
Groups
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Examples of Groups 1

2 Base class for groups 3

3 Group homomorphisms for groups with a GAP backend 7

4 LibGAP-based Groups 13

5 Generic LibGAP-based Group 21

6 Mix-in Class for GAP-based Groups 23

7 PARI Groups 35

8 Miscellaneous generic functions 37

9 Free Groups 53

10 Finitely Presented Groups 61

11 Named Finitely Presented Groups 81

12 Braid groups 87

13 Cubic Braid Groups 113

14 Indexed Free Groups 129

15 Right-Angled Artin Groups 133

16 Functor that converts a commutative additive group into a multiplicative group. 139

17 Semidirect product of groups 143

18 Miscellaneous Groups 149

19 Semimonomial transformation group 151

20 Elements of a semimonomial transformation group 155

21 Class functions of groups. 159

22 Conjugacy classes of groups 171

i

23 Abelian Groups 175

24 Permutation Groups 237

25 Matrix and Affine Groups 355

26 Lie Groups 425

27 Partition Refinement 437

28 Internals 451

29 Indices and Tables 455

Bibliography 457

Python Module Index 459

Index 461

ii

CHAPTER

ONE

EXAMPLES OF GROUPS

The groups object may be used to access examples of various groups. Using tab-completion on this object is an easy
way to discover and quickly create the groups that are available (as listed here).

Let <tab> indicate pressing the Tab key. So begin by typing groups.<tab> to the see primary divisions, followed by
(for example) groups.matrix.<tab> to access various groups implemented as sets of matrices.

• Permutation Groups (groups.permutation.<tab>)

– groups.permutation.Symmetric

– groups.permutation.Alternating

– groups.permutation.KleinFour

– groups.permutation.Quaternion

– groups.permutation.Cyclic

– groups.permutation.ComplexReflection

– groups.permutation.Dihedral

– groups.permutation.DiCyclic

– groups.permutation.Mathieu

– groups.permutation.Suzuki

– groups.permutation.PGL

– groups.permutation.PSL

– groups.permutation.PSp

– groups.permutation.PSU

– groups.permutation.PGU

– groups.permutation.Transitive

– groups.permutation.RubiksCube

• Matrix Groups (groups.matrix.<tab>)

– groups.matrix.QuaternionGF3

– groups.matrix.GL

– groups.matrix.SL

– groups.matrix.Sp

– groups.matrix.GU

1

Groups, Release 9.8

– groups.matrix.SU

– groups.matrix.GO

– groups.matrix.SO

• Finitely Presented Groups (groups.presentation.<tab>)

– groups.presentation.Alternating

– groups.presentation.Cyclic

– groups.presentation.Dihedral

– groups.presentation.DiCyclic

– groups.presentation.FGAbelian

– groups.presentation.KleinFour

– groups.presentation.Quaternion

– groups.presentation.Symmetric

• Affine Groups (groups.affine.<tab>)

– groups.affine.Affine

– groups.affine.Euclidean

• Lie Groups (groups.lie.<tab>)

– groups.lie.Nilpotent

• Miscellaneous Groups (groups.misc.<tab>)

– Coxeter, reflection and related groups

∗ groups.misc.Braid

∗ groups.misc.CoxeterGroup

∗ groups.misc.ReflectionGroup

∗ groups.misc.RightAngledArtin

∗ groups.misc.WeylGroup

– other miscellaneous groups

∗ groups.misc.AdditiveAbelian

∗ groups.misc.AdditiveCyclic

∗ groups.misc.Free

∗ groups.misc.SemimonomialTransformation

2 Chapter 1. Examples of Groups

../../../../../../html/en/reference/combinat/sage/combinat/root_system/coxeter_group.html#sage.combinat.root_system.coxeter_group.CoxeterGroup
../../../../../../html/en/reference/combinat/sage/combinat/root_system/reflection_group_real.html#sage.combinat.root_system.reflection_group_real.ReflectionGroup
../../../../../../html/en/reference/combinat/sage/combinat/root_system/weyl_group.html#sage.combinat.root_system.weyl_group.WeylGroup
../../../../../../html/en/reference/finite_rings/sage/rings/finite_rings/integer_mod_ring.html#sage.rings.finite_rings.integer_mod_ring.IntegerModFactory

CHAPTER

TWO

BASE CLASS FOR GROUPS

class sage.groups.group.AbelianGroup

Bases: Group

Generic abelian group.

is_abelian()

Return True.

EXAMPLES:

sage: from sage.groups.group import AbelianGroup
sage: G = AbelianGroup()
sage: G.is_abelian()
True

class sage.groups.group.AlgebraicGroup

Bases: Group

class sage.groups.group.FiniteGroup

Bases: Group

Generic finite group.

is_finite()

Return True.

EXAMPLES:

sage: from sage.groups.group import FiniteGroup
sage: G = FiniteGroup()
sage: G.is_finite()
True

class sage.groups.group.Group

Bases: Parent

Base class for all groups

is_abelian()

Test whether this group is abelian.

EXAMPLES:

3

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Groups, Release 9.8

sage: from sage.groups.group import Group
sage: G = Group()
sage: G.is_abelian()
Traceback (most recent call last):
...
NotImplementedError

is_commutative()

Test whether this group is commutative.

This is an alias for is_abelian, largely to make groups work well with the Factorization class.

(Note for developers: Derived classes should override is_abelian, not is_commutative.)

EXAMPLES:

sage: SL(2, 7).is_commutative()
False

is_finite()

Returns True if this group is finite.

EXAMPLES:

sage: from sage.groups.group import Group
sage: G = Group()
sage: G.is_finite()
Traceback (most recent call last):
...
NotImplementedError

is_multiplicative()

Returns True if the group operation is given by * (rather than +).

Override for additive groups.

EXAMPLES:

sage: from sage.groups.group import Group
sage: G = Group()
sage: G.is_multiplicative()
True

order()

Return the number of elements of this group.

This is either a positive integer or infinity.

EXAMPLES:

sage: from sage.groups.group import Group
sage: G = Group()
sage: G.order()
Traceback (most recent call last):
...
NotImplementedError

4 Chapter 2. Base class for groups

Groups, Release 9.8

quotient(H, **kwds)
Return the quotient of this group by the normal subgroup 𝐻 .

EXAMPLES:

sage: from sage.groups.group import Group
sage: G = Group()
sage: G.quotient(G)
Traceback (most recent call last):
...
NotImplementedError

sage.groups.group.is_Group(x)
Return whether x is a group object.

INPUT:

• x – anything.

OUTPUT:

Boolean.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: from sage.groups.group import is_Group
sage: is_Group(F)
True
sage: is_Group("a string")
False

5

Groups, Release 9.8

6 Chapter 2. Base class for groups

CHAPTER

THREE

GROUP HOMOMORPHISMS FOR GROUPS WITH A GAP BACKEND

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2, 4])
sage: F.<a,b> = FreeGroup()
sage: f = F.hom([g for g in A.gens()])
sage: K = f.kernel()
sage: K
Group(<free, no generators known>)

AUTHORS:

• Simon Brandhorst (2018-02-08): initial version

• Sebastian Oehms (2018-11-15): have this functionality work for permutation groups (trac ticket #26750) and
implement section() and natural_map()

class sage.groups.libgap_morphism.GroupHomset_libgap(G, H, category=None, check=True)
Bases: HomsetWithBase

Homsets of groups with a libgap backend.

Do not call this directly instead use Hom().

INPUT:

• G – a libgap group

• H – a libgap group

• category – a category

OUTPUT:

The homset of two libgap groups.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: H = A.Hom(A)
sage: H
Set of Morphisms from Abelian group with gap, generator orders (2, 4)
to Abelian group with gap, generator orders (2, 4)
in Category of finite enumerated commutative groups

7

https://trac.sagemath.org/26750
../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.HomsetWithBase
../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Hom

Groups, Release 9.8

Element

alias of GroupMorphism_libgap

natural_map()

This method from HomsetWithBase is overloaded here for cases in which both groups have corresponding
lists of generators.

OUTPUT:

an instance of the element class of self if there exists a group homomorphism mapping the generators of
the domain of self to the according generators of the codomain. Else the method falls back to the default.

EXAMPLES:

sage: G = GL(3,2)
sage: P = PGL(3,2)
sage: nat = Hom(G, P).natural_map()
sage: type(nat)
<class 'sage.groups.libgap_morphism.GroupHomset_libgap_with_category.element_
→˓class'>
sage: g1, g2 = G.gens()
sage: nat(g1*g2)
(1,2,4,5,7,3,6)

class sage.groups.libgap_morphism.GroupMorphism_libgap(homset, gap_hom, check=True)
Bases: Morphism

This wraps GAP group homomorphisms.

Checking if the input defines a group homomorphism can be expensive if the group is large.

INPUT:

• homset – the parent

• gap_hom – a sage.libs.gap.element.GapElement consisting of a group homomorphism

• check – (default: True) check if the gap_hom is a group homomorphism; this can be expensive

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2, 4])
sage: A.hom([g^2 for g in A.gens()])
Group endomorphism of Abelian group with gap, generator orders (2, 4)

Homomorphisms can be defined between different kinds of GAP groups:

sage: G = MatrixGroup([Matrix(ZZ, 2, [0,1,1,0])])
sage: f = A.hom([G.0, G(1)])
sage: f
Group morphism:
From: Abelian group with gap, generator orders (2, 4)
To: Matrix group over Integer Ring with 1 generators (
[0 1]
[1 0]
)
sage: G.<a,b> = FreeGroup()
sage: H = G / (G([1]), G([2])^3)

(continues on next page)

8 Chapter 3. Group homomorphisms for groups with a GAP backend

../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.HomsetWithBase
../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism
../../../../../../html/en/reference/libs/sage/libs/gap/element.html#sage.libs.gap.element.GapElement

Groups, Release 9.8

(continued from previous page)

sage: f = G.hom(H.gens())
sage: f
Group morphism:
From: Free Group on generators {a, b}
To: Finitely presented group < a, b | a, b^3 >

Homomorphisms can be defined between GAP groups and permutation groups:

sage: S = Sp(4,3)
sage: P = PSp(4,3)
sage: pr = S.hom(P.gens())
sage: E = copy(S.one().matrix())
sage: E[3,0] = 2; e = S(E)
sage: pr(e)
(1,16,15)(3,22,18)(4,19,21)(6,34,24)(7,25,33)(9,40,27)(10,28,39)(12,37,30)(13,31,36)

gap()

Return the underlying LibGAP group homomorphism.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: f = A.hom([g^2 for g in A.gens()])
sage: f.gap()
[f1, f2] -> [<identity> of ..., f3]

image(J, *args, **kwds)
The image of an element or a subgroup.

INPUT:

• J – a subgroup or an element of the domain of self

OUTPUT:

The image of J under self.

Note: pushforward is the method that is used when a map is called on anything that is not an element of
its domain. For historical reasons, we keep the alias image() for this method.

EXAMPLES:

sage: G.<a,b> = FreeGroup()
sage: H = G / (G([1]), G([2])^3)
sage: f = G.hom(H.gens())
sage: S = G.subgroup([a.gap()])
sage: f.pushforward(S)
Group([a])
sage: x = f.image(a)
sage: x
a
sage: x.parent()
Finitely presented group < a, b | a, b^3 >

(continues on next page)

9

Groups, Release 9.8

(continued from previous page)

sage: G = GU(3,2)
sage: P = PGU(3,2)
sage: pr = Hom(G, P).natural_map()
sage: GS = G.subgroup([G.gen(0)])
sage: pr.pushforward(GS)
Subgroup generated by [(3,4,5)(10,18,14)(11,19,15)(12,20,16)(13,21,17)] of (The␣
→˓projective general unitary group of degree 3 over Finite Field of size 2)

kernel()

Return the kernel of self.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A1 = AbelianGroupGap([6, 6])
sage: A2 = AbelianGroupGap([3, 3])
sage: f = A1.hom(A2.gens())
sage: f.kernel()
Subgroup of Abelian group with gap, generator orders (6, 6)
generated by (f1*f2, f3*f4)
sage: f.kernel().order()
4
sage: S = Sp(6,3)
sage: P = PSp(6,3)
sage: pr = Hom(S, P).natural_map()
sage: pr.kernel()
Subgroup with 1 generators (
[2 0 0 0 0 0]
[0 2 0 0 0 0]
[0 0 2 0 0 0]
[0 0 0 2 0 0]
[0 0 0 0 2 0]
[0 0 0 0 0 2]
) of Symplectic Group of degree 6 over Finite Field of size 3

lift(h)
Return an element of the domain that maps to h.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: f = A.hom([g^2 for g in A.gens()])
sage: a = A.gens()[1]
sage: f.lift(a^2)
f2

If the element is not in the image, we raise an error:

sage: f.lift(a)
Traceback (most recent call last):
...
ValueError: f2 is not an element of the image of Group endomorphism
of Abelian group with gap, generator orders (2, 4)

10 Chapter 3. Group homomorphisms for groups with a GAP backend

Groups, Release 9.8

preimage(S)
Return the preimage of the subgroup S.

INPUT:

• S – a subgroup of this group

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: B = AbelianGroupGap([4])
sage: f = A.hom([B.one(), B.gen(0)^2])
sage: S = B.subgroup([B.one()])
sage: f.preimage(S) == f.kernel()
True
sage: S = Sp(4,3)
sage: P = PSp(4,3)
sage: pr = Hom(S, P).natural_map()
sage: PS = P.subgroup([P.gen(0)])
sage: pr.preimage(PS)
Subgroup with 2 generators (
[2 0 0 0] [1 0 0 0]
[0 2 0 0] [0 2 0 0]
[0 0 2 0] [0 0 2 0]
[0 0 0 2], [0 0 0 1]
) of Symplectic Group of degree 4 over Finite Field of size 3

pushforward(J, *args, **kwds)
The image of an element or a subgroup.

INPUT:

• J – a subgroup or an element of the domain of self

OUTPUT:

The image of J under self.

Note: pushforward is the method that is used when a map is called on anything that is not an element of
its domain. For historical reasons, we keep the alias image() for this method.

EXAMPLES:

sage: G.<a,b> = FreeGroup()
sage: H = G / (G([1]), G([2])^3)
sage: f = G.hom(H.gens())
sage: S = G.subgroup([a.gap()])
sage: f.pushforward(S)
Group([a])
sage: x = f.image(a)
sage: x
a
sage: x.parent()
Finitely presented group < a, b | a, b^3 >
sage: G = GU(3,2)

(continues on next page)

11

Groups, Release 9.8

(continued from previous page)

sage: P = PGU(3,2)
sage: pr = Hom(G, P).natural_map()
sage: GS = G.subgroup([G.gen(0)])
sage: pr.pushforward(GS)
Subgroup generated by [(3,4,5)(10,18,14)(11,19,15)(12,20,16)(13,21,17)] of (The␣
→˓projective general unitary group of degree 3 over Finite Field of size 2)

section()

This method returns a section map of self by use of lift(). See section() of sage.categories.map.
Map, as well.

OUTPUT:

an instance of sage.categories.morphism.SetMorphism mapping an element of the codomain of self
to one of its preimages

EXAMPLES:

sage: G = GU(3,2)
sage: P = PGU(3,2)
sage: pr = Hom(G, P).natural_map()
sage: sect = pr.section()
sage: sect(P.an_element())
[a + 1 a a]
[1 1 0]
[a 0 0]

12 Chapter 3. Group homomorphisms for groups with a GAP backend

../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Map
../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Map
../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.SetMorphism

CHAPTER

FOUR

LIBGAP-BASED GROUPS

This module provides helper class for wrapping GAP groups via libgap. See free_group for an example how they
are used.

The parent class keeps track of the GAP element object, to use it in your Python parent you have to derive both from
the suitable group parent and ParentLibGAP

sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
....: pass
sage: class FooGroup(Group, ParentLibGAP):
....: Element = FooElement
....: def __init__(self):
....: lg = libgap(libgap.CyclicGroup(3)) # dummy
....: ParentLibGAP.__init__(self, lg)
....: Group.__init__(self)

Note how we call the constructor of both superclasses to initialize Group and ParentLibGAP separately. The parent
class implements its output via LibGAP:

sage: FooGroup()
<pc group of size 3 with 1 generators>
sage: type(FooGroup().gap())
<class 'sage.libs.gap.element.GapElement'>

The element class is a subclass of MultiplicativeGroupElement. To use it, you just inherit from ElementLibGAP

sage: element = FooGroup().an_element()
sage: element
f1

The element class implements group operations and printing via LibGAP:

sage: element._repr_()
'f1'
sage: element * element
f1^2

AUTHORS:

• Volker Braun

13

../../../../../../html/en/reference/libs/sage/libs/gap/libgap.html#module-sage.libs.gap.libgap
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

class sage.groups.libgap_wrapper.ElementLibGAP

Bases: MultiplicativeGroupElement

A class for LibGAP-based Sage group elements

INPUT:

• parent – the Sage parent

• libgap_element – the libgap element that is being wrapped

EXAMPLES:

sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
....: pass
sage: class FooGroup(Group, ParentLibGAP):
....: Element = FooElement
....: def __init__(self):
....: lg = libgap(libgap.CyclicGroup(3)) # dummy
....: ParentLibGAP.__init__(self, lg)
....: Group.__init__(self)
sage: FooGroup()
<pc group of size 3 with 1 generators>
sage: FooGroup().gens()
(f1,)

gap()

Return a LibGAP representation of the element.

OUTPUT:

A GapElement

EXAMPLES:

sage: G.<a,b> = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: xg = x.gap()
sage: xg
a*b*a^-1*b^-1
sage: type(xg)
<class 'sage.libs.gap.element.GapElement'>

inverse()

Return the inverse of self.

is_conjugate(other)
Return whether the elements self and other are conjugate.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(2, 3))
sage: a,b = G.gens()

(continues on next page)

14 Chapter 4. LibGAP-based Groups

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement
../../../../../../html/en/reference/libs/sage/libs/gap/element.html#sage.libs.gap.element.GapElement

Groups, Release 9.8

(continued from previous page)

sage: a.is_conjugate(b)
False
sage: a.is_conjugate((a*b^2) * a * ~(a*b^2))
True

is_one()

Test whether the group element is the trivial element.

OUTPUT:

Boolean.

EXAMPLES:

sage: G.<a,b> = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x.is_one()
False
sage: (x * ~x).is_one()
True

multiplicative_order()

Return the multiplicative order.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(2, 3))
sage: a,b = G.gens()
sage: print(a.order())
2
sage: print(a.multiplicative_order())
2

sage: z = Mod(0, 3)
sage: o = Mod(1, 3)
sage: G(libgap([[o,o],[z,o]])).order()
3

normalizer()

Return the normalizer of the cyclic group generated by this element.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(3,3))
sage: a,b = G.gens()
sage: H = a.normalizer()
sage: H
<group of 3x3 matrices over GF(3)>
sage: H.cardinality()
96
sage: all(g*a == a*g for g in H)
True

15

Groups, Release 9.8

nth_roots(n)
Return the set of n-th roots of this group element.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(3,3))
sage: a,b = G.gens()
sage: g = a*b**2*a*~b
sage: r = g.nth_roots(4)
sage: r
[[[Z(3), Z(3), Z(3)^0], [Z(3)^0, Z(3)^0, 0*Z(3)], [0*Z(3), Z(3), 0*Z(3)]␣
→˓],
[[Z(3)^0, Z(3)^0, Z(3)], [Z(3), Z(3), 0*Z(3)], [0*Z(3), Z(3)^0, 0*Z(3)]␣
→˓]]
sage: r[0]**4 == r[1]**4 == g
True

order()

Return the multiplicative order.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(2, 3))
sage: a,b = G.gens()
sage: print(a.order())
2
sage: print(a.multiplicative_order())
2

sage: z = Mod(0, 3)
sage: o = Mod(1, 3)
sage: G(libgap([[o,o],[z,o]])).order()
3

class sage.groups.libgap_wrapper.ParentLibGAP(libgap_parent, ambient=None)
Bases: SageObject

A class for parents to keep track of the GAP parent.

This is not a complete group in Sage, this class is only a base class that you can use to implement your own
groups with LibGAP. See libgap_group for a minimal example of a group that is actually usable.

Your implementation definitely needs to supply

• __reduce__(): serialize the LibGAP group. Since GAP does not support Python pickles natively, you
need to figure out yourself how you can recreate the group from a pickle.

INPUT:

• libgap_parent – the libgap element that is the parent in GAP.

• ambient – A derived class of ParentLibGAP or None (default). The ambient class if libgap_parent
has been defined as a subgroup.

EXAMPLES:

16 Chapter 4. LibGAP-based Groups

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Groups, Release 9.8

sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
....: pass
sage: class FooGroup(Group, ParentLibGAP):
....: Element = FooElement
....: def __init__(self):
....: lg = libgap(libgap.CyclicGroup(3)) # dummy
....: ParentLibGAP.__init__(self, lg)
....: Group.__init__(self)
sage: FooGroup()
<pc group of size 3 with 1 generators>

ambient()

Return the ambient group of a subgroup.

OUTPUT:

A group containing self. If self has not been defined as a subgroup, we just return self.

EXAMPLES:

sage: G = FreeGroup(3)
sage: G.ambient() is G
True

gap()

Return the gap representation of self.

OUTPUT:

A GapElement

EXAMPLES:

sage: G = FreeGroup(3); G
Free Group on generators {x0, x1, x2}
sage: G.gap()
<free group on the generators [x0, x1, x2]>
sage: G.gap().parent()
C library interface to GAP
sage: type(G.gap())
<class 'sage.libs.gap.element.GapElement'>

This can be useful, for example, to call GAP functions that are not wrapped in Sage:

sage: G = FreeGroup(3)
sage: H = G.gap()
sage: H.DirectProduct(H)
<fp group on the generators [f1, f2, f3, f4, f5, f6]>
sage: H.DirectProduct(H).RelatorsOfFpGroup()
[f1^-1*f4^-1*f1*f4, f1^-1*f5^-1*f1*f5, f1^-1*f6^-1*f1*f6, f2^-1*f4^-1*f2*f4,
f2^-1*f5^-1*f2*f5, f2^-1*f6^-1*f2*f6, f3^-1*f4^-1*f3*f4, f3^-1*f5^-1*f3*f5,
f3^-1*f6^-1*f3*f6]

We can also convert directly to libgap:

17

../../../../../../html/en/reference/libs/sage/libs/gap/element.html#sage.libs.gap.element.GapElement

Groups, Release 9.8

sage: libgap(GL(2, ZZ))
GL(2,Integers)

gen(i)
Return the 𝑖-th generator of self.

Warning: Indexing starts at 0 as usual in Sage/Python. Not as in GAP, where indexing starts at 1.

INPUT:

• i – integer between 0 (inclusive) and ngens() (exclusive). The index of the generator.

OUTPUT:

The 𝑖-th generator of the group.

EXAMPLES:

sage: G = FreeGroup('a, b')
sage: G.gen(0)
a
sage: G.gen(1)
b

generators()

Return the generators of the group.

EXAMPLES:

sage: G = FreeGroup(2)
sage: G.gens()
(x0, x1)
sage: H = FreeGroup('a, b, c')
sage: H.gens()
(a, b, c)

generators() is an alias for gens()

sage: G = FreeGroup('a, b')
sage: G.generators()
(a, b)
sage: H = FreeGroup(3, 'x')
sage: H.generators()
(x0, x1, x2)

gens()

Return the generators of the group.

EXAMPLES:

sage: G = FreeGroup(2)
sage: G.gens()
(x0, x1)
sage: H = FreeGroup('a, b, c')

(continues on next page)

18 Chapter 4. LibGAP-based Groups

Groups, Release 9.8

(continued from previous page)

sage: H.gens()
(a, b, c)

generators() is an alias for gens()

sage: G = FreeGroup('a, b')
sage: G.generators()
(a, b)
sage: H = FreeGroup(3, 'x')
sage: H.generators()
(x0, x1, x2)

is_subgroup()

Return whether the group was defined as a subgroup of a bigger group.

You can access the containing group with ambient().

OUTPUT:

Boolean.

EXAMPLES:

sage: G = FreeGroup(3)
sage: G.is_subgroup()
False

ngens()

Return the number of generators of self.

OUTPUT:

Integer.

EXAMPLES:

sage: G = FreeGroup(2)
sage: G.ngens()
2

one()

Return the identity element of self.

EXAMPLES:

sage: G = FreeGroup(3)
sage: G.one()
1
sage: G.one() == G([])
True
sage: G.one().Tietze()
()

subgroup(generators)
Return the subgroup generated.

INPUT:

19

Groups, Release 9.8

• generators – a list/tuple/iterable of group elements.

OUTPUT:

The subgroup generated by generators.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F.subgroup([a^2*b]); G
Group([a^2*b])
sage: G.gens()
(a^2*b,)

We check that coercions between the subgroup and its ambient group work:

sage: F.0 * G.0
a^3*b

Checking that trac ticket #19270 is fixed:

sage: gens = [w.matrix() for w in WeylGroup(['B', 3])]
sage: G = MatrixGroup(gens)
sage: import itertools
sage: diagonals = itertools.product((1,-1), repeat=3)
sage: subgroup_gens = [diagonal_matrix(L) for L in diagonals]
sage: G.subgroup(subgroup_gens)
Subgroup with 8 generators of Matrix group over Rational Field with 48␣
→˓generators

20 Chapter 4. LibGAP-based Groups

https://trac.sagemath.org/19270

CHAPTER

FIVE

GENERIC LIBGAP-BASED GROUP

This is useful if you need to use a GAP group implementation in Sage that does not have a dedicated Sage interface.

If you want to implement your own group class, you should not derive from this but directly from ParentLibGAP.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G_gap = libgap.Group([(a*b^2).gap()])
sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(G_gap); G
Group([a*b^2])
sage: type(G)
<class 'sage.groups.libgap_group.GroupLibGAP_with_category'>
sage: G.gens()
(a*b^2,)

class sage.groups.libgap_group.GroupLibGAP(*args, **kwds)
Bases: GroupMixinLibGAP, Group, ParentLibGAP

Group interface for LibGAP-based groups.

INPUT:

Same as ParentLibGAP.

Element

alias of ElementLibGAP

21

Groups, Release 9.8

22 Chapter 5. Generic LibGAP-based Group

CHAPTER

SIX

MIX-IN CLASS FOR GAP-BASED GROUPS

This class adds access to GAP functionality to groups such that parent and element have a gap() method that returns
a GAP object for the parent/element.

If your group implementation uses libgap, then you should add GroupMixinLibGAP as the first class that you are
deriving from. This ensures that it properly overrides any default methods that just raise NotImplementedError.

class sage.groups.libgap_mixin.GroupMixinLibGAP

Bases: object

cardinality()

Implements EnumeratedSets.ParentMethods.cardinality().

EXAMPLES:

sage: G = Sp(4,GF(3))
sage: G.cardinality()
51840

sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
480

sage: G = MatrixGroup([matrix(ZZ,2,[1,1,0,1])])
sage: G.cardinality()
+Infinity

sage: G = Sp(4,GF(3))
sage: G.cardinality()
51840

sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]

(continues on next page)

23

Groups, Release 9.8

(continued from previous page)

sage: G = MatrixGroup(gens)
sage: G.cardinality()
480

sage: G = MatrixGroup([matrix(ZZ,2,[1,1,0,1])])
sage: G.cardinality()
+Infinity

center()

Return the center of this linear group as a subgroup.

OUTPUT:

The center as a subgroup.

EXAMPLES:

sage: G = SU(3,GF(2))
sage: G.center()
Subgroup with 1 generators (
[a 0 0]
[0 a 0]
[0 0 a]
) of Special Unitary Group of degree 3 over Finite Field in a of size 2^2
sage: GL(2,GF(3)).center()
Subgroup with 1 generators (
[2 0]
[0 2]
) of General Linear Group of degree 2 over Finite Field of size 3
sage: GL(3,GF(3)).center()
Subgroup with 1 generators (
[2 0 0]
[0 2 0]
[0 0 2]
) of General Linear Group of degree 3 over Finite Field of size 3
sage: GU(3,GF(2)).center()
Subgroup with 1 generators (
[a + 1 0 0]
[0 a + 1 0]
[0 0 a + 1]
) of General Unitary Group of degree 3 over Finite Field in a of size 2^2

sage: A = Matrix(FiniteField(5), [[2,0,0], [0,3,0], [0,0,1]])
sage: B = Matrix(FiniteField(5), [[1,0,0], [0,1,0], [0,1,1]])
sage: MatrixGroup([A,B]).center()
Subgroup with 1 generators (
[1 0 0]
[0 1 0]
[0 0 1]
) of Matrix group over Finite Field of size 5 with 2 generators (
[2 0 0] [1 0 0]
[0 3 0] [0 1 0]
[0 0 1], [0 1 1]
)

24 Chapter 6. Mix-in Class for GAP-based Groups

Groups, Release 9.8

character(values)
Return a group character from values, where values is a list of the values of the character evaluated on
the conjugacy classes.

INPUT:

• values – a list of values of the character

OUTPUT: a group character

EXAMPLES:

sage: G = MatrixGroup(AlternatingGroup(4))
sage: G.character([1]*len(G.conjugacy_classes_representatives()))
Character of Matrix group over Integer Ring with 12 generators

sage: G = GL(2,ZZ)
sage: G.character([1,1,1,1])
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups

character_table()

Return the matrix of values of the irreducible characters of this group 𝐺 at its conjugacy classes.

The columns represent the conjugacy classes of𝐺 and the rows represent the different irreducible characters
in the ordering given by GAP.

OUTPUT: a matrix defined over a cyclotomic field

EXAMPLES:

sage: MatrixGroup(SymmetricGroup(2)).character_table()
[1 -1]
[1 1]
sage: MatrixGroup(SymmetricGroup(3)).character_table()
[1 1 -1]
[2 -1 0]
[1 1 1]
sage: MatrixGroup(SymmetricGroup(5)).character_table()
[1 -1 -1 1 -1 1 1]
[4 0 1 -1 -2 1 0]
[5 1 -1 0 -1 -1 1]
[6 0 0 1 0 0 -2]
[5 -1 1 0 1 -1 1]
[4 0 -1 -1 2 1 0]
[1 1 1 1 1 1 1]

class_function(values)
Return the class function with given values.

INPUT:

• values – list/tuple/iterable of numbers. The values of the class function on the conjugacy classes, in
that order.

EXAMPLES:

25

Groups, Release 9.8

sage: G = GL(2,GF(3))
sage: chi = G.class_function(range(8))
sage: list(chi)
[0, 1, 2, 3, 4, 5, 6, 7]

conjugacy_class(g)
Return the conjugacy class of g.

OUTPUT:

The conjugacy class of g in the group self. If self is the group denoted by 𝐺, this method computes the
set {𝑥−1𝑔𝑥 | 𝑥 ∈ 𝐺}.

EXAMPLES:

sage: G = SL(2, QQ)
sage: g = G([[1,1],[0,1]])
sage: G.conjugacy_class(g)
Conjugacy class of [1 1]
[0 1] in Special Linear Group of degree 2 over Rational Field

conjugacy_classes()

Return a list with all the conjugacy classes of self.

EXAMPLES:

sage: G = SL(2, GF(2))
sage: G.conjugacy_classes()
(Conjugacy class of [1 0]
[0 1] in Special Linear Group of degree 2 over Finite Field of size 2,
Conjugacy class of [0 1]
[1 0] in Special Linear Group of degree 2 over Finite Field of size 2,
Conjugacy class of [0 1]
[1 1] in Special Linear Group of degree 2 over Finite Field of size 2)

sage: GL(2,ZZ).conjugacy_classes()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups

conjugacy_classes_representatives()

Return a set of representatives for each of the conjugacy classes of the group.

EXAMPLES:

sage: G = SU(3,GF(2))
sage: len(G.conjugacy_classes_representatives())
16

sage: G = GL(2,GF(3))
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [2 0] [0 2] [0 2] [0 1] [0 1] [2 0]
[0 1], [1 1], [0 2], [1 2], [1 0], [1 2], [1 1], [0 1]
)

(continues on next page)

26 Chapter 6. Mix-in Class for GAP-based Groups

Groups, Release 9.8

(continued from previous page)

sage: len(GU(2,GF(5)).conjugacy_classes_representatives())
36

sage: GL(2,ZZ).conjugacy_classes_representatives()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups

intersection(other)
Return the intersection of two groups (if it makes sense) as a subgroup of the first group.

EXAMPLES:

sage: A = Matrix([(0, 1/2, 0), (2, 0, 0), (0, 0, 1)])
sage: B = Matrix([(0, 1/2, 0), (-2, -1, 2), (0, 0, 1)])
sage: G = MatrixGroup([A,B])
sage: len(G) # isomorphic to S_3
6
sage: G.intersection(GL(3,ZZ))
Subgroup with 1 generators (
[1 0 0]
[-2 -1 2]
[0 0 1]
) of Matrix group over Rational Field with 2 generators (
[0 1/2 0] [0 1/2 0]
[2 0 0] [-2 -1 2]
[0 0 1], [0 0 1]
)
sage: GL(3,ZZ).intersection(G)
Subgroup with 1 generators (
[1 0 0]
[-2 -1 2]
[0 0 1]
) of General Linear Group of degree 3 over Integer Ring
sage: G.intersection(SL(3,ZZ))
Subgroup with 0 generators () of Matrix group over Rational Field with 2␣
→˓generators (
[0 1/2 0] [0 1/2 0]
[2 0 0] [-2 -1 2]
[0 0 1], [0 0 1]
)

irreducible_characters()

Return the irreducible characters of the group.

OUTPUT:

A tuple containing all irreducible characters.

EXAMPLES:

sage: G = GL(2,2)
sage: G.irreducible_characters()

(continues on next page)

27

Groups, Release 9.8

(continued from previous page)

(Character of General Linear Group of degree 2 over Finite Field of size 2,
Character of General Linear Group of degree 2 over Finite Field of size 2,
Character of General Linear Group of degree 2 over Finite Field of size 2)

sage: GL(2,ZZ).irreducible_characters()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups

is_abelian()

Return whether the group is Abelian.

OUTPUT:

Boolean. True if this group is an Abelian group and False otherwise.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.CyclicGroup(12)).is_abelian()
True
sage: GroupLibGAP(libgap.SymmetricGroup(12)).is_abelian()
False

sage: SL(1, 17).is_abelian()
True
sage: SL(2, 17).is_abelian()
False

is_finite()

Test whether the matrix group is finite.

OUTPUT:

Boolean.

EXAMPLES:

sage: G = GL(2,GF(3))
sage: G.is_finite()
True
sage: SL(2,ZZ).is_finite()
False

is_isomorphic(H)

Test whether self and H are isomorphic groups.

INPUT:

• H – a group.

OUTPUT:

Boolean.

EXAMPLES:

28 Chapter 6. Mix-in Class for GAP-based Groups

Groups, Release 9.8

sage: m1 = matrix(GF(3), [[1,1],[0,1]])
sage: m2 = matrix(GF(3), [[1,2],[0,1]])
sage: F = MatrixGroup(m1)
sage: G = MatrixGroup(m1, m2)
sage: H = MatrixGroup(m2)
sage: F.is_isomorphic(G)
True
sage: G.is_isomorphic(H)
True
sage: F.is_isomorphic(H)
True
sage: F == G, G == H, F == H
(False, False, False)

is_nilpotent()

Return whether this group is nilpotent.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.AlternatingGroup(3)).is_nilpotent()
True
sage: GroupLibGAP(libgap.SymmetricGroup(3)).is_nilpotent()
False

is_p_group()

Return whether this group is a p-group.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.CyclicGroup(9)).is_p_group()
True
sage: GroupLibGAP(libgap.CyclicGroup(10)).is_p_group()
False

is_perfect()

Return whether this group is perfect.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.SymmetricGroup(5)).is_perfect()
False
sage: GroupLibGAP(libgap.AlternatingGroup(5)).is_perfect()
True

sage: SL(3,3).is_perfect()
True

is_polycyclic()

Return whether this group is polycyclic.

EXAMPLES:

29

Groups, Release 9.8

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.AlternatingGroup(4)).is_polycyclic()
True
sage: GroupLibGAP(libgap.AlternatingGroup(5)).is_solvable()
False

is_simple()

Return whether this group is simple.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.SL(2,3)).is_simple()
False
sage: GroupLibGAP(libgap.SL(3,3)).is_simple()
True

sage: SL(3,3).is_simple()
True

is_solvable()

Return whether this group is solvable.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.SymmetricGroup(4)).is_solvable()
True
sage: GroupLibGAP(libgap.SymmetricGroup(5)).is_solvable()
False

is_supersolvable()

Return whether this group is supersolvable.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: GroupLibGAP(libgap.SymmetricGroup(3)).is_supersolvable()
True
sage: GroupLibGAP(libgap.SymmetricGroup(4)).is_supersolvable()
False

list()

List all elements of this group.

OUTPUT:

A tuple containing all group elements in a random but fixed order.

EXAMPLES:

sage: F = GF(3)
sage: gens = [matrix(F,2, [1,0,-1,1]), matrix(F, 2, [1,1,0,1])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()

(continues on next page)

30 Chapter 6. Mix-in Class for GAP-based Groups

Groups, Release 9.8

(continued from previous page)

24
sage: v = G.list()
sage: len(v)
24
sage: v[:5]
(
[1 0] [2 0] [0 1] [0 2] [1 2]
[0 1], [0 2], [2 0], [1 0], [2 2]
)

sage: all(g in G for g in G.list())
True

An example over a ring (see trac ticket #5241):

sage: M1 = matrix(ZZ,2,[[-1,0],[0,1]])
sage: M2 = matrix(ZZ,2,[[1,0],[0,-1]])
sage: M3 = matrix(ZZ,2,[[-1,0],[0,-1]])
sage: MG = MatrixGroup([M1, M2, M3])
sage: MG.list()
(
[1 0] [1 0] [-1 0] [-1 0]
[0 1], [0 -1], [0 1], [0 -1]
)
sage: MG.list()[1]
[1 0]
[0 -1]
sage: MG.list()[1].parent()
Matrix group over Integer Ring with 3 generators (
[-1 0] [1 0] [-1 0]
[0 1], [0 -1], [0 -1]
)

An example over a field (see trac ticket #10515):

sage: gens = [matrix(QQ,2,[1,0,0,1])]
sage: MatrixGroup(gens).list()
(
[1 0]
[0 1]
)

Another example over a ring (see trac ticket #9437):

sage: len(SL(2, Zmod(4)).list())
48

An error is raised if the group is not finite:

sage: GL(2,ZZ).list()
Traceback (most recent call last):
...
NotImplementedError: group must be finite

31

https://trac.sagemath.org/5241
https://trac.sagemath.org/10515
https://trac.sagemath.org/9437

Groups, Release 9.8

order()

Implements EnumeratedSets.ParentMethods.cardinality().

EXAMPLES:

sage: G = Sp(4,GF(3))
sage: G.cardinality()
51840

sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
480

sage: G = MatrixGroup([matrix(ZZ,2,[1,1,0,1])])
sage: G.cardinality()
+Infinity

sage: G = Sp(4,GF(3))
sage: G.cardinality()
51840

sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
480

sage: G = MatrixGroup([matrix(ZZ,2,[1,1,0,1])])
sage: G.cardinality()
+Infinity

random_element()

Return a random element of this group.

OUTPUT:

A group element.

EXAMPLES:

sage: G = Sp(4,GF(3))
sage: G.random_element() # random
[2 1 1 1]
[1 0 2 1]
[0 1 1 0]

(continues on next page)

32 Chapter 6. Mix-in Class for GAP-based Groups

Groups, Release 9.8

(continued from previous page)

[1 0 0 1]
sage: G.random_element() in G
True

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.random_element() # random
[1 3]
[0 3]
sage: G.random_element() in G
True

trivial_character()

Return the trivial character of this group.

OUTPUT: a group character

EXAMPLES:

sage: MatrixGroup(SymmetricGroup(3)).trivial_character()
Character of Matrix group over Integer Ring with 6 generators

sage: GL(2,ZZ).trivial_character()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups

33

Groups, Release 9.8

34 Chapter 6. Mix-in Class for GAP-based Groups

CHAPTER

SEVEN

PARI GROUPS

See pari:polgalois for the PARI documentation of these objects.

class sage.groups.pari_group.PariGroup(x, degree)
Bases: object

EXAMPLES:

sage: PariGroup([6, -1, 2, "S3"], 3)
PARI group [6, -1, 2, S3] of degree 3
sage: R.<x> = PolynomialRing(QQ)
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(pari_group=True); G
PARI group [24, -1, 5, "S4"] of degree 4

cardinality()

Return the order of self.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.order()
24

degree()

Return the degree of this group.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.degree()
4

label()

Return the human readable description for this group generated by Pari.

EXAMPLES:

35

https://pari.math.u-bordeaux.fr/dochtml/help/polgalois

Groups, Release 9.8

sage: R.<x> = QQ[]
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.label()
'S4'

order()

Return the order of self.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.order()
24

permutation_group()

Return the corresponding GAP transitive group

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^8 - x^5 + x^4 - x^3 + 1
sage: G = f.galois_group(pari_group=True)
sage: G.permutation_group()
Transitive group number 44 of degree 8

signature()

Return 1 if contained in the alternating group, -1 otherwise.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.signature()
-1

transitive_number()

If the transitive label is nTk, return 𝑘.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.transitive_number()
5

36 Chapter 7. PARI Groups

CHAPTER

EIGHT

MISCELLANEOUS GENERIC FUNCTIONS

A collection of functions implementing generic algorithms in arbitrary groups, including additive and multiplicative
groups.

In all cases the group operation is specified by a parameter ‘operation’, which is a string either one of the set of mul-
tiplication_names or addition_names specified below, or ‘other’. In the latter case, the caller must provide an identity,
inverse() and op() functions.

multiplication_names = ('multiplication', 'times', 'product', '*')
addition_names = ('addition', 'plus', 'sum', '+')

Also included are a generic function for computing multiples (or powers), and an iterator for general multiples and
powers.

EXAMPLES:

Some examples in the multiplicative group of a finite field:

• Discrete logs:

sage: K = GF(3^6,'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order()-1)
210

• Linear relation finder:

sage: F.<a> = GF(3^6,'a')
sage: a.multiplicative_order().factor()
2^3 * 7 * 13
sage: b = a^7
sage: c = a^13
sage: linear_relation(b,c,'*')
(13, 7)
sage: b^13 == c^7
True

• Orders of elements:

sage: from sage.groups.generic import order_from_multiple, order_from_bounds
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_multiple(b,5^5-1,operation='*')

(continues on next page)

37

Groups, Release 9.8

(continued from previous page)

781
sage: order_from_bounds(b,(5^4,5^5),operation='*')
781

Some examples in the group of points of an elliptic curve over a finite field:

• Discrete logs:

sage: F = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: F.<a> = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: P = E(25*a + 16 , 15*a + 7)
sage: P.order()
672
sage: Q = 39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q,P,P.order(),operation='+')
39

• Linear relation finder:

sage: F.<a> = GF(3^6,'a')
sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P = E(a^5 + a^4 + a^3 + a^2 + a + 2 , 0)
sage: Q = E(2*a^3 + 2*a^2 + 2*a , a^3 + 2*a^2 + 1)
sage: linear_relation(P,Q,'+')
(1, 2)
sage: P == 2*Q
True

• Orders of elements:

sage: from sage.groups.generic import order_from_multiple, order_from_bounds
sage: k.<a> = GF(5^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: M = E.cardinality(); M
3227
sage: plist = M.prime_factors()
sage: order_from_multiple(P, M, plist, operation='+')
3227
sage: Q = E(0,2)
sage: order_from_multiple(Q, M, plist, operation='+')
7
sage: order_from_bounds(Q, Hasse_bounds(5^5), operation='+')
7

sage.groups.generic.bsgs(a, b, bounds, operation='*', identity=None, inverse=None, op=None)
Totally generic discrete baby-step giant-step function.

Solves 𝑛𝑎 = 𝑏 (or 𝑎𝑛 = 𝑏) with 𝑙𝑏 ≤ 𝑛 ≤ 𝑢𝑏 where bounds==(lb,ub), raising an error if no such 𝑛 exists.

𝑎 and 𝑏 must be elements of some group with given identity, inverse of x given by inverse(x), and group
operation on x, y by op(x,y).

38 Chapter 8. Miscellaneous generic functions

Groups, Release 9.8

If operation is ‘*’ or ‘+’ then the other arguments are provided automatically; otherwise they must be provided
by the caller.

INPUT:

• a - group element

• b - group element

• bounds - a 2-tuple of integers (lower,upper) with 0<=lower<=upper

• operation - string: ‘*’, ‘+’, ‘other’

• identity - the identity element of the group

• inverse() - function of 1 argument x returning inverse of x

• op() - function of 2 arguments x, y returning x*y in the group

OUTPUT:

An integer 𝑛 such that 𝑎𝑛 = 𝑏 (or 𝑛𝑎 = 𝑏). If no such 𝑛 exists, this function raises a ValueError exception.

NOTE: This is a generalization of discrete logarithm. One situation where this version is useful is to find the
order of an element in a group where we only have bounds on the group order (see the elliptic curve example
below).

ALGORITHM: Baby step giant step. Time and space are soft 𝑂(
√
𝑛) where 𝑛 is the difference between upper

and lower bounds.

EXAMPLES:

sage: from sage.groups.generic import bsgs
sage: b = Mod(2,37); a = b^20
sage: bsgs(b, a, (0,36))
20

sage: p = next_prime(10^20)
sage: a = Mod(2,p); b = a^(10^25)
sage: bsgs(a, b, (10^25-10^6,10^25+10^6)) == 10^25
True

sage: K = GF(3^6,'b')
sage: a = K.gen()
sage: b = a^210
sage: bsgs(a, b, (0,K.order()-1))
210

sage: K.<z> = CyclotomicField(230)
sage: w = z^500
sage: bsgs(z,w,(0,229))
40

An additive example in an elliptic curve group:

sage: F.<a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: P = E.lift_x(a); P
(a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)

This will return a multiple of the order of P:

39

Groups, Release 9.8

sage: bsgs(P,P.parent()(0),Hasse_bounds(F.order()),operation='+')
69327408

AUTHOR:

• John Cremona (2008-03-15)

sage.groups.generic.discrete_log(a, base, ord=None, bounds=None, operation='*', identity=None,
inverse=None, op=None, algorithm='bsgs')

Totally generic discrete log function.

INPUT:

• a - group element

• base - group element (the base)

• ord - integer (multiple of order of base, or None)

• bounds - a priori bounds on the log

• operation - string: ‘*’, ‘+’, ‘other’

• identity - the group’s identity

• inverse() - function of 1 argument x returning inverse of x

• op() - function of 2 arguments x, y returning x*y in the group

• algorithm - string denoting what algorithm to use for prime-order logarithms: ‘bsgs’, ‘rho’, ‘lambda’

a and base must be elements of some group with identity given by identity, inverse of x by inverse(x), and
group operation on x, y by op(x,y).

If operation is ‘*’ or ‘+’ then the other arguments are provided automatically; otherwise they must be provided
by the caller.

OUTPUT:

This returns an integer 𝑛 such that 𝑏𝑛 = 𝑎 (or 𝑛𝑏 = 𝑎), assuming that ord is a multiple of the order of the base
𝑏. If ord is not specified, an attempt is made to compute it.

If no such 𝑛 exists, this function raises a ValueError exception.

Warning: If x has a log method, it is likely to be vastly faster than using this function. E.g., if x is an integer
modulo 𝑛, use its log method instead!

