schemes.curves.affine_curve.AffineCurve_field(A, X)
Bases: AffineCurve, AlgebraicScheme_subscheme_affine_field

Affine curves over fields.

blowup(P=None)
Return the blow up of this affine curve at the point P.

The blow up is described by affine charts. This curve must be irreducible.

INPUT:

• P – (default: None) a point on this curve at which to blow up; if None, then P is taken to be the origin.

OUTPUT: a tuple of

• a tuple of curves in affine space of the same dimension as the ambient space of this curve, which define
the blow up in each affine chart.

• a tuple of tuples such that the jth element of the ith tuple is the transition map from the ith affine patch
to the jth affine patch.

• a tuple consisting of the restrictions of the projection map from the blow up back to the original curve,
restricted to each affine patch. There the ith element will be the projection from the ith affine patch.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: C.blowup()
((Affine Plane Curve over Rational Field defined by s1^2 - x,
Affine Plane Curve over Rational Field defined by y*s0^3 - 1),

([Scheme endomorphism of Affine Plane Curve over Rational Field defined by s1^2␣
→˓- x

Defn: Defined on coordinates by sending (x, s1) to
(x, s1), Scheme morphism:

From: Affine Plane Curve over Rational Field defined by s1^2 - x
To: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
Defn: Defined on coordinates by sending (x, s1) to

(continues on next page)

16 Chapter 3. Affine curves

../../../../../../../html/en/reference/schemes/sage/schemes/affine/affine_subscheme.html#sage.schemes.affine.affine_subscheme.AlgebraicScheme_subscheme_affine_field

Curves, Release 9.8

(continued from previous page)

(x*s1, 1/s1)], [Scheme morphism:
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
To: Affine Plane Curve over Rational Field defined by s1^2 - x
Defn: Defined on coordinates by sending (y, s0) to

(y*s0, 1/s0),
Scheme endomorphism of Affine Plane Curve over Rational Field defined by y*s0^

→˓3 - 1
Defn: Defined on coordinates by sending (y, s0) to

(y, s0)]),
(Scheme morphism:

From: Affine Plane Curve over Rational Field defined by s1^2 - x
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
Defn: Defined on coordinates by sending (x, s1) to

(x, x*s1), Scheme morphism:
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
Defn: Defined on coordinates by sending (y, s0) to

(y*s0, y)))

sage: K.<a> = QuadraticField(2)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = Curve([y^2 - a*x^5, x - z], A)
sage: B = C.blowup()
sage: B[0]
(Affine Curve over Number Field in a with defining polynomial x^2 - 2 with a =␣
→˓1.414213562373095? defined by s2 - 1, 2*x^3 + (-a)*s1^2,
Affine Curve over Number Field in a with defining polynomial x^2 - 2 with a =␣
→˓1.414213562373095? defined by s0 - s2, 2*y^3*s2^5 + (-a),
Affine Curve over Number Field in a with defining polynomial x^2 - 2 with a =␣
→˓1.414213562373095? defined by s0 - 1, 2*z^3 + (-a)*s1^2)
sage: B[1][0][2]
Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣

→˓with a = 1.414213562373095? defined by s2 - 1, 2*x^3 + (-a)*s1^2
To: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣

→˓with a = 1.414213562373095? defined by s0 - 1, 2*z^3 + (-a)*s1^2
Defn: Defined on coordinates by sending (x, s1, s2) to

(x*s2, 1/s2, s1/s2)
sage: B[1][2][0]
Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣

→˓with a = 1.414213562373095? defined by s0 - 1, 2*z^3 + (-a)*s1^2
To: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣

→˓with a = 1.414213562373095? defined by s2 - 1, 2*x^3 + (-a)*s1^2
Defn: Defined on coordinates by sending (z, s0, s1) to

(z*s0, s1/s0, 1/s0)
sage: B[2]
(Scheme morphism:

From: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣
→˓with a = 1.414213562373095? defined by s2 - 1, 2*x^3 + (-a)*s1^2

To: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣
→˓with a = 1.414213562373095? defined by (-a)*x^5 + y^2, x - z

(continues on next page)

3.2. Integral affine curves over Q 17

Curves, Release 9.8

(continued from previous page)

Defn: Defined on coordinates by sending (x, s1, s2) to
(x, x*s1, x*s2), Scheme morphism:

From: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣
→˓with a = 1.414213562373095? defined by s0 - s2, 2*y^3*s2^5 + (-a)

To: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣
→˓with a = 1.414213562373095? defined by (-a)*x^5 + y^2, x - z

Defn: Defined on coordinates by sending (y, s0, s2) to
(y*s0, y, y*s2), Scheme morphism:

From: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣
→˓with a = 1.414213562373095? defined by s0 - 1, 2*z^3 + (-a)*s1^2

To: Affine Curve over Number Field in a with defining polynomial x^2 - 2␣
→˓with a = 1.414213562373095? defined by (-a)*x^5 + y^2, x - z

Defn: Defined on coordinates by sending (z, s0, s1) to
(z*s0, z*s1, z))

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve((y - 3/2)^3 - (x + 2)^5 - (x + 2)^6)
sage: Q = A([-2,3/2])
sage: C.blowup(Q)
((Affine Plane Curve over Rational Field defined by x^3 - s1^3 + 7*x^2 + 16*x +␣
→˓12,
Affine Plane Curve over Rational Field defined by 8*y^3*s0^6 - 36*y^2*s0^6 +␣

→˓8*y^2*s0^5 +
54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8),
([Scheme endomorphism of Affine Plane Curve over Rational Field defined by x^3␣
→˓- s1^3 + 7*x^2 +
16*x + 12

Defn: Defined on coordinates by sending (x, s1) to
(x, s1), Scheme morphism:

From: Affine Plane Curve over Rational Field defined by x^3 - s1^3 + 7*x^2␣
→˓+ 16*x + 12

To: Affine Plane Curve over Rational Field defined by 8*y^3*s0^6 - 36*y^
→˓2*s0^6 + 8*y^2*s0^5 +

54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
Defn: Defined on coordinates by sending (x, s1) to

(x*s1 + 2*s1 + 3/2, 1/s1)], [Scheme morphism:
From: Affine Plane Curve over Rational Field defined by 8*y^3*s0^6 - 36*y^

→˓2*s0^6 + 8*y^2*s0^5 +
54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
To: Affine Plane Curve over Rational Field defined by x^3 - s1^3 + 7*x^2␣

→˓+ 16*x + 12
Defn: Defined on coordinates by sending (y, s0) to

(y*s0 - 3/2*s0 - 2, 1/s0),
Scheme endomorphism of Affine Plane Curve over Rational Field defined by 8*y^

→˓3*s0^6 - 36*y^2*s0^6 +
8*y^2*s0^5 + 54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
Defn: Defined on coordinates by sending (y, s0) to

(y, s0)]),
(Scheme morphism:

From: Affine Plane Curve over Rational Field defined by x^3 - s1^3 + 7*x^2␣
→˓+ 16*x + 12

To: Affine Plane Curve over Rational Field defined by -x^6 - 13*x^5 -␣
(continues on next page)

18 Chapter 3. Affine curves

Curves, Release 9.8

(continued from previous page)

→˓70*x^4 - 200*x^3 + y^3 -
320*x^2 - 9/2*y^2 - 272*x + 27/4*y - 795/8
Defn: Defined on coordinates by sending (x, s1) to

(x, x*s1 + 2*s1 + 3/2), Scheme morphism:
From: Affine Plane Curve over Rational Field defined by 8*y^3*s0^6 - 36*y^

→˓2*s0^6 + 8*y^2*s0^5 +
54*y*s0^6 - 24*y*s0^5 - 27*s0^6 + 18*s0^5 - 8
To: Affine Plane Curve over Rational Field defined by -x^6 - 13*x^5 -␣

→˓70*x^4 - 200*x^3 + y^3 -
320*x^2 - 9/2*y^2 - 272*x + 27/4*y - 795/8
Defn: Defined on coordinates by sending (y, s0) to

(y*s0 - 3/2*s0 - 2, y)))

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = A.curve([((x + 1)^2 + y^2)^3 - 4*(x + 1)^2*y^2, y - z, w - 4])
sage: Q = C([-1,0,0,4])
sage: B = C.blowup(Q)
sage: B[0]
(Affine Curve over Rational Field defined by s3, s1 - s2, x^2*s2^6 +
2*x*s2^6 + 3*x^2*s2^4 + s2^6 + 6*x*s2^4 + 3*x^2*s2^2 + 3*s2^4 + 6*x*s2^2
+ x^2 - s2^2 + 2*x + 1,
Affine Curve over Rational Field defined by s3, s2 - 1, y^2*s0^6 +

3*y^2*s0^4 + 3*y^2*s0^2 + y^2 - 4*s0^2,
Affine Curve over Rational Field defined by s3, s1 - 1, z^2*s0^6 +

3*z^2*s0^4 + 3*z^2*s0^2 + z^2 - 4*s0^2,
Closed subscheme of Affine Space of dimension 4 over Rational Field

defined by:
1)

sage: Q = A([6,2,3,1])
sage: B = C.blowup(Q)
Traceback (most recent call last):
...
TypeError: (=(6, 2, 3, 1)) must be a point on this curve

sage: A.<x,y> = AffineSpace(QuadraticField(-1), 2)
sage: C = A.curve([y^2 + x^2])
sage: C.blowup()
Traceback (most recent call last):
...
TypeError: this curve must be irreducible

plane_projection(AP=None)
Return a projection of this curve into an affine plane so that the image of the projection is a plane curve.

INPUT:

• AP – (default: None) the affine plane to project this curve into. This space must be defined over the
same base field as this curve, and must have dimension two. This space will be constructed if not
specified.

OUTPUT: a tuple of

• a scheme morphism from this curve into an affine plane

3.2. Integral affine curves over Q 19

Curves, Release 9.8

• the plane curve that defines the image of that morphism

EXAMPLES:

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = Curve([x^2 - y*z*w, z^3 - w, w + x*y - 3*z^3], A)
sage: C.plane_projection()
(Scheme morphism:
From: Affine Curve over Rational Field defined by -y*z*w + x^2, z^3 -

w, -3*z^3 + x*y + w
To: Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y, z, w) to

(x, y), Affine Plane Curve over Rational Field defined by
x0^2*x1^7 - 16*x0^4)

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 + 2)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = A.curve([x - b, y - 2])
sage: B.<a,b> = AffineSpace(K, 2)
sage: proj1 = C.plane_projection(AP=B)
sage: proj1
(Scheme morphism:

From: Affine Curve over Number Field in b with defining polynomial
a^2 + 2 defined by x + (-b), y - 2

To: Affine Space of dimension 2 over Number Field in b with
defining polynomial a^2 + 2

Defn: Defined on coordinates by sending (x, y, z) to
(x, z),

Affine Plane Curve over Number Field in b with defining polynomial a^2
+ 2 defined by a + (-b))
sage: proj1[1].ambient_space() is B
True
sage: proj2 = C.plane_projection()
sage: proj2[1].ambient_space() is B
False

projection(indices, AS=None)
Return the projection of this curve onto the coordinates specified by indices.

INPUT:

• indices – a list or tuple of distinct integers specifying the indices of the coordinates to use in the
projection. Can also be a list or tuple consisting of variables of the coordinate ring of the ambient
space of this curve. If integers are used to specify the coordinates, 0 denotes the first coordinate. The
length of indices must be between two and one less than the dimension of the ambient space of this
curve, inclusive.

• AS – (default: None) the affine space the projected curve will be defined in. This space must be defined
over the same base field as this curve, and must have dimension equal to the length of indices. This
space is constructed if not specified.

OUTPUT: a tuple of

• a scheme morphism from this curve to affine space of dimension equal to the number of coordinates
specified in indices

20 Chapter 3. Affine curves

Curves, Release 9.8

• the affine subscheme that is the image of that morphism. If the image is a curve, the second element
of the tuple will be a curve.

EXAMPLES:

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y^7 - x^2 + x^3 - 2*z, z^2 - x^7 - y^2], A)
sage: C.projection([0,1])
(Scheme morphism:

From: Affine Curve over Rational Field defined by y^7 + x^3 - x^2 -
2*z, -x^7 - y^2 + z^2

To: Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y, z) to

(x, y),
Affine Plane Curve over Rational Field defined by x1^14 + 2*x0^3*x1^7 -

2*x0^2*x1^7 - 4*x0^7 + x0^6 - 2*x0^5 + x0^4 - 4*x1^2)
sage: C.projection([0,1,3,4])
Traceback (most recent call last):
...
ValueError: (=[0, 1, 3, 4]) must be a list or tuple of length between 2
and (=2), inclusive

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = Curve([x - 2, y - 3, z - 1], A)
sage: B.<a,b,c> = AffineSpace(QQ, 3)
sage: C.projection([0,1,2], AS=B)
(Scheme morphism:

From: Affine Curve over Rational Field defined by x - 2, y - 3, z - 1
To: Affine Space of dimension 3 over Rational Field
Defn: Defined on coordinates by sending (x, y, z, w) to

(x, y, z),
Affine Curve over Rational Field defined by c - 1, b - 3, a - 2)

sage: A.<x,y,z,w,u> = AffineSpace(GF(11), 5)
sage: C = Curve([x^3 - 5*y*z + u^2, x - y^2 + 3*z^2, w^2 + 2*u^3*y, y - u^2 +␣
→˓z*x], A)
sage: B.<a,b,c> = AffineSpace(GF(11), 3)
sage: proj1 = C.projection([1,2,4], AS=B)
sage: proj1
(Scheme morphism:

From: Affine Curve over Finite Field of size 11 defined by x^3 -
5*y*z + u^2, -y^2 + 3*z^2 + x, 2*y*u^3 + w^2, x*z - u^2 + y

To: Affine Space of dimension 3 over Finite Field of size 11
Defn: Defined on coordinates by sending (x, y, z, w, u) to

(y, z, u),
Affine Curve over Finite Field of size 11 defined by a^2*b - 3*b^3 -

c^2 + a, c^6 - 5*a*b^4 + b^3*c^2 - 3*a*c^4 + 3*a^2*c^2 - a^3, a^2*c^4 -
3*b^2*c^4 - 2*a^3*c^2 - 5*a*b^2*c^2 + a^4 - 5*a*b^3 + 2*b^4 + b^2*c^2 -
3*b*c^2 + 3*a*b, a^4*c^2 + 2*b^4*c^2 - a^5 - 2*a*b^4 + 5*b*c^4 + a*b*c^2
- 5*a*b^2 + 4*b^3 + b*c^2 + 5*c^2 - 5*a, a^6 - 5*b^6 - 5*b^3*c^2 +
5*a*b^3 + 2*c^4 - 4*a*c^2 + 2*a^2 - 5*a*b + c^2)
sage: proj1[1].ambient_space() is B
True

(continues on next page)

3.2. Integral affine curves over Q 21

Curves, Release 9.8

(continued from previous page)

sage: proj2 = C.projection([1,2,4])
sage: proj2[1].ambient_space() is B
False
sage: C.projection([1,2,3,5], AS=B)
Traceback (most recent call last):
...
TypeError: (=Affine Space of dimension 3 over Finite Field of size 11)
must have dimension (=4)

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = A.curve([x*y - z^3, x*z - w^3, w^2 - x^3])
sage: C.projection([y,z])
(Scheme morphism:

From: Affine Curve over Rational Field defined by -z^3 + x*y, -w^3 +
x*z, -x^3 + w^2

To: Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y, z, w) to

(y, z),
Affine Plane Curve over Rational Field defined by x1^23 - x0^7*x1^4)
sage: B.<x,y,z> = AffineSpace(QQ, 3)
sage: C.projection([x,y,z], AS=B)
(Scheme morphism:

From: Affine Curve over Rational Field defined by -z^3 + x*y, -w^3 +
x*z, -x^3 + w^2

To: Affine Space of dimension 3 over Rational Field
Defn: Defined on coordinates by sending (x, y, z, w) to

(x, y, z),
Affine Curve over Rational Field defined by z^3 - x*y, x^8 - x*z^2,

x^7*z^2 - x*y*z)
sage: C.projection([y,z,z])
Traceback (most recent call last):
...
ValueError: (=[y, z, z]) must be a list or tuple of distinct indices or
variables

resolution_of_singularities(extend=False)
Return a nonsingular model for this affine curve created by blowing up its singular points.

The nonsingular model is given as a collection of affine patches that cover it. If extend is False and if the
base field is a number field, or if the base field is a finite field, the model returned may have singularities
with coordinates not contained in the base field. An error is returned if this curve is already nonsingular,
or if it has no singular points over its base field. This curve must be irreducible, and must be defined over
a number field or finite field.

INPUT:

• extend – (default: False) specifies whether to extend the base field when necessary to find all singular
points when this curve is defined over a number field. If extend is False, then only singularities with
coordinates in the base field of this curve will be resolved. However, setting extend to True will slow
down computations.

OUTPUT: a tuple of

• a tuple of curves in affine space of the same dimension as the ambient space of this curve, which
represent affine patches of the resolution of singularities.

22 Chapter 3. Affine curves

Curves, Release 9.8

• a tuple of tuples such that the jth element of the ith tuple is the transition map from the ith patch to the
jth patch.

• a tuple consisting of birational maps from the patches back to the original curve that were created by
composing the projection maps generated from the blow up computations. There the ith element will
be a map from the ith patch.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: C.resolution_of_singularities()
((Affine Plane Curve over Rational Field defined by s1^2 - x,
Affine Plane Curve over Rational Field defined by y*s0^3 - 1),
((Scheme endomorphism of Affine Plane Curve over Rational Field defined by s1^
→˓2 - x

Defn: Defined on coordinates by sending (x, s1) to
(x, s1), Scheme morphism:

From: Affine Plane Curve over Rational Field defined by s1^2 - x
To: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
Defn: Defined on coordinates by sending (x, s1) to

(x*s1, 1/s1)), (Scheme morphism:
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
To: Affine Plane Curve over Rational Field defined by s1^2 - x
Defn: Defined on coordinates by sending (y, s0) to

(y*s0, 1/s0),
Scheme endomorphism of Affine Plane Curve over Rational Field defined by␣

→˓y*s0^3 - 1
Defn: Defined on coordinates by sending (y, s0) to

(y, s0))),
(Scheme morphism:

From: Affine Plane Curve over Rational Field defined by s1^2 - x
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
Defn: Defined on coordinates by sending (x, s1) to

(x, x*s1), Scheme morphism:
From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
Defn: Defined on coordinates by sending (y, s0) to

(y*s0, y)))

sage: set_verbose(-1)
sage: K.<a> = QuadraticField(3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = A.curve(x^4 + 2*x^2 + a*y^3 + 1)
sage: C.resolution_of_singularities(extend=True)[0] # long time (2 seconds)
(Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^
→˓2 + 16 defined by
24*x^2*ss1^3 + 24*ss1^3 + (a0^3 - 8*a0),
Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^
→˓2 + 16 defined by
24*s1^2*ss0 + (a0^3 - 8*a0)*ss0^2 + (-6*a0^3)*s1,
Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^
→˓2 + 16 defined by
8*y^2*s0^4 + (4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y)

3.2. Integral affine curves over Q 23

Curves, Release 9.8

sage: A.<x,y,z> = AffineSpace(GF(5), 3)
sage: C = Curve([y - x^3, (z - 2)^2 - y^3 - x^3], A)
sage: R = C.resolution_of_singularities()
sage: R[0]
(Affine Curve over Finite Field of size 5 defined by x^2 - s1, s1^4 - x*s2^2 +␣
→˓s1, x*s1^3 - s2^2 + x,
Affine Curve over Finite Field of size 5 defined by y*s2^2 - y^2 - 1, s2^4 -␣
→˓s0^3 - y^2 - 2, y*s0^3
- s2^2 + y, Affine Curve over Finite Field of size 5 defined by s0^3*s1 + z*s1^
→˓3 + s1^4 - 2*s1^3 - 1,
z*s0^3 + z*s1^3 - 2*s0^3 - 2*s1^3 - 1, z^2*s1^3 + z*s1^3 - s1^3 - z + s1 + 2)

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = A.curve([((x - 2)^2 + y^2)^2 - (x - 2)^2 - y^2 + (x - 2)^3, z - y - 7,
→˓ w - 4])
sage: B = C.resolution_of_singularities()
sage: B[0]
(Affine Curve over Rational Field defined by s3, s1 - s2, x^2*s2^4 -
4*x*s2^4 + 2*x^2*s2^2 + 4*s2^4 - 8*x*s2^2 + x^2 + 7*s2^2 - 3*x + 1,
Affine Curve over Rational Field defined by s3, s2 - 1, y^2*s0^4 +

2*y^2*s0^2 + y*s0^3 + y^2 - s0^2 - 1,
Affine Curve over Rational Field defined by s3, s1 - 1, z^2*s0^4 -

14*z*s0^4 + 2*z^2*s0^2 + z*s0^3 + 49*s0^4 - 28*z*s0^2 - 7*s0^3 + z^2 +
97*s0^2 - 14*z + 48,
Closed subscheme of Affine Space of dimension 4 over Rational Field

defined by:
1)

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y - x^2 + 1], A)
sage: C.resolution_of_singularities()
Traceback (most recent call last):
...
TypeError: this curve is already nonsingular

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([(x^2 + y^2 - y - 2)*(y - x^2 + 2) + y^3])
sage: C.resolution_of_singularities()
Traceback (most recent call last):
...
TypeError: this curve has no singular points over its base field. If
working over a number field use extend=True

tangent_line(p)
Return the tangent line at the point p.

INPUT:

• p – a rational point of the curve

EXAMPLES:

24 Chapter 3. Affine curves

Curves, Release 9.8

sage: A3.<x,y,z> = AffineSpace(3, QQ)
sage: C = Curve([x + y + z, x^2 - y^2*z^2 + z^3])
sage: p = C(0,0,0)
sage: C.tangent_line(p)
Traceback (most recent call last):
...
ValueError: the curve is not smooth at (0, 0, 0)
sage: p = C(1,0,-1)
sage: C.tangent_line(p)
Affine Curve over Rational Field defined by x + y + z, 2*x + 3*z + 1

We check that the tangent line at p is the tangent space at p, translated to p.

sage: Tp = C.tangent_space(p)
sage: Tp
Closed subscheme of Affine Space of dimension 3 over Rational Field defined by:
x + y + z,
2*x + 3*z

sage: phi = A3.translation(A3.origin(), p)
sage: T = phi * Tp.embedding_morphism()
sage: T.image()
Closed subscheme of Affine Space of dimension 3 over Rational Field defined by:
-2*y + z + 1,
x + y + z

sage: _ == C.tangent_line(p)
True

class sage.schemes.curves.affine_curve.AffinePlaneCurve(A, f)
Bases: AffineCurve

Affine plane curves.

divisor_of_function(r)
Return the divisor of a function on a curve.

INPUT: r is a rational function on X

OUTPUT:

• list - The divisor of r represented as a list of coefficients and points. (TODO: This will change to a
more structural output in the future.)

EXAMPLES:

sage: F = GF(5)
sage: P2 = AffineSpace(2, F, names = 'xy')
sage: R = P2.coordinate_ring()
sage: x, y = R.gens()
sage: f = y^2 - x^9 - x
sage: C = Curve(f)
sage: K = FractionField(R)
sage: r = 1/x
sage: C.divisor_of_function(r) # todo: not implemented (broken)

[[-1, (0, 0, 1)]]
sage: r = 1/x^3

(continues on next page)

3.2. Integral affine curves over Q 25

Curves, Release 9.8

(continued from previous page)

sage: C.divisor_of_function(r) # todo: not implemented (broken)
[[-3, (0, 0, 1)]]

is_ordinary_singularity(P)
Return whether the singular point P of this affine plane curve is an ordinary singularity.

The point P is an ordinary singularity of this curve if it is a singular point, and if the tangents of this curve
at P are distinct.

INPUT:

• P – a point on this curve

OUTPUT:

True or False depending on whether P is or is not an ordinary singularity of this curve, respectively. An
error is raised if P is not a singular point of this curve.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: Q = A([0,0])
sage: C.is_ordinary_singularity(Q)
False

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
sage: Q = A([0,0])
sage: C.is_ordinary_singularity(Q)
True

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([x^2*y - y^2*x + y^2 + x^3])
sage: Q = A([-1,-1])
sage: C.is_ordinary_singularity(Q)
Traceback (most recent call last):
...
TypeError: (=(-1, -1)) is not a singular point of (=Affine Plane Curve
over Rational Field defined by x^3 + x^2*y - x*y^2 + y^2)

is_transverse(C, P)
Return whether the intersection of this curve with the curve C at the point P is transverse.

The intersection at P is transverse if P is a nonsingular point of both curves, and if the tangents of the curves
at P are distinct.

INPUT:

• C – a curve in the ambient space of this curve.

• P – a point in the intersection of both curves.

OUTPUT: Boolean.

EXAMPLES:

26 Chapter 3. Affine curves

Curves, Release 9.8

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 - 1], A)
sage: D = Curve([x - 1], A)
sage: Q = A([1,0])
sage: C.is_transverse(D, Q)
False

sage: R.<a> = QQ[]
sage: K. = NumberField(a^3 + 2)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = A.curve([x*y])
sage: D = A.curve([y - b*x])
sage: Q = A([0,0])
sage: C.is_transverse(D, Q)
False

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y - x^3], A)
sage: D = Curve([y + x], A)
sage: Q = A([0,0])
sage: C.is_transverse(D, Q)
True

local_coordinates(pt, n)
Return local coordinates to precision n at the given point.

Behaviour is flaky - some choices of 𝑛 are worst that others.

INPUT:

• pt - an F-rational point on X which is not a point of ramification for the projection (x,y) - x.

• n - the number of terms desired

OUTPUT: x = x0 + t y = y0 + power series in t

EXAMPLES:

sage: F = GF(5)
sage: pt = (2,3)
sage: R = PolynomialRing(F,2, names = ['x','y'])
sage: x,y = R.gens()
sage: f = y^2-x^9-x
sage: C = Curve(f)
sage: C.local_coordinates(pt, 9)
[t + 2, -2*t^12 - 2*t^11 + 2*t^9 + t^8 - 2*t^7 - 2*t^6 - 2*t^4 + t^3 - 2*t^2 -␣
→˓2]

multiplicity(P)
Return the multiplicity of this affine plane curve at the point P.

In the special case of affine plane curves, the multiplicity of an affine plane curve at the point (0,0) can be
computed as the minimum of the degrees of the homogeneous components of its defining polynomial. To
compute the multiplicity of a different point, a linear change of coordinates is used.

This curve must be defined over a field. An error if raised if P is not a point on this curve.

3.2. Integral affine curves over Q 27

Curves, Release 9.8

INPUT:

• P – a point in the ambient space of this curve.

OUTPUT:

An integer.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: Q1 = A([1,1])
sage: C.multiplicity(Q1)
1
sage: Q2 = A([0,0])
sage: C.multiplicity(Q2)
2

sage: A.<x,y> = AffineSpace(QQbar,2)
sage: C = Curve([-x^7 + (-7)*x^6 + y^6 + (-21)*x^5 + 12*y^5 + (-35)*x^4 + 60*y^
→˓4 +\
(-35)*x^3 + 160*y^3 + (-21)*x^2 + 240*y^2 + (-7)*x + 192*y + 63], A)
sage: Q = A([-1,-2])
sage: C.multiplicity(Q)
6

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([y^3 - x^3 + x^6])
sage: Q = A([1,1])
sage: C.multiplicity(Q)
Traceback (most recent call last):
...
TypeError: (=(1, 1)) is not a point on (=Affine Plane Curve over
Rational Field defined by x^6 - x^3 + y^3)

plot(*args, **kwds)
Plot the real points on this affine plane curve.

INPUT:

• *args - optional tuples (variable, minimum, maximum) for plotting dimensions

• **kwds - optional keyword arguments passed on to implicit_plot

EXAMPLES:

A cuspidal curve:

sage: R.<x, y> = QQ[]
sage: C = Curve(x^3 - y^2)
sage: C.plot()
Graphics object consisting of 1 graphics primitive

A 5-nodal curve of degree 11. This example also illustrates some of the optional arguments:

28 Chapter 3. Affine curves

Curves, Release 9.8

sage: R.<x, y> = ZZ[]
sage: C = Curve(32*x^2 - 2097152*y^11 + 1441792*y^9 - 360448*y^7 + 39424*y^5 -␣
→˓1760*y^3 + 22*y - 1)
sage: C.plot((x, -1, 1), (y, -1, 1), plot_points=400)
Graphics object consisting of 1 graphics primitive

A line over RR:

sage: R.<x, y> = RR[]
sage: C = Curve(R(y - sqrt(2)*x))
sage: C.plot()
Graphics object consisting of 1 graphics primitive

rational_parameterization()

Return a rational parameterization of this curve.

This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible over the algebraic
closure of the rational field). The curve must also be rational (have geometric genus zero).

The rational parameterization may have coefficients in a quadratic extension of the rational field.

OUTPUT:

• a birational map between A1 and this curve, given as a scheme morphism.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x], A)
sage: C.rational_parameterization()
Scheme morphism:
From: Affine Space of dimension 1 over Rational Field
To: Affine Plane Curve over Rational Field defined by y^2 - x
Defn: Defined on coordinates by sending (t) to

(t^2, t)

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
sage: C.rational_parameterization()
Scheme morphism:
From: Affine Space of dimension 1 over Rational Field
To: Affine Plane Curve over Rational Field defined by x^4 +

2*x^2*y^2 + y^4 - 4*x^3 - 4*x*y^2 + 3*x^2 - y^2
Defn: Defined on coordinates by sending (t) to

((-12*t^4 + 6*t^3 + 4*t^2 - 2*t)/(-25*t^4 + 40*t^3 - 26*t^2 +
8*t - 1), (-9*t^4 + 12*t^3 - 4*t + 1)/(-25*t^4 + 40*t^3 - 26*t^2 + 8*t - 1))

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 + 7], A)
sage: C.rational_parameterization()
Scheme morphism:
From: Affine Space of dimension 1 over Number Field in a with defining␣

→˓polynomial a^2 + 7
To: Affine Plane Curve over Number Field in a with defining

polynomial a^2 + 7 defined by x^2 + y^2 + 7
(continues on next page)

3.2. Integral affine curves over Q 29

Curves, Release 9.8

(continued from previous page)

Defn: Defined on coordinates by sending (t) to
((-7*t^2 + 7)/((-a)*t^2 + (-a)), 14*t/((-a)*t^2 + (-a)))

tangents(P, factor=True)
Return the tangents of this affine plane curve at the point P.

The point P must be a point on this curve.

INPUT:

• P – a point on this curve

• factor – (default: True) whether to attempt computing the polynomials of the individual tangent
lines over the base field of this curve, or to just return the polynomial corresponding to the union of
the tangent lines (which requires fewer computations)

OUTPUT: a list of polynomials in the coordinate ring of the ambient space

EXAMPLES:

sage: set_verbose(-1)
sage: A.<x,y> = AffineSpace(QQbar, 2)
sage: C = Curve([x^5*y^3 + 2*x^4*y^4 + x^3*y^5 + 3*x^4*y^3 + 6*x^3*y^4 + 3*x^
→˓2*y^5\
+ 3*x^3*y^3 + 6*x^2*y^4 + 3*x*y^5 + x^5 + 10*x^4*y + 40*x^3*y^2 + 81*x^2*y^3 +␣
→˓82*x*y^4\
+ 33*y^5], A)
sage: Q = A([0,0])
sage: C.tangents(Q)
[x + 3.425299577684700?*y, x + (1.949159013086856? + 1.179307909383728?*I)*y,
x + (1.949159013086856? - 1.179307909383728?*I)*y, x + (1.338191198070795? + 0.
→˓2560234251008043?*I)*y,
x + (1.338191198070795? - 0.2560234251008043?*I)*y]
sage: C.tangents(Q, factor=False)
[120*x^5 + 1200*x^4*y + 4800*x^3*y^2 + 9720*x^2*y^3 + 9840*x*y^4 + 3960*y^5]

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
sage: Q = A([0,0])
sage: C.tangents(Q)
[x + (-1/3*b)*y, x + (1/3*b)*y]

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([y^2 - x^3 - x^2])
sage: Q = A([0,0])
sage: C.tangents(Q)
[x - y, x + y]

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([y*x - x^4 + 2*x^2])
sage: Q = A([1,1])
sage: C.tangents(Q)

(continues on next page)

30 Chapter 3. Affine curves

Curves, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
TypeError: (=(1, 1)) is not a point on (=Affine Plane Curve over
Rational Field defined by -x^4 + 2*x^2 + x*y)

class sage.schemes.curves.affine_curve.AffinePlaneCurve_field(A, f)
Bases: AffinePlaneCurve, AffineCurve_field

Affine plane curves over fields.

braid_monodromy()

Compute the braid monodromy of a projection of the curve.