ALGORITHM: Pohlig-Hellman, Baby step giant step, Pollard’s lambda/kangaroo, and Pollard’s rho.

EXAMPLES:

sage: b = Mod(2,37); a = b^20
sage: discrete_log(a, b)
20
sage: b = Mod(3,2017); a = b^20
sage: discrete_log(a, b, bounds=(10, 100))
20

sage: K = GF(3^6,'b')
sage: b = K.gen()

(continues on next page)

40 Chapter 8. Miscellaneous generic functions

Groups, Release 9.8

(continued from previous page)

sage: a = b^210
sage: discrete_log(a, b, K.order()-1)
210

sage: b = Mod(1,37); x = Mod(2,37)
sage: discrete_log(x, b)
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1
sage: b = Mod(1,997); x = Mod(2,997)
sage: discrete_log(x, b)
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1

See trac ticket #2356:

sage: F.<w> = GF(121)
sage: v = w^120
sage: v.log(w)
0

sage: K.<z> = CyclotomicField(230)
sage: w = z^50
sage: discrete_log(w,z)
50

An example where the order is infinite: note that we must give an upper bound here:

sage: K.<a> = QuadraticField(23)
sage: eps = 5*a-24 # a fundamental unit
sage: eps.multiplicative_order()
+Infinity
sage: eta = eps^100
sage: discrete_log(eta,eps,bounds=(0,1000))
100

In this case we cannot detect negative powers:

sage: eta = eps^(-3)
sage: discrete_log(eta,eps,bounds=(0,100))
Traceback (most recent call last):
...
ValueError: no discrete log of -11515*a - 55224 found to base 5*a - 24

But we can invert the base (and negate the result) instead:

sage: - discrete_log(eta^-1,eps,bounds=(0,100))
-3

An additive example: elliptic curve DLOG:

41

https://trac.sagemath.org/2356

Groups, Release 9.8

sage: F = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: F.<a> = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: P = E(25*a + 16 , 15*a + 7)
sage: P.order()
672
sage: Q = 39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q,P,P.order(),operation='+')
39

An example of big smooth group:

sage: F.<a> = GF(2^63)
sage: g = F.gen()
sage: u = g**123456789
sage: discrete_log(u,g)
123456789

The above examples also work when the ‘rho’ and ‘lambda’ algorithms are used:

sage: b = Mod(2,37); a = b^20
sage: discrete_log(a, b, algorithm='rho')
20
sage: b = Mod(3,2017); a = b^20
sage: discrete_log(a, b, algorithm='lambda', bounds=(10, 100))
20

sage: K = GF(3^6,'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order()-1, algorithm='rho')
210

sage: b = Mod(1,37); x = Mod(2,37)
sage: discrete_log(x, b, algorithm='lambda')
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1
sage: b = Mod(1,997); x = Mod(2,997)
sage: discrete_log(x, b, algorithm='rho')
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1

sage: F=GF(37^2,'a')
sage: E=EllipticCurve(F,[1,1])
sage: F.<a>=GF(37^2,'a')
sage: E=EllipticCurve(F,[1,1])
sage: P=E(25*a + 16 , 15*a + 7)
sage: P.order()
672

(continues on next page)

42 Chapter 8. Miscellaneous generic functions

Groups, Release 9.8

(continued from previous page)

sage: Q=39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q,P,P.order(),operation='+',algorithm='lambda')
39

sage: F.<a> = GF(2^63)
sage: g = F.gen()
sage: u = g**123456789
sage: discrete_log(u,g,algorithm='rho')
123456789

AUTHORS:

• William Stein and David Joyner (2005-01-05)

• John Cremona (2008-02-29) rewrite using dict() and make generic

• Julien Grijalva (2022-08-09) rewrite to make more generic, more algorithm options, and more effective use
of bounds

sage.groups.generic.discrete_log_generic(a, base, ord=None, bounds=None, operation='*',
identity=None, inverse=None, op=None, algorithm='bsgs')

Alias for discrete_log.

sage.groups.generic.discrete_log_lambda(a, base, bounds, operation='*', identity=None, inverse=None,
op=None, hash_function=<built-in function hash>)

Pollard Lambda algorithm for computing discrete logarithms. It uses only a logarithmic amount of memory. It’s
useful if you have bounds on the logarithm. If you are computing logarithms in a whole finite group, you should
use Pollard Rho algorithm.

INPUT:

• a – a group element

• base – a group element

• bounds – a couple (lb,ub) representing the range where we look for a logarithm

• operation – string: ‘+’, ‘*’ or ‘other’

• identity – the identity element of the group

• inverse() – function of 1 argument x returning inverse of x

• op() – function of 2 arguments x, y returning x*y in the group

• hash_function – having an efficient hash function is critical for this algorithm

OUTPUT: Returns an integer 𝑛 such that 𝑎 = 𝑏𝑎𝑠𝑒𝑛 (or 𝑎 = 𝑛 * 𝑏𝑎𝑠𝑒)

ALGORITHM: Pollard Lambda, if bounds are (lb,ub) it has time complexity
O(sqrt(ub-lb)) and space complexity O(log(ub-lb))

EXAMPLES:

sage: F.<a> = GF(2^63)
sage: discrete_log_lambda(a^1234567, a, (1200000,1250000))
1234567

sage: F.<a> = GF(37^5)
(continues on next page)

43

Groups, Release 9.8

(continued from previous page)

sage: E = EllipticCurve(F, [1,1])
sage: P = E.lift_x(a); P
(a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)

This will return a multiple of the order of P:

sage: discrete_log_lambda(P.parent()(0), P, Hasse_bounds(F.order()), operation='+')
69327408

sage: K.<a> = GF(89**5)
sage: hs = lambda x: hash(x) + 15
sage: discrete_log_lambda(a**(89**3 - 3), a, (89**2, 89**4), operation = '*', hash_
→˓function = hs) # long time (10s on sage.math, 2011)
704966

AUTHOR:

– Yann Laigle-Chapuy (2009-01-25)

sage.groups.generic.discrete_log_rho(a, base, ord=None, operation='*', identity=None, inverse=None,
op=None, hash_function=<built-in function hash>)

Pollard Rho algorithm for computing discrete logarithm in cyclic group of prime order. If the group order is very
small it falls back to the baby step giant step algorithm.

INPUT:

• a – a group element

• base – a group element

• ord – the order of base or None, in this case we try to compute it

• operation – a string (default: '*') denoting whether we are in an additive group or a multiplicative one

• identity - the group’s identity

• inverse() - function of 1 argument x returning inverse of x

• op() - function of 2 arguments x, y returning x*y in the group

• hash_function – having an efficient hash function is critical for this algorithm (see examples)

OUTPUT: an integer 𝑛 such that 𝑎 = 𝑏𝑎𝑠𝑒𝑛 (or 𝑎 = 𝑛 * 𝑏𝑎𝑠𝑒)

ALGORITHM: Pollard rho for discrete logarithm, adapted from the article of Edlyn Teske, ‘A space efficient
algorithm for group structure computation’.

EXAMPLES:

sage: F.<a> = GF(2^13)
sage: g = F.gen()
sage: discrete_log_rho(g^1234, g)
1234

sage: F.<a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: G = (3*31*2^4)*E.lift_x(a)
sage: discrete_log_rho(12345*G, G, ord=46591, operation='+')
12345

44 Chapter 8. Miscellaneous generic functions

Groups, Release 9.8

It also works with matrices:

sage: A = matrix(GF(50021),[[10577,23999,28893],[14601,41019,30188],[3081,736,
→˓27092]])
sage: discrete_log_rho(A^1234567, A)
1234567

Beware, the order must be prime:

sage: I = IntegerModRing(171980)
sage: discrete_log_rho(I(2), I(3))
Traceback (most recent call last):
...
ValueError: for Pollard rho algorithm the order of the group must be prime

If it fails to find a suitable logarithm, it raises a ValueError:

sage: I = IntegerModRing(171980)
sage: discrete_log_rho(I(31002),I(15501))
Traceback (most recent call last):
...
ValueError: Pollard rho algorithm failed to find a logarithm

The main limitation on the hash function is that we don’t want to have ℎ𝑎𝑠ℎ(𝑥 * 𝑦) = ℎ𝑎𝑠ℎ(𝑥) + ℎ𝑎𝑠ℎ(𝑦):

sage: I = IntegerModRing(next_prime(2^23))
sage: def test():
....: try:
....: discrete_log_rho(I(123456),I(1),operation='+')
....: except Exception:
....: print("FAILURE")
sage: test() # random failure
FAILURE

If this happens, we can provide a better hash function:

sage: discrete_log_rho(I(123456),I(1),operation='+', hash_function=lambda x:␣
→˓hash(x*x))
123456

AUTHOR:

• Yann Laigle-Chapuy (2009-09-05)

sage.groups.generic.linear_relation(P, Q, operation='+', identity=None, inverse=None, op=None)
Function which solves the equation a*P=m*Q or P^a=Q^m.

Additive version: returns (𝑎,𝑚) with minimal 𝑚 > 0 such that 𝑎𝑃 = 𝑚𝑄. Special case: if ⟨𝑃 ⟩ and ⟨𝑄⟩
intersect only in {0} then (𝑎,𝑚) = (0, 𝑛) where 𝑛 is Q.additive_order().

Multiplicative version: returns (𝑎,𝑚) with minimal 𝑚 > 0 such that 𝑃 𝑎 = 𝑄𝑚. Special case: if ⟨𝑃 ⟩ and ⟨𝑄⟩
intersect only in {1} then (𝑎,𝑚) = (0, 𝑛) where 𝑛 is Q.multiplicative_order().

ALGORITHM:

Uses the generic bsgs() function, and so works in general finite abelian groups.

EXAMPLES:

45

Groups, Release 9.8

An additive example (in an elliptic curve group):

sage: F.<a> = GF(3^6,'a')
sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a,a^4 + a^3 + 2*a + 1])
sage: P = E(a^5 + a^4 + a^3 + a^2 + a + 2 , 0)
sage: Q = E(2*a^3 + 2*a^2 + 2*a , a^3 + 2*a^2 + 1)
sage: linear_relation(P,Q,'+')
(1, 2)
sage: P == 2*Q
True

A multiplicative example (in a finite field’s multiplicative group):

sage: F.<a> = GF(3^6,'a')
sage: a.multiplicative_order().factor()
2^3 * 7 * 13
sage: b = a^7
sage: c = a^13
sage: linear_relation(b,c,'*')
(13, 7)
sage: b^13==c^7
True

sage.groups.generic.merge_points(P1, P2, operation='+', identity=None, inverse=None, op=None,
check=True)

Return a group element whose order is the lcm of the given elements.

INPUT:

• P1 – a pair (𝑔1, 𝑛1) where 𝑔1 is a group element of order 𝑛1
• P2 – a pair (𝑔2, 𝑛2) where 𝑔2 is a group element of order 𝑛2
• operation – string: ‘+’ (default) or ‘*’ or other. If other, the following must be supplied:

– identity: the identity element for the group;

– inverse(): a function of one argument giving the inverse of a group element;

– op(): a function of 2 arguments defining the group
binary operation.

OUTPUT:

A pair (𝑔3, 𝑛3) where 𝑔3 has order 𝑛3 = lcm(𝑛1, 𝑛2).

EXAMPLES:

sage: from sage.groups.generic import merge_points
sage: F.<a>=GF(3^6,'a')
sage: b = a^7
sage: c = a^13
sage: ob = (3^6-1)//7
sage: oc = (3^6-1)//13
sage: merge_points((b,ob),(c,oc),operation='*')
(a^4 + 2*a^3 + 2*a^2, 728)
sage: d,od = merge_points((b,ob),(c,oc),operation='*')
sage: od == d.multiplicative_order()

(continues on next page)

46 Chapter 8. Miscellaneous generic functions

Groups, Release 9.8

(continued from previous page)

True
sage: od == lcm(ob,oc)
True

sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a,a^4 + a^3 + 2*a + 1])
sage: P = E(2*a^5 + 2*a^4 + a^3 + 2 , a^4 + a^3 + a^2 + 2*a + 2)
sage: P.order()
7
sage: Q = E(2*a^5 + 2*a^4 + 1 , a^5 + 2*a^3 + 2*a + 2)
sage: Q.order()
4
sage: R,m = merge_points((P,7),(Q,4), operation='+')
sage: R.order() == m
True
sage: m == lcm(7,4)
True

sage.groups.generic.multiple(a, n, operation='*', identity=None, inverse=None, op=None)
Return either 𝑛𝑎 or 𝑎𝑛, where 𝑛 is any integer and 𝑎 is a Python object on which a group operation such as
addition or multiplication is defined. Uses the standard binary algorithm.

INPUT: See the documentation for discrete_logarithm().

EXAMPLES:

sage: multiple(2,5)
32
sage: multiple(RealField()('2.5'),4)
39.0625000000000
sage: multiple(2,-3)
1/8
sage: multiple(2,100,'+') == 100*2
True
sage: multiple(2,100) == 2**100
True
sage: multiple(2,-100,) == 2**-100
True
sage: R.<x>=ZZ[]
sage: multiple(x,100)
x^100
sage: multiple(x,100,'+')
100*x
sage: multiple(x,-10)
1/x^10

Idempotence is detected, making the following fast:

sage: multiple(1,10^1000)
1

sage: E = EllipticCurve('389a1')
sage: P = E(-1,1)
sage: multiple(P,10,'+')

(continues on next page)

47

Groups, Release 9.8

(continued from previous page)

(645656132358737542773209599489/22817025904944891235367494656 :␣
→˓525532176124281192881231818644174845702936831/
→˓3446581505217248068297884384990762467229696 : 1)
sage: multiple(P,-10,'+')
(645656132358737542773209599489/22817025904944891235367494656 : -
→˓528978757629498440949529703029165608170166527/
→˓3446581505217248068297884384990762467229696 : 1)

class sage.groups.generic.multiples(P, n, P0=None, indexed=False, operation='+', op=None)
Bases: object

Return an iterator which runs through P0+i*P for i in range(n).

P and P0 must be Sage objects in some group; if the operation is multiplication then the returned values are
instead P0*P**i.

EXAMPLES:

sage: list(multiples(1,10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list(multiples(1,10,100))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]

sage: E = EllipticCurve('389a1')
sage: P = E(-1,1)
sage: for Q in multiples(P,5): print((Q, Q.height()/P.height()))
((0 : 1 : 0), 0.000000000000000)
((-1 : 1 : 1), 1.00000000000000)
((10/9 : -35/27 : 1), 4.00000000000000)
((26/361 : -5720/6859 : 1), 9.00000000000000)
((47503/16641 : 9862190/2146689 : 1), 16.0000000000000)

sage: R.<x> = ZZ[]
sage: list(multiples(x,5))
[0, x, 2*x, 3*x, 4*x]
sage: list(multiples(x,5,operation='*'))
[1, x, x^2, x^3, x^4]
sage: list(multiples(x,5,indexed=True))
[(0, 0), (1, x), (2, 2*x), (3, 3*x), (4, 4*x)]
sage: list(multiples(x,5,indexed=True,operation='*'))
[(0, 1), (1, x), (2, x^2), (3, x^3), (4, x^4)]
sage: for i,y in multiples(x,5,indexed=True): print("%s times %s = %s"%(i,x,y))
0 times x = 0
1 times x = x
2 times x = 2*x
3 times x = 3*x
4 times x = 4*x

sage: for i,n in multiples(3,5,indexed=True,operation='*'): print("3 to the power
→˓%s = %s" % (i,n))
3 to the power 0 = 1
3 to the power 1 = 3
3 to the power 2 = 9

(continues on next page)

48 Chapter 8. Miscellaneous generic functions

Groups, Release 9.8

(continued from previous page)

3 to the power 3 = 27
3 to the power 4 = 81

next()

Return the next item in this multiples iterator.

sage.groups.generic.order_from_bounds(P, bounds, d=None, operation='+', identity=None, inverse=None,
op=None)

Generic function to find order of a group element, given only upper and lower bounds for a multiple of the order
(e.g. bounds on the order of the group of which it is an element)

INPUT:

• P - a Sage object which is a group element

• bounds - a 2-tuple (lb,ub) such that m*P=0 (or P**m=1) for some m with lb<=m<=ub.

• d - (optional) a positive integer; only m which are multiples of this will be considered.

• operation - string: ‘+’ (default) or ‘*’ or other. If other, the following must be supplied:

– identity: the identity element for the group;

– inverse(): a function of one argument giving the inverse of a group element;

– op(): a function of 2 arguments defining the group binary operation.

Note: Typically lb and ub will be bounds on the group order, and from previous calculation we know that the
group order is divisible by d.

EXAMPLES:

sage: from sage.groups.generic import order_from_bounds
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_bounds(b,(5^4,5^5),operation='*')
781
sage: E = EllipticCurve(k,[2,4])
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: bounds = Hasse_bounds(5^5)
sage: Q = E(0,2)
sage: order_from_bounds(Q, bounds, operation='+')
7
sage: order_from_bounds(P, bounds, 7, operation='+')
3227

sage: K.<z>=CyclotomicField(230)
sage: w = z^50
sage: order_from_bounds(w,(200,250),operation='*')
23

sage.groups.generic.order_from_multiple(P, m, plist=None, factorization=None, check=True,
operation='+')

Generic function to find order of a group element given a multiple of its order.

INPUT:

49

Groups, Release 9.8

• P - a Sage object which is a group element;

• m - a Sage integer which is a multiple of the order of P, i.e. we require that m*P=0 (or P**m=1);

• check - a Boolean (default:True), indicating whether we check if m really is a multiple of the order;

• factorization - the factorization of m, or None in which case this function will need to factor m;

• plist - a list of the prime factors of m, or None - kept for compatibility only, prefer the use of
factorization;

• operation - string: ‘+’ (default) or ‘*’.

Note: It is more efficient for the caller to factor m and cache the factors for subsequent calls.

EXAMPLES:

sage: from sage.groups.generic import order_from_multiple
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_multiple(b,5^5-1,operation='*')
781
sage: E = EllipticCurve(k,[2,4])
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: M = E.cardinality(); M
3227
sage: F = M.factor()
sage: order_from_multiple(P, M, factorization=F, operation='+')
3227
sage: Q = E(0,2)
sage: order_from_multiple(Q, M, factorization=F, operation='+')
7

sage: K.<z> = CyclotomicField(230)
sage: w = z^50
sage: order_from_multiple(w,230,operation='*')
23

sage: F = GF(2^1279,'a')
sage: n = F.cardinality()-1 # Mersenne prime
sage: order_from_multiple(F.random_element(),n,factorization=[(n,1)],operation='*')␣
→˓== n
True

sage: K.<a> = GF(3^60)
sage: order_from_multiple(a, 3^60-1, operation='*', check=False)
42391158275216203514294433200

sage.groups.generic.structure_description(G, latex=False)
Return a string that tries to describe the structure of G.

This methods wraps GAP’s StructureDescription method.

For full details, including the form of the returned string and the algorithm to build it, see GAP’s documentation.

INPUT:

50 Chapter 8. Miscellaneous generic functions

https://www.gap-system.org/Manuals/doc/ref/chap39.html

Groups, Release 9.8

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

• string

Warning: From GAP’s documentation: The string returned by StructureDescription is not an iso-
morphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in
different representations can produce different strings.

EXAMPLES:

sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()
'C6'
sage: G.structure_description(latex=True)
'C_{6}'
sage: G2 = G.direct_product(G, maps=False)
sage: LatexExpr(G2.structure_description(latex=True))
C_{6} \times C_{6}

This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some
surprises:

sage: D3 = DihedralGroup(3)
sage: D3.structure_description()
'S3'

We use the Sage notation for the degree of dihedral groups:

sage: D4 = DihedralGroup(4)
sage: D4.structure_description()
'D4'

Works for finitely presented groups (trac ticket #17573):

sage: F.<x, y> = FreeGroup()
sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description()
'C7'

And matrix groups (trac ticket #17573):

sage: groups.matrix.GL(4,2).structure_description()
'A8'

51

https://trac.sagemath.org/17573
https://trac.sagemath.org/17573

Groups, Release 9.8

52 Chapter 8. Miscellaneous generic functions

CHAPTER

NINE

FREE GROUPS

Free groups and finitely presented groups are implemented as a wrapper over the corresponding GAP objects.

A free group can be created by giving the number of generators, or their names. It is also possible to create indexed
generators:

sage: G.<x,y,z> = FreeGroup(); G
Free Group on generators {x, y, z}
sage: FreeGroup(3)
Free Group on generators {x0, x1, x2}
sage: FreeGroup('a,b,c')
Free Group on generators {a, b, c}
sage: FreeGroup(3,'t')
Free Group on generators {t0, t1, t2}

The elements can be created by operating with the generators, or by passing a list with the indices of the letters to the
group:

EXAMPLES:

sage: G.<a,b,c> = FreeGroup()
sage: a*b*c*a
a*b*c*a
sage: G([1,2,3,1])
a*b*c*a
sage: a * b / c * b^2
a*b*c^-1*b^2
sage: G([1,1,2,-1,-3,2])
a^2*b*a^-1*c^-1*b

You can use call syntax to replace the generators with a set of arbitrary ring elements:

sage: g = a * b / c * b^2
sage: g(1,2,3)
8/3
sage: M1 = identity_matrix(2)
sage: M2 = matrix([[1,1],[0,1]])
sage: M3 = matrix([[0,1],[1,0]])
sage: g([M1, M2, M3])
[1 3]
[1 2]

AUTHORS:

53

Groups, Release 9.8

• Miguel Angel Marco Buzunariz

• Volker Braun

sage.groups.free_group.FreeGroup(n=None, names='x', index_set=None, abelian=False, **kwds)
Construct a Free Group.

INPUT:

• n – integer or None (default). The number of generators. If not specified the names are counted.

• names – string or list/tuple/iterable of strings (default: 'x'). The generator names or name prefix.

• index_set – (optional) an index set for the generators; if specified then the optional keyword abelian
can be used

• abelian – (default: False) whether to construct a free abelian group or a free group

Note: If you want to create a free group, it is currently preferential to use Groups().free(...) as that does
not load GAP.

EXAMPLES:

sage: G.<a,b> = FreeGroup(); G
Free Group on generators {a, b}
sage: H = FreeGroup('a, b')
sage: G is H
True
sage: FreeGroup(0)
Free Group on generators {}

The entry can be either a string with the names of the generators, or the number of generators and the prefix of
the names to be given. The default prefix is 'x'

sage: FreeGroup(3)
Free Group on generators {x0, x1, x2}
sage: FreeGroup(3, 'g')
Free Group on generators {g0, g1, g2}
sage: FreeGroup()
Free Group on generators {x}

We give two examples using the index_set option:

sage: FreeGroup(index_set=ZZ)
Free group indexed by Integer Ring
sage: FreeGroup(index_set=ZZ, abelian=True)
Free abelian group indexed by Integer Ring

class sage.groups.free_group.FreeGroupElement(parent, x)
Bases: ElementLibGAP

A wrapper of GAP’s Free Group elements.

INPUT:

• x – something that determines the group element. Either a GapElement or the Tietze list (see Tietze())
of the group element.

• parent – the parent FreeGroup.

54 Chapter 9. Free Groups

../../../../../../html/en/reference/libs/sage/libs/gap/element.html#sage.libs.gap.element.GapElement

Groups, Release 9.8

EXAMPLES:

sage: G = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: y = G([2, 2, 2, 1, -2, -2, -2])
sage: y
b^3*a*b^-3
sage: x*y
a*b*a^-1*b^2*a*b^-3
sage: y*x
b^3*a*b^-3*a*b*a^-1*b^-1
sage: x^(-1)
b*a*b^-1*a^-1
sage: x == x*y*y^(-1)
True

Tietze()

Return the Tietze list of the element.

The Tietze list of a word is a list of integers that represent the letters in the word. A positive integer
𝑖 represents the letter corresponding to the 𝑖-th generator of the group. Negative integers represent the
inverses of generators.

OUTPUT:

A tuple of integers.

EXAMPLES:

sage: G.<a,b> = FreeGroup()
sage: a.Tietze()
(1,)
sage: x = a^2 * b^(-3) * a^(-2)
sage: x.Tietze()
(1, 1, -2, -2, -2, -1, -1)

fox_derivative(gen, im_gens=None, ring=None)
Return the Fox derivative of self with respect to a given generator gen of the free group.

Let 𝐹 be a free group with free generators 𝑥1, 𝑥2, . . . , 𝑥𝑛. Let 𝑗 ∈ {1, 2, . . . , 𝑛}. Let 𝑎1, 𝑎2, . . . , 𝑎𝑛
be 𝑛 invertible elements of a ring 𝐴. Let 𝑎 : 𝐹 → 𝐴× be the (unique) homomorphism from 𝐹 to the
multiplicative group of invertible elements of 𝐴 which sends each 𝑥𝑖 to 𝑎𝑖. Then, we can define a map
𝜕𝑗 : 𝐹 → 𝐴 by the requirements that

𝜕𝑗(𝑥𝑖) = 𝛿𝑖,𝑗 for all indices 𝑖 and 𝑗

and

𝜕𝑗(𝑢𝑣) = 𝜕𝑗(𝑢) + 𝑎(𝑢)𝜕𝑗(𝑣) for all 𝑢, 𝑣 ∈ 𝐹.

This map 𝜕𝑗 is called the 𝑗-th Fox derivative on 𝐹 induced by (𝑎1, 𝑎2, . . . , 𝑎𝑛).

The most well-known case is when 𝐴 is the group ring Z[𝐹] of 𝐹 over Z, and when 𝑎𝑖 = 𝑥𝑖 ∈ 𝐴. In this
case, 𝜕𝑗 is simply called the 𝑗-th Fox derivative on 𝐹 .

INPUT:

55

Groups, Release 9.8

• gen – the generator with respect to which the derivative will be computed. If this is 𝑥𝑗 , then the method
will return 𝜕𝑗 .

• im_gens (optional) – the images of the generators (given as a list or iterable). This is the list
(𝑎1, 𝑎2, . . . , 𝑎𝑛). If not provided, it defaults to (𝑥1, 𝑥2, . . . , 𝑥𝑛) in the group ring Z[𝐹].

• ring (optional) – the ring in which the elements of the list (𝑎1, 𝑎2, . . . , 𝑎𝑛) lie. If not provided, this
ring is inferred from these elements.

OUTPUT:

The fox derivative of self with respect to gen (induced by im_gens). By default, it is an element of
the group algebra with integer coefficients. If im_gens are provided, the result lives in the algebra where
im_gens live.

EXAMPLES:

sage: G = FreeGroup(5)
sage: G.inject_variables()
Defining x0, x1, x2, x3, x4
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x0)
-x0^-1 + x0^-1*x1 - x0^-1*x1*x0*x2*x0^-1
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x1)
x0^-1
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x2)
x0^-1*x1*x0
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x3)
0

If im_gens is given, the images of the generators are mapped to them:

sage: F = FreeGroup(3)
sage: a = F([2,1,3,-1,2])
sage: a.fox_derivative(F([1]))
x1 - x1*x0*x2*x0^-1
sage: R.<t> = LaurentPolynomialRing(ZZ)
sage: a.fox_derivative(F([1]),[t,t,t])
t - t^2
sage: S.<t1,t2,t3> = LaurentPolynomialRing(ZZ)
sage: a.fox_derivative(F([1]),[t1,t2,t3])
-t2*t3 + t2
sage: R.<x,y,z> = QQ[]
sage: a.fox_derivative(F([1]),[x,y,z])
-y*z + y
sage: a.inverse().fox_derivative(F([1]),[x,y,z])
(z - 1)/(y*z)

The optional parameter ring determines the ring 𝐴:

sage: u = a.fox_derivative(F([1]), [1,2,3], ring=QQ)
sage: u
-4
sage: parent(u)
Rational Field
sage: u = a.fox_derivative(F([1]), [1,2,3], ring=R)
sage: u

(continues on next page)

56 Chapter 9. Free Groups

Groups, Release 9.8

(continued from previous page)

-4
sage: parent(u)
Multivariate Polynomial Ring in x, y, z over Rational Field

syllables()

Return the syllables of the word.

Consider a free group element 𝑔 = 𝑥𝑛1
1 𝑥𝑛2

2 · · ·𝑥𝑛𝑘

𝑘 . The uniquely-determined subwords 𝑥𝑒𝑖𝑖 consisting only
of powers of a single generator are called the syllables of 𝑔.

OUTPUT:

The tuple of syllables. Each syllable is given as a pair (𝑥𝑖, 𝑒𝑖) consisting of a generator and a non-zero
integer.

EXAMPLES:

sage: G.<a,b> = FreeGroup()
sage: w = a^2 * b^-1 * a^3
sage: w.syllables()
((a, 2), (b, -1), (a, 3))

class sage.groups.free_group.FreeGroup_class(generator_names, libgap_free_group=None)
Bases: UniqueRepresentation, Group, ParentLibGAP

A class that wraps GAP’s FreeGroup

See FreeGroup() for details.

Element

alias of FreeGroupElement

abelian_invariants()

Return the Abelian invariants of self.

The Abelian invariants are given by a list of integers 𝑖1 . . . 𝑖𝑗 , such that the abelianization of the group is
isomorphic to

Z/(𝑖1) × · · · × Z/(𝑖𝑗)

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: F.abelian_invariants()
(0, 0)

quotient(relations, **kwds)
Return the quotient of self by the normal subgroup generated by the given elements.

This quotient is a finitely presented groups with the same generators as self, and relations given by the
elements of relations.

INPUT:

• relations – A list/tuple/iterable with the elements of the free group.

• further named arguments, that are passed to the constructor of a finitely presented group.

57

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

OUTPUT:

A finitely presented group, with generators corresponding to the generators of the free group, and relations
corresponding to the elements in relations.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: F.quotient([a*b^2*a, b^3])
Finitely presented group < a, b | a*b^2*a, b^3 >

Division is shorthand for quotient()

sage: F / [a*b^2*a, b^3]
Finitely presented group < a, b | a*b^2*a, b^3 >

Relations are converted to the free group, even if they are not elements of it (if possible)

sage: F1.<a,b,c,d> = FreeGroup()
sage: F2.<a,b> = FreeGroup()
sage: r = a*b/a
sage: r.parent()
Free Group on generators {a, b}
sage: F1/[r]
Finitely presented group < a, b, c, d | a*b*a^-1 >

rank()

Return the number of generators of self.

Alias for ngens().

OUTPUT:

Integer.

EXAMPLES:

sage: G = FreeGroup('a, b'); G
Free Group on generators {a, b}
sage: G.rank()
2
sage: H = FreeGroup(3, 'x')
sage: H
Free Group on generators {x0, x1, x2}
sage: H.rank()
3

sage.groups.free_group.is_FreeGroup(x)
Test whether x is a FreeGroup_class.

INPUT:

• x – anything.

OUTPUT:

Boolean.

EXAMPLES:

58 Chapter 9. Free Groups

Groups, Release 9.8

sage: from sage.groups.free_group import is_FreeGroup
sage: is_FreeGroup('a string')
False
sage: is_FreeGroup(FreeGroup(0))
True
sage: is_FreeGroup(FreeGroup(index_set=ZZ))
True

sage.groups.free_group.wrap_FreeGroup(libgap_free_group)
Wrap a LibGAP free group.

This function changes the comparison method of libgap_free_group to comparison by Python id. If
you want to put the LibGAP free group into a container (set, dict) then you should understand the implica-
tions of _set_compare_by_id(). To be safe, it is recommended that you just work with the resulting Sage
FreeGroup_class.

INPUT:

• libgap_free_group – a LibGAP free group.

OUTPUT:

A Sage FreeGroup_class.

EXAMPLES:

First construct a LibGAP free group:

sage: F = libgap.FreeGroup(['a', 'b'])
sage: type(F)
<class 'sage.libs.gap.element.GapElement'>

Now wrap it:

sage: from sage.groups.free_group import wrap_FreeGroup
sage: wrap_FreeGroup(F)
Free Group on generators {a, b}

59

Groups, Release 9.8

60 Chapter 9. Free Groups

CHAPTER

TEN

FINITELY PRESENTED GROUPS

Finitely presented groups are constructed as quotients of free_group:

sage: F.<a,b,c> = FreeGroup()
sage: G = F / [a^2, b^2, c^2, a*b*c*a*b*c]
sage: G
Finitely presented group < a, b, c | a^2, b^2, c^2, (a*b*c)^2 >

One can create their elements by multiplying the generators or by specifying a Tietze list (see Tietze()) as in the case
of free groups:

sage: G.gen(0) * G.gen(1)
a*b
sage: G([1,2,-1])
a*b*a^-1
sage: a.parent()
Free Group on generators {a, b, c}
sage: G.inject_variables()
Defining a, b, c
sage: a.parent()
Finitely presented group < a, b, c | a^2, b^2, c^2, (a*b*c)^2 >

Notice that, even if they are represented in the same way, the elements of a finitely presented group and the elements
of the corresponding free group are not the same thing. However, they can be converted from one parent to the other:

sage: F.<a,b,c> = FreeGroup()
sage: G = F / [a^2,b^2,c^2,a*b*c*a*b*c]
sage: F([1])
a
sage: G([1])
a
sage: F([1]) is G([1])
False
sage: F([1]) == G([1])
False
sage: G(a*b/c)
a*b*c^-1
sage: F(G(a*b/c))
a*b*c^-1

Finitely presented groups are implemented via GAP. You can use the gap() method to access the underlying LibGAP
object:

61

Groups, Release 9.8

sage: G = FreeGroup(2)
sage: G.inject_variables()
Defining x0, x1
sage: H = G / (x0^2, (x0*x1)^2, x1^2)
sage: H.gap()
<fp group on the generators [x0, x1]>

This can be useful, for example, to use GAP functions that are not yet wrapped in Sage:

sage: H.gap().LowerCentralSeries()
[Group(<fp, no generators known>), Group(<fp, no generators known>)]

The same holds for the group elements:

sage: G = FreeGroup(2)
sage: H = G / (G([1, 1]), G([2, 2, 2]), G([1, 2, -1, -2])); H
Finitely presented group < x0, x1 | x0^2, x1^3, x0*x1*x0^-1*x1^-1 >
sage: a = H([1])
sage: a
x0
sage: a.gap()
x0
sage: a.gap().Order()
2
sage: type(_) # note that the above output is not a Sage integer
<class 'sage.libs.gap.element.GapElement_Integer'>

You can use call syntax to replace the generators with a set of arbitrary ring elements. For example, take the free abelian
group obtained by modding out the commutator subgroup of the free group:

sage: G = FreeGroup(2)
sage: G_ab = G / [G([1, 2, -1, -2])]; G_ab
Finitely presented group < x0, x1 | x0*x1*x0^-1*x1^-1 >
sage: a,b = G_ab.gens()
sage: g = a * b
sage: M1 = matrix([[1,0],[0,2]])
sage: M2 = matrix([[0,1],[1,0]])
sage: g(3, 5)
15
sage: g(M1, M1)
[1 0]
[0 4]
sage: M1*M2 == M2*M1 # matrices do not commute
False
sage: g(M1, M2)
Traceback (most recent call last):
...
ValueError: the values do not satisfy all relations of the group

Warning: Some methods are not guaranteed to finish since the word problem for finitely presented groups is, in
general, undecidable. In those cases the process may run until the available memory is exhausted.

62 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

REFERENCES:

• Wikipedia article Presentation_of_a_group

• Wikipedia article Word_problem_for_groups

AUTHOR:

• Miguel Angel Marco Buzunariz

class sage.groups.finitely_presented.FinitelyPresentedGroup(free_group, relations,
category=None)

Bases: GroupMixinLibGAP, UniqueRepresentation, Group, ParentLibGAP

A class that wraps GAP’s Finitely Presented Groups.

Warning: You should use quotient() to construct finitely presented groups as quotients of free groups.

EXAMPLES:

sage: G.<a,b> = FreeGroup()
sage: H = G / [a, b^3]
sage: H
Finitely presented group < a, b | a, b^3 >
sage: H.gens()
(a, b)

sage: F.<a,b> = FreeGroup('a, b')
sage: J = F / (F([1]), F([2, 2, 2]))
sage: J is H
True

sage: G = FreeGroup(2)
sage: H = G / (G([1, 1]), G([2, 2, 2]))
sage: H.gens()
(x0, x1)
sage: H.gen(0)
x0
sage: H.ngens()
2
sage: H.gap()
<fp group on the generators [x0, x1]>
sage: type(_)
<class 'sage.libs.gap.element.GapElement'>

Element

alias of FinitelyPresentedGroupElement

abelian_invariants()

Return the abelian invariants of self.

The abelian invariants are given by a list of integers (𝑖1, . . . , 𝑖𝑗), such that the abelianization of the group
is isomorphic to Z/(𝑖1) × · · · × Z/(𝑖𝑗).

EXAMPLES:

63

https://en.wikipedia.org/wiki/Presentation_of_a_group
https://en.wikipedia.org/wiki/Word_problem_for_groups
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

sage: G = FreeGroup(4, 'g')
sage: G.inject_variables()
Defining g0, g1, g2, g3
sage: H = G.quotient([g1^2, g2*g1*g2^(-1)*g1^(-1), g1*g3^(-2), g0^4])
sage: H.abelian_invariants()
(0, 4, 4)

ALGORITHM:

Uses GAP.

alexander_matrix(im_gens=None)
Return the Alexander matrix of the group.

This matrix is given by the fox derivatives of the relations with respect to the generators.

• im_gens – (optional) the images of the generators

OUTPUT:

A matrix with coefficients in the group algebra. If im_gens is given, the coefficients will live in the same
algebra as the given values. The result depends on the (fixed) choice of presentation.

EXAMPLES:

sage: G.<a,b,c> = FreeGroup()
sage: H = G.quotient([a*b/a/b, a*c/a/c, c*b/c/b])
sage: H.alexander_matrix()
[1 - a*b*a^-1 a - a*b*a^-1*b^-1 0]
[1 - a*c*a^-1 0 a - a*c*a^-1*c^-1]
[0 c - c*b*c^-1*b^-1 1 - c*b*c^-1]

If we introduce the images of the generators, we obtain the result in the corresponding algebra.

sage: G.<a,b,c,d,e> = FreeGroup()
sage: H = G.quotient([a*b/a/b, a*c/a/c, a*d/a/d, b*c*d/(c*d*b), b*c*d/(d*b*c)])
sage: H.alexander_matrix()
[1 - a*b*a^-1 a - a*b*a^-1*b^-1 ␣
→˓0 0 0]
[1 - a*c*a^-1 0 a - a*c*a^-1*c^-
→˓1 0 0]
[1 - a*d*a^-1 0 ␣
→˓0 a - a*d*a^-1*d^-1 0]
[0 1 - b*c*d*b^-1 b - b*c*d*b^-1*d^-1*c^-
→˓1 b*c - b*c*d*b^-1*d^-1 0]
[0 1 - b*c*d*c^-1*b^-1 b - b*c*d*c^-
→˓1 b*c - b*c*d*c^-1*b^-1*d^-1 0]
sage: R.<t1,t2,t3,t4> = LaurentPolynomialRing(ZZ)
sage: H.alexander_matrix([t1,t2,t3,t4])
[-t2 + 1 t1 - 1 0 0 0]
[-t3 + 1 0 t1 - 1 0 0]
[-t4 + 1 0 0 t1 - 1 0]
[0 -t3*t4 + 1 t2 - 1 t2*t3 - t3 0]
[0 -t4 + 1 -t2*t4 + t2 t2*t3 - 1 0]

as_permutation_group(limit=4096000)
Return an isomorphic permutation group.

64 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

The generators of the resulting group correspond to the images by the isomorphism of the generators of the
given group.

INPUT:

• limit – integer (default: 4096000). The maximal number of cosets before the computation is aborted.

OUTPUT:

A Sage PermutationGroup(). If the number of cosets exceeds the given limit, a ValueError is re-
turned.

EXAMPLES:

sage: G.<a,b> = FreeGroup()
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.as_permutation_group()
Permutation Group with generators [(1,2)(3,5)(4,6), (1,3,4)(2,5,6)]

sage: G.<a,b> = FreeGroup()
sage: H = G / [a^3*b]
sage: H.as_permutation_group(limit=1000)
Traceback (most recent call last):
...
ValueError: Coset enumeration exceeded limit, is the group finite?

ALGORITHM:

Uses GAP’s coset enumeration on the trivial subgroup.

Warning: This is in general not a decidable problem (in fact, it is not even possible to check if the
group is finite or not). If the group is infinite, or too big, you should be prepared for a long computation
that consumes all the memory without finishing if you do not set a sensible limit.

cardinality(limit=4096000)
Compute the cardinality of self.

INPUT:

• limit – integer (default: 4096000). The maximal number of cosets before the computation is aborted.

OUTPUT:

Integer or Infinity. The number of elements in the group.

EXAMPLES:

sage: G.<a,b> = FreeGroup('a, b')
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.cardinality()
6

sage: F.<a,b,c> = FreeGroup()
sage: J = F / (F([1]), F([2, 2, 2]))
sage: J.cardinality()
+Infinity

ALGORITHM:

65

Groups, Release 9.8

Uses GAP.

Warning: This is in general not a decidable problem, so it is not guaranteed to give an answer. If
the group is infinite, or too big, you should be prepared for a long computation that consumes all the
memory without finishing if you do not set a sensible limit.

direct_product(H, reduced=False, new_names=True)
Return the direct product of self with finitely presented group H.

Calls GAP function DirectProduct, which returns the direct product of a list of groups of any represen-
tation.

From [Joh1990] (p. 45, proposition 4): If 𝐺, 𝐻 are groups presented by ⟨𝑋 | 𝑅⟩ and ⟨𝑌 | 𝑆⟩ respec-
tively, then their direct product has the presentation ⟨𝑋,𝑌 | 𝑅,𝑆, [𝑋,𝑌]⟩ where [𝑋,𝑌] denotes the set of
commutators {𝑥−1𝑦−1𝑥𝑦 | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }.

INPUT:

• H – a finitely presented group

• reduced – (default: False) boolean; if True, then attempt to reduce the presentation of the product
group

• new_names – (default: True) boolean; If True, then lexicographical variable names are assigned to
the generators of the group to be returned. If False, the group to be returned keeps the generator
names of the two groups forming the direct product. Note that one cannot ask to reduce the output and
ask to keep the old variable names, as they may change meaning in the output group if its presentation
is reduced.

OUTPUT:

The direct product of self with H as a finitely presented group.

EXAMPLES:

sage: G = FreeGroup()
sage: C12 = (G / [G([1,1,1,1])]).direct_product(G / [G([1,1,1])]); C12
Finitely presented group < a, b | a^4, b^3, a^-1*b^-1*a*b >
sage: C12.order(), C12.as_permutation_group().is_cyclic()
(12, True)
sage: klein = (G / [G([1,1])]).direct_product(G / [G([1,1])]); klein
Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
sage: klein.order(), klein.as_permutation_group().is_cyclic()
(4, False)

We can keep the variable names from self and H to examine how new relations are formed:

sage: F = FreeGroup("a"); G = FreeGroup("g")
sage: X = G / [G.0^12]; A = F / [F.0^6]
sage: X.direct_product(A, new_names=False)
Finitely presented group < g, a | g^12, a^6, g^-1*a^-1*g*a >
sage: A.direct_product(X, new_names=False)
Finitely presented group < a, g | a^6, g^12, a^-1*g^-1*a*g >

Or we can attempt to reduce the output group presentation:

66 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

sage: F = FreeGroup("a"); G = FreeGroup("g")
sage: X = G / [G.0]; A = F / [F.0]
sage: X.direct_product(A, new_names=True)
Finitely presented group < a, b | a, b, a^-1*b^-1*a*b >
sage: X.direct_product(A, reduced=True, new_names=True)
Finitely presented group < | >

But we cannot do both:

sage: K = FreeGroup(['a','b'])
sage: D = K / [K.0^5, K.1^8]
sage: D.direct_product(D, reduced=True, new_names=False)
Traceback (most recent call last):
...
ValueError: cannot reduce output and keep old variable names

AUTHORS:

• Davis Shurbert (2013-07-20): initial version

epimorphisms(H)

Return the epimorphisms from 𝑠𝑒𝑙𝑓 to 𝐻 , up to automorphism of 𝐻 .

INPUT:

• 𝐻 – Another group

EXAMPLES:

sage: F = FreeGroup(3)
sage: G = F / [F([1, 2, 3, 1, 2, 3]), F([1, 1, 1])]
sage: H = AlternatingGroup(3)
sage: G.epimorphisms(H)
[Generic morphism:

From: Finitely presented group < x0, x1, x2 | x0*x1*x2*x0*x1*x2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 |--> ()

x1 |--> (1,3,2)
x2 |--> (1,2,3),

Generic morphism:
From: Finitely presented group < x0, x1, x2 | x0*x1*x2*x0*x1*x2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 |--> (1,3,2)

x1 |--> ()
x2 |--> (1,2,3),

Generic morphism:
From: Finitely presented group < x0, x1, x2 | x0*x1*x2*x0*x1*x2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 |--> (1,3,2)

x1 |--> (1,2,3)
x2 |--> (),

Generic morphism:
From: Finitely presented group < x0, x1, x2 | x0*x1*x2*x0*x1*x2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 |--> (1,2,3)

(continues on next page)

67

Groups, Release 9.8

(continued from previous page)

x1 |--> (1,2,3)
x2 |--> (1,2,3)]

ALGORITHM:

Uses libgap’s GQuotients function.

free_group()

Return the free group (without relations).

OUTPUT:

A FreeGroup().

EXAMPLES:

sage: G.<a,b,c> = FreeGroup()
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.free_group()
Free Group on generators {a, b, c}
sage: H.free_group() is G
True

order(limit=4096000)
Compute the cardinality of self.

INPUT:

• limit – integer (default: 4096000). The maximal number of cosets before the computation is aborted.

OUTPUT:

Integer or Infinity. The number of elements in the group.

EXAMPLES:

sage: G.<a,b> = FreeGroup('a, b')
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.cardinality()
6

sage: F.<a,b,c> = FreeGroup()
sage: J = F / (F([1]), F([2, 2, 2]))
sage: J.cardinality()
+Infinity

ALGORITHM:

Uses GAP.

Warning: This is in general not a decidable problem, so it is not guaranteed to give an answer. If
the group is infinite, or too big, you should be prepared for a long computation that consumes all the
memory without finishing if you do not set a sensible limit.

relations()

Return the relations of the group.

68 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

OUTPUT:

The relations as a tuple of elements of free_group().

EXAMPLES:

sage: F = FreeGroup(5, 'x')
sage: F.inject_variables()
Defining x0, x1, x2, x3, x4
sage: G = F.quotient([x0*x2, x3*x1*x3, x2*x1*x2])
sage: G.relations()
(x0*x2, x3*x1*x3, x2*x1*x2)
sage: all(rel in F for rel in G.relations())
True

rewriting_system()

Return the rewriting system corresponding to the finitely presented group. This rewriting system can be
used to reduce words with respect to the relations.

If the rewriting system is transformed into a confluent one, the reduction process will give as a result the
(unique) reduced form of an element.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F / [a^2,b^3,(a*b/a)^3,b*a*b*a]
sage: k = G.rewriting_system()
sage: k
Rewriting system of Finitely presented group < a, b | a^2, b^3, a*b^3*a^-1,␣
→˓b*a*b*a >
with rules:

a^2 ---> 1
b^3 ---> 1
b*a*b*a ---> 1
a*b^3*a^-1 ---> 1

sage: G([1,1,2,2,2])
a^2*b^3
sage: k.reduce(G([1,1,2,2,2]))
1
sage: k.reduce(G([2,2,1]))
b^2*a
sage: k.make_confluent()
sage: k.reduce(G([2,2,1]))
a*b

semidirect_product(H, hom, check=True, reduced=False)
The semidirect product of self with H via hom.

If there exists a homomorphism 𝜑 from a group 𝐺 to the automorphism group of a group 𝐻 , then we can
define the semidirect product of 𝐺 with 𝐻 via 𝜑 as the Cartesian product of 𝐺 and 𝐻 with the operation

(𝑔1, ℎ1)(𝑔2, ℎ2) = (𝑔1𝑔2, 𝜑(𝑔2)(ℎ1)ℎ2).

INPUT:

• H – Finitely presented group which is implicitly acted on by self and can be naturally embedded as a
normal subgroup of the semidirect product.

69

Groups, Release 9.8

• hom – Homomorphism from self to the automorphism group of H. Given as a pair, with generators
of self in the first slot and the images of the corresponding generators in the second. These images
must be automorphisms of H, given again as a pair of generators and images.

• check – Boolean (default True). If False the defining homomorphism and automorphism images
are not tested for validity. This test can be costly with large groups, so it can be bypassed if the user is
confident that his morphisms are valid.

• reduced – Boolean (default False). If True then the method attempts to reduce the presentation of
the output group.

OUTPUT:

The semidirect product of self with H via hom as a finitely presented group. See
PermutationGroup_generic.semidirect_product for a more in depth explanation of a semidirect
product.

AUTHORS:

• Davis Shurbert (8-1-2013)

EXAMPLES:

Group of order 12 as two isomorphic semidirect products:

sage: D4 = groups.presentation.Dihedral(4)
sage: C3 = groups.presentation.Cyclic(3)
sage: alpha1 = ([C3.gen(0)],[C3.gen(0)])
sage: alpha2 = ([C3.gen(0)],[C3([1,1])])
sage: S1 = D4.semidirect_product(C3, ([D4.gen(1), D4.gen(0)],[alpha1,alpha2]))
sage: C2 = groups.presentation.Cyclic(2)
sage: Q = groups.presentation.DiCyclic(3)
sage: a = Q([1]); b = Q([-2])
sage: alpha = (Q.gens(), [a,b])
sage: S2 = C2.semidirect_product(Q, ([C2.0],[alpha]))
sage: S1.is_isomorphic(S2)
#I Forcing finiteness test
True

Dihedral groups can be constructed as semidirect products of cyclic groups:

sage: C2 = groups.presentation.Cyclic(2)
sage: C8 = groups.presentation.Cyclic(8)
sage: hom = (C2.gens(), [([C8([1])], [C8([-1])])])
sage: D = C2.semidirect_product(C8, hom)
sage: D.as_permutation_group().is_isomorphic(DihedralGroup(8))
True

You can attempt to reduce the presentation of the output group:

sage: D = C2.semidirect_product(C8, hom); D
Finitely presented group < a, b | a^2, b^8, a^-1*b*a*b >
sage: D = C2.semidirect_product(C8, hom, reduced=True); D
Finitely presented group < a, b | a^2, a*b*a*b, b^8 >

sage: C3 = groups.presentation.Cyclic(3)
sage: C4 = groups.presentation.Cyclic(4)
sage: hom = (C3.gens(), [(C4.gens(), C4.gens())])

(continues on next page)

70 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

(continued from previous page)

sage: C3.semidirect_product(C4, hom)
Finitely presented group < a, b | a^3, b^4, a^-1*b*a*b^-1 >
sage: D = C3.semidirect_product(C4, hom, reduced=True); D
Finitely presented group < a, b | a^3, b^4, a^-1*b*a*b^-1 >
sage: D.as_permutation_group().is_cyclic()
True

You can turn off the checks for the validity of the input morphisms. This check is expensive but behavior
is unpredictable if inputs are invalid and are not caught by these tests:

sage: C5 = groups.presentation.Cyclic(5)
sage: C12 = groups.presentation.Cyclic(12)
sage: hom = (C5.gens(), [(C12.gens(), C12.gens())])
sage: sp = C5.semidirect_product(C12, hom, check=False); sp
Finitely presented group < a, b | a^5, b^12, a^-1*b*a*b^-1 >
sage: sp.as_permutation_group().is_cyclic(), sp.order()
(True, 60)

simplification_isomorphism()

Return an isomorphism from self to a finitely presented group with a (hopefully) simpler presentation.

EXAMPLES:

sage: G.<a,b,c> = FreeGroup()
sage: H = G / [a*b*c, a*b^2, c*b/c^2]
sage: I = H.simplification_isomorphism()
sage: I
Generic morphism:
From: Finitely presented group < a, b, c | a*b*c, a*b^2, c*b*c^-2 >
To: Finitely presented group < b | >
Defn: a |--> b^-2

b |--> b
c |--> b

sage: I(a)
b^-2
sage: I(b)
b
sage: I(c)
b

ALGORITHM:

Uses GAP.

simplified()

Return an isomorphic group with a (hopefully) simpler presentation.

OUTPUT:

A new finitely presented group. Use simplification_isomorphism() if you want to know the isomor-
phism.

EXAMPLES:

71

Groups, Release 9.8

sage: G.<x,y> = FreeGroup()
sage: H = G / [x ^5, y ^4, y*x*y^3*x ^3]
sage: H
Finitely presented group < x, y | x^5, y^4, y*x*y^3*x^3 >
sage: H.simplified()
Finitely presented group < x, y | y^4, y*x*y^-1*x^-2, x^5 >

A more complicate example:

sage: G.<e0, e1, e2, e3, e4, e5, e6, e7, e8, e9> = FreeGroup()
sage: rels = [e6, e5, e3, e9, e4*e7^-1*e6, e9*e7^-1*e0,
....: e0*e1^-1*e2, e5*e1^-1*e8, e4*e3^-1*e8, e2]
sage: H = G.quotient(rels); H
Finitely presented group < e0, e1, e2, e3, e4, e5, e6, e7, e8, e9 |
e6, e5, e3, e9, e4*e7^-1*e6, e9*e7^-1*e0, e0*e1^-1*e2, e5*e1^-1*e8, e4*e3^-1*e8,
→˓ e2 >
sage: H.simplified()
Finitely presented group < e0 | e0^2 >

structure_description(G, latex=False)
Return a string that tries to describe the structure of G.

This methods wraps GAP’s StructureDescription method.

For full details, including the form of the returned string and the algorithm to build it, see GAP’s documen-
tation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

• string

Warning: From GAP’s documentation: The string returned by StructureDescription is not an
isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic
groups in different representations can produce different strings.

EXAMPLES:

sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()
'C6'
sage: G.structure_description(latex=True)
'C_{6}'
sage: G2 = G.direct_product(G, maps=False)
sage: LatexExpr(G2.structure_description(latex=True))
C_{6} \times C_{6}

This method is mainly intended for small groups or groups with few normal subgroups. Even then there
are some surprises:

72 Chapter 10. Finitely Presented Groups

https://www.gap-system.org/Manuals/doc/ref/chap39.html
https://www.gap-system.org/Manuals/doc/ref/chap39.html

Groups, Release 9.8

sage: D3 = DihedralGroup(3)
sage: D3.structure_description()
'S3'

We use the Sage notation for the degree of dihedral groups:

sage: D4 = DihedralGroup(4)
sage: D4.structure_description()
'D4'

Works for finitely presented groups (trac ticket #17573):

sage: F.<x, y> = FreeGroup()
sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description()
'C7'

And matrix groups (trac ticket #17573):

sage: groups.matrix.GL(4,2).structure_description()
'A8'

class sage.groups.finitely_presented.FinitelyPresentedGroupElement(parent, x, check=True)
Bases: FreeGroupElement

A wrapper of GAP’s Finitely Presented Group elements.

The elements are created by passing the Tietze list that determines them.

EXAMPLES:

sage: G = FreeGroup('a, b')
sage: H = G / [G([1]), G([2, 2, 2])]
sage: H([1, 2, 1, -1])
a*b
sage: H([1, 2, 1, -2])
a*b*a*b^-1
sage: x = H([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: y = H([2, 2, 2, 1, -2, -2, -2])
sage: y
b^3*a*b^-3
sage: x*y
a*b*a^-1*b^2*a*b^-3
sage: x^(-1)
b*a*b^-1*a^-1

Tietze()

Return the Tietze list of the element.

The Tietze list of a word is a list of integers that represent the letters in the word. A positive integer
𝑖 represents the letter corresponding to the 𝑖-th generator of the group. Negative integers represent the
inverses of generators.

OUTPUT:

73

https://trac.sagemath.org/17573
https://trac.sagemath.org/17573

Groups, Release 9.8

A tuple of integers.

EXAMPLES:

sage: G = FreeGroup('a, b')
sage: H = G / (G([1]), G([2, 2, 2]))
sage: H.inject_variables()
Defining a, b
sage: a.Tietze()
(1,)
sage: x = a^2*b^(-3)*a^(-2)
sage: x.Tietze()
(1, 1, -2, -2, -2, -1, -1)

class sage.groups.finitely_presented.GroupMorphismWithGensImages

Bases: SetMorphism

Class used for morphisms from finitely presented groups to other groups. It just adds the images of the generators
at the end of the representation.

EXAMPLES:

sage: F = FreeGroup(3)
sage: G = F / [F([1, 2, 3, 1, 2, 3]), F([1, 1, 1])]
sage: H = AlternatingGroup(3)
sage: HS = G.Hom(H)
sage: from sage.groups.finitely_presented import GroupMorphismWithGensImages
sage: GroupMorphismWithGensImages(HS, lambda a: H.one())
Generic morphism:
From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 |--> ()

x1 |--> ()
x2 |--> ()

class sage.groups.finitely_presented.RewritingSystem(G)

Bases: object

A class that wraps GAP’s rewriting systems.

A rewriting system is a set of rules that allow to transform one word in the group to an equivalent one.

If the rewriting system is confluent, then the transformed word is a unique reduced form of the element of the
group.

Warning: Note that the process of making a rewriting system confluent might not end.

INPUT:

• G – a group

REFERENCES:

• Wikipedia article Knuth-Bendix_completion_algorithm

EXAMPLES:

74 Chapter 10. Finitely Presented Groups

../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.SetMorphism
https://en.wikipedia.org/wiki/Knuth-Bendix_completion_algorithm

Groups, Release 9.8

sage: F.<a,b> = FreeGroup()
sage: G = F / [a*b/a/b]
sage: k = G.rewriting_system()
sage: k
Rewriting system of Finitely presented group < a, b | a*b*a^-1*b^-1 >
with rules:

a*b*a^-1*b^-1 ---> 1

sage: k.reduce(a*b*a*b)
(a*b)^2
sage: k.make_confluent()
sage: k
Rewriting system of Finitely presented group < a, b | a*b*a^-1*b^-1 >
with rules:

b^-1*a^-1 ---> a^-1*b^-1
b^-1*a ---> a*b^-1
b*a^-1 ---> a^-1*b
b*a ---> a*b

sage: k.reduce(a*b*a*b)
a^2*b^2

Todo:

• Include support for different orderings (currently only shortlex is used).

• Include the GAP package kbmag for more functionalities, including automatic structures and faster com-
piled functions.

AUTHORS:

• Miguel Angel Marco Buzunariz (2013-12-16)

finitely_presented_group()

The finitely presented group where the rewriting system is defined.

EXAMPLES:

sage: F = FreeGroup(3)
sage: G = F / [[1,2,3], [-1,-2,-3], [1,1], [2,2]]
sage: k = G.rewriting_system()
sage: k.make_confluent()
sage: k
Rewriting system of Finitely presented group < x0, x1, x2 | x0*x1*x2, x0^-1*x1^-
→˓1*x2^-1, x0^2, x1^2 >
with rules:

x0^-1 ---> x0
x1^-1 ---> x1
x2^-1 ---> x2
x0^2 ---> 1
x0*x1 ---> x2
x0*x2 ---> x1
x1*x0 ---> x2
x1^2 ---> 1

(continues on next page)

75

Groups, Release 9.8

(continued from previous page)

x1*x2 ---> x0
x2*x0 ---> x1
x2*x1 ---> x0
x2^2 ---> 1

sage: k.finitely_presented_group()
Finitely presented group < x0, x1, x2 | x0*x1*x2, x0^-1*x1^-1*x2^-1, x0^2, x1^2␣
→˓>

free_group()

The free group after which the rewriting system is defined

EXAMPLES:

sage: F = FreeGroup(3)
sage: G = F / [[1,2,3], [-1,-2,-3]]
sage: k = G.rewriting_system()
sage: k.free_group()
Free Group on generators {x0, x1, x2}

gap()

The gap representation of the rewriting system.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F/[a*a,b*b]
sage: k = G.rewriting_system()
sage: k.gap()
Knuth Bendix Rewriting System for Monoid([a, A, b, B]) with rules
[[a^2, <identity ...>], [a*A, <identity ...>],
[A*a, <identity ...>], [b^2, <identity ...>],
[b*B, <identity ...>], [B*b, <identity ...>]]

is_confluent()

Return True if the system is confluent and False otherwise.

EXAMPLES:

sage: F = FreeGroup(3)
sage: G = F / [F([1,2,1,2,1,3,-1]),F([2,2,2,1,1,2]),F([1,2,3])]
sage: k = G.rewriting_system()
sage: k.is_confluent()
False
sage: k
Rewriting system of Finitely presented group < x0, x1, x2 | (x0*x1)^2*x0*x2*x0^-
→˓1, x1^3*x0^2*x1, x0*x1*x2 >
with rules:

x0*x1*x2 ---> 1
x1^3*x0^2*x1 ---> 1
(x0*x1)^2*x0*x2*x0^-1 ---> 1

sage: k.make_confluent()
sage: k.is_confluent()

(continues on next page)

76 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

(continued from previous page)

True
sage: k
Rewriting system of Finitely presented group < x0, x1, x2 | (x0*x1)^2*x0*x2*x0^-
→˓1, x1^3*x0^2*x1, x0*x1*x2 >
with rules:

x0^-1 ---> x0
x1^-1 ---> x1
x0^2 ---> 1
x0*x1 ---> x2^-1
x0*x2^-1 ---> x1
x1*x0 ---> x2
x1^2 ---> 1
x1*x2^-1 ---> x0*x2
x1*x2 ---> x0
x2^-1*x0 ---> x0*x2
x2^-1*x1 ---> x0
x2^-2 ---> x2
x2*x0 ---> x1
x2*x1 ---> x0*x2
x2^2 ---> x2^-1

make_confluent()

Applies Knuth-Bendix algorithm to try to transform the rewriting system into a confluent one.

Note that this method does not return any object, just changes the rewriting system internally.

Warning: This algorithm is not granted to finish. Although it may be useful in some occasions to run
it, interrupt it manually after some time and use then the transformed rewriting system. Even if it is not
confluent, it could be used to reduce some words.

ALGORITHM:

Uses GAP’s MakeConfluent.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F / [a^2,b^3,(a*b/a)^3,b*a*b*a]
sage: k = G.rewriting_system()
sage: k
Rewriting system of Finitely presented group < a, b | a^2, b^3, a*b^3*a^-1,␣
→˓(b*a)^2 >
with rules:

a^2 ---> 1
b^3 ---> 1
(b*a)^2 ---> 1
a*b^3*a^-1 ---> 1

sage: k.make_confluent()
sage: k
Rewriting system of Finitely presented group < a, b | a^2, b^3, a*b^3*a^-1,␣
→˓(b*a)^2 >

(continues on next page)

77

Groups, Release 9.8

(continued from previous page)

with rules:
a^-1 ---> a
a^2 ---> 1
b^-1*a ---> a*b
b^-2 ---> b
b*a ---> a*b^-1
b^2 ---> b^-1

reduce(element)
Applies the rules in the rewriting system to the element, to obtain a reduced form.

If the rewriting system is confluent, this reduced form is unique for all words representing the same element.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F/[a^2, b^3, (a*b/a)^3, b*a*b*a]
sage: k = G.rewriting_system()
sage: k.reduce(b^4)
b
sage: k.reduce(a*b*a)
a*b*a

rules()

Return the rules that form the rewriting system.

OUTPUT:

A dictionary containing the rules of the rewriting system. Each key is a word in the free group, and its
corresponding value is the word to which it is reduced.

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F / [a*a*a,b*b*a*a]
sage: k = G.rewriting_system()
sage: k
Rewriting system of Finitely presented group < a, b | a^3, b^2*a^2 >
with rules:

a^3 ---> 1
b^2*a^2 ---> 1

sage: k.rules()
{a^3: 1, b^2*a^2: 1}
sage: k.make_confluent()
sage: sorted(k.rules().items())
[(a^-2, a), (a^-1*b^-1, a*b), (a^-1*b, b^-1), (a^2, a^-1),
(a*b^-1, b), (b^-1*a^-1, a*b), (b^-1*a, b), (b^-2, a^-1),
(b*a^-1, b^-1), (b*a, a*b), (b^2, a)]

sage.groups.finitely_presented.wrap_FpGroup(libgap_fpgroup)
Wrap a GAP finitely presented group.

This function changes the comparison method of libgap_free_group to comparison by Python id. If you
want to put the LibGAP free group into a container (set, dict) then you should understand the implica-

78 Chapter 10. Finitely Presented Groups

Groups, Release 9.8

tions of _set_compare_by_id(). To be safe, it is recommended that you just work with the resulting Sage
FinitelyPresentedGroup.

INPUT:

• libgap_fpgroup – a LibGAP finitely presented group

OUTPUT:

A Sage FinitelyPresentedGroup.

EXAMPLES:

First construct a LibGAP finitely presented group:

sage: F = libgap.FreeGroup(['a', 'b'])
sage: a_cubed = F.GeneratorsOfGroup()[0] ^ 3
sage: P = F / libgap([a_cubed]); P
<fp group of size infinity on the generators [a, b]>
sage: type(P)
<class 'sage.libs.gap.element.GapElement'>

Now wrap it:

sage: from sage.groups.finitely_presented import wrap_FpGroup
sage: wrap_FpGroup(P)
Finitely presented group < a, b | a^3 >

79

Groups, Release 9.8

80 Chapter 10. Finitely Presented Groups

CHAPTER

ELEVEN

NAMED FINITELY PRESENTED GROUPS

Construct groups of small order and “named” groups as quotients of free groups. These groups are available through
tab completion by typing groups.presentation.<tab> or by importing the required methods. Tab completion is
made available through Sage’s group catalog. Some examples are engineered from entries in [TW1980].

Groups available as finite presentations:

• Alternating group, 𝐴𝑛 of order 𝑛!/2 – groups.presentation.Alternating

• Cyclic group, 𝐶𝑛 of order 𝑛 – groups.presentation.Cyclic

• Dicyclic group, nonabelian groups of order 4𝑛 with a unique element of order 2 – groups.presentation.
DiCyclic

• Dihedral group, 𝐷𝑛 of order 2𝑛 – groups.presentation.Dihedral

• Finitely generated abelian group, Z𝑛1 × Z𝑛2 × · · · × Z𝑛𝑘
– groups.presentation.FGAbelian

• Finitely generated Heisenberg group – groups.presentation.Heisenberg

• Klein four group, 𝐶2 × 𝐶2 – groups.presentation.KleinFour

• Quaternion group of order 8 – groups.presentation.Quaternion

• Symmetric group, 𝑆𝑛 of order 𝑛! – groups.presentation.Symmetric

AUTHORS:

• Davis Shurbert (2013-06-21): initial version

EXAMPLES:

sage: groups.presentation.Cyclic(4)
Finitely presented group < a | a^4 >

You can also import the desired functions:

sage: from sage.groups.finitely_presented_named import CyclicPresentation
sage: CyclicPresentation(4)
Finitely presented group < a | a^4 >

sage.groups.finitely_presented_named.AlternatingPresentation(n)
Build the Alternating group of order 𝑛!/2 as a finitely presented group.

INPUT:

• n – The size of the underlying set of arbitrary symbols being acted on by the Alternating group of order
𝑛!/2.

81

Groups, Release 9.8

OUTPUT:

Alternating group as a finite presentation, implementation uses GAP to find an isomorphism from a permutation
representation to a finitely presented group representation. Due to this fact, the exact output presentation may
not be the same for every method call on a constant n.

EXAMPLES:

sage: A6 = groups.presentation.Alternating(6)
sage: A6.as_permutation_group().is_isomorphic(AlternatingGroup(6)), A6.order()
(True, 360)

sage.groups.finitely_presented_named.BinaryDihedralPresentation(n)
Build a binary dihedral group of order 4𝑛 as a finitely presented group.

The binary dihedral group 𝐵𝐷𝑛 has the following presentation (note that there is a typo in [Sun2010]):

𝐵𝐷𝑛 = ⟨𝑥, 𝑦, 𝑧|𝑥2 = 𝑦2 = 𝑧𝑛 = 𝑥𝑦𝑧⟩.

INPUT:

• n – the value 𝑛

OUTPUT:

The binary dihedral group of order 4𝑛 as finite presentation.

EXAMPLES:

sage: groups.presentation.BinaryDihedral(9)
Finitely presented group < x, y, z | x^-2*y^2, x^-2*z^9, x^-1*y*z >

sage.groups.finitely_presented_named.CyclicPresentation(n)
Build cyclic group of order 𝑛 as a finitely presented group.

INPUT:

• n – The order of the cyclic presentation to be returned.

OUTPUT:

The cyclic group of order 𝑛 as finite presentation.

EXAMPLES:

sage: groups.presentation.Cyclic(10)
Finitely presented group < a | a^10 >
sage: n = 8; C = groups.presentation.Cyclic(n)
sage: C.as_permutation_group().is_isomorphic(CyclicPermutationGroup(n))
True

sage.groups.finitely_presented_named.DiCyclicPresentation(n)
Build the dicyclic group of order 4𝑛, for 𝑛 ≥ 2, as a finitely presented group.

INPUT:

• n – positive integer, 2 or greater, determining the order of the group (4𝑛).

OUTPUT:

The dicyclic group of order 4𝑛 is defined by the presentation

⟨𝑎, 𝑥 | 𝑎2𝑛 = 1, 𝑥2 = 𝑎𝑛, 𝑥−1𝑎𝑥 = 𝑎−1⟩

82 Chapter 11. Named Finitely Presented Groups

Groups, Release 9.8

Note: This group is also available as a permutation group via groups.permutation.DiCyclic.

EXAMPLES:

sage: D = groups.presentation.DiCyclic(9); D
Finitely presented group < a, b | a^18, b^2*a^-9, b^-1*a*b*a >
sage: D.as_permutation_group().is_isomorphic(groups.permutation.DiCyclic(9))
True

sage.groups.finitely_presented_named.DihedralPresentation(n)
Build the Dihedral group of order 2𝑛 as a finitely presented group.

INPUT:

• n – The size of the set that 𝐷𝑛 is acting on.

OUTPUT:

Dihedral group of order 2𝑛.

EXAMPLES:

sage: D = groups.presentation.Dihedral(7); D
Finitely presented group < a, b | a^7, b^2, (a*b)^2 >
sage: D.as_permutation_group().is_isomorphic(DihedralGroup(7))
True

sage.groups.finitely_presented_named.FinitelyGeneratedAbelianPresentation(int_list)
Return canonical presentation of finitely generated abelian group.

INPUT:

• int_list – List of integers defining the group to be returned, the defining list is reduced to the invariants
of the input list before generating the corresponding group.

OUTPUT:

Finitely generated abelian group, Z𝑛1
×Z𝑛2

× · · · ×Z𝑛𝑘
as a finite presentation, where 𝑛𝑖 forms the invariants

of the input list.

EXAMPLES:

sage: groups.presentation.FGAbelian([2,2])
Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([2,3])
Finitely presented group < a | a^6 >
sage: groups.presentation.FGAbelian([2,4])
Finitely presented group < a, b | a^2, b^4, a^-1*b^-1*a*b >

You can create free abelian groups:

sage: groups.presentation.FGAbelian([0])
Finitely presented group < a | >
sage: groups.presentation.FGAbelian([0,0])
Finitely presented group < a, b | a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([0,0,0])
Finitely presented group < a, b, c | a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^-1*b*c >

83

Groups, Release 9.8

And various infinite abelian groups:

sage: groups.presentation.FGAbelian([0,2])
Finitely presented group < a, b | a^2, a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([0,2,2])
Finitely presented group < a, b, c | a^2, b^2, a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^
→˓-1*b*c >

Outputs are reduced to minimal generators and relations:

sage: groups.presentation.FGAbelian([3,5,2,7,3])
Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([3,210])
Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >

The trivial group is an acceptable output:

sage: groups.presentation.FGAbelian([])
Finitely presented group < | >
sage: groups.presentation.FGAbelian([1])
Finitely presented group < | >
sage: groups.presentation.FGAbelian([1,1,1,1,1,1,1,1,1,1])
Finitely presented group < | >

Input list must consist of positive integers:

sage: groups.presentation.FGAbelian([2,6,3,9,-4])
Traceback (most recent call last):
...
ValueError: input list must contain nonnegative entries
sage: groups.presentation.FGAbelian([2,'a',4])
Traceback (most recent call last):
...
TypeError: unable to convert 'a' to an integer

sage.groups.finitely_presented_named.FinitelyGeneratedHeisenbergPresentation(n=1, p=0)
Return a finite presentation of the Heisenberg group.

The Heisenberg group is the group of (𝑛+ 2)× (𝑛+ 2) matrices over a ring 𝑅 with diagonal elements equal to
1, first row and last column possibly nonzero, and all the other entries equal to zero.

INPUT:

• n – the degree of the Heisenberg group

• p – (optional) a prime number, where we construct the Heisenberg group over the finite field Z/𝑝Z

OUTPUT:

Finitely generated Heisenberg group over the finite field of order p or over the integers.

See also:

HeisenbergGroup

EXAMPLES:

84 Chapter 11. Named Finitely Presented Groups

Groups, Release 9.8

sage: H = groups.presentation.Heisenberg(); H
Finitely presented group < x1, y1, z |
x1*y1*x1^-1*y1^-1*z^-1, z*x1*z^-1*x1^-1, z*y1*z^-1*y1^-1 >
sage: H.order()
+Infinity
sage: r1, r2, r3 = H.relations()
sage: A = matrix([[1, 1, 0], [0, 1, 0], [0, 0, 1]])
sage: B = matrix([[1, 0, 0], [0, 1, 1], [0, 0, 1]])
sage: C = matrix([[1, 0, 1], [0, 1, 0], [0, 0, 1]])
sage: r1(A, B, C)
[1 0 0]
[0 1 0]
[0 0 1]
sage: r2(A, B, C)
[1 0 0]
[0 1 0]
[0 0 1]
sage: r3(A, B, C)
[1 0 0]
[0 1 0]
[0 0 1]
sage: p = 3
sage: Hp = groups.presentation.Heisenberg(p=3)
sage: Hp.order() == p**3
True
sage: Hnp = groups.presentation.Heisenberg(n=2, p=3)
sage: len(Hnp.relations())
13

REFERENCES:

• Wikipedia article Heisenberg_group

sage.groups.finitely_presented_named.KleinFourPresentation()

Build the Klein group of order 4 as a finitely presented group.

OUTPUT:

Klein four group (𝐶2 × 𝐶2) as a finitely presented group.

EXAMPLES:

sage: K = groups.presentation.KleinFour(); K
Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >

sage.groups.finitely_presented_named.QuaternionPresentation()

Build the Quaternion group of order 8 as a finitely presented group.

OUTPUT:

Quaternion group as a finite presentation.

EXAMPLES:

sage: Q = groups.presentation.Quaternion(); Q
Finitely presented group < a, b | a^4, b^2*a^-2, a*b*a*b^-1 >

(continues on next page)

85

https://en.wikipedia.org/wiki/Heisenberg_group

Groups, Release 9.8

(continued from previous page)

sage: Q.as_permutation_group().is_isomorphic(QuaternionGroup())
True

sage.groups.finitely_presented_named.SymmetricPresentation(n)
Build the Symmetric group of order 𝑛! as a finitely presented group.

INPUT:

• n – The size of the underlying set of arbitrary symbols being acted on by the Symmetric group of order 𝑛!.

OUTPUT:

Symmetric group as a finite presentation, implementation uses GAP to find an isomorphism from a permutation
representation to a finitely presented group representation. Due to this fact, the exact output presentation may
not be the same for every method call on a constant n.

EXAMPLES:

sage: S4 = groups.presentation.Symmetric(4)
sage: S4.as_permutation_group().is_isomorphic(SymmetricGroup(4))
True

86 Chapter 11. Named Finitely Presented Groups

CHAPTER

TWELVE

BRAID GROUPS

Braid groups are implemented as a particular case of finitely presented groups, but with a lot of specific methods for
braids.

A braid group can be created by giving the number of strands, and the name of the generators:

sage: BraidGroup(3)
Braid group on 3 strands
sage: BraidGroup(3,'a')
Braid group on 3 strands
sage: BraidGroup(3,'a').gens()
(a0, a1)
sage: BraidGroup(3,'a,b').gens()
(a, b)

The elements can be created by operating with the generators, or by passing a list with the indices of the letters to the
group:

sage: B.<s0,s1,s2> = BraidGroup(4)
sage: s0*s1*s0
s0*s1*s0
sage: B([1,2,1])
s0*s1*s0

The mapping class action of the braid group over the free group is also implemented, see MappingClassGroupAction
for an explanation. This action is left multiplication of a free group element by a braid:

sage: B.<b0,b1,b2> = BraidGroup()
sage: F.<f0,f1,f2,f3> = FreeGroup()
sage: B.strands() == F.rank() # necessary for the action to be defined
True
sage: f1 * b1
f1*f2*f1^-1
sage: f0 * b1
f0
sage: f1 * b1
f1*f2*f1^-1
sage: f1^-1 * b1
f1*f2^-1*f1^-1

AUTHORS:

• Miguel Angel Marco Buzunariz

87

Groups, Release 9.8

• Volker Braun

• Søren Fuglede Jørgensen

• Robert Lipshitz

• Thierry Monteil: add a __hash__ method consistent with the word problem to ensure correct Cayley graph
computations.

• Sebastian Oehms (July and Nov 2018): add other versions for burau_matrix (unitary + simple, see trac ticket
#25760 and trac ticket #26657)

• Moritz Firsching (Sept 2021): Colored Jones polynomial

• Sebastian Oehms (May 2022): add links_gould_polynomial()

class sage.groups.braid.Braid(parent, x, check=True)
Bases: FiniteTypeArtinGroupElement

An element of a braid group.

It is a particular case of element of a finitely presented group.

EXAMPLES:

sage: B.<s0,s1,s2> = BraidGroup(4)
sage: B
Braid group on 4 strands
sage: s0*s1/s2/s1
s0*s1*s2^-1*s1^-1
sage: B((1, 2, -3, -2))
s0*s1*s2^-1*s1^-1

LKB_matrix(variables='x,y')
Return the Lawrence-Krammer-Bigelow representation matrix.

The matrix is expressed in the basis {𝑒𝑖,𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}, where the indices are ordered lexicographically.
It is a matrix whose entries are in the ring of Laurent polynomials on the given variables. By default, the
variables are 'x' and 'y'.

INPUT:

• variables – string (default: 'x,y'). A string containing the names of the variables, separated by a
comma.

OUTPUT:

The matrix corresponding to the Lawrence-Krammer-Bigelow representation of the braid.

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([1, 2, 1])
sage: b.LKB_matrix()
[0 -x^4*y + x^3*y -x^4*y]
[0 -x^3*y 0]
[-x^2*y x^3*y - x^2*y 0]
sage: c = B([2, 1, 2])
sage: c.LKB_matrix()
[0 -x^4*y + x^3*y -x^4*y]
[0 -x^3*y 0]
[-x^2*y x^3*y - x^2*y 0]

88 Chapter 12. Braid groups

https://trac.sagemath.org/25760
https://trac.sagemath.org/25760
https://trac.sagemath.org/26657

Groups, Release 9.8

REFERENCES:

• [Big2003]

TL_matrix(drain_size, variab=None, sparse=True)
Return the matrix representation of the Temperley–Lieb–Jones representation of the braid in a certain basis.

The basis is given by non-intersecting pairings of (𝑛 + 𝑑) points, where 𝑛 is the number of strands, 𝑑 is
given by drain_size, and the pairings satisfy certain rules. See TL_basis_with_drain() for details.

We use the convention that the eigenvalues of the standard generators are 1 and −𝐴4, where𝐴 is a variable
of a Laurent polynomial ring.

When 𝑑 = 𝑛 − 2 and the variables are picked appropriately, the resulting representation is equivalent to
the reduced Burau representation.

INPUT:

• drain_size – integer between 0 and the number of strands (both inclusive)

• variab – variable (default: None); the variable in the entries of the matrices; if None, then use a
default variable in Z[𝐴,𝐴−1]

• sparse – boolean (default: True); whether or not the result should be given as a sparse matrix

OUTPUT:

The matrix of the TL representation of the braid.

The parameter sparse can be set to False if it is expected that the resulting matrix will not be sparse. We
currently make no attempt at guessing this.

EXAMPLES:

Let us calculate a few examples for 𝐵4 with 𝑑 = 0:

sage: B = BraidGroup(4)
sage: b = B([1, 2, -3])
sage: b.TL_matrix(0)
[1 - A^4 -A^-2]
[-A^6 0]
sage: R.<x> = LaurentPolynomialRing(GF(2))
sage: b.TL_matrix(0, variab=x)
[1 + x^4 x^-2]
[x^6 0]
sage: b = B([])
sage: b.TL_matrix(0)
[1 0]
[0 1]

Test of one of the relations in 𝐵8:

sage: B = BraidGroup(8)
sage: d = 0
sage: B([4,5,4]).TL_matrix(d) == B([5,4,5]).TL_matrix(d)
True

An element of the kernel of the Burau representation, following [Big1999]:

89

Groups, Release 9.8

sage: B = BraidGroup(6)
sage: psi1 = B([4, -5, -2, 1])
sage: psi2 = B([-4, 5, 5, 2, -1, -1])
sage: w1 = psi1^(-1) * B([3]) * psi1
sage: w2 = psi2^(-1) * B([3]) * psi2
sage: (w1 * w2 * w1^(-1) * w2^(-1)).TL_matrix(4)
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

REFERENCES:

• [Big1999]

• [Jon2005]

alexander_polynomial(var='t', normalized=True)
Return the Alexander polynomial of the closure of the braid.

INPUT:

• var – string (default: 't'); the name of the variable in the entries of the matrix

• normalized – boolean (default: True); whether to return the normalized Alexander polynomial

OUTPUT:

The Alexander polynomial of the braid closure of the braid.

This is computed using the reduced Burau representation. The unnormalized Alexander polynomial is a
Laurent polynomial, which is only well-defined up to multiplication by plus or minus times a power of 𝑡.

We normalize the polynomial by dividing by the largest power of 𝑡 and then if the resulting constant coef-
ficient is negative, we multiply by −1.

EXAMPLES:

We first construct the trefoil:

sage: B = BraidGroup(3)
sage: b = B([1,2,1,2])
sage: b.alexander_polynomial(normalized=False)
1 - t + t^2
sage: b.alexander_polynomial()
t^-2 - t^-1 + 1

Next we construct the figure 8 knot:

sage: b = B([-1,2,-1,2])
sage: b.alexander_polynomial(normalized=False)
-t^-2 + 3*t^-1 - 1
sage: b.alexander_polynomial()
t^-2 - 3*t^-1 + 1

Our last example is the Kinoshita-Terasaka knot:

90 Chapter 12. Braid groups

Groups, Release 9.8

sage: B = BraidGroup(4)
sage: b = B([1,1,1,3,3,2,-3,-1,-1,2,-1,-3,-2])
sage: b.alexander_polynomial(normalized=False)
-t^-1
sage: b.alexander_polynomial()
1

REFERENCES:

• Wikipedia article Alexander_polynomial

annular_khovanov_complex(qagrad=None, ring=None)
Return the annular Khovanov complex of the closure of a braid, as defined in [BG2013]

INPUT:

• qagrad – tuple of quantum and annular grading for which to compute the chain complex. If not
specified all gradings are computed.

• ring – (default: ZZ) the coefficient ring.

OUTPUT:

The annular Khovanov complex of the braid, given as a dictionary whose keys are tuples of quantum and
annular grading. If qagrad is specified only return the chain complex of that grading.

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([1,-2,1,-2])
sage: C = b.annular_khovanov_complex()
sage: C
{(-5, -1): Chain complex with at most 1 nonzero terms over Integer Ring,
(-3, -3): Chain complex with at most 1 nonzero terms over Integer Ring,
(-3, -1): Chain complex with at most 2 nonzero terms over Integer Ring,
(-3, 1): Chain complex with at most 1 nonzero terms over Integer Ring,
(-1, -1): Chain complex with at most 5 nonzero terms over Integer Ring,
(-1, 1): Chain complex with at most 2 nonzero terms over Integer Ring,
(1, -1): Chain complex with at most 2 nonzero terms over Integer Ring,
(1, 1): Chain complex with at most 5 nonzero terms over Integer Ring,
(3, -1): Chain complex with at most 1 nonzero terms over Integer Ring,
(3, 1): Chain complex with at most 2 nonzero terms over Integer Ring,
(3, 3): Chain complex with at most 1 nonzero terms over Integer Ring,
(5, 1): Chain complex with at most 1 nonzero terms over Integer Ring}
sage: C[1,-1].homology()
{1: Z x Z, 2: 0}

annular_khovanov_homology(qagrad=None, ring=Integer Ring)
Return the annular Khovanov homology of a closure of a braid.

INPUT:

• qagrad – (optional) tuple of quantum and annular grading for which to compute the homology

• ring – (default: ZZ) the coefficient ring

OUTPUT:

If qagrad is None, return a dictionary of homogies in all gradings indexed by grading. If qagrad is specified,
return homology of that grading.

91

https://en.wikipedia.org/wiki/Alexander_polynomial

Groups, Release 9.8

Note: This is a simple wrapper around annular_khovanov_complex() to compute homology from it.

EXAMPLES:

sage: B = BraidGroup(4)
sage: b = B([1,3,-2])
sage: b.annular_khovanov_homology()
{(-3, -4): {0: Z},
(-3, -2): {-1: Z},
(-1, -2): {-1: 0, 0: Z x Z x Z, 1: 0},
(-1, 0): {-1: Z x Z},
(1, -2): {1: Z x Z},
(1, 0): {-1: 0, 0: Z x Z x Z x Z, 1: 0, 2: 0},
(1, 2): {-1: Z},
(3, 0): {1: Z x Z x Z, 2: 0},
(3, 2): {-1: 0, 0: Z x Z x Z, 1: 0},
(5, 0): {2: Z},
(5, 2): {1: Z x Z},
(5, 4): {0: Z}}

sage: B = BraidGroup(2)
sage: b = B([1,1,1])
sage: b.annular_khovanov_homology((7,0))
{2: 0, 3: C2}

burau_matrix(var='t', reduced=False)
Return the Burau matrix of the braid.

INPUT:

• var – string (default: 't'); the name of the variable in the entries of the matrix

• reduced – boolean (default: False); whether to return the reduced or unreduced Burau representa-
tion, can be one of the following:

– True or 'increasing' - returns the reduced form using the basis given by 𝑒1− 𝑒𝑖 for 2 ≤ 𝑖 ≤ 𝑛

– 'unitary' - the unitary form according to Squier [Squ1984]

– 'simple' - returns the reduced form using the basis given by simple roots 𝑒𝑖−𝑒𝑖+1, which yields
the matrices given on the Wikipedia page

OUTPUT:

The Burau matrix of the braid. It is a matrix whose entries are Laurent polynomials in the variable var. If
reduced is True, return the matrix for the reduced Burau representation instead in the format specified. If
reduced is 'unitary', a triple M, Madj, H is returned, where M is the Burau matrix in the unitary form,
Madj the adjoined to M and H the hermitian form.

EXAMPLES:

sage: B = BraidGroup(4)
sage: B.inject_variables()
Defining s0, s1, s2
sage: b = s0*s1/s2/s1
sage: b.burau_matrix()

(continues on next page)

92 Chapter 12. Braid groups

Groups, Release 9.8

(continued from previous page)

[1 - t 0 t - t^2 t^2]
[1 0 0 0]
[0 0 1 0]
[0 t^-2 -t^-2 + t^-1 -t^-1 + 1]
sage: s2.burau_matrix('x')
[1 0 0 0]
[0 1 0 0]
[0 0 1 - x x]
[0 0 1 0]
sage: s0.burau_matrix(reduced=True)
[-t 0 0]
[-t 1 0]
[-t 0 1]

Using the different reduced forms:

sage: b.burau_matrix(reduced='simple')
[1 - t -t^-1 + 1 -1]
[1 -t^-1 + 1 -1]
[1 -t^-1 0]

sage: M, Madj, H = b.burau_matrix(reduced='unitary')
sage: M
[-t^-2 + 1 t t^2]
[t^-1 - t 1 - t^2 -t^3]
[-t^-2 -t^-1 0]
sage: Madj
[1 - t^2 -t^-1 + t -t^2]
[t^-1 -t^-2 + 1 -t]
[t^-2 -t^-3 0]
sage: H
[t^-1 + t -1 0]
[-1 t^-1 + t -1]
[0 -1 t^-1 + t]
sage: M * H * Madj == H
True

REFERENCES:

• Wikipedia article Burau_representation

• [Squ1984]

centralizer()

Return a list of generators of the centralizer of the braid.

EXAMPLES:

sage: B = BraidGroup(4)
sage: b = B([2, 1, 3, 2])
sage: b.centralizer()
[s1*s0*s2*s1, s0*s2]

colored_jones_polynomial(N, variab=None, try_inverse=True)
Return the colored Jones polynomial of the trace closure of the braid.

93

https://en.wikipedia.org/wiki/Burau_representation

Groups, Release 9.8

INPUT:

• N – integer; the number of colors

• variab – (default: 𝑞) the variable in the resulting Laurent polynomial

• try_inverse – boolean (default: True); if True, attempt a faster calculation by using the inverse of
the braid

ALGORITHM:

The algorithm used is described in [HL2018]. We follow their notation, but work in a suitable free algebra
over a Laurent polynomial ring in one variable to simplify bookkeeping.

EXAMPLES:

sage: trefoil = BraidGroup(2)([1,1,1])
sage: trefoil.colored_jones_polynomial(2)
q + q^3 - q^4
sage: trefoil.colored_jones_polynomial(4)
q^3 + q^7 - q^10 + q^11 - q^13 - q^14 + q^15 - q^17
+ q^19 + q^20 - q^21
sage: trefoil.inverse().colored_jones_polynomial(4)
-q^-21 + q^-20 + q^-19 - q^-17 + q^-15 - q^-14 - q^-13
+ q^-11 - q^-10 + q^-7 + q^-3

sage: figure_eight = BraidGroup(3)([-1, 2, -1, 2])
sage: figure_eight.colored_jones_polynomial(2)
q^-2 - q^-1 + 1 - q + q^2
sage: figure_eight.colored_jones_polynomial(3, 'Q')
Q^-6 - Q^-5 - Q^-4 + 2*Q^-3 - Q^-2 - Q^-1 + 3 - Q - Q^2
+ 2*Q^3 - Q^4 - Q^5 + Q^6

components_in_closure()

Return the number of components of the trace closure of the braid.

OUTPUT:

Positive integer.

EXAMPLES:

sage: B = BraidGroup(5)
sage: b = B([1, -3]) # Three disjoint unknots
sage: b.components_in_closure()
3
sage: b = B([1, 2, 3, 4]) # The unknot
sage: b.components_in_closure()
1
sage: B = BraidGroup(4)
sage: K11n42 = B([1, -2, 3, -2, 3, -2, -2, -1, 2, -3, -3, 2, 2])
sage: K11n42.components_in_closure()
1

conjugating_braid(other)
Return a conjugating braid, if it exists.

INPUT:

94 Chapter 12. Braid groups

Groups, Release 9.8

• other – the other braid to look for conjugating braid

EXAMPLES:

sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1])
sage: b = B([2, 1, 2, 1])
sage: c = b * a / b
sage: d = a.conjugating_braid(c)
sage: d * c / d == a
True
sage: d
s1*s0
sage: d * a / d == c
False

deformed_burau_matrix(variab='q')
Return the deformed Burau matrix of the braid.

INPUT:

• variab – variable (default: q); the variable in the resulting laurent polynomial, which is the base ring
for the free algebra constructed

OUTPUT:

A matrix with elements in the free algebra 𝑠𝑒𝑙𝑓.𝑎𝑙𝑔𝑒𝑏𝑟𝑎.

EXAMPLES:

sage: B = BraidGroup(4)
sage: b = B([1, 2, -3, -2, 3, 1])
sage: db = b.deformed_burau_matrix(); db
[ap_0*ap_5 ... bp_0*ap_1*cm_3*bp_4]
...
[bm_2*bm_3*cp_5 ... bm_2*am_3*bp_4]

We check how this relates to the nondeformed Burau matrix:

sage: def subs_gen(gen, q):
....: gen_str = str(gen)
....: v = q if 'p' in gen_str else 1/q
....: if 'b' in gen_str:
....: return v
....: elif 'a' in gen_str:
....: return 1 - v
....: else:
....: return 1
sage: db_base = db.parent().base_ring()
sage: q = db_base.base_ring().gen()
sage: db_simp = db.subs({gen: subs_gen(gen, q)
....: for gen in db_base.gens()})
sage: db_simp
[(1-2*q+q^2) (q-q^2) (q-q^2+q^3) (q^2-q^3)]
[(1-q) q 0 0]
[0 0 (1-q) q]
[(q^-2) 0 -(q^-2-q^-1) -(q^-1-1)]

(continues on next page)

95

Groups, Release 9.8

(continued from previous page)

sage: burau = b.burau_matrix(); burau
[1 - 2*t + t^2 t - t^2 t - t^2 + t^3 t^2 - t^3]
[1 - t t 0 0]
[0 0 1 - t t]
[t^-2 0 -t^-2 + t^-1 -t^-1 + 1]
sage: t = burau.parent().base_ring().gen()
sage: burau.subs({t:q}).change_ring(db_base) == db_simp
True

gcd(other)
Return the greatest common divisor of the two braids.

INPUT:

• other – the other braid with respect with the gcd is computed

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([1, 2, -1, -2, -2, 1])
sage: c = B([1, 2, 1])
sage: b.gcd(c)
s0^-1*s1^-1*s0^-2*s1^2*s0
sage: c.gcd(b)
s0^-1*s1^-1*s0^-2*s1^2*s0

is_conjugated(other)
Check if the two braids are conjugated.

INPUT:

• other – the other braid to check for conjugacy

EXAMPLES:

sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1])
sage: b = B([2, 1, 2, 1])
sage: c = b * a / b
sage: c.is_conjugated(a)
True
sage: c.is_conjugated(b)
False

is_periodic()

Check whether the braid is periodic.

EXAMPLES:

sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: b = B([2, 1, 2, 1])
sage: a.is_periodic()
False
sage: b.is_periodic()
True

96 Chapter 12. Braid groups

Groups, Release 9.8

is_pseudoanosov()

Check if the braid is pseudo-anosov.

EXAMPLES:

sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: b = B([2, 1, 2, 1])
sage: a.is_pseudoanosov()
True
sage: b.is_pseudoanosov()
False

is_reducible()

Check whether the braid is reducible.

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([1, 2, -1])
sage: b.is_reducible()
True
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.is_reducible()
False

jones_polynomial(variab=None, skein_normalization=False)
Return the Jones polynomial of the trace closure of the braid.