OUTPUT:

A list of braids. The braids correspond to paths based in the same point; each of this paths is the conjugated
of a loop around one of the points in the discriminant of the projection of 𝑠𝑒𝑙𝑓 .

NOTE:

The projection over the 𝑥 axis is used if there are no vertical asymptotes. Otherwise, a linear change of
variables is done to fall into the previous case.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve((x^2-y^3)*(x+3*y-5))
sage: C.braid_monodromy() # optional - sirocco
[s1*s0*(s1*s2)^2*s0*s2^2*s0^-1*(s2^-1*s1^-1)^2*s0^-1*s1^-1,
s1*s0*(s1*s2)^2*(s0*s2^-1*s1*s2*s1*s2^-1)^2*(s2^-1*s1^-1)^2*s0^-1*s1^-1,
s1*s0*(s1*s2)^2*s2*s1^-1*s2^-1*s1^-1*s0^-1*s1^-1,
s1*s0*s2*s0^-1*s2*s1^-1]

fundamental_group()

Return a presentation of the fundamental group of the complement of self.

Note: The curve must be defined over the rationals or a number field with an embedding over Q.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve(y^2 - x^3 - x^2)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | >

In the case of number fields, they need to have an embedding to the algebraic field:

sage: a = QQ[x](x^2+5).roots(QQbar)[0][0]
sage: F = NumberField(a.minpoly(), 'a', embedding=a)
sage: F.inject_variables()
Defining a
sage: A.<x,y> = AffineSpace(F, 2)
sage: C = A.curve(y^2 - a*x^3 - x^2)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | >

3.2. Integral affine curves over Q 31

Curves, Release 9.8

Warning: This functionality requires the sirocco package to be installed.

riemann_surface(**kwargs)
Return the complex Riemann surface determined by this curve

OUTPUT:

• RiemannSurface object

EXAMPLES:

sage: R.<x,y>=QQ[]
sage: C = Curve(x^3+3*y^3+5)
sage: C.riemann_surface()
Riemann surface defined by polynomial f = x^3 + 3*y^3 + 5 = 0, with 53 bits of␣
→˓precision

class sage.schemes.curves.affine_curve.AffinePlaneCurve_finite_field(A, f)
Bases: AffinePlaneCurve_field

Affine plane curves over finite fields.

rational_points(algorithm='enum')
Return sorted list of all rational points on this curve.

INPUT:

• algorithm – possible choices:

– 'enum' – use very naive point enumeration to find all rational points on this curve over a finite
field.

– 'bn' – via Singular’s Brill-Noether package.

– 'all' – use all implemented algorithms and verify that they give the same answer, then return it

Note: The Brill-Noether package does not always work. When it fails, a RuntimeError exception is raised.

EXAMPLES:

sage: x, y = (GF(5)['x,y']).gens()
sage: f = y^2 - x^9 - x
sage: C = Curve(f); C
Affine Plane Curve over Finite Field of size 5 defined by -x^9 + y^2 - x
sage: C.rational_points(algorithm='bn')
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: C = Curve(x - y + 1)
sage: C.rational_points()
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

We compare Brill-Noether and enumeration:

sage: x, y = (GF(17)['x,y']).gens()
sage: C = Curve(x^2 + y^5 + x*y - 19)
sage: v = C.rational_points(algorithm='bn')
sage: w = C.rational_points(algorithm='enum')

(continues on next page)

32 Chapter 3. Affine curves

Curves, Release 9.8

(continued from previous page)

sage: len(v)
20
sage: v == w
True

sage: A.<x,y> = AffineSpace(2,GF(9,'a'))
sage: C = Curve(x^2 + y^2 - 1)
sage: C
Affine Plane Curve over Finite Field in a of size 3^2 defined by x^2 + y^2 - 1
sage: C.rational_points()
[(0, 1), (0, 2), (1, 0), (2, 0), (a + 1, a + 1), (a + 1, 2*a + 2), (2*a + 2, a␣
→˓+ 1), (2*a + 2, 2*a + 2)]

riemann_roch_basis(D)

Return a basis of the Riemann-Roch space of the divisor D.

This interfaces with Singular’s Brill-Noether command.

This curve is assumed to be a plane curve defined by a polynomial equation 𝑓(𝑥, 𝑦) = 0 over a prime finite
field 𝐹 = 𝐺𝐹 (𝑝) in 2 variables 𝑥, 𝑦 representing a curve 𝑋 : 𝑓(𝑥, 𝑦) = 0 having 𝑛 𝐹 -rational points (see
the Sage function places_on_curve)

INPUT:

• D – an 𝑛-tuple of integers (𝑑1, ..., 𝑑𝑛) representing the divisor 𝐷𝑖𝑣 = 𝑑1𝑃1 + · · · + 𝑑𝑛𝑃𝑛, where
𝑋(𝐹) = {𝑃1, . . . , 𝑃𝑛}. The ordering is that dictated by places_on_curve.

OUTPUT: a basis of 𝐿(𝐷𝑖𝑣)

EXAMPLES:

sage: R = PolynomialRing(GF(5),2,names = ["x","y"])
sage: x, y = R.gens()
sage: f = y^2 - x^9 - x
sage: C = Curve(f)
sage: D = [6,0,0,0,0,0]
sage: C.riemann_roch_basis(D)
[1, (-x*z^5 + y^2*z^4)/x^6, (-x*z^6 + y^2*z^5)/x^7, (-x*z^7 + y^2*z^6)/x^8]

class sage.schemes.curves.affine_curve.IntegralAffineCurve(A, X)
Bases: AffineCurve_field

Base class for integral affine curves.

coordinate_functions()

Return the coordinate functions.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(8), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: x, y = C.coordinate_functions()
sage: x^5 + y^5 + x*y + 1
0

3.2. Integral affine curves over Q 33

Curves, Release 9.8

function(f)
Return the function field element coerced from f.

INPUT:

• f – an element of the coordinate ring of either the curve or its ambient space.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(8), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: f = C.function(x/y)
sage: f
(x/(x^5 + 1))*y^4 + x^2/(x^5 + 1)
sage: df = f.differential(); df
((1/(x^10 + 1))*y^4 + x^6/(x^10 + 1)) d(x)
sage: df.divisor()
2*Place (1/x, 1/x^4*y^4 + 1/x^3*y^3 + 1/x^2*y^2 + 1/x*y + 1)
+ 2*Place (1/x, 1/x*y + 1)
- 2*Place (x + 1, y)
- 2*Place (x^4 + x^3 + x^2 + x + 1, y)

function_field()

Return the function field of the curve.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve(x^3 - y^2 - x^4 - y^4)
sage: C.function_field()
Function field in y defined by y^4 + y^2 + x^4 - x^3

sage: A.<x,y> = AffineSpace(GF(8), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: C.function_field()
Function field in y defined by y^5 + x*y + x^5 + 1

parametric_representation(place, name=None)
Return a power series representation of the branch of the curve given by place.

INPUT:

• place – a place on the curve

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve(x^2 + y^2 -1)
sage: p = C(0,1)
sage: p.closed_point()
Point (x, y - 1)
sage: pl = _.place()
sage: C.parametric_representation(pl)
(s + ..., 1 - 1/2*s^2 - 1/8*s^4 - 1/16*s^6 + ...)

34 Chapter 3. Affine curves

Curves, Release 9.8

sage: A.<x,y> = AffineSpace(GF(7^2), 2)
sage: C = Curve(x^2 - x^4 - y^4)
sage: p, = C.singular_closed_points()
sage: b1, b2 = p.places()
sage: xs, ys = C.parametric_representation(b1)
sage: f = xs^2 - xs^4 - ys^4
sage: [f.coefficient(i) for i in range(5)]
[0, 0, 0, 0, 0]
sage: xs, ys = C.parametric_representation(b2)
sage: f = xs^2 - xs^4 - ys^4
sage: [f.coefficient(i) for i in range(5)]
[0, 0, 0, 0, 0]

place_to_closed_point(place)
Return the closed point on the place.

INPUT:

• place – a place of the function field of the curve

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(4), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: F = C.function_field()
sage: pls = F.places(1)
sage: C.place_to_closed_point(pls[-1])
Point (x + 1, y + 1)
sage: C.place_to_closed_point(pls[-2])
Point (x + 1, y + 1)

places_at_infinity()

Return the places of the curve at infinity.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve(x^3 - y^2 - x^4 - y^4)
sage: C.places_at_infinity()
[Place (1/x, 1/x^2*y, 1/x^3*y^2, 1/x^4*y^3)]

sage: F = GF(9)
sage: A2.<x,y> = AffineSpace(F, 2)
sage: C = A2.curve(y^3 + y - x^4)
sage: C.places_at_infinity()
[Place (1/x, 1/x^3*y^2)]

sage: A.<x,y,z> = AffineSpace(GF(11), 3)
sage: C = Curve([x*z-y^2,y-z^2,x-y*z], A)
sage: C.places_at_infinity()
[Place (1/x, 1/x*z^2)]

places_on(point)
Return the places on the closed point.

3.2. Integral affine curves over Q 35

Curves, Release 9.8

INPUT:

• point – a closed point of the curve

OUTPUT: a list of the places of the function field of the curve

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve(x^3 - y^2 - x^4 - y^4)
sage: C.singular_closed_points()
[Point (x, y)]
sage: p, = _
sage: C.places_on(p)
[Place (x, y, y^2, 1/x*y^3 + 1/x*y)]

sage: k.<a> = GF(9)
sage: A.<x,y> = AffineSpace(k,2)
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
sage: pts = C.closed_points()
sage: pts
[Point (x, y + (a + 1)),
Point (x, y + (-a - 1)),
Point (x + (a + 1), y + (a - 1)),
Point (x + (a + 1), y + (-a + 1)),
Point (x - 1, y + (a + 1)),
Point (x - 1, y + (-a - 1)),
Point (x + (-a - 1), y + a),
Point (x + (-a - 1), y + (-a)),
Point (x + 1, y + 1),
Point (x + 1, y - 1)]
sage: p1, p2, p3 = pts[:3]
sage: C.places_on(p1)
[Place (x, y + a + 1)]
sage: C.places_on(p2)
[Place (x, y + 2*a + 2)]
sage: C.places_on(p3)
[Place (x + a + 1, y + a + 2)]

sage: F.<a> = GF(8)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
sage: Cp = Curve(x^3*y + y^3*z + x*z^3)
sage: C = Cp.affine_patch(0)

singular_closed_points()

Return the singular closed points of the curve.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(7^2),2)
sage: C = Curve(x^2 - x^4 - y^4)
sage: C.singular_closed_points()
[Point (x, y)]

36 Chapter 3. Affine curves

Curves, Release 9.8

sage: A.<x,y,z> = AffineSpace(GF(11), 3)
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
sage: C.singular_closed_points()
[]

class sage.schemes.curves.affine_curve.IntegralAffineCurve_finite_field(A, X)
Bases: IntegralAffineCurve

Integral affine curves.

INPUT:

• A – an ambient space in which the curve lives

• X – list of polynomials that define the curve

EXAMPLES:

sage: A.<x,y,z> = AffineSpace(GF(11), 3)
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A); C
Affine Curve over Finite Field of size 11 defined by -y^2 + x*z, -z^2 + y, -y*z + x
sage: C.function_field()
Function field in z defined by z^3 + 10*x

closed_points(degree=1)
Return a list of the closed points of degree of the curve.

INPUT:

• degree – a positive integer

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(7),2)
sage: C = Curve(x^2 - x^4 - y^4)
sage: C.closed_points()
[Point (x, y),
Point (x + 1, y),
Point (x + 2, y + 2),
Point (x + 2, y - 2),
Point (x - 2, y + 2),
Point (x - 2, y - 2),
Point (x - 1, y)]

places(degree=1)
Return all places on the curve of the degree.

INPUT:

• degree – positive integer

EXAMPLES:

sage: F = GF(9)
sage: A2.<x,y> = AffineSpace(F, 2)
sage: C = A2.curve(y^3 + y - x^4)
sage: C.places()
[Place (1/x, 1/x^3*y^2),

(continues on next page)

3.2. Integral affine curves over Q 37

Curves, Release 9.8

(continued from previous page)

Place (x, y),
Place (x, y + z2 + 1),
Place (x, y + 2*z2 + 2),
Place (x + z2, y + 2),
Place (x + z2, y + z2),
Place (x + z2, y + 2*z2 + 1),
Place (x + z2 + 1, y + 1),
Place (x + z2 + 1, y + z2 + 2),
Place (x + z2 + 1, y + 2*z2),
Place (x + 2*z2 + 1, y + 2),
Place (x + 2*z2 + 1, y + z2),
Place (x + 2*z2 + 1, y + 2*z2 + 1),
Place (x + 2, y + 1),
Place (x + 2, y + z2 + 2),
Place (x + 2, y + 2*z2),
Place (x + 2*z2, y + 2),
Place (x + 2*z2, y + z2),
Place (x + 2*z2, y + 2*z2 + 1),
Place (x + 2*z2 + 2, y + 1),
Place (x + 2*z2 + 2, y + z2 + 2),
Place (x + 2*z2 + 2, y + 2*z2),
Place (x + z2 + 2, y + 2),
Place (x + z2 + 2, y + z2),
Place (x + z2 + 2, y + 2*z2 + 1),
Place (x + 1, y + 1),
Place (x + 1, y + z2 + 2),
Place (x + 1, y + 2*z2)]

class sage.schemes.curves.affine_curve.IntegralAffinePlaneCurve(A, f)
Bases: IntegralAffineCurve, AffinePlaneCurve_field

class sage.schemes.curves.affine_curve.IntegralAffinePlaneCurve_finite_field(A, f)
Bases: AffinePlaneCurve_finite_field , IntegralAffineCurve_finite_field

Integral affine plane curve over a finite field.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(8), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1); C
Affine Plane Curve over Finite Field in z3 of size 2^3 defined by x^5 + y^5 + x*y +␣
→˓1
sage: C.function_field()
Function field in y defined by y^5 + x*y + x^5 + 1

38 Chapter 3. Affine curves

CHAPTER

FOUR

PROJECTIVE CURVES

Projective curves in Sage are curves in a projective space or a projective plane.

EXAMPLES:

We can construct curves in either a projective plane:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y*z^2 - x^3], P); C
Projective Plane Curve over Rational Field defined by -x^3 + y*z^2

or in higher dimensional projective spaces:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y*w^3 - x^4, z*w^3 - x^4], P); C
Projective Curve over Rational Field defined by -x^4 + y*w^3, -x^4 + z*w^3

4.1 Integral projective curves over finite fields

If the curve is defined over a finite field and integral, that is reduced and irreducible, its function field is tightly coupled
with the curve so that advanced computations based on Sage’s global function field machinery are available.

EXAMPLES:

sage: k = GF(2)
sage: P.<x,y,z> = ProjectiveSpace(k, 2)
sage: C = Curve(x^2*z - y^3, P)
sage: C.genus()
0
sage: C.function_field()
Function field in z defined by z + y^3

Closed points of arbitrary degree can be computed:

sage: C.closed_points()
[Point (x, y), Point (y, z), Point (x + z, y + z)]
sage: C.closed_points(2)
[Point (y^2 + y*z + z^2, x + z)]
sage: C.closed_points(3)
[Point (y^3 + y^2*z + z^3, x + y + z),
Point (x^2 + y*z + z^2, x*y + x*z + y*z, y^2 + x*z + y*z + z^2)]

39

Curves, Release 9.8

All singular closed points can be found:

sage: C.singular_closed_points()
[Point (x, y)]
sage: p = _[0]
sage: p.places() # a unibranch singularity, that is, a cusp
[Place (1/y)]
sage: pls = _[0]
sage: C.place_to_closed_point(pls)
Point (x, y)

It is easy to transit to and from the function field of the curve:

sage: fx = C(x/z)
sage: fy = C(y/z)
sage: fx^2 - fy^3
0
sage: fx.divisor()
3*Place (1/y)
- 3*Place (y)
sage: p, = fx.poles()
sage: p
Place (y)
sage: C.place_to_closed_point(p)
Point (y, z)
sage: _.rational_point()
(1 : 0 : 0)
sage: _.closed_point()
Point (y, z)
sage: _.place()
Place (y)

4.2 Integral projective curves over Q

An integral curve overQ is also equipped with the function field. Unlike over finite fields, it is not possible to enumerate
closed points.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^2*z^2 - x^4 - y^4, P)
sage: C.singular_closed_points()
[Point (x, y)]
sage: p, = _
sage: p.places()
[Place (1/y, 1/y^2*z - 1), Place (1/y, 1/y^2*z + 1)]
sage: fy = C.function(y/z)
sage: fy.divisor()
Place (1/y, 1/y^2*z - 1)
+ Place (1/y, 1/y^2*z + 1)
+ Place (y, z - 1)
+ Place (y, z + 1)

(continues on next page)

40 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

- Place (y^4 + 1, z)
sage: supp = _.support()
sage: pl = supp[0]
sage: C.place_to_closed_point(pl)
Point (x, y)
sage: pl = supp[1]
sage: C.place_to_closed_point(pl)
Point (x, y)
sage: _.rational_point()
(0 : 0 : 1)
sage: _ in C
True

AUTHORS:

• William Stein (2005-11-13)

• David Joyner (2005-11-13)

• David Kohel (2006-01)

• Moritz Minzlaff (2010-11)

• Grayson Jorgenson (2016-08)

• Kwankyu Lee (2019-05): added integral projective curves

sage.schemes.curves.projective_curve.Hasse_bounds(q, genus=1)
Return the Hasse-Weil bounds for the cardinality of a nonsingular curve defined over F𝑞 of given genus.

INPUT:

• q (int) – a prime power

• genus (int, default 1) – a non-negative integer,

OUTPUT:

(tuple) The Hasse bounds (lb,ub) for the cardinality of a curve of genus genus defined over F𝑞 .

EXAMPLES:

sage: Hasse_bounds(2)
(1, 5)
sage: Hasse_bounds(next_prime(10^30))
(999999999999998000000000000058, 1000000000000002000000000000058)

class sage.schemes.curves.projective_curve.IntegralProjectiveCurve(A, f)
Bases: ProjectiveCurve_field

Integral projective curve.

coordinate_functions(i=None)
Return the coordinate functions for the i-th affine patch.

If i is None, return the homogeneous coordinate functions.

EXAMPLES:

4.2. Integral projective curves over Q 41

Curves, Release 9.8

sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
sage: C.coordinate_functions(0)
(y, z)
sage: C.coordinate_functions(1)
(1/y, 1/y*z)

function(f)
Return the function field element coerced from x.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
sage: f = C.function(x/y); f
1/y
sage: f.divisor()
Place (1/y, 1/y^2*z^2 + z2/y*z + 1)
+ Place (1/y, 1/y^2*z^2 + ((z2 + 1)/y)*z + 1)
+ Place (1/y, 1/y*z + 1)
- Place (y, z^2 + z2*z + 1)
- Place (y, z^2 + (z2 + 1)*z + 1)
- Place (y, z + 1)

function_field()

Return the function field of this curve.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^2 + y^2 + z^2, P)
sage: C.function_field()
Function field in z defined by z^2 + y^2 + 1

sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)
sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)
sage: C.function_field()
Function field in z defined by z^5 + y*z^3 + y^5 + 1

place_to_closed_point(place)
Return the closed point at the place.

INPUT:

• place – a place of the function field of the curve

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
sage: pls = C.places()
sage: C.place_to_closed_point(pls[-1])
Point (x - 2*z, y - 2*z)
sage: pls2 = C.places(2)

(continues on next page)

42 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

sage: C.place_to_closed_point(pls2[0])
Point (y^2 + y*z + z^2, x + y)

places_on(point)
Return the places on the closed point.

INPUT:

• point – a closed point of the curve

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x*y*z^4 - x^6 - y^6)
sage: C.singular_closed_points()
[Point (x, y)]
sage: p, = _
sage: C.places_on(p)
[Place (1/y, 1/y^2*z, 1/y^3*z^2, 1/y^4*z^3), Place (y, y*z, y*z^2, y*z^3)]
sage: pl1, pl2 =_
sage: C.place_to_closed_point(pl1)
Point (x, y)
sage: C.place_to_closed_point(pl2)
Point (x, y)

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve(x^2*z - y^3)
sage: [C.places_on(p) for p in C.closed_points()]
[[Place (1/y)],
[Place (y)],
[Place (y + 1)],
[Place (y + 2)],
[Place (y + 3)],
[Place (y + 4)]]

singular_closed_points()

Return the singular closed points of the curve.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(y^2*z - x^3, P)
sage: C.singular_closed_points()
[Point (x, y)]

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
sage: C.singular_closed_points()
[Point (x, z)]

class sage.schemes.curves.projective_curve.IntegralProjectiveCurve_finite_field(A, f)
Bases: IntegralProjectiveCurve

Integral projective curve over a finite field.

4.2. Integral projective curves over Q 43

Curves, Release 9.8

INPUT:

• A – an ambient projective space

• f – homogeneous polynomials defining the curve

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
sage: C.function_field()
Function field in z defined by z^8 + 4*y^2*z^7 + 1
sage: C.closed_points()
[Point (x, z),
Point (x, y),
Point (x - 2*z, y + 2*z),
Point (x + 2*z, y + z),
Point (x + 2*z, y - z),
Point (x - 2*z, y - 2*z)]

L_polynomial(name='t')
Return the L-polynomial of this possibly singular curve.

INPUT:

• name – (default: t) name of the variable of the polynomial

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(3), 2)
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
sage: Cbar = C.projective_closure()
sage: Cbar.L_polynomial()
9*t^4 - 3*t^3 + t^2 - t + 1

closed_points(degree=1)
Return a list of closed points of degree of the curve.

INPUT:

• degree – a positive integer

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(9),2)
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x-2)
sage: Cp = C.projective_closure()
sage: Cp.closed_points()
[Point (x0, x1),
Point (x0 + (-z2 - 1)*x2, x1),
Point (x0 + (z2 + 1)*x2, x1),
Point (x0 + z2*x2, x1 + (z2 - 1)*x2),
Point (x0 + (-z2)*x2, x1 + (-z2 + 1)*x2),
Point (x0 + (-z2 - 1)*x2, x1 + (-z2 - 1)*x2),
Point (x0 + (z2 + 1)*x2, x1 + (z2 + 1)*x2),
Point (x0 + (z2 - 1)*x2, x1 + z2*x2),
Point (x0 + (-z2 + 1)*x2, x1 + (-z2)*x2),

(continues on next page)

44 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

Point (x0 + x2, x1 - x2),
Point (x0 - x2, x1 + x2)]

number_of_rational_points(r=1)
Return the number of rational points of the curve with constant field extended by degree r.

INPUT:

• r – positive integer (default: 1)

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(3), 2)
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)
sage: Cbar = C.projective_closure()
sage: Cbar.number_of_rational_points(3)
21
sage: D = Cbar.change_ring(Cbar.base_ring().extension(3))
sage: D.base_ring()
Finite Field in z3 of size 3^3
sage: len(D.closed_points())
21

places(degree=1)
Return all places on the curve of the degree.

INPUT:

• degree – positive integer

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve(x^2*z - y^3)
sage: C.places()
[Place (1/y),
Place (y),
Place (y + 1),
Place (y + 2),
Place (y + 3),
Place (y + 4)]
sage: C.places(2)
[Place (y^2 + 2),
Place (y^2 + 3),
Place (y^2 + y + 1),
Place (y^2 + y + 2),
Place (y^2 + 2*y + 3),
Place (y^2 + 2*y + 4),
Place (y^2 + 3*y + 3),
Place (y^2 + 3*y + 4),
Place (y^2 + 4*y + 1),
Place (y^2 + 4*y + 2)]

class sage.schemes.curves.projective_curve.IntegralProjectivePlaneCurve(A, f)
Bases: IntegralProjectiveCurve, ProjectivePlaneCurve_field

4.2. Integral projective curves over Q 45

Curves, Release 9.8

class sage.schemes.curves.projective_curve.IntegralProjectivePlaneCurve_finite_field(A, f)
Bases: IntegralProjectiveCurve_finite_field , ProjectivePlaneCurve_finite_field

Integral projective plane curve over a finite field.

INPUT:

• A – ambient projective plane

• f – a homogeneous equation that defines the curve

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(9),2)
sage: C = Curve(y^2-x^5-x^4-2*x^3-2*x-2)
sage: Cb = C.projective_closure()
sage: Cb.singular_closed_points()
[Point (x0, x1)]
sage: Cb.function_field()
Function field in y defined by y^2 + 2*x^5 + 2*x^4 + x^3 + x + 1

class sage.schemes.curves.projective_curve.ProjectiveCurve(A, X)
Bases: Curve_generic, AlgebraicScheme_subscheme_projective

Curves in projective spaces.

INPUT:

• A – ambient projective space

• X – list of multivariate polynomials; defining equations of the curve

EXAMPLES:

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
sage: C = Curve([y*u^2 - x^3, z*u^2 - x^3, w*u^2 - x^3, y^3 - x^3], P); C
Projective Curve over Finite Field of size 7 defined by -x^3 + y*u^2,
-x^3 + z*u^2, -x^3 + w*u^2, -x^3 + y^3

sage: K.<u> = CyclotomicField(11)
sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)
sage: C = Curve([y*w - u*z^2 - x^2, x*w - 3*u^2*z*w], P); C
Projective Curve over Cyclotomic Field of order 11 and degree 10 defined
by -x^2 + (-u)*z^2 + y*w, x*w + (-3*u^2)*z*w

affine_patch(i, AA=None)
Return the 𝑖-th affine patch of this projective curve.

INPUT:

• i – affine coordinate chart of the projective ambient space of this curve to compute affine patch with
respect to

• AA – (default: None) ambient affine space, this is constructed if it is not given

OUTPUT: a curve in affine space

EXAMPLES:

46 Chapter 4. Projective curves

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_subscheme.html#sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective

Curves, Release 9.8

sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
sage: C = Curve([y*z - x^2, w^2 - x*y], P)
sage: C.affine_patch(0)
Affine Curve over Complex Field with 53 bits of precision defined by
y*z - 1.00000000000000, w^2 - y

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P)
sage: C.affine_patch(1)
Affine Plane Curve over Rational Field defined by x^3 - x^2*z - x^2 + 1

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: C = Curve([u^2 - v^2], P)
sage: C.affine_patch(1, A).ambient_space() == A
True

plane_projection(PP=None)
Return a projection of this curve into a projective plane.

INPUT:

• PP – (default: None) the projective plane the projected curve will be defined in. This space must be
defined over the same base field as this curve, and must have dimension two. This space is constructed
if not specified.

OUTPUT: a tuple of

• a scheme morphism from this curve into a projective plane

• the projective curve that is the image of that morphism

EXAMPLES:

sage: P.<x,y,z,w,u,v> = ProjectiveSpace(QQ, 5)
sage: C = P.curve([x*u - z*v, w - y, w*y - x^2, y^3*u*2*z - w^4*w])
sage: L.<a,b,c> = ProjectiveSpace(QQ, 2)
sage: proj1 = C.plane_projection(PP=L)
sage: proj1
(Scheme morphism:

From: Projective Curve over Rational Field defined by x*u - z*v, -y +
w, -x^2 + y*w, -w^5 + 2*y^3*z*u

To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w : u : v) to

(x : -z + u : -z + v),
Projective Plane Curve over Rational Field defined by a^8 + 6*a^7*b +

4*a^5*b^3 - 4*a^7*c - 2*a^6*b*c - 4*a^5*b^2*c + 2*a^6*c^2)
sage: proj1[1].ambient_space() is L
True
sage: proj2 = C.projection()
sage: proj2[1].ambient_space() is L
False

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
sage: C = P.curve([x^2 - 6*y^2, w*z*u - y^3 + 4*y^2*z, u^2 - x^2])

(continues on next page)

4.2. Integral projective curves over Q 47

Curves, Release 9.8

(continued from previous page)

sage: C.plane_projection()
(Scheme morphism:

From: Projective Curve over Finite Field of size 7 defined by x^2 + y^2, -y^
→˓3 - 3*y^2*z + z*w*u, -x^2 + u^2

To: Projective Space of dimension 2 over Finite Field of size 7
Defn: Defined on coordinates by sending (x : y : z : w : u) to

(x : z : -y + w),
Projective Plane Curve over Finite Field of size 7 defined by x0^10 + 2*x0^
→˓8*x1^2 + 2*x0^6*x1^4 - 3*x0^6*x1^3*x2 + 2*x0^6*x1^2*x2^2 - 2*x0^4*x1^4*x2^2 +␣
→˓x0^2*x1^4*x2^4)

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = P.curve(x^2 - y*z - z^2)
sage: C.plane_projection()
Traceback (most recent call last):
...
TypeError: this curve is already a plane curve

projection(P=None, PS=None)
Return a projection of this curve into projective space of dimension one less than the dimension of the
ambient space of this curve.

This curve must not already be a plane curve. Over finite fields, if this curve contains all points in its
ambient space, then an error will be returned.

INPUT:

• P – (default: None) a point not on this curve that will be used to define the projection map; this is
constructed if not specified.

• PS – (default: None) the projective space the projected curve will be defined in. This space must be
defined over the same base ring as this curve, and must have dimension one less than that of the ambient
space of this curve. This space will be constructed if not specified.