The normalization is so that the unknot has Jones polynomial 1. If skein_normalization is True, the
variable of the result is replaced by a itself to the power of 4, so that the result agrees with the conventions
of [Lic1997] (which in particular differs slightly from the conventions used otherwise in this class), had
one used the conventional Kauffman bracket variable notation directly.

If variab is None return a polynomial in the variable 𝐴 or 𝑡, depending on the value
skein_normalization. In particular, if skein_normalization is False, return the result in terms
of the variable 𝑡, also used in [Lic1997].

INPUT:

• variab – variable (default: None); the variable in the resulting polynomial; if unspecified, use either
a default variable in 𝑍𝑍[𝐴,𝐴−1] or the variable 𝑡 in the symbolic ring

• skein_normalization – boolean (default: False); determines the variable of the resulting polyno-
mial

OUTPUT:

If skein_normalization if False, this returns an element in the symbolic ring as the Jones polynomial
of the closure might have fractional powers when the closure of the braid is not a knot. Otherwise the result
is a Laurent polynomial in variab.

EXAMPLES:

The unknot:

sage: B = BraidGroup(9)
sage: b = B([1, 2, 3, 4, 5, 6, 7, 8])

(continues on next page)

97

Groups, Release 9.8

(continued from previous page)

sage: b.jones_polynomial()
1

Two unlinked unknots:

sage: B = BraidGroup(2)
sage: b = B([])
sage: b.jones_polynomial()
-sqrt(t) - 1/sqrt(t)

The Hopf link:

sage: B = BraidGroup(2)
sage: b = B([-1,-1])
sage: b.jones_polynomial()
-1/sqrt(t) - 1/t^(5/2)

Different representations of the trefoil and one of its mirror:

sage: B = BraidGroup(2)
sage: b = B([-1, -1, -1])
sage: b.jones_polynomial(skein_normalization=True)
-A^-16 + A^-12 + A^-4
sage: b.jones_polynomial()
1/t + 1/t^3 - 1/t^4
sage: B = BraidGroup(3)
sage: b = B([-1, -2, -1, -2])
sage: b.jones_polynomial(skein_normalization=True)
-A^-16 + A^-12 + A^-4
sage: R.<x> = LaurentPolynomialRing(GF(2))
sage: b.jones_polynomial(skein_normalization=True, variab=x)
x^-16 + x^-12 + x^-4
sage: B = BraidGroup(3)
sage: b = B([1, 2, 1, 2])
sage: b.jones_polynomial(skein_normalization=True)
A^4 + A^12 - A^16

K11n42 (the mirror of the “Kinoshita-Terasaka” knot) and K11n34 (the mirror of the “Conway” knot):

sage: B = BraidGroup(4)
sage: b11n42 = B([1, -2, 3, -2, 3, -2, -2, -1, 2, -3, -3, 2, 2])
sage: b11n34 = B([1, 1, 2, -3, 2, -3, 1, -2, -2, -3, -3])
sage: bool(b11n42.jones_polynomial() == b11n34.jones_polynomial())
True

lcm(other)
Return the least common multiple of the two braids.

INPUT:

• other – the other braid with respect with the lcm is computed

EXAMPLES:

98 Chapter 12. Braid groups

Groups, Release 9.8

sage: B = BraidGroup(3)
sage: b = B([1, 2, -1, -2, -2, 1])
sage: c = B([1, 2, 1])
sage: b.lcm(c)
(s0*s1)^2*s0

links_gould_matrix(symbolics=False)
Return the representation matrix of self according to the R-matrix representation being attached to the
quantum superalgebra 𝑠𝑙𝑞(2|1). See [MW2012], section 3 and references given there.

INPUT:

• symbolics – boolean (default False). If set to True the coefficients will be contained in the symbolic
ring. Per default they are elements of a quotient ring of a three variate Laurent polynomial ring.

OUTPUT:

The representation matrix of self over the ring according to the choice of the keyword symbolics (see
the corresponding explanation).

EXAMPLES:

sage: Hopf = BraidGroup(2)([-1, -1])
sage: HopfLG = Hopf.links_gould_matrix()
sage: HopfLG.dimensions()
(16, 16)
sage: HopfLG.base_ring()
Univariate Quotient Polynomial Ring in Yrbar
over Multivariate Laurent Polynomial Ring in s0r, s1r
over Integer Ring with modulus Yr^2 + s0r^2*s1r^2 - s0r^2 - s1r^2 + 1

sage: HopfLGs = Hopf.links_gould_matrix(symbolics=True)
sage: HopfLGs.base_ring()
Symbolic Ring

links_gould_polynomial(varnames=None, use_symbolics=False)
Return the Links-Gould polynomial of the closure of self. See [MW2012], section 3 and references given
there.

INPUT:

• varnames – string (default t0, t1)

OUTPUT:

A Laurent polynomial in the given variable names.

EXAMPLES:

sage: Hopf = BraidGroup(2)([-1, -1])
sage: Hopf.links_gould_polynomial()
-1 + t1^-1 + t0^-1 - t0^-1*t1^-1
sage: _ == Hopf.links_gould_polynomial(use_symbolics=True)
True
sage: Hopf.links_gould_polynomial(varnames='a, b')
-1 + b^-1 + a^-1 - a^-1*b^-1
sage: _ == Hopf.links_gould_polynomial(varnames='a, b', use_symbolics=True)
True

99

Groups, Release 9.8

REFERENCES:

• [MW2012]

markov_trace(variab=None, normalized=True)
Return the Markov trace of the braid.

The normalization is so that in the underlying braid group representation, the eigenvalues of the standard
generators of the braid group are 1 and −𝐴4.

INPUT:

• variab – variable (default: None); the variable in the resulting polynomial; if None, then use the
variable 𝐴 in Z[𝐴,𝐴−1]

• normalized - boolean (default: True); if specified to be False, return instead a rescaled Laurent
polynomial version of the Markov trace

OUTPUT:

If normalized is False, return instead the Markov trace of the braid, normalized by a factor of
(𝐴2 + 𝐴−2)𝑛. The result is then a Laurent polynomial in variab. Otherwise it is a quotient of Laurent
polynomials in variab.

EXAMPLES:

sage: B = BraidGroup(4)
sage: b = B([1, 2, -3])
sage: mt = b.markov_trace(); mt
A^4/(A^12 + 3*A^8 + 3*A^4 + 1)
sage: mt.factor()
A^4 * (A^4 + 1)^-3

We now give the non-normalized Markov trace:

sage: mt = b.markov_trace(normalized=False); mt
A^-4 + 1
sage: mt.parent()
Univariate Laurent Polynomial Ring in A over Integer Ring

mirror_image()

Return the image of self under the mirror involution (see BraidGroup_class.mirror_involution()).
The link closure of it is mirrored to the closure of self (see the example below of a positive amphicheiral
knot).

EXAMPLES:

sage: B5 = BraidGroup(5)
sage: b = B5((-1, 2, -3, -1, -3, 4, 2, -3, 2, 4, 2, -3)) # closure K12a_427
sage: bm = b.mirror_image(); bm
s0*s1^-1*s2*s0*s2*s3^-1*s1^-1*s2*s1^-1*s3^-1*s1^-1*s2
sage: bm.is_conjugated(b)
True
sage: bm.is_conjugated(~b)
False

permutation()

Return the permutation induced by the braid in its strands.

100 Chapter 12. Braid groups

Groups, Release 9.8

OUTPUT:

A permutation.

EXAMPLES:

sage: B.<s0,s1,s2> = BraidGroup()
sage: b = s0*s1/s2/s1
sage: b.permutation()
[4, 1, 3, 2]
sage: b.permutation().cycle_string()
'(1,4,2)'

plot(color='rainbow', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds)
Plot the braid

The following options are available:

• color – (default: 'rainbow') the color of the strands. Possible values are:

– 'rainbow', uses rainbow() according to the number of strands.

– a valid color name for bezier_path() and line(). Used for all strands.

– a list or a tuple of colors for each individual strand.

• orientation – (default: 'bottom-top') determines how the braid is printed. The possible values
are:

– 'bottom-top', the braid is printed from bottom to top

– 'top-bottom', the braid is printed from top to bottom

– 'left-right', the braid is printed from left to right

• gap – floating point number (default: 0.05). determines the size of the gap left when a strand goes
under another.

• aspect_ratio – floating point number (default: 1). The aspect ratio.

• **kwds – other keyword options that are passed to bezier_path() and line().

EXAMPLES:

sage: B = BraidGroup(4, 's')
sage: b = B([1, 2, 3, 1, 2, 1])
sage: b.plot()
Graphics object consisting of 30 graphics primitives
sage: b.plot(color=["red", "blue", "red", "blue"])
Graphics object consisting of 30 graphics primitives

sage: B.<s,t> = BraidGroup(3)
sage: b = t^-1*s^2
sage: b.plot(orientation="left-right", color="red")
Graphics object consisting of 12 graphics primitives

plot3d(color='rainbow')
Plots the braid in 3d.

The following option is available:

• color – (default: 'rainbow') the color of the strands. Possible values are:

101

Groups, Release 9.8

– 'rainbow', uses rainbow() according to the number of strands.

– a valid color name for bezier3d(). Used for all strands.

– a list or a tuple of colors for each individual strand.

EXAMPLES:

sage: B = BraidGroup(4, 's')
sage: b = B([1, 2, 3, 1, 2, 1])
sage: b.plot3d()
Graphics3d Object
sage: b.plot3d(color="red")
Graphics3d Object
sage: b.plot3d(color=["red", "blue", "red", "blue"])
Graphics3d Object

reverse()

Return the reverse of self obtained by reversing the order of the generators in its word. This defines an
anti-involution on the braid group. The link closure of it has the reversed orientation (see the example
below of a non reversible knot).

EXAMPLES:

sage: b = BraidGroup(3)((1, 1, -2, 1, -2, 1, -2, -2)) # closure K8_17
sage: br = b.reverse(); br
s1^-1*(s1^-1*s0)^3*s0
sage: br.is_conjugated(b)
False

right_normal_form()

Return the right normal form of the braid.

EXAMPLES:

sage: B = BraidGroup(4)
sage: b = B([1, 2, 1, -2, 3, 1])
sage: b.right_normal_form()
(s1*s0, s0*s2, 1)

rigidity()

Return the rigidity of self.

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([2, 1, 2, 1])
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.rigidity()
6
sage: b.rigidity()
0

sliding_circuits()

Return the sliding circuits of the braid.

OUTPUT:

102 Chapter 12. Braid groups

Groups, Release 9.8

A list of sliding circuits. Each sliding circuit is itself a list of braids.

EXAMPLES:

sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.sliding_circuits()
[[(s0^-1*s1^-1*s0^-1)^2*s1^3*s0^2*s1^3],
[s0^-1*s1^-1*s0^-2*s1^-1*s0^2*s1^2*s0^3],
[s0^-1*s1^-1*s0^-2*s1^-1*s0^3*s1^2*s0^2],
[(s0^-1*s1^-1*s0^-1)^2*s1^4*s0^2*s1^2],
[(s0^-1*s1^-1*s0^-1)^2*s1^2*s0^2*s1^4],
[s0^-1*s1^-1*s0^-2*s1^-1*s0*s1^2*s0^4],
[(s0^-1*s1^-1*s0^-1)^2*s1^5*s0^2*s1],
[s0^-1*s1^-1*s0^-2*s1^-1*s0^4*s1^2*s0],
[(s0^-1*s1^-1*s0^-1)^2*s1*s0^2*s1^5],
[s0^-1*s1^-1*s0^-2*s1*s0^5],
[(s0^-1*s1^-1*s0^-1)^2*s1*s0^6*s1],
[s0^-1*s1^-1*s0^-2*s1^5*s0]]
sage: b = B([2, 1, 2, 1])
sage: b.sliding_circuits()
[[s0*s1*s0^2, (s0*s1)^2]]

strands()

Return the number of strands in the braid.

EXAMPLES:

sage: B = BraidGroup(4)
sage: b = B([1, 2, -1, 3, -2])
sage: b.strands()
4

super_summit_set()

Return a list with the super summit set of the braid

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([1, 2, -1, -2, -2, 1])
sage: b.super_summit_set()
[s0^-1*s1^-1*s0^-2*s1^2*s0^2,
(s0^-1*s1^-1*s0^-1)^2*s1^2*s0^3*s1,
(s0^-1*s1^-1*s0^-1)^2*s1*s0^3*s1^2,
s0^-1*s1^-1*s0^-2*s1^-1*s0*s1^3*s0]

thurston_type()

Return the thurston_type of self.

OUTPUT:

One of 'reducible', 'periodic' or 'pseudo-anosov'.

EXAMPLES:

103

Groups, Release 9.8

sage: B = BraidGroup(3)
sage: b = B([1, 2, -1])
sage: b.thurston_type()
'reducible'
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.thurston_type()
'pseudo-anosov'
sage: c = B([2, 1, 2, 1])
sage: c.thurston_type()
'periodic'

tropical_coordinates()

Return the tropical coordinates of self in the braid group 𝐵𝑛.

OUTPUT:

• a list of 2𝑛 tropical integers

EXAMPLES:

sage: B = BraidGroup(3)
sage: b = B([1])
sage: tc = b.tropical_coordinates(); tc
[1, 0, 0, 2, 0, 1]
sage: tc[0].parent()
Tropical semiring over Integer Ring

sage: b = B([-2, -2, -1, -1, 2, 2, 1, 1])
sage: b.tropical_coordinates()
[1, -19, -12, 9, 0, 13]

REFERENCES:

• [DW2007]

• [Deh2011]

ultra_summit_set()

Return a list with the orbits of the ultra summit set of self

EXAMPLES:

sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: b = B([2, 1, 2, 1])
sage: b.ultra_summit_set()
[[s0*s1*s0^2, (s0*s1)^2]]
sage: a.ultra_summit_set()
[[(s0^-1*s1^-1*s0^-1)^2*s1^3*s0^2*s1^3,
(s0^-1*s1^-1*s0^-1)^2*s1^2*s0^2*s1^4,
(s0^-1*s1^-1*s0^-1)^2*s1*s0^2*s1^5,
s0^-1*s1^-1*s0^-2*s1^5*s0,
(s0^-1*s1^-1*s0^-1)^2*s1^5*s0^2*s1,
(s0^-1*s1^-1*s0^-1)^2*s1^4*s0^2*s1^2],
[s0^-1*s1^-1*s0^-2*s1^-1*s0^2*s1^2*s0^3,
s0^-1*s1^-1*s0^-2*s1^-1*s0*s1^2*s0^4,

(continues on next page)

104 Chapter 12. Braid groups

Groups, Release 9.8

(continued from previous page)

s0^-1*s1^-1*s0^-2*s1*s0^5,
(s0^-1*s1^-1*s0^-1)^2*s1*s0^6*s1,
s0^-1*s1^-1*s0^-2*s1^-1*s0^4*s1^2*s0,
s0^-1*s1^-1*s0^-2*s1^-1*s0^3*s1^2*s0^2]]

sage.groups.braid.BraidGroup(n=None, names='s')
Construct a Braid Group

INPUT:

• n – integer or None (default). The number of strands. If not specified the names are counted and the group
is assumed to have one more strand than generators.

• names – string or list/tuple/iterable of strings (default: 'x'). The generator names or name prefix.

EXAMPLES:

sage: B.<a,b> = BraidGroup(); B
Braid group on 3 strands
sage: H = BraidGroup('a, b')
sage: B is H
True
sage: BraidGroup(3)
Braid group on 3 strands

The entry can be either a string with the names of the generators, or the number of generators and the prefix of
the names to be given. The default prefix is 's'

sage: B = BraidGroup(3); B.generators()
(s0, s1)
sage: BraidGroup(3, 'g').generators()
(g0, g1)

Since the word problem for the braid groups is solvable, their Cayley graph can be locally obtained as follows
(see trac ticket #16059):

sage: def ball(group, radius):
....: ret = set()
....: ret.add(group.one())
....: for length in range(1, radius):
....: for w in Words(alphabet=group.gens(), length=length):
....: ret.add(prod(w))
....: return ret
sage: B = BraidGroup(4)
sage: GB = B.cayley_graph(elements=ball(B, 4), generators=B.gens()); GB
Digraph on 31 vertices

Since the braid group has nontrivial relations, this graph contains less vertices than the one associated to the free
group (which is a tree):

sage: F = FreeGroup(3)
sage: GF = F.cayley_graph(elements=ball(F, 4), generators=F.gens()); GF
Digraph on 40 vertices

105

https://trac.sagemath.org/16059

Groups, Release 9.8

class sage.groups.braid.BraidGroup_class(names)
Bases: FiniteTypeArtinGroup

The braid group on 𝑛 strands.

EXAMPLES:

sage: B1 = BraidGroup(5)
sage: B1
Braid group on 5 strands
sage: B2 = BraidGroup(3)
sage: B1==B2
False
sage: B2 is BraidGroup(3)
True

Element

alias of Braid

TL_basis_with_drain(drain_size)
Return a basis of a summand of the Temperley–Lieb–Jones representation of self.

The basis elements are given by non-intersecting pairings of 𝑛+ 𝑑 points in a square with 𝑛 points marked
‘on the top’ and 𝑑 points ‘on the bottom’ so that every bottom point is paired with a top point. Here, 𝑛 is
the number of strands of the braid group, and 𝑑 is specified by drain_size.

A basis element is specified as a list of integers obtained by considering the pairings as obtained as the
‘highest term’ of trivalent trees marked by Jones–Wenzl projectors (see e.g. [Wan2010]). In practice, this
is a list of non-negative integers whose first element is drain_size, whose last element is 0, and satisfying
that consecutive integers have difference 1. Moreover, the length of each basis element is 𝑛+ 1.

Given these rules, the list of lists is constructed recursively in the natural way.

INPUT:

• drain_size – integer between 0 and the number of strands (both inclusive)

OUTPUT:

A list of basis elements, each of which is a list of integers.

EXAMPLES:

We calculate the basis for the appropriate vector space for 𝐵5 when 𝑑 = 3:

sage: B = BraidGroup(5)
sage: B.TL_basis_with_drain(3)
[[3, 4, 3, 2, 1, 0],
[3, 2, 3, 2, 1, 0],
[3, 2, 1, 2, 1, 0],
[3, 2, 1, 0, 1, 0]]

The number of basis elements hopefully corresponds to the general formula for the dimension of the rep-
resentation spaces:

sage: B = BraidGroup(10)
sage: d = 2
sage: B.dimension_of_TL_space(d) == len(B.TL_basis_with_drain(d))
True

106 Chapter 12. Braid groups

Groups, Release 9.8

TL_representation(drain_size, variab=None)
Return representation matrices of the Temperley–Lieb–Jones representation of standard braid group gen-
erators and inverses of self.

The basis is given by non-intersecting pairings of (𝑛+ 𝑑) points, where 𝑛 is the number of strands, and 𝑑
is given by drain_size, and the pairings satisfy certain rules. See TL_basis_with_drain() for details.
This basis has the useful property that all resulting entries can be regarded as Laurent polynomials.

We use the convention that the eigenvalues of the standard generators are 1 and −𝐴4, where 𝐴 is the
generator of the Laurent polynomial ring.

When 𝑑 = 𝑛 − 2 and the variables are picked appropriately, the resulting representation is equivalent to
the reduced Burau representation. When 𝑑 = 𝑛, the resulting representation is trivial and 1-dimensional.

INPUT:

• drain_size – integer between 0 and the number of strands (both inclusive)

• variab – variable (default: None); the variable in the entries of the matrices; if None, then use a
default variable in Z[𝐴,𝐴−1]

OUTPUT:

A list of matrices corresponding to the representations of each of the standard generators and their inverses.

EXAMPLES:

sage: B = BraidGroup(4)
sage: B.TL_representation(0)
[(
[1 0] [1 0]
[A^2 -A^4], [A^-2 -A^-4]

),
(
[-A^4 A^2] [-A^-4 A^-2]
[0 1], [0 1]

),
(
[1 0] [1 0]
[A^2 -A^4], [A^-2 -A^-4]

)]
sage: R.<A> = LaurentPolynomialRing(GF(2))
sage: B.TL_representation(0, variab=A)
[(
[1 0] [1 0]
[A^2 A^4], [A^-2 A^-4]

),
(
[A^4 A^2] [A^-4 A^-2]
[0 1], [0 1]

),
(
[1 0] [1 0]
[A^2 A^4], [A^-2 A^-4]

)]
sage: B = BraidGroup(8)
sage: B.TL_representation(8)
[([1], [1]),

(continues on next page)

107

Groups, Release 9.8

(continued from previous page)

([1], [1]),
([1], [1]),
([1], [1]),
([1], [1]),
([1], [1]),
([1], [1])]

an_element()

Return an element of the braid group.

This is used both for illustration and testing purposes.

EXAMPLES:

sage: B = BraidGroup(2)
sage: B.an_element()
s

as_permutation_group()

Return an isomorphic permutation group.

OUTPUT:

Raises a ValueError error since braid groups are infinite.

cardinality()

Return the number of group elements.

OUTPUT:

Infinity.

dimension_of_TL_space(drain_size)
Return the dimension of a particular Temperley–Lieb representation summand of self.

Following the notation of TL_basis_with_drain(), the summand is the one corresponding to the number
of drains being fixed to be drain_size.

INPUT:

• drain_size – integer between 0 and the number of strands (both inclusive)

EXAMPLES:

Calculation of the dimension of the representation of 𝐵8 corresponding to having 2 drains:

sage: B = BraidGroup(8)
sage: B.dimension_of_TL_space(2)
28

The direct sum of endomorphism spaces of these vector spaces make up the entire Temperley–Lieb algebra:

sage: import sage.combinat.diagram_algebras as da
sage: B = BraidGroup(6)
sage: dimensions = [B.dimension_of_TL_space(d)**2 for d in [0, 2, 4, 6]]
sage: total_dim = sum(dimensions)
sage: total_dim == len(list(da.temperley_lieb_diagrams(6))) # long time
True

108 Chapter 12. Braid groups

Groups, Release 9.8

mapping_class_action(F)
Return the action of self in the free group F as mapping class group.

This action corresponds to the action of the braid over the punctured disk, whose fundamental group is the
free group on as many generators as strands.

In Sage, this action is the result of multiplying a free group element with a braid. So you generally do not
have to construct this action yourself.

OUTPUT:

A MappingClassGroupAction.

EXAMPLES:

sage: B = BraidGroup(3)
sage: B.inject_variables()
Defining s0, s1
sage: F.<a,b,c> = FreeGroup(3)
sage: A = B.mapping_class_action(F)
sage: A(a,s0)
a*b*a^-1
sage: a * s0 # simpler notation
a*b*a^-1

mirror_involution()

Return the mirror involution of self.

This automorphism maps a braid to another one by replacing each generator in its word by the inverse. In
general this is different from the inverse of the braid since the order of the generators in the word is not
reversed.

EXAMPLES:

sage: B = BraidGroup(4)
sage: mirr = B.mirror_involution()
sage: b = B((1,-2,-1,3,2,1))
sage: bm = mirr(b); bm
s0^-1*s1*s0*s2^-1*s1^-1*s0^-1
sage: bm == ~b
False
sage: bm.is_conjugated(b)
False
sage: bm.is_conjugated(~b)
True

order()

Return the number of group elements.

OUTPUT:

Infinity.

some_elements()

Return a list of some elements of the braid group.

This is used both for illustration and testing purposes.

EXAMPLES:

109

Groups, Release 9.8

sage: B = BraidGroup(3)
sage: B.some_elements()
[s0, s0*s1, (s0*s1)^3]

strands()

Return the number of strands.

OUTPUT:

Integer.

EXAMPLES:

sage: B = BraidGroup(4)
sage: B.strands()
4

class sage.groups.braid.MappingClassGroupAction(G, M)

Bases: Action

The right action of the braid group the free group as the mapping class group of the punctured disk.

That is, this action is the action of the braid over the punctured disk, whose fundamental group is the free group
on as many generators as strands.

This action is defined as follows:

𝑥𝑗 · 𝜎𝑖 =

⎧⎪⎨⎪⎩
𝑥𝑗 · 𝑥𝑗+1 · 𝑥𝑗−1 if 𝑖 = 𝑗

𝑥𝑗−1 if 𝑖 = 𝑗 − 1

𝑥𝑗 otherwise
,

where 𝜎𝑖 are the generators of the braid group on 𝑛 strands, and 𝑥𝑗 the generators of the free group of rank 𝑛.

You should left multiplication of the free group element by the braid to compute the action. Alternatively, use
the mapping_class_action() method of the braid group to construct this action.

EXAMPLES:

sage: B.<s0,s1,s2> = BraidGroup(4)
sage: F.<x0,x1,x2,x3> = FreeGroup(4)
sage: x0 * s1
x0
sage: x1 * s1
x1*x2*x1^-1
sage: x1^-1 * s1
x1*x2^-1*x1^-1

sage: A = B.mapping_class_action(F)
sage: A
Right action by Braid group on 4 strands on Free Group on generators {x0, x1, x2,␣
→˓x3}
sage: A(x0, s1)
x0
sage: A(x1, s1)
x1*x2*x1^-1
sage: A(x1^-1, s1)
x1*x2^-1*x1^-1

110 Chapter 12. Braid groups

../../../../../../html/en/reference/categories/sage/categories/action.html#sage.categories.action.Action

Groups, Release 9.8

class sage.groups.braid.RightQuantumWord(words)
Bases: object

A right quantum word as in Definition 4.1 of [HL2018].

INPUT:

• words – an element in a suitable free algebra over a Laurent polynomial ring in one variable; this input
does not need to be in reduced form, but the monomials for the input can come in any order

EXAMPLES:

sage: from sage.groups.braid import RightQuantumWord
sage: fig_8 = BraidGroup(3)([-1, 2, -1, 2])
sage: (
....: bp_1, cp_1, ap_1,
....: bp_3, cp_3, ap_3,
....: bm_0, cm_0, am_0,
....: bm_2, cm_2, am_2
....:) = fig_8.deformed_burau_matrix().parent().base_ring().gens()
sage: q = bp_1.base_ring().gen()
sage: RightQuantumWord(ap_1*cp_1 + q**3*bm_2*bp_1*am_0*cm_0)
The right quantum word represented by
q*cp_1*ap_1 + q^2*bp_1*cm_0*am_0*bm_2
reduced from ap_1*cp_1 + q^3*bm_2*bp_1*am_0*cm_0

eps(N)

Evaluate the map ℰ𝑁 for a braid.

INPUT:

• N – an integer; the number of colors

EXAMPLES:

sage: from sage.groups.braid import RightQuantumWord
sage: B = BraidGroup(3)
sage: b = B([1,-2,1,2])
sage: db = b.deformed_burau_matrix()[:, :]
sage: q = db.parent().base_ring().base_ring().gen()
sage: (bp_0, cp_0, ap_0,
....: bp_2, cp_2, ap_2,
....: bp_3, cp_3, ap_3,
....: bm_1, cm_1, am_1) = db.parent().base_ring().gens()
sage: rqw = RightQuantumWord(
....: q^3*bp_2*bp_0*ap_0 + q*ap_3*bm_1*am_1*bp_0)
sage: rqw.eps(3)
-q^-1 + 2*q - q^5
sage: rqw.eps(2)
-1 + 2*q - q^2 + q^3 - q^4

Todo: Parallelize this function, calculating all summands in the sum in parallel.

reduced_word()

Return the (reduced) right quantum word.

111

Groups, Release 9.8

OUTPUT:

An element in the free algebra.

EXAMPLES:

sage: from sage.groups.braid import RightQuantumWord
sage: fig_8 = BraidGroup(3)([-1, 2, -1, 2])
sage: (
....: bp_1, cp_1, ap_1,
....: bp_3, cp_3, ap_3,
....: bm_0, cm_0, am_0,
....: bm_2, cm_2, am_2
....:) = fig_8.deformed_burau_matrix().parent().base_ring().gens()
sage: q = bp_1.base_ring().gen()
sage: qw = RightQuantumWord(ap_1*cp_1 +
....: q**3*bm_2*bp_1*am_0*cm_0)
sage: qw.reduced_word()
q*cp_1*ap_1 + q^2*bp_1*cm_0*am_0*bm_2

Todo: Parallelize this function, calculating all summands in the sum in parallel.

tuples()

Get a representation of the right quantum word as a dict, with keys monomials in the free algebra repre-
sented as tuples and values in elements the Laurent polynomial ring in one variable.

This is in the reduced form as outlined in Definition 4.1 of [HL2018].

OUTPUT:

A dict of tuples of ints corresponding to the exponents in the generators with values in the algebra’s base
ring.

EXAMPLES:

sage: from sage.groups.braid import RightQuantumWord
sage: fig_8 = BraidGroup(3)([-1, 2, -1, 2])
sage: (
....: bp_1, cp_1, ap_1,
....: bp_3, cp_3, ap_3,
....: bm_0, cm_0, am_0,
....: bm_2, cm_2, am_2
....:) = fig_8.deformed_burau_matrix().parent().base_ring().gens()
sage: q = bp_1.base_ring().gen()
sage: qw = RightQuantumWord(ap_1*cp_1 +
....: q**3*bm_2*bp_1*am_0*cm_0)
sage: for key, value in qw.tuples.items():
....: print(key, value)
....:
(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) q
(1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0) q^2

112 Chapter 12. Braid groups

CHAPTER

THIRTEEN

CUBIC BRAID GROUPS

This module is devoted to factor groups of the Artin braid groups, such that the images 𝑠𝑖 of the braid generators have
order three:

𝑠3𝑖 = 1.

In general these groups have firstly been investigated by Coxeter, H.S.M. in: “Factor groups of the braid groups, Pro-
ceedings of the Fourth Canadian Mathematical Congress (Vancouver 1957), pp. 95-122”.

Coxeter showed, that these groups are finite as long as the number of strands is less than 6 and infinite else-wise. More
explicitly the factor group on three strand braids is isomorphic to 𝑆𝐿(2, 3), on four strand braids to 𝐺𝑈(3, 2) and on
five strand braids to 𝑆𝑝(4, 3) × 𝐶3. Today, these finite groups are known as irreducible complex reflection groups
enumerated in the Shephard-Todd classification as 𝐺4, 𝐺25 and 𝐺32.

Coxeter realized these groups as subgroups of unitary groups with respect to a certain Hermitian form over the complex
numbers (in fact over Q adjoined with a primitive 12-th root of unity).

In “Einige endliche Faktorgruppen der Zopfgruppen” (Math. Z., 163 (1978), 291-302) J. Assion considered two series
𝑆(𝑚) and𝑈(𝑚) of finite factors of these groups. The additional relations on the braid group generators {𝑠1, · · · , 𝑠𝑚−1}
are

S: 𝑠3𝑠1𝑡2𝑠1𝑡
−1
2 𝑡3𝑡2𝑠1𝑡

−1
2 𝑡−1

3 = 1 for 𝑚 >= 5 in case 𝑆(𝑚)
U: 𝑡1𝑡3 = 1 for 𝑚 >= 5 in case 𝑈(𝑚)

where 𝑡𝑖 = (𝑠𝑖𝑠𝑖+1)3. He showed that each series of finite cubic braid group factors must be an epimorphic image of
one of his two series, as long as the groups with less than 5 strands are the full cubic braid groups, whereas the group on
5 strands is not. He realized the groups 𝑆(𝑚) as symplectic groups over 𝐺𝐹 (3) (resp. subgroups therein) and 𝑈(𝑚)
as general unitary groups over 𝐺𝐹 (4) (resp. subgroups therein).

All the groups considered by Coxeter and Assion are considered as finitely presented groups together with the clas-
sical realizations. It also allows for the conversion maps between the two realizations. In addition, we can con-
struct other realizations and maps to matrix groups with help of the Burau representation. In case gap3 and CHEVIE
are installed, the reflection groups (via the gap3 interface) are available, too. This can be done using the methods
as_classical_group(), as_matrix_group(), as_permutation_group(), and as_reflection_group().

REFERENCES:

• [Cox1957]

• [Ass1978]

AUTHORS:

• Sebastian Oehms 2019-02-16, initial version.

113

Groups, Release 9.8

sage.groups.cubic_braid.AssionGroupS(n=None, names='s')
Construct cubic braid groups CubicBraidGroup which have been investigated by J.Assion using the notation
S(m). This function is a short hand cut for setting the construction arguments cbg_type=CubicBraidGroup.
type.AssionS and default names='s'.

INPUT:

• n – integer (optional); the number of strands

• names – (default: 's') string or list/tuple/iterable of strings

See also:

CubicBraidGroup

EXAMPLES:

sage: S3 = AssionGroupS(3); S3
Assion group on 3 strands of type S
sage: S3x = CubicBraidGroup(3, names='s', cbg_type=CubicBraidGroup.type.AssionS);␣
→˓S3x
Assion group on 3 strands of type S
sage: S3 == S3x
True

sage.groups.cubic_braid.AssionGroupU(n=None, names='u')
Construct cubic braid groups as instance of CubicBraidGroup which have been investigated by J.Assion
using the notation U(m). This function is a short hand cut for setting the construction arguments
cbg_type=CubicBraidGroup.type.AssionU and default names='u'.

INPUT:

• n – integer (optional); the number of strands

• names – (default: 's') string or list/tuple/iterable of strings

See also:

CubicBraidGroup

EXAMPLES:

sage: U3 = AssionGroupU(3); U3
Assion group on 3 strands of type U
sage: U3x = CubicBraidGroup(3, names='u', cbg_type=CubicBraidGroup.type.AssionU);␣
→˓U3x
Assion group on 3 strands of type U
sage: U3 == U3x
True

class sage.groups.cubic_braid.CubicBraidElement(parent, x, check=True)
Bases: FinitelyPresentedGroupElement

Elements of cubic factor groups of the braid group.

For more information see CubicBraidGroup.

EXAMPLES:

114 Chapter 13. Cubic Braid Groups

Groups, Release 9.8

sage: C4.<c1, c2, c3> = CubicBraidGroup(4); C4
Cubic Braid group on 4 strands
sage: ele1 = c1*c2*c3^-1*c2^-1
sage: ele2 = C4((1, 2, -3, -2))
sage: ele1 == ele2
True

braid()

Return the canonical braid preimage of self as a Braid.

EXAMPLES:

sage: C3.<c1, c2> = CubicBraidGroup(3)
sage: c1.parent()
Cubic Braid group on 3 strands
sage: c1.braid().parent()
Braid group on 3 strands

burau_matrix(root_bur=None, domain=None, characteristic=None, var='t', reduced=False)
Return the Burau matrix of the cubic braid coset.

This method uses the same method belonging to Braid, but reduces the indeterminate to a primitive sixth
(resp. twelfth in case reduced='unitary') root of unity.

INPUT (all arguments are optional keywords):

• root_bur – six (resp. twelfth) root of unity in some field (default: root of unity over Q)

• domain – (default: cyclotomic field of order 3 and degree 2, resp. the domain of 𝑟𝑜𝑜𝑡𝑏𝑢𝑟 if given)
base ring for the Burau matrix

• characteristic – integer giving the characteristic of the domain (default: 0 or the characteristic of
domain if given)

• var – string used for the indeterminate name in case root_bur must be constructed in a splitting field

• reduced – boolean or string (default: False); for more information see the documentation of
burau_matrix() of Braid

OUTPUT:

The Burau matrix of the cubic braid coset with entries in the domain given by the options. In case the option
reduced='unitary' is given a triple consisting of the Burau matrix, its adjoined and the Hermitian form
is returned.

EXAMPLES:

sage: C3.<c1, c2> = CubicBraidGroup(3)
sage: ele = c1*c2*c1
sage: BuMa = ele.burau_matrix(); BuMa
[-zeta3 1 zeta3]
[-zeta3 zeta3 + 1 0]
[1 0 0]
sage: BuMa.base_ring()
Cyclotomic Field of order 3 and degree 2
sage: BuMa == ele.burau_matrix(characteristic = 0)
True
sage: BuMa = ele.burau_matrix(domain=QQ); BuMa

(continues on next page)

115

Groups, Release 9.8

(continued from previous page)

[-t + 1 1 t - 1]
[-t + 1 t 0]
[1 0 0]
sage: BuMa.base_ring()
Number Field in t with defining polynomial t^2 - t + 1
sage: BuMa = ele.burau_matrix(domain = QQ[I, sqrt(3)]); BuMa
[1/2*sqrt3*I + 1/2 1 -1/2*sqrt3*I - 1/2]
[1/2*sqrt3*I + 1/2 -1/2*sqrt3*I + 1/2 0]
[1 0 0]
sage: BuMa.base_ring()
Number Field in I with defining polynomial x^2 + 1 over its base field
sage: BuMa = ele.burau_matrix(characteristic=7); BuMa
[3 1 4]
[3 5 0]
[1 0 0]
sage: BuMa.base_ring()
Finite Field of size 7
sage: BuMa = ele.burau_matrix(characteristic=2); BuMa
[t + 1 1 t + 1]
[t + 1 t 0]
[1 0 0]
sage: BuMa.base_ring()
Finite Field in t of size 2^2
sage: F4.<r64> = GF(4)
sage: BuMa = ele.burau_matrix(root_bur=r64); BuMa
[r64 + 1 1 r64 + 1]
[r64 + 1 r64 0]
[1 0 0]
sage: BuMa.base_ring()
Finite Field in r64 of size 2^2
sage: BuMa = ele.burau_matrix(domain=GF(5)); BuMa
[2*t + 2 1 3*t + 3]
[2*t + 2 3*t + 4 0]
[1 0 0]
sage: BuMa.base_ring()
Finite Field in t of size 5^2
sage: BuMa, BuMaAd, H = ele.burau_matrix(reduced='unitary'); BuMa
[0 zeta12^3]
[zeta12^3 0]
sage: BuMa * H * BuMaAd == H
True
sage: BuMa.base_ring()
Cyclotomic Field of order 12 and degree 4
sage: BuMa, BuMaAd, H = ele.burau_matrix(domain = QQ[I, sqrt(3)], reduced=
→˓'unitary'); BuMa
[0 I]
[I 0]
sage: BuMa.base_ring()
Number Field in I with defining polynomial x^2 + 1 over its base field

class sage.groups.cubic_braid.CubicBraidGroup(names, cbg_type=None)
Bases: FinitelyPresentedGroup

116 Chapter 13. Cubic Braid Groups

Groups, Release 9.8

Factor groups of the Artin braid group mapping their generators to elements of order 3.

These groups are implemented as a particular case of finitely presented groups similar to the
BraidGroup_class.

A cubic braid group can be created by giving the number of strands, and the name of the generators in a similar
way as it works for the BraidGroup_class.

INPUT:

• names – see the corresponding documentation of BraidGroup_class.

• cbg_type – (default: CubicBraidGroup.type.Coxeter; see explanation below) enum type
CubicBraidGroup.type

Setting the keyword cbg_type to one on the values CubicBraidGroup.type.AssionS or CubicBraidGroup.
type.AssionU, the additional relations due to Assion are added:

S: 𝑠3𝑠1𝑡2𝑠1𝑡
−1
2 𝑡3𝑡2𝑠1𝑡

−1
2 𝑡−1

3 = 1 for 𝑚 >= 5 in case 𝑆(𝑚),
U: 𝑡1𝑡3 = 1 for 𝑚 >= 5 in case 𝑈(𝑚),

where 𝑡𝑖 = (𝑠𝑖𝑠𝑖+1)3. If cbg_type == CubicBraidGroup.type.Coxeter (default) only the cubic relation
on the generators is active (Coxeter’s case of investigation). Note that for 𝑛 = 2, 3, 4, the groups do not differ
between the three possible values of cbg_type (as finitely presented groups). However, the CubicBraidGroup.
type.Coxeter, CubicBraidGroup.type.AssionS and CubicBraidGroup.type.AssionU are different, so
they have different classical realizations implemented.

See also:

Instances can also be constructed more easily by using CubicBraidGroup(), AssionGroupS() and
AssionGroupU().

EXAMPLES:

sage: U3 = CubicBraidGroup(3, cbg_type=CubicBraidGroup.type.AssionU); U3
Assion group on 3 strands of type U
sage: U3.gens()
(c0, c1)

Alternative possibilities defining U3:

sage: U3 = AssionGroupU(3); U3
Assion group on 3 strands of type U
sage: U3.gens()
(u0, u1)
sage: U3.<u1,u2> = AssionGroupU(3); U3
Assion group on 3 strands of type U
sage: U3.gens()
(u1, u2)

Alternates naming the generators:

sage: U3 = AssionGroupU(3, 'a, b'); U3
Assion group on 3 strands of type U
sage: U3.gens()
(a, b)
sage: C3 = CubicBraidGroup(3, 't'); C3
Cubic Braid group on 3 strands
sage: C3.gens()

(continues on next page)

117

Groups, Release 9.8

(continued from previous page)

(t0, t1)
sage: U3.is_isomorphic(C3)
#I Forcing finiteness test
True
sage: U3.as_classical_group()
Subgroup generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)(12,16,20), (1,12,13)(2,15,
→˓19)(4,9,14)(5,18,8)(6,21,16)]
of (The projective general unitary group of degree 3 over Finite Field of size 2)
sage: C3.as_classical_group()
Subgroup with 2 generators (
[E(3)^2 0] [1 -E(12)^7]
[-E(12)^7 1], [0 E(3)^2]
) of General Unitary Group of degree 2 over Universal Cyclotomic Field with respect␣
→˓to positive definite hermitian form
[-E(12)^7 + E(12)^11 -1]
[-1 -E(12)^7 + E(12)^11]

REFERENCES:

• [Cox1957]

• [Ass1978]

Element

alias of CubicBraidElement

as_classical_group(embedded=False)
Create an isomorphic image of self as a classical group according to the construction given by Coxeter
resp. Assion.

INPUT:

• embedded – boolean (default: False); this boolean effects the cases of Assion groups when they are re-
alized as projective groups only. More precisely: if self is of cbg_type CubicBraidGroup.type.
AssionS (for example) and the number of strands n is even, than its classical group is a subgroup of
PSp(n,3) (being centralized by the element self.centralizing_element(projective=True)).
By default this group will be given. Setting embedded = True the classical realization is given as
subgroup of its classical enlargement with one more strand (in this case as subgroup of Sp(n,3)).

OUTPUT:

Depending on the type of self and the number of strands an instance of Sp(n-1,3), GU(n-1,2), subgroup
of PSp(n,3), PGU(n,2), or a subgroup of GU(n-1, UCF) (cbg_type == CubicBraidGroup.type.
Coxeter) with respect to a certain Hermitian form attached to the Burau representation (used by Coxeter
and Squier). Here UCF stands for the universal cyclotomic field.

EXAMPLES:

sage: U3 = AssionGroupU(3)
sage: U3Cl = U3.as_classical_group(); U3Cl
Subgroup generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)(12,16,20), (1,12,
→˓13)(2,15,19)(4,9,14)(5,18,8)(6,21,16)]
of (The projective general unitary group of degree 3 over Finite Field of size␣
→˓2)
sage: U3Clemb = U3.as_classical_group(embedded=True); U3Clemb
Subgroup with 2 generators (

(continues on next page)

118 Chapter 13. Cubic Braid Groups

Groups, Release 9.8

(continued from previous page)

[0 0 a] [a + 1 a a]
[0 1 0] [a a + 1 a]
[a 0 a], [a a a + 1]
) of General Unitary Group of degree 3 over Finite Field in a of size 2^2
sage: u = U3([-2,1,-2,1]); u
(u1^-1*u0)^2
sage: uCl = U3Cl(u); uCl
(1,16)(2,9)(3,10)(4,19)(6,12)(7,20)(13,21)(14,15)
sage: uCle = U3Clemb(u); uCle
[a + 1 a + 1 1]
[a + 1 0 a]
[1 a a]
sage: U3(uCl) == u
True
sage: U3(uCle) == u
True
sage: U4 = AssionGroupU(4)
sage: U4Cl = U4.as_classical_group(); U4Cl
General Unitary Group of degree 3 over Finite Field in a of size 2^2
sage: U3Clemb.ambient() == U4Cl
True
sage: C4 = CubicBraidGroup(4)
sage: C4Cl = C4.as_classical_group(); C4Cl
Subgroup with 3 generators (
[E(3)^2 0 0] [1 -E(12)^7 0]
[-E(12)^7 1 0] [0 E(3)^2 0]
[0 0 1], [0 -E(12)^7 1],

[1 0 0]
[0 1 -E(12)^7]
[0 0 E(3)^2]
) of General Unitary Group of degree 3 over Universal Cyclotomic Field with␣
→˓respect to positive definite hermitian form
[-E(12)^7 + E(12)^11 -1 0]
[-1 -E(12)^7 + E(12)^11 -1]
[0 -1 -E(12)^7 + E(12)^11]

as_matrix_group(root_bur=None, domain=None, characteristic=None, var='t', reduced=False)
Creates an epimorphic image of self as a matrix group by use of the burau representation.

INPUT:

• root_bur – (default: root of unity over Q) six (resp. twelfth) root of unity in some field

• domain – (default: cyclotomic field of order 3 and degree 2, resp. the domain of root_bur if given)
base ring for the Burau matrix

• characteristic – integer (optional); the characteristic of the domain; if none of the keywords
root_bur, domain and characteristic are given, the default characteristic is 3 (resp. 2) if self
is of cbg_type CubicBraidGroup.type.AssionS (resp. CubicBraidGroup.type.AssionU)

• var – string used for the indeterminate name in case root_bur must be constructed in a splitting field

• reduced – boolean (default: False); for more information see the documentation of Braid.
burau_matrix()

119

Groups, Release 9.8

EXAMPLES:

sage: C5 = CubicBraidGroup(5)
sage: C5Mch5 = C5.as_matrix_group(characteristic=5); C5Mch5
Matrix group over Finite Field in t of size 5^2 with 4 generators (
[2*t + 2 3*t + 4 0 0 0]
[1 0 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1],

[1 0 0 0 0]
[0 2*t + 2 3*t + 4 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 0 0 1],

[1 0 0 0 0]
[0 1 0 0 0]
[0 0 2*t + 2 3*t + 4 0]
[0 0 1 0 0]
[0 0 0 0 1],

[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 2*t + 2 3*t + 4]
[0 0 0 1 0]
)
sage: c = C5([3,4,-2,-3,1]); c
c2*c3*c1^-1*c2^-1*c0
sage: m = C5Mch5(c); m
[2*t + 2 3*t + 4 0 0 0]
[0 0 0 1 0]
[2*t + 1 0 2*t + 2 3*t 3*t + 3]
[2*t + 2 0 0 3*t + 4 0]
[0 0 2*t + 2 3*t + 4 0]
sage: m_back = C5(m)
sage: m_back == c
True
sage: U5 = AssionGroupU(5); U5
Assion group on 5 strands of type U
sage: U5Mch3 = U5.as_matrix_group(characteristic=3)
Traceback (most recent call last):
...
ValueError: Burau representation does not factor through the relations

as_permutation_group(use_classical=True)
Return a permutation group isomorphic to self that has a group isomorphism from self as a conversion.

INPUT:

• use_classical – boolean (default: True); the permutation group is calculated via the attached clas-
sical matrix group as this results in a smaller degree; if False, the permutation group will be calculated
using self (as finitely presented group)

120 Chapter 13. Cubic Braid Groups

Groups, Release 9.8

EXAMPLES:

sage: C3 = CubicBraidGroup(3)
sage: PC3 = C3.as_permutation_group()
sage: assert C3.is_isomorphic(PC3) # random (with respect to the occurrence of␣
→˓the info message)
#I Forcing finiteness test
sage: PC3.degree()
8
sage: c = C3([2,1-2])
sage: C3(PC3(c)) == c
True

as_reflection_group()

Return an isomorphic image of self as irreducible complex reflection group.