OUTPUT: a tuple of

• a scheme morphism from this curve into a projective space of dimension one less than that of the
ambient space of this curve

• the projective curve that is the image of that morphism

EXAMPLES:

sage: K.<a> = CyclotomicField(3)
sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)
sage: C = Curve([y*w - x^2, z*w^2 - a*x^3], P)
sage: L.<a,b,c> = ProjectiveSpace(K, 2)
sage: proj1 = C.projection(PS=L)
sage: proj1
(Scheme morphism:

From: Projective Curve over Cyclotomic Field of order 3 and degree 2
defined by -x^2 + y*w, (-a)*x^3 + z*w^2

To: Projective Space of dimension 2 over Cyclotomic Field of order
3 and degree 2

Defn: Defined on coordinates by sending (x : y : z : w) to
(x : y : -z + w),

(continues on next page)

48 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

Projective Plane Curve over Cyclotomic Field of order 3 and degree 2
defined by a^6 + (-a)*a^3*b^3 - a^4*b*c)
sage: proj1[1].ambient_space() is L
True
sage: proj2 = C.projection()
sage: proj2[1].ambient_space() is L
False

sage: P.<x,y,z,w,a,b,c> = ProjectiveSpace(QQ, 6)
sage: C = Curve([y - x, z - a - b, w^2 - c^2, z - x - a, x^2 - w*z], P)
sage: C.projection()
(Scheme morphism:

From: Projective Curve over Rational Field defined by -x + y, z - a -
b, w^2 - c^2, -x + z - a, x^2 - z*w

To: Projective Space of dimension 5 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w : a : b : c)

to
(x : y : -z + w : a : b : c),

Projective Curve over Rational Field defined by x1 - x4, x0 - x4, x2*x3
+ x3^2 + x2*x4 + 2*x3*x4, x2^2 - x3^2 - 2*x3*x4 + x4^2 - x5^2, x2*x4^2 +
x3*x4^2 + x4^3 - x3*x5^2 - x4*x5^2, x4^4 - x3^2*x5^2 - 2*x3*x4*x5^2 -
x4^2*x5^2)

sage: P.<x,y,z,w> = ProjectiveSpace(GF(2), 3)
sage: C = P.curve([(x - y)*(x - z)*(x - w)*(y - z)*(y - w), x*y*z*w*(x+y+z+w)])
sage: C.projection()
Traceback (most recent call last):
...
NotImplementedError: this curve contains all points of its ambient space

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
sage: C = P.curve([x^3 - y*z*u, w^2 - u^2 + 2*x*z, 3*x*w - y^2])
sage: L.<a,b,c,d> = ProjectiveSpace(GF(7), 3)
sage: C.projection(PS=L)
(Scheme morphism:

From: Projective Curve over Finite Field of size 7 defined by x^3 -
y*z*u, 2*x*z + w^2 - u^2, -y^2 + 3*x*w

To: Projective Space of dimension 3 over Finite Field of size 7
Defn: Defined on coordinates by sending (x : y : z : w : u) to

(x : y : z : w),
Projective Curve over Finite Field of size 7 defined by b^2 - 3*a*d,

a^5*b + a*b*c^3*d - 3*b*c^2*d^3, a^6 + a^2*c^3*d - 3*a*c^2*d^3)
sage: Q.<a,b,c> = ProjectiveSpace(GF(7), 2)
sage: C.projection(PS=Q)
Traceback (most recent call last):
...
TypeError: (=Projective Space of dimension 2 over Finite Field of size
7) must have dimension (=3)

sage: PP.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = PP.curve([x^3 - z^2*y, w^2 - z*x])

(continues on next page)

4.2. Integral projective curves over Q 49

Curves, Release 9.8

(continued from previous page)

sage: Q = PP([1,0,1,1])
sage: C.projection(P=Q)
(Scheme morphism:

From: Projective Curve over Rational Field defined by x^3 - y*z^2, -x*z + w^2
To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w) to

(y : -x + z : -x + w),
Projective Plane Curve over Rational Field defined by x0*x1^5 -
6*x0*x1^4*x2 + 14*x0*x1^3*x2^2 - 16*x0*x1^2*x2^3 + 9*x0*x1*x2^4 -
2*x0*x2^5 - x2^6)
sage: LL.<a,b,c> = ProjectiveSpace(QQ, 2)
sage: Q = PP([0,0,0,1])
sage: C.projection(PS=LL, P=Q)
(Scheme morphism:

From: Projective Curve over Rational Field defined by x^3 - y*z^2,
-x*z + w^2

To: Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w) to

(x : y : z),
Projective Plane Curve over Rational Field defined by a^3 - b*c^2)
sage: Q = PP([0,0,1,0])
sage: C.projection(P=Q)
Traceback (most recent call last):
...
TypeError: (=(0 : 0 : 1 : 0)) must be a point not on this curve

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve(y^2 - x^2 + z^2)
sage: C.projection()
Traceback (most recent call last):
...
TypeError: this curve is already a plane curve

class sage.schemes.curves.projective_curve.ProjectiveCurve_field(A, X)
Bases: ProjectiveCurve, AlgebraicScheme_subscheme_projective_field

Projective curves over fields.

arithmetic_genus()

Return the arithmetic genus of this projective curve.

This is the arithmetic genus 𝑔𝑎(𝐶) as defined in [Har1977]. If 𝑃 is the Hilbert polynomial of the defining
ideal of this curve, then the arithmetic genus of this curve is 1 − 𝑃 (0). This curve must be irreducible.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = P.curve([w*z - x^2, w^2 + y^2 + z^2])
sage: C.arithmetic_genus()
1

sage: P.<x,y,z,w,t> = ProjectiveSpace(GF(7), 4)
sage: C = P.curve([t^3 - x*y*w, x^3 + y^3 + z^3, z - w])

(continues on next page)

50 Chapter 4. Projective curves

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_subscheme.html#sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective_field

Curves, Release 9.8

(continued from previous page)

sage: C.arithmetic_genus()
10

is_complete_intersection()

Return whether this projective curve is a complete intersection.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
sage: C.is_complete_intersection()
False

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y*w - x^2, z*w^2 - x^3], P)
sage: C.is_complete_intersection()
True

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([z^2 - y*w, y*z - x*w, y^2 - x*z], P)
sage: C.is_complete_intersection()
False

tangent_line(p)
Return the tangent line at the point p.

INPUT:

• p – a rational point of the curve

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
sage: p = C(1,1,1,1)
sage: C.tangent_line(p)
Projective Curve over Rational Field defined by -2*x + y + w, -3*x + z + 2*w

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve(A, f)
Bases: ProjectiveCurve

Curves in projective planes.

INPUT:

• A – projective plane

• f – homogeneous polynomial in the homogeneous coordinate ring of the plane

EXAMPLES:

A projective plane curve defined over an algebraic closure of Q:

sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
sage: set_verbose(-1) # suppress warnings for slow computation
sage: C = Curve([y*z - x^2 - QQbar.gen()*z^2], P); C

(continues on next page)

4.2. Integral projective curves over Q 51

Curves, Release 9.8

(continued from previous page)

Projective Plane Curve over Algebraic Field defined by
-x^2 + y*z + (-I)*z^2

A projective plane curve defined over a finite field:

sage: P.<x,y,z> = ProjectiveSpace(GF(5^2, 'v'), 2)
sage: C = Curve([y^2*z - x*z^2 - z^3], P); C
Projective Plane Curve over Finite Field in v of size 5^2 defined by y^2*z - x*z^2 -
→˓ z^3

degree()

Return the degree of this projective curve.

For a plane curve, this is just the degree of its defining polynomial.

OUTPUT: integer.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([y^7 - x^2*z^5 + 7*z^7])
sage: C.degree()
7

divisor_of_function(r)
Return the divisor of a function on a curve.

INPUT: r is a rational function on X

OUTPUT:

• list – The divisor of r represented as a list of coefficients and points. (TODO: This will change to a
more structural output in the future.)

EXAMPLES:

sage: FF = FiniteField(5)
sage: P2 = ProjectiveSpace(2, FF, names = ['x','y','z'])
sage: R = P2.coordinate_ring()
sage: x, y, z = R.gens()
sage: f = y^2*z^7 - x^9 - x*z^8
sage: C = Curve(f)
sage: K = FractionField(R)
sage: r = 1/x
sage: C.divisor_of_function(r) # todo: not implemented !!!!
[[-1, (0, 0, 1)]]
sage: r = 1/x^3
sage: C.divisor_of_function(r) # todo: not implemented !!!!
[[-3, (0, 0, 1)]]

excellent_position(Q)

Return a transformation of this curve into one in excellent position with respect to the point Q.

Here excellent position is defined as in [Ful1989]. A curve 𝐶 of degree 𝑑 containing the point (0 : 0 : 1)
with multiplicity 𝑟 is said to be in excellent position if none of the coordinate lines are tangent to 𝐶 at any
of the fundamental points (1 : 0 : 0), (0 : 1 : 0), and (0 : 0 : 1), and if the two coordinate lines containing

52 Chapter 4. Projective curves

Curves, Release 9.8

(0 : 0 : 1) intersect 𝐶 transversally in 𝑑 − 𝑟 distinct non-fundamental points, and if the other coordinate
line intersects 𝐶 transversally at 𝑑 distinct, non-fundamental points.

INPUT:

• Q – a point on this curve.

OUTPUT:

• a scheme morphism from this curve to a curve in excellent position that is a restriction of a change of
coordinates map of the projective plane.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x*y - z^2], P)
sage: Q = P([1,1,1])
sage: C.excellent_position(Q)
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by x*y - z^2
To: Projective Plane Curve over Rational Field defined by -x^2 -

3*x*y - 4*y^2 - x*z - 3*y*z
Defn: Defined on coordinates by sending (x : y : z) to

(-x + 1/2*y + 1/2*z : -1/2*y + 1/2*z : x + 1/2*y - 1/2*z)

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = P.curve([z^2*y^3*x^4 - y^6*x^3 - 4*z^2*y^4*x^3 - 4*z^4*y^2*x^3 + 3*y^
→˓7*x^2 + 10*z^2*y^5*x^2\
+ 9*z^4*y^3*x^2 + 5*z^6*y*x^2 - 3*y^8*x - 9*z^2*y^6*x - 11*z^4*y^4*x - 7*z^6*y^
→˓2*x - 2*z^8*x + y^9 +\
2*z^2*y^7 + 3*z^4*y^5 + 4*z^6*y^3 + 2*z^8*y])
sage: Q = P([1,0,0])
sage: C.excellent_position(Q)
Scheme morphism:
From: Projective Plane Curve over Number Field in b with defining

polynomial a^2 - 3 defined by -x^3*y^6 + 3*x^2*y^7 - 3*x*y^8 + y^9 +
x^4*y^3*z^2 - 4*x^3*y^4*z^2 + 10*x^2*y^5*z^2 - 9*x*y^6*z^2 + 2*y^7*z^2 -
4*x^3*y^2*z^4 + 9*x^2*y^3*z^4 - 11*x*y^4*z^4 + 3*y^5*z^4 + 5*x^2*y*z^6 -
7*x*y^2*z^6 + 4*y^3*z^6 - 2*x*z^8 + 2*y*z^8
To: Projective Plane Curve over Number Field in b with defining

polynomial a^2 - 3 defined by 900*x^9 - 7410*x^8*y + 29282*x^7*y^2 -
69710*x^6*y^3 + 110818*x^5*y^4 - 123178*x^4*y^5 + 96550*x^3*y^6 -
52570*x^2*y^7 + 18194*x*y^8 - 3388*y^9 - 1550*x^8*z + 9892*x^7*y*z -
30756*x^6*y^2*z + 58692*x^5*y^3*z - 75600*x^4*y^4*z + 67916*x^3*y^5*z -
42364*x^2*y^6*z + 16844*x*y^7*z - 3586*y^8*z + 786*x^7*z^2 -
3958*x^6*y*z^2 + 9746*x^5*y^2*z^2 - 14694*x^4*y^3*z^2 +
15174*x^3*y^4*z^2 - 10802*x^2*y^5*z^2 + 5014*x*y^6*z^2 - 1266*y^7*z^2 -
144*x^6*z^3 + 512*x^5*y*z^3 - 912*x^4*y^2*z^3 + 1024*x^3*y^3*z^3 -
816*x^2*y^4*z^3 + 512*x*y^5*z^3 - 176*y^6*z^3 + 8*x^5*z^4 - 8*x^4*y*z^4
- 16*x^3*y^2*z^4 + 16*x^2*y^3*z^4 + 8*x*y^4*z^4 - 8*y^5*z^4
Defn: Defined on coordinates by sending (x : y : z) to

(1/4*y + 1/2*z : -1/4*y + 1/2*z : x + 1/4*y - 1/2*z)

4.2. Integral projective curves over Q 53

Curves, Release 9.8

sage: set_verbose(-1)
sage: a = QQbar(sqrt(2))
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
sage: C = Curve([(-1/4*a)*x^3 + (-3/4*a)*x^2*y + (-3/4*a)*x*y^2 + (-1/4*a)*y^3 -
→˓ 2*x*y*z], P)
sage: Q = P([0,0,1])
sage: C.excellent_position(Q)
Scheme morphism:
From: Projective Plane Curve over Algebraic Field defined by

(-0.3535533905932738?)*x^3 + (-1.060660171779822?)*x^2*y +
(-1.060660171779822?)*x*y^2 + (-0.3535533905932738?)*y^3 + (-2)*x*y*z
To: Projective Plane Curve over Algebraic Field defined by

(-2.828427124746190?)*x^3 + (-2)*x^2*y + 2*y^3 + (-2)*x^2*z + 2*y^2*z
Defn: Defined on coordinates by sending (x : y : z) to

(1/2*x + 1/2*y : (-1/2)*x + 1/2*y : 1/2*x + (-1/2)*y + z)

is_ordinary_singularity(P)
Return whether the singular point P of this projective plane curve is an ordinary singularity.

The point P is an ordinary singularity of this curve if it is a singular point, and if the tangents of this curve
at P are distinct.

INPUT:

• P – a point on this curve.

OUTPUT:

• Boolean. True or False depending on whether P is or is not an ordinary singularity of this curve,
respectively. An error is raised if P is not a singular point of this curve.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^3 - x^5], P)
sage: Q = P([0,0,1])
sage: C.is_ordinary_singularity(Q)
False

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3 + 3*y^
→˓7*z^2 + 10*x^2*y^5*z^2\
+ 9*x^4*y^3*z^2 + 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z - 7*x^6*y^
→˓2*z - 2*x^8*z + y^9 +\
2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y])
sage: Q = P([0,1,1])
sage: C.is_ordinary_singularity(Q)
True

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([z^5 - y^5 + x^5 + x*y^2*z^2])
sage: Q = P([0,1,1])
sage: C.is_ordinary_singularity(Q)

(continues on next page)

54 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
TypeError: (=(0 : 1 : 1)) is not a singular point of (=Projective Plane
Curve over Rational Field defined by x^5 - y^5 + x*y^2*z^2 + z^5)

is_singular(P=None)
Return whether this curve is singular or not, or if a point P is provided, whether P is a singular point of this
curve.

INPUT:

• P – (default: None) a point on this curve

OUTPUT:

If no point P is provided, return True or False depending on whether this curve is singular or not. If a
point P is provided, return True or False depending on whether P is or is not a singular point of this curve.

EXAMPLES:

Over Q:

sage: F = QQ
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3-Y^2*Z)
sage: C.is_singular()
True

Over a finite field:

sage: F = GF(19)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3+Y^3+Z^3)
sage: C.is_singular()
False
sage: D = Curve(X^4-X*Z^3)
sage: D.is_singular()
True
sage: E = Curve(X^5+19*Y^5+Z^5)
sage: E.is_singular()
True
sage: E = Curve(X^5+9*Y^5+Z^5)
sage: E.is_singular()
False

Over C:

sage: F = CC
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X)
sage: C.is_singular()
False
sage: D = Curve(Y^2*Z-X^3)
sage: D.is_singular()
True

(continues on next page)

4.2. Integral projective curves over Q 55

Curves, Release 9.8

(continued from previous page)

sage: E = Curve(Y^2*Z-X^3+Z^3)
sage: E.is_singular()
False

Showing that trac ticket #12187 is fixed:

sage: F.<X,Y,Z> = GF(2)[]
sage: G = Curve(X^2+Y*Z)
sage: G.is_singular()
False

sage: P.<x,y,z> = ProjectiveSpace(CC, 2)
sage: C = Curve([y^4 - x^3*z], P)
sage: Q = P([0,0,1])
sage: C.is_singular()
True

is_transverse(C, P)
Return whether the intersection of this curve with the curve C at the point P is transverse.

The intersection at P is transverse if P is a nonsingular point of both curves, and if the tangents of the curves
at P are distinct.

INPUT:

• C – a curve in the ambient space of this curve.

• P – a point in the intersection of both curves.

OUTPUT: Boolean.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - y^2], P)
sage: D = Curve([x - y], P)
sage: Q = P([1,1,0])
sage: C.is_transverse(D, Q)
False

sage: K = QuadraticField(-1)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = Curve([y^2*z - K.0*x^3], P)
sage: D = Curve([z*x + y^2], P)
sage: Q = P([0,0,1])
sage: C.is_transverse(D, Q)
False

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P)
sage: D = Curve([y - z], P)
sage: Q = P([2,1,1])
sage: C.is_transverse(D, Q)
True

56 Chapter 4. Projective curves

https://trac.sagemath.org/12187

Curves, Release 9.8

local_coordinates(pt, n)
Return local coordinates to precision n at the given point.

Behaviour is flaky - some choices of 𝑛 are worse than others.

INPUT:

• pt – a rational point on X which is not a point of ramification
for the projection (𝑥, 𝑦) → 𝑥.

• n– the number of terms desired

OUTPUT: 𝑥 = 𝑥0 + 𝑡, 𝑦 = 𝑦0 + power series in 𝑡

EXAMPLES:

sage: FF = FiniteField(5)
sage: P2 = ProjectiveSpace(2, FF, names = ['x','y','z'])
sage: x, y, z = P2.coordinate_ring().gens()
sage: C = Curve(y^2*z^7-x^9-x*z^8)
sage: pt = C([2,3,1])
sage: C.local_coordinates(pt,9) # todo: not implemented !!!!

[2 + t, 3 + 3*t^2 + t^3 + 3*t^4 + 3*t^6 + 3*t^7 + t^8 + 2*t^9 + 3*t^11 +␣
→˓3*t^12]

ordinary_model()

Return a birational map from this curve to a plane curve with only ordinary singularities.

Currently only implemented over number fields. If not all of the coordinates of the non-ordinary singulari-
ties of this curve are contained in its base field, then the domain and codomain of the map returned will be
defined over an extension. This curve must be irreducible.

OUTPUT:

• a scheme morphism from this curve to a curve with only ordinary singularities that defines a birational
map between the two curves.

EXAMPLES:

sage: set_verbose(-1)
sage: K = QuadraticField(3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = Curve([x^5 - K.0*y*z^4], P)
sage: C.ordinary_model()
Scheme morphism:
From: Projective Plane Curve over Number Field in a with defining polynomial␣

→˓x^2 - 3 with a = 1.732050807568878? defined by x^5 + (-a)*y*z^4
To: Projective Plane Curve over Number Field in a with defining polynomial␣

→˓x^2 - 3 with a = 1.732050807568878? defined by (-a)*x^5*y + (-4*a)*x^4*y^2 +␣
→˓(-6*a)*x^3*y^3 + (-4*a)*x^2*y^4 + (-a)*x*y^5 + (-a - 1)*x^5*z + (-4*a + 5)*x^
→˓4*y*z + (-6*a - 10)*x^3*y^2*z + (-4*a + 10)*x^2*y^3*z + (-a - 5)*x*y^4*z + y^
→˓5*z
Defn: Defined on coordinates by sending (x : y : z) to

(-1/4*x^2 - 1/2*x*y + 1/2*x*z + 1/2*y*z - 1/4*z^2 : 1/4*x^2 + 1/2*x*y +␣
→˓1/2*y*z - 1/4*z^2 : -1/4*x^2 + 1/4*z^2)

sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)

(continues on next page)

4.2. Integral projective curves over Q 57

Curves, Release 9.8

(continued from previous page)

sage: C = Curve([y^2*z^2 - x^4 - x^3*z], P)
sage: D = C.ordinary_model(); D # long time (2 seconds)
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by -x^4 -

x^3*z + y^2*z^2
To: Projective Plane Curve over Rational Field defined by 4*x^6*y^3

- 24*x^5*y^4 + 36*x^4*y^5 + 8*x^6*y^2*z - 40*x^5*y^3*z + 24*x^4*y^4*z +
72*x^3*y^5*z - 4*x^6*y*z^2 + 8*x^5*y^2*z^2 - 56*x^4*y^3*z^2 +
104*x^3*y^4*z^2 + 44*x^2*y^5*z^2 + 8*x^6*z^3 - 16*x^5*y*z^3 -
24*x^4*y^2*z^3 + 40*x^3*y^3*z^3 + 48*x^2*y^4*z^3 + 8*x*y^5*z^3 -
8*x^5*z^4 + 36*x^4*y*z^4 - 56*x^3*y^2*z^4 + 20*x^2*y^3*z^4 +
40*x*y^4*z^4 - 16*y^5*z^4
Defn: Defined on coordinates by sending (x : y : z) to

(-3/64*x^4 + 9/64*x^2*y^2 - 3/32*x*y^3 - 1/16*x^3*z -
1/8*x^2*y*z + 1/4*x*y^2*z - 1/16*y^3*z - 1/8*x*y*z^2 + 1/16*y^2*z^2 :
-1/64*x^4 + 3/64*x^2*y^2 - 1/32*x*y^3 + 1/16*x*y^2*z - 1/16*y^3*z +
1/16*y^2*z^2 : 3/64*x^4 - 3/32*x^3*y + 3/64*x^2*y^2 + 1/16*x^3*z -
3/16*x^2*y*z + 1/8*x*y^2*z - 1/8*x*y*z^2 + 1/16*y^2*z^2)
sage: all(D.codomain().is_ordinary_singularity(Q) for Q in D.codomain().
→˓singular_points()) # long time
True

sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([(x^2 + y^2 - y*z - 2*z^2)*(y*z - x^2 + 2*z^2)*z + y^5], P)
sage: C.ordinary_model() # long time (5 seconds)
Scheme morphism:
From: Projective Plane Curve over Number Field in a with defining

polynomial y^2 - 2 defined by y^5 - x^4*z - x^2*y^2*z + 2*x^2*y*z^2 +
y^3*z^2 + 4*x^2*z^3 + y^2*z^3 - 4*y*z^4 - 4*z^5
To: Projective Plane Curve over Number Field in a with defining

polynomial y^2 - 2 defined by (-29*a + 1)*x^8*y^6 + (10*a + 158)*x^7*y^7
+ (-109*a - 31)*x^6*y^8 + (-80*a - 198)*x^8*y^5*z + (531*a +
272)*x^7*y^6*z + (170*a - 718)*x^6*y^7*z + (19*a - 636)*x^5*y^8*z +
(-200*a - 628)*x^8*y^4*z^2 + (1557*a - 114)*x^7*y^5*z^2 + (2197*a -
2449)*x^6*y^6*z^2 + (1223*a - 3800)*x^5*y^7*z^2 + (343*a -
1329)*x^4*y^8*z^2 + (-323*a - 809)*x^8*y^3*z^3 + (1630*a -
631)*x^7*y^4*z^3 + (4190*a - 3126)*x^6*y^5*z^3 + (3904*a -
7110)*x^5*y^6*z^3 + (1789*a - 5161)*x^4*y^7*z^3 + (330*a -
1083)*x^3*y^8*z^3 + (-259*a - 524)*x^8*y^2*z^4 + (720*a -
605)*x^7*y^3*z^4 + (3082*a - 2011)*x^6*y^4*z^4 + (4548*a -
5462)*x^5*y^5*z^4 + (2958*a - 6611)*x^4*y^6*z^4 + (994*a -
2931)*x^3*y^7*z^4 + (117*a - 416)*x^2*y^8*z^4 + (-108*a - 184)*x^8*y*z^5
+ (169*a - 168)*x^7*y^2*z^5 + (831*a - 835)*x^6*y^3*z^5 + (2225*a -
1725)*x^5*y^4*z^5 + (1970*a - 3316)*x^4*y^5*z^5 + (952*a -
2442)*x^3*y^6*z^5 + (217*a - 725)*x^2*y^7*z^5 + (16*a - 77)*x*y^8*z^5 +
(-23*a - 35)*x^8*z^6 + (43*a + 24)*x^7*y*z^6 + (21*a - 198)*x^6*y^2*z^6
+ (377*a - 179)*x^5*y^3*z^6 + (458*a - 537)*x^4*y^4*z^6 + (288*a -
624)*x^3*y^5*z^6 + (100*a - 299)*x^2*y^6*z^6 + (16*a - 67)*x*y^7*z^6 -
5*y^8*z^6
Defn: Defined on coordinates by sending (x : y : z) to

((-5/128*a - 5/128)*x^4 + (-5/32*a + 5/32)*x^3*y + (-1/16*a +
(continues on next page)

58 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

3/32)*x^2*y^2 + (1/16*a - 1/16)*x*y^3 + (1/32*a - 1/32)*y^4 - 1/32*x^3*z
+ (3/16*a - 5/8)*x^2*y*z + (1/8*a - 5/16)*x*y^2*z + (1/8*a +
5/32)*x^2*z^2 + (-3/16*a + 5/16)*x*y*z^2 + (-3/16*a - 1/16)*y^2*z^2 +
1/16*x*z^3 + (1/4*a + 1/4)*y*z^3 + (-3/32*a - 5/32)*z^4 : (-5/128*a -
5/128)*x^4 + (5/32*a)*x^3*y + (3/32*a + 3/32)*x^2*y^2 + (-1/16*a)*x*y^3
+ (-1/32*a - 1/32)*y^4 - 1/32*x^3*z + (-11/32*a)*x^2*y*z + (1/8*a +
5/16)*x*y^2*z + (3/16*a + 1/4)*y^3*z + (1/8*a + 5/32)*x^2*z^2 + (-1/16*a
- 3/8)*x*y*z^2 + (-3/8*a - 9/16)*y^2*z^2 + 1/16*x*z^3 + (5/16*a +
1/2)*y*z^3 + (-3/32*a - 5/32)*z^4 : (1/64*a + 3/128)*x^4 + (-1/32*a -
1/32)*x^3*y + (3/32*a - 9/32)*x^2*y^2 + (1/16*a - 3/16)*x*y^3 - 1/32*y^4
+ (3/32*a + 1/8)*x^2*y*z + (-1/8*a + 1/8)*x*y^2*z + (-1/16*a)*y^3*z +
(-1/16*a - 3/32)*x^2*z^2 + (1/16*a + 1/16)*x*y*z^2 + (3/16*a +
3/16)*y^2*z^2 + (-3/16*a - 1/4)*y*z^3 + (1/16*a + 3/32)*z^4)

plot(*args, **kwds)
Plot the real points of an affine patch of this projective plane curve.

INPUT:

• self - an affine plane curve

• patch - (optional) the affine patch to be plotted; if not specified, the patch corresponding to the last
projective coordinate being nonzero

• *args - optional tuples (variable, minimum, maximum) for plotting dimensions

• **kwds - optional keyword arguments passed on to implicit_plot

EXAMPLES:

A cuspidal curve:

sage: R.<x, y, z> = QQ[]
sage: C = Curve(x^3 - y^2*z)
sage: C.plot()
Graphics object consisting of 1 graphics primitive

The other affine patches of the same curve:

sage: C.plot(patch=0)
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=1)
Graphics object consisting of 1 graphics primitive

An elliptic curve:

sage: E = EllipticCurve('101a')
sage: C = Curve(E)
sage: C.plot()
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=0)
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=1)
Graphics object consisting of 1 graphics primitive

A hyperelliptic curve:

4.2. Integral projective curves over Q 59

Curves, Release 9.8

sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f)
sage: C.plot()
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=0)
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=1)
Graphics object consisting of 1 graphics primitive

quadratic_transform()

Return a birational map from this curve to the proper transform of this curve with respect to the standard
Cremona transformation.

The standard Cremona transformation is the birational automorphism of P2 defined (𝑥 : 𝑦 : 𝑧) ↦→ (𝑦𝑧 :
𝑥𝑧 : 𝑥𝑦).

OUTPUT:

• a scheme morphism representing the restriction of the standard Cremona transformation from this
curve to the proper transform.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3*y - z^4 - z^2*x^2, P)
sage: C.quadratic_transform()
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by x^3*y -

x^2*z^2 - z^4
To: Projective Plane Curve over Rational Field defined by -x^3*y -

x*y*z^2 + z^4
Defn: Defined on coordinates by sending (x : y : z) to

(y*z : x*z : x*y)

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = P.curve([y^7*z^2 - 16*x^9 + x*y*z^7 + 2*z^9])
sage: C.quadratic_transform()
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 17 defined by

x^9 + y^7*z^2 + x*y*z^7 + 2*z^9
To: Projective Plane Curve over Finite Field of size 17 defined by

2*x^9*y^7 + x^8*y^6*z^2 + x^9*z^7 + y^7*z^9
Defn: Defined on coordinates by sending (x : y : z) to

(y*z : x*z : x*y)

tangents(P, factor=True)
Return the tangents of this projective plane curve at the point P.

These are found by homogenizing the tangents of an affine patch of this curve containing P. The point P
must be a point on this curve.

INPUT:

• P – a point on this curve.

60 Chapter 4. Projective curves

Curves, Release 9.8

• factor – (default: True) whether to attempt computing the polynomials of the individual tangent
lines over the base field of this curve, or to just return the polynomial corresponding to the union of
the tangent lines (which requires fewer computations).

OUTPUT:

a list of polynomials in the coordinate ring of the ambient space of this curve.

EXAMPLES:

sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
sage: C = Curve([x^3*y + 2*x^2*y^2 + x*y^3 + x^3*z + 7*x^2*y*z + 14*x*y^2*z +␣
→˓9*y^3*z], P)
sage: Q = P([0,0,1])
sage: C.tangents(Q)
[x + 4.147899035704788?*y, x + (1.426050482147607? + 0.3689894074818041?*I)*y,
x + (1.426050482147607? - 0.3689894074818041?*I)*y]
sage: C.tangents(Q, factor=False)
[6*x^3 + 42*x^2*y + 84*x*y^2 + 54*y^3]

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3 + 3*y^
→˓7*z^2 +\
10*x^2*y^5*z^2 + 9*x^4*y^3*z^2 + 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^
→˓4*z -\
7*x^6*y^2*z - 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y])
sage: Q = P([0,1,1])
sage: C.tangents(Q)
[-y + z, 3*x^2 - y^2 + 2*y*z - z^2]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([z^3*x + y^4 - x^2*z^2])
sage: Q = P([1,1,1])
sage: C.tangents(Q)
Traceback (most recent call last):
...
TypeError: (=(1 : 1 : 1)) is not a point on (=Projective Plane Curve
over Rational Field defined by y^4 - x^2*z^2 + x*z^3)

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field(A, f)
Bases: ProjectivePlaneCurve, ProjectiveCurve_field

Projective plane curves over fields.

arithmetic_genus()

Return the arithmetic genus of this projective curve.

This is the arithmetic genus 𝑔𝑎(𝐶) as defined in [Har1977]. For a projective plane curve of degree 𝑑, this
is simply (𝑑 − 1)(𝑑 − 2)/2. It need not equal the geometric genus (the genus of the normalization of the
curve). This curve must be irreducible.

EXAMPLES:

sage: x,y,z = PolynomialRing(GF(5), 3, 'xyz').gens()
sage: C = Curve(y^2*z^7 - x^9 - x*z^8); C

(continues on next page)

4.2. Integral projective curves over Q 61

Curves, Release 9.8

(continued from previous page)

Projective Plane Curve over Finite Field of size 5 defined by -x^9 + y^2*z^7 -␣
→˓x*z^8
sage: C.arithmetic_genus()
28
sage: C.genus()
4

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^3*x - x^2*y*z - 7*z^4])
sage: C.arithmetic_genus()
3

fundamental_group()

Return a presentation of the fundamental group of the complement of self.

Note: The curve must be defined over the rationals or a number field with an embedding over Q.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: C = P.curve(x^2*z-y^3)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | x0^3 >

In the case of number fields, they need to have an embedding into the algebraic field:

sage: a = QQ[x](x^2+5).roots(QQbar)[0][0]
sage: a
-2.236067977499790?*I
sage: F = NumberField(a.minpoly(), 'a', embedding=a)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
sage: F.inject_variables()
Defining a
sage: C = P.curve(x^2 + a * y^2)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | >

Warning: This functionality requires the sirocco package to be installed.

rational_parameterization()

Return a rational parameterization of this curve.

This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible over the algebraic
closure of the rational field). The curve must also be rational (have geometric genus zero).

The rational parameterization may have coefficients in a quadratic extension of the rational field.

OUTPUT:

• a birational map between P1 and this curve, given as a scheme morphism.

EXAMPLES:

62 Chapter 4. Projective curves

Curves, Release 9.8

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z - x^3], P)
sage: C.rational_parameterization()
Scheme morphism:
From: Projective Space of dimension 1 over Rational Field
To: Projective Plane Curve over Rational Field defined by -x^3 + y^2*z
Defn: Defined on coordinates by sending (s : t) to

(s^2*t : s^3 : t^3)

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^3 - 4*y*z^2 + x*z^2 - x*y*z], P)
sage: C.rational_parameterization()
Scheme morphism:
From: Projective Space of dimension 1 over Rational Field
To: Projective Plane Curve over Rational Field defined by x^3 - x*y*z + x*z^

→˓2 - 4*y*z^2
Defn: Defined on coordinates by sending (s : t) to

(4*s^2*t + s*t^2 : s^2*t + t^3 : 4*s^3 + s^2*t)

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 + z^2], P)
sage: C.rational_parameterization()
Scheme morphism:
From: Projective Space of dimension 1 over Number Field in a with defining␣

→˓polynomial a^2 + 1
To: Projective Plane Curve over Number Field in a with defining
polynomial a^2 + 1 defined by x^2 + y^2 + z^2
Defn: Defined on coordinates by sending (s : t) to

((-a)*s^2 + (-a)*t^2 : s^2 - t^2 : 2*s*t)

riemann_surface(**kwargs)
Return the complex Riemann surface determined by this curve

OUTPUT:

• RiemannSurface object

EXAMPLES:

sage: R.<x,y,z>=QQ[]
sage: C=Curve(x^3+3*y^3+5*z^3)
sage: C.riemann_surface()
Riemann surface defined by polynomial f = x^3 + 3*y^3 + 5 = 0, with 53 bits of␣
→˓precision

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field(A, f)
Bases: ProjectivePlaneCurve_field

Projective plane curves over finite fields

rational_points(algorithm='enum', sort=True)
Return the rational points on this curve.

INPUT:

• algorithm – one of

4.2. Integral projective curves over Q 63

Curves, Release 9.8

– 'enum' – straightforward enumeration

– 'bn' – via Singular’s brnoeth package.

• sort – boolean (default: True); whether the output points should be sorted. If False, the order of the
output is non-deterministic.

OUTPUT: a list of all the rational points on the curve, possibly sorted.

Note: The Brill-Noether package does not always work (i.e., the ‘bn’ algorithm. When it fails a Run-
timeError exception is raised.

EXAMPLES:

sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens()
sage: f = y^2*z^7 - x^9 - x*z^8
sage: C = Curve(f); C
Projective Plane Curve over Finite Field of size 5 defined by
-x^9 + y^2*z^7 - x*z^8
sage: C.rational_points()
[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1),
(3 : 1 : 1), (3 : 4 : 1)]
sage: C = Curve(x - y + z)
sage: C.rational_points()
[(0 : 1 : 1), (1 : 1 : 0), (1 : 2 : 1), (2 : 3 : 1),
(3 : 4 : 1), (4 : 0 : 1)]
sage: C = Curve(x*z+z^2)
sage: C.rational_points('all')
[(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0), (2 : 1 : 0),
(3 : 1 : 0), (4 : 0 : 1), (4 : 1 : 0), (4 : 1 : 1),
(4 : 2 : 1), (4 : 3 : 1), (4 : 4 : 1)]

sage: F = GF(7)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3+Y^3-Z^3)
sage: C.rational_points()
[(0 : 1 : 1), (0 : 2 : 1), (0 : 4 : 1), (1 : 0 : 1), (2 : 0 : 1),
(3 : 1 : 0), (4 : 0 : 1), (5 : 1 : 0), (6 : 1 : 0)]

sage: F = GF(1237)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^7+7*Y^6*Z+Z^4*X^2*Y*89)
sage: len(C.rational_points())
1237

sage: F = GF(2^6,'a')
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^5+11*X*Y*Z^3 + X^2*Y^3 - 13*Y^2*Z^3)
sage: len(C.rational_points())
104

sage: R.<x,y,z> = GF(2)[]
sage: f = x^3*y + y^3*z + x*z^3

(continues on next page)

64 Chapter 4. Projective curves

Curves, Release 9.8

(continued from previous page)

sage: C = Curve(f); pts = C.rational_points()
sage: pts
[(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)]

rational_points_iterator()

Return a generator object for the rational points on this curve.

INPUT:

• self – a projective curve

OUTPUT:

A generator of all the rational points on the curve defined over its base field.

EXAMPLES:

sage: F = GF(37)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^7+Y*X*Z^5*55+Y^7*12)
sage: len(list(C.rational_points_iterator()))
37

sage: F = GF(2)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X*Y*Z)
sage: a = C.rational_points_iterator()
sage: next(a)
(1 : 0 : 0)
sage: next(a)
(0 : 1 : 0)
sage: next(a)
(1 : 1 : 0)
sage: next(a)
(0 : 0 : 1)
sage: next(a)
(1 : 0 : 1)
sage: next(a)
(0 : 1 : 1)
sage: next(a)
Traceback (most recent call last):
...
StopIteration

sage: F = GF(3^2,'a')
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3+5*Y^2*Z-33*X*Y*X)
sage: b = C.rational_points_iterator()
sage: next(b)
(0 : 1 : 0)
sage: next(b)
(0 : 0 : 1)
sage: next(b)
(2*a + 2 : a : 1)

(continues on next page)

4.2. Integral projective curves over Q 65

Curves, Release 9.8

(continued from previous page)

sage: next(b)
(2 : a + 1 : 1)
sage: next(b)
(a + 1 : 2*a + 1 : 1)
sage: next(b)
(1 : 2 : 1)
sage: next(b)
(2*a + 2 : 2*a : 1)
sage: next(b)
(2 : 2*a + 2 : 1)
sage: next(b)
(a + 1 : a + 2 : 1)
sage: next(b)
(1 : 1 : 1)
sage: next(b)
Traceback (most recent call last):
...
StopIteration

riemann_roch_basis(D)

Return a basis for the Riemann-Roch space corresponding to 𝐷.

This uses Singular’s Brill-Noether implementation.

INPUT:

• D - a divisor

OUTPUT: a list of function field elements that form a basis of the Riemann-Roch space

EXAMPLES:

sage: R.<x,y,z> = GF(2)[]
sage: f = x^3*y + y^3*z + x*z^3
sage: C = Curve(f); pts = C.rational_points()
sage: D = C.divisor([(4, pts[0]), (4, pts[2])])
sage: C.riemann_roch_basis(D)
[x/y, 1, z/y, z^2/y^2, z/x, z^2/(x*y)]

sage: R.<x,y,z> = GF(5)[]
sage: f = x^7 + y^7 + z^7
sage: C = Curve(f); pts = C.rational_points()
sage: D = C.divisor([(3, pts[0]), (-1,pts[1]), (10, pts[5])])
sage: C.riemann_roch_basis(D)
[(-2*x + y)/(x + y), (-x + z)/(x + y)]

Note: Currently this only works over prime field and divisors supported on rational points.

66 Chapter 4. Projective curves

CHAPTER

FIVE

RATIONAL POINTS OF CURVES

We can create points on projective curves:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^3 - 2*x*z^2 - y^3, z^3 - w^3 - x*y*z], P)
sage: Q = C([1,1,0,0])
sage: Q.parent()
Set of rational points of Projective Curve over Rational Field defined
by x^3 - y^3 - 2*x*z^2, -x*y*z + z^3 - w^3

or on affine curves:

sage: A.<x,y> = AffineSpace(GF(23), 2)
sage: C = Curve([y - y^4 + 17*x^2 - 2*x + 22], A)
sage: Q = C([22,21])
sage: Q.parent()
Set of rational points of Affine Plane Curve over Finite Field of size
23 defined by -y^4 - 6*x^2 - 2*x + y - 1

AUTHORS:

• Grayson Jorgenson (2016-6): initial version

class sage.schemes.curves.point.AffineCurvePoint_field(X, v, check=True)
Bases: SchemeMorphism_point_affine_field

is_singular()

Return whether this point is a singular point of the affine curve it is on.

EXAMPLES:

sage: K = QuadraticField(-1)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = Curve([(x^4 + 2*z + 2)*y, z - y + 1])
sage: Q1 = C([0,0,-1])
sage: Q1.is_singular()
True
sage: Q2 = C([-K.gen(),0,-1])
sage: Q2.is_singular()
False

class sage.schemes.curves.point.AffinePlaneCurvePoint_field(X, v, check=True)
Bases: AffineCurvePoint_field

Point of an affine plane curve over a field.

67

../../../../../../../html/en/reference/schemes/sage/schemes/affine/affine_point.html#sage.schemes.affine.affine_point.SchemeMorphism_point_affine_field

Curves, Release 9.8

is_ordinary_singularity()

Return whether this point is an ordinary singularity of the affine plane curve it is on.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([x^5 - x^3*y^2 + 5*x^4 - x^3*y - 3*x^2*y^2 +
....: x*y^3 + 10*x^3 - 3*x^2*y - 3*x*y^2 + y^3 + 10*x^2 - 3*x*y - y^2 +
....: 5*x - y + 1])
sage: Q = C([-1,0])
sage: Q.is_ordinary_singularity()
True

sage: A.<x,y> = AffineSpace(GF(7), 2)
sage: C = A.curve([y^2 - x^7 - 6*x^3])
sage: Q = C([0,0])
sage: Q.is_ordinary_singularity()
False

is_transverse(D)

Return whether the intersection of the curve D at this point with the curve this point is on is transverse or
not.

INPUT:

• D – a curve in the same ambient space as the curve this point is on.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y - x^2], A)
sage: D = Curve([y], A)
sage: Q = C([0,0])
sage: Q.is_transverse(D)
False

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 2)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([y^2 + x^2 - 1], A)
sage: D = Curve([y - x], A)
sage: Q = C([-1/2*b,-1/2*b])
sage: Q.is_transverse(D)
True

multiplicity()

Return the multiplicity of this point with respect to the affine curve it is on.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([2*x^7 - 3*x^6*y + x^5*y^2 + 31*x^6 - 40*x^5*y +
....: 13*x^4*y^2 - x^3*y^3 + 207*x^5 - 228*x^4*y + 70*x^3*y^2 - 7*x^2*y^3
....: + 775*x^4 - 713*x^3*y + 193*x^2*y^2 - 19*x*y^3 + y^4 + 1764*x^3 -
....: 1293*x^2*y + 277*x*y^2 - 22*y^3 + 2451*x^2 - 1297*x*y + 172*y^2 +

(continues on next page)

68 Chapter 5. Rational points of curves

Curves, Release 9.8

(continued from previous page)

....: 1935*x - 570*y + 675])
sage: Q = C([-2,1])
sage: Q.multiplicity()
4

tangents()

Return the tangents at this point of the affine plane curve this point is on.

OUTPUT: a list of polynomials in the coordinate ring of the ambient space of the curve this point is on.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([x^5 - x^3*y^2 + 5*x^4 - x^3*y - 3*x^2*y^2 +
....: x*y^3 + 10*x^3 - 3*x^2*y - 3*x*y^2 + y^3 + 10*x^2 - 3*x*y - y^2 +
....: 5*x - y + 1])
sage: Q = C([-1,0])
sage: Q.tangents()
[y, x + 1, x - y + 1, x + y + 1]

class sage.schemes.curves.point.AffinePlaneCurvePoint_finite_field(X, v, check=True)
Bases: AffinePlaneCurvePoint_field , SchemeMorphism_point_affine_finite_field

Point of an affine plane curve over a finite field.

class sage.schemes.curves.point.IntegralAffineCurvePoint(X, v, check=True)
Bases: AffineCurvePoint_field

Point of an integral affine curve.

closed_point()

Return the closed point that corresponds to this rational point.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(8), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: p = C([1,1])
sage: p.closed_point()
Point (x + 1, y + 1)

place()

Return a place on this point.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(2), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: p = C(-1,-1)
sage: p
(1, 1)
sage: p.closed_point()
Point (x + 1, y + 1)
sage: _.place()
Place (x + 1, (1/(x^5 + 1))*y^4 + ((x^5 + x^4 + 1)/(x^5 + 1))*y^3 +
((x^5 + x^3 + 1)/(x^5 + 1))*y^2 + (x^2/(x^5 + 1))*y)

69

../../../../../../../html/en/reference/schemes/sage/schemes/affine/affine_point.html#sage.schemes.affine.affine_point.SchemeMorphism_point_affine_finite_field

Curves, Release 9.8

places()

Return all places on this point.

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(2), 2)
sage: C = Curve(x^5 + y^5 + x*y + 1)
sage: p = C(-1,-1)
sage: p
(1, 1)
sage: p.closed_point()
Point (x + 1, y + 1)
sage: _.places()
[Place (x + 1, (1/(x^5 + 1))*y^4 + ((x^5 + x^4 + 1)/(x^5 + 1))*y^3
+ ((x^5 + x^3 + 1)/(x^5 + 1))*y^2 + (x^2/(x^5 + 1))*y), Place (x +
1, (1/(x^5 + 1))*y^4 + ((x^5 + x^4 + 1)/(x^5 + 1))*y^3 + (x^3/(x^5
+ 1))*y^2 + (x^2/(x^5 + 1))*y + x + 1)]

class sage.schemes.curves.point.IntegralAffineCurvePoint_finite_field(X, v, check=True)
Bases: IntegralAffineCurvePoint

Point of an integral affine curve over a finite field.

class sage.schemes.curves.point.IntegralAffinePlaneCurvePoint(X, v, check=True)
Bases: IntegralAffineCurvePoint, AffinePlaneCurvePoint_field

Point of an integral affine plane curve over a finite field.

class sage.schemes.curves.point.IntegralAffinePlaneCurvePoint_finite_field(X, v, check=True)
Bases: AffinePlaneCurvePoint_finite_field , IntegralAffineCurvePoint_finite_field

Point of an integral affine plane curve over a finite field.

class sage.schemes.curves.point.IntegralProjectiveCurvePoint(X, v, check=True)
Bases: ProjectiveCurvePoint_field

closed_point()

Return the closed point corresponding to this rational point.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([x^4 - 16*y^3*z], P)
sage: C.singular_points()
[(0 : 0 : 1)]
sage: p = _[0]
sage: p.closed_point()
Point (x, y)

place()

Return a place on this point.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([x^4 - 16*y^3*z], P)
sage: C.singular_points()

(continues on next page)

70 Chapter 5. Rational points of curves

Curves, Release 9.8

(continued from previous page)

[(0 : 0 : 1)]
sage: p = _[0]
sage: p.place()
Place (y)

places()

Return all places on this point.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([x^4 - 16*y^3*z], P)
sage: C.singular_points()
[(0 : 0 : 1)]
sage: p = _[0]
sage: p.places()
[Place (y)]

class sage.schemes.curves.point.IntegralProjectiveCurvePoint_finite_field(X, v, check=True)
Bases: IntegralProjectiveCurvePoint

Point of an integral projective curve over a finite field.

class sage.schemes.curves.point.IntegralProjectivePlaneCurvePoint(X, v, check=True)
Bases: IntegralProjectiveCurvePoint, ProjectivePlaneCurvePoint_field

Point of an integral projective plane curve over a field.

class sage.schemes.curves.point.IntegralProjectivePlaneCurvePoint_finite_field(X, v,
check=True)

Bases: ProjectivePlaneCurvePoint_finite_field , IntegralProjectiveCurvePoint_finite_field

Point of an integral projective plane curve over a finite field.

class sage.schemes.curves.point.ProjectiveCurvePoint_field(X, v, check=True)
Bases: SchemeMorphism_point_projective_field

Point of a projective curve over a field.

is_singular()

Return whether this point is a singular point of the projective curve it is on.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^2 - y^2, z - w], P)
sage: Q1 = C([0,0,1,1])
sage: Q1.is_singular()
True
sage: Q2 = C([1,1,1,1])
sage: Q2.is_singular()
False

class sage.schemes.curves.point.ProjectivePlaneCurvePoint_field(X, v, check=True)
Bases: ProjectiveCurvePoint_field

Point of a projective plane curve over a field.

71

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_point.html#sage.schemes.projective.projective_point.SchemeMorphism_point_projective_field

Curves, Release 9.8

is_ordinary_singularity()

Return whether this point is an ordinary singularity of the projective plane curve it is on.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([z^6 - x^6 - x^3*z^3 - x^3*y^3])
sage: Q = C([0,1,0])
sage: Q.is_ordinary_singularity()
False

sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 -
....: 4*x^4*y^2*z^3 + 3*y^7*z^2 + 10*x^2*y^5*z^2 + 9*x^4*y^3*z^2 +
....: 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z - 7*x^6*y^2*z -
....: 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y])
sage: Q = C([-1/2, 1/2, 1])
sage: Q.is_ordinary_singularity()
True

is_transverse(D)

Return whether the intersection of the curve D at this point with the curve this point is on is transverse or
not.

INPUT:

• D – a curve in the same ambient space as the curve this point is on

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P)
sage: D = Curve([y - z], P)
sage: Q = C([2,1,1])
sage: Q.is_transverse(D)
True

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([x^4 - 16*y^3*z], P)
sage: D = Curve([y^2 - z*x], P)
sage: Q = C([0,0,1])
sage: Q.is_transverse(D)
False

multiplicity()

Return the multiplicity of this point with respect to the projective curve it is on.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([y^3*z - 16*x^4], P)
sage: Q = C([0,0,1])
sage: Q.multiplicity()
3

72 Chapter 5. Rational points of curves

Curves, Release 9.8

tangents()

Return the tangents at this point of the projective plane curve this point is on.

OUTPUT:

A list of polynomials in the coordinate ring of the ambient space of the curve this point is on.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^3 - x^5 + 18*y*x*z^3])
sage: Q = C([0,0,1])
sage: Q.tangents()
[y, 18*x + y]

class sage.schemes.curves.point.ProjectivePlaneCurvePoint_finite_field(X, v, check=True)
Bases: ProjectivePlaneCurvePoint_field , SchemeMorphism_point_projective_finite_field

Point of a projective plane curve over a finite field.

73

../../../../../../../html/en/reference/schemes/sage/schemes/projective/projective_point.html#sage.schemes.projective.projective_point.SchemeMorphism_point_projective_finite_field

Curves, Release 9.8

74 Chapter 5. Rational points of curves

CHAPTER

SIX

CLOSED POINTS OF INTEGRAL CURVES

A rational point of a curve in Sage is represented by its coordinates. If the curve is defined over finite field and integral,
that is reduced and irreducible, then it is empowered by the global function field machinery of Sage. Thus closed points
of the curve are computable, as represented by maximal ideals of the coordinate ring of the ambient space.

EXAMPLES:

sage: F.<a> = GF(2)
sage: P.<x,y> = AffineSpace(F, 2);
sage: C = Curve(y^2 + y - x^3)
sage: C.closed_points()
[Point (x, y), Point (x, y + 1)]
sage: C.closed_points(2)
[Point (y^2 + y + 1, x + 1),
Point (y^2 + y + 1, x + y),
Point (y^2 + y + 1, x + y + 1)]
sage: C.closed_points(3)
[Point (x^2 + x + y, x*y + 1, y^2 + x + 1),
Point (x^2 + x + y + 1, x*y + x + 1, y^2 + x)]

Closed points of projective curves are represented by homogeneous maximal ideals:

sage: F.<a> = GF(2)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
sage: C = Curve(x^3*y + y^3*z + x*z^3)
sage: C.closed_points()
[Point (x, z), Point (x, y), Point (y, z)]
sage: C.closed_points(2)
[Point (y^2 + y*z + z^2, x + y + z)]
sage: C.closed_points(3)
[Point (y^3 + y^2*z + z^3, x + y),
Point (y^3 + y*z^2 + z^3, x + z),
Point (x^2 + x*z + y*z + z^2, x*y + x*z + z^2, y^2 + x*z),
Point (x^2 + y*z, x*y + x*z + z^2, y^2 + x*z + y*z),
Point (x^3 + x*z^2 + z^3, y + z),
Point (x^2 + y*z + z^2, x*y + x*z + y*z, y^2 + x*z + y*z + z^2),
Point (x^2 + y*z + z^2, x*y + z^2, y^2 + x*z + y*z)]

Rational points are easily converted to closed points and vice versa if the closed point is of degree one:

sage: F.<a> = GF(2)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)

(continues on next page)

75

Curves, Release 9.8

(continued from previous page)

sage: C = Curve(x^3*y + y^3*z + x*z^3)
sage: p1, p2, p3 = C.closed_points()
sage: p1.rational_point()
(0 : 1 : 0)
sage: p2.rational_point()
(0 : 0 : 1)
sage: p3.rational_point()
(1 : 0 : 0)
sage: _.closed_point()
Point (y, z)
sage: _ == p3
True

AUTHORS:

• Kwankyu Lee (2019-03): initial version

class sage.schemes.curves.closed_point.CurveClosedPoint(S, P, check=False)
Bases: SchemeTopologicalPoint_prime_ideal

Base class of closed points of curves.

class sage.schemes.curves.closed_point.IntegralAffineCurveClosedPoint(curve, prime_ideal,
degree)

Bases: IntegralCurveClosedPoint

Closed points of affine curves.

projective(i=0)
Return the point in the projective closure of the curve, of which this curve is the i-th affine patch.

INPUT:

• i – an integer

EXAMPLES:

sage: F.<a> = GF(2)
sage: A.<x,y> = AffineSpace(F, 2)
sage: C = Curve(y^2 + y - x^3, A)
sage: p1, p2 = C.closed_points()
sage: p1
Point (x, y)
sage: p2
Point (x, y + 1)
sage: p1.projective()
Point (x1, x2)
sage: p2.projective(0)
Point (x1, x0 + x2)
sage: p2.projective(1)
Point (x0, x1 + x2)
sage: p2.projective(2)
Point (x0, x1 + x2)

rational_point()

Return the rational point if this closed point is of degree 1.

76 Chapter 6. Closed points of integral curves

../../../../../../../html/en/reference/schemes/sage/schemes/generic/point.html#sage.schemes.generic.point.SchemeTopologicalPoint_prime_ideal

Curves, Release 9.8

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(3^2),2)
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x-2)
sage: C.closed_points()
[Point (x, y + (z2 + 1)),
Point (x, y + (-z2 - 1)),
Point (x + (z2 + 1), y + (z2 - 1)),
Point (x + (z2 + 1), y + (-z2 + 1)),
Point (x - 1, y + (z2 + 1)),
Point (x - 1, y + (-z2 - 1)),
Point (x + (-z2 - 1), y + z2),
Point (x + (-z2 - 1), y + (-z2)),
Point (x + 1, y + 1),
Point (x + 1, y - 1)]
sage: [p.rational_point() for p in _]
[(0, 2*z2 + 2),
(0, z2 + 1),
(2*z2 + 2, 2*z2 + 1),
(2*z2 + 2, z2 + 2),
(1, 2*z2 + 2),
(1, z2 + 1),
(z2 + 1, 2*z2),
(z2 + 1, z2),
(2, 2),
(2, 1)]
sage: set(_) == set(C.rational_points())
True

class sage.schemes.curves.closed_point.IntegralCurveClosedPoint(curve, prime_ideal, degree)
Bases: CurveClosedPoint

Closed points of integral curves.

INPUT:

• curve – the curve to which the closed point belongs

• prime_ideal – a prime ideal

• degree – degree of the closed point

EXAMPLES:

sage: F.<a> = GF(4)
sage: P.<x,y> = AffineSpace(F, 2);
sage: C = Curve(y^2 + y - x^3)
sage: C.closed_points()
[Point (x, y),
Point (x, y + 1),
Point (x + a, y + a),
Point (x + a, y + (a + 1)),
Point (x + (a + 1), y + a),
Point (x + (a + 1), y + (a + 1)),
Point (x + 1, y + a),
Point (x + 1, y + (a + 1))]

77

Curves, Release 9.8

curve()

Return the curve to which this point belongs.

EXAMPLES:

sage: F.<a> = GF(4)
sage: P.<x,y> = AffineSpace(F, 2);
sage: C = Curve(y^2 + y - x^3)
sage: pts = C.closed_points()
sage: p = pts[0]
sage: p.curve()
Affine Plane Curve over Finite Field in a of size 2^2 defined by x^3 + y^2 + y

degree()

Return the degree of the point.

EXAMPLES:

sage: F.<a> = GF(4)
sage: P.<x,y> = AffineSpace(F, 2);
sage: C = Curve(y^2 + y - x^3)
sage: pts = C.closed_points()
sage: p = pts[0]
sage: p.degree()
1

place()

Return a place on this closed point.

If there are more than one, arbitrary one is chosen.

EXAMPLES:

sage: F.<a> = GF(4)
sage: P.<x,y> = AffineSpace(F, 2);
sage: C = Curve(y^2 + y - x^3)
sage: pts = C.closed_points()
sage: p = pts[0]
sage: p.place()
Place (x, y)

places()

Return all places on this closed point.

EXAMPLES:

sage: F.<a> = GF(4)
sage: P.<x,y> = AffineSpace(F, 2);
sage: C = Curve(y^2 + y - x^3)
sage: pts = C.closed_points()
sage: p = pts[0]
sage: p.places()
[Place (x, y)]

class sage.schemes.curves.closed_point.IntegralProjectiveCurveClosedPoint(curve, prime_ideal,
degree)

78 Chapter 6. Closed points of integral curves

Curves, Release 9.8

Bases: IntegralCurveClosedPoint

Closed points of projective plane curves.

affine(i=None)
Return the point in the i-th affine patch of the curve.

INPUT:

• i – an integer; if not specified, it is chosen automatically.

EXAMPLES:

sage: F.<a> = GF(2)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
sage: C = Curve(x^3*y + y^3*z + x*z^3)
sage: p1, p2, p3 = C.closed_points()
sage: p1.affine()
Point (x, z)
sage: p2.affine()
Point (x, y)
sage: p3.affine()
Point (y, z)
sage: p3.affine(0)
Point (y, z)
sage: p3.affine(1)
Traceback (most recent call last):
...
ValueError: not in the affine patch

rational_point()

Return the rational point if this closed point is of degree 1.

EXAMPLES:

sage: F.<a> = GF(4)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
sage: C = Curve(x^3*y + y^3*z + x*z^3)
sage: C.closed_points()
[Point (x, z),
Point (x, y),
Point (y, z),
Point (x + a*z, y + (a + 1)*z),
Point (x + (a + 1)*z, y + a*z)]
sage: [p.rational_point() for p in _]
[(0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0), (a : a + 1 : 1), (a + 1 : a : 1)]
sage: set(_) == set(C.rational_points())
True

79

Curves, Release 9.8

80 Chapter 6. Closed points of integral curves

CHAPTER

SEVEN

JACOBIANS OF CURVES

This module defines the base class of Jacobians as an abstract scheme.

AUTHORS:

• William Stein (2005)

sage.schemes.jacobians.abstract_jacobian.Jacobian(C)
EXAMPLES:

sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 + y^3 + z^3)
sage: Jacobian(C)
Jacobian of Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3

class sage.schemes.jacobians.abstract_jacobian.Jacobian_generic(C)
Bases: Scheme

Base class for Jacobians of projective curves.

The input must be a projective curve over a field.

EXAMPLES:

sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 + y^3 + z^3)
sage: J = Jacobian(C); J
Jacobian of Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3

base_extend(R)
Return the natural extension of self over 𝑅

INPUT:

• R – a field. The new base field.

OUTPUT:

The Jacobian over the ring 𝑅.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: Jac = H.jacobian(); Jac

(continues on next page)

81

../../../../../../../html/en/reference/schemes/sage/schemes/generic/scheme.html#sage.schemes.generic.scheme.Scheme

Curves, Release 9.8

(continued from previous page)

Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^3 - 10*x␣
→˓+ 9
sage: F.<a> = QQ.extension(x^2+1)
sage: Jac.base_extend(F)
Jacobian of Hyperelliptic Curve over Number Field in a with defining
polynomial x^2 + 1 defined by y^2 = x^3 - 10*x + 9

change_ring(R)
Return the Jacobian over the ring 𝑅.

INPUT:

• R – a field. The new base ring.

OUTPUT:

The Jacobian over the ring 𝑅.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: Jac = H.jacobian(); Jac
Jacobian of Hyperelliptic Curve over Rational
Field defined by y^2 = x^3 - 10*x + 9
sage: Jac.change_ring(RDF)
Jacobian of Hyperelliptic Curve over Real Double
Field defined by y^2 = x^3 - 10.0*x + 9.0

curve()

Return the curve of which self is the Jacobian.

EXAMPLES:

sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: J = Jacobian(Curve(x^3 + y^3 + z^3))
sage: J.curve()
Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3

sage.schemes.jacobians.abstract_jacobian.is_Jacobian(J)
Return True if 𝐽 is of type Jacobian_generic.

EXAMPLES:

sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian, is_Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 + y^3 + z^3)
sage: J = Jacobian(C)
sage: is_Jacobian(J)
True

sage: E = EllipticCurve('37a1')
sage: is_Jacobian(E)
False

82 Chapter 7. Jacobians of curves

CHAPTER

EIGHT

PLANE CONICS

8.1 Plane conic constructor

AUTHORS:

• Marco Streng (2010-07-20)

• Nick Alexander (2008-01-08)

sage.schemes.plane_conics.constructor.Conic(base_field, F=None, names=None, unique=True)
Return the plane projective conic curve defined by F over base_field.

The input form Conic(F, names=None) is also accepted, in which case the fraction field of the base ring of F
is used as base field.

INPUT:

• base_field – The base field of the conic.

• names – a list, tuple, or comma separated string of three variable names specifying the names of the coor-
dinate functions of the ambient space P3. If not specified or read off from F, then this defaults to 'x,y,z'.

• F – a polynomial, list, matrix, ternary quadratic form, or list or tuple of 5 points in the plane.

If F is a polynomial or quadratic form, then the output is the curve in the projective plane defined
by F = 0.

If F is a polynomial, then it must be a polynomial of degree at most 2 in 2 variables, or a homo-
geneous polynomial in of degree 2 in 3 variables.

If F is a matrix, then the output is the zero locus of (𝑥, 𝑦, 𝑧)𝐹 (𝑥, 𝑦, 𝑧)𝑡.

If F is a list of coefficients, then it has length 3 or 6 and gives the coefficients of the monomials
𝑥2, 𝑦2, 𝑧2 or all 6 monomials 𝑥2, 𝑥𝑦, 𝑥𝑧, 𝑦2, 𝑦𝑧, 𝑧2 in lexicographic order.

If F is a list of 5 points in the plane, then the output is a conic through those points.

• unique – Used only if F is a list of points in the plane. If the conic through the points is not unique, then
raise ValueError if and only if unique is True

OUTPUT:

A plane projective conic curve defined by F over a field.

EXAMPLES:

Conic curves given by polynomials

83

Curves, Release 9.8

sage: X,Y,Z = QQ['X,Y,Z'].gens()
sage: Conic(X^2 - X*Y + Y^2 - Z^2)
Projective Conic Curve over Rational Field defined by X^2 - X*Y + Y^2 - Z^2
sage: x,y = GF(7)['x,y'].gens()
sage: Conic(x^2 - x + 2*y^2 - 3, 'U,V,W')
Projective Conic Curve over Finite Field of size 7 defined by U^2 + 2*V^2 - U*W -␣
→˓3*W^2

Conic curves given by matrices

sage: Conic(matrix(QQ, [[1, 2, 0], [4, 0, 0], [7, 0, 9]]), 'x,y,z')
Projective Conic Curve over Rational Field defined by x^2 + 6*x*y + 7*x*z + 9*z^2

sage: x,y,z = GF(11)['x,y,z'].gens()
sage: C = Conic(x^2+y^2-2*z^2); C
Projective Conic Curve over Finite Field of size 11 defined by x^2 + y^2 - 2*z^2
sage: Conic(C.symmetric_matrix(), 'x,y,z')
Projective Conic Curve over Finite Field of size 11 defined by x^2 + y^2 - 2*z^2

Conics given by coefficients

sage: Conic(QQ, [1,2,3])
Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + 3*z^2
sage: Conic(GF(7), [1,2,3,4,5,6], 'X')
Projective Conic Curve over Finite Field of size 7 defined by X0^2 + 2*X0*X1 - 3*X1^
→˓2 + 3*X0*X2 - 2*X1*X2 - X2^2

The conic through a set of points

sage: C = Conic(QQ, [[10,2],[3,4],[-7,6],[7,8],[9,10]]); C
Projective Conic Curve over Rational Field defined by x^2 + 13/4*x*y - 17/4*y^2 -␣
→˓35/2*x*z + 91/4*y*z - 37/2*z^2
sage: C.rational_point()
(10 : 2 : 1)
sage: C.point([3,4])
(3 : 4 : 1)

sage: a = AffineSpace(GF(13),2)
sage: Conic([a([x,x^2]) for x in range(5)])
Projective Conic Curve over Finite Field of size 13 defined by x^2 - y*z

8.2 Projective plane conics over a field

AUTHORS:

• Marco Streng (2010-07-20)

• Nick Alexander (2008-01-08)

class sage.schemes.plane_conics.con_field.ProjectiveConic_field(A, f)
Bases: ProjectivePlaneCurve_field

Create a projective plane conic curve over a field. See Conic for full documentation.