This is possible only for the finite cubic braid groups of cbg_type CubicBraidGroup.type.
Coxeter.

Note: This method uses the sage implementation of reflection group via the gap3 CHEVIE pack-
age. These must be installed in order to use this method.

EXAMPLES:

sage: C3.<c1,c2> = CubicBraidGroup(3) # optional - gap3
sage: R3 = C3.as_reflection_group(); R3 # optional - gap3
Irreducible complex reflection group of rank 2 and type ST4
sage: R3.cartan_matrix() # optional - gap3
[-2*E(3) - E(3)^2 E(3)^2]
[-E(3)^2 -2*E(3) - E(3)^2]
sage: R3.simple_roots() # optional - gap3
Finite family {1: (0, -2*E(3) - E(3)^2), 2: (2*E(3)^2, E(3)^2)}
sage: R3.simple_coroots() # optional - gap3
Finite family {1: (0, 1), 2: (1/3*E(3) - 1/3*E(3)^2, 1/3*E(3) - 1/3*E(3)^
→˓2)}

Conversion maps:

sage: r = R3.an_element() # optional - gap3
sage: cr = C3(r); cr # optional - gap3
c1*c2
sage: mr = r.matrix(); mr # optional - gap3
[1/3*E(3) - 1/3*E(3)^2 2/3*E(3) + 1/3*E(3)^2]
[-2/3*E(3) + 2/3*E(3)^2 2/3*E(3) + 1/3*E(3)^2]
sage: C3Cl = C3.as_classical_group() # optional - gap3
sage: C3Cl(cr) # optional - gap3
[E(3)^2 -E(4)]
[-E(12)^7 0]

The reflection groups can also be viewed as subgroups of unitary groups
over the universal cyclotomic field. Note that the unitary group
corresponding to the reflection group is isomorphic but different from
the classical group due to different hermitian forms for the unitary

(continues on next page)

121

Groups, Release 9.8

(continued from previous page)

groups they live in::

sage: C4 = CubicBraidGroup(4) # optional - gap3
sage: R4 = C4.as_reflection_group() # optional - gap3
sage: R4.invariant_form() # optional - gap3
[1 0 0]
[0 1 0]
[0 0 1]
sage: _ == C4.classical_invariant_form() # optional - gap3
False

braid_group()

Return a BraidGroup with identical generators, such that there exists an epimorphism to self.

OUTPUT:

A BraidGroup having conversion maps to and from self (which is just a section in the latter case).

EXAMPLES:

sage: U5 = AssionGroupU(5); U5
Assion group on 5 strands of type U
sage: B5 = U5.braid_group(); B5
Braid group on 5 strands
sage: b = B5([4,3,2,-4,1])
sage: u = U5([4,3,2,-4,1])
sage: u == b
False
sage: b.burau_matrix()
[1 - t t 0 0 0]
[1 - t 0 t 0 0]
[1 - t 0 0 0 t]
[1 - t 0 0 1 -1 + t]
[1 0 0 0 0]
sage: u.burau_matrix()
[t + 1 t 0 0 0]
[t + 1 0 t 0 0]
[t + 1 0 0 0 t]
[t + 1 0 0 1 t + 1]
[1 0 0 0 0]
sage: bU = U5(b)
sage: uB = B5(u)
sage: bU == u
True
sage: uB == b
True

cardinality()

To avoid long wait-time on calculations the order will be obtained using the classical realization.

OUTPUT:

Cardinality of the group as Integer or infinity.

EXAMPLES:

122 Chapter 13. Cubic Braid Groups

Groups, Release 9.8

sage: S15 = AssionGroupS(15)
sage: S15.order()
109777561863482259035023554842176139436811616256000
sage: C6 = CubicBraidGroup(6)
sage: C6.order()
+Infinity

centralizing_element(embedded=False)
Return the centralizing element defined by the work of Assion (Hilfssatz 1.1.3 and 1.2.3).

INPUT:

• embedded – boolean (default; False); this boolean only effects the cases of Assion groups when
they are realized as projective groups. More precisely: if self is of cbg_type CubicBraidGroup.
type.AssionS (for example) and the number of strands n is even, than its classical group is a subgroup
of PSp(n,3) being centralized by the element return for option embedded=False. Otherwise the
image of this element inside the embedded classical group will be returned (see option embedded of
classical_group()).

OUTPUT:

Depending on the optional keyword a permutation as an element of PSp(n,3) (type S) or PGU(n,2) (type
U) for n = 0 mod 2 (type S) resp. n = 0 mod 3 (type U) is returned. Otherwise, the centralizing element
is a matrix belonging to Sp(n,3) resp. GU(n,2).

EXAMPLES:

sage: U3 = AssionGroupU(3); U3
Assion group on 3 strands of type U
sage: U3Cl = U3.as_classical_group(); U3Cl
Subgroup generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)(12,16,20), (1,12,
→˓13)(2,15,19)(4,9,14)(5,18,8)(6,21,16)]
of (The projective general unitary group of degree 3 over Finite Field of size␣
→˓2)
sage: c = U3.centralizing_element(); c
(1,16)(2,9)(3,10)(4,19)(6,12)(7,20)(13,21)(14,15)
sage: c in U3Cl
True
sage: P = U3Cl.ambient_group()
sage: P.centralizer(c) == U3Cl
True

Embedded version:

sage: cm = U3.centralizing_element(embedded=True); cm
[a + 1 a + 1 1]
[a + 1 0 a]
[1 a a]
sage: U4 = AssionGroupU(4)
sage: U4Cl = U4.as_classical_group()
sage: cm in U4Cl
True
sage: [cm * U4Cl(g) == U4Cl(g) * cm for g in U4.gens()]
[True, True, False]

123

Groups, Release 9.8

classical_invariant_form()

Return the invariant form of the classical realization of self.

OUTPUT:

A square matrix of dimension according to the space the classical realization is operating on. In the case of
the full cubic braid groups and of the Assion groups of cbg_type CubicBraidGroup.type.AssionU the
matrix is Hermitian. In the case of the Assion groups of cbg_type CubicBraidGroup.type.AssionS it
is alternating. Note that the invariant form of the full cubic braid group on more than 5 strands is degenerated
(causing the group to be infinite).

In the case of Assion groups having projective classical groups, the invariant form corresponds to the
ambient group of its classical embedding.

EXAMPLES:

sage: S3 = AssionGroupS(3)
sage: S3.classical_invariant_form()
[0 1]
[2 0]
sage: S4 = AssionGroupS(4)
sage: S4.classical_invariant_form()
[0 0 0 1]
[0 0 1 0]
[0 2 0 0]
[2 0 0 0]
sage: S5 = AssionGroupS(5)
sage: S4.classical_invariant_form() == S5.classical_invariant_form()
True
sage: U4 = AssionGroupU(4)
sage: U4.classical_invariant_form()
[0 0 1]
[0 1 0]
[1 0 0]
sage: C5 = CubicBraidGroup(5)
sage: C5.classical_invariant_form()
[-E(12)^7 + E(12)^11 -1 0 ␣
→˓0]
[-1 -E(12)^7 + E(12)^11 -1 0]
[0 -1 -E(12)^7 + E(12)^11 -1]
[0 0 -1 -E(12)^7 + E(12)^11]
sage: _.is_singular()
False
sage: C6 = CubicBraidGroup(6)
sage: C6.classical_invariant_form().is_singular()
True

codegrees()

Return the codegrees of self.

This only makes sense when self is a finite reflection group.

EXAMPLES:

sage: CubicBraidGroup(5).codegrees()
(0, 6, 12, 18)

124 Chapter 13. Cubic Braid Groups

Groups, Release 9.8

cubic_braid_subgroup(nstrands=None)
Return a cubic braid group as subgroup of self on the first nstrands strands.

INPUT:

• nstrands – (default: self.strands() - 1) integer at least 1 and at most self.strands() giving
the number of strands of the subgroup

Warning: Since self is inherited from UniqueRepresentation, the obtained instance is identical to
other instances created with the same arguments (see example below). The ambient group corresponds
to the last call of this method.

EXAMPLES:

sage: U5 = AssionGroupU(5)
sage: U3s = U5.cubic_braid_subgroup(3)
sage: u1, u2 = U3s.gens()
sage: u1 in U5
False
sage: U5(u1) in U5.gens()
True
sage: U3s is AssionGroupU(3)
True
sage: U3s.ambient() == U5
True

degrees()

Return the degrees of self.

This only makes sense when self is a finite reflection group.

EXAMPLES:

sage: CubicBraidGroup(4).degrees()
(6, 9, 12)

index_set()

Return the index set of self.

This is the set of integers 0, . . . , 𝑛− 2 where 𝑛 is the number of strands.

This is only used when self is a finite reflection group.

EXAMPLES:

sage: CubicBraidGroup(3).index_set()
[0, 1]

is_finite()

Return if self is a finite group or not.

EXAMPLES:

sage: CubicBraidGroup(6).is_finite()
False

(continues on next page)

125

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

(continued from previous page)

sage: AssionGroupS(6).is_finite()
True

order()

To avoid long wait-time on calculations the order will be obtained using the classical realization.

OUTPUT:

Cardinality of the group as Integer or infinity.

EXAMPLES:

sage: S15 = AssionGroupS(15)
sage: S15.order()
109777561863482259035023554842176139436811616256000
sage: C6 = CubicBraidGroup(6)
sage: C6.order()
+Infinity

simple_reflections()

Return the generators of self.

This is only used when self is a finite reflection group.

EXAMPLES:

sage: CubicBraidGroup(3).simple_reflections()
(c0, c1)

strands()

Return the number of strands of the braid group whose image is self.

OUTPUT: Integer

EXAMPLES:

sage: C4 = CubicBraidGroup(4)
sage: C4.strands()
4

class type(value)
Bases: Enum

Enum class to select the type of the group:

• Coxeter – 'C' the full cubic braid group.

• AssionS – 'S' finite factor group of type S considered by Assion

• AssionU – 'U' finite factor group of type U considered by Assion

EXAMPLES:

sage: S2 = CubicBraidGroup(2, cbg_type=CubicBraidGroup.type.AssionS); S2
Assion group on 2 strands of type S
sage: U3 = CubicBraidGroup(2, cbg_type='U')
Traceback (most recent call last):

(continues on next page)

126 Chapter 13. Cubic Braid Groups

../../../../../../html/en/reference/rings_standard/sage/rings/integer.html#sage.rings.integer.Integer
https://docs.python.org/library/enum.html#enum.Enum

Groups, Release 9.8

(continued from previous page)

...
TypeError: the cbg_type must be an instance of <enum 'CubicBraidGroup.type'>

AssionS = 'S'

AssionU = 'U'

Coxeter = 'C'

127

Groups, Release 9.8

128 Chapter 13. Cubic Braid Groups

CHAPTER

FOURTEEN

INDEXED FREE GROUPS

Free groups and free abelian groups implemented using an indexed set of generators.

AUTHORS:

• Travis Scrimshaw (2013-10-16): Initial version

class sage.groups.indexed_free_group.IndexedFreeAbelianGroup(indices, prefix, category=None,
**kwds)

Bases: IndexedGroup, AbelianGroup

An indexed free abelian group.

EXAMPLES:

sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G
Free abelian group indexed by Integer Ring
sage: G = Groups().Commutative().free(index_set='abcde')
sage: G
Free abelian group indexed by {'a', 'b', 'c', 'd', 'e'}

class Element(F, x)
Bases: IndexedFreeAbelianMonoidElement, Element

gen(x)
The generator indexed by x of self.

EXAMPLES:

sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.gen(0)
F[0]
sage: G.gen(2)
F[2]

one()

Return the identity element of self.

EXAMPLES:

sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.one()
1

129

../../../../../../html/en/reference/monoids/sage/monoids/indexed_free_monoid.html#sage.monoids.indexed_free_monoid.IndexedFreeAbelianMonoidElement

Groups, Release 9.8

class sage.groups.indexed_free_group.IndexedFreeGroup(indices, prefix, category=None, **kwds)
Bases: IndexedGroup, Group

An indexed free group.

EXAMPLES:

sage: G = Groups().free(index_set=ZZ)
sage: G
Free group indexed by Integer Ring
sage: G = Groups().free(index_set='abcde')
sage: G
Free group indexed by {'a', 'b', 'c', 'd', 'e'}

class Element(F, x)
Bases: IndexedFreeMonoidElement

length()

Return the length of self.

EXAMPLES:

sage: G = Groups().free(index_set=ZZ)
sage: a,b,c,d,e = [G.gen(i) for i in range(5)]
sage: elt = a*c^-3*b^-2*a
sage: elt.length()
7
sage: len(elt)
7

sage: G = Groups().free(index_set=ZZ)
sage: a,b,c,d,e = [G.gen(i) for i in range(5)]
sage: elt = a*c^-3*b^-2*a
sage: elt.length()
7
sage: len(elt)
7

to_word_list()

Return self as a word represented as a list whose entries are the pairs (i, s) where i is the index
and s is the sign.

EXAMPLES:

sage: G = Groups().free(index_set=ZZ)
sage: a,b,c,d,e = [G.gen(i) for i in range(5)]
sage: x = a*b^2*e*a^-1
sage: x.to_word_list()
[(0, 1), (1, 1), (1, 1), (4, 1), (0, -1)]

gen(x)
The generator indexed by x of self.

EXAMPLES:

130 Chapter 14. Indexed Free Groups

../../../../../../html/en/reference/monoids/sage/monoids/indexed_free_monoid.html#sage.monoids.indexed_free_monoid.IndexedFreeMonoidElement

Groups, Release 9.8

sage: G = Groups().free(index_set=ZZ)
sage: G.gen(0)
F[0]
sage: G.gen(2)
F[2]

one()

Return the identity element of self.

EXAMPLES:

sage: G = Groups().free(ZZ)
sage: G.one()
1

class sage.groups.indexed_free_group.IndexedGroup(indices, prefix, category=None, names=None,
**kwds)

Bases: IndexedMonoid

Base class for free (abelian) groups whose generators are indexed by a set.

gens()

Return the group generators of self.

EXAMPLES:

sage: G = Groups.free(index_set=ZZ)
sage: G.group_generators()
Lazy family (Generator map from Integer Ring to
Free group indexed by Integer Ring(i))_{i in Integer Ring}
sage: G = Groups().free(index_set='abcde')
sage: sorted(G.group_generators())
[F['a'], F['b'], F['c'], F['d'], F['e']]

group_generators()

Return the group generators of self.

EXAMPLES:

sage: G = Groups.free(index_set=ZZ)
sage: G.group_generators()
Lazy family (Generator map from Integer Ring to
Free group indexed by Integer Ring(i))_{i in Integer Ring}
sage: G = Groups().free(index_set='abcde')
sage: sorted(G.group_generators())
[F['a'], F['b'], F['c'], F['d'], F['e']]

order()

Return the number of elements of self, which is ∞ unless this is the trivial group.

EXAMPLES:

sage: G = Groups().free(index_set=ZZ)
sage: G.order()
+Infinity

(continues on next page)

131

../../../../../../html/en/reference/monoids/sage/monoids/indexed_free_monoid.html#sage.monoids.indexed_free_monoid.IndexedMonoid

Groups, Release 9.8

(continued from previous page)

sage: G = Groups().Commutative().free(index_set='abc')
sage: G.order()
+Infinity
sage: G = Groups().Commutative().free(index_set=[])
sage: G.order()
1

rank()

Return the rank of self.

This is the number of generators of self.

EXAMPLES:

sage: G = Groups().free(index_set=ZZ)
sage: G.rank()
+Infinity
sage: G = Groups().free(index_set='abc')
sage: G.rank()
3
sage: G = Groups().free(index_set=[])
sage: G.rank()
0

sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.rank()
+Infinity
sage: G = Groups().Commutative().free(index_set='abc')
sage: G.rank()
3
sage: G = Groups().Commutative().free(index_set=[])
sage: G.rank()
0

132 Chapter 14. Indexed Free Groups

CHAPTER

FIFTEEN

RIGHT-ANGLED ARTIN GROUPS

A right-angled Artin group (often abbreviated as RAAG) is a group which has a presentation whose only relations are
commutators between generators. These are also known as graph groups, since they are (uniquely) encoded by (simple)
graphs, or partially commutative groups.

AUTHORS:

• Travis Scrimshaw (2013-09-01): Initial version

• Travis Scrimshaw (2018-02-05): Made compatible with ArtinGroup

class sage.groups.raag.CohomologyRAAG(R, A)
Bases: CombinatorialFreeModule

The cohomology ring of a right-angled Artin group.

The cohomology ring of a right-angled Artin group 𝐴, defined by the graph 𝐺, with coefficients in a field 𝐹 is
isomorphic to the exterior algebra of 𝐹𝑁 , where𝑁 is the number of vertices in𝐺, modulo the quadratic relations
𝑒𝑖∧𝑒𝑗 = 0 if and only if (𝑖, 𝑗) is an edge in𝐺. This algebra is sometimes also known as the Cartier-Foata algebra.

REFERENCES:

• [CQ2019]

class Element

Bases: CohomologyRAAGElement

An element in the cohomology ring of a right-angled Artin group.

algebra_generators()

Return the algebra generators of self.

EXAMPLES:

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: H = A.cohomology()
sage: H.algebra_generators()
Finite family {0: e0, 1: e1, 2: e2, 3: e3}

degree_on_basis(I)
Return the degree on the basis element clique.

EXAMPLES:

133

../../../../../../html/en/reference/combinat/sage/combinat/free_module.html#sage.combinat.free_module.CombinatorialFreeModule

Groups, Release 9.8

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: H = A.cohomology()
sage: sorted([H.degree_on_basis(I) for I in H.basis().keys()])
[0, 1, 1, 1, 1, 2, 2]

gen(i)
Return the i-th standard generator of the algebra self.

This corresponds to the i-th vertex in the graph (under a fixed ordering of the vertices).

EXAMPLES:

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: H = A.cohomology()
sage: H.gen(0)
e0
sage: H.gen(1)
e1

gens()

Return the generators of self (as an algebra).

EXAMPLES:

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: H = A.cohomology()
sage: H.gens()
(e0, e1, e2, e3)

ngens()

Return the number of algebra generators of self.

EXAMPLES:

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: H = A.cohomology()
sage: H.ngens()
4

one_basis()

Return the basis element indexing 1 of self.

EXAMPLES:

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: H = A.cohomology()
sage: H.one_basis()
()

134 Chapter 15. Right-Angled Artin Groups

Groups, Release 9.8

class sage.groups.raag.RightAngledArtinGroup(G, names)
Bases: ArtinGroup

The right-angled Artin group defined by a graph 𝐺.

Let Γ = {𝑉 (Γ), 𝐸(Γ)} be a simple graph. A right-angled Artin group (commonly abbreviated as RAAG) is the
group

𝐴Γ = ⟨𝑔𝑣 : 𝑣 ∈ 𝑉 (Γ) | [𝑔𝑢, 𝑔𝑣] if {𝑢, 𝑣} /∈ 𝐸(Γ)⟩.

These are sometimes known as graph groups or partially commutative groups. This RAAG’s contains both free
groups, given by the complete graphs, and free abelian groups, given by disjoint vertices.

Warning: This is the opposite convention of some papers.

Right-angled Artin groups contain many remarkable properties and have a very rich structure despite their simple
presentation. Here are some known facts:

• The word problem is solvable.

• They are known to be rigid; that is for any finite simple graphs ∆ and Γ, we have 𝐴Δ
∼= 𝐴Γ if and only if

∆ ∼= Γ [Dro1987].

• They embed as a finite index subgroup of a right-angled Coxeter group (which is the same definition as
above except with the additional relations 𝑔2𝑣 = 1 for all 𝑣 ∈ 𝑉 (Γ)).

• In [BB1997], it was shown they contain subgroups that satisfy the property 𝐹𝑃2 but are not finitely pre-
sented by considering the kernel of 𝜑 : 𝐴Γ → Z by 𝑔𝑣 ↦→ 1 (i.e. words of exponent sum 0).

• 𝐴Γ has a finite 𝐾(𝜋, 1) space.

• 𝐴Γ acts freely and cocompactly on a finite dimensional 𝐶𝐴𝑇 (0) space, and so it is biautomatic.

• Given an Artin group 𝐵 with generators 𝑠𝑖, then any subgroup generated by a collection of 𝑣𝑖 = 𝑠𝑘𝑖
𝑖 where

𝑘𝑖 ≥ 2 is a RAAG where [𝑣𝑖, 𝑣𝑗] = 1 if and only if [𝑠𝑖, 𝑠𝑗] = 1 [CP2001].

The normal forms for RAAG’s in Sage are those described in [VW1994] and gathers commuting groups together.

INPUT:

• G – a graph

• names – a string or a list of generator names

EXAMPLES:

sage: Gamma = Graph(4)
sage: G = RightAngledArtinGroup(Gamma)
sage: a,b,c,d = G.gens()
sage: a*c*d^4*a^-3*b
v0^-2*v1*v2*v3^4

sage: Gamma = graphs.CompleteGraph(4)
sage: G = RightAngledArtinGroup(Gamma)
sage: a,b,c,d = G.gens()
sage: a*c*d^4*a^-3*b
v0*v2*v3^4*v0^-3*v1

sage: Gamma = graphs.CycleGraph(5)
(continues on next page)

135

Groups, Release 9.8

(continued from previous page)

sage: G = RightAngledArtinGroup(Gamma)
sage: G
Right-angled Artin group of Cycle graph
sage: a,b,c,d,e = G.gens()
sage: d*b*a*d
v1*v3^2*v0
sage: e^-1*c*b*e*b^-1*c^-4
v2^-3

We create the previous example but with different variable names:

sage: G.<a,b,c,d,e> = RightAngledArtinGroup(Gamma)
sage: G
Right-angled Artin group of Cycle graph
sage: d*b*a*d
b*d^2*a
sage: e^-1*c*b*e*b^-1*c^-4
c^-3

REFERENCES:

• [Cha2006]

• [BB1997]

• [Dro1987]

• [CP2001]

• [VW1994]

• Wikipedia article Artin_group#Right-angled_Artin_groups

class Element(parent, lst)
Bases: ArtinGroupElement

An element of a right-angled Artin group (RAAG).

Elements of RAAGs are modeled as lists of pairs [i, p] where i is the index of a vertex in the defining
graph (with some fixed order of the vertices) and p is the power.

cohomology(F=None)
Return the cohomology ring of self over the field F.

EXAMPLES:

sage: C4 = graphs.CycleGraph(4)
sage: A = groups.misc.RightAngledArtin(C4)
sage: A.cohomology()
Cohomology ring of Right-angled Artin group of Cycle graph
with coefficients in Rational Field

gen(i)
Return the i-th generator of self.

EXAMPLES:

136 Chapter 15. Right-Angled Artin Groups

https://en.wikipedia.org/wiki/Artin_group#Right-angled_Artin_groups

Groups, Release 9.8

sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.gen(2)
v2

gens()

Return the generators of self.

EXAMPLES:

sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.gens()
(v0, v1, v2, v3, v4)
sage: Gamma = Graph([('x', 'y'), ('y', 'zeta')])
sage: G = RightAngledArtinGroup(Gamma)
sage: G.gens()
(vx, vy, vzeta)

graph()

Return the defining graph of self.

EXAMPLES:

sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.graph()
Cycle graph: Graph on 5 vertices

ngens()

Return the number of generators of self.

EXAMPLES:

sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.ngens()
5

one()

Return the identity element 1.

EXAMPLES:

sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.one()
1

one_element()

Return the identity element 1.

EXAMPLES:

137

Groups, Release 9.8

sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.one()
1

138 Chapter 15. Right-Angled Artin Groups

CHAPTER

SIXTEEN

FUNCTOR THAT CONVERTS A COMMUTATIVE ADDITIVE GROUP
INTO A MULTIPLICATIVE GROUP.

AUTHORS:

• Mark Shimozono (2013): initial version

class sage.groups.group_exp.GroupExp

Bases: Functor

A functor that converts a commutative additive group into an isomorphic multiplicative group.

More precisely, given a commutative additive group 𝐺, define the exponential of 𝐺 to be the isomorphic group
with elements denoted 𝑒𝑔 for every 𝑔 ∈ 𝐺 and but with product in multiplicative notation

𝑒𝑔𝑒ℎ = 𝑒𝑔+ℎ for all 𝑔, ℎ ∈ 𝐺.

The class GroupExp implements the sage functor which sends a commutative additive group𝐺 to its exponential.

The creation of an instance of the functor GroupExp requires no input:

sage: E = GroupExp(); E
Functor from Category of commutative additive groups to Category of groups

The GroupExp functor (denoted 𝐸 in the examples) can be applied to two kinds of input. The first is a commu-
tative additive group. The output is its exponential. This is accomplished by _apply_functor():

sage: EZ = E(ZZ); EZ
Multiplicative form of Integer Ring

Elements of the exponentiated group can be created and manipulated as follows:

sage: x = EZ(-3); x
-3
sage: x.parent()
Multiplicative form of Integer Ring
sage: EZ(-1)*EZ(6) == EZ(5)
True
sage: EZ(3)^(-1)
-3
sage: EZ.one()
0

The second kind of input the GroupExp functor accepts, is a homomorphism of commutative addi-
tive groups. The output is the multiplicative form of the homomorphism. This is achieved by
_apply_functor_to_morphism():

139

../../../../../../html/en/reference/categories/sage/categories/functor.html#sage.categories.functor.Functor

Groups, Release 9.8

sage: L = RootSystem(['A',2]).ambient_space()
sage: EL = E(L)
sage: W = L.weyl_group(prefix="s")
sage: s2 = W.simple_reflection(2)
sage: def my_action(mu):
....: return s2.action(mu)
sage: from sage.categories.morphism import SetMorphism
sage: from sage.categories.homset import Hom
sage: f = SetMorphism(Hom(L,L,CommutativeAdditiveGroups()), my_action)
sage: F = E(f); F
Generic endomorphism of Multiplicative form of Ambient space of the Root system of␣
→˓type ['A', 2]
sage: v = L.an_element(); v
(2, 2, 3)
sage: y = F(EL(v)); y
(2, 3, 2)
sage: y.parent()
Multiplicative form of Ambient space of the Root system of type ['A', 2]

class sage.groups.group_exp.GroupExpElement(parent, x)
Bases: ElementWrapper, MultiplicativeGroupElement

An element in the exponential of a commutative additive group.

INPUT:

• self – the exponentiated group element being created

• parent – the exponential group (parent of self)

• x – the commutative additive group element being wrapped to form self.

EXAMPLES:

sage: G = QQ^2
sage: EG = GroupExp()(G)
sage: z = GroupExpElement(EG, vector(QQ, (1,-3))); z
(1, -3)
sage: z.parent()
Multiplicative form of Vector space of dimension 2 over Rational Field
sage: EG(vector(QQ,(1,-3)))==z
True

class sage.groups.group_exp.GroupExp_Class(G)

Bases: UniqueRepresentation, Parent

The multiplicative form of a commutative additive group.

INPUT:

• 𝐺: a commutative additive group

OUTPUT:

• The multiplicative form of 𝐺.

EXAMPLES:

140 Chapter 16. Functor that converts a commutative additive group into a multiplicative group.

../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Groups, Release 9.8

sage: GroupExp()(QQ)
Multiplicative form of Rational Field

Element

alias of GroupExpElement

an_element()

Return an element of the multiplicative group.

EXAMPLES:

sage: L = RootSystem(['A',2]).weight_lattice()
sage: EL = GroupExp()(L)
sage: x = EL.an_element(); x
2*Lambda[1] + 2*Lambda[2]
sage: x.parent()
Multiplicative form of Weight lattice of the Root system of type ['A', 2]

group_generators()

Return generators of self.

EXAMPLES:

sage: GroupExp()(ZZ).group_generators()
(1,)

one()

Return the identity element of the multiplicative group.

EXAMPLES:

sage: G = GroupExp()(ZZ^2)
sage: G.one()
(0, 0)
sage: x = G.an_element(); x
(1, 0)
sage: x == x * G.one()
True

product(x, y)
Return the product of 𝑥 and 𝑦 in the multiplicative group.

EXAMPLES:

sage: G = GroupExp()(ZZ)
sage: G.product(G(2),G(7))
9
sage: x = G(2)
sage: x.__mul__(G(7))
9

141

Groups, Release 9.8

142 Chapter 16. Functor that converts a commutative additive group into a multiplicative group.

CHAPTER

SEVENTEEN

SEMIDIRECT PRODUCT OF GROUPS

AUTHORS:

• Mark Shimozono (2013) initial version

class sage.groups.group_semidirect_product.GroupSemidirectProduct(G, H, twist=None,
act_to_right=True,
prefix0=None, prefix1=None,
print_tuple=False,
category=Category of
groups)

Bases: CartesianProduct

Return the semidirect product of the groups G and H using the homomorphism twist.

INPUT:

• G and H – multiplicative groups

• twist – (default: None) a function defining a homomorphism (see below)

• act_to_right – True or False (default: True)

• prefix0 – (default: None) optional string

• prefix1 – (default: None) optional string

• print_tuple – True or False (default: False)

• category – A category (default: Groups())

A semidirect product of groups 𝐺 and 𝐻 is a group structure on the Cartesian product 𝐺 × 𝐻 whose product
agrees with that of 𝐺 on 𝐺× 1𝐻 and with that of 𝐻 on 1𝐺 ×𝐻 , such that either 1𝐺 ×𝐻 or 𝐺× 1𝐻 is a normal
subgroup. In the former case, the group is denoted 𝐺n𝐻 and in the latter, 𝐺o𝐻 .

If act_to_right is True, this indicates the group𝐺n𝐻 in which𝐺 acts on𝐻 by automorphisms. In this case
there is a group homomorphism 𝜑 ∈ Hom(𝐺,Aut(𝐻)) such that

𝑔ℎ𝑔−1 = 𝜑(𝑔)(ℎ).

The homomorphism 𝜑 is specified by the input twist, which syntactically is the function 𝐺×𝐻 → 𝐻 defined
by

𝑡𝑤𝑖𝑠𝑡(𝑔, ℎ) = 𝜑(𝑔)(ℎ).

The product on 𝐺n𝐻 is defined by

(𝑔1, ℎ1)(𝑔2, ℎ2) = 𝑔1ℎ1𝑔2ℎ2

= 𝑔1𝑔2𝑔
−1
2 ℎ1𝑔2ℎ2

= (𝑔1𝑔2, 𝑡𝑤𝑖𝑠𝑡(𝑔
−1
2 , ℎ1)ℎ2)

143

../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct

Groups, Release 9.8

If act_to_right is False, the group 𝐺 o 𝐻 is specified by a homomorphism 𝜓 ∈ Hom(𝐻,Aut(𝐺)) such
that

ℎ𝑔ℎ−1 = 𝜓(ℎ)(𝑔)

Then twist is the function 𝐻 ×𝐺→ 𝐺 defined by

𝑡𝑤𝑖𝑠𝑡(ℎ, 𝑔) = 𝜓(ℎ)(𝑔).

so that the product in 𝐺o𝐻 is defined by

(𝑔1, ℎ1)(𝑔2, ℎ2) = 𝑔1ℎ1𝑔2ℎ2

= 𝑔1ℎ1𝑔2ℎ
−1
1 ℎ1ℎ2

= (𝑔1𝑡𝑤𝑖𝑠𝑡(ℎ1, 𝑔2), ℎ1ℎ2)

If prefix0 (resp. prefixl) is not None then it is used as a wrapper for printing elements of G (resp. H). If
print_tuple is True then elements are printed in the style (𝑔, ℎ) and otherwise in the style 𝑔 * ℎ.

EXAMPLES:

sage: G = GL(2,QQ)
sage: V = QQ^2
sage: EV = GroupExp()(V) # make a multiplicative version of V
sage: def twist(g,v):
....: return EV(g*v.value)
sage: H = GroupSemidirectProduct(G, EV, twist=twist, prefix1 = 't'); H
Semidirect product of General Linear Group of degree 2
over Rational Field acting on Multiplicative form of Vector space
of dimension 2 over Rational Field
sage: x = H.an_element(); x
t[(1, 0)]
sage: x^2
t[(2, 0)]
sage: cartan_type = CartanType(['A',2])
sage: W = WeylGroup(cartan_type, prefix="s")
sage: def twist(w,v):
....: return w*v*(~w)
sage: WW = GroupSemidirectProduct(W,W, twist=twist, print_tuple=True)
sage: s = Family(cartan_type.index_set(), lambda i: W.simple_reflection(i))
sage: y = WW((s[1],s[2])); y
(s1, s2)
sage: y^2
(1, s2*s1)
sage: y.inverse()
(s1, s1*s2*s1)

Todo:

• Functorial constructor for semidirect products for various categories

• Twofold Direct product as a special case of semidirect product

Element

alias of GroupSemidirectProductElement

144 Chapter 17. Semidirect product of groups

Groups, Release 9.8

act_to_right()

True if the left factor acts on the right factor and False if the right factor acts on the left factor.

EXAMPLES:

sage: def twist(x,y):
....: return y
sage: GroupSemidirectProduct(WeylGroup(['A',2],prefix="s"), WeylGroup(['A',3],
→˓prefix="t"),twist).act_to_right()
True

construction()

Return None.

This overrides the construction functor inherited from CartesianProduct.

EXAMPLES:

sage: def twist(x,y):
....: return y
sage: H = GroupSemidirectProduct(WeylGroup(['A',2],prefix="s"), WeylGroup(['A',
→˓3],prefix="t"), twist)
sage: H.construction()

group_generators()

Return generators of self.

EXAMPLES:

sage: twist = lambda x,y: y
sage: import __main__
sage: __main__.twist = twist
sage: EZ = GroupExp()(ZZ)
sage: GroupSemidirectProduct(EZ,EZ,twist,print_tuple=True).group_generators()
((1, 0), (0, 1))

one()

The identity element of the semidirect product group.

EXAMPLES:

sage: G = GL(2,QQ)
sage: V = QQ^2
sage: EV = GroupExp()(V) # make a multiplicative version of V
sage: def twist(g,v):
....: return EV(g*v.value)
sage: one = GroupSemidirectProduct(G, EV, twist=twist, prefix1 = 't').one(); one
1
sage: one.cartesian_projection(0)
[1 0]
[0 1]
sage: one.cartesian_projection(1)
(0, 0)

opposite_semidirect_product()

Create the same semidirect product but with the positions of the groups exchanged.

145

Groups, Release 9.8

EXAMPLES:

sage: G = GL(2,QQ)
sage: L = QQ^2
sage: EL = GroupExp()(L)
sage: H = GroupSemidirectProduct(G, EL, twist = lambda g,v: EL(g*v.value),␣
→˓prefix1 = 't'); H
Semidirect product of General Linear Group of degree 2
over Rational Field acting on Multiplicative form of Vector space
of dimension 2 over Rational Field
sage: h = H((Matrix([[0,1],[1,0]]), EL.an_element())); h
[0 1]
[1 0] * t[(1, 0)]
sage: Hop = H.opposite_semidirect_product(); Hop
Semidirect product of Multiplicative form of Vector space
of dimension 2 over Rational Field acted upon by
General Linear Group of degree 2 over Rational Field
sage: hop = h.to_opposite(); hop
t[(0, 1)] * [0 1]
[1 0]
sage: hop in Hop
True

product(x, y)
The product of elements 𝑥 and 𝑦 in the semidirect product group.

EXAMPLES:

sage: G = GL(2,QQ)
sage: V = QQ^2
sage: EV = GroupExp()(V) # make a multiplicative version of V
sage: def twist(g,v):
....: return EV(g*v.value)
sage: S = GroupSemidirectProduct(G, EV, twist=twist, prefix1 = 't')
sage: g = G([[2,1],[3,1]]); g
[2 1]
[3 1]
sage: v = EV.an_element(); v
(1, 0)
sage: x = S((g,v)); x
[2 1]
[3 1] * t[(1, 0)]
sage: x*x # indirect doctest
[7 3]
[9 4] * t[(0, 3)]

class sage.groups.group_semidirect_product.GroupSemidirectProductElement

Bases: Element

Element class for GroupSemidirectProduct.

to_opposite()

Send an element to its image in the opposite semidirect product.

EXAMPLES:

146 Chapter 17. Semidirect product of groups

../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct.Element

Groups, Release 9.8

sage: L = RootSystem(['A',2]).root_lattice(); L
Root lattice of the Root system of type ['A', 2]
sage: from sage.groups.group_exp import GroupExp
sage: EL = GroupExp()(L)
sage: W = L.weyl_group(prefix="s"); W
Weyl Group of type ['A', 2]
(as a matrix group acting on the root lattice)
sage: def twist(w,v):
....: return EL(w.action(v.value))
sage: G = GroupSemidirectProduct(W, EL, twist, prefix1='t'); G
Semidirect product of Weyl Group of type ['A', 2] (as a matrix
group acting on the root lattice) acting on Multiplicative form of
Root lattice of the Root system of type ['A', 2]
sage: mu = L.an_element(); mu
2*alpha[1] + 2*alpha[2]
sage: w = W.an_element(); w
s1*s2
sage: g = G((w,EL(mu))); g
s1*s2 * t[2*alpha[1] + 2*alpha[2]]
sage: g.to_opposite()
t[-2*alpha[1]] * s1*s2
sage: g.to_opposite().parent()
Semidirect product of Multiplicative form of Root lattice of the Root system of␣
→˓type ['A', 2] acted upon by Weyl Group of type ['A', 2] (as a matrix group␣
→˓acting on the root lattice)

147

Groups, Release 9.8

148 Chapter 17. Semidirect product of groups

CHAPTER

EIGHTEEN

MISCELLANEOUS GROUPS

This is a collection of groups that may not fit into some of the other infinite families described elsewhere.

149

Groups, Release 9.8

150 Chapter 18. Miscellaneous Groups

CHAPTER

NINETEEN

SEMIMONOMIAL TRANSFORMATION GROUP

The semimonomial transformation group of degree 𝑛 over a ring 𝑅 is the semidirect product of the monomial trans-
formation group of degree 𝑛 (also known as the complete monomial group over the group of units 𝑅× of 𝑅) and the
group of ring automorphisms.

The multiplication of two elements (𝜑, 𝜋, 𝛼)(𝜓, 𝜎, 𝛽) with

• 𝜑, 𝜓 ∈ 𝑅×𝑛

• 𝜋, 𝜎 ∈ 𝑆𝑛 (with the multiplication 𝜋𝜎 done from left to right (like in GAP) – that is, (𝜋𝜎)(𝑖) = 𝜎(𝜋(𝑖)) for all
𝑖.)

• 𝛼, 𝛽 ∈ 𝐴𝑢𝑡(𝑅)

is defined by

(𝜑, 𝜋, 𝛼)(𝜓, 𝜎, 𝛽) = (𝜑 · 𝜓𝜋,𝛼, 𝜋𝜎, 𝛼 ∘ 𝛽)

where 𝜓𝜋,𝛼 = (𝛼(𝜓𝜋(1)−1), . . . , 𝛼(𝜓𝜋(𝑛)−1)) and the multiplication of vectors is defined elementwisely. (The index-
ing of vectors is 0-based here, so 𝜓 = (𝜓0, 𝜓1, . . . , 𝜓𝑛−1).)

Todo: Up to now, this group is only implemented for finite fields because of the limited support of automorphisms for
arbitrary rings.

AUTHORS:

• Thomas Feulner (2012-11-15): initial version

EXAMPLES:

sage: S = SemimonomialTransformationGroup(GF(4, 'a'), 4)
sage: G = S.gens()
sage: G[0]*G[1]
((a, 1, 1, 1); (1,2,3,4), Ring endomorphism of Finite Field in a of size 2^2
Defn: a |--> a)

class sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialActionMat(G,
M,
check=True)

Bases: Action

The left action of SemimonomialTransformationGroup on matrices over the same ring whose number of
columns is equal to the degree. See SemimonomialActionVec for the definition of the action on the row vectors
of such a matrix.

151

../../../../../../../html/en/reference/categories/sage/categories/action.html#sage.categories.action.Action

Groups, Release 9.8

class sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialActionVec(G,
V,
check=True)

Bases: Action

The natural left action of the semimonomial group on vectors.

The action is defined by: (𝜑, 𝜋, 𝛼)*(𝑣0, . . . , 𝑣𝑛−1) := (𝛼(𝑣𝜋(1)−1)·𝜑−1
0 , . . . , 𝛼(𝑣𝜋(𝑛)−1)·𝜑−1

𝑛−1). (The indexing
of vectors is 0-based here, so 𝜓 = (𝜓0, 𝜓1, . . . , 𝜓𝑛−1).)

class sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup(R,
len)

Bases: FiniteGroup, UniqueRepresentation

A semimonomial transformation group over a ring.

The semimonomial transformation group of degree 𝑛 over a ring 𝑅 is the semidirect product of the monomial
transformation group of degree 𝑛 (also known as the complete monomial group over the group of units 𝑅× of
𝑅) and the group of ring automorphisms.

The multiplication of two elements (𝜑, 𝜋, 𝛼)(𝜓, 𝜎, 𝛽) with

• 𝜑, 𝜓 ∈ 𝑅×𝑛

• 𝜋, 𝜎 ∈ 𝑆𝑛 (with the multiplication 𝜋𝜎 done from left to right (like in GAP) – that is, (𝜋𝜎)(𝑖) = 𝜎(𝜋(𝑖))
for all 𝑖.)

• 𝛼, 𝛽 ∈ 𝐴𝑢𝑡(𝑅)

is defined by

(𝜑, 𝜋, 𝛼)(𝜓, 𝜎, 𝛽) = (𝜑 · 𝜓𝜋,𝛼, 𝜋𝜎, 𝛼 ∘ 𝛽)

where 𝜓𝜋,𝛼 = (𝛼(𝜓𝜋(1)−1), . . . , 𝛼(𝜓𝜋(𝑛)−1)) and the multiplication of vectors is defined elementwisely. (The
indexing of vectors is 0-based here, so 𝜓 = (𝜓0, 𝜓1, . . . , 𝜓𝑛−1).)

Todo: Up to now, this group is only implemented for finite fields because of the limited support of automor-
phisms for arbitrary rings.

EXAMPLES:

sage: F.<a> = GF(9)
sage: S = SemimonomialTransformationGroup(F, 4)
sage: g = S(v = [2, a, 1, 2])
sage: h = S(perm = Permutation('(1,2,3,4)'), autom=F.hom([a**3]))
sage: g*h
((2, a, 1, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^2 Defn:␣
→˓a |--> 2*a + 1)
sage: h*g
((2*a + 1, 1, 2, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^2␣
→˓Defn: a |--> 2*a + 1)
sage: S(g)
((2, a, 1, 2); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->␣
→˓a)
sage: S(1)
((1, 1, 1, 1); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->␣
→˓a)

152 Chapter 19. Semimonomial transformation group

../../../../../../../html/en/reference/categories/sage/categories/action.html#sage.categories.action.Action
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

Element

alias of SemimonomialTransformation

base_ring()

Return the underlying ring of self.

EXAMPLES:

sage: F.<a> = GF(4)
sage: SemimonomialTransformationGroup(F, 3).base_ring() is F
True

degree()

Return the degree of self.

EXAMPLES:

sage: F.<a> = GF(4)
sage: SemimonomialTransformationGroup(F, 3).degree()
3

gens()

Return a tuple of generators of self.

EXAMPLES:

sage: F.<a> = GF(4)
sage: SemimonomialTransformationGroup(F, 3).gens()
(((a, 1, 1); (), Ring endomorphism of Finite Field in a of size 2^2
Defn: a |--> a), ((1, 1, 1); (1,2,3), Ring endomorphism of Finite Field in a␣

→˓of size 2^2
Defn: a |--> a), ((1, 1, 1); (1,2), Ring endomorphism of Finite Field in a of␣

→˓size 2^2
Defn: a |--> a), ((1, 1, 1); (), Ring endomorphism of Finite Field in a of␣

→˓size 2^2
Defn: a |--> a + 1))

order()

Return the number of elements of self.

EXAMPLES:

sage: F.<a> = GF(4)
sage: SemimonomialTransformationGroup(F, 5).order() == (4-1)**5 * factorial(5)␣
→˓* 2
True

153

Groups, Release 9.8

154 Chapter 19. Semimonomial transformation group

CHAPTER

TWENTY

ELEMENTS OF A SEMIMONOMIAL TRANSFORMATION GROUP

The semimonomial transformation group of degree 𝑛 over a ring 𝑅 is the semidirect product of the monomial trans-
formation group of degree 𝑛 (also known as the complete monomial group over the group of units 𝑅× of 𝑅) and the
group of ring automorphisms.

The multiplication of two elements (𝜑, 𝜋, 𝛼)(𝜓, 𝜎, 𝛽) with

• 𝜑, 𝜓 ∈ 𝑅×𝑛

• 𝜋, 𝜎 ∈ 𝑆𝑛 (with the multiplication 𝜋𝜎 done from left to right (like in GAP) – that is, (𝜋𝜎)(𝑖) = 𝜎(𝜋(𝑖)) for all
𝑖.)

• 𝛼, 𝛽 ∈ 𝐴𝑢𝑡(𝑅)

is defined by

(𝜑, 𝜋, 𝛼)(𝜓, 𝜎, 𝛽) = (𝜑 · 𝜓𝜋,𝛼, 𝜋𝜎, 𝛼 ∘ 𝛽)

with 𝜓𝜋,𝛼 = (𝛼(𝜓𝜋(1)−1), . . . , 𝛼(𝜓𝜋(𝑛)−1)) and an elementwisely defined multiplication of vectors. (The indexing of
vectors is 0-based here, so 𝜓 = (𝜓0, 𝜓1, . . . , 𝜓𝑛−1).)

The parent is SemimonomialTransformationGroup.

AUTHORS:

• Thomas Feulner (2012-11-15): initial version

• Thomas Feulner (2013-12-27): trac ticket #15576 dissolve dependency on
Permutations.options.mul

EXAMPLES:

sage: S = SemimonomialTransformationGroup(GF(4, 'a'), 4)
sage: G = S.gens()
sage: G[0]*G[1]
((a, 1, 1, 1); (1,2,3,4), Ring endomorphism of Finite Field in a of size 2^2
Defn: a |--> a)

class sage.groups.semimonomial_transformations.semimonomial_transformation.
SemimonomialTransformation

Bases: MultiplicativeGroupElement

An element in the semimonomial group over a ring 𝑅. See SemimonomialTransformationGroup for the
details on the multiplication of two elements.

The init method should never be called directly. Use the call via the parent
SemimonomialTransformationGroup. instead.

EXAMPLES:

155

https://trac.sagemath.org/15576
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

sage: F.<a> = GF(9)
sage: S = SemimonomialTransformationGroup(F, 4)
sage: g = S(v = [2, a, 1, 2])
sage: h = S(perm = Permutation('(1,2,3,4)'), autom=F.hom([a**3]))
sage: g*h
((2, a, 1, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^2 Defn:␣
→˓a |--> 2*a + 1)
sage: h*g
((2*a + 1, 1, 2, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^2␣
→˓Defn: a |--> 2*a + 1)
sage: S(g)
((2, a, 1, 2); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->␣
→˓a)
sage: S(1) # the one element in the group
((1, 1, 1, 1); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->␣
→˓a)

get_autom()

Returns the component corresponding to 𝐴𝑢𝑡(𝑅) of self.

EXAMPLES:

sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_autom()
Ring endomorphism of Finite Field in a of size 3^2 Defn: a |--> 2*a + 1

get_perm()

Returns the component corresponding to 𝑆𝑛 of self.