84 Chapter 8. Plane conics

Curves, Release 9.8

EXAMPLES:

sage: K = FractionField(PolynomialRing(QQ, 't'))
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 - Z^2)
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field defined by X^2 + Y^2 - Z^2

base_extend(S)
Returns the conic over S given by the same equation as self.

EXAMPLES:

sage: c = Conic([1, 1, 1]); c
Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2
sage: c.has_rational_point()
False
sage: d = c.base_extend(QuadraticField(-1, 'i')); d
Projective Conic Curve over Number Field in i with defining polynomial x^2 + 1␣
→˓with i = 1*I defined by x^2 + y^2 + z^2
sage: d.rational_point(algorithm = 'rnfisnorm')
(i : 1 : 0)

cache_point(p)
Replace the point in the cache of self by p for use by self.rational_point() and self.
parametrization().

EXAMPLES:

sage: c = Conic([1, -1, 1])
sage: c.point([15, 17, 8])
(15/8 : 17/8 : 1)
sage: c.rational_point()
(15/8 : 17/8 : 1)
sage: c.cache_point(c.rational_point(read_cache = False))
sage: c.rational_point()
(-1 : 1 : 0)

coefficients()

Gives a the 6 coefficients of the conic self in lexicographic order.

EXAMPLES:

sage: Conic(QQ, [1,2,3,4,5,6]).coefficients()
[1, 2, 3, 4, 5, 6]

sage: P.<x,y,z> = GF(13)[]
sage: a = Conic(x^2+5*x*y+y^2+z^2).coefficients(); a
[1, 5, 0, 1, 0, 1]
sage: Conic(a)
Projective Conic Curve over Finite Field of size 13 defined by x^2 + 5*x*y + y^
→˓2 + z^2

derivative_matrix()

Gives the derivative of the defining polynomial of the conic self, which is a linear map, as a 3× 3 matrix.

8.2. Projective plane conics over a field 85

Curves, Release 9.8

EXAMPLES:

In characteristic different from 2, the derivative matrix is twice the symmetric matrix:

sage: c = Conic(QQ, [1,1,1,1,1,0])
sage: c.symmetric_matrix()
[1 1/2 1/2]
[1/2 1 1/2]
[1/2 1/2 0]
sage: c.derivative_matrix()
[2 1 1]
[1 2 1]
[1 1 0]

An example in characteristic 2:

sage: P.<t> = GF(2)[]
sage: c = Conic([t, 1, t^2, 1, 1, 0]); c
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Finite Field of size 2 (using GF2X) defined by t*x^2 + x*y + y^2 + (t^
→˓2)*x*z + y*z
sage: c.is_smooth()
True
sage: c.derivative_matrix()
[0 1 t^2]
[1 0 1]
[t^2 1 0]

determinant()

Returns the determinant of the symmetric matrix that defines the conic self.

This is defined only if the base field has characteristic different from 2.

EXAMPLES:

sage: C = Conic([1,2,3,4,5,6])
sage: C.determinant()
41/4
sage: C.symmetric_matrix().determinant()
41/4

Determinants are only defined in characteristic different from 2:

sage: C = Conic(GF(2), [1, 1, 1, 1, 1, 0])
sage: C.is_smooth()
True
sage: C.determinant()
Traceback (most recent call last):
...
ValueError: The conic self (= Projective Conic Curve over Finite Field of size␣
→˓2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the␣
→˓base field has characteristic 2

diagonal_matrix()

Returns a diagonal matrix 𝐷 and a matrix 𝑇 such that 𝑇 𝑡𝐴𝑇 = 𝐷 holds, where (𝑥, 𝑦, 𝑧)𝐴(𝑥, 𝑦, 𝑧)𝑡 is the
defining polynomial of the conic self.

86 Chapter 8. Plane conics

Curves, Release 9.8

EXAMPLES:

sage: c = Conic(QQ, [1,2,3,4,5,6])
sage: d, t = c.diagonal_matrix(); d, t
(
[1 0 0] [1 -1 -7/6]
[0 3 0] [0 1 -1/3]
[0 0 41/12], [0 0 1]
)
sage: t.transpose()*c.symmetric_matrix()*t
[1 0 0]
[0 3 0]
[0 0 41/12]

Diagonal matrices are only defined in characteristic different from 2:

sage: c = Conic(GF(4, 'a'), [0, 1, 1, 1, 1, 1])
sage: c.is_smooth()
True
sage: c.diagonal_matrix()
Traceback (most recent call last):
...
ValueError: The conic self (= Projective Conic Curve over Finite Field in a of␣
→˓size 2^2 defined by x*y + y^2 + x*z + y*z + z^2) has no symmetric matrix␣
→˓because the base field has characteristic 2

diagonalization(names=None)
Returns a diagonal conic 𝐶, an isomorphism of schemes 𝑀 : 𝐶 -> self and the inverse 𝑁 of 𝑀 .

EXAMPLES:

sage: Conic(GF(5), [1,0,1,1,0,1]).diagonalization()
(Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^
→˓2,
Scheme morphism:
From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2␣

→˓+ 2*z^2
To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2␣

→˓+ x*z + z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x + 2*z : y : z),
Scheme morphism:
From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2␣

→˓+ x*z + z^2
To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2␣

→˓+ 2*z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x - 2*z : y : z))

The diagonalization is only defined in characteristic different from 2:

sage: Conic(GF(2), [1,1,1,1,1,0]).diagonalization()
Traceback (most recent call last):
...

(continues on next page)

8.2. Projective plane conics over a field 87

Curves, Release 9.8

(continued from previous page)

ValueError: The conic self (= Projective Conic Curve over Finite Field of size␣
→˓2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the␣
→˓base field has characteristic 2

An example over a global function field:

sage: K = FractionField(PolynomialRing(GF(7), 't'))
sage: (t,) = K.gens()
sage: C = Conic(K, [t/2,0, 1, 2, 0, 3])
sage: C.diagonalization()
(Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Finite Field of size 7 defined by (-3*t)*x^2 + 2*y^2 + (3*t + 3)/t*z^2,
Scheme morphism:

From: Projective Conic Curve over Fraction Field of Univariate Polynomial␣
→˓Ring in t over Finite Field of size 7 defined by (-3*t)*x^2 + 2*y^2 + (3*t +␣
→˓3)/t*z^2

To: Projective Conic Curve over Fraction Field of Univariate Polynomial␣
→˓Ring in t over Finite Field of size 7 defined by (-3*t)*x^2 + 2*y^2 + x*z +␣
→˓3*z^2

Defn: Defined on coordinates by sending (x : y : z) to
(x - 1/t*z : y : z),

Scheme morphism:
From: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Finite Field of size 7 defined by (-3*t)*x^2 + 2*y^2 + x*z +␣
→˓3*z^2

To: Projective Conic Curve over Fraction Field of Univariate Polynomial␣
→˓Ring in t over Finite Field of size 7 defined by (-3*t)*x^2 + 2*y^2 + (3*t +␣
→˓3)/t*z^2

Defn: Defined on coordinates by sending (x : y : z) to
(x + 1/t*z : y : z))

gens()

Returns the generators of the coordinate ring of self.

EXAMPLES:

sage: P.<x,y,z> = QQ[]
sage: c = Conic(x^2+y^2+z^2)
sage: c.gens()
(xbar, ybar, zbar)
sage: c.defining_polynomial()(c.gens())
0

The function gens() is required for the following construction:

sage: C.<a,b,c> = Conic(GF(3), [1, 1, 1])
sage: C
Projective Conic Curve over Finite Field of size 3 defined by a^2 + b^2 + c^2

has_rational_point(point=False, algorithm='default', read_cache=True)
Returns True if and only if the conic self has a point over its base field 𝐵.

If point is True, then returns a second output, which is a rational point if one exists.

Points are cached whenever they are found. Cached information is used if and only if read_cache is True.

88 Chapter 8. Plane conics

Curves, Release 9.8

ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

• 'default' – If the base field is real or complex, use an elementary native Sage implementation.

• 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

sage: Conic(RR, [1, 1, 1]).has_rational_point()
False
sage: Conic(CC, [1, 1, 1]).has_rational_point()
True

sage: Conic(RR, [1, 2, -3]).has_rational_point(point = True)
(True, (1.73205080756888 : 0.000000000000000 : 1.00000000000000))

Conics over polynomial rings can be solved internally:

sage: R.<t> = QQ[]
sage: C = Conic([-2,t^2+1,t^2-1])
sage: C.has_rational_point()
True

And they can also be solved with Magma:

sage: C.has_rational_point(algorithm='magma') # optional - magma
True
sage: C.has_rational_point(algorithm='magma', point=True) # optional - magma
(True, (-t : 1 : 1))

sage: D = Conic([t,1,t^2])
sage: D.has_rational_point(algorithm='magma') # optional - magma
False

has_singular_point(point=False)
Return True if and only if the conic self has a rational singular point.

If point is True, then also return a rational singular point (or None if no such point exists).

EXAMPLES:

sage: c = Conic(QQ, [1,0,1]); c
Projective Conic Curve over Rational Field defined by x^2 + z^2
sage: c.has_singular_point(point = True)
(True, (0 : 1 : 0))

sage: P.<x,y,z> = GF(7)[]
sage: e = Conic((x+y+z)*(x-y+2*z)); e
Projective Conic Curve over Finite Field of size 7 defined by x^2 - y^2 + 3*x*z␣
→˓+ y*z + 2*z^2
sage: e.has_singular_point(point = True)
(True, (2 : 4 : 1))

sage: Conic([1, 1, -1]).has_singular_point()
False

(continues on next page)

8.2. Projective plane conics over a field 89

Curves, Release 9.8

(continued from previous page)

sage: Conic([1, 1, -1]).has_singular_point(point = True)
(False, None)

has_singular_point is not implemented over all fields of characteristic 2. It is implemented over finite
fields.

sage: F.<a> = FiniteField(8)
sage: Conic([a, a+1, 1]).has_singular_point(point = True)
(True, (a + 1 : 0 : 1))

sage: P.<t> = GF(2)[]
sage: C = Conic(P, [t,t,1]); C
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Finite Field of size 2 (using GF2X) defined by t*x^2 + t*y^2 + z^2
sage: C.has_singular_point(point = False)
Traceback (most recent call last):
...
NotImplementedError: Sorry, find singular point on conics not implemented over␣
→˓all fields of characteristic 2.

hom(x, Y=None)
Return the scheme morphism from self to Y defined by x. Here x can be a matrix or a sequence of
polynomials. If Y is omitted, then a natural image is found if possible.

EXAMPLES:

Here are a few Morphisms given by matrices. In the first example, Y is omitted, in the second example, Y
is specified.

sage: c = Conic([-1, 1, 1])
sage: h = c.hom(Matrix([[1,1,0],[0,1,0],[0,0,1]])); h
Scheme morphism:
From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2
To: Projective Conic Curve over Rational Field defined by -x^2 + 2*x*y + z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x + y : y : z)
sage: h([-1, 1, 0])
(0 : 1 : 0)

sage: c = Conic([-1, 1, 1])
sage: d = Conic([4, 1, -1])
sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), d)
Scheme morphism:
From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2
To: Projective Conic Curve over Rational Field defined by 4*x^2 + y^2 - z^2
Defn: Defined on coordinates by sending (x : y : z) to

(1/2*z : y : x)

ValueError is raised if the wrong codomain Y is specified:

sage: c = Conic([-1, 1, 1])
sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), c)
Traceback (most recent call last):

(continues on next page)

90 Chapter 8. Plane conics

Curves, Release 9.8

(continued from previous page)

...
ValueError: The matrix x (= [0 0 1/2]
[0 1 0]
[1 0 0]) does not define a map from self (= Projective Conic Curve over␣
→˓Rational Field defined by -x^2 + y^2 + z^2) to Y (= Projective Conic Curve␣
→˓over Rational Field defined by -x^2 + y^2 + z^2)

The identity map between two representations of the same conic:

sage: C = Conic([1,2,3,4,5,6])
sage: D = Conic([2,4,6,8,10,12])
sage: C.hom(identity_matrix(3), D)
Scheme morphism:
From: Projective Conic Curve over Rational Field defined by x^2 + 2*x*y + 4*y^

→˓2 + 3*x*z + 5*y*z + 6*z^2
To: Projective Conic Curve over Rational Field defined by 2*x^2 + 4*x*y +␣

→˓8*y^2 + 6*x*z + 10*y*z + 12*z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x : y : z)

An example not over the rational numbers:

sage: P.<t> = QQ[]
sage: C = Conic([1,0,0,t,0,1/t])
sage: D = Conic([1/t^2, 0, -2/t^2, t, 0, (t + 1)/t^2])
sage: T = Matrix([[t,0,1],[0,1,0],[0,0,1]])
sage: C.hom(T, D)
Scheme morphism:
From: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Rational Field defined by x^2 + t*y^2 + 1/t*z^2
To: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Rational Field defined by 1/(t^2)*x^2 + t*y^2 - 2/(t^2)*x*z +␣
→˓(t + 1)/(t^2)*z^2
Defn: Defined on coordinates by sending (x : y : z) to

(t*x + z : y : z)

is_diagonal()

Return True if and only if the conic has the form 𝑎 * 𝑥2 + 𝑏 * 𝑦2 + 𝑐 * 𝑧2.

EXAMPLES:

sage: c=Conic([1,1,0,1,0,1]); c
Projective Conic Curve over Rational Field defined by x^2 + x*y + y^2 + z^2
sage: d,t = c.diagonal_matrix()
sage: c.is_diagonal()
False
sage: c.diagonalization()[0].is_diagonal()
True

is_smooth()

Returns True if and only if self is smooth.

EXAMPLES:

8.2. Projective plane conics over a field 91

Curves, Release 9.8

sage: Conic([1,-1,0]).is_smooth()
False
sage: Conic(GF(2),[1,1,1,1,1,0]).is_smooth()
True

matrix()

Returns a matrix 𝑀 such that (𝑥, 𝑦, 𝑧)𝑀(𝑥, 𝑦, 𝑧)𝑡 is the defining equation of self.

The matrix 𝑀 is upper triangular if the base field has characteristic 2 and symmetric otherwise.

EXAMPLES:

sage: R.<x, y, z> = QQ[]
sage: C = Conic(x^2 + x*y + y^2 + z^2)
sage: C.matrix()
[1 1/2 0]
[1/2 1 0]
[0 0 1]

sage: R.<x, y, z> = GF(2)[]
sage: C = Conic(x^2 + x*y + y^2 + x*z + z^2)
sage: C.matrix()
[1 1 1]
[0 1 0]
[0 0 1]

parametrization(point=None, morphism=True)
Return a parametrization 𝑓 of self together with the inverse of 𝑓 .

If point is specified, then that point is used for the parametrization. Otherwise, use self.
rational_point() to find a point.

If morphism is True, then 𝑓 is returned in the form of a Scheme morphism. Otherwise, it is a tuple of
polynomials that gives the parametrization.

EXAMPLES:

An example over a finite field

sage: c = Conic(GF(2), [1,1,1,1,1,0])
sage: f, g = c.parametrization(); f, g
(Scheme morphism:
From: Projective Space of dimension 1 over Finite Field of size 2
To: Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y

+ y^2 + x*z + y*z
Defn: Defined on coordinates by sending (x : y) to ...,
Scheme morphism:
From: Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y

+ y^2 + x*z + y*z
To: Projective Space of dimension 1 over Finite Field of size 2
Defn: Defined on coordinates by sending (x : y : z) to ...)

sage: set(f(p) for p in f.domain())
{(0 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1)}

Verfication of the example

92 Chapter 8. Plane conics

Curves, Release 9.8

sage: h = g*f; h
Scheme endomorphism of Projective Space of dimension 1 over Finite Field of␣
→˓size 2
Defn: Defined on coordinates by sending (x : y) to ...

sage: h[0]/h[1]
x/y
sage: h.is_one() # known bug (see :trac:`31892`)
True
sage: (x,y,z) = c.gens()
sage: x.parent()
Quotient of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2␣
→˓by the ideal (x^2 + x*y + y^2 + x*z + y*z)
sage: k = f*g
sage: k[0]*z-k[2]*x
0
sage: k[1]*z-k[2]*y
0

The morphisms are mathematically defined in all points, but don’t work completely in SageMath (see trac
ticket #31892)

sage: f, g = c.parametrization([0,0,1])
sage: g([0,1,1])
(1 : 0)
sage: f([1,0])
(0 : 1 : 1)
sage: f([1,1])
(0 : 0 : 1)
sage: g([0,0,1])
(1 : 1)

An example with morphism = False

sage: R.<x,y,z> = QQ[]
sage: C = Curve(7*x^2 + 2*y*z + z^2)
sage: (p, i) = C.parametrization(morphism = False); (p, i)
([-2*x*y, x^2 + 7*y^2, -2*x^2], [-1/2*x, 1/7*y + 1/14*z])
sage: C.defining_polynomial()(p)
0
sage: i[0](p) / i[1](p)
x/y

A ValueError is raised if self has no rational point

sage: C = Conic(x^2 + y^2 + 7*z^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^
→˓2 + 7*z^2 has no rational points over Rational Field!

A ValueError is raised if self is not smooth

8.2. Projective plane conics over a field 93

https://trac.sagemath.org/31892
https://trac.sagemath.org/31892

Curves, Release 9.8

sage: C = Conic(x^2 + y^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: The conic self (=Projective Conic Curve over Rational Field defined␣
→˓by x^2 + y^2) is not smooth, hence does not have a parametrization.

point(v, check=True)
Constructs a point on self corresponding to the input v.

If check is True, then checks if v defines a valid point on self.

If no rational point on self is known yet, then also caches the point for use by self.rational_point()
and self.parametrization().

EXAMPLES:

sage: c = Conic([1, -1, 1])
sage: c.point([15, 17, 8])
(15/8 : 17/8 : 1)
sage: c.rational_point()
(15/8 : 17/8 : 1)
sage: d = Conic([1, -1, 1])
sage: d.rational_point()
(-1 : 1 : 0)

random_rational_point(*args1, **args2)
Return a random rational point of the conic self.

ALGORITHM:

1. Compute a parametrization 𝑓 of self using self.parametrization().

2. Computes a random point (𝑥 : 𝑦) on the projective line.

3. Output 𝑓(𝑥 : 𝑦).

The coordinates x and y are computed using B.random_element, where B is the base field of self and
additional arguments to random_rational_point are passed to random_element.

If the base field is a finite field, then the output is uniformly distributed over the points of self.

EXAMPLES:

sage: c = Conic(GF(2), [1,1,1,1,1,0])
sage: [c.random_rational_point() for i in range(10)] # output is random
[(1 : 0 : 1), (1 : 0 : 1), (1 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1), (0 : 0 : 1),␣
→˓(1 : 0 : 1), (1 : 0 : 1), (0 : 0 : 1), (1 : 0 : 1)]

sage: d = Conic(QQ, [1, 1, -1])
sage: d.random_rational_point(den_bound = 1, num_bound = 5) # output is random
(-24/25 : 7/25 : 1)

sage: Conic(QQ, [1, 1, 1]).random_rational_point()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^
→˓2 + z^2 has no rational points over Rational Field!

94 Chapter 8. Plane conics

Curves, Release 9.8

rational_point(algorithm='default', read_cache=True)
Return a point on self defined over the base field.

Raises ValueError if no rational point exists.

See self.has_rational_point for the algorithm used and for the use of the parameters algorithm and
read_cache.

EXAMPLES:

Examples over Q

sage: R.<x,y,z> = QQ[]
sage: C = Conic(7*x^2 + 2*y*z + z^2)
sage: C.rational_point()
(0 : 1 : 0)

sage: C = Conic(x^2 + 2*y^2 + z^2)
sage: C.rational_point()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 +␣
→˓2*y^2 + z^2 has no rational points over Rational Field!

sage: C = Conic(x^2 + y^2 + 7*z^2)
sage: C.rational_point(algorithm = 'rnfisnorm')
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^
→˓2 + 7*z^2 has no rational points over Rational Field!

Examples over number fields

sage: P.<x> = QQ[]
sage: L. = NumberField(x^3-5)
sage: C = Conic(L, [3, 2, -b])
sage: p = C.rational_point(algorithm = 'rnfisnorm')
sage: p # output is random
(1/3*b^2 - 4/3*b + 4/3 : b^2 - 2 : 1)
sage: C.defining_polynomial()(list(p))
0

sage: K.<i> = QuadraticField(-1)
sage: D = Conic(K, [3, 2, 5])
sage: D.rational_point(algorithm = 'rnfisnorm') # output is random
(-3 : 4*i : 1)

sage: L.<s> = QuadraticField(2)
sage: Conic(QQ, [1, 1, -3]).has_rational_point()
False
sage: E = Conic(L, [1, 1, -3])
sage: E.rational_point() # output is random
(-1 : -s : 1)

Currently Magma is better at solving conics over number fields than Sage, so it helps to use the algorithm
‘magma’ if Magma is installed:

8.2. Projective plane conics over a field 95

Curves, Release 9.8

sage: q = C.rational_point(algorithm = 'magma', read_cache=False) # optional -␣
→˓magma
sage: q # output is random, optional - magma
(1/5*b^2 : 1/5*b^2 : 1)
sage: C.defining_polynomial()(list(q)) # optional - magma
0
sage: len(str(p)) > 1.5*len(str(q)) # optional - magma
True

sage: D.rational_point(algorithm = 'magma', read_cache=False) # random,␣
→˓optional - magma
(1 : 2*i : 1)

sage: E.rational_point(algorithm='magma', read_cache=False) # random, optional -
→˓ magma
(-s : 1 : 1)

sage: F = Conic([L.gen(), 30, -20])
sage: q = F.rational_point(algorithm='magma') # optional - magma
sage: q # output is random, optional - magma
(-10/7*s + 40/7 : 5/7*s - 6/7 : 1)
sage: p = F.rational_point(read_cache=False)
sage: p # output is random
(788210*s - 1114700 : -171135*s + 242022 : 1)
sage: len(str(p)) > len(str(q)) # optional - magma
True

sage: G = Conic([L.gen(), 30, -21])
sage: G.has_rational_point(algorithm='magma') # optional - magma
False
sage: G.has_rational_point(read_cache=False)
False
sage: G.has_rational_point(algorithm='local', read_cache=False)
False
sage: G.rational_point(algorithm='magma') # optional - magma
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Number Field in s with defining␣
→˓polynomial x^2 - 2 with s = 1.414213562373095? defined by s*x^2 + 30*y^2 -␣
→˓21*z^2 has no rational points over Number Field in s with defining polynomial␣
→˓x^2 - 2 with s = 1.414213562373095?!
sage: G.rational_point(algorithm='magma', read_cache=False) # optional - magma
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Number Field in s with defining␣
→˓polynomial x^2 - 2 with s = 1.414213562373095? defined by s*x^2 + 30*y^2 -␣
→˓21*z^2 has no rational points over Number Field in s with defining polynomial␣
→˓x^2 - 2 with s = 1.414213562373095?!

Examples over finite fields

sage: F.<a> = FiniteField(7^20)
sage: C = Conic([1, a, -5]); C

(continues on next page)

96 Chapter 8. Plane conics

Curves, Release 9.8

(continued from previous page)

Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + a*y^
→˓2 + 2*z^2
sage: C.rational_point() # output is random
(4*a^19 + 5*a^18 + 4*a^17 + a^16 + 6*a^15 + 3*a^13 + 6*a^11 + a^9 + 3*a^8 + 2*a^
→˓7 + 4*a^6 + 3*a^5 + 3*a^4 + a^3 + a + 6 : 5*a^18 + a^17 + a^16 + 6*a^15 + 4*a^
→˓14 + a^13 + 5*a^12 + 5*a^10 + 2*a^9 + 6*a^8 + 6*a^7 + 6*a^6 + 2*a^4 + 3 : 1)

Examples over R and C

sage: Conic(CC, [1, 2, 3]).rational_point()
(0 : 1.22474487139159*I : 1)

sage: Conic(RR, [1, 1, 1]).rational_point()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Real Field with 53 bits of␣
→˓precision defined by x^2 + y^2 + z^2 has no rational points over Real Field␣
→˓with 53 bits of precision!

singular_point()

Returns a singular rational point of self

EXAMPLES:

sage: Conic(GF(2), [1,1,1,1,1,1]).singular_point()
(1 : 1 : 1)

ValueError is raised if the conic has no rational singular point

sage: Conic(QQ, [1,1,1,1,1,1]).singular_point()
Traceback (most recent call last):
...
ValueError: The conic self (= Projective Conic Curve over Rational Field␣
→˓defined by x^2 + x*y + y^2 + x*z + y*z + z^2) has no rational singular point

symmetric_matrix()

The symmetric matrix 𝑀 such that (𝑥𝑦𝑧)𝑀(𝑥𝑦𝑧)𝑡 is the defining equation of self.

EXAMPLES:

sage: R.<x, y, z> = QQ[]
sage: C = Conic(x^2 + x*y/2 + y^2 + z^2)
sage: C.symmetric_matrix()
[1 1/4 0]
[1/4 1 0]
[0 0 1]

sage: C = Conic(x^2 + 2*x*y + y^2 + 3*x*z + z^2)
sage: v = vector([x, y, z])
sage: v * C.symmetric_matrix() * v
x^2 + 2*x*y + y^2 + 3*x*z + z^2

upper_triangular_matrix()

The upper-triangular matrix 𝑀 such that (𝑥𝑦𝑧)𝑀(𝑥𝑦𝑧)𝑡 is the defining equation of self.

8.2. Projective plane conics over a field 97

Curves, Release 9.8

EXAMPLES:

sage: R.<x, y, z> = QQ[]
sage: C = Conic(x^2 + x*y + y^2 + z^2)
sage: C.upper_triangular_matrix()
[1 1 0]
[0 1 0]
[0 0 1]

sage: C = Conic(x^2 + 2*x*y + y^2 + 3*x*z + z^2)
sage: v = vector([x, y, z])
sage: v * C.upper_triangular_matrix() * v
x^2 + 2*x*y + y^2 + 3*x*z + z^2

variable_names()

Returns the variable names of the defining polynomial of self.

EXAMPLES:

sage: c=Conic([1,1,0,1,0,1], 'x,y,z')
sage: c.variable_names()
('x', 'y', 'z')
sage: c.variable_name()
'x'

The function variable_names() is required for the following construction:

sage: C.<p,q,r> = Conic(QQ, [1, 1, 1])
sage: C
Projective Conic Curve over Rational Field defined by p^2 + q^2 + r^2

8.3 Projective plane conics over a number field

AUTHORS:

• Marco Streng (2010-07-20)

class sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field(A, f)
Bases: ProjectiveConic_field

Create a projective plane conic curve over a number field. See Conic for full documentation.

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 2, 'a')
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 - a*Z^2)
Projective Conic Curve over Number Field in a with defining polynomial x^3 - 2␣
→˓defined by X^2 + Y^2 + (-a)*Z^2

has_rational_point(point=False, obstruction=False, algorithm='default', read_cache=True)
Returns True if and only if self has a point defined over its base field 𝐵.

If point and obstruction are both False (default), then the output is a boolean out saying whether self
has a rational point.

98 Chapter 8. Plane conics

Curves, Release 9.8

If point or obstruction is True, then the output is a pair (out, S), where out is as above and:

• if point is True and self has a rational point, then S is a rational point,

• if obstruction is True, self has no rational point, then S is a prime or infinite place of 𝐵 such that
no rational point exists over the completion at S.

Points and obstructions are cached whenever they are found. Cached information is used for the output if
available, but only if read_cache is True.

ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

• 'rnfisnorm' – Use PARI’s rnfisnorm (cannot be combined with obstruction = True)

• 'local' – Check if a local solution exists for all primes and infinite places of 𝐵 and apply the Hasse
principle. (Cannot be combined with point = True.)

• 'default' – Use algorithm 'rnfisnorm' first. Then, if no point exists and obstructions are re-
quested, use algorithm 'local' to find an obstruction.

• 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

An example over Q

sage: C = Conic(QQ, [1, 113922743, -310146482690273725409])
sage: C.has_rational_point(point = True)
(True, (-76842858034579/5424 : -5316144401/5424 : 1))
sage: C.has_rational_point(algorithm = 'local', read_cache = False)
True

Examples over number fields:

sage: K.<i> = QuadraticField(-1)
sage: C = Conic(K, [1, 3, -5])
sage: C.has_rational_point(point = True, obstruction = True)
(False, Fractional ideal (-i - 2))
sage: C.has_rational_point(algorithm = "rnfisnorm")
False
sage: C.has_rational_point(algorithm = "rnfisnorm", obstruction = True, read_
→˓cache=False)
Traceback (most recent call last):
...
ValueError: Algorithm rnfisnorm cannot be combined with obstruction = True in␣
→˓has_rational_point

sage: P.<x> = QQ[]
sage: L. = NumberField(x^3-5)
sage: C = Conic(L, [1, 2, -3])
sage: C.has_rational_point(point = True, algorithm = 'rnfisnorm')
(True, (5/3 : -1/3 : 1))

sage: K.<a> = NumberField(x^4+2)
sage: Conic(QQ, [4,5,6]).has_rational_point()
False
sage: Conic(K, [4,5,6]).has_rational_point()

(continues on next page)

8.3. Projective plane conics over a number field 99

Curves, Release 9.8

(continued from previous page)

True
sage: Conic(K, [4,5,6]).has_rational_point(algorithm='magma', read_cache=False)
→˓# optional - magma
True

sage: P.<a> = QuadraticField(2)
sage: C = Conic(P, [1,1,1])
sage: C.has_rational_point()
False
sage: C.has_rational_point(point=True)
(False, None)
sage: C.has_rational_point(obstruction=True)
(False,
Ring morphism:
From: Number Field in a with defining polynomial x^2 - 2 with a = 1.

→˓414213562373095?
To: Algebraic Real Field
Defn: a |--> -1.414213562373095?)

sage: C.has_rational_point(point=True, obstruction=True)
(False,
Ring morphism:
From: Number Field in a with defining polynomial x^2 - 2 with a = 1.

→˓414213562373095?
To: Algebraic Real Field
Defn: a |--> -1.414213562373095?)

is_locally_solvable(p)
Returns True if and only if self has a solution over the completion of the base field 𝐵 of self at p. Here
p is a finite prime or infinite place of 𝐵.

EXAMPLES:

sage: P.<x> = QQ[]
sage: K.<a> = NumberField(x^3 + 5)
sage: C = Conic(K, [1, 2, 3 - a])
sage: [p1, p2] = K.places()
sage: C.is_locally_solvable(p1)
False

sage: C.is_locally_solvable(p2)
True

sage: O = K.maximal_order()
sage: f = (2*O).factor()
sage: C.is_locally_solvable(f[0][0])
True

sage: C.is_locally_solvable(f[1][0])
False

local_obstructions(finite=True, infinite=True, read_cache=True)
Returns the sequence of finite primes and/or infinite places such that self is locally solvable at those primes
and places.

100 Chapter 8. Plane conics

Curves, Release 9.8

If the base field is Q, then the infinite place is denoted −1.

The parameters finite and infinite (both True by default) are used to specify whether to look at finite
and/or infinite places. Note that finite = True involves factorization of the determinant of self, hence
may be slow.