EXAMPLES:

sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_perm()
[4, 1, 2, 3]

get_v()

Returns the component corresponding to 𝑅𝑖𝑚𝑒𝑠𝑛 of self.

EXAMPLES:

sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_v()
(a, 1, 1, 1)

get_v_inverse()

Returns the (elementwise) inverse of the component corresponding to 𝑅𝑖𝑚𝑒𝑠𝑛 of self.

EXAMPLES:

sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_v_inverse()
(a + 2, 1, 1, 1)

invert_v()

Elementwisely invert all entries of self which correspond to the component 𝑅𝑖𝑚𝑒𝑠𝑛.

156 Chapter 20. Elements of a semimonomial transformation group

Groups, Release 9.8

The other components of self keep unchanged.

EXAMPLES:

sage: F.<a> = GF(9)
sage: x = copy(SemimonomialTransformationGroup(F, 4).an_element())
sage: x.invert_v()
sage: x.get_v() == SemimonomialTransformationGroup(F, 4).an_element().get_v_
→˓inverse()
True

157

Groups, Release 9.8

158 Chapter 20. Elements of a semimonomial transformation group

CHAPTER

TWENTYONE

CLASS FUNCTIONS OF GROUPS.

This module implements a wrapper of GAP’s ClassFunction function.

NOTE: The ordering of the columns of the character table of a group corresponds to the ordering of the list. However,
in general there is no way to canonically list (or index) the conjugacy classes of a group. Therefore the ordering of the
columns of the character table of a group is somewhat random.

AUTHORS:

• Franco Saliola (November 2008): initial version

• Volker Braun (October 2010): Bugfixes, exterior and symmetric power.

sage.groups.class_function.ClassFunction(group, values)
Construct a class function.

INPUT:

• group – a group.

• values – list/tuple/iterable of numbers. The values of the class function on the conjugacy classes, in that
order.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: G.conjugacy_classes()
[Conjugacy class of () in Cyclic group of order 4 as a permutation group,
Conjugacy class of (1,2,3,4) in Cyclic group of order 4 as a permutation group,
Conjugacy class of (1,3)(2,4) in Cyclic group of order 4 as a permutation group,
Conjugacy class of (1,4,3,2) in Cyclic group of order 4 as a permutation group]
sage: values = [1, -1, 1, -1]
sage: chi = ClassFunction(G, values); chi
Character of Cyclic group of order 4 as a permutation group

class sage.groups.class_function.ClassFunction_gap(G, values)
Bases: SageObject

A wrapper of GAP’s ClassFunction function.

Note: It is not checked whether the given values describes a character, since GAP does not do this.

EXAMPLES:

159

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Groups, Release 9.8

sage: G = CyclicPermutationGroup(4)
sage: values = [1, -1, 1, -1]
sage: chi = ClassFunction(G, values); chi
Character of Cyclic group of order 4 as a permutation group
sage: loads(dumps(chi)) == chi
True

adams_operation(k)
Return the k-th Adams operation on self.

Let 𝐺 be a finite group. The 𝑘-th Adams operation Ψ𝑘 is given by

Ψ𝑘(𝜒)(𝑔) = 𝜒(𝑔𝑘).

The Adams operations turn the representation ring of 𝐺 into a 𝜆-ring.

EXAMPLES:

sage: G = groups.permutation.Alternating(5)
sage: chars = G.irreducible_characters()
sage: [chi.adams_operation(2).values() for chi in chars]
[[1, 1, 1, 1, 1],
[3, 3, 0, -zeta5^3 - zeta5^2, zeta5^3 + zeta5^2 + 1],
[3, 3, 0, zeta5^3 + zeta5^2 + 1, -zeta5^3 - zeta5^2],
[4, 4, 1, -1, -1],
[5, 5, -1, 0, 0]]
sage: chars[4].adams_operation(2).decompose()
((1, Character of Alternating group of order 5!/2 as a permutation group),
(-1, Character of Alternating group of order 5!/2 as a permutation group),
(-1, Character of Alternating group of order 5!/2 as a permutation group),
(2, Character of Alternating group of order 5!/2 as a permutation group))

REFERENCES:

• Wikipedia article Adams_operation

central_character()

Returns the central character of self.

EXAMPLES:

sage: t = SymmetricGroup(4).trivial_character()
sage: t.central_character().values()
[1, 6, 3, 8, 6]

decompose()

Returns a list of the characters that appear in the decomposition of chi.

EXAMPLES:

sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: chi.decompose()
((3, Character of Symmetric group of order 5! as a permutation group),
(2, Character of Symmetric group of order 5! as a permutation group))

160 Chapter 21. Class functions of groups.

https://en.wikipedia.org/wiki/Adams_operation

Groups, Release 9.8

degree()

Returns the degree of the character self.

EXAMPLES:

sage: S5 = SymmetricGroup(5)
sage: irr = S5.irreducible_characters()
sage: [x.degree() for x in irr]
[1, 4, 5, 6, 5, 4, 1]

determinant_character()

Returns the determinant character of self.

EXAMPLES:

sage: t = ClassFunction(SymmetricGroup(4), [1, -1, 1, 1, -1])
sage: t.determinant_character().values()
[1, -1, 1, 1, -1]

domain()

Returns the domain of the self.

OUTPUT:

The underlying group of the class function.

EXAMPLES:

sage: ClassFunction(SymmetricGroup(4), [1,-1,1,1,-1]).domain()
Symmetric group of order 4! as a permutation group

exterior_power(n)
Returns the anti-symmetrized product of self with itself n times.

INPUT:

• n – a positive integer.

OUTPUT:

The n-th anti-symmetrized power of self as a ClassFunction.

EXAMPLES:

sage: chi = ClassFunction(SymmetricGroup(4), [3, 1, -1, 0, -1])
sage: p = chi.exterior_power(3) # the highest anti-symmetric power for a 3-d␣
→˓character
sage: p
Character of Symmetric group of order 4! as a permutation group
sage: p.values()
[1, -1, 1, 1, -1]
sage: p == chi.determinant_character()
True

induct(G)

Return the induced character.

INPUT:

• G – A supergroup of the underlying group of self.

161

Groups, Release 9.8

OUTPUT:

A ClassFunction of G defined by induction. Induction is the adjoint functor to restriction, see
restrict().

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: H = G.subgroup([(1,2,3), (1,2), (4,5)])
sage: xi = H.trivial_character(); xi
Character of Subgroup generated by [(4,5), (1,2), (1,2,3)] of (Symmetric group␣
→˓of order 5! as a permutation group)
sage: xi.induct(G)
Character of Symmetric group of order 5! as a permutation group
sage: xi.induct(G).values()
[10, 4, 2, 1, 1, 0, 0]

irreducible_constituents()

Returns a list of the characters that appear in the decomposition of chi.

EXAMPLES:

sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: irr = chi.irreducible_constituents(); irr
(Character of Symmetric group of order 5! as a permutation group,
Character of Symmetric group of order 5! as a permutation group)
sage: list(map(list, irr))
[[4, -2, 0, 1, 1, 0, -1], [5, -1, 1, -1, -1, 1, 0]]
sage: G = GL(2,3)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, -1, -1, -1, -1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [1, 1, 1, 1, 1, 1, 1, 1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [2, 2, 2, 2, 2, 2, 2, 2])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, 3, -1, -1, 1])
sage: ic = chi.irreducible_constituents(); ic
(Character of General Linear Group of degree 2 over Finite Field of size 3,
Character of General Linear Group of degree 2 over Finite Field of size 3)
sage: list(map(list, ic))
[[2, -1, 2, -1, 2, 0, 0, 0], [3, 0, 3, 0, -1, 1, 1, -1]]

is_irreducible()

Returns True if self cannot be written as the sum of two nonzero characters of self.

EXAMPLES:

sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [x.is_irreducible() for x in irr]
[True, True, True, True, True]

162 Chapter 21. Class functions of groups.

Groups, Release 9.8

norm()

Returns the norm of self.

EXAMPLES:

sage: A5 = AlternatingGroup(5)
sage: [x.norm() for x in A5.irreducible_characters()]
[1, 1, 1, 1, 1]

restrict(H)

Return the restricted character.

INPUT:

• H – a subgroup of the underlying group of self.

OUTPUT:

A ClassFunction of H defined by restriction.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: chi = ClassFunction(G, [3, -3, -1, 0, 0, -1, 3]); chi
Character of Symmetric group of order 5! as a permutation group
sage: H = G.subgroup([(1,2,3), (1,2), (4,5)])
sage: chi.restrict(H)
Character of Subgroup generated by [(4,5), (1,2), (1,2,3)] of (Symmetric group␣
→˓of order 5! as a permutation group)
sage: chi.restrict(H).values()
[3, -3, -3, -1, 0, 0]

scalar_product(other)
Returns the scalar product of self with other.

EXAMPLES:

sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [[x.scalar_product(y) for x in irr] for y in irr]
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]

symmetric_power(n)
Returns the symmetrized product of self with itself n times.

INPUT:

• n – a positive integer.

OUTPUT:

The n-th symmetrized power of self as a ClassFunction.

EXAMPLES:

163

Groups, Release 9.8

sage: chi = ClassFunction(SymmetricGroup(4), [3, 1, -1, 0, -1])
sage: p = chi.symmetric_power(3)
sage: p
Character of Symmetric group of order 4! as a permutation group
sage: p.values()
[10, 2, -2, 1, 0]

tensor_product(other)
EXAMPLES:

sage: S3 = SymmetricGroup(3)
sage: chi1, chi2, chi3 = S3.irreducible_characters()
sage: chi1.tensor_product(chi3).values()
[1, -1, 1]

values()

Return the list of values of self on the conjugacy classes.

EXAMPLES:

sage: G = GL(2,3)
sage: [x.values() for x in G.irreducible_characters()] #random
[[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, 0, 0, 0],
[2, 1, -2, -1, 0, -zeta8^3 - zeta8, zeta8^3 + zeta8, 0],
[2, 1, -2, -1, 0, zeta8^3 + zeta8, -zeta8^3 - zeta8, 0],
[3, 0, 3, 0, -1, -1, -1, 1],
[3, 0, 3, 0, -1, 1, 1, -1],
[4, -1, -4, 1, 0, 0, 0, 0]]

class sage.groups.class_function.ClassFunction_libgap(G, values)
Bases: SageObject

A wrapper of GAP’s ClassFunction function.

Note: It is not checked whether the given values describes a character, since GAP does not do this.

EXAMPLES:

sage: G = SO(3,3)
sage: values = [1, -1, -1, 1, 2]
sage: chi = ClassFunction(G, values); chi
Character of Special Orthogonal Group of degree 3 over Finite Field of size 3
sage: loads(dumps(chi)) == chi
True

adams_operation(k)
Return the k-th Adams operation on self.

Let 𝐺 be a finite group. The 𝑘-th Adams operation Ψ𝑘 is given by

Ψ𝑘(𝜒)(𝑔) = 𝜒(𝑔𝑘).

164 Chapter 21. Class functions of groups.

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Groups, Release 9.8

The Adams operations turn the representation ring of 𝐺 into a 𝜆-ring.

EXAMPLES:

sage: G = GL(2,3)
sage: chars = G.irreducible_characters()
sage: [chi.adams_operation(2).values() for chi in chars]
[[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[2, -1, 2, -1, 2, 2, 2, 2],
[2, -1, 2, -1, -2, 0, 0, 2],
[2, -1, 2, -1, -2, 0, 0, 2],
[3, 0, 3, 0, 3, -1, -1, 3],
[3, 0, 3, 0, 3, -1, -1, 3],
[4, 1, 4, 1, -4, 0, 0, 4]]
sage: chars[5].adams_operation(3).decompose()
((1, Character of General Linear Group of degree 2 over Finite Field of size 3),
(1, Character of General Linear Group of degree 2 over Finite Field of size 3),
(-1, Character of General Linear Group of degree 2 over Finite Field of size␣
→˓3),
(1, Character of General Linear Group of degree 2 over Finite Field of size 3))

REFERENCES:

• Wikipedia article Adams_operation

central_character()

Return the central character of self.

EXAMPLES:

sage: t = SymmetricGroup(4).trivial_character()
sage: t.central_character().values()
[1, 6, 3, 8, 6]

decompose()

Return a list of the characters that appear in the decomposition of self.

EXAMPLES:

sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: chi.decompose()
((3, Character of Symmetric group of order 5! as a permutation group),
(2, Character of Symmetric group of order 5! as a permutation group))

degree()

Return the degree of the character self.

EXAMPLES:

sage: S5 = SymmetricGroup(5)
sage: irr = S5.irreducible_characters()
sage: [x.degree() for x in irr]
[1, 4, 5, 6, 5, 4, 1]

165

https://en.wikipedia.org/wiki/Adams_operation

Groups, Release 9.8

determinant_character()

Return the determinant character of self.

EXAMPLES:

sage: t = ClassFunction(SymmetricGroup(4), [1, -1, 1, 1, -1])
sage: t.determinant_character().values()
[1, -1, 1, 1, -1]

domain()

Return the domain of self.

OUTPUT:

The underlying group of the class function.

EXAMPLES:

sage: ClassFunction(SymmetricGroup(4), [1,-1,1,1,-1]).domain()
Symmetric group of order 4! as a permutation group

exterior_power(n)
Return the anti-symmetrized product of self with itself n times.

INPUT:

• n – a positive integer

OUTPUT:

The n-th anti-symmetrized power of self as a ClassFunction.

EXAMPLES:

sage: chi = ClassFunction(SymmetricGroup(4), [3, 1, -1, 0, -1])
sage: p = chi.exterior_power(3) # the highest anti-symmetric power for a 3-d␣
→˓character
sage: p
Character of Symmetric group of order 4! as a permutation group
sage: p.values()
[1, -1, 1, 1, -1]
sage: p == chi.determinant_character()
True

gap()

Return the underlying LibGAP element.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: values = [1, -1, 1, -1]
sage: chi = ClassFunction(G, values); chi
Character of Cyclic group of order 4 as a permutation group
sage: type(chi)
<class 'sage.groups.class_function.ClassFunction_gap'>
sage: gap(chi)
ClassFunction(CharacterTable(Group([(1,2,3,4)])), [1, -1, 1, -1])
sage: type(_)
<class 'sage.interfaces.gap.GapElement'>

166 Chapter 21. Class functions of groups.

Groups, Release 9.8

induct(G)

Return the induced character.

INPUT:

• G – A supergroup of the underlying group of self.

OUTPUT:

A ClassFunction of G defined by induction. Induction is the adjoint functor to restriction, see
restrict().

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: H = G.subgroup([(1,2,3), (1,2), (4,5)])
sage: xi = H.trivial_character(); xi
Character of Subgroup generated by [(4,5), (1,2), (1,2,3)] of (Symmetric group␣
→˓of order 5! as a permutation group)
sage: xi.induct(G)
Character of Symmetric group of order 5! as a permutation group
sage: xi.induct(G).values()
[10, 4, 2, 1, 1, 0, 0]

irreducible_constituents()

Return a list of the characters that appear in the decomposition of self.

EXAMPLES:

sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: irr = chi.irreducible_constituents(); irr
(Character of Symmetric group of order 5! as a permutation group,
Character of Symmetric group of order 5! as a permutation group)
sage: list(map(list, irr))
[[4, -2, 0, 1, 1, 0, -1], [5, -1, 1, -1, -1, 1, 0]]

sage: G = GL(2,3)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, -1, -1, -1, -1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [1, 1, 1, 1, 1, 1, 1, 1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [2, 2, 2, 2, 2, 2, 2, 2])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, 3, -1, -1, 1])
sage: ic = chi.irreducible_constituents(); ic
(Character of General Linear Group of degree 2 over Finite Field of size 3,
Character of General Linear Group of degree 2 over Finite Field of size 3)
sage: list(map(list, ic))
[[2, -1, 2, -1, 2, 0, 0, 0], [3, 0, 3, 0, -1, 1, 1, -1]]

is_irreducible()

Return True if self cannot be written as the sum of two nonzero characters of self.

167

Groups, Release 9.8

EXAMPLES:

sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [x.is_irreducible() for x in irr]
[True, True, True, True, True]

norm()

Return the norm of self.

EXAMPLES:

sage: A5 = AlternatingGroup(5)
sage: [x.norm() for x in A5.irreducible_characters()]
[1, 1, 1, 1, 1]

restrict(H)

Return the restricted character.

INPUT:

• H – a subgroup of the underlying group of self.

OUTPUT:

A ClassFunction of H defined by restriction.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: chi = ClassFunction(G, [3, -3, -1, 0, 0, -1, 3]); chi
Character of Symmetric group of order 5! as a permutation group
sage: H = G.subgroup([(1,2,3), (1,2), (4,5)])
sage: chi.restrict(H)
Character of Subgroup generated by [(4,5), (1,2), (1,2,3)] of (Symmetric group␣
→˓of order 5! as a permutation group)
sage: chi.restrict(H).values()
[3, -3, -3, -1, 0, 0]

scalar_product(other)
Return the scalar product of self with other.

EXAMPLES:

sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [[x.scalar_product(y) for x in irr] for y in irr]
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]

symmetric_power(n)
Return the symmetrized product of self with itself n times.

INPUT:

168 Chapter 21. Class functions of groups.

Groups, Release 9.8

• n – a positive integer

OUTPUT:

The n-th symmetrized power of self as a ClassFunction.

EXAMPLES:

sage: chi = ClassFunction(SymmetricGroup(4), [3, 1, -1, 0, -1])
sage: p = chi.symmetric_power(3)
sage: p
Character of Symmetric group of order 4! as a permutation group
sage: p.values()
[10, 2, -2, 1, 0]

tensor_product(other)
Return the tensor product of self and other.

EXAMPLES:

sage: S3 = SymmetricGroup(3)
sage: chi1, chi2, chi3 = S3.irreducible_characters()
sage: chi1.tensor_product(chi3).values()
[1, -1, 1]

values()

Return the list of values of self on the conjugacy classes.

EXAMPLES:

sage: G = GL(2,3)
sage: [x.values() for x in G.irreducible_characters()] #random
[[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, 0, 0, 0],
[2, 1, -2, -1, 0, -zeta8^3 - zeta8, zeta8^3 + zeta8, 0],
[2, 1, -2, -1, 0, zeta8^3 + zeta8, -zeta8^3 - zeta8, 0],
[3, 0, 3, 0, -1, -1, -1, 1],
[3, 0, 3, 0, -1, 1, 1, -1],
[4, -1, -4, 1, 0, 0, 0, 0]]

169

Groups, Release 9.8

170 Chapter 21. Class functions of groups.

CHAPTER

TWENTYTWO

CONJUGACY CLASSES OF GROUPS

This module implements a wrapper of GAP’s ConjugacyClass function.

There are two main classes, ConjugacyClass and ConjugacyClassGAP. All generic methods should go
into ConjugacyClass, whereas ConjugacyClassGAP should only contain wrappers for GAP functions.
ConjugacyClass contains some fallback methods in case some group cannot be defined as a GAP object.

Todo:

• Implement a non-naive fallback method for computing all the elements of the conjugacy class when the group is
not defined in GAP, as the one in Butler’s paper.

• Define a sage method for gap matrices so that groups of matrices can use the quicker GAP algorithm rather than
the naive one.

EXAMPLES:

Conjugacy classes for groups of permutations:

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: G.conjugacy_class(g)
Conjugacy class of cycle type [4] in Symmetric group of order 4! as a permutation group

Conjugacy classes for groups of matrices:

sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: H = MatrixGroup(gens)
sage: h = H(matrix(F,2,[1,2, -1, 1]))
sage: H.conjugacy_class(h)
Conjugacy class of [1 2]
[4 1] in Matrix group over Finite Field of size 5 with 2 generators (
[1 2] [1 1]
[4 1], [0 1]
)

class sage.groups.conjugacy_classes.ConjugacyClass(group, element)
Bases: Parent

Generic conjugacy classes for elements in a group.

This is the default fall-back implementation to be used whenever GAP cannot handle the group.

EXAMPLES:

171

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Groups, Release 9.8

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: ConjugacyClass(G,g)
Conjugacy class of (1,2,3,4) in Symmetric group of order 4! as a
permutation group

an_element()

Return a representative of self.

EXAMPLES:

sage: G = SymmetricGroup(3)
sage: g = G((1,2,3))
sage: C = ConjugacyClass(G,g)
sage: C.representative()
(1,2,3)

is_rational()

Check if self is rational (closed for powers).

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: c = ConjugacyClass(G,g)
sage: c.is_rational()
False

is_real()

Check if self is real (closed for inverses).

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: c = ConjugacyClass(G,g)
sage: c.is_real()
True

list()

Return a list with all the elements of self.

EXAMPLES:

Groups of permutations:

sage: G = SymmetricGroup(3)
sage: g = G((1,2,3))
sage: c = ConjugacyClass(G,g)
sage: L = c.list()
sage: Set(L) == Set([G((1,3,2)), G((1,2,3))])
True

representative()

Return a representative of self.

172 Chapter 22. Conjugacy classes of groups

Groups, Release 9.8

EXAMPLES:

sage: G = SymmetricGroup(3)
sage: g = G((1,2,3))
sage: C = ConjugacyClass(G,g)
sage: C.representative()
(1,2,3)

set()

Return the set of elements of the conjugacy class.

EXAMPLES:

Groups of permutations:

sage: G = SymmetricGroup(3)
sage: g = G((1,2))
sage: C = ConjugacyClass(G,g)
sage: S = [(2,3), (1,2), (1,3)]
sage: C.set() == Set(G(x) for x in S)
True

Groups of matrices over finite fields:

sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: H = MatrixGroup(gens)
sage: h = H(matrix(F,2,[1,2, -1, 1]))
sage: C = ConjugacyClass(H,h)
sage: S = [[[3, 2], [2, 4]], [[0, 1], [2, 2]], [[3, 4], [1, 4]],\

[[0, 3], [4, 2]], [[1, 2], [4, 1]], [[2, 1], [2, 0]],\
[[4, 1], [4, 3]], [[4, 4], [1, 3]], [[2, 4], [3, 0]],\
[[1, 4], [2, 1]], [[3, 3], [3, 4]], [[2, 3], [4, 0]],\
[[0, 2], [1, 2]], [[1, 3], [1, 1]], [[4, 3], [3, 3]],\
[[4, 2], [2, 3]], [[0, 4], [3, 2]], [[1, 1], [3, 1]],\
[[2, 2], [1, 0]], [[3, 1], [4, 4]]]

sage: C.set() == Set(H(x) for x in S)
True

It is not implemented for infinite groups:

sage: a = matrix(ZZ,2,[1,1,0,1])
sage: b = matrix(ZZ,2,[1,0,1,1])
sage: G = MatrixGroup([a,b]) # takes 1s
sage: g = G(a)
sage: C = ConjugacyClass(G, g)
sage: C.set()
Traceback (most recent call last):
...
NotImplementedError: Listing the elements of conjugacy classes is not␣
→˓implemented for infinite groups! Use the iter function instead.

class sage.groups.conjugacy_classes.ConjugacyClassGAP(group, element)
Bases: ConjugacyClass

Class for a conjugacy class for groups defined over GAP.

173

Groups, Release 9.8

Intended for wrapping GAP methods on conjugacy classes.

INPUT:

• group – the group in which the conjugacy class is taken

• element – the element generating the conjugacy class

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: ConjugacyClassGAP(G,g)
Conjugacy class of (1,2,3,4) in Symmetric group of order 4! as a
permutation group

cardinality()

Return the size of this conjugacy class.

EXAMPLES:

sage: W = WeylGroup(['C',6])
sage: cc = W.conjugacy_class(W.an_element())
sage: cc.cardinality()
3840
sage: type(cc.cardinality())
<class 'sage.rings.integer.Integer'>

set()

Return a Sage Set with all the elements of the conjugacy class.

By default attempts to use GAP construction of the conjugacy class. If GAP method is not implemented
for the given group, and the group is finite, falls back to a naive algorithm.

Warning: The naive algorithm can be really slow and memory intensive.

EXAMPLES:

Groups of permutations:

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: C = ConjugacyClassGAP(G,g)
sage: S = [(1,3,2,4), (1,4,3,2), (1,3,4,2), (1,2,3,4), (1,4,2,3), (1,2,4,3)]
sage: C.set() == Set(G(x) for x in S)
True

174 Chapter 22. Conjugacy classes of groups

CHAPTER

TWENTYTHREE

ABELIAN GROUPS

23.1 Multiplicative Abelian Groups

This module lets you compute with finitely generated Abelian groups of the form

𝐺 = Z𝑟 ⊕ Z𝑘1 ⊕ · · · ⊕ Z𝑘𝑡

It is customary to denote the infinite cyclic group Z as having order 0, so the data defining the Abelian group can be
written as an integer vector

�⃗� = (0, . . . , 0, 𝑘1, . . . , 𝑘𝑡)

where there are 𝑟 zeroes and 𝑡 non-zero values. To construct this Abelian group in Sage, you can either specify all
entries of �⃗� or only the non-zero entries together with the total number of generators:

sage: AbelianGroup([0,0,0,2,3])
Multiplicative Abelian group isomorphic to Z x Z x Z x C2 x C3
sage: AbelianGroup(5, [2,3])
Multiplicative Abelian group isomorphic to Z x Z x Z x C2 x C3

It is also legal to specify 1 as the order. The corresponding generator will be the neutral element, but it will still take
up an index in the labelling of the generators:

sage: G = AbelianGroup([2,1,3], names='g')
sage: G.gens()
(g0, 1, g2)

Note that this presentation is not unique, for example Z6
∼= Z2 × Z3. The orders of the generators �⃗� =

(0, . . . , 0, 𝑘1, . . . , 𝑘𝑡) has previously been called invariants in Sage, even though they are not necessarily the (unique)
invariant factors of the group. You should now use gens_orders() instead:

sage: J = AbelianGroup([2,0,3,2,4]); J
Multiplicative Abelian group isomorphic to C2 x Z x C3 x C2 x C4
sage: J.gens_orders() # use this instead
(2, 0, 3, 2, 4)
sage: J.invariants() # deprecated
(2, 0, 3, 2, 4)
sage: J.elementary_divisors() # these are the "invariant factors"
(2, 2, 12, 0)
sage: for i in range(J.ngens()):
....: print((i, J.gen(i), J.gen(i).order())) # or use this form

(continues on next page)

175

Groups, Release 9.8

(continued from previous page)

(0, f0, 2)
(1, f1, +Infinity)
(2, f2, 3)
(3, f3, 2)
(4, f4, 4)

Background on invariant factors and the Smith normal form (according to section 4.1 of [Cohen1]): An abelian group
is a group 𝐴 for which there exists an exact sequence Z𝑘 → Zℓ → 𝐴→ 1, for some positive integers 𝑘, ℓ with 𝑘 ≤ ℓ.
For example, a finite abelian group has a decomposition

𝐴 = ⟨𝑎1⟩ × · · · × ⟨𝑎ℓ⟩,

where ord(𝑎𝑖) = 𝑝𝑐𝑖𝑖 , for some primes 𝑝𝑖 and some positive integers 𝑐𝑖, 𝑖 = 1, ..., ℓ. GAP calls the list (ordered by
size) of the 𝑝𝑐𝑖𝑖 the abelian invariants. In Sage they will be called invariants. In this situation, 𝑘 = ℓ and 𝜑 : Zℓ → 𝐴
is the map 𝜑(𝑥1, ..., 𝑥ℓ) = 𝑎𝑥1

1 ...𝑎
𝑥ℓ

ℓ , for (𝑥1, ..., 𝑥ℓ) ∈ Zℓ. The matrix of relations 𝑀 : Z𝑘 → Zℓ is the matrix whose
rows generate the kernel of 𝜑 as a Z-module. In other words, 𝑀 = (𝑀𝑖𝑗) is a ℓ× ℓ diagonal matrix with 𝑀𝑖𝑖 = 𝑝𝑐𝑖𝑖 .
Consider now the subgroup 𝐵 ⊂ 𝐴 generated by 𝑏1 = 𝑎

𝑓1,1
1 ...𝑎

𝑓ℓ,1
ℓ , . . . , 𝑏𝑚 = 𝑎

𝑓1,𝑚
1 ...𝑎

𝑓ℓ,𝑚
ℓ . The kernel of the map

𝜑𝐵 : Z𝑚 → 𝐵 defined by 𝜑𝐵(𝑦1, ..., 𝑦𝑚) = 𝑏𝑦1

1 ...𝑏
𝑦𝑚
𝑚 , for (𝑦1, ..., 𝑦𝑚) ∈ Z𝑚, is the kernel of the matrix

𝐹 =

⎛⎜⎜⎜⎝
𝑓11 𝑓12 . . . 𝑓1𝑚
𝑓21 𝑓22 . . . 𝑓2𝑚
...

. . .
...

𝑓ℓ,1 𝑓ℓ,2 . . . 𝑓ℓ,𝑚

⎞⎟⎟⎟⎠ ,

regarded as a map Z𝑚 → (Z/𝑝𝑐11 Z) × ... × (Z/𝑝𝑐ℓℓ Z). In particular, 𝐵 ∼= Z𝑚/ ker(𝐹). If 𝐵 = 𝐴 then the Smith
normal form (SNF) of a generator matrix of ker(𝐹) and the SNF of 𝑀 are the same. The diagonal entries 𝑠𝑖 of the
SNF 𝑆 = diag[𝑠1, 𝑠2, 𝑠3, ...𝑠𝑟, 0, 0, ...0], are called determinantal divisors of 𝐹 . where 𝑟 is the rank. The invariant
factors of 𝐴 are:

𝑠1, 𝑠2/𝑠1, 𝑠3/𝑠2, ...𝑠𝑟/𝑠𝑟−1.

Sage supports multiplicative abelian groups on any prescribed finite number 𝑛 ≥ 0 of generators. Use the
AbelianGroup() function to create an abelian group, and the gen() and gens()methods to obtain the corresponding
generators. You can print the generators as arbitrary strings using the optional names argument to the AbelianGroup()
function.

EXAMPLE 1:

We create an abelian group in zero or more variables; the syntax T(1) creates the identity element even in the rank
zero case:

sage: T = AbelianGroup(0, [])
sage: T
Trivial Abelian group
sage: T.gens()
()
sage: T(1)
1

EXAMPLE 2:

An Abelian group uses a multiplicative representation of elements, but the underlying representation is lists of integer
exponents:

176 Chapter 23. Abelian Groups

Groups, Release 9.8

sage: F = AbelianGroup(5, [3,4,5,5,7], names = list("abcde"))
sage: F
Multiplicative Abelian group isomorphic to C3 x C4 x C5 x C5 x C7
sage: (a,b,c,d,e) = F.gens()
sage: a*b^2*e*d
a*b^2*d*e
sage: x = b^2*e*d*a^7
sage: x
a*b^2*d*e
sage: x.list()
[1, 2, 0, 1, 1]

REFERENCES:

Warning: Many basic properties for infinite abelian groups are not implemented.

AUTHORS:

• William Stein, David Joyner (2008-12): added (user requested) is_cyclic, fixed elementary_divisors.

• David Joyner (2006-03): (based on free abelian monoids by David Kohel)

• David Joyner (2006-05) several significant bug fixes

• David Joyner (2006-08) trivial changes to docs, added random, fixed bug in how invariants are recorded

• David Joyner (2006-10) added dual_group method

• David Joyner (2008-02) fixed serious bug in word_problem

• David Joyner (2008-03) fixed bug in trivial group case

• David Loeffler (2009-05) added subgroups method

• Volker Braun (2012-11) port to new Parent base. Use tuples for immutables. Rename invariants to gens_orders.

sage.groups.abelian_gps.abelian_group.AbelianGroup(n, gens_orders=None, names='f')
Create the multiplicative abelian group in 𝑛 generators with given orders of generators (which need not be prime
powers).

INPUT:

• n – integer (optional). If not specified, will be derived
from gens_orders.

• gens_orders – a list of non-negative integers in the form
[𝑎0, 𝑎1, . . . , 𝑎𝑛−1], typically written in increasing order. This list is padded with zeros if it has length
less than 𝑛. The orders of the commuting generators, with 0 denoting an infinite cyclic factor.

• names – (optional) names of generators

Alternatively, you can also give input in the form AbelianGroup(gens_orders, names="f"), where the
names keyword argument must be explicitly named.

OUTPUT:

Abelian group with generators and invariant type. The default name for generator A.i is fi, as in GAP.

EXAMPLES:

23.1. Multiplicative Abelian Groups 177

Groups, Release 9.8

sage: F = AbelianGroup(5, [5,5,7,8,9], names='abcde')
sage: F(1)
1
sage: (a, b, c, d, e) = F.gens()
sage: mul([a, b, a, c, b, d, c, d], F(1))
a^2*b^2*c^2*d^2
sage: d * b**2 * c**3
b^2*c^3*d
sage: F = AbelianGroup(3,[2]*3); F
Multiplicative Abelian group isomorphic to C2 x C2 x C2
sage: H = AbelianGroup([2,3], names="xy"); H
Multiplicative Abelian group isomorphic to C2 x C3
sage: AbelianGroup(5)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
sage: AbelianGroup(5).order()
+Infinity

Notice that 0’s are prepended if necessary:

sage: G = AbelianGroup(5, [2,3,4]); G
Multiplicative Abelian group isomorphic to Z x Z x C2 x C3 x C4
sage: G.gens_orders()
(0, 0, 2, 3, 4)

The invariant list must not be longer than the number of generators:

sage: AbelianGroup(2, [2,3,4])
Traceback (most recent call last):
...
ValueError: gens_orders (=(2, 3, 4)) must have length n (=2)

class sage.groups.abelian_gps.abelian_group.AbelianGroup_class(generator_orders, names,
category=None)

Bases: UniqueRepresentation, AbelianGroup

The parent for Abelian groups with chosen generator orders.

Warning: You should use AbelianGroup() to construct Abelian groups and not instantiate this class
directly.

INPUT:

• generator_orders – list of integers. The orders of the (commuting) generators. Zero denotes an infinite
cyclic generator.

• names – names of the group generators (optional).

EXAMPLES:

sage: Z2xZ3 = AbelianGroup([2,3])
sage: Z6 = AbelianGroup([6])
sage: Z2xZ3 is Z2xZ3, Z6 is Z6
(True, True)
sage: Z2xZ3 is Z6

(continues on next page)

178 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

(continued from previous page)

False
sage: Z2xZ3 == Z6
False
sage: Z2xZ3.is_isomorphic(Z6)
True

sage: F = AbelianGroup(5,[5,5,7,8,9],names = list("abcde")); F
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: F = AbelianGroup(5,[2, 4, 12, 24, 120],names = list("abcde")); F
Multiplicative Abelian group isomorphic to C2 x C4 x C12 x C24 x C120
sage: F.elementary_divisors()
(2, 4, 12, 24, 120)

sage: F.category()
Category of finite enumerated commutative groups

Element

alias of AbelianGroupElement

Subgroup

alias of AbelianGroup_subgroup

cardinality()

Return the order of this group.

EXAMPLES:

sage: G = AbelianGroup(2,[2,3])
sage: G.order()
6
sage: G = AbelianGroup(3,[2,3,0])
sage: G.order()
+Infinity

dual_group(names='X', base_ring=None)
Return the dual group.

INPUT:

• names – string or list of strings. The generator names for the dual group.

• base_ring – the base ring. If None (default), then a suitable cyclotomic field is picked automatically.

OUTPUT:

The dual abelian group.

EXAMPLES:

sage: G = AbelianGroup([2])
sage: G.dual_group()
Dual of Abelian Group isomorphic to Z/2Z over Cyclotomic Field of order 2 and␣
→˓degree 1
sage: G.dual_group().gens()
(X,)
sage: G.dual_group(names='Z').gens()

(continues on next page)

23.1. Multiplicative Abelian Groups 179

Groups, Release 9.8

(continued from previous page)

(Z,)

sage: G.dual_group(base_ring=QQ)
Dual of Abelian Group isomorphic to Z/2Z over Rational Field

elementary_divisors()

This returns the elementary divisors of the group, using Pari.

Note: Here is another algorithm for computing the elementary divisors 𝑑1, 𝑑2, 𝑑3, . . ., of a finite abelian
group (where 𝑑1|𝑑2|𝑑3| . . . are composed of prime powers dividing the invariants of the group in a way
described below). Just factor the invariants 𝑎𝑖 that define the abelian group. Then the biggest 𝑑𝑖 is the
product of the maximum prime powers dividing some 𝑎𝑗 . In other words, the largest 𝑑𝑖 is the product of
𝑝𝑣 , where 𝑣 = max(ord𝑝(𝑎𝑗) for all 𝑗). Now divide out all those 𝑝𝑣’s into the list of invariants 𝑎𝑖, and get
a new list of “smaller invariants”. Repeat the above procedure on these “smaller invariants” to compute
𝑑𝑖−1, and so on. (Thanks to Robert Miller for communicating this algorithm.)

OUTPUT:

A tuple of integers.

EXAMPLES:

sage: G = AbelianGroup(2,[2,3])
sage: G.elementary_divisors()
(6,)
sage: G = AbelianGroup(1, [6])
sage: G.elementary_divisors()
(6,)
sage: G = AbelianGroup(2,[2,6])
sage: G
Multiplicative Abelian group isomorphic to C2 x C6
sage: G.gens_orders()
(2, 6)
sage: G.elementary_divisors()
(2, 6)
sage: J = AbelianGroup([1,3,5,12])
sage: J.elementary_divisors()
(3, 60)
sage: G = AbelianGroup(2,[0,6])
sage: G.elementary_divisors()
(6, 0)
sage: AbelianGroup([3,4,5]).elementary_divisors()
(60,)

exponent()

Return the exponent of this abelian group.

EXAMPLES:

sage: G = AbelianGroup([2,3,7]); G
Multiplicative Abelian group isomorphic to C2 x C3 x C7
sage: G.exponent()

(continues on next page)

180 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

42
sage: G = AbelianGroup([2,4,6]); G
Multiplicative Abelian group isomorphic to C2 x C4 x C6
sage: G.exponent()
12

gen(i=0)
The 𝑖-th generator of the abelian group.

EXAMPLES:

sage: F = AbelianGroup(5,[],names='a')
sage: F.0
a0
sage: F.2
a2
sage: F.gens_orders()
(0, 0, 0, 0, 0)

sage: G = AbelianGroup([2,1,3])
sage: G.gens()
(f0, 1, f2)

gens()

Return the generators of the group.

OUTPUT:

A tuple of group elements. The generators according to the chosen gens_orders().

EXAMPLES:

sage: F = AbelianGroup(5,[3,2],names='abcde')
sage: F.gens()
(a, b, c, d, e)
sage: [g.order() for g in F.gens()]
[+Infinity, +Infinity, +Infinity, 3, 2]

gens_orders()

Return the orders of the cyclic factors that this group has been defined with.

Use elementary_divisors() if you are looking for an invariant of the group.

OUTPUT:

A tuple of integers.

EXAMPLES:

sage: Z2xZ3 = AbelianGroup([2,3])
sage: Z2xZ3.gens_orders()
(2, 3)
sage: Z2xZ3.elementary_divisors()
(6,)

sage: Z6 = AbelianGroup([6])
(continues on next page)

23.1. Multiplicative Abelian Groups 181

Groups, Release 9.8

(continued from previous page)

sage: Z6.gens_orders()
(6,)
sage: Z6.elementary_divisors()
(6,)

sage: Z2xZ3.is_isomorphic(Z6)
True
sage: Z2xZ3 is Z6
False

identity()

Return the identity element of this group.

EXAMPLES:

sage: G = AbelianGroup([2,2])
sage: e = G.identity()
sage: e
1
sage: g = G.gen(0)
sage: g*e
f0
sage: e*g
f0

invariants()

Return the orders of the cyclic factors that this group has been defined with.

For historical reasons this has been called invariants in Sage, even though they are not necessarily the
invariant factors of the group. Use gens_orders() instead:

sage: J = AbelianGroup([2,0,3,2,4]); J
Multiplicative Abelian group isomorphic to C2 x Z x C3 x C2 x C4
sage: J.invariants() # deprecated
(2, 0, 3, 2, 4)
sage: J.gens_orders() # use this instead
(2, 0, 3, 2, 4)
sage: for i in range(J.ngens()):
....: print((i, J.gen(i), J.gen(i).order())) # or this
(0, f0, 2)
(1, f1, +Infinity)
(2, f2, 3)
(3, f3, 2)
(4, f4, 4)

Use elementary_divisors() if you are looking for an invariant of the group.

OUTPUT:

A tuple of integers. Zero means infinite cyclic factor.

EXAMPLES:

sage: J = AbelianGroup([2,3])
sage: J.invariants()

(continues on next page)

182 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

(2, 3)
sage: J.elementary_divisors()
(6,)

is_commutative()

Return True since this group is commutative.

EXAMPLES:

sage: G = AbelianGroup([2,3,9, 0])
sage: G.is_commutative()
True
sage: G.is_abelian()
True

is_cyclic()

Return True if the group is a cyclic group.

EXAMPLES:

sage: J = AbelianGroup([2,3])
sage: J.gens_orders()
(2, 3)
sage: J.elementary_divisors()
(6,)
sage: J.is_cyclic()
True
sage: G = AbelianGroup([6])
sage: G.gens_orders()
(6,)
sage: G.is_cyclic()
True
sage: H = AbelianGroup([2,2])
sage: H.gens_orders()
(2, 2)
sage: H.is_cyclic()
False
sage: H = AbelianGroup([2,4])
sage: H.elementary_divisors()
(2, 4)
sage: H.is_cyclic()
False
sage: H.permutation_group().is_cyclic()
False
sage: T = AbelianGroup([])
sage: T.is_cyclic()
True
sage: T = AbelianGroup(1,[0]); T
Multiplicative Abelian group isomorphic to Z
sage: T.is_cyclic()
True
sage: B = AbelianGroup([3,4,5])
sage: B.is_cyclic()

(continues on next page)

23.1. Multiplicative Abelian Groups 183

Groups, Release 9.8

(continued from previous page)

True

is_isomorphic(left, right)
Check whether left and right are isomorphic

INPUT:

• right – anything.

OUTPUT:

Boolean. Whether left and right are isomorphic as abelian groups.

EXAMPLES:

sage: G1 = AbelianGroup([2,3,4,5])
sage: G2 = AbelianGroup([2,3,4,5,1])
sage: G1.is_isomorphic(G2)
True

is_subgroup(left, right)
Test whether left is a subgroup of right.

EXAMPLES:

sage: G = AbelianGroup([2,3,4,5])
sage: G.is_subgroup(G)
True

sage: H = G.subgroup([G.1])
sage: H.is_subgroup(G)
True

sage: G.<a, b> = AbelianGroup(2)
sage: H.<c> = AbelianGroup(1)
sage: H < G
False

is_trivial()

Return whether the group is trivial

A group is trivial if it has precisely one element.

EXAMPLES:

sage: AbelianGroup([2, 3]).is_trivial()
False
sage: AbelianGroup([1, 1]).is_trivial()
True

list()

Return tuple of all elements of this group.

EXAMPLES:

184 Chapter 23. Abelian Groups

Groups, Release 9.8

sage: G = AbelianGroup([2,3], names = "ab")
sage: G.list()
(1, b, b^2, a, a*b, a*b^2)

sage: G = AbelianGroup([]); G
Trivial Abelian group
sage: G.list()
(1,)

ngens()

The number of free generators of the abelian group.

EXAMPLES:

sage: F = AbelianGroup(10000)
sage: F.ngens()
10000

number_of_subgroups(order=None)
Return the number of subgroups of this group, possibly only of a specific order.

INPUT:

• order – (default: None) find the number of subgroups of this order; if None, this defaults to counting
all subgroups

ALGORITHM:

An infinite group has infinitely many subgroups. All finite subgroups of any group are contained in the
torsion subgroup, which for finitely generated abelian group is itself finite. Hence, we can assume the
group is finite. A finite abelian group is isomorphic to a direct product of its Sylow subgroups, and so we
can reduce the problem further to counting subgroups of finite abelian 𝑝-groups.

Assume a Sylow subgroup is a 𝑝-group of type 𝜆, and using q_subgroups_of_abelian_group() sum
the number of subgroups of type 𝜇 in an abelian 𝑝-group of type 𝜆 for all 𝜇 contained in 𝜆.

EXAMPLES:

sage: AbelianGroup([2,3]).number_of_subgroups()
4
sage: AbelianGroup([2,0,0,3,0]).number_of_subgroups()
+Infinity
sage: AbelianGroup([2,4,8]).number_of_subgroups()
81
sage: AbelianGroup([2,4,8]).number_of_subgroups(order=4)
19
sage: AbelianGroup([10,15,25,12]).number_of_subgroups()
5760
sage: AbelianGroup([10,15,25,12]).number_of_subgroups(order=45000)
1
sage: AbelianGroup([10,15,25,12]).number_of_subgroups(order=14)
0

order()

Return the order of this group.

EXAMPLES:

23.1. Multiplicative Abelian Groups 185

../../../../../../../html/en/reference/combinat/sage/combinat/q_analogues.html#sage.combinat.q_analogues.q_subgroups_of_abelian_group

Groups, Release 9.8

sage: G = AbelianGroup(2,[2,3])
sage: G.order()
6
sage: G = AbelianGroup(3,[2,3,0])
sage: G.order()
+Infinity

permutation_group()

Return the permutation group isomorphic to this abelian group.

If the invariants are 𝑞1, . . . , 𝑞𝑛 then the generators of the permutation will be of order 𝑞1, . . . , 𝑞𝑛, respec-
tively.

EXAMPLES:

sage: G = AbelianGroup(2,[2,3]); G
Multiplicative Abelian group isomorphic to C2 x C3
sage: G.permutation_group()
Permutation Group with generators [(3,4,5), (1,2)]

random_element()

Return a random element of this group.

EXAMPLES:

sage: G = AbelianGroup([2,3,9])
sage: G.random_element().parent() is G
True

subgroup(gensH, names='f')
Create a subgroup of this group. The “big” group must be defined using “named” generators.

INPUT:

• gensH – list of elements which are products of the
generators of the ambient abelian group G = self

EXAMPLES:

sage: G.<a,b,c> = AbelianGroup(3, [2,3,4]); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: H = G.subgroup([a*b,a]); H
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {a*b, a}
sage: H < G
True
sage: F = G.subgroup([a,b^2])
sage: F
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {a, b^2}
sage: F.gens()
(a, b^2)
sage: F = AbelianGroup(5,[30,64,729],names = list("abcde"))
sage: a,b,c,d,e = F.gens()
sage: F.subgroup([a,b])
Multiplicative Abelian subgroup isomorphic to Z x Z generated by {a, b}
sage: F.subgroup([c,e])

(continues on next page)

186 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

Multiplicative Abelian subgroup isomorphic to C2 x C3 x C5 x C729 generated by
→˓{c, e}

subgroup_reduced(elts, verbose=False)
Given a list of lists of integers (corresponding to elements of self), find a set of independent generators for
the subgroup generated by these elements, and return the subgroup with these as generators, forgetting the
original generators.

This is used by the subgroups routine.

An error will be raised if the elements given are not linearly independent over QQ.

EXAMPLES:

sage: G = AbelianGroup([4,4])
sage: G.subgroup([G([1,0]), G([1,2])])
Multiplicative Abelian subgroup isomorphic to C2 x C4
generated by {f0, f0*f1^2}
sage: AbelianGroup([4,4]).subgroup_reduced([[1,0], [1,2]])
Multiplicative Abelian subgroup isomorphic to C2 x C4
generated by {f0^2*f1^2, f0^3}

subgroups(check=False)
Compute all the subgroups of this abelian group (which must be finite).