Local obstructions are cached. The parameter read_cache specifies whether to look at the cache before
computing anything.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: Conic(K, [1, 2, 3]).local_obstructions()
[]

sage: L.<a> = QuadraticField(5)
sage: Conic(L, [1, 2, 3]).local_obstructions()
[Ring morphism:

From: Number Field in a with defining polynomial x^2 - 5 with a = 2.
→˓236067977499790?

To: Algebraic Real Field
Defn: a |--> -2.236067977499790?, Ring morphism:
From: Number Field in a with defining polynomial x^2 - 5 with a = 2.

→˓236067977499790?
To: Algebraic Real Field
Defn: a |--> 2.236067977499790?]

8.4 Projective plane conics over Q

AUTHORS:

• Marco Streng (2010-07-20)

• Nick Alexander (2008-01-08)

class sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field(A, f)
Bases: ProjectiveConic_number_field

Create a projective plane conic curve over Q.

See Conic for full documentation.

EXAMPLES:

sage: P.<X, Y, Z> = QQ[]
sage: Conic(X^2 + Y^2 - 3*Z^2)
Projective Conic Curve over Rational Field defined by X^2 + Y^2 - 3*Z^2

has_rational_point(point=False, obstruction=False, algorithm='default', read_cache=True)
Return True if and only if self has a point defined over Q.

If point and obstruction are both False (default), then the output is a boolean out saying whether
self has a rational point.

If point or obstruction is True, then the output is a pair (out, S), where out is as above and the
following holds:

• if point is True and self has a rational point, then S is a rational point,

8.4. Projective plane conics over Q 101

Curves, Release 9.8

• if obstruction is True and self has no rational point, then S is a prime such that no rational point
exists over the completion at S or −1 if no point exists over R.

Points and obstructions are cached, whenever they are found. Cached information is used if and only if
read_cache is True.

ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

• 'qfsolve' – Use PARI/GP function pari:qfsolve

• 'rnfisnorm' – Use PARI’s function pari:rnfisnorm (cannot be combined with obstruction =
True)

• 'local' – Check if a local solution exists for all primes and infinite places of Q and apply the Hasse
principle (cannot be combined with point = True)

• 'default' – Use 'qfsolve'

• 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

sage: C = Conic(QQ, [1, 2, -3])
sage: C.has_rational_point(point = True)
(True, (1 : 1 : 1))
sage: D = Conic(QQ, [1, 3, -5])
sage: D.has_rational_point(point = True)
(False, 3)
sage: P.<X,Y,Z> = QQ[]
sage: E = Curve(X^2 + Y^2 + Z^2); E
Projective Conic Curve over Rational Field defined by X^2 + Y^2 + Z^2
sage: E.has_rational_point(obstruction = True)
(False, -1)

The following would not terminate quickly with algorithm = 'rnfisnorm'

sage: C = Conic(QQ, [1, 113922743, -310146482690273725409])
sage: C.has_rational_point(point = True)
(True, (-76842858034579/5424 : -5316144401/5424 : 1))
sage: C.has_rational_point(algorithm = 'local', read_cache = False)
True
sage: C.has_rational_point(point=True, algorithm='magma', read_cache=False) #␣
→˓optional - magma
(True, (30106379962113/7913 : 12747947692/7913 : 1))

is_locally_solvable(p)
Return True if and only if self has a solution over the 𝑝-adic numbers.

Here 𝑝 is a prime number or equals −1, infinity, or R to denote the infinite place.

EXAMPLES:

sage: C = Conic(QQ, [1,2,3])
sage: C.is_locally_solvable(-1)
False
sage: C.is_locally_solvable(2)
False

(continues on next page)

102 Chapter 8. Plane conics

https://pari.math.u-bordeaux.fr/dochtml/help/qfsolve
https://pari.math.u-bordeaux.fr/dochtml/help/rnfisnorm

Curves, Release 9.8

(continued from previous page)

sage: C.is_locally_solvable(3)
True
sage: C.is_locally_solvable(QQ.hom(RR))
False
sage: D = Conic(QQ, [1, 2, -3])
sage: D.is_locally_solvable(infinity)
True
sage: D.is_locally_solvable(RR)
True

local_obstructions(finite=True, infinite=True, read_cache=True)
Return the sequence of finite primes and/or infinite places such that self is locally solvable at those primes
and places.

The infinite place is denoted −1.

The parameters finite and infinite (both True by default) are used to specify whether to look at finite
and/or infinite places.

Note that finite = True involves factorization of the determinant of self, hence may be slow.

Local obstructions are cached. The parameter read_cache specifies whether to look at the cache before
computing anything.

EXAMPLES:

sage: Conic(QQ, [1, 1, 1]).local_obstructions()
[2, -1]
sage: Conic(QQ, [1, 2, -3]).local_obstructions()
[]
sage: Conic(QQ, [1, 2, 3, 4, 5, 6]).local_obstructions()
[41, -1]

parametrization(point=None, morphism=True)
Return a parametrization 𝑓 of self together with the inverse of 𝑓 .

If point is specified, then that point is used for the parametrization. Otherwise, use self.
rational_point() to find a point.

If morphism is True, then 𝑓 is returned in the form of a Scheme morphism. Otherwise, it is a tuple of
polynomials that gives the parametrization.

ALGORITHM:

Uses the PARI/GP function pari:qfparam.

EXAMPLES:

sage: c = Conic([1,1,-1])
sage: c.parametrization()
(Scheme morphism:
From: Projective Space of dimension 1 over Rational Field
To: Projective Conic Curve over Rational Field defined by x^2 + y^2 - z^2
Defn: Defined on coordinates by sending (x : y) to

(2*x*y : x^2 - y^2 : x^2 + y^2),
Scheme morphism:
From: Projective Conic Curve over Rational Field defined by x^2 + y^2 - z^2

(continues on next page)

8.4. Projective plane conics over Q 103

https://pari.math.u-bordeaux.fr/dochtml/help/qfparam

Curves, Release 9.8

(continued from previous page)

To: Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to

(1/2*x : -1/2*y + 1/2*z))

An example with morphism = False

sage: R.<x,y,z> = QQ[]
sage: C = Curve(7*x^2 + 2*y*z + z^2)
sage: (p, i) = C.parametrization(morphism = False); (p, i)
([-2*x*y, x^2 + 7*y^2, -2*x^2], [-1/2*x, 1/7*y + 1/14*z])
sage: C.defining_polynomial()(p)
0
sage: i[0](p) / i[1](p)
x/y

A ValueError is raised if self has no rational point

sage: C = Conic(x^2 + 2*y^2 + z^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 +␣
→˓2*y^2 + z^2 has no rational points over Rational Field!

A ValueError is raised if self is not smooth

sage: C = Conic(x^2 + y^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: The conic self (=Projective Conic Curve over Rational Field defined␣
→˓by x^2 + y^2) is not smooth, hence does not have a parametrization.

8.5 Projective plane conics over finite fields

AUTHORS:

• Marco Streng (2010-07-20)

class sage.schemes.plane_conics.con_finite_field.ProjectiveConic_finite_field(A, f)
Bases: ProjectiveConic_field , ProjectivePlaneCurve_finite_field

Create a projective plane conic curve over a finite field.

See Conic for full documentation.

EXAMPLES:

sage: K.<a> = FiniteField(9, 'a')
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 - a*Z^2)
Projective Conic Curve over Finite Field in a of size 3^2 defined by X^2 + Y^2 + (-
→˓a)*Z^2

104 Chapter 8. Plane conics

Curves, Release 9.8

sage: P.<X, Y, Z> = FiniteField(5)[]
sage: Conic(X^2 + Y^2 - 2*Z^2)
Projective Conic Curve over Finite Field of size 5 defined by X^2 + Y^2 - 2*Z^2

count_points(n)
If the base field 𝐵 of 𝑠𝑒𝑙𝑓 is finite of order 𝑞, then returns the number of points over F𝑞, ...,F𝑞𝑛 .

EXAMPLES:

sage: P.<x,y,z> = GF(3)[]
sage: c = Curve(x^2+y^2+z^2); c
Projective Conic Curve over Finite Field of size 3 defined by x^2 + y^2 + z^2
sage: c.count_points(4)
[4, 10, 28, 82]

has_rational_point(point=False, read_cache=True, algorithm='default')
Always returns True because self has a point defined over its finite base field 𝐵.

If point is True, then returns a second output 𝑆, which is a rational point if one exists.

Points are cached. If read_cache is True, then cached information is used for the output if available. If no
cached point is available or read_cache is False, then random 𝑦-coordinates are tried if self is smooth
and a singular point is returned otherwise.

EXAMPLES:

sage: Conic(FiniteField(37), [1, 2, 3, 4, 5, 6]).has_rational_point()
True

sage: C = Conic(FiniteField(2), [1, 1, 1, 1, 1, 0]); C
Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 +␣
→˓x*z + y*z
sage: C.has_rational_point(point = True) # output is random
(True, (0 : 0 : 1))

sage: p = next_prime(10^50)
sage: F = FiniteField(p)
sage: C = Conic(F, [1, 2, 3]); C
Projective Conic Curve over Finite Field of size␣
→˓1000151 defined by x^2 + 2*y^2 +␣
→˓3*z^2
sage: C.has_rational_point(point = True) # output is random
(True,
(14971942941468509742682168602989039212496867586852 :␣
→˓75235465708017792892762202088174741054630437326388 : 1)

sage: F.<a> = FiniteField(7^20)
sage: C = Conic([1, a, -5]); C
Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + a*y^
→˓2 + 2*z^2
sage: C.has_rational_point(point = True) # output is random
(True,
(a^18 + 2*a^17 + 4*a^16 + 6*a^13 + a^12 + 6*a^11 + 3*a^10 + 4*a^9 + 2*a^8 +␣
→˓4*a^7 + a^6 + 4*a^4 + 6*a^2 + 3*a + 6 : 5*a^19 + 5*a^18 + 5*a^17 + a^16 + 2*a^

(continues on next page)

8.5. Projective plane conics over finite fields 105

Curves, Release 9.8

(continued from previous page)

→˓15 + 3*a^14 + 4*a^13 + 5*a^12 + a^11 + 3*a^10 + 2*a^8 + 3*a^7 + 4*a^6 + 4*a^5␣
→˓+ 6*a^3 + 5*a^2 + 2*a + 4 : 1))

8.6 Projective plane conics over a rational function field

The class ProjectiveConic_rational_function_field represents a projective plane conic over a rational func-
tion field 𝐹 (𝑡), where 𝐹 is any field. Instances can be created using Conic().

AUTHORS:

• Lennart Ackermans (2016-02-07): initial version

EXAMPLES:

Create a conic:

sage: K = FractionField(PolynomialRing(QQ, 't'))
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 - Z^2)
Projective Conic Curve over Fraction Field of Univariate
Polynomial Ring in t over Rational Field defined by
X^2 + Y^2 - Z^2

Points can be found using has_rational_point():

sage: K.<t> = FractionField(QQ['t'])
sage: C = Conic([1,-t,t])
sage: C.has_rational_point(point = True)
(True, (0 : 1 : 1))

class sage.schemes.plane_conics.con_rational_function_field.ProjectiveConic_rational_function_field(A,
f)

Bases: ProjectiveConic_field

Create a projective plane conic curve over a rational function field 𝐹 (𝑡), where 𝐹 is any field.

The algorithms used in this class come mostly from [HC2006].

EXAMPLES:

sage: K = FractionField(PolynomialRing(QQ, 't'))
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 - Z^2)
Projective Conic Curve over Fraction Field of Univariate
Polynomial Ring in t over Rational Field defined by
X^2 + Y^2 - Z^2

REFERENCES:

• [HC2006]

• [Ack2016]

106 Chapter 8. Plane conics

Curves, Release 9.8

find_point(supports, roots, case, solution=0)
Given a solubility certificate like in [HC2006], find a point on self. Assumes self is in reduced form
(see [HC2006] for a definition).

If you don’t have a solubility certificate and just want to find a point, use the function
has_rational_point() instead.

INPUT:

• self – conic in reduced form.

• supports – 3-tuple where supports[i] is a list of all monic irreducible 𝑝 ∈ 𝐹 [𝑡] that divide the 𝑖’th
of the 3 coefficients.

• roots – 3-tuple containing lists of roots of all elements of supports[i], in the same order.

• case – 1 or 0, as in [HC2006].

• solution – (default: 0) a solution of (5) in [HC2006], if case = 0, 0 otherwise.

OUTPUT:

A point (𝑥, 𝑦, 𝑧) ∈ 𝐹 (𝑡) of self. Output is undefined when the input solubility certificate is incorrect.

ALGORITHM:

The algorithm used is the algorithm FindPoint in [HC2006], with a simplification from [Ack2016].

EXAMPLES:

sage: K.<t> = FractionField(QQ['t'])
sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2-2*t+18])
sage: C.has_rational_point(point=True) # indirect test
(True, (-3 : (t + 1)/t : 1))

Different solubility certificates give different points:

sage: K.<t> = PolynomialRing(QQ, 't')
sage: C = Conic(K, [t^2-2, 2*t, -2*t^3-13*t^2-2*t+18])
sage: supp = [[t^2 - 2], [t], [t^3 + 13/2*t^2 + t - 9]]
sage: tbar1 = QQ.extension(supp[0][0], 'tbar').gens()[0]
sage: tbar2 = QQ.extension(supp[1][0], 'tbar').gens()[0]
sage: tbar3 = QQ.extension(supp[2][0], 'tbar').gens()[0]
sage: roots = [[tbar1 + 1], [1/3*tbar2^0], [2/3*tbar3^2 + 11/3*tbar3 - 3]]
sage: C.find_point(supp, roots, 1)
(3 : t + 1 : 1)
sage: roots = [[-tbar1 - 1], [-1/3*tbar2^0], [-2/3*tbar3^2 - 11/3*tbar3 + 3]]
sage: C.find_point(supp, roots, 1)
(3 : -t - 1 : 1)

has_rational_point(point=False, algorithm='default', read_cache=True)
Returns True if and only if the conic self has a point over its base field 𝐹 (𝑡), which is a field of rational
functions.

If point is True, then returns a second output, which is a rational point if one exists.

Points are cached whenever they are found. Cached information is used if and only if read_cache is True.

The default algorithm does not (yet) work for all base fields 𝐹 . In particular, sage is required to have:

• an algorithm for finding the square root of elements in finite extensions of 𝐹 ;

8.6. Projective plane conics over a rational function field 107

Curves, Release 9.8

• a factorization and gcd algorithm for 𝐹 [𝑡];

• an algorithm for solving conics over 𝐹 .

ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

• 'default' – use a native Sage implementation, based on the algorithm Conic in [HC2006].

• 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

We can find points for function fields over (extensions of) Q and finite fields:

sage: K.<t> = FractionField(PolynomialRing(QQ, 't'))
sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2-2*t+18])
sage: C.has_rational_point(point=True)
(True, (-3 : (t + 1)/t : 1))
sage: R.<t> = FiniteField(23)[]
sage: C = Conic([2, t^2+1, t^2+5])
sage: C.has_rational_point()
True
sage: C.has_rational_point(point=True)
(True, (5*t : 8 : 1))
sage: F.<i> = QuadraticField(-1)
sage: R.<t> = F[]
sage: C = Conic([1,i*t,-t^2+4])
sage: C.has_rational_point(point=True)
(True, (-t - 2*i : -2*i : 1))

It works on non-diagonal conics as well:

sage: K.<t> = QQ[]
sage: C = Conic([4, -4, 8, 1, -4, t + 4])
sage: C.has_rational_point(point=True)
(True, (1/2 : 1 : 0))

If no point exists output still depends on the argument point:

sage: K.<t> = QQ[]
sage: C = Conic(K, [t^2, (t-1), -2*(t-1)])
sage: C.has_rational_point()
False
sage: C.has_rational_point(point=True)
(False, None)

Due to limitations in Sage of algorithms we depend on, it is not yet possible to find points on conics over
multivariate function fields (see the requirements above):

sage: F.<t1> = FractionField(QQ['t1'])
sage: K.<t2> = FractionField(F['t2'])
sage: a = K(1)
sage: b = 2*t2^2+2*t1*t2-t1^2
sage: c = -3*t2^4-4*t1*t2^3+8*t1^2*t2^2+16*t1^3-t2-48*t1^4
sage: C = Conic([a,b,c])

(continues on next page)

108 Chapter 8. Plane conics

Curves, Release 9.8

(continued from previous page)

sage: C.has_rational_point()
Traceback (most recent call last):
...
NotImplementedError: is_square() not implemented for elements of
Univariate Quotient Polynomial Ring in tbar over Fraction Field
of Univariate Polynomial Ring in t1 over Rational Field with
modulus tbar^2 + t1*tbar - 1/2*t1^2

In some cases, the algorithm requires us to be able to solve conics over 𝐹 . In particular, the following does
not work:

sage: P.<u> = QQ[]
sage: E = P.fraction_field()
sage: Q.<Y> = E[]
sage: F.<v> = E.extension(Y^2 - u^3 - 1)
sage: R.<t> = F[]
sage: K = R.fraction_field()
sage: C = Conic(K, [u, v, 1])
sage: C.has_rational_point()
Traceback (most recent call last):
...
NotImplementedError: has_rational_point not implemented for conics
over base field Univariate Quotient Polynomial Ring in v over
Fraction Field of Univariate Polynomial Ring in u over Rational
Field with modulus v^2 - u^3 - 1

has_rational_point fails for some conics over function fields over finite fields, due to trac ticket #20003:

sage: K.<t> = PolynomialRing(GF(7))
sage: C = Conic([5*t^2+4, t^2+3*t+3, 6*t^2+3*t+2, 5*t^2+5, 4*t+3, 4*t^2+t+5])
sage: C.has_rational_point()
Traceback (most recent call last):
...
TypeError: self (=Scheme morphism:
From: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Finite Field of size 7 defined by (-2*t^2 - 3)*x^2 + (-t^3 +␣
→˓3*t^2 - 2*t - 2)/(t + 3)*y^2 + (-t^6 + 3*t^5 + t^3 - t^2 - t + 2)/(t^4 + t^3 -
→˓ 3*t^2 + 3*t + 1)*z^2
To: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Finite Field of size 7 defined by (-2*t^2 - 3)*x^2 + (t^2 +␣
→˓3*t + 3)*x*y + (-2*t^2 - 2)*y^2 + (-t^2 + 3*t + 2)*x*z + (-3*t + 3)*y*z + (-
→˓3*t^2 + t - 2)*z^2
Defn: Defined on coordinates by sending (x : y : z) to

(x + (2*t - 2)/(t + 3)*y + (3*t^4 + 2*t^3 - 2*t^2 - 2*t + 3)/(t^4 + t^3␣
→˓- 3*t^2 + 3*t + 1)*z : y + (-t^3 - t^2 + 3*t - 1)/(t^3 - 3*t^2 + 2*t + 2)*z :␣
→˓z)) domain must equal right (=Scheme morphism:
From: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Finite Field of size 7 defined by (-2*t^3 - t^2 + 3*t + 3)*x^2␣
→˓+ (t - 3)*y^2 + (-t^7 + 2*t^5 + t^4 + 2*t^3 + 3*t^2 - t - 1)*z^2
To: Projective Conic Curve over Fraction Field of Univariate Polynomial␣

→˓Ring in t over Finite Field of size 7 defined by -2/(t^3 - 3*t^2 + 2*t + 2)*x^
→˓2 + 1/(t^3 + 3*t^2 - 2*t + 1)*y^2 + (-t^6 + 3*t^5 + t^3 - t^2 - t + 2)/(t^9 -␣

(continues on next page)

8.6. Projective plane conics over a rational function field 109

https://trac.sagemath.org/20003

Curves, Release 9.8

(continued from previous page)

→˓2*t^8 + t^7 - t^6 + 3*t^5 - 3*t^3 + t^2 - 2*t + 3)*z^2
Defn: Defined on coordinates by sending (x : y : z) to

((t^3 - 3*t^2 + 2*t + 2)*x : (t^2 - 2)*y : (t^5 - 3*t^4 + t^2 + 3*t +␣
→˓3)*z)) codomain

110 Chapter 8. Plane conics

CHAPTER

NINE

PLANE QUARTICS

9.1 Quartic curve constructor

sage.schemes.plane_quartics.quartic_constructor.QuarticCurve(F, PP=None, check=False)
Returns the quartic curve defined by the polynomial F.

INPUT:

• F – a polynomial in three variables, homogeneous of degree 4

• PP – a projective plane (default:None)

• check – whether to check for smoothness or not (default:False)

EXAMPLES:

sage: x,y,z=PolynomialRing(QQ,['x','y','z']).gens()
sage: QuarticCurve(x**4+y**4+z**4)
Quartic Curve over Rational Field defined by x^4 + y^4 + z^4

9.2 Plane quartic curves over a general ring

These are generic genus 3 curves, as distinct from hyperelliptic curves of genus 3.

EXAMPLES:

sage: PP.<X,Y,Z> = ProjectiveSpace(2, QQ)
sage: f = X^4 + Y^4 + Z^4 - 3*X*Y*Z*(X+Y+Z)
sage: C = QuarticCurve(f); C
Quartic Curve over Rational Field defined by X^4 + Y^4 - 3*X^2*Y*Z - 3*X*Y^2*Z - 3*X*Y*Z^
→˓2 + Z^4

class sage.schemes.plane_quartics.quartic_generic.QuarticCurve_generic(A, f)
Bases: ProjectivePlaneCurve

genus()

Returns the genus of self

EXAMPLES:

111

Curves, Release 9.8

sage: x,y,z=PolynomialRing(QQ,['x','y','z']).gens()
sage: Q = QuarticCurve(x**4+y**4+z**4)
sage: Q.genus()
3

sage.schemes.plane_quartics.quartic_generic.is_QuarticCurve(C)
Checks whether C is a Quartic Curve

EXAMPLES:

sage: from sage.schemes.plane_quartics.quartic_generic import is_QuarticCurve
sage: x,y,z=PolynomialRing(QQ,['x','y','z']).gens()
sage: Q = QuarticCurve(x**4+y**4+z**4)
sage: is_QuarticCurve(Q)
True

112 Chapter 9. Plane quartics

CHAPTER

TEN

RIEMANN SURFACES

10.1 Riemann matrices and endomorphism rings of algebraic Rie-
mann surfaces

This module provides a class, RiemannSurface, to model the Riemann surface determined by a plane algebraic curve
over a subfield of the complex numbers.

A homology basis is derived from the edges of a Voronoi cell decomposition based on the branch locus. The pull-back
of these edges to the Riemann surface provides a graph on it that contains a homology basis.

The class provides methods for computing the Riemann period matrix of the surface numerically, using a certified
homotopy continuation method due to [Kr2016].

The class also provides facilities for computing the endomorphism ring of the period lattice numerically, by determining
integer (near) solutions to the relevant approximate linear equations.

One can also calculate the Abel-Jacobi map on the Riemann surface, and there is basic functionality to interface with
divisors of curves to facilitate this.

AUTHORS:

• Alexandre Zotine, Nils Bruin (2017-06-10): initial version

• Nils Bruin, Jeroen Sijsling (2018-01-05): algebraization, isomorphisms

• Linden Disney-Hogg, Nils Bruin (2021-06-23): efficient integration

• Linden Disney-Hogg, Nils Bruin (2022-09-07): Abel-Jacobi map

EXAMPLES:

We compute the Riemann matrix of a genus 3 curve:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: f = x^4-x^3*y+2*x^3+2*x^2*y+2*x^2-2*x*y^2+4*x*y-y^3+3*y^2+2*y+1
sage: S = RiemannSurface(f, prec=100)
sage: M = S.riemann_matrix()

We test the usual properties, i.e., that the period matrix is symmetric and that the imaginary part is positive definite:

sage: all(abs(a) < 1e-20 for a in (M-M.T).list())
True
sage: iM = Matrix(RDF,3,3,[a.imag_part() for a in M.list()])
sage: iM.is_positive_definite()
True

113

Curves, Release 9.8

We compute the endomorphism ring and check it has Z-rank 6:

sage: A = S.endomorphism_basis(80,8)
sage: len(A) == 6
True

In fact it is an order in a number field:

sage: T.<t> = QQ[]
sage: K.<a> = NumberField(t^6 - t^5 + 2*t^4 + 8*t^3 - t^2 - 5*t + 7)
sage: all(len(a.minpoly().roots(K)) == a.minpoly().degree() for a in A)
True

We can look at an extended example of the Abel-Jacobi functionality. We will demonstrate a particular half-canonical
divisor on Klein’s Curve, known in the literature:

sage: f = x^3*y + y^3 + x
sage: S = RiemannSurface(f, integration_method='rigorous')
sage: BL = S.places_at_branch_locus(); BL
[Place (x, y, y^2),
Place (x^7 + 27/4, y + 4/9*x^5, y^2 + 4/3*x^3),
Place (x^7 + 27/4, y - 2/9*x^5, y^2 + 1/3*x^3)]

We can read off out the output of places_at_branch_locus to choose our divisor, and we can calculate the canonical
divisor using curve functionality:

sage: P0 = 1*BL[0]
sage: from sage.schemes.curves.constructor import Curve
sage: C = Curve(f)
sage: F = C.function_field()
sage: K = (F(x).differential()).divisor() - F(f.derivative(y)).divisor()
sage: Pinf, Pinf_prime = C.places_at_infinity()
sage: if K-3*Pinf-1*Pinf_prime: Pinf, Pinf_prime = (Pinf_prime, Pinf);
sage: D = P0 + 2*Pinf - Pinf_prime

Note we could check using exact techniques that 2𝐷 = 𝐾:

sage: Z = K - 2*D
sage: (Z.degree() == 0, len(Z.basis_differential_space()) == S.genus, len(Z.basis_
→˓function_space()) == 1)
(True, True, True)

We can also check this using our Abel-Jacobi functions:

sage: avoid = C.places_at_infinity()
sage: Zeq, _ = S.strong_approximation(Z, avoid)
sage: Zlist = S.divisor_to_divisor_list(Zeq)
sage: AJ = S.abel_jacobi(Zlist) # long time (1 second)
sage: S.reduce_over_period_lattice(AJ).norm() < 1e-10 # long time
True

REFERENCES:

The initial version of this code was developed alongside [BSZ2019].

114 Chapter 10. Riemann surfaces

Curves, Release 9.8

exception sage.schemes.riemann_surfaces.riemann_surface.ConvergenceError

Bases: ValueError

Error object suitable for raising and catching when Newton iteration fails.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import ConvergenceError
sage: raise ConvergenceError("test")
Traceback (most recent call last):
...
ConvergenceError: test
sage: isinstance(ConvergenceError(),ValueError)
True

class sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface(f, prec=53,
certification=True,
differentials=None, integra-
tion_method='rigorous')

Bases: object

Construct a Riemann Surface. This is specified by the zeroes of a bivariate polynomial with rational coefficients
𝑓(𝑧, 𝑤) = 0.

INPUT:

• f – a bivariate polynomial with rational coefficients. The surface is interpreted as the covering space of the
coordinate plane in the first variable.

• prec – the desired precision of computations on the surface in bits (default: 53)

• certification – a boolean (default: True) value indicating whether homotopy continuation is certified
or not. Uncertified homotopy continuation can be faster.

• differentials – (default: None). If specified, provides a list of polynomials ℎ such that ℎ/(𝑑𝑓/𝑑𝑤)𝑑𝑧
is a regular differential on the Riemann surface. This is taken as a basis of the regular differentials, so the
genus is assumed to be equal to the length of this list. The results from the homology basis computation are
checked against this value. Providing this parameter makes the computation independent from Singular.
For a nonsingular plane curve of degree 𝑑, an appropriate set is given by the monomials of degree up to
𝑑− 3.

• integration_method – (default: 'rigorous'). String specifying the integration method to use when
calculating the integrals of differentials. The options are 'heuristic' and 'rigorous', the latter of
which is often the most efficient.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^3 + 1
sage: RiemannSurface(f)
Riemann surface defined by polynomial f = -z^3 + w^2 + 1 = 0, with 53 bits of␣
→˓precision

Another Riemann surface with 100 bits of precision:

sage: S = RiemannSurface(f, prec=100); S
Riemann surface defined by polynomial f = -z^3 + w^2 + 1 = 0, with 100 bits of␣

(continues on next page)

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 115

https://docs.python.org/library/exceptions.html#ValueError

Curves, Release 9.8

(continued from previous page)

→˓precision
sage: S.riemann_matrix()^6 #abs tol 0.00000001
[1.0000000000000000000000000000 - 1.1832913578315177081175928479e-30*I]

We can also work with Riemann surfaces that are defined over fields with a complex embedding, but since the
current interface for computing genus and regular differentials in Singular presently does not support extensions
of QQ, we need to specify a description of the differentials ourselves. We give an example of a CM elliptic curve:

sage: Qt.<t> = QQ[]
sage: K.<a> = NumberField(t^2-t+3,embedding=CC(0.5+1.6*I))
sage: R.<x,y> = K[]
sage: f = y^2 + y - (x^3 + (1-a)*x^2 - (2+a)*x - 2)
sage: S = RiemannSurface(f, prec=100, differentials=[1])
sage: A = S.endomorphism_basis()
sage: len(A)
2
sage: all(len(T.minpoly().roots(K)) > 0 for T in A)
True

The 'heuristic' integration method uses the method integrate_vector defined in sage.numerical.
gauss_legendre to compute integrals of differentials. As mentioned there, this works by iteratively doubling
the number of nodes used in the quadrature, and uses a heuristic based on the rate at which the result is seemingly
converging to estimate the error. The 'rigorous'method uses results from [Neu2018], and bounds the algebraic
integrands on circular domains using Cauchy’s form of the remainder in Taylor approximation coupled to Fuji-
wara’s bound on polynomial roots (see Bruin-DisneyHogg-Gao, in preparation). Note this method of bounding
on circular domains is also implemented in _compute_delta(). The net result of this bounding is that one can
know (an upper bound on) the number of nodes required to achieve a certain error. This means that for any given
integral, assuming that the same number of nodes is required by both methods in order to achieve the desired er-
ror (not necessarily true in practice), approximately half the number of integrand evaluations are required. When
the required number of nodes is high, e.g. when the precision required is high, this can make the 'rigorous'
method much faster. However, the 'rigorous'method does not benefit as much from the caching of the nodes
method over multiple integrals. The result of this is that, for calls of matrix_of_integral_values() if the
computation is ‘fast’, the heuristic method may outperform the rigorous method, but for slower computations the
rigorous method can be much faster:

sage: f = z*w^3 + z^3 + w
sage: p = 53
sage: Sh = RiemannSurface(f, prec=p, integration_method='heuristic')
sage: Sr = RiemannSurface(f, prec=p, integration_method='rigorous')
sage: from sage.numerical.gauss_legendre import nodes
sage: import time
sage: nodes.cache.clear()
sage: ct = time.time()
sage: Rh = Sh.riemann_matrix()
sage: ct1 = time.time()-ct
sage: nodes.cache.clear()
sage: ct = time.time()
sage: Rr = Sr.riemann_matrix()
sage: ct2 = time.time()-ct
sage: ct2/ct1 # random
1.2429363969691192

Note that for the above curve, the branch points are evenly distributed, and hence the implicit assumptions in the

116 Chapter 10. Riemann surfaces

Curves, Release 9.8

heuristic method are more sensible, meaning that a higher precision is required to see the heuristic method being
significantly slower than the rigorous method. For a worse conditioned curve, this effect is more pronounced:

sage: q = 1 / 10
sage: f = y^2 - (x^2 - 2*x + 1 + q^2) * (x^2 + 2*x + 1 + q^2)
sage: p = 500
sage: Sh = RiemannSurface(f, prec=p, integration_method='heuristic')
sage: Sr = RiemannSurface(f, prec=p, integration_method='rigorous')
sage: nodes.cache.clear()
sage: Rh = Sh.riemann_matrix() # long time (8 seconds)
sage: nodes.cache.clear()
sage: Rr = Sr.riemann_matrix() # long time (1 seconds)

This disparity in timings can get increasingly worse, and testing has shown that even for random quadrics the
heuristic method can be as bad as 30 times slower.

abel_jacobi(divisor, verbose=False)
Return the Abel-Jacobi map of divisor.