INPUT:

• check: if True, performs the same computation in GAP and checks that the number of subgroups
generated is the same. (I don’t know how to convert GAP’s output back into Sage, so we don’t actually
compare the subgroups).

ALGORITHM:

If the group is cyclic, the problem is easy. Otherwise, write it as a direct product A x B, where B is cyclic.
Compute the subgroups of A (by recursion).

Now, for every subgroup C of A x B, let G be its projection onto A and H its intersection with B. Then there
is a well-defined homomorphism f: G -> B/H that sends a in G to the class mod H of b, where (a,b) is any
element of C lifting a; and every subgroup C arises from a unique triple (G, H, f).

Todo: This is many orders of magnitude slower than Magma. Consider using the much faster method
number_of_subgroups() in case you only need the number of subgroups, possibly of a specific order.

EXAMPLES:

sage: AbelianGroup([2,3]).subgroups()
[Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {f0*f1^2},
Multiplicative Abelian subgroup isomorphic to C2 generated by {f0},
Multiplicative Abelian subgroup isomorphic to C3 generated by {f1},
Trivial Abelian subgroup]
sage: len(AbelianGroup([2,4,8]).subgroups())
81

torsion_subgroup(n=None)
Return the 𝑛-torsion subgroup of this abelian group when 𝑛 is given, and the torsion subgroup otherwise.

23.1. Multiplicative Abelian Groups 187

Groups, Release 9.8

The [𝑛-]torsion subgroup consists of all elements whose order is finite [and divides 𝑛].

EXAMPLES:

sage: G = AbelianGroup([2, 3])
sage: G.torsion_subgroup()
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated
by {f0, f1}
sage: G = AbelianGroup([2, 0, 0, 3, 0])
sage: G.torsion_subgroup()
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated
by {f0, f3}
sage: G = AbelianGroup([])
sage: G.torsion_subgroup()
Trivial Abelian subgroup
sage: G = AbelianGroup([0, 0])
sage: G.torsion_subgroup()
Trivial Abelian subgroup

sage: G = AbelianGroup([2, 2*3, 2*3*5, 0, 2*3*5*7, 2*3*5*7*11])
sage: G.torsion_subgroup(5)
Multiplicative Abelian subgroup isomorphic to C5 x C5 x C5 generated by {f2^6,␣
→˓f4^42, f5^462}

class sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup(ambient, gens, names='f',
category=None)

Bases: AbelianGroup_class

Subgroup subclass of AbelianGroup_class, so instance methods are inherited.

Todo: There should be a way to coerce an element of a subgroup into the ambient group.

ambient_group()

Return the ambient group related to self.

OUTPUT:

A multiplicative Abelian group.

EXAMPLES:

sage: G.<a,b,c> = AbelianGroup([2,3,4])
sage: H = G.subgroup([a, b^2])
sage: H.ambient_group() is G
True

equals(left, right)
Check whether left and right are the same (sub)group.

INPUT:

• right – anything.

OUTPUT:

Boolean. If right is a subgroup, test whether left and right are the same subset of the ambient group.
If right is not a subgroup, test whether they are isomorphic groups, see is_isomorphic().

188 Chapter 23. Abelian Groups

Groups, Release 9.8

EXAMPLES:

sage: G = AbelianGroup(3, [2,3,4], names="abc"); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = G.gens()
sage: F = G.subgroup([a,b^2]); F
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {a, b^2}
sage: F<G
True

sage: A = AbelianGroup(1, [6])
sage: A.subgroup(list(A.gens())) == A
True

sage: G.<a,b> = AbelianGroup(2)
sage: A = G.subgroup([a])
sage: B = G.subgroup([b])
sage: A.equals(B)
False
sage: A == B # sames as A.equals(B)
False
sage: A.is_isomorphic(B)
True

gen(n)
Return the nth generator of this subgroup.

EXAMPLES:

sage: G.<a,b> = AbelianGroup(2)
sage: A = G.subgroup([a])
sage: A.gen(0)
a

gens()

Return the generators for this subgroup.

OUTPUT:

A tuple of group elements generating the subgroup.

EXAMPLES:

sage: G.<a,b> = AbelianGroup(2)
sage: A = G.subgroup([a])
sage: G.gens()
(a, b)
sage: A.gens()
(a,)

sage.groups.abelian_gps.abelian_group.is_AbelianGroup(x)
Return True if x is an Abelian group.

EXAMPLES:

23.1. Multiplicative Abelian Groups 189

Groups, Release 9.8

sage: from sage.groups.abelian_gps.abelian_group import is_AbelianGroup
sage: F = AbelianGroup(5,[5,5,7,8,9],names = list("abcde")); F
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: is_AbelianGroup(F)
True
sage: is_AbelianGroup(AbelianGroup(7, [3]*7))
True

sage.groups.abelian_gps.abelian_group.word_problem(words, g, verbose=False)
G and H are abelian, g in G, H is a subgroup of G generated by a list (words) of elements of G. If g is in H, return
the expression for g as a word in the elements of (words).

The ‘word problem’ for a finite abelian group G boils down to the following matrix-vector analog of the Chinese
remainder theorem.

Problem: Fix integers 1 < 𝑛1 ≤ 𝑛2 ≤ ... ≤ 𝑛𝑘 (indeed, these 𝑛𝑖 will all be prime powers), fix a generating set
𝑔𝑖 = (𝑎𝑖1, ..., 𝑎𝑖𝑘) (with 𝑎𝑖𝑗 ∈ Z/𝑛𝑗Z), for 1 ≤ 𝑖 ≤ ℓ, for the group 𝐺, and let 𝑑 = (𝑑1, ..., 𝑑𝑘) be an element of
the direct product Z/𝑛1Z × ... × Z/𝑛𝑘Z. Find, if they exist, integers 𝑐1, ..., 𝑐ℓ such that 𝑐1𝑔1 + ... + 𝑐ℓ𝑔ℓ = 𝑑.
In other words, solve the equation 𝑐𝐴 = 𝑑 for 𝑐 ∈ Zℓ, where 𝐴 is the matrix whose rows are the 𝑔𝑖’s. Of course,
it suffices to restrict the 𝑐𝑖’s to the range 0 ≤ 𝑐𝑖 ≤ 𝑁 − 1, where 𝑁 denotes the least common multiple of the
integers 𝑛1, ..., 𝑛𝑘.

This function does not solve this directly, as perhaps it should. Rather (for both speed and as a model for a
similar function valid for more general groups), it pushes it over to GAP, which has optimized (non-deterministic)
algorithms for the word problem. Essentially, this function is a wrapper for the GAP function ‘Factorization’.

EXAMPLES:

sage: G.<a,b,c> = AbelianGroup(3,[2,3,4]); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: w = word_problem([a*b,a*c], b*c); w #random
[[a*b, 1], [a*c, 1]]
sage: prod([x^i for x,i in w]) == b*c
True
sage: w = word_problem([a*c,c],a); w #random
[[a*c, 1], [c, -1]]
sage: prod([x^i for x,i in w]) == a
True
sage: word_problem([a*c,c],a,verbose=True) #random
a = (a*c)^1*(c)^-1
[[a*c, 1], [c, -1]]

sage: A.<a,b,c,d,e> = AbelianGroup(5,[4, 5, 5, 7, 8])
sage: b1 = a^3*b*c*d^2*e^5
sage: b2 = a^2*b*c^2*d^3*e^3
sage: b3 = a^7*b^3*c^5*d^4*e^4
sage: b4 = a^3*b^2*c^2*d^3*e^5
sage: b5 = a^2*b^4*c^2*d^4*e^5
sage: w = word_problem([b1,b2,b3,b4,b5],e); w #random
[[a^3*b*c*d^2*e^5, 1], [a^2*b*c^2*d^3*e^3, 1], [a^3*b^3*d^4*e^4, 3], [a^2*b^4*c^2*d^
→˓4*e^5, 1]]
sage: prod([x^i for x,i in w]) == e
True
sage: word_problem([a,b,c,d,e],e)

(continues on next page)

190 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

[[e, 1]]
sage: word_problem([a,b,c,d,e],b)
[[b, 1]]

Warning:

1. Might have unpleasant effect when the word problem cannot be solved.

2. Uses permutation groups, so may be slow when group is large. The instance method word_problem
of the class AbelianGroupElement is implemented differently (wrapping GAP’s ‘EpimorphismFrom-
FreeGroup’ and ‘PreImagesRepresentative’) and may be faster.

23.2 Finitely generated abelian groups with GAP.

This module provides a python wrapper for abelian groups in GAP.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: AbelianGroupGap([3,5])
Abelian group with gap, generator orders (3, 5)

For infinite abelian groups we use the GAP package Polycyclic:

sage: AbelianGroupGap([3,0]) # optional - gap_packages
Abelian group with gap, generator orders (3, 0)

AUTHORS:

• Simon Brandhorst (2018-01-17): initial version

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap(parent, x,
check=True)

Bases: ElementLibGAP

An element of an abelian group via libgap.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([3,6])
sage: G.gens()
(f1, f2)

exponents()

Return the tuple of exponents of this element.

OUTPUT:

• a tuple of integers

EXAMPLES:

23.2. Finitely generated abelian groups with GAP. 191

Groups, Release 9.8

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4,7,9])
sage: gens = G.gens()
sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8
sage: g.exponents()
(2, 4, 8)
sage: S = G.subgroup(G.gens()[:1])
sage: s = S.gens()[0]
sage: s
f1
sage: s.exponents()
(1,)

It can handle quite large groups too:

sage: G = AbelianGroupGap([2^10, 5^10])
sage: f1, f2 = G.gens()
sage: g = f1^123*f2^789
sage: g.exponents()
(123, 789)

Warning: Crashes for very large groups.

Todo: Make exponents work for very large groups. This could be done by using Pcgs in gap.

order()

Return the order of this element.

OUTPUT:

• an integer or infinity

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4])
sage: g = G.gens()[0]
sage: g.order()
4
sage: G = AbelianGroupGap([0]) # optional - gap_packages
sage: g = G.gens()[0] # optional - gap_packages
sage: g.order() # optional - gap_packages
+Infinity

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_polycyclic(parent, x,
check=True)

Bases: AbelianGroupElement_gap

An element of an abelian group using the GAP package Polycyclic.

exponents()

Return the tuple of exponents of self.

192 Chapter 23. Abelian Groups

Groups, Release 9.8

OUTPUT:

• a tuple of integers

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4,7,0]) # optional - gap_packages
sage: gens = G.gens() # optional - gap_packages
sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8 # optional - gap_packages
sage: g.exponents() # optional - gap_packages
(2, 4, 8)

Efficiently handles very large groups:

sage: G = AbelianGroupGap([2^30,5^30,0]) # optional - gap_packages
sage: f1, f2, f3 = G.gens() # optional - gap_packages
sage: (f1^12345*f2^123456789).exponents() # optional - gap_packages
(12345, 123456789, 0)

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupGap(generator_orders)
Bases: AbelianGroup_gap

Abelian groups implemented using GAP.

INPUT:

• generator_orders – a list of nonnegative integers where 0 gives a factor isomorphic to Z

OUTPUT:

• an abelian group

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: AbelianGroupGap([3,6])
Abelian group with gap, generator orders (3, 6)
sage: AbelianGroupGap([3,6,5])
Abelian group with gap, generator orders (3, 6, 5)
sage: AbelianGroupGap([3,6,0]) # optional - gap_packages
Abelian group with gap, generator orders (3, 6, 0)

Warning: Needs the GAP package Polycyclic in case the group is infinite.

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupQuotient_gap(G, N)

Bases: AbelianGroup_gap

Quotients of abelian groups by a subgroup.

Note: Do not call this directly. Instead use quotient().

EXAMPLES:

23.2. Finitely generated abelian groups with GAP. 193

Groups, Release 9.8

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([4,3])
sage: N = A.subgroup([A.gen(0)^2])
sage: Q1 = A.quotient(N)
sage: Q1
Quotient abelian group with generator orders (2, 3)
sage: Q2 = Q1.quotient(Q1.subgroup(Q1.gens()[:1]))
sage: Q2
Quotient abelian group with generator orders (1, 3)

cover()

Return the covering group of this quotient group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S = G.subgroup(gen)
sage: Q = G.quotient(S)
sage: Q.cover() is G
True

lift(x)
Lift an element to the cover.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([4])
sage: N = A.subgroup([A.gen(0)^2])
sage: Q = A.quotient(N)
sage: Q.lift(Q.0)
f1

natural_homomorphism()

Return the defining homomorphism into self.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([4])
sage: N = A.subgroup([A.gen(0)^2])
sage: Q = A.quotient(N)
sage: Q.natural_homomorphism()
Group morphism:
From: Abelian group with gap, generator orders (4,)
To: Quotient abelian group with generator orders (2,)

relations()

Return the relations of this quotient group.

EXAMPLES:

194 Chapter 23. Abelian Groups

Groups, Release 9.8

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S = G.subgroup(gen)
sage: Q = G.quotient(S)
sage: Q.relations() is S
True

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupSubgroup_gap(ambient, gens)
Bases: AbelianGroup_gap

Subgroups of abelian groups with GAP.

INPUT:

• ambient – the ambient group

• gens – generators of the subgroup

Note: Do not construct this class directly. Instead use subgroup().

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S = G.subgroup(gen)

lift(x)
Coerce to the ambient group.

The terminology comes from the category framework and the more general notion of a subquotient.

INPUT:

• x – an element of this subgroup

OUTPUT:

The corresponding element of the ambient group

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4])
sage: g = G.gen(0)
sage: H = G.subgroup([g^2])
sage: h = H.gen(0); h
f2
sage: h.parent()
Subgroup of Abelian group with gap, generator orders (4,) generated by (f2,)
sage: H.lift(h)
f2
sage: H.lift(h).parent()
Abelian group with gap, generator orders (4,)

23.2. Finitely generated abelian groups with GAP. 195

Groups, Release 9.8

retract(x)
Convert an element of the ambient group into this subgroup.

The terminology comes from the category framework and the more general notion of a subquotient.

INPUT:

• x – an element of the ambient group that actually lies in this subgroup.

OUTPUT:

The corresponding element of this subgroup

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4])
sage: g = G.gen(0)
sage: H = G.subgroup([g^2])
sage: H.retract(g^2)
f2
sage: H.retract(g^2).parent()
Subgroup of Abelian group with gap, generator orders (4,) generated by (f2,)

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap(G, category, ambient=None)
Bases: UniqueRepresentation, GroupMixinLibGAP, ParentLibGAP, AbelianGroup

Finitely generated abelian groups implemented in GAP.

Needs the gap package Polycyclic in case the group is infinite.

INPUT:

• G – a GAP group

• category – a category

• ambient – (optional) an AbelianGroupGap

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([3, 2, 5])
sage: G
Abelian group with gap, generator orders (3, 2, 5)

Element

alias of AbelianGroupElement_gap

all_subgroups()

Return the list of all subgroups of this group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2, 3])
sage: G.all_subgroups()
[Subgroup of Abelian group with gap, generator orders (2, 3) generated by (),
Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1,),
Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2,),

(continues on next page)

196 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

(continued from previous page)

Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2,␣
→˓f1)]

aut()

Return the group of automorphisms of self.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2, 3])
sage: G.aut()
Full group of automorphisms of Abelian group with gap, generator orders (2, 3)

automorphism_group()

Return the group of automorphisms of self.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2, 3])
sage: G.aut()
Full group of automorphisms of Abelian group with gap, generator orders (2, 3)

elementary_divisors()

Return the elementary divisors of this group.

See sage.groups.abelian_gps.abelian_group_gap.elementary_divisors().

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: G.elementary_divisors()
(2, 60)

exponent()

Return the exponent of this abelian group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,7])
sage: G
Abelian group with gap, generator orders (2, 3, 7)
sage: G = AbelianGroupGap([2,4,6])
sage: G
Abelian group with gap, generator orders (2, 4, 6)
sage: G.exponent()
12

gens_orders()

Return the orders of the generators.

Use elementary_divisors() if you are looking for an invariant of the group.

OUTPUT:

23.2. Finitely generated abelian groups with GAP. 197

Groups, Release 9.8

• a tuple of integers

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: Z2xZ3 = AbelianGroupGap([2,3])
sage: Z2xZ3.gens_orders()
(2, 3)
sage: Z2xZ3.elementary_divisors()
(6,)
sage: Z6 = AbelianGroupGap([6])
sage: Z6.gens_orders()
(6,)
sage: Z6.elementary_divisors()
(6,)
sage: Z2xZ3.is_isomorphic(Z6)
True
sage: Z2xZ3 is Z6
False

identity()

Return the identity element of this group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4,10])
sage: G.identity()
1

is_subgroup_of(G)

Return if self is a subgroup of G considered in the same ambient group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S1 = G.subgroup(gen)
sage: S1.is_subgroup_of(G)
True
sage: S2 = G.subgroup(G.gens()[1:])
sage: S2.is_subgroup_of(S1)
False

is_trivial()

Return True if this group is the trivial group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([])
sage: G
Abelian group with gap, generator orders ()
sage: G.is_trivial()

(continues on next page)

198 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

True
sage: AbelianGroupGap([1]).is_trivial()
True
sage: AbelianGroupGap([1,1,1]).is_trivial()
True
sage: AbelianGroupGap([2]).is_trivial()
False
sage: AbelianGroupGap([2,1]).is_trivial()
False

quotient(N)

Return the quotient of this group by the normal subgroup 𝑁 .

INPUT:

• N – a subgroup

• check – bool (default: True) check if 𝑁 is normal

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,3,4,5])
sage: S = A.subgroup(A.gens()[:1])
sage: A.quotient(S)
Quotient abelian group with generator orders (1, 3, 4, 5)

subgroup(gens)
Return the subgroup of this group generated by gens.

INPUT:

• gens – a list of elements coercible into this group

OUTPUT:

• a subgroup

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S = G.subgroup(gen)
sage: S
Subgroup of Abelian group with gap, generator orders (2, 3, 4, 5)
generated by (f1, f2)
sage: g = G.an_element()
sage: s = S.an_element()
sage: g * s
f2^2*f3*f5
sage: G = AbelianGroupGap([3,4,0,2]) # optional - gap_packages
sage: gen = G.gens()[:2] # optional - gap_packages
sage: S = G.subgroup(gen) # optional - gap_packages
sage: g = G.an_element() # optional - gap_packages
sage: s = S.an_element() # optional - gap_packages

(continues on next page)

23.2. Finitely generated abelian groups with GAP. 199

Groups, Release 9.8

(continued from previous page)

sage: g * s # optional - gap_packages
g1^2*g2^2*g3*g4

23.3 Automorphisms of abelian groups

This implements groups of automorphisms of abelian groups.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,6])
sage: autG = G.aut()

Automorphisms act on the elements of the domain:

sage: g = G.an_element()
sage: f = autG.an_element()
sage: f
Pcgs([f1, f2, f3]) -> [f1, f1*f2*f3^2, f3^2]
sage: (g, f(g))
(f1*f2, f2*f3^2)

Or anything coercible into its domain:

sage: A = AbelianGroup([2,6])
sage: a = A.an_element()
sage: (a, f(a))
(f0*f1, f2*f3^2)
sage: A = AdditiveAbelianGroup([2,6])
sage: a = A.an_element()
sage: (a, f(a))
((1, 0), f1)
sage: f((1,1))
f2*f3^2

We can compute conjugacy classes:

sage: autG.conjugacy_classes_representatives()
(1,
Pcgs([f1, f2, f3]) -> [f2*f3, f1*f2, f3],
Pcgs([f1, f2, f3]) -> [f1*f2*f3, f2*f3^2, f3^2],
[f3^2, f1*f2*f3, f1] -> [f3^2, f1, f1*f2*f3],
Pcgs([f1, f2, f3]) -> [f2*f3, f1*f2*f3^2, f3^2],
[f1*f2*f3, f1, f3^2] -> [f1*f2*f3, f1, f3])

the group order:

sage: autG.order()
12

or create subgroups and do the same for them:

200 Chapter 23. Abelian Groups

Groups, Release 9.8

sage: S = autG.subgroup(autG.gens()[:1])
sage: S
Subgroup of automorphisms of Abelian group with gap, generator orders (2, 6)
generated by 1 automorphisms

Only automorphism groups of finite abelian groups are supported:

sage: G = AbelianGroupGap([0,2]) # optional gap_packages
sage: autG = G.aut() # optional gap_packages
Traceback (most recent call last):
...
ValueError: only finite abelian groups are supported

AUTHORS:

• Simon Brandhorst (2018-02-17): initial version

class sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphism(parent, x, check=True)
Bases: ElementLibGAP

Automorphisms of abelian groups with gap.

INPUT:

• x – a libgap element

• parent – the parent AbelianGroupAutomorphismGroup_gap

• check – bool (default:True) checks if x is an element of the group

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: f = G.aut().an_element()

matrix()

Return the matrix defining self.

The 𝑖-th row is the exponent vector of the image of the 𝑖-th generator.

OUTPUT:

• a square matrix over the integers

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4])
sage: f = G.aut().an_element()
sage: f
Pcgs([f1, f2, f3, f4]) -> [f1*f4, f2^2, f1*f3, f4]
sage: f.matrix()
[1 0 2]
[0 2 0]
[1 0 1]

Compare with the exponents of the images:

23.3. Automorphisms of abelian groups 201

Groups, Release 9.8

sage: f(G.gens()[0]).exponents()
(1, 0, 2)
sage: f(G.gens()[1]).exponents()
(0, 2, 0)
sage: f(G.gens()[2]).exponents()
(1, 0, 1)

class sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup(AbelianGroupGap)
Bases: AbelianGroupAutomorphismGroup_gap

The full automorphism group of a finite abelian group.

INPUT:

• AbelianGroupGap – an instance of AbelianGroup_gap

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: from sage.groups.abelian_gps.abelian_aut import AbelianGroupAutomorphismGroup
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()

Equivalently:

sage: aut1 = AbelianGroupAutomorphismGroup(G)
sage: aut is aut1
True

Element

alias of AbelianGroupAutomorphism

class sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap(domain,
gap_group,
category,
ambient=None)

Bases: CachedRepresentation, GroupMixinLibGAP, Group, ParentLibGAP

Base class for groups of automorphisms of abelian groups.

Do not construct this directly.

INPUT:

• domain – AbelianGroup_gap

• libgap_parent – the libgap element that is the parent in GAP

• category – a category

• ambient – an instance of a derived class of ParentLibGAP or None (default); the ambient group if
libgap_parent has been defined as a subgroup

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: from sage.groups.abelian_gps.abelian_aut import AbelianGroupAutomorphismGroup_
→˓gap

(continues on next page)

202 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.CachedRepresentation

Groups, Release 9.8

(continued from previous page)

sage: domain = AbelianGroupGap([2,3,4,5])
sage: aut = domain.gap().AutomorphismGroupAbelianGroup()
sage: AbelianGroupAutomorphismGroup_gap(domain, aut, Groups().Finite())
<group with 6 generators>

Element

alias of AbelianGroupAutomorphism

covering_matrix_ring()

Return the covering matrix ring of this group.

This is the ring of 𝑛× 𝑛 matrices over Z where 𝑛 is the number of (independent) generators.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: aut.covering_matrix_ring()
Full MatrixSpace of 4 by 4 dense matrices over Integer Ring

domain()

Return the domain of this group of automorphisms.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: aut.domain()
Abelian group with gap, generator orders (2, 3, 4, 5)

is_subgroup_of(G)

Return if self is a subgroup of G considered in the same ambient group.

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: gen = aut.gens()
sage: S1 = aut.subgroup(gen[:2])
sage: S1.is_subgroup_of(aut)
True
sage: S2 = aut.subgroup(aut.gens()[1:])
sage: S2.is_subgroup_of(S1)
False

class sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_subgroup(ambient,
genera-
tors)

Bases: AbelianGroupAutomorphismGroup_gap

Groups of automorphisms of abelian groups.

They are subgroups of the full automorphism group.

23.3. Automorphisms of abelian groups 203

Groups, Release 9.8

Note: Do not construct this class directly; instead use sage.groups.abelian_gps.abelian_group_gap.
AbelianGroup_gap.subgroup().

INPUT:

• ambient – the ambient group

• generators – a tuple of gap elements of the ambient group

EXAMPLES:

sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: from sage.groups.abelian_gps.abelian_aut import AbelianGroupAutomorphismGroup_
→˓subgroup
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: gen = aut.gens()
sage: AbelianGroupAutomorphismGroup_subgroup(aut, gen)
Subgroup of automorphisms of Abelian group with gap, generator orders (2, 3, 4, 5)
generated by 6 automorphisms

Element

alias of AbelianGroupAutomorphism

23.4 Multiplicative Abelian Groups With Values

Often, one ends up with a set that forms an Abelian group. It would be nice if one could return an Abelian group class
to encapsulate the data. However, AbelianGroup() is an abstract Abelian group defined by generators and relations.
This module implements AbelianGroupWithValues that allows the group elements to be decorated with values.

An example where this module is used is the unit group of a number field, see sage.rings.number_field.
unit_group. The units form a finitely generated Abelian group. We can think of the elements either as abstract
Abelian group elements or as particular numbers in the number field. The AbelianGroupWithValues() keeps track
of these associated values.

Warning: Really, this requires a group homomorphism from the abstract Abelian group to the set of values. This
is only checked if you pass the check=True option to AbelianGroupWithValues().

EXAMPLES:

Here is Z6 with value −1 assigned to the generator:

sage: Z6 = AbelianGroupWithValues([-1], [6], names='g')
sage: g = Z6.gen(0)
sage: g.value()
-1
sage: g*g
g^2
sage: (g*g).value()
1
sage: for i in range(7):

(continues on next page)

204 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/number_fields/sage/rings/number_field/unit_group.html#module-sage.rings.number_field.unit_group
../../../../../../../html/en/reference/number_fields/sage/rings/number_field/unit_group.html#module-sage.rings.number_field.unit_group

Groups, Release 9.8

(continued from previous page)

....: print((i, g^i, (g^i).value()))
(0, 1, 1)
(1, g, -1)
(2, g^2, 1)
(3, g^3, -1)
(4, g^4, 1)
(5, g^5, -1)
(6, 1, 1)

The elements come with a coercion embedding into the values_group(), so you can use the group elements instead
of the values:

sage: CF3.<zeta> = CyclotomicField(3)
sage: Z3.<g> = AbelianGroupWithValues([zeta], [3])
sage: Z3.values_group()
Cyclotomic Field of order 3 and degree 2
sage: g.value()
zeta
sage: CF3(g)
zeta
sage: g + zeta
2*zeta
sage: zeta + g
2*zeta

sage.groups.abelian_gps.values.AbelianGroupWithValues(values, n, gens_orders=None, names='f',
check=False, values_group=None)

Construct an Abelian group with values associated to the generators.

INPUT:

• values – a list/tuple/iterable of values that you want to associate to the generators.

• n – integer (optional). If not specified, will be derived
from gens_orders.

• gens_orders – a list of non-negative integers in the form
[𝑎0, 𝑎1, . . . , 𝑎𝑛−1], typically written in increasing order. This list is padded with zeros if it has length
less than n. The orders of the commuting generators, with 0 denoting an infinite cyclic factor.

• names – (optional) names of generators

• values_group – a parent or None (default). The common parent of the values. This might be a group,
but can also just contain the values. For example, if the values are units in a ring then the values_group
would be the whole ring. If None it will be derived from the values.

EXAMPLES:

sage: G = AbelianGroupWithValues([-1], [6])
sage: g = G.gen(0)
sage: for i in range(7):
....: print((i, g^i, (g^i).value()))
(0, 1, 1)
(1, f, -1)
(2, f^2, 1)

(continues on next page)

23.4. Multiplicative Abelian Groups With Values 205

Groups, Release 9.8

(continued from previous page)

(3, f^3, -1)
(4, f^4, 1)
(5, f^5, -1)
(6, 1, 1)
sage: G.values_group()
Integer Ring

The group elements come with a coercion embedding into the values_group(), so you can use them like their
value()

sage: G.values_embedding()
Generic morphism:
From: Multiplicative Abelian group isomorphic to C6
To: Integer Ring

sage: g.value()
-1
sage: 0 + g
-1
sage: 1 + 2*g
-1

class sage.groups.abelian_gps.values.AbelianGroupWithValuesElement(parent, exponents,
value=None)

Bases: AbelianGroupElement

An element of an Abelian group with values assigned to generators.

INPUT:

• exponents – tuple of integers. The exponent vector defining the group element.

• parent – the parent.

• value – the value assigned to the group element or None (default). In the latter case, the value is computed
as needed.

EXAMPLES:

sage: F = AbelianGroupWithValues([1,-1], [2,4])
sage: a,b = F.gens()
sage: TestSuite(a*b).run()

value()

Return the value of the group element.

OUTPUT:

The value according to the values for generators, see gens_values().

EXAMPLES:

sage: G = AbelianGroupWithValues([5], 1)
sage: G.0.value()
5

class sage.groups.abelian_gps.values.AbelianGroupWithValuesEmbedding(domain, codomain)
Bases: Morphism

206 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Groups, Release 9.8

The morphism embedding the Abelian group with values in its values group.

INPUT:

• domain – a AbelianGroupWithValues_class

• codomain – the values group (need not be in the category of groups, e.g. symbolic ring).

EXAMPLES:

sage: Z4.<g> = AbelianGroupWithValues([I], [4])
sage: embedding = Z4.values_embedding(); embedding
Generic morphism:
From: Multiplicative Abelian group isomorphic to C4
To: Number Field in I with defining polynomial x^2 + 1 with I = 1*I

sage: embedding(1)
1
sage: embedding(g)
I
sage: embedding(g^2)
-1

class sage.groups.abelian_gps.values.AbelianGroupWithValues_class(generator_orders, names,
values, values_group)

Bases: AbelianGroup_class

The class of an Abelian group with values associated to the generator.

INPUT:

• generator_orders – tuple of integers. The orders of the generators.

• names – string or list of strings. The names for the generators.

• values – Tuple the same length as the number of generators. The values assigned to the generators.

• values_group – the common parent of the values.

EXAMPLES:

sage: G.<a,b> = AbelianGroupWithValues([2,-1], [0,4])
sage: TestSuite(G).run()

Element

alias of AbelianGroupWithValuesElement

gen(i=0)
The 𝑖-th generator of the abelian group.

INPUT:

• i – integer (default: 0). The index of the generator.

OUTPUT:

A group element.

EXAMPLES:

sage: F = AbelianGroupWithValues([1,2,3,4,5], 5,[],names='a')
sage: F.0

(continues on next page)

23.4. Multiplicative Abelian Groups With Values 207

Groups, Release 9.8

(continued from previous page)

a0
sage: F.0.value()
1
sage: F.2
a2
sage: F.2.value()
3

sage: G = AbelianGroupWithValues([-1,0,1], [2,1,3])
sage: G.gens()
(f0, 1, f2)

gens_values()

Return the values associated to the generators.

OUTPUT:

A tuple.

EXAMPLES:

sage: G = AbelianGroupWithValues([-1,0,1], [2,1,3])
sage: G.gens()
(f0, 1, f2)
sage: G.gens_values()
(-1, 0, 1)

values_embedding()

Return the embedding of self in values_group().

OUTPUT:

A morphism.

EXAMPLES:

sage: Z4 = AbelianGroupWithValues([I], [4])
sage: Z4.values_embedding()
Generic morphism:
From: Multiplicative Abelian group isomorphic to C4
To: Number Field in I with defining polynomial x^2 + 1 with I = 1*I

values_group()

The common parent of the values.

The values need to form a multiplicative group, but can be embedded in a larger structure. For example, if
the values are units in a ring then the values_group() would be the whole ring.

OUTPUT:

The common parent of the values, containing the group generated by all values.

EXAMPLES:

sage: G = AbelianGroupWithValues([-1,0,1], [2,1,3])
sage: G.values_group()
Integer Ring

(continues on next page)

208 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

sage: Z4 = AbelianGroupWithValues([I], [4])
sage: Z4.values_group()
Number Field in I with defining polynomial x^2 + 1 with I = 1*I

23.5 Dual groups of Finite Multiplicative Abelian Groups

The basic idea is very simple. Let G be an abelian group and𝐺* its dual (i.e., the group of homomorphisms from G to
C×). Let 𝑔𝑗 , 𝑗 = 1, .., 𝑛, denote generators of 𝐺 - say 𝑔𝑗 is of order 𝑚𝑗 > 1. There are generators 𝑋𝑗 , 𝑗 = 1, .., 𝑛, of
𝐺* for which 𝑋𝑗(𝑔𝑗) = exp(2𝜋𝑖/𝑚𝑗) and 𝑋𝑖(𝑔𝑗) = 1 if 𝑖 ̸= 𝑗. These are used to construct 𝐺*.

Sage supports multiplicative abelian groups on any prescribed finite number 𝑛 > 0 of generators. Use
AbelianGroup() function to create an abelian group, the dual_group() method to create its dual, and then the
gen() and gens() methods to obtain the corresponding generators. You can print the generators as arbitrary strings
using the optional names argument to the dual_group() method.

EXAMPLES:

sage: F = AbelianGroup(5, [2,5,7,8,9], names='abcde')
sage: (a, b, c, d, e) = F.gens()

sage: Fd = F.dual_group(names='ABCDE')
sage: Fd.base_ring()
Cyclotomic Field of order 2520 and degree 576
sage: A,B,C,D,E = Fd.gens()
sage: A(a)
-1
sage: A(b), A(c), A(d), A(e)
(1, 1, 1, 1)

sage: Fd = F.dual_group(names='ABCDE', base_ring=CC)
sage: A,B,C,D,E = Fd.gens()
sage: A(a) # abs tol 1e-8
-1.00000000000000 + 0.00000000000000*I
sage: A(b); A(c); A(d); A(e)
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

AUTHORS:

• David Joyner (2006-08) (based on abelian_groups)

• David Joyner (2006-10) modifications suggested by William Stein

• Volker Braun (2012-11) port to new Parent base. Use tuples for immutables. Default to cyclotomic base ring.

class sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class(G, names, base_ring)
Bases: UniqueRepresentation, AbelianGroup

Dual of abelian group.

EXAMPLES:

23.5. Dual groups of Finite Multiplicative Abelian Groups 209

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

sage: F = AbelianGroup(5,[3,5,7,8,9], names="abcde")
sage: F.dual_group()
Dual of Abelian Group isomorphic to Z/3Z x Z/5Z x Z/7Z x Z/8Z x Z/9Z
over Cyclotomic Field of order 2520 and degree 576
sage: F = AbelianGroup(4,[15,7,8,9], names="abcd")
sage: F.dual_group(base_ring=CC)
Dual of Abelian Group isomorphic to Z/15Z x Z/7Z x Z/8Z x Z/9Z
over Complex Field with 53 bits of precision

Element

alias of DualAbelianGroupElement

base_ring()

Return the scalars over which the group is dualized.

EXAMPLES:

sage: F = AbelianGroup(3,[5,64,729], names=list("abc"))
sage: Fd = F.dual_group(base_ring=CC)
sage: Fd.base_ring()
Complex Field with 53 bits of precision

gen(i=0)
The 𝑖-th generator of the abelian group.

EXAMPLES:

sage: F = AbelianGroup(3,[1,2,3],names='a')
sage: Fd = F.dual_group(names="A")
sage: Fd.0
1
sage: Fd.1
A1
sage: Fd.gens_orders()
(1, 2, 3)

gens()

Return the generators for the group.

OUTPUT:

A tuple of group elements generating the group.

EXAMPLES:

sage: F = AbelianGroup([7,11]).dual_group()
sage: F.gens()
(X0, X1)

gens_orders()

The orders of the generators of the dual group.

OUTPUT:

A tuple of integers.

EXAMPLES:

210 Chapter 23. Abelian Groups

Groups, Release 9.8

sage: F = AbelianGroup([5]*1000)
sage: Fd = F.dual_group()
sage: invs = Fd.gens_orders(); len(invs)
1000

group()

Return the group that self is the dual of.

EXAMPLES:

sage: F = AbelianGroup(3,[5,64,729], names=list("abc"))
sage: Fd = F.dual_group(base_ring=CC)
sage: Fd.group() is F
True

invariants()

The invariants of the dual group.

You should use gens_orders() instead.

EXAMPLES:

sage: F = AbelianGroup([5]*1000)
sage: Fd = F.dual_group()
sage: invs = Fd.gens_orders(); len(invs)
1000

is_commutative()

Return True since this group is commutative.

EXAMPLES:

sage: G = AbelianGroup([2,3,9])
sage: Gd = G.dual_group()
sage: Gd.is_commutative()
True
sage: Gd.is_abelian()
True

list()

Return tuple of all elements of this group.

EXAMPLES:

sage: G = AbelianGroup([2,3], names="ab")
sage: Gd = G.dual_group(names="AB")
sage: Gd.list()
(1, B, B^2, A, A*B, A*B^2)

ngens()

The number of generators of the dual group.

EXAMPLES:

23.5. Dual groups of Finite Multiplicative Abelian Groups 211

Groups, Release 9.8

sage: F = AbelianGroup([7]*100)
sage: Fd = F.dual_group()
sage: Fd.ngens()
100

order()

Return the order of this group.

EXAMPLES:

sage: G = AbelianGroup([2,3,9])
sage: Gd = G.dual_group()
sage: Gd.order()
54

random_element()

Return a random element of this dual group.

EXAMPLES:

sage: G = AbelianGroup([2,3,9])
sage: Gd = G.dual_group(base_ring=CC)
sage: Gd.random_element().parent() is Gd
True

sage: N = 43^2-1
sage: G = AbelianGroup([N],names="a")
sage: Gd = G.dual_group(names="A", base_ring=CC)
sage: a, = G.gens()
sage: A, = Gd.gens()
sage: x = a^(N/4); y = a^(N/3); z = a^(N/14)
sage: found = [False]*4
sage: while not all(found):
....: X = A*Gd.random_element()
....: found[len([b for b in [x,y,z] if abs(X(b)-1)>10^(-8)])] = True

sage.groups.abelian_gps.dual_abelian_group.is_DualAbelianGroup(x)
Return True if 𝑥 is the dual group of an abelian group.

EXAMPLES:

sage: from sage.groups.abelian_gps.dual_abelian_group import is_DualAbelianGroup
sage: F = AbelianGroup(5,[3,5,7,8,9], names=list("abcde"))
sage: Fd = F.dual_group()
sage: is_DualAbelianGroup(Fd)
True
sage: F = AbelianGroup(3,[1,2,3], names='a')
sage: Fd = F.dual_group()
sage: Fd.gens()
(1, X1, X2)
sage: F.gens()
(1, a1, a2)

212 Chapter 23. Abelian Groups

Groups, Release 9.8

23.6 Base class for abelian group elements

This is the base class for both abelian_group_element and dual_abelian_group_element.

As always, elements are immutable once constructed.

class sage.groups.abelian_gps.element_base.AbelianGroupElementBase(parent, exponents)
Bases: MultiplicativeGroupElement

Base class for abelian group elements

The group element is defined by a tuple whose i-th entry is an integer in the range from 0 (inclusively) to G.
gen(i).order() (exclusively) if the 𝑖-th generator is of finite order, and an arbitrary integer if the 𝑖-th generator
is of infinite order.

INPUT:

• exponents – 1 or a list/tuple/iterable of integers. The exponent vector (with respect to the parent genera-
tors) defining the group element.

• parent – Abelian group. The parent of the group element.

EXAMPLES:

sage: F = AbelianGroup(3,[7,8,9])
sage: Fd = F.dual_group(names="ABC")
sage: A,B,C = Fd.gens()
sage: A*B^-1 in Fd
True

exponents()

The exponents of the generators defining the group element.

OUTPUT:

A tuple of integers for an abelian group element. The integer can be arbitrary if the corresponding generator
has infinite order. If the generator is of finite order, the integer is in the range from 0 (inclusive) to the order
(exclusive).

EXAMPLES:

sage: F.<a,b,c,f> = AbelianGroup([7,8,9,0])
sage: (a^3*b^2*c).exponents()
(3, 2, 1, 0)
sage: F([3, 2, 1, 0])
a^3*b^2*c
sage: (c^42).exponents()
(0, 0, 6, 0)
sage: (f^42).exponents()
(0, 0, 0, 42)

is_trivial()

Test whether self is the trivial group element 1.

OUTPUT:

Boolean.

EXAMPLES:

23.6. Base class for abelian group elements 213

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

sage: G.<a,b> = AbelianGroup([0,5])
sage: (a^5).is_trivial()
False
sage: (b^5).is_trivial()
True

list()

Return a copy of the exponent vector.

Use exponents() instead.

OUTPUT:

The underlying coordinates used to represent this element. If this is a word in an abelian group on 𝑛
generators, then this is a list of nonnegative integers of length 𝑛.

EXAMPLES:

sage: F = AbelianGroup(5,[2, 3, 5, 7, 8], names="abcde")
sage: a,b,c,d,e = F.gens()
sage: Ad = F.dual_group(names="ABCDE")
sage: A,B,C,D,E = Ad.gens()
sage: (A*B*C^2*D^20*E^65).exponents()
(1, 1, 2, 6, 1)
sage: X = A*B*C^2*D^2*E^-6
sage: X.exponents()
(1, 1, 2, 2, 2)

multiplicative_order()

Return the order of this element.

OUTPUT:

An integer or infinity.

EXAMPLES:

sage: F = AbelianGroup(3,[7,8,9])
sage: Fd = F.dual_group()
sage: A,B,C = Fd.gens()
sage: (B*C).order()
72

sage: F = AbelianGroup(3,[7,8,9]); F
Multiplicative Abelian group isomorphic to C7 x C8 x C9
sage: F.gens()[2].order()
9
sage: a,b,c = F.gens()
sage: (b*c).order()
72
sage: G = AbelianGroup(3,[7,8,9])
sage: type((G.0 * G.1).order())==Integer
True

order()

Return the order of this element.

214 Chapter 23. Abelian Groups

Groups, Release 9.8

OUTPUT:

An integer or infinity.

EXAMPLES:

sage: F = AbelianGroup(3,[7,8,9])
sage: Fd = F.dual_group()
sage: A,B,C = Fd.gens()
sage: (B*C).order()
72

sage: F = AbelianGroup(3,[7,8,9]); F
Multiplicative Abelian group isomorphic to C7 x C8 x C9
sage: F.gens()[2].order()
9
sage: a,b,c = F.gens()
sage: (b*c).order()
72
sage: G = AbelianGroup(3,[7,8,9])
sage: type((G.0 * G.1).order())==Integer
True

23.7 Abelian group elements

AUTHORS:

• David Joyner (2006-02); based on free_abelian_monoid_element.py, written by David Kohel.

• David Joyner (2006-05); bug fix in order

• David Joyner (2006-08); bug fix+new method in pow for negatives+fixed corresponding examples.

• David Joyner (2009-02): Fixed bug in order.

• Volker Braun (2012-11) port to new Parent base. Use tuples for immutables.

EXAMPLES:

Recall an example from abelian groups:

sage: F = AbelianGroup(5,[4,5,5,7,8],names = list("abcde"))
sage: (a,b,c,d,e) = F.gens()
sage: x = a*b^2*e*d^20*e^12
sage: x
a*b^2*d^6*e^5
sage: x = a^10*b^12*c^13*d^20*e^12
sage: x
a^2*b^2*c^3*d^6*e^4
sage: y = a^13*b^19*c^23*d^27*e^72
sage: y
a*b^4*c^3*d^6
sage: x*y
a^3*b*c*d^5*e^4
sage: x.list()
[2, 2, 3, 6, 4]

23.7. Abelian group elements 215

Groups, Release 9.8

class sage.groups.abelian_gps.abelian_group_element.AbelianGroupElement(parent, exponents)
Bases: AbelianGroupElementBase

Elements of an AbelianGroup

INPUT:

• x – list/tuple/iterable of integers (the element vector)

• parent – the parent AbelianGroup

EXAMPLES:

sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde')
sage: a, b, c, d, e = F.gens()
sage: a^2 * b^3 * a^2 * b^-4
a*b^3
sage: b^-11
b
sage: a^-11
a
sage: a*b in F
True

as_permutation()

Return the element of the permutation group G (isomorphic to the abelian group A) associated to a in A.

EXAMPLES:

sage: G = AbelianGroup(3,[2,3,4],names="abc"); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = G.gens()
sage: Gp = G.permutation_group(); Gp
Permutation Group with generators [(6,7,8,9), (3,4,5), (1,2)]
sage: a.as_permutation()
(1,2)
sage: ap = a.as_permutation(); ap
(1,2)
sage: ap in Gp
True

word_problem(words)
TODO - this needs a rewrite - see stuff in the matrix_grp directory.

G and H are abelian groups, g in G, H is a subgroup of G generated by a list (words) of elements of G. If
self is in H, return the expression for self as a word in the elements of (words).

This function does not solve the word problem in Sage. Rather it pushes it over to GAP, which has optimized
(non-deterministic) algorithms for the word problem.

Warning: Don’t use E (or other GAP-reserved letters) as a generator name.

EXAMPLES:

sage: G = AbelianGroup(2,[2,3], names="xy")
sage: x,y = G.gens()

(continues on next page)

216 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

sage: x.word_problem([x,y])
[[x, 1]]
sage: y.word_problem([x,y])
[[y, 1]]
sage: v = (y*x).word_problem([x,y]); v #random
[[x, 1], [y, 1]]
sage: prod([x^i for x,i in v]) == y*x
True

sage.groups.abelian_gps.abelian_group_element.is_AbelianGroupElement(x)
Return true if x is an abelian group element, i.e., an element of type AbelianGroupElement.

EXAMPLES: Though the integer 3 is in the integers, and the integers have an abelian group structure, 3 is not
an AbelianGroupElement:

sage: from sage.groups.abelian_gps.abelian_group_element import is_
→˓AbelianGroupElement
sage: is_AbelianGroupElement(3)
False
sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde')
sage: is_AbelianGroupElement(F.0)
True

23.8 Elements (characters) of the dual group of a finite Abelian group

To obtain the dual group of a finite Abelian group, use the dual_group() method:

sage: F = AbelianGroup([2,3,5,7,8], names="abcde")
sage: F
Multiplicative Abelian group isomorphic to C2 x C3 x C5 x C7 x C8

sage: Fd = F.dual_group(names="ABCDE")
sage: Fd
Dual of Abelian Group isomorphic to Z/2Z x Z/3Z x Z/5Z x Z/7Z x Z/8Z
over Cyclotomic Field of order 840 and degree 192

The elements of the dual group can be evaluated on elements of the original group:

sage: a,b,c,d,e = F.gens()
sage: A,B,C,D,E = Fd.gens()
sage: A*B^2*D^7
A*B^2
sage: A(a)
-1
sage: B(b)
zeta840^140 - 1
sage: CC(_) # abs tol 1e-8
-0.499999999999995 + 0.866025403784447*I
sage: A(a*b)
-1
sage: (A*B*C^2*D^20*E^65).exponents()

(continues on next page)

23.8. Elements (characters) of the dual group of a finite Abelian group 217

Groups, Release 9.8

(continued from previous page)

(1, 1, 2, 6, 1)
sage: B^(-1)
B^2

AUTHORS:

• David Joyner (2006-07); based on abelian_group_element.py.

• David Joyner (2006-10); modifications suggested by William Stein.

• Volker Braun (2012-11) port to new Parent base. Use tuples for immutables. Default to cyclotomic base ring.

class sage.groups.abelian_gps.dual_abelian_group_element.DualAbelianGroupElement(parent, ex-
ponents)

Bases: AbelianGroupElementBase

Base class for abelian group elements

word_problem(words)
This is a rather hackish method and is included for completeness.