Return a representative of the Abel-Jacobi map of a divisor with basepoint self._basepoint.

INPUT:

• divisor – list. A list with each entry a tuple of the form (v, P), where v is the valuation of the
divisor at point P, P as per the input to _aj_based().

• verbose – logical (default: False). Whether to report the progress of the computation, in terms of
how many elements of the list divisor have been completed.

OUTPUT:

A vector of length self.genus.

EXAMPLES:

We can test that the Abel-Jacobi map between two branchpoints of a superelliptic curve of degree 𝑝 is a
𝑝-torsion point in the Jacobian:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: p = 4
sage: S = RiemannSurface(y^p-x^4+1, prec=100)
sage: divisor = [(-1, (-1, 0)), (1, (1, 0))]
sage: AJ = S.abel_jacobi(divisor) # long time (15 seconds)
sage: AJxp = [p*z for z in AJ] # long time
sage: bool(S.reduce_over_period_lattice(AJxp).norm()<1e-7) # long time
True

cohomology_basis(option=1)
Compute the cohomology basis of this surface.

INPUT:

• option – Presently, this routine uses Singular’s adjointIdeal and passes the option parameter on.
Legal values are 1, 2, 3 ,4, where 1 is the default. See the Singular documentation for the meaning.
The backend for this function may change, and support for this parameter may disappear.

OUTPUT:

This returns a list of polynomials 𝑔 representing the holomorphic differentials 𝑔/(𝑑𝑓/𝑑𝑤)𝑑𝑧, where
𝑓(𝑧, 𝑤) = 0 is the equation specifying the Riemann surface.

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 117

Curves, Release 9.8

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f)
sage: S.cohomology_basis()
[1, w, z]

curve()

Return the curve from which this Riemann surface is obtained.

Riemann surfaces explicitly obtained from a curve return that same object. For others, the curve is con-
structed and cached, so that an identical curve is returned upon subsequent calls.

OUTPUT:

Curve from which Riemann surface is obtained.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: C = Curve(y^3+x^3-1)
sage: S = C.riemann_surface()
sage: S.curve() is C
True

divisor_to_divisor_list(divisor, eps=None)
Turn a divisor into a list for abel_jacobi().

Given divisor in Curve(self.f).function_field().divisor_group(), consisting of places above
finite points in the base, return an equivalent divisor list suitable for input into abel_jacboi().

INPUT:

• divisor – an element of Curve(self.f).function_field().divisor_group()

• eps – real number (optional); tolerance used to determine whether a complex number is close enough
to a root of a polynomial

OUTPUT:

A list with elements of the form (v, (z, w)) representing the finite places.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(y^2-x^3+1)
sage: D = sum(S.places_at_branch_locus())
sage: S.divisor_to_divisor_list(D)
[(1, (1.00000000000000, 0.000000000000000)),
(1, (-0.500000000000000 - 0.866025403784439*I, 0.000000000000000)),
(1, (-0.500000000000000 + 0.866025403784439*I, 0.000000000000000))]

Todo: Currently this method can only handle places above finite points in the base. It would be useful to
extend this to allow for places at infinity.

118 Chapter 10. Riemann surfaces

Curves, Release 9.8

downstairs_edges()

Compute the edgeset of the Voronoi diagram.

OUTPUT:

A list of integer tuples corresponding to edges between vertices in the Voronoi diagram.

EXAMPLES:

Form a Riemann surface, one with a particularly simple branch locus:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^3 - z^2
sage: S = RiemannSurface(f)

Compute the edges:

sage: S.downstairs_edges()
[(0, 1), (0, 5), (1, 4), (2, 3), (2, 4), (3, 5), (4, 5)]

This now gives an edgeset which one could use to form a graph.

Note: The numbering of the vertices is given by the Voronoi package.

downstairs_graph()

Return the Voronoi decomposition as a planar graph.

The result of this routine can be useful to interpret the labelling of the vertices. See also
upstairs_graph().

OUTPUT:

The Voronoi decomposition as a graph, with appropriate planar embedding.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f)
sage: S.downstairs_graph()
Graph on 11 vertices

edge_permutations()

Compute the permutations of branches associated to each edge.

Over the vertices of the Voronoi decomposition around the branch locus, we label the fibres. By following
along an edge, the lifts of the edge induce a permutation of that labelling.

OUTPUT:

A dictionary with as keys the edges of the Voronoi decomposition and as values the corresponding permu-
tations.

EXAMPLES:

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 119

Curves, Release 9.8

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^2+1
sage: S = RiemannSurface(f)
sage: S.edge_permutations()
{(0, 2): (),
(0, 4): (),
(1, 2): (),
(1, 3): (0,1),
(1, 6): (),
(2, 0): (),
(2, 1): (),
(2, 5): (0,1),
(3, 1): (0,1),
(3, 4): (),
(4, 0): (),
(4, 3): (),
(5, 2): (0,1),
(5, 7): (),
(6, 1): (),
(6, 7): (),
(7, 5): (),
(7, 6): ()}

endomorphism_basis(b=None, r=None)
Numerically compute a Z-basis for the endomorphism ring.

Let (𝐼|𝑀) be the normalized period matrix (𝑀 is the 𝑔×𝑔 riemann_matrix()). We consider the system
of matrix equations 𝑀𝐴+𝐶 = (𝑀𝐵+𝐷)𝑀 where 𝐴,𝐵,𝐶,𝐷 are 𝑔×𝑔 integer matrices. We determine
small integer (near) solutions using LLL reductions. These solutions are returned as 2𝑔×2𝑔 integer matrices
obtained by stacking (𝐷|𝐵) on top of (𝐶|𝐴).

INPUT:

• b – integer (default provided). The equation coefficients are scaled by 2𝑏 before rounding to integers.

• r – integer (default: b/4). Solutions that have all coefficients smaller than 2𝑟 in absolute value are
reported as actual solutions.

OUTPUT:

A list of 2𝑔 × 2𝑔 integer matrices that, for large enough r and b-r, generate the endomorphism ring.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(x^3 + y^3 + 1)
sage: B = S.endomorphism_basis(); B #random
[
[1 0] [0 -1]
[0 1], [1 1]
]
sage: sorted([b.minpoly().disc() for b in B])
[-3, 1]

120 Chapter 10. Riemann surfaces

Curves, Release 9.8

homology_basis()

Compute the homology basis of the Riemann surface.

OUTPUT:

A list of paths 𝐿 = [𝑃1, . . . , 𝑃𝑛]. Each path 𝑃𝑖 is of the form (𝑘, [𝑝1...𝑝𝑚, 𝑝1]), where 𝑘 is the number of
times to traverse the path (if negative, to traverse it backwards), and the 𝑝𝑖 are vertices of the upstairs graph.

EXAMPLES:

In this example, there are two paths that form the homology basis:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: g = w^2 - z^4 + 1
sage: S = RiemannSurface(g)
sage: S.homology_basis() # random
[[(1, [(3, 1), (5, 0), (9, 0), (10, 0), (2, 0), (4, 0),

(7, 1), (10, 1), (3, 1)])],
[(1, [(8, 0), (6, 0), (7, 0), (10, 0), (2, 0), (4, 0),

(7, 1), (10, 1), (9, 1), (8, 0)])]]

In order to check that the answer returned above is reasonable, we test some basic properties. We express
the faces of the downstairs graph as ZZ-linear combinations of the edges and check that the projection of
the homology basis upstairs projects down to independent linear combinations of an even number of faces:

sage: dg = S.downstairs_graph()
sage: edges = dg.edges(sort=True)
sage: E = ZZ^len(edges)
sage: edge_to_E = { e[:2]: E.gen(i) for i,e in enumerate(edges)}
sage: edge_to_E.update({ (e[1],e[0]): -E.gen(i) for i,e in enumerate(edges)})
sage: face_span = E.submodule([sum(edge_to_E[e] for e in f) for f in dg.
→˓faces()])
sage: def path_to_E(path):
....: k,P = path
....: return k*sum(edge_to_E[(P[i][0],P[i+1][0])] for i in range(len(P)-1))
sage: hom_basis = [sum(path_to_E(p) for p in loop) for loop in S.homology_
→˓basis()]
sage: face_span.submodule(hom_basis).rank()
2
sage: [sum(face_span.coordinate_vector(b))%2 for b in hom_basis]
[0, 0]

homomorphism_basis(other, b=None, r=None)
Numerically compute a Z-basis for module of homomorphisms to a given complex torus.

Given another complex torus (given as the analytic Jacobian of a Riemann surface), numerically compute a
basis for the homomorphism module. The answer is returned as a list of 2g x 2g integer matrices T=(D, B;
C, A) such that if the columns of (I|M1) generate the lattice defining the Jacobian of the Riemann surface
and the columns of (I|M2) do this for the codomain, then approximately we have (I|M2)T=(D+M2C)(I|M1),
i.e., up to a choice of basis for C𝑔 as a complex vector space, we we realize (I|M1) as a sublattice of (I|M2).

INPUT:

• b – integer (default provided). The equation coefficients are scaled by 2𝑏 before rounding to integers.

• r – integer (default: b/4). Solutions that have all coefficients smaller than 2𝑟 in absolute value are
reported as actual solutions.

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 121

Curves, Release 9.8

OUTPUT:

A list of 2𝑔 × 2𝑔 integer matrices that, for large enough r and b-r, generate the homomorphism module.

EXAMPLES:

sage: S1 = EllipticCurve("11a1").riemann_surface()
sage: S2 = EllipticCurve("11a3").riemann_surface()
sage: [m.det() for m in S1.homomorphism_basis(S2)]
[5]

homotopy_continuation(edge)
Perform homotopy continuation along an edge of the Voronoi diagram using Newton iteration.

INPUT:

• edge – a tuple (z_start, z_end) indicating the straight line over which to perform the homotopy
continutation

OUTPUT:

A list containing the initialised continuation data. Each entry in the list contains: the 𝑡 values that entry cor-
responds to, a list of complex numbers corresponding to the points which are reached when continued along
the edge when traversing along the direction of the edge, and a value epsilon giving the minimumdistance
between the fibre values divided by 3. The ordering of these points indicates how they have been permuted
due to the weaving of the curve.

EXAMPLES:

We check that continued values along an edge correspond (up to the appropriate permutation) to what is
stored. Note that the permutation was originally computed from this data:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f)
sage: edge1 = sorted(S.edge_permutations())[0]
sage: sigma = S.edge_permutations()[edge1]
sage: edge = [S._vertices[i] for i in edge1]
sage: continued_values = S.homotopy_continuation(edge)[-1][1]
sage: stored_values = S.w_values(S._vertices[edge1[1]])
sage: all(abs(continued_values[i]-stored_values[sigma(i)]) < 1e-8 for i in␣
→˓range(3))
True

make_zw_interpolator(upstairs_edge, initial_continuation=None)
Given a downstairs edge for which continuation data has been initialised, return a function that computes
𝑧(𝑡), 𝑤(𝑡) , where 𝑡 in [0, 1] is a parametrization of the edge.

INPUT:

• upstairs_edge – tuple ((z_start, sb), (z_end,)) giving the start and end values of the base
coordinate along the straight-line path and the starting branch

• initial_continuation – list (optional); output of homotopy_continuation initialising the con-
tinuation data

OUTPUT:

A tuple (g, d), where g is the function that computes the interpolation along the edge and d is the differ-
ence of the z-values of the end and start point.

122 Chapter 10. Riemann surfaces

Curves, Release 9.8

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f)
sage: _ = S.homology_basis()
sage: u_edge = [(0, 0), (1, 0)]
sage: d_edge = tuple(u[0] for u in u_edge)
sage: u_edge = [(S._vertices[i], j) for i, j in u_edge]
sage: initial_continuation = S._L[d_edge]
sage: g, d = S.make_zw_interpolator(u_edge, initial_continuation)
sage: all(f(*g(i*0.1)).abs() < 1e-13 for i in range(10))
True
sage: abs((g(1)[0]-g(0)[0]) - d) < 1e-13
True

Note: The interpolator returned by this method can effectively hang if either z_start or z_end are
branchpoints. In these situations it is better to take a different approach rather than continue to use the
interpolator.

matrix_of_integral_values(differentials, integration_method='heuristic')
Compute the path integrals of the given differentials along the homology basis.

The returned answer has a row for each differential. If the Riemann surface is given by the equa-
tion 𝑓(𝑧, 𝑤) = 0, then the differentials are encoded by polynomials g, signifying the differential
𝑔(𝑧, 𝑤)/(𝑑𝑓/𝑑𝑤)𝑑𝑧.

INPUT:

• differentials – a list of polynomials.

• integration_method – (default: 'heuristic'). String specifying the integration method to use.
The options are 'heuristic' and 'rigorous'.

OUTPUT:

A matrix, one row per differential, containing the values of the path integrals along the homology basis of
the Riemann surface.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(x^3 + y^3 + 1)
sage: B = S.cohomology_basis()
sage: m = S.matrix_of_integral_values(B)
sage: parent(m)
Full MatrixSpace of 1 by 2 dense matrices over Complex Field with 53 bits of␣
→˓precision
sage: (m[0,0]/m[0,1]).algdep(3).degree() # curve is CM, so the period is␣
→˓quadratic
2

Note: If differentials is self.cohomology_basis(), the calculations of the integrals along the

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 123

Curves, Release 9.8

edges are written to 𝑠𝑒𝑙𝑓.𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑑𝑖𝑐𝑡‘. This is as this data will be required when computing the Abel-
Jacobi map, and so it is helpful to have is stored rather than recomputing.

monodromy_group()

Compute local monodromy generators of the Riemann surface.

For each branch point, the local monodromy is encoded by a permutation. The permutations returned
correspond to positively oriented loops around each branch point, with a fixed base point. This means the
generators are properly conjugated to ensure that together they generate the global monodromy. The list
has an entry for every finite point stored in self.branch_locus, plus an entry for the ramification above
infinity.

OUTPUT:

A list of permutations, encoding the local monodromy at each branch point.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z, w> = QQ[]
sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f)
sage: G = S.monodromy_group(); G
[(0,1,2), (0,1), (0,2), (1,2), (1,2), (1,2), (0,1), (0,2), (0,2)]

The permutations give the local monodromy generators for the branch points:

sage: list(zip(S.branch_locus + [unsigned_infinity], G)) #abs tol 0.0000001
[(0.000000000000000, (0,1,2)),
(-1.31362670141929, (0,1)),
(-0.819032851784253 - 1.02703471138023*I, (0,2)),
(-0.819032851784253 + 1.02703471138023*I, (1,2)),
(0.292309440469772 - 1.28069133740100*I, (1,2)),
(0.292309440469772 + 1.28069133740100*I, (1,2)),
(1.18353676202412 - 0.569961265016465*I, (0,1)),
(1.18353676202412 + 0.569961265016465*I, (0,2)),
(Infinity, (0,2))]

We can check the ramification by looking at the cycle lengths and verify it agrees with the Riemann-Hurwitz
formula:

sage: 2*S.genus-2 == -2*S.degree + sum(e-1 for g in G for e in g.cycle_type())
True

period_matrix()

Compute the period matrix of the surface.

OUTPUT:

A matrix of complex values.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = z^3*w + w^3 + z

(continues on next page)

124 Chapter 10. Riemann surfaces

Curves, Release 9.8

(continued from previous page)

sage: S = RiemannSurface(f, prec=30)
sage: M = S.period_matrix()

The results are highly arbitrary, so it is hard to check if the result produced is correct. The closely related
riemann_matrix is somewhat easier to test.:

sage: parent(M)
Full MatrixSpace of 3 by 6 dense matrices over Complex Field with 30 bits of␣
→˓precision
sage: M.rank()
3

One can check that the two methods give similar answers:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: f = y^2 - x^3 + 1
sage: S = RiemannSurface(f, integration_method="rigorous")
sage: T = RiemannSurface(f, integration_method="heuristic")
sage: RM_S = S.riemann_matrix()
sage: RM_T = T.riemann_matrix()
sage: (RM_S-RM_T).norm() < 1e-10
True

places_at_branch_locus()

Return the places above the branch locus.

Return a list of the of places above the branch locus. This must be done over the base ring, and so the places
are given in terms of the factors of the discriminant. Currently, this method only works when self._R.
base_ring() == QQ as for other rings, the function field for Curve(self.f) is not implemented. To go
from these divisors to a divisor list, see divisor_to_divisor_list().

OUTPUT:

List of places of the functions field Curve(self.f).function_field().

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(25*(x^4+y^4+1) - 34*(x^2*y^2+x^2+y^2))
sage: S.places_at_branch_locus()
[Place (x - 2, (x - 2)*y, y^2 - 17/5, y^3 - 17/5*y),
Place (x + 2, (x + 2)*y, y^2 - 17/5, y^3 - 17/5*y),
Place (x - 1/2, (x - 1/2)*y, y^2 - 17/20, y^3 - 17/20*y),
Place (x + 1/2, (x + 1/2)*y, y^2 - 17/20, y^3 - 17/20*y),
Place (x^4 - 34/25*x^2 + 1, y, y^2, y^3),
Place (x^4 - 34/25*x^2 + 1, (x^4 - 34/25*x^2 + 1)*y, y^2 - 34/25*x^2 - 34/25,␣
→˓y^3 + (-34/25*x^2 - 34/25)*y)]

plot_paths()

Make a graphical representation of the integration paths.

This returns a two dimensional plot containing the branch points (in red) and the integration paths (obtained
from the Voronoi cells of the branch points). The integration paths are plotted by plotting the points that

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 125

Curves, Release 9.8

have been computed for homotopy continuation, so the density gives an indication of where numerically
sensitive features occur.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(y^2 - x^3 - x)
sage: S.plot_paths()
Graphics object consisting of 2 graphics primitives

plot_paths3d(thickness=0.01)
Return the homology basis as a graph in 3-space.

The homology basis of the surface is constructed by taking the Voronoi cells around the branch points and
taking the inverse image of the edges on the Riemann surface. If the surface is given by the equation 𝑓(𝑧, 𝑤),
the returned object gives the image of this graph in 3-space with coordinates (Re(𝑧), Im(𝑧), Im(𝑤)).

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(y^2-x^3-x)
sage: S.plot_paths3d()
Graphics3d Object

reduce_over_period_lattice(vector, method='ip', b=None, r=None, normalised=False)
Reduce a vector over the period lattice.

Given a vector of length self.genus, this method returns a vector in the same orbit of the period lattice
that is short. There are two possible methods, 'svp' which returns a certified shortest vector, but can be
much slower for higher genus curves, and 'ip', which is faster but not guaranteed to return the shortest
vector. In general the latter will perform well when the lattice basis vectors are of similar size.

INPUT:

• vector – vector. A vector of length self.genus to reduce over the lattice.

• method – string (default: 'ip'). String specifying the method to use to reduce the vector. THe options
are 'ip' and 'svp'.

• b – integer (default provided): as for homomorphism_basis(), and used in its invocation if
(re)calculating said basis.

• r – integer (default: b/4). as for homomorphism_basis(), and used in its invocation if (re)calculating
said basis.

• normalised – logical (default: False). Whether to use the period matrix with the differentials nor-
malised s.t. the 𝐴-matrix is the identity.

OUTPUT:

Complex vector of length self.genus in the same orbit as vector in the lattice.

EXAMPLES:

We can check that the lattice basis vectors themselves are reduced to zero:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]

(continues on next page)

126 Chapter 10. Riemann surfaces

Curves, Release 9.8

(continued from previous page)

sage: S = RiemannSurface(y^2-x^5+1)
sage: epsilon = S._RR(2)^(-S._prec+1)
sage: for vector in S.period_matrix().columns():
....: print(bool(S.reduce_over_period_lattice(vector).norm()<epsilon))
True
True
True
True

We can also check that the method 'svp' always gives a smaller norm than 'ip':

sage: for vector in S.period_matrix().columns():
....: n1 = S.reduce_over_period_lattice(vector).norm()
....: n2 = S.reduce_over_period_lattice(vector, method="svp").norm()
....: print(bool(n2<=n1))
True
True
True
True

riemann_matrix()

Compute the Riemann matrix.

OUTPUT:

A matrix of complex values.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f, prec=60)
sage: M = S.riemann_matrix()

The Klein quartic has a Riemann matrix with values in a quadratic field:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2-x+2)
sage: all(len(m.algdep(6).roots(K)) > 0 for m in M.list())
True

rigorous_line_integral(upstairs_edge, differentials, bounding_data)
Perform vectorized integration along a straight path.

Using the error bounds for Gauss-Legendre integration found in [Neu2018] and a method for bounding an
algebraic integrand on a circular domains using Cauchy’s form of the remainder in Taylor approximation
coupled to Fujiwara’s bound on polynomial roots (see Bruin-DisneyHogg-Gao, in preparation), this method
calculates (semi-)rigorously the integral of a list of differentials along an edge of the upstairs graph.

INPUT:

• upstairs_edge – tuple. Either a pair of integer tuples corresponding to an edge of the upstairs graph,
or a tuple ((z_start, sb), (z_end,)) as in the input of make_zw_interpolator.

• differentials – a list of polynomials; a polynomial 𝑔 represents the differential 𝑔(𝑧, 𝑤)/(𝑑𝑓/𝑑𝑤)𝑑𝑧
where 𝑓(𝑧, 𝑤) = 0 is the equation defining the Riemann surface.

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 127

Curves, Release 9.8

• bounding_data – tuple containing the data required for bounding the integrands. This should be in
the form of the output from _bounding_data().

OUTPUT:

A complex number, the value of the line integral.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f); S
Riemann surface defined by polynomial f = -z^4 + w^2 + 1 = 0, with 53 bits of␣
→˓precision

Since we make use of data from homotopy continuation, we need to compute the necessary data:

sage: _ = S.homology_basis()
sage: differentials = S.cohomology_basis()
sage: bounding_data = S._bounding_data(differentials)
sage: S.rigorous_line_integral([(0,0), (1,0)], differentials, bounding_data) #␣
→˓abs tol 1e-10
(1.80277751848459e-16 - 0.352971844594760*I)

Note: Uses data that homology_basis initializes, and may give incorrect values if homology_basis()
has not initialized them.

Note also that the data of the differentials is contained within bounding_data. It is, however, still advanta-
geous to have this be a separate argument, as it lets the user supply a fast-callable version of the differentials,
to significantly speed up execution of the integrand calls, and not have to re-calculate these fast-callables
for every run of the function. This is also the benefit of representing the differentials as a polynomial over
a known common denominator.

Todo: Note that bounding_data contains the information of the integrands, so one may want to check
for consistency between bounding_data and differentials. If so one would not want to do so at the
expense of speed.

Moreover, the current implementation bounds along a line by splitting it up into segments, each of which
can be covered entirely by a single circle, and then placing inside that the ellipse required to bound as per
[Neu2018]. This is reliably more efficient than the heuristic method, especially in poorly-conditioned cases
where discriminant points are close together around the edges, but in the case where the branch locus is
well separated, it can require slightly more nodes than necessary. One may want to include a method here
to transition in this regime to an algorithm that covers the entire line with one ellipse, then bounds along
that ellipse with multiple circles.

rosati_involution(R)
Compute the Rosati involution of an endomorphism.

The endomorphism in question should be given by its homology representation with respect to the sym-
plectic basis of the Jacobian.

INPUT:

• R – integral matrix.

128 Chapter 10. Riemann surfaces

Curves, Release 9.8

OUTPUT:

The result of applying the Rosati involution to R.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
sage: Rs = S.endomorphism_basis()
sage: S.rosati_involution(S.rosati_involution(Rs[1])) == Rs[1]
True

simple_vector_line_integral(upstairs_edge, differentials)
Perform vectorized integration along a straight path.

INPUT:

• upstairs_edge – tuple. Either a pair of integer tuples corresponding to an edge of the upstairs graph,
or a tuple ((z_start, sb), (z_end,)) as in the input of make_zw_interpolator.

• differentials – a list of polynomials; a polynomial 𝑔 represents the differential 𝑔(𝑧, 𝑤)/(𝑑𝑓/𝑑𝑤)𝑑𝑧
where 𝑓(𝑧, 𝑤) = 0 is the equation defining the Riemann surface.

OUTPUT:

A complex number, the value of the line integral.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f); S
Riemann surface defined by polynomial f = -z^4 + w^2 + 1 = 0, with 53 bits of␣
→˓precision

Since we make use of data from homotopy continuation, we need to compute the necessary data:

sage: M = S.riemann_matrix()
sage: differentials = S.cohomology_basis()
sage: S.simple_vector_line_integral([(0, 0), (1, 0)], differentials) #abs tol 0.
→˓00000001
(1.14590610929717e-16 - 0.352971844594760*I)

Note: Uses data that homology_basis() initializes, and may give incorrect values if
homology_basis() has not initialized them. In practice it is more efficient to set differentials to
a fast-callable version of differentials to speed up execution.

strong_approximation(divisor, S)
Apply the method of strong approximation to a divisor.

As described in [Neu2018], apply the method of strong approximation to divisor with list of places to
avoid S. Currently, this method only works when self._R.base_ring() == QQ as for other rings, the
function field for Curve(self.f) is not implemented.

INPUT:

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 129

Curves, Release 9.8

• divisor – an element of Curve(self.f).function_field().divisor_group()

• S – list of places to avoid

OUTPUT:

A tuple (D, B), where D is a new divisor, linearly equivalent to divisor, but not intersecting S, and B is
a list of tuples (v, b) where b are the functions giving the linear equivalence, added with multiplicity v.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(y^2-x^3+1)
sage: avoid = Curve(S.f).places_at_infinity()
sage: D = 1*avoid[0]
sage: S.strong_approximation(D, avoid)
(- Place (x - 2, (x - 2)*y)
+ Place (x - 1, y)
+ Place (x^2 + x + 1, y),
[(1, (1/(x - 2))*y)])

symplectic_automorphism_group(endo_basis=None, b=None, r=None)
Numerically compute the symplectic automorphism group as a permutation group.

INPUT:

• endo_basis (default: None) – a Z-basis of the endomorphisms of self, as obtained from
endomorphism_basis(). If you have already calculated this basis, it saves time to pass it via this
keyword argument. Otherwise the method will calculate it.

• b – integer (default provided): as for homomorphism_basis(), and used in its invocation if
(re)calculating said basis.

• r – integer (default: b/4). as for homomorphism_basis(), and used in its invocation if (re)calculating
said basis.

OUTPUT:

The symplectic automorphism group of the Jacobian of the Riemann surface. The automorphism group of
the Riemann surface itself can be recovered from this; if the curve is hyperelliptic, then it is identical, and
if not, then one divides out by the central element corresponding to multiplication by -1.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
sage: G = S.symplectic_automorphism_group()
sage: G.as_permutation_group().is_isomorphic(DihedralGroup(4))
True

symplectic_isomorphisms(other=None, hom_basis=None, b=None, r=None)
Numerically compute symplectic isomorphisms.

INPUT:

• other (default: self) – the codomain, another Riemann surface.

130 Chapter 10. Riemann surfaces

Curves, Release 9.8

• hom_basis (default: None) – a Z-basis of the homomorphisms from self to other, as obtained from
homomorphism_basis(). If you have already calculated this basis, it saves time to pass it via this
keyword argument. Otherwise the method will calculate it.

• b – integer (default provided): as for homomorphism_basis(), and used in its invocation if
(re)calculating said basis.

• r – integer (default: b/4). as for homomorphism_basis(), and used in its invocation if (re)calculating
said basis.

OUTPUT:

This returns the combinations of the elements of homomorphism_basis() that correspond to symplectic
isomorphisms between the Jacobians of self and other.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: f = y^2 - (x^6 + 2*x^4 + 4*x^2 + 8)
sage: X = RiemannSurface(f, prec=100)
sage: P = X.period_matrix()
sage: g = y^2 - (x^6 + x^4 + x^2 + 1)
sage: Y = RiemannSurface(g, prec=100)
sage: Q = Y.period_matrix()
sage: Rs = X.symplectic_isomorphisms(Y)
sage: Ts = X.tangent_representation_numerical(Rs, other = Y)
sage: test1 = all(((T*P - Q*R).norm() < 2^(-80)) for [T, R] in zip(Ts, Rs))
sage: test2 = all(det(R) == 1 for R in Rs)
sage: test1 and test2
True

tangent_representation_algebraic(Rs, other=None, epscomp=None)
Compute the algebraic tangent representations corresponding to the homology representations in Rs.

The representations on homology Rs have to be given with respect to the symplectic homology basis of the
Jacobian of self and other. Such matrices can for example be obtained via endomorphism_basis().

Let 𝑃 and 𝑄 be the period matrices of self and other. Then for a homology representation 𝑅, the
corresponding tangential representation 𝑇 satisfies 𝑇𝑃 = 𝑄𝑅.

INPUT:

• Rs – a set of matrices on homology to be converted to their tangent representations.

• other (default: self) – the codomain, another Riemann surface.

• epscomp – real number (default: 2^(-prec + 30)). Used to determine whether a complex number
is close enough to a root of a polynomial.

OUTPUT:

The algebraic tangent representations of the matrices in Rs.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
sage: Rs = S.endomorphism_basis()

(continues on next page)

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 131

Curves, Release 9.8

(continued from previous page)

sage: Ts = S.tangent_representation_algebraic(Rs)
sage: Ts[0].base_ring().maximal_order().discriminant() == 8
True

tangent_representation_numerical(Rs, other=None)
Compute the numerical tangent representations corresponding to the homology representations in Rs.

The representations on homology Rs have to be given with respect to the symplectic homology basis of the
Jacobian of self and other. Such matrices can for example be obtained via endomorphism_basis().

Let 𝑃 and 𝑄 be the period matrices of self and other. Then for a homology representation 𝑅, the
corresponding tangential representation 𝑇 satisfies 𝑇𝑃 = 𝑄𝑅.

INPUT:

• Rs – a set of matrices on homology to be converted to their tangent representations.

• other (default: self) – the codomain, another Riemann surface.

OUTPUT:

The numerical tangent representations of the matrices in Rs.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
sage: P = S.period_matrix()
sage: Rs = S.endomorphism_basis()
sage: Ts = S.tangent_representation_numerical(Rs)
sage: all(((T*P - P*R).norm() < 2^(-80)) for [T, R] in zip(Ts, Rs))
True

upstairs_edges()

Compute the edgeset of the lift of the downstairs graph onto the Riemann surface.

OUTPUT:

An edgeset between vertices (i, j), where i corresponds to the i-th point in the Voronoi diagram vertices,
and j is the j-th w-value associated with that point.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^3 - z^2
sage: S = RiemannSurface(f)
sage: edgeset = S.upstairs_edges()
sage: len(edgeset) == S.degree*len(S.downstairs_edges())
True
sage: {(v[0],w[0]) for v,w in edgeset} == set(S.downstairs_edges())
True

upstairs_graph()

Return the graph of the upstairs edges.

This method can be useful for generating paths in the surface between points labelled by upstairs vertices,
and verifying that a homology basis is likely computed correctly. See also downstairs_graph().

132 Chapter 10. Riemann surfaces

Curves, Release 9.8

OUTPUT:

The homotopy-continued Voronoi decomposition as a graph, with appropriate 3D embedding.

EXAMPLES:

sage: R.<z,w> = QQ[]
sage: S = Curve(w^2-z^4+1).riemann_surface()
sage: G = S.upstairs_graph(); G
Graph on 22 vertices
sage: G.genus()
1
sage: G.is_connected()
True

w_values(z0)
Return the points lying on the surface above z0.

INPUT:

• z0 – (complex) a point in the complex z-plane.

OUTPUT:

A set of complex numbers corresponding to solutions of 𝑓(𝑧0, 𝑤) = 0.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f)

Find the w-values above the origin, i.e. the solutions of 𝑤2 + 1 = 0:

sage: S.w_values(0) # abs tol 1e-14
[-1.00000000000000*I, 1.00000000000000*I]

Note that typically the method returns a list of length self.degree, but that at ramification points, this
may no longer be true:

sage: S.w_values(1) # abs tol 1e-14
[0.000000000000000]

class sage.schemes.riemann_surfaces.riemann_surface.RiemannSurfaceSum(L)
Bases: RiemannSurface

Represent the disjoint union of finitely many Riemann surfaces.

Rudimentary class to represent disjoint unions of Riemann surfaces. Exists mainly (and this is the only function-
ality actually implemented) to represents direct products of the complex tori that arise as analytic Jacobians of
Riemann surfaces.

INPUT:

• L – list of RiemannSurface objects

EXAMPLES:

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 133

Curves, Release 9.8

sage: _.<x> = QQ[]
sage: SC = HyperellipticCurve(x^6-2*x^4+3*x^2-7).riemann_surface(prec=60)
sage: S1 = HyperellipticCurve(x^3-2*x^2+3*x-7).riemann_surface(prec=60)
sage: S2 = HyperellipticCurve(1-2*x+3*x^2-7*x^3).riemann_surface(prec=60)
sage: len(SC.homomorphism_basis(S1+S2))
2

period_matrix()

Return the period matrix of the surface.

This is just the diagonal block matrix constructed from the period matrices of the constituents.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface,␣
→˓RiemannSurfaceSum
sage: R.<x,y> = QQ[]
sage: S1 = RiemannSurface(y^2-x^3-x-1)
sage: S2 = RiemannSurface(y^2-x^3-x-5)
sage: S = RiemannSurfaceSum([S1,S2])
sage: S1S2 = S1.period_matrix().block_sum(S2.period_matrix())
sage: S.period_matrix() == S1S2[[0,1],[0,2,1,3]]
True

riemann_matrix()

Return the normalized period matrix of the surface.

This is just the diagonal block matrix constructed from the Riemann matrices of the constituents.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface,␣
→˓RiemannSurfaceSum
sage: R.<x,y> = QQ[]
sage: S1 = RiemannSurface(y^2-x^3-x-1)
sage: S2 = RiemannSurface(y^2-x^3-x-5)
sage: S = RiemannSurfaceSum([S1,S2])
sage: S.riemann_matrix() == S1.riemann_matrix().block_sum(S2.riemann_matrix())
True

sage.schemes.riemann_surfaces.riemann_surface.bisect(L, t)
Find position in a sorted list using bisection.

Given a list 𝐿 = [(𝑡0, ...), (𝑡1, ...), ...(𝑡𝑛, ...)] with increasing 𝑡𝑖, find the index i such that 𝑡𝑖 <= 𝑡 < 𝑡𝑖+1 using
bisection. The rest of the tuple is available for whatever use required.

INPUT:

• L – A list of tuples such that the first term of each tuple is a real number between 0 and 1. These real
numbers must be increasing.

• t – A real number between 𝑡0 and 𝑡𝑛.

OUTPUT:

An integer i, giving the position in L where t would be in

EXAMPLES:

134 Chapter 10. Riemann surfaces

Curves, Release 9.8

Form a list of the desired form, and pick a real number between 0 and 1:

sage: from sage.schemes.riemann_surfaces.riemann_surface import bisect
sage: L = [(0.0, 'a'), (0.3, 'b'), (0.7, 'c'), (0.8, 'd'), (0.9, 'e'), (1.0, 'f')]
sage: t = 0.5
sage: bisect(L,t)
1

Another example which demonstrates that if t is equal to one of the t_i, it returns that index:

sage: L = [(0.0, 'a'), (0.1, 'b'), (0.45, 'c'), (0.5, 'd'), (0.65, 'e'), (1.0, 'f')]
sage: t = 0.5
sage: bisect(L,t)
3

sage.schemes.riemann_surfaces.riemann_surface.differential_basis_baker(f)
Compute a differential basis for a curve that is nonsingular outside (1:0:0),(0:1:0),(0:0:1)

Baker’s theorem tells us that if a curve has its singularities at the coordinate vertices and meets some further
easily tested genericity criteria, then we can read off a basis for the regular differentials from the interior of the
Newton polygon spanned by the monomials. While this theorem only applies to special plane curves it is worth
implementing because the analysis is relatively cheap and it applies to a lot of commonly encountered curves
(e.g., curves given by a hyperelliptic model). Other advantages include that we can do the computation over any
exact base ring (the alternative Singular based method for computing the adjoint ideal requires the rationals), and
that we can avoid being affected by subtle bugs in the Singular code.

None is returned when f does not describe a curve of the relevant type. If f is of the relevant type, but is of
genus 0 then [] is returned (which are both False values, but they are not equal).

INPUT:

• 𝑓 – a bivariate polynomial

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import differential_basis_
→˓baker
sage: R.<x,y> = QQ[]
sage: f = x^3 + y^3 + x^5*y^5
sage: differential_basis_baker(f)
[y^2, x*y, x*y^2, x^2, x^2*y, x^2*y^2, x^2*y^3, x^3*y^2, x^3*y^3]
sage: f = y^2 - (x-3)^2*x
sage: differential_basis_baker(f) is None
True
sage: differential_basis_baker(x^2+y^2-1)
[]

sage.schemes.riemann_surfaces.riemann_surface.find_closest_element(item, lst)
Return the index of the closest element of a list.

Given List and item, return the index of the element l of List which minimises (item-l).abs(). If there
are multiple such elements, the first is returned.

INPUT:

• item – value to minimize the distance to over the list

• lst – list to look for closest element in

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 135

Curves, Release 9.8

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import find_closest_element
sage: i = 5
sage: l = list(range(10))
sage: i == find_closest_element(i, l)
True

Note that this method does no checks on the input, but will fail for inputs where the absolute value or subtraction
do not make sense.

sage.schemes.riemann_surfaces.riemann_surface.integer_matrix_relations(M1, M2, b=None,
r=None)

Determine integer relations between complex matrices.

Given two square matrices with complex entries of size g, h respectively, numerically determine an (ap-
proximate) ZZ-basis for the 2g x 2h matrices with integer entries of the shape (D, B; C, A) such that
B+M1*A=(D+M1*C)*M2. By considering real and imaginary parts separately we obtain 2𝑔ℎ equations with
real coefficients in 4𝑔ℎ variables. We scale the coefficients by a constant 2𝑏 and round them to integers, in order
to obtain an integer system of equations. Standard application of LLL allows us to determine near solutions.

The user can specify the parameter 𝑏, but by default the system will choose a 𝑏 based on the size of the coefficients
and the precision with which they are given.

INPUT:

• M1 – square complex valued matrix

• M2 – square complex valued matrix of same size as M1

• b – integer (default provided). The equation coefficients are scaled by 2𝑏 before rounding to integers.

• r – integer (default: b/4). The vectors found by LLL that satisfy the scaled equations to within 2𝑟 are
reported as solutions.

OUTPUT:

A list of 2g x 2h integer matrices that, for large enough 𝑟, 𝑏− 𝑟, generate the ZZ-module of relevant transforma-
tions.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import integer_matrix_
→˓relations
sage: M1=M2=matrix(CC,2,2,[sqrt(d) for d in [2,-3,-3,-6]])
sage: T=integer_matrix_relations(M1,M2)
sage: id=parent(M1)(1)
sage: M1t=[id.augment(M1) * t for t in T]
sage: [((m[:,:2]^(-1)*m)[:,2:]-M2).norm() < 1e-13 for m in M1t]
[True, True]

sage.schemes.riemann_surfaces.riemann_surface.numerical_inverse(C)
Compute numerical inverse of a matrix via LU decomposition

INPUT:

• C – A real or complex invertible square matrix

EXAMPLES:

136 Chapter 10. Riemann surfaces

Curves, Release 9.8

sage: C = matrix(CC,3,3,[-4.5606e-31 + 1.2326e-31*I,
....: -0.21313 + 0.24166*I,
....: -3.4513e-31 + 0.16111*I,
....: -1.0175 + 9.8608e-32*I,
....: 0.30912 + 0.19962*I,
....: -4.9304e-32 + 0.39923*I,
....: 0.96793 - 3.4513e-31*I,
....: -0.091587 + 0.19276*I,
....: 3.9443e-31 + 0.38552*I])
sage: from sage.schemes.riemann_surfaces.riemann_surface import numerical_inverse
sage: 3e-16 < (C^-1*C-C^0).norm() < 1e-15
True
sage: (numerical_inverse(C)*C-C^0).norm() < 3e-16
True

sage.schemes.riemann_surfaces.riemann_surface.reparameterize_differential_minpoly(minpoly,
z0)

Rewrites a minimal polynomial to write is around 𝑧0.

Given a minimal polynomial𝑚(𝑧, 𝑔), where 𝑔 corresponds to a differential on the surface (that is, it is represented
as a rational function, and implicitly carries a factor 𝑑𝑧), we rewrite the minpoly in terms of variables 𝑧, 𝑔 s.t
now 𝑧 = 0 ⇔ 𝑧 = 𝑧0.

INPUT:

• minpoly – a polynomial in two variables, where the first variables
corresponds to the base coordinate on the Riemann surface

• z0 – complex number or infinity; the point about which to reparameterize

OUTPUT:

A polynomial in two variables giving the reparameterize minimal polynomial.

EXAMPLES:

On the curve given by 𝑤2 − 𝑧3 + 1 = 0, we have differential 𝑑𝑧
2𝑤 = 𝑑𝑧

2
√
𝑧3−1

with minimal polynomial 𝑔2(𝑧3 −
1) − 1/4 = 0. We can make the substitution 𝑧 = 𝑧−1 to parameterise the differential about 𝑧 = ∞ as

‘
−𝑧−2𝑑𝑧

2
√
𝑧−3 − 1

=
−𝑑𝑧

2
√︀

𝑧(1 − 𝑧3)
‘.

Hence the transformed differential should have minimal polynomial 𝑔2𝑧(1 − 𝑧3) − 1/4 = 0, and we can check
this:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface,␣
→˓reparameterize_differential_minpoly
sage: R.<z,w> = QQ[]
sage: S = RiemannSurface(w^2-z^3+1)
sage: minpoly = S._cohomology_basis_bounding_data[1][0][2]
sage: z0 = Infinity
sage: reparameterize_differential_minpoly(minpoly, z0)
-zbar^4*gbar^2 + zbar*gbar^2 - 1/4

We can further check that reparameterising about 0 is the identity operation:

10.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces 137

Curves, Release 9.8

sage: reparameterize_differential_minpoly(minpoly, 0)(*minpoly.parent().gens()) ==␣
→˓minpoly
True

Note: As part of the routine, when reparameterising about infinity, a rational function is reduced and then the
numerator is taken. Over an inexact ring this is numerically unstable, and so it is advisable to only reparameterize
about infinity over an exact ring.

sage.schemes.riemann_surfaces.riemann_surface.voronoi_ghost(cpoints, n=6, CC=Complex Double
Field)

Convert a set of complex points to a list of real tuples (𝑥, 𝑦), and appends n points in a big circle around them.

The effect is that, with n >= 3, a Voronoi decomposition will have only finite cells around the original points.
Furthermore, because the extra points are placed on a circle centered on the average of the given points, with
a radius 3/2 times the largest distance between the center and the given points, these finite cells form a simply
connected region.

INPUT:

• cpoints – a list of complex numbers

OUTPUT:

A list of real tuples (𝑥, 𝑦) consisting of the original points and a set of points which surround them.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import voronoi_ghost
sage: L = [1 + 1*I, 1 - 1*I, -1 + 1*I, -1 - 1*I]
sage: voronoi_ghost(L) # abs tol 1e-6
[(1.0, 1.0),
(1.0, -1.0),
(-1.0, 1.0),
(-1.0, -1.0),
(2.121320343559643, 0.0),
(1.0606601717798216, 1.8371173070873836),
(-1.060660171779821, 1.8371173070873839),
(-2.121320343559643, 2.59786816870648e-16),
(-1.0606601717798223, -1.8371173070873832),
(1.06066017177982, -1.8371173070873845)]

138 Chapter 10. Riemann surfaces

CHAPTER

ELEVEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

139

../genindex.html
../py-modindex.html
../search.html

Curves, Release 9.8

140 Chapter 11. Indices and Tables

PYTHON MODULE INDEX

s
sage.schemes.curves.affine_curve, 13
sage.schemes.curves.closed_point, 75
sage.schemes.curves.constructor, 1
sage.schemes.curves.curve, 5
sage.schemes.curves.point, 67
sage.schemes.curves.projective_curve, 39
sage.schemes.jacobians.abstract_jacobian, 81
sage.schemes.plane_conics.con_field, 84
sage.schemes.plane_conics.con_finite_field,

104
sage.schemes.plane_conics.con_number_field,

98
sage.schemes.plane_conics.con_rational_field,

101
sage.schemes.plane_conics.con_rational_function_field,

106
sage.schemes.plane_conics.constructor, 83
sage.schemes.plane_quartics.quartic_constructor,

111
sage.schemes.plane_quartics.quartic_generic,

111
sage.schemes.riemann_surfaces.riemann_surface,

113

141

Curves, Release 9.8

142 Python Module Index

INDEX

A
abel_jacobi() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface

method), 117
affine() (sage.schemes.curves.closed_point.IntegralProjectiveCurveClosedPoint

method), 79
affine_patch() (sage.schemes.curves.projective_curve.ProjectiveCurve

method), 46
AffineCurve (class in

sage.schemes.curves.affine_curve), 15
AffineCurve_field (class in

sage.schemes.curves.affine_curve), 16
AffineCurvePoint_field (class in

sage.schemes.curves.point), 67
AffinePlaneCurve (class in

sage.schemes.curves.affine_curve), 25
AffinePlaneCurve_field (class in

sage.schemes.curves.affine_curve), 31
AffinePlaneCurve_finite_field (class in

sage.schemes.curves.affine_curve), 32
AffinePlaneCurvePoint_field (class in

sage.schemes.curves.point), 67
AffinePlaneCurvePoint_finite_field (class in

sage.schemes.curves.point), 69
arithmetic_genus() (sage.schemes.curves.projective_curve.ProjectiveCurve_field

method), 50
arithmetic_genus() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field

method), 61

B
base_extend() (sage.schemes.jacobians.abstract_jacobian.Jacobian_generic

method), 81
base_extend() (sage.schemes.plane_conics.con_field.ProjectiveConic_field

method), 85
bisect() (in module sage.schemes.riemann_surfaces.riemann_surface),

134
blowup() (sage.schemes.curves.affine_curve.AffineCurve_field

method), 16
braid_monodromy() (sage.schemes.curves.affine_curve.AffinePlaneCurve_field

method), 31

C
cache_point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field

method), 85
change_ring() (sage.schemes.curves.curve.Curve_generic

method), 5
change_ring() (sage.schemes.jacobians.abstract_jacobian.Jacobian_generic

method), 82
closed_point() (sage.schemes.curves.point.IntegralAffineCurvePoint

method), 69
closed_point() (sage.schemes.curves.point.IntegralProjectiveCurvePoint

method), 70
closed_points() (sage.schemes.curves.affine_curve.IntegralAffineCurve_finite_field

method), 37
closed_points() (sage.schemes.curves.projective_curve.IntegralProjectiveCurve_finite_field

method), 44
coefficients() (sage.schemes.plane_conics.con_field.ProjectiveConic_field

method), 85
cohomology_basis() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface

method), 117
Conic() (in module sage.schemes.plane_conics.constructor),

83
ConvergenceError, 114
coordinate_functions()

(sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 33

coordinate_functions()
(sage.schemes.curves.projective_curve.IntegralProjectiveCurve
method), 41

count_points() (sage.schemes.plane_conics.con_finite_field.ProjectiveConic_finite_field
method), 105

Curve() (in module sage.schemes.curves.constructor), 1
curve() (sage.schemes.curves.closed_point.IntegralCurveClosedPoint

method), 77
curve() (sage.schemes.jacobians.abstract_jacobian.Jacobian_generic

method), 82
curve() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface

method), 118
Curve_generic (class in sage.schemes.curves.curve), 5
CurveClosedPoint (class in

sage.schemes.curves.closed_point), 76

D
defining_polynomial()

(sage.schemes.curves.curve.Curve_generic

143

Curves, Release 9.8

method), 6
degree() (sage.schemes.curves.closed_point.IntegralCurveClosedPoint

method), 78
degree() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve

method), 52
derivative_matrix()

(sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 85

determinant() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 86

diagonal_matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 86

diagonalization() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 87

differential_basis_baker() (in module
sage.schemes.riemann_surfaces.riemann_surface),
135

dimension() (sage.schemes.curves.curve.Curve_generic
method), 6

divisor() (sage.schemes.curves.curve.Curve_generic
method), 6

divisor_group() (sage.schemes.curves.curve.Curve_generic
method), 6

divisor_of_function()
(sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 25

divisor_of_function()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 52

divisor_to_divisor_list()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 118

downstairs_edges() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 118

downstairs_graph() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 119

E
edge_permutations()

(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 119

endomorphism_basis()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 120

excellent_position()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 52

F
find_closest_element() (in module

sage.schemes.riemann_surfaces.riemann_surface),
135

find_point() (sage.schemes.plane_conics.con_rational_function_field.ProjectiveConic_rational_function_field
method), 106

function() (sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 33

function() (sage.schemes.curves.projective_curve.IntegralProjectiveCurve
method), 42

function_field() (sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 34

function_field() (sage.schemes.curves.projective_curve.IntegralProjectiveCurve
method), 42

fundamental_group()
(sage.schemes.curves.affine_curve.AffinePlaneCurve_field
method), 31

fundamental_group()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field
method), 62

G
gens() (sage.schemes.plane_conics.con_field.ProjectiveConic_field

method), 88
genus() (sage.schemes.curves.curve.Curve_generic

method), 7
genus() (sage.schemes.plane_quartics.quartic_generic.QuarticCurve_generic

method), 111
geometric_genus() (sage.schemes.curves.curve.Curve_generic

method), 7

H
has_rational_point()

(sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 88

has_rational_point()
(sage.schemes.plane_conics.con_finite_field.ProjectiveConic_finite_field
method), 105

has_rational_point()
(sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field
method), 98

has_rational_point()
(sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field
method), 101

has_rational_point()
(sage.schemes.plane_conics.con_rational_function_field.ProjectiveConic_rational_function_field
method), 107

has_singular_point()
(sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 89

Hasse_bounds() (in module
sage.schemes.curves.projective_curve), 41

hom() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 90

homology_basis() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 120

homomorphism_basis()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 121

144 Index

Curves, Release 9.8

homotopy_continuation()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 122

I
integer_matrix_relations() (in module

sage.schemes.riemann_surfaces.riemann_surface),
136

IntegralAffineCurve (class in
sage.schemes.curves.affine_curve), 33

IntegralAffineCurve_finite_field (class in
sage.schemes.curves.affine_curve), 37

IntegralAffineCurveClosedPoint (class in
sage.schemes.curves.closed_point), 76

IntegralAffineCurvePoint (class in
sage.schemes.curves.point), 69

IntegralAffineCurvePoint_finite_field (class in
sage.schemes.curves.point), 70

IntegralAffinePlaneCurve (class in
sage.schemes.curves.affine_curve), 38

IntegralAffinePlaneCurve_finite_field (class in
sage.schemes.curves.affine_curve), 38

IntegralAffinePlaneCurvePoint (class in
sage.schemes.curves.point), 70

IntegralAffinePlaneCurvePoint_finite_field
(class in sage.schemes.curves.point), 70

IntegralCurveClosedPoint (class in
sage.schemes.curves.closed_point), 77

IntegralProjectiveCurve (class in
sage.schemes.curves.projective_curve), 41

IntegralProjectiveCurve_finite_field (class in
sage.schemes.curves.projective_curve), 43

IntegralProjectiveCurveClosedPoint (class in
sage.schemes.curves.closed_point), 78

IntegralProjectiveCurvePoint (class in
sage.schemes.curves.point), 70

IntegralProjectiveCurvePoint_finite_field
(class in sage.schemes.curves.point), 71

IntegralProjectivePlaneCurve (class in
sage.schemes.curves.projective_curve), 45

IntegralProjectivePlaneCurve_finite_field
(class in sage.schemes.curves.projective_curve),
45

IntegralProjectivePlaneCurvePoint (class in
sage.schemes.curves.point), 71

IntegralProjectivePlaneCurvePoint_finite_field
(class in sage.schemes.curves.point), 71

intersection_points()
(sage.schemes.curves.curve.Curve_generic
method), 8

intersects_at() (sage.schemes.curves.curve.Curve_generic
method), 8

is_complete_intersection()
(sage.schemes.curves.projective_curve.ProjectiveCurve_field

method), 51
is_diagonal() (sage.schemes.plane_conics.con_field.ProjectiveConic_field

method), 91
is_Jacobian() (in module

sage.schemes.jacobians.abstract_jacobian), 82
is_locally_solvable()

(sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field
method), 100

is_locally_solvable()
(sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field
method), 102

is_ordinary_singularity()
(sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 26

is_ordinary_singularity()
(sage.schemes.curves.point.AffinePlaneCurvePoint_field
method), 67

is_ordinary_singularity()
(sage.schemes.curves.point.ProjectivePlaneCurvePoint_field
method), 71

is_ordinary_singularity()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 54

is_QuarticCurve() (in module
sage.schemes.plane_quartics.quartic_generic),
112

is_singular() (sage.schemes.curves.curve.Curve_generic
method), 9

is_singular() (sage.schemes.curves.point.AffineCurvePoint_field
method), 67

is_singular() (sage.schemes.curves.point.ProjectiveCurvePoint_field
method), 71

is_singular() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 55

is_smooth() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 91

is_transverse() (sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 26

is_transverse() (sage.schemes.curves.point.AffinePlaneCurvePoint_field
method), 68

is_transverse() (sage.schemes.curves.point.ProjectivePlaneCurvePoint_field
method), 72

is_transverse() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 56

J
Jacobian() (in module

sage.schemes.jacobians.abstract_jacobian), 81
Jacobian_generic (class in

sage.schemes.jacobians.abstract_jacobian), 81

L
L_polynomial() (sage.schemes.curves.projective_curve.IntegralProjectiveCurve_finite_field

method), 44

Index 145

Curves, Release 9.8

local_coordinates()
(sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 27

local_coordinates()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 56

local_obstructions()
(sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field
method), 100

local_obstructions()
(sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field
method), 103

M
make_zw_interpolator()

(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 122

matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 92

matrix_of_integral_values()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 123

module
sage.schemes.curves.affine_curve, 13
sage.schemes.curves.closed_point, 75
sage.schemes.curves.constructor, 1
sage.schemes.curves.curve, 5
sage.schemes.curves.point, 67
sage.schemes.curves.projective_curve, 39
sage.schemes.jacobians.abstract_jacobian,

81
sage.schemes.plane_conics.con_field, 84
sage.schemes.plane_conics.con_finite_field,

104
sage.schemes.plane_conics.con_number_field,

98
sage.schemes.plane_conics.con_rational_field,

101
sage.schemes.plane_conics.con_rational_function_field,

106
sage.schemes.plane_conics.constructor, 83
sage.schemes.plane_quartics.quartic_constructor,

111
sage.schemes.plane_quartics.quartic_generic,

111
sage.schemes.riemann_surfaces.riemann_surface,

113
monodromy_group() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface

method), 124
multiplicity() (sage.schemes.curves.affine_curve.AffinePlaneCurve

method), 27
multiplicity() (sage.schemes.curves.point.AffinePlaneCurvePoint_field

method), 68

multiplicity() (sage.schemes.curves.point.ProjectivePlaneCurvePoint_field
method), 72

N
number_of_rational_points()

(sage.schemes.curves.projective_curve.IntegralProjectiveCurve_finite_field
method), 45

numerical_inverse() (in module
sage.schemes.riemann_surfaces.riemann_surface),
136

O
ordinary_model() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve

method), 57

P
parametric_representation()

(sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 34

parametrization() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 92

parametrization() (sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field
method), 103

period_matrix() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 124

period_matrix() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurfaceSum
method), 134

place() (sage.schemes.curves.closed_point.IntegralCurveClosedPoint
method), 78

place() (sage.schemes.curves.point.IntegralAffineCurvePoint
method), 69

place() (sage.schemes.curves.point.IntegralProjectiveCurvePoint
method), 70

place_to_closed_point()
(sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 35

place_to_closed_point()
(sage.schemes.curves.projective_curve.IntegralProjectiveCurve
method), 42

places() (sage.schemes.curves.affine_curve.IntegralAffineCurve_finite_field
method), 37

places() (sage.schemes.curves.closed_point.IntegralCurveClosedPoint
method), 78

places() (sage.schemes.curves.point.IntegralAffineCurvePoint
method), 69

places() (sage.schemes.curves.point.IntegralProjectiveCurvePoint
method), 71

places() (sage.schemes.curves.projective_curve.IntegralProjectiveCurve_finite_field
method), 45

places_at_branch_locus()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 125

146 Index

Curves, Release 9.8

places_at_infinity()
(sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 35

places_on() (sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 35

places_on() (sage.schemes.curves.projective_curve.IntegralProjectiveCurve
method), 43

plane_projection() (sage.schemes.curves.affine_curve.AffineCurve_field
method), 19

plane_projection() (sage.schemes.curves.projective_curve.ProjectiveCurve
method), 47

plot() (sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 28

plot() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 59

plot_paths() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 125

plot_paths3d() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 126

point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 94

projection() (sage.schemes.curves.affine_curve.AffineCurve_field
method), 20

projection() (sage.schemes.curves.projective_curve.ProjectiveCurve
method), 48

projective() (sage.schemes.curves.closed_point.IntegralAffineCurveClosedPoint
method), 76

projective_closure()
(sage.schemes.curves.affine_curve.AffineCurve
method), 15

ProjectiveConic_field (class in
sage.schemes.plane_conics.con_field), 84

ProjectiveConic_finite_field (class in
sage.schemes.plane_conics.con_finite_field),
104

ProjectiveConic_number_field (class in
sage.schemes.plane_conics.con_number_field),
98

ProjectiveConic_rational_field (class in
sage.schemes.plane_conics.con_rational_field),
101

ProjectiveConic_rational_function_field (class
in sage.schemes.plane_conics.con_rational_function_field),
106

ProjectiveCurve (class in
sage.schemes.curves.projective_curve), 46

ProjectiveCurve_field (class in
sage.schemes.curves.projective_curve), 50

ProjectiveCurvePoint_field (class in
sage.schemes.curves.point), 71

ProjectivePlaneCurve (class in
sage.schemes.curves.projective_curve), 51

ProjectivePlaneCurve_field (class in
sage.schemes.curves.projective_curve), 61

ProjectivePlaneCurve_finite_field (class in
sage.schemes.curves.projective_curve), 63

ProjectivePlaneCurvePoint_field (class in
sage.schemes.curves.point), 71

ProjectivePlaneCurvePoint_finite_field (class
in sage.schemes.curves.point), 73

Q
quadratic_transform()

(sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 60

QuarticCurve() (in module
sage.schemes.plane_quartics.quartic_constructor),
111

QuarticCurve_generic (class in
sage.schemes.plane_quartics.quartic_generic),
111

R
random_rational_point()

(sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 94

rational_parameterization()
(sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 29

rational_parameterization()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field
method), 62

rational_point() (sage.schemes.curves.closed_point.IntegralAffineCurveClosedPoint
method), 76

rational_point() (sage.schemes.curves.closed_point.IntegralProjectiveCurveClosedPoint
method), 79

rational_point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 94

rational_points() (sage.schemes.curves.affine_curve.AffinePlaneCurve_finite_field
method), 32

rational_points() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field
method), 63

rational_points_iterator()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field
method), 65

reduce_over_period_lattice()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 126

reparameterize_differential_minpoly() (in mod-
ule sage.schemes.riemann_surfaces.riemann_surface),
137

resolution_of_singularities()
(sage.schemes.curves.affine_curve.AffineCurve_field
method), 22

riemann_matrix() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 127

riemann_matrix() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurfaceSum
method), 134

Index 147

Curves, Release 9.8

riemann_roch_basis()
(sage.schemes.curves.affine_curve.AffinePlaneCurve_finite_field
method), 33

riemann_roch_basis()
(sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field
method), 66

riemann_surface() (sage.schemes.curves.affine_curve.AffinePlaneCurve_field
method), 32

riemann_surface() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field
method), 63

RiemannSurface (class in
sage.schemes.riemann_surfaces.riemann_surface),
115

RiemannSurfaceSum (class in
sage.schemes.riemann_surfaces.riemann_surface),
133

rigorous_line_integral()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 127

rosati_involution()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 128

S
sage.schemes.curves.affine_curve

module, 13
sage.schemes.curves.closed_point

module, 75
sage.schemes.curves.constructor

module, 1
sage.schemes.curves.curve

module, 5
sage.schemes.curves.point

module, 67
sage.schemes.curves.projective_curve

module, 39
sage.schemes.jacobians.abstract_jacobian

module, 81
sage.schemes.plane_conics.con_field

module, 84
sage.schemes.plane_conics.con_finite_field

module, 104
sage.schemes.plane_conics.con_number_field

module, 98
sage.schemes.plane_conics.con_rational_field

module, 101
sage.schemes.plane_conics.con_rational_function_field

module, 106
sage.schemes.plane_conics.constructor

module, 83
sage.schemes.plane_quartics.quartic_constructor

module, 111
sage.schemes.plane_quartics.quartic_generic

module, 111

sage.schemes.riemann_surfaces.riemann_surface
module, 113

simple_vector_line_integral()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 129

singular_closed_points()
(sage.schemes.curves.affine_curve.IntegralAffineCurve
method), 36

singular_closed_points()
(sage.schemes.curves.projective_curve.IntegralProjectiveCurve
method), 43

singular_point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 97

singular_points() (sage.schemes.curves.curve.Curve_generic
method), 9

singular_subscheme()
(sage.schemes.curves.curve.Curve_generic
method), 10

strong_approximation()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 129

symmetric_matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 97

symplectic_automorphism_group()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 130

symplectic_isomorphisms()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 130

T
tangent_line() (sage.schemes.curves.affine_curve.AffineCurve_field

method), 24
tangent_line() (sage.schemes.curves.projective_curve.ProjectiveCurve_field

method), 51
tangent_representation_algebraic()

(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 131

tangent_representation_numerical()
(sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 132

tangents() (sage.schemes.curves.affine_curve.AffinePlaneCurve
method), 30

tangents() (sage.schemes.curves.point.AffinePlaneCurvePoint_field
method), 69

tangents() (sage.schemes.curves.point.ProjectivePlaneCurvePoint_field
method), 72

tangents() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve
method), 60

U
union() (sage.schemes.curves.curve.Curve_generic

method), 11

148 Index

Curves, Release 9.8

upper_triangular_matrix()
(sage.schemes.plane_conics.con_field.ProjectiveConic_field
method), 97

upstairs_edges() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 132

upstairs_graph() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface
method), 132

V
variable_names() (sage.schemes.plane_conics.con_field.ProjectiveConic_field

method), 98
voronoi_ghost() (in module

sage.schemes.riemann_surfaces.riemann_surface),
138

W
w_values() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface

method), 133

Index 149

	Curve constructor
	Base class of curves
	Affine curves
	Integral affine curves over finite fields
	Integral affine curves over Q

	Projective curves
	Integral projective curves over finite fields
	Integral projective curves over Q

	Rational points of curves
	Closed points of integral curves
	Jacobians of curves
	Plane conics
	Plane conic constructor
	Projective plane conics over a field
	Projective plane conics over a number field
	Projective plane conics over Q
	Projective plane conics over finite fields
	Projective plane conics over a rational function field

	Plane quartics
	Quartic curve constructor
	Plane quartic curves over a general ring

	Riemann surfaces
	Riemann matrices and endomorphism rings of algebraic Riemann surfaces

	Indices and Tables
	Python Module Index
	Index