The word problem for an instance of DualAbelianGroup as it can for an AbelianGroup. The reason why
is that word problem for an instance of AbelianGroup simply calls GAP (which has abelian groups imple-
mented) and invokes “EpimorphismFromFreeGroup” and “PreImagesRepresentative”. GAP does not have
duals of abelian groups implemented. So, by using the same name for the generators, the method below
converts the problem for the dual group to the corresponding problem on the group itself and uses GAP to
solve that.

EXAMPLES:

sage: G = AbelianGroup(5,[3, 5, 5, 7, 8],names="abcde")
sage: Gd = G.dual_group(names="abcde")
sage: a,b,c,d,e = Gd.gens()
sage: u = a^3*b*c*d^2*e^5
sage: v = a^2*b*c^2*d^3*e^3
sage: w = a^7*b^3*c^5*d^4*e^4
sage: x = a^3*b^2*c^2*d^3*e^5
sage: y = a^2*b^4*c^2*d^4*e^5
sage: e.word_problem([u,v,w,x,y])
[[b^2*c^2*d^3*e^5, 245]]

sage.groups.abelian_gps.dual_abelian_group_element.is_DualAbelianGroupElement(x)
Test whether x is a dual Abelian group element.

INPUT:

• x – anything

OUTPUT:

Boolean

EXAMPLES:

sage: from sage.groups.abelian_gps.dual_abelian_group import is_
→˓DualAbelianGroupElement
sage: F = AbelianGroup(5,[5,5,7,8,9],names = list("abcde")).dual_group()
sage: is_DualAbelianGroupElement(F)

(continues on next page)

218 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

False
sage: is_DualAbelianGroupElement(F.an_element())
True

23.9 Homomorphisms of abelian groups

Todo:

• there must be a homspace first

• there should be hom and Hom methods in abelian group

AUTHORS:

• David Joyner (2006-03-03): initial version

class sage.groups.abelian_gps.abelian_group_morphism.AbelianGroupMap(parent)
Bases: Morphism

A set-theoretic map between AbelianGroups.

class sage.groups.abelian_gps.abelian_group_morphism.AbelianGroupMorphism(G, H, genss, imgss)
Bases: Morphism

Some python code for wrapping GAP’s GroupHomomorphismByImages function for abelian groups. Returns
“fail” if gens does not generate self or if the map does not extend to a group homomorphism, self - other.

EXAMPLES:

sage: G = AbelianGroup(3,[2,3,4],names="abc"); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = G.gens()
sage: H = AbelianGroup(2,[2,3],names="xy"); H
Multiplicative Abelian group isomorphic to C2 x C3
sage: x,y = H.gens()

sage: from sage.groups.abelian_gps.abelian_group_morphism import␣
→˓AbelianGroupMorphism
sage: phi = AbelianGroupMorphism(H,G,[x,y],[a,b])

AUTHORS:

• David Joyner (2006-02)

image(S)
Return the image of the subgroup S by the morphism.

This only works for finite groups.

INPUT:

• S – a subgroup of the domain group G

EXAMPLES:

23.9. Homomorphisms of abelian groups 219

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism
../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Groups, Release 9.8

sage: G = AbelianGroup(2,[2,3],names="xy")
sage: x,y = G.gens()
sage: subG = G.subgroup([x])
sage: H = AbelianGroup(3,[2,3,4],names="abc")
sage: a,b,c = H.gens()
sage: phi = AbelianGroupMorphism(G,H,[x,y],[a,b])
sage: phi.image(subG)
Multiplicative Abelian subgroup isomorphic to C2 generated by {a}

kernel()

Only works for finite groups.

Todo: not done yet; returns a gap object but should return a Sage group.

EXAMPLES:

sage: H = AbelianGroup(3,[2,3,4],names="abc"); H
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = H.gens()
sage: G = AbelianGroup(2,[2,3],names="xy"); G
Multiplicative Abelian group isomorphic to C2 x C3
sage: x,y = G.gens()
sage: phi = AbelianGroupMorphism(G,H,[x,y],[a,b])
sage: phi.kernel()
Group([])

sage: H = AbelianGroup(3,[2,2,2],names="abc")
sage: a,b,c = H.gens()
sage: G = AbelianGroup(2,[2,2],names="x")
sage: x,y = G.gens()
sage: phi = AbelianGroupMorphism(G,H,[x,y],[a,a])
sage: phi.kernel()
Group([f1*f2])

sage.groups.abelian_gps.abelian_group_morphism.is_AbelianGroupMorphism(f)

23.10 Additive Abelian Groups

Additive abelian groups are just modules over Z. Hence the classes in this module derive from those in the module
sage.modules.fg_pid. The only major differences are in the way elements are printed.

sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup(invs, remem-
ber_generators=True)

Construct a finitely-generated additive abelian group.

INPUT:

• invs (list of integers): the invariants. These should all be greater than or equal to zero.

• remember_generators (boolean): whether or not to fix a set of generators (corresponding to the given
invariants, which need not be in Smith form).

220 Chapter 23. Abelian Groups

Groups, Release 9.8

OUTPUT:

The abelian group
⨁︀

𝑖 Z/𝑛𝑖Z, where 𝑛𝑖 are the invariants.

EXAMPLES:

sage: AdditiveAbelianGroup([0, 2, 4])
Additive abelian group isomorphic to Z + Z/2 + Z/4

An example of the remember_generators switch:

sage: G = AdditiveAbelianGroup([0, 2, 3]); G
Additive abelian group isomorphic to Z + Z/2 + Z/3
sage: G.gens()
((1, 0, 0), (0, 1, 0), (0, 0, 1))

sage: H = AdditiveAbelianGroup([0, 2, 3], remember_generators = False); H
Additive abelian group isomorphic to Z/6 + Z
sage: H.gens()
((0, 1, 1), (1, 0, 0))

There are several ways to create elements of an additive abelian group. Realize that there are two sets of genera-
tors: the “obvious” ones composed of zeros and ones, one for each invariant given to construct the group, the other
being a set of minimal generators. Which set is the default varies with the use of the remember_generators
switch.

First with “obvious” generators. Note that a raw list will use the minimal generators and a vector (a module
element) will use the generators that pair up naturally with the invariants. We create the same element repeatedly.

sage: H = AdditiveAbelianGroup([3,2,0], remember_generators=True)
sage: H.gens()
((1, 0, 0), (0, 1, 0), (0, 0, 1))
sage: [H.0, H.1, H.2]
[(1, 0, 0), (0, 1, 0), (0, 0, 1)]
sage: p = H.0+H.1+6*H.2; p
(1, 1, 6)

sage: H.smith_form_gens()
((2, 1, 0), (0, 0, 1))
sage: q = H.linear_combination_of_smith_form_gens([5,6]); q
(1, 1, 6)
sage: p == q
True

sage: r = H(vector([1,1,6])); r
(1, 1, 6)
sage: p == r
True

sage: s = H(p)
sage: p == s
True

Again, but now where the generators are the minimal set. Coercing a list or a vector works as before, but the
default generators are different.

23.10. Additive Abelian Groups 221

Groups, Release 9.8

sage: G = AdditiveAbelianGroup([3,2,0], remember_generators=False)
sage: G.gens()
((2, 1, 0), (0, 0, 1))
sage: [G.0, G.1]
[(2, 1, 0), (0, 0, 1)]
sage: p = 5*G.0+6*G.1; p
(1, 1, 6)

sage: H.smith_form_gens()
((2, 1, 0), (0, 0, 1))
sage: q = G.linear_combination_of_smith_form_gens([5,6]); q
(1, 1, 6)
sage: p == q
True

sage: r = G(vector([1,1,6])); r
(1, 1, 6)
sage: p == r
True

sage: s = H(p)
sage: p == s
True

class sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroupElement(parent,
x,
check=True)

Bases: FGP_Element

An element of an AdditiveAbelianGroup_class.

class sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class(cover,
rela-
tions)

Bases: FGP_Module_class, AbelianGroup

An additive abelian group, implemented using the Z-module machinery.

INPUT:

• cover – the covering group as Z-module.

• relations – the relations as submodule of cover.

Element

alias of AdditiveAbelianGroupElement

exponent()

Return the exponent of this group (the smallest positive integer𝑁 such that𝑁𝑥 = 0 for all 𝑥 in the group).
If there is no such integer, return 0.

EXAMPLES:

sage: AdditiveAbelianGroup([2,4]).exponent()
4
sage: AdditiveAbelianGroup([0, 2,4]).exponent()

(continues on next page)

222 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/modules/sage/modules/fg_pid/fgp_element.html#sage.modules.fg_pid.fgp_element.FGP_Element
../../../../../../../html/en/reference/modules/sage/modules/fg_pid/fgp_module.html#sage.modules.fg_pid.fgp_module.FGP_Module_class

Groups, Release 9.8

(continued from previous page)

0
sage: AdditiveAbelianGroup([]).exponent()
1

is_cyclic()

Returns True if the group is cyclic.

EXAMPLES:

With no common factors between the orders of the generators, the group will be cyclic.

sage: G = AdditiveAbelianGroup([6, 7, 55])
sage: G.is_cyclic()
True

Repeating primes in the orders will create a non-cyclic group.

sage: G = AdditiveAbelianGroup([6, 15, 21, 33])
sage: G.is_cyclic()
False

A trivial group is trivially cyclic.

sage: T = AdditiveAbelianGroup([1])
sage: T.is_cyclic()
True

is_multiplicative()

Return False since this is an additive group.

EXAMPLES:

sage: AdditiveAbelianGroup([0]).is_multiplicative()
False

order()

Return the order of this group (an integer or infinity)

EXAMPLES:

sage: AdditiveAbelianGroup([2,4]).order()
8
sage: AdditiveAbelianGroup([0, 2,4]).order()
+Infinity
sage: AdditiveAbelianGroup([]).order()
1

short_name()

Return a name for the isomorphism class of this group.

EXAMPLES:

sage: AdditiveAbelianGroup([0, 2,4]).short_name()
'Z + Z/2 + Z/4'

(continues on next page)

23.10. Additive Abelian Groups 223

Groups, Release 9.8

(continued from previous page)

sage: AdditiveAbelianGroup([0, 2, 3]).short_name()
'Z + Z/2 + Z/3'

class sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens(cover,
rels,
gens)

Bases: AdditiveAbelianGroup_class

A variant which fixes a set of generators, which need not be in Smith form (or indeed independent).

gens()

Return the specified generators for self (as a tuple). Compare self.smithform_gens().

EXAMPLES:

sage: G = AdditiveAbelianGroup([2,3])
sage: G.gens()
((1, 0), (0, 1))
sage: G.smith_form_gens()
((1, 2),)

identity()

Return the identity (zero) element of this group.

EXAMPLES:

sage: G = AdditiveAbelianGroup([2, 3])
sage: G.identity()
(0, 0)

permutation_group()

Return the permutation group attached to this group.

EXAMPLES:

sage: G = AdditiveAbelianGroup([2, 3])
sage: G.permutation_group()
Permutation Group with generators [(3,4,5), (1,2)]

sage.groups.additive_abelian.additive_abelian_group.cover_and_relations_from_invariants(invs)
A utility function to construct modules required to initialize the super class.

Given a list of integers, this routine constructs the obvious pair of free modules such that the quotient of the
two free modules over Z is naturally isomorphic to the corresponding product of cyclic modules (and hence
isomorphic to a direct sum of cyclic groups).

EXAMPLES:

sage: from sage.groups.additive_abelian.additive_abelian_group import cover_and_
→˓relations_from_invariants as cr
sage: cr([0,2,3])
(Ambient free module of rank 3 over the principal ideal domain Integer Ring, Free␣
→˓module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
[0 2 0]
[0 0 3])

224 Chapter 23. Abelian Groups

Groups, Release 9.8

23.11 Wrapper class for abelian groups

This class is intended as a template for anything in Sage that needs the functionality of abelian groups. One can create
an AdditiveAbelianGroupWrapper object from any given set of elements in some given parent, as long as an _add_
method has been defined.

EXAMPLES:

We create a toy example based on the Mordell-Weil group of an elliptic curve over Q:

sage: E = EllipticCurve('30a2')
sage: pts = [E(4,-7,1), E(7/4, -11/8, 1), E(3, -2, 1)]
sage: M = AdditiveAbelianGroupWrapper(pts[0].parent(), pts, [3, 2, 2])
sage: M
Additive abelian group isomorphic to Z/3 + Z/2 + Z/2 embedded in Abelian
group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - 19*x + 26
over Rational Field
sage: M.gens()
((4 : -7 : 1), (7/4 : -11/8 : 1), (3 : -2 : 1))
sage: 3*M.0
(0 : 1 : 0)
sage: 3000000000000001 * M.0
(4 : -7 : 1)
sage: M == loads(dumps(M)) # known bug, see https://trac.sagemath.org/sage_trac/ticket/
→˓11599#comment:7
True

Todo:

• Think about subgroups and quotients, which probably won’t work in the current implementation – some fiddly
adjustments will be needed in order to be able to pass extra arguments to the subquotient’s init method.

AUTHORS:

• David Loeffler (2010)

• Lorenz Panny (2017): AdditiveAbelianGroupWrapper.discrete_log()

class sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper(universe,
gens,
in-
vari-
ants)

Bases: AdditiveAbelianGroup_fixed_gens

This class is used to wrap a subgroup of an existing additive abelian group as a new additive abelian group.

EXAMPLES:

sage: G2 = AdditiveAbelianGroupWrapper(Zmod(42), [2], [21]); G2
Additive abelian group isomorphic to Z/21 embedded in Ring of integers modulo 42
sage: G6 = AdditiveAbelianGroupWrapper(Zmod(42), [6], [7]); G6
Additive abelian group isomorphic to Z/7 embedded in Ring of integers modulo 42
sage: G = AdditiveAbelianGroupWrapper(Zmod(42), [21,14,6], [2,3,7]); G
Additive abelian group isomorphic to Z/2 + Z/3 + Z/7 embedded in Ring of integers␣

(continues on next page)

23.11. Wrapper class for abelian groups 225

Groups, Release 9.8

(continued from previous page)

→˓modulo 42
sage: G.invariants()
(42,)

sage: AdditiveAbelianGroupWrapper(QQbar, [sqrt(2), sqrt(3)], [0, 0])
Additive abelian group isomorphic to Z + Z embedded in Algebraic Field

sage: EllipticCurve(GF(419**2), [1,0]).abelian_group() # indirect doctest
Additive abelian group isomorphic to Z/420 + Z/420 embedded in Abelian group of␣
→˓points on Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size␣
→˓419^2

Element

alias of AdditiveAbelianGroupWrapperElement

discrete_exp(v)
Given a list (or other iterable) of length equal to the number of generators of this group, compute the element
of the ambient group with those exponents in terms of the generators of self.

EXAMPLES:

sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), -1], [0, 0])
sage: v = G.discrete_exp([3, 5]); v
-0.7573593128807148?
sage: v.parent() is QQbar
True

This method is an inverse of discrete_log():

sage: orders = [2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11]
sage: G = AdditiveAbelianGroup(orders)
sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), orders)
sage: el = A.random_element()
sage: A.discrete_exp(A.discrete_log(el)) == el
True

discrete_log(x, gens=None)
Given an element of the ambient group, attempt to express it in terms of the generators of this group or the
given generators of a subgroup.

ALGORITHM:

This reduces to p-groups, then calls _discrete_log_pgroup() which implements a basic version of the
recursive algorithm from [Suth2008].

AUTHORS:

• Lorenz Panny (2017)

EXAMPLES:

sage: G = AdditiveAbelianGroup([2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11])
sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), [g.order() for g␣
→˓in G.gens()])

(continues on next page)

226 Chapter 23. Abelian Groups

Groups, Release 9.8

(continued from previous page)

sage: A.discrete_log(A.discrete_exp([1,5,23,127,539]))
(1, 5, 23, 127, 539)

sage: F.<t> = GF(1009**2, modulus=x**2+11); E = EllipticCurve(j=F(940))
sage: P, Q = E(900*t + 228, 974*t + 185), E(1007*t + 214, 865*t + 802)
sage: E.abelian_group().discrete_log(123 * P + 777 * Q, [P, Q])
(123, 777)

sage: V = Zmod(8)**2
sage: G = AdditiveAbelianGroupWrapper(V, [[2,2],[4,0]], [4, 2])
sage: G.discrete_log(V([6, 2]))
(1, 1)
sage: G.discrete_log(V([6, 4]))
Traceback (most recent call last):
...
TypeError: Not in group

sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(2)], [0])
sage: G.discrete_log(QQbar(2*sqrt(2)))
Traceback (most recent call last):
...
NotImplementedError: No black-box discrete log for infinite abelian groups

generator_orders()

The orders of the generators with which this group was initialised. (Note that these are not necessarily a
minimal set of generators.) Generators of infinite order are returned as 0. Compare self.invariants(),
which returns the orders of a minimal set of generators.

EXAMPLES:

sage: V = Zmod(6)**2
sage: G = AdditiveAbelianGroupWrapper(V, [2*V.0, 3*V.1], [3, 2])
sage: G.generator_orders()
(3, 2)
sage: G.invariants()
(6,)

torsion_subgroup(n=None)
Return the 𝑛-torsion subgroup of this additive abelian group when 𝑛 is given, and the torsion subgroup
otherwise.

The [𝑛-]torsion subgroup consists of all elements whose order is finite [and divides 𝑛].

EXAMPLES:

sage: ords = [2, 2*3, 2*3*5, 0, 2*3*5*7, 2*3*5*7*11]
sage: G = AdditiveAbelianGroup(ords)
sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), ords)
sage: T = A.torsion_subgroup(5)
sage: T
Additive abelian group isomorphic to Z/5 + Z/5 + Z/5 embedded in Additive␣
→˓abelian group isomorphic to Z/2 + Z/6 + Z/30 + Z + Z/210 + Z/2310

(continues on next page)

23.11. Wrapper class for abelian groups 227

Groups, Release 9.8

(continued from previous page)

sage: T.gens()
((0, 0, 6, 0, 0, 0), (0, 0, 0, 0, 42, 0), (0, 0, 0, 0, 0, 462))

sage: E = EllipticCurve(GF(487^2), [311,205])
sage: T = E.abelian_group().torsion_subgroup(42)
sage: T
Additive abelian group isomorphic to Z/42 + Z/6 embedded in Abelian group of␣
→˓points on Elliptic Curve defined by y^2 = x^3 + 311*x + 205 over Finite Field␣
→˓in z2 of size 487^2
sage: [P.order() for P in T.gens()]
[42, 6]

sage: E = EllipticCurve('574i1')
sage: pts = [E(103,172), E(61,18)]
sage: assert pts[0].order() == 7 and pts[1].order() == infinity
sage: M = AdditiveAbelianGroupWrapper(pts[0].parent(), pts, [7,0])
sage: M
Additive abelian group isomorphic to Z/7 + Z embedded in Abelian group of␣
→˓points on Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x +␣
→˓958713 over Rational Field
sage: M.torsion_subgroup()
Additive abelian group isomorphic to Z/7 embedded in Abelian group of points on␣
→˓Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over␣
→˓Rational Field
sage: M.torsion_subgroup(7)
Additive abelian group isomorphic to Z/7 embedded in Abelian group of points on␣
→˓Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over␣
→˓Rational Field
sage: M.torsion_subgroup(5)
Trivial group embedded in Abelian group of points on Elliptic Curve defined by␣
→˓y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over Rational Field

AUTHORS:

• Lorenz Panny (2022)

universe()

The ambient group in which this abelian group lives.

EXAMPLES:

sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), sqrt(QQbar(3))],␣
→˓[0, 0])
sage: G.universe()
Algebraic Field

class sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapperElement(parent,
vec-
tor,
el-
e-
ment=None,
check=False)

Bases: AdditiveAbelianGroupElement

228 Chapter 23. Abelian Groups

Groups, Release 9.8

An element of an AdditiveAbelianGroupWrapper.

element()

Return the underlying object that this element wraps.

EXAMPLES:

sage: T = EllipticCurve('65a').torsion_subgroup().gen(0)
sage: T; type(T)
(0 : 0 : 1)
<class 'sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup_
→˓with_category.element_class'>
sage: T.element(); type(T.element())
(0 : 0 : 1)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field'>

class sage.groups.additive_abelian.additive_abelian_wrapper.UnwrappingMorphism(domain)
Bases: Morphism

The embedding into the ambient group. Used by the coercion framework.

23.12 Groups of elements representing (complex) arguments.

This includes

• RootsOfUnityGroup (containing all roots of unity)

• UnitCircleGroup (representing elements on the unit circle by 𝑒2𝜋·exponent)

• ArgumentByElementGroup (whose elements are defined via formal arguments by 𝑒𝐼·arg(element).

Use the factory ArgumentGroup for creating such a group conveniently.

Note: One main purpose of such groups is in an asymptotic ring's growth group when an element like 𝑧𝑛 (for
some constant 𝑧) is split into |𝑧|𝑛 · 𝑒𝐼·arg(𝑧)𝑛. (Note that the first factor determines the growth of that product, the
second does not influence the growth.)

AUTHORS:

• Daniel Krenn (2018)

23.12.1 Classes and Methods

class sage.groups.misc_gps.argument_groups.AbstractArgument(parent, element, normalize=True)
Bases: MultiplicativeGroupElement

An element of AbstractArgumentGroup. This abstract class encapsulates an element of the parent’s base, i.e.
it can be seen as a wrapper class.

INPUT:

• parent – a SageMath parent

• element – an element of parent’s base

• normalize – a boolean (default: True)

23.12. Groups of elements representing (complex) arguments. 229

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism
../../../../../../../html/en/reference/asymptotic/sage/rings/asymptotic/asymptotic_ring.html#module-sage.rings.asymptotic.asymptotic_ring
../../../../../../../html/en/reference/asymptotic/sage/rings/asymptotic/growth_group.html#module-sage.rings.asymptotic.growth_group
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

class sage.groups.misc_gps.argument_groups.AbstractArgumentGroup(base, category)
Bases: UniqueRepresentation, Parent

A group whose elements represent (complex) arguments.

INPUT:

• base – a SageMath parent

• category – a category

Element

alias of AbstractArgument

class sage.groups.misc_gps.argument_groups.ArgumentByElement(parent, element, normalize=True)
Bases: AbstractArgument

An element of ArgumentByElementGroup.

INPUT:

• parent – a SageMath parent

• element – a nonzero element of the parent’s base

• normalize – a boolean (default: True)

class sage.groups.misc_gps.argument_groups.ArgumentByElementGroup(base, category)
Bases: AbstractArgumentGroup

A group of (complex) arguments. The arguments are represented by a the formal argument of an element, i.e.,
by arg(element).

INPUT:

• base – a SageMath parent representing a subset of the complex plane

• category – a category

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import ArgumentByElementGroup
sage: C = ArgumentByElementGroup(CC); C
Unit Circle Group with Argument of Elements in
Complex Field with 53 bits of precision
sage: C(1 + 2*I)
e^(I*arg(1.00000000000000 + 2.00000000000000*I))

Element

alias of ArgumentByElement

sage.groups.misc_gps.argument_groups.ArgumentGroup =
<sage.groups.misc_gps.argument_groups.ArgumentGroupFactory object>

A factory for argument groups.

This is an instance of ArgumentGroupFactory whose documentation provides more details.

class sage.groups.misc_gps.argument_groups.ArgumentGroupFactory

Bases: UniqueFactory

A factory for creating argument groups.

INPUT:

230 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Groups, Release 9.8

• data – an object

The factory will analyze data and interpret it as specification or domain.

• specification – a string

The following is possible:

– 'Signs' give the SignGroup

– 'UU' give the RootsOfUnityGroup

– 'UU_P', where 'P' is a string representing a SageMath parent which is interpreted as exponents

– 'Arg_P', where 'P' is a string representing a SageMath parent which is interpreted as domain

• domain – a SageMath parent representing a subset of the complex plane. An instance of
ArgumentByElementGroup will be created with the given domain.

• exponents – a SageMath parent representing a subset of the reals. An instance of :class`UnitCircleGroup`
will be created with the given exponents

Exactly one of data, specification, exponents has to be provided.

Further keyword parameters will be carried on to the initialization of the group.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import ArgumentGroup

sage: ArgumentGroup('UU')
Group of Roots of Unity

sage: ArgumentGroup(ZZ)
Sign Group
sage: ArgumentGroup(QQ)
Sign Group
sage: ArgumentGroup('UU_QQ')
Group of Roots of Unity
sage: ArgumentGroup(AA)
Sign Group

sage: ArgumentGroup(RR)
Sign Group
sage: ArgumentGroup('Arg_RR')
Sign Group
sage: ArgumentGroup(RIF)
Sign Group
sage: ArgumentGroup(RBF)
Sign Group

sage: ArgumentGroup(CC)
Unit Circle Group with Exponents in
Real Field with 53 bits of precision modulo ZZ
sage: ArgumentGroup('Arg_CC')
Unit Circle Group with Exponents in
Real Field with 53 bits of precision modulo ZZ
sage: ArgumentGroup(CIF)
Unit Circle Group with Exponents in

(continues on next page)

23.12. Groups of elements representing (complex) arguments. 231

Groups, Release 9.8

(continued from previous page)

Real Interval Field with 53 bits of precision modulo ZZ
sage: ArgumentGroup(CBF)
Unit Circle Group with Exponents in
Real ball field with 53 bits of precision modulo ZZ

sage: ArgumentGroup(CyclotomicField(3))
Unit Circle Group with Argument of Elements in
Cyclotomic Field of order 3 and degree 2

create_key_and_extra_args(data=None, specification=None, domain=None, exponents=None, **kwds)
Normalize the input.

See ArgumentGroupFactory for a description and examples.

create_object(version, key, **kwds)
Create an object from the given arguments.

class sage.groups.misc_gps.argument_groups.RootOfUnity(parent, element, normalize=True)
Bases: UnitCirclePoint

A root of unity (i.e. an element of RootsOfUnityGroup) which is 𝑒2𝜋·exponent for a rational exponent.

exponent_denominator()

Return the denominator of the rational quotient in [0, 1) representing the exponent of this root of unity.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import RootsOfUnityGroup
sage: U = RootsOfUnityGroup()
sage: a = U(exponent=2/3); a
zeta3^2
sage: a.exponent_denominator()
3

exponent_numerator()

Return the numerator of the rational quotient in [0, 1) representing the exponent of this root of unity.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import RootsOfUnityGroup
sage: U = RootsOfUnityGroup()
sage: a = U(exponent=2/3); a
zeta3^2
sage: a.exponent_numerator()
2

class sage.groups.misc_gps.argument_groups.RootsOfUnityGroup(category)
Bases: UnitCircleGroup

The group of all roots of unity.

INPUT:

• category – a category

This is a specialized UnitCircleGroup with base Q.

EXAMPLES:

232 Chapter 23. Abelian Groups

Groups, Release 9.8

sage: from sage.groups.misc_gps.argument_groups import RootsOfUnityGroup
sage: U = RootsOfUnityGroup(); U
Group of Roots of Unity
sage: U(exponent=1/4)
I

Element

alias of RootOfUnity

class sage.groups.misc_gps.argument_groups.Sign(parent, element, normalize=True)
Bases: AbstractArgument

An element of SignGroup.

INPUT:

• parent – a SageMath parent

• element – a nonzero element of the parent’s base

• normalize – a boolean (default: True)

is_minus_one()

Return whether this sign is −1.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import SignGroup
sage: S = SignGroup()
sage: S(1).is_minus_one()
False
sage: S(-1).is_minus_one()
True

is_one()

Return whether this sign is 1.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import SignGroup
sage: S = SignGroup()
sage: S(-1).is_one()
False
sage: S(1).is_one()
True

class sage.groups.misc_gps.argument_groups.SignGroup(category)
Bases: AbstractArgumentGroup

A group of the signs −1 and 1.

INPUT:

• category – a category

EXAMPLES:

23.12. Groups of elements representing (complex) arguments. 233

Groups, Release 9.8

sage: from sage.groups.misc_gps.argument_groups import SignGroup
sage: S = SignGroup(); S
Sign Group
sage: S(-1)
-1

Element

alias of Sign

class sage.groups.misc_gps.argument_groups.UnitCircleGroup(base, category)
Bases: AbstractArgumentGroup

A group of points on the unit circle. These points are represented by 𝑒2𝜋·exponent .

INPUT:

• base – a SageMath parent representing a subset of the reals

• category – a category

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import UnitCircleGroup

sage: R = UnitCircleGroup(RR); R
Unit Circle Group with Exponents in Real Field with 53 bits of precision modulo ZZ
sage: R(exponent=2.42)
e^(2*pi*0.420000000000000)

sage: Q = UnitCircleGroup(QQ); Q
Unit Circle Group with Exponents in Rational Field modulo ZZ
sage: Q(exponent=6/5)
e^(2*pi*1/5)

Element

alias of UnitCirclePoint

class sage.groups.misc_gps.argument_groups.UnitCirclePoint(parent, element, normalize=True)
Bases: AbstractArgument

An element of UnitCircleGroup which is 𝑒2𝜋·exponent .

INPUT:

• parent – a SageMath parent

• exponent – a number (of a subset of the reals)

• normalize – a boolean (default: True)

property exponent

The exponent of this point on the unit circle.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import UnitCircleGroup
sage: C = UnitCircleGroup(RR)
sage: C(exponent=4/3).exponent
0.333333333333333

234 Chapter 23. Abelian Groups

Groups, Release 9.8

is_minus_one()

Return whether this point on the unit circle is −1.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import UnitCircleGroup
sage: C = UnitCircleGroup(QQ)
sage: C(exponent=0).is_minus_one()
False
sage: C(exponent=1/2).is_minus_one()
True
sage: C(exponent=2/3).is_minus_one()
False

is_one()

Return whether this point on the unit circle is 1.

EXAMPLES:

sage: from sage.groups.misc_gps.argument_groups import UnitCircleGroup
sage: C = UnitCircleGroup(QQ)
sage: C(exponent=0).is_one()
True
sage: C(exponent=1/2).is_one()
False
sage: C(exponent=2/3).is_one()
False
sage: C(exponent=42).is_one()
True

23.13 Groups of imaginary elements

Note: One main purpose of such groups is in an asymptotic ring's growth group when an element like 𝑛𝑧 (for
some constant 𝑧) is split into 𝑛ℜ𝑧+𝐼ℑ𝑧 . (Note that the first summand in the exponent determines the growth, the second
does not influence the growth.)

AUTHORS:

• Daniel Krenn (2018)

23.13.1 Classes and Methods

class sage.groups.misc_gps.imaginary_groups.ImaginaryElement(parent, imag)
Bases: AdditiveGroupElement

An element of ImaginaryGroup.

INPUT:

• parent – a SageMath parent

• imag – an element of parent’s base

23.13. Groups of imaginary elements 235

../../../../../../../html/en/reference/asymptotic/sage/rings/asymptotic/asymptotic_ring.html#module-sage.rings.asymptotic.asymptotic_ring
../../../../../../../html/en/reference/asymptotic/sage/rings/asymptotic/growth_group.html#module-sage.rings.asymptotic.growth_group
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AdditiveGroupElement

Groups, Release 9.8

imag()

Return the imaginary part of this imaginary element.

EXAMPLES:

sage: from sage.groups.misc_gps.imaginary_groups import ImaginaryGroup
sage: J = ImaginaryGroup(ZZ)
sage: J(I).imag()
1
sage: imag_part(J(I)) # indirect doctest
1

real()

Return the real part (= 0) of this imaginary element.

EXAMPLES:

sage: from sage.groups.misc_gps.imaginary_groups import ImaginaryGroup
sage: J = ImaginaryGroup(ZZ)
sage: J(I).real()
0
sage: real_part(J(I)) # indirect doctest
0

class sage.groups.misc_gps.imaginary_groups.ImaginaryGroup(base, category)
Bases: UniqueRepresentation, Parent

A group whose elements are purely imaginary.

INPUT:

• base – a SageMath parent

• category – a category

EXAMPLES:

sage: from sage.groups.misc_gps.imaginary_groups import ImaginaryGroup
sage: J = ImaginaryGroup(ZZ)
sage: J(0)
0
sage: J(imag=100)
100*I
sage: J(3*I)
3*I
sage: J(1+2*I)
Traceback (most recent call last):
...
ValueError: 2*I + 1 is not in
Imaginary Group over Integer Ring
because it is not purely imaginary

Element

alias of ImaginaryElement

236 Chapter 23. Abelian Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

CHAPTER

TWENTYFOUR

PERMUTATION GROUPS

24.1 Catalog of permutation groups

Type groups.permutation.<tab> to access examples of groups implemented as permutation groups.

24.2 Constructor for permutations

This module contains the generic constructor to build element of the symmetric groups (or more general permuta-
tion groups) called PermutationGroupElement. These objects have a more group theoretic flavor than the more
combinatorial Permutation.

sage.groups.perm_gps.constructor.PermutationGroupElement(g, parent=None, check=True)
Builds a permutation from g.

INPUT:

• g – either

– a list of images

– a tuple describing a single cycle

– a list of tuples describing the cycle decomposition

– a string describing the cycle decomposition

• parent – (optional) an ambient permutation group for the result; it is mandatory if you want a permutation
on a domain different from {1, . . . , 𝑛}

• check – (default: True) whether additional check are performed; setting it to False is likely to result in
faster code

EXAMPLES:

Initialization as a list of images:

sage: p = PermutationGroupElement([1,4,2,3])
sage: p
(2,4,3)
sage: p.parent()
Symmetric group of order 4! as a permutation group

Initialization as a list of cycles:

237

../../../../../../../html/en/reference/combinat/sage/combinat/permutation.html#sage.combinat.permutation.Permutation

Groups, Release 9.8

sage: p = PermutationGroupElement([(3,5),(4,6,9)])
sage: p
(3,5)(4,6,9)
sage: p.parent()
Symmetric group of order 9! as a permutation group

Initialization as a string representing a cycle decomposition:

sage: p = PermutationGroupElement('(2,4)(3,5)')
sage: p
(2,4)(3,5)
sage: p.parent()
Symmetric group of order 5! as a permutation group

By default the constructor assumes that the domain is {1, . . . , 𝑛} but it can be set to anything via its second
parent argument:

sage: S = SymmetricGroup(['a', 'b', 'c', 'd', 'e'])
sage: PermutationGroupElement(['e', 'c', 'b', 'a', 'd'], S)
('a','e','d')('b','c')
sage: PermutationGroupElement(('a', 'b', 'c'), S)
('a','b','c')
sage: PermutationGroupElement([('a', 'c'), ('b', 'e')], S)
('a','c')('b','e')
sage: PermutationGroupElement("('a','b','e')('c','d')", S)
('a','b','e')('c','d')

But in this situation, you might want to use the more direct:

sage: S(['e', 'c', 'b', 'a', 'd'])
('a','e','d')('b','c')
sage: S(('a', 'b', 'c'))
('a','b','c')
sage: S([('a', 'c'), ('b', 'e')])
('a','c')('b','e')
sage: S("('a','b','e')('c','d')")
('a','b','e')('c','d')

sage.groups.perm_gps.constructor.standardize_generator(g, convert_dict=None, as_cycles=False)
Standardize the input for permutation group elements to a list or a list of tuples.

This was factored out of the PermutationGroupElement.__init__ since PermutationGroup_generic.
__init__ needs to do the same computation in order to compute the domain of a group when it’s not explicitly
specified.

INPUT:

• g – a list, tuple, string, GapElement, PermutationGroupElement, Permutation

• convert_dict – (optional) a dictionary used to convert the points to a number compatible with GAP

• as_cycles – (default: False) whether the output should be as cycles or in one-line notation

OUTPUT:

The permutation in as a list in one-line notation or a list of cycles as tuples.

EXAMPLES:

238 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: from sage.groups.perm_gps.constructor import standardize_generator
sage: standardize_generator('(1,2)')
[2, 1]

sage: p = PermutationGroupElement([(1,2)])
sage: standardize_generator(p)
[2, 1]
sage: standardize_generator(p._gap_())
[2, 1]
sage: standardize_generator((1,2))
[2, 1]
sage: standardize_generator([(1,2)])
[2, 1]

sage: standardize_generator(p, as_cycles=True)
[(1, 2)]
sage: standardize_generator(p._gap_(), as_cycles=True)
[(1, 2)]
sage: standardize_generator((1,2), as_cycles=True)
[(1, 2)]
sage: standardize_generator([(1,2)], as_cycles=True)
[(1, 2)]

sage: standardize_generator(Permutation([2,1,3]))
[2, 1, 3]
sage: standardize_generator(Permutation([2,1,3]), as_cycles=True)
[(1, 2), (3,)]

sage: d = {'a': 1, 'b': 2}
sage: p = SymmetricGroup(['a', 'b']).gen(0); p
('a','b')
sage: standardize_generator(p, convert_dict=d)
[2, 1]
sage: standardize_generator(p._gap_(), convert_dict=d)
[2, 1]
sage: standardize_generator(('a','b'), convert_dict=d)
[2, 1]
sage: standardize_generator([('a','b')], convert_dict=d)
[2, 1]

sage: standardize_generator(p, convert_dict=d, as_cycles=True)
[(1, 2)]
sage: standardize_generator(p._gap_(), convert_dict=d, as_cycles=True)
[(1, 2)]
sage: standardize_generator(('a','b'), convert_dict=d, as_cycles=True)
[(1, 2)]
sage: standardize_generator([('a','b')], convert_dict=d, as_cycles=True)
[(1, 2)]

sage.groups.perm_gps.constructor.string_to_tuples(g)
EXAMPLES:

24.2. Constructor for permutations 239

Groups, Release 9.8

sage: from sage.groups.perm_gps.constructor import string_to_tuples
sage: string_to_tuples('(1,2,3)')
[(1, 2, 3)]
sage: string_to_tuples('(1,2,3)(4,5)')
[(1, 2, 3), (4, 5)]
sage: string_to_tuples(' (1,2, 3) (4,5)')
[(1, 2, 3), (4, 5)]
sage: string_to_tuples('(1,2)(3)')
[(1, 2), (3,)]

24.3 Permutation groups

A permutation group is a finite group 𝐺 whose elements are permutations of a given finite set 𝑋 (i.e., bijections
𝑋 −→ 𝑋) and whose group operation is the composition of permutations. The number of elements of 𝑋 is called the
degree of 𝐺.

In Sage, a permutation is represented as either a string that defines a permutation using disjoint cycle notation, or a list
of tuples, which represent disjoint cycles. That is:

(a,...,b)(c,...,d)...(e,...,f) <--> [(a,...,b), (c,...,d),..., (e,...,f)]
() = identity <--> []

You can make the “named” permutation groups (see permgp_named.py) and use the following constructions:

• permutation group generated by elements,

• direct_product_permgroups, which takes a list of permutation groups and returns their direct product.

JOKE: Q: What’s hot, chunky, and acts on a polygon? A: Dihedral soup. Renteln, P. and Dundes, A. “Foolproof: A
Sampling of Mathematical Folk Humor.” Notices Amer. Math. Soc. 52, 24-34, 2005.

24.3.1 Index of methods

Here are the method of a PermutationGroup()

as_finitely_presented_group()Return a finitely presented group isomorphic to self.
blocks_all() Return the list of block systems of imprimitivity.
cardinality() Return the number of elements of this group. See also: G.degree()
center() Return the subgroup of elements that commute with every element of this group.
centralizer() Return the centralizer of g in self.
character() Return a group character from values, where values is a list of the values of

the character evaluated on the conjugacy classes.
character_table() Return the matrix of values of the irreducible characters of a permutation group

𝐺 at the conjugacy classes of 𝐺.
cohomology() Computes the group cohomology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0 and 𝐹 =

Z/𝑝Z if 𝑝 > 0 is a prime.
cohomology_part() Compute the p-part of the group cohomology𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0

and 𝐹 = Z/𝑝Z if 𝑝 > 0 is a prime.
commutator() Return the commutator subgroup of a group, or of a pair of groups.
composition_series() Return the composition series of this group as a list of permutation groups.
conjugacy_class() Return the conjugacy class of g inside the group self.

continues on next page

240 Chapter 24. Permutation Groups

Groups, Release 9.8

Table 1 – continued from previous page
conjugacy_classes() Return a list with all the conjugacy classes of self.
conjugacy_classes_representatives()Return a complete list of representatives of conjugacy classes in a permutation

group 𝐺.
conjugacy_classes_subgroups()Return a complete list of representatives of conjugacy classes of subgroups in a

permutation group 𝐺.
conjugate() Return the group formed by conjugating self with g.
construction() Return the construction of self.
cosets() Return a list of the cosets of S in self.
degree() Return the degree of this permutation group.
derived_series() Return the derived series of this group as a list of permutation groups.
direct_product() Wraps GAP’s DirectProduct, Embedding, and Projection.
domain() Return the underlying set that this permutation group acts on.
exponent() Computes the exponent of the group.
fitting_subgroup() Return the Fitting subgroup of self.
fixed_points() Return the list of points fixed by self, i.e., the subset of .domain() not moved

by any element of self.
frattini_subgroup() Return the Frattini subgroup of self.
gen() Return the i-th generator of self; that is, the i-th element of the list self.

gens().
gens() Return tuple of generators of this group.
gens_small() For this group, returns a generating set which has few elements.
group_id() Return the ID code of this group, which is a list of two integers.
group_primitive_id() Return the index of this group in the GAP database of primitive groups.
has_element() Return whether item is an element of this group - however ignores parentage.
holomorph() The holomorph of a group as a permutation group.
homology() Computes the group homology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0 and 𝐹 =

Z/𝑝Z if 𝑝 > 0 is a prime. Wraps HAP’s GroupHomology function, written by
Graham Ellis.

homology_part() Computes the 𝑝-part of the group homology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0
and 𝐹 = Z/𝑝Z if 𝑝 > 0 is a prime. Wraps HAP’s Homology function, written
by Graham Ellis, applied to the 𝑝-Sylow subgroup of 𝐺.

id() (Same as self.group_id().) Return the ID code of this group, which is a list
of two integers.

intersection() Return the permutation group that is the intersection of self and other.
irreducible_characters() Return a list of the irreducible characters of self.
is_cyclic() Return True if this group is cyclic.
is_elementary_abelian() Return True if this group is elementary abelian. An elementary abelian group

is a finite abelian group, where every nontrivial element has order 𝑝, where 𝑝 is
a prime.

is_isomorphic() Return True if the groups are isomorphic.
is_monomial() Return True if the group is monomial. A finite group is monomial if every

irreducible complex character is induced from a linear character of a subgroup.
is_nilpotent() Return True if this group is nilpotent.
is_normal() Return True if this group is a normal subgroup of other.
is_perfect() Return True if this group is perfect. A group is perfect if it equals its derived

subgroup.
is_pgroup() Return True if this group is a 𝑝-group.
is_polycyclic() Return True if this group is polycyclic. A group is polycyclic if it has a subnor-

mal series with cyclic factors. (For finite groups, this is the same as if the group
is solvable - see is_solvable.)

is_primitive() Return True if self acts primitively on domain.
continues on next page

24.3. Permutation groups 241

Groups, Release 9.8

Table 1 – continued from previous page
is_regular() Return True if self acts regularly on domain.
is_semi_regular() Return True if self acts semi-regularly on domain.
is_simple() Return True if the group is simple.
is_solvable() Return True if the group is solvable.
is_subgroup() Return True if self is a subgroup of other.
is_supersolvable() Return True if the group is supersolvable.
is_transitive() Return True if self acts transitively on domain.
isomorphism_to() Return an isomorphism from self to right if the groups are isomorphic, oth-

erwise None.
isomorphism_type_info_simple_group()If the group is simple, then this returns the name of the group.
iteration() Return an iterator over the elements of this group.
largest_moved_point() Return the largest point moved by a permutation in this group.
list() Return list of all elements of this group.
lower_central_series() Return the lower central series of this group as a list of permutation groups.
minimal_generating_set() Return a minimal generating set
molien_series() Return the Molien series of a permutation group. The function
ngens() Return the number of generators of self.
non_fixed_points() Return the list of points not fixed by self, i.e., the subset of self.domain()

moved by some element of self.
normal_subgroups() Return the normal subgroups of this group as a (sorted in increasing order) list

of permutation groups.
normalizer() Return the normalizer of g in self.
normalizes() Return True if the group other is normalized by self.
poincare_series() Return the Poincaré series of 𝐺 mod 𝑝 (𝑝 ≥ 2 must be a prime), for 𝑛 large.
random_element() Return a random element of this group.
representative_action() Return an element of self that maps 𝑥 to 𝑦 if it exists.
semidirect_product() The semidirect product of self with N.
sign_representation() Return the sign representation of self over base_ring.
socle() Return the socle of self.
solvable_radical() Return the solvable radical of self.
stabilizer() Return the subgroup of self which stabilize the given position. self and its

stabilizers must have same degree.
strong_generating_system() Return a Strong Generating System of self according the given base for the

right action of self on itself.
structure_description() Return a string that tries to describe the structure of G.
subgroup() Wraps the PermutationGroup_subgroup constructor. The argument gens is

a list of elements of self.
subgroups() Return a list of all the subgroups of self.
sylow_subgroup() Return a Sylow 𝑝-subgroup of the finite group 𝐺, where 𝑝 is a prime.
transversals() If G is a permutation group acting on the set 𝑋 = {1, 2,, 𝑛} and H is the

stabilizer subgroup of <integer>, a right (respectively left) transversal is a set
containing exactly one element from each right (respectively left) coset of H.
This method returns a right transversal of self by the stabilizer of self on
<integer> position.

trivial_character() Return the trivial character of self.
upper_central_series() Return the upper central series of this group as a list of permutation groups.

AUTHORS:

• David Joyner (2005-10-14): first version

• David Joyner (2005-11-17)

242 Chapter 24. Permutation Groups

Groups, Release 9.8

• William Stein (2005-11-26): rewrite to better wrap Gap

• David Joyner (2005-12-21)

• William Stein and David Joyner (2006-01-04): added conjugacy_class_representatives

• David Joyner (2006-03): reorganization into subdirectory perm_gps; added __contains__, has_element; fixed
cmp; added subgroup class+methods, PGL,PSL,PSp, PSU classes,

• David Joyner (2006-06): added PGU, functionality to SymmetricGroup, AlternatingGroup, di-
rect_product_permgroups

• David Joyner (2006-08): added degree, ramification_module_decomposition_modular_curve and ramifica-
tion_module_decomposition_hurwitz_curve methods to PSL(2,q), MathieuGroup, is_isomorphic

• Bobby Moretti (2006)-10): Added KleinFourGroup, fixed bug in DihedralGroup

• David Joyner (2006-10): added is_subgroup (fixing a bug found by Kiran Kedlaya), is_solvable, normalizer,
is_normal_subgroup, Suzuki

• David Kohel (2007-02): fixed __contains__ to not enumerate group elements, following the convention for
__call__

• David Harvey, Mike Hansen, Nick Alexander, William Stein (2007-02,03,04,05): Various patches

• Nathan Dunfield (2007-05): added orbits

• David Joyner (2007-06): added subgroup method (suggested by David Kohel), composition_series,
lower_central_series, upper_central_series, cayley_table, quotient_group, sylow_subgroup, is_cyclic, homol-
ogy, homology_part, cohomology, cohomology_part, poincare_series, molien_series, is_simple, is_monomial,
is_supersolvable, is_nilpotent, is_perfect, is_polycyclic, is_elementary_abelian, is_pgroup, gens_small, isomor-
phism_type_info_simple_group. moved all the”named” groups to a new file.

• Nick Alexander (2007-07): move is_isomorphic to isomorphism_to, add from_gap_list

• William Stein (2007-07): put is_isomorphic back (and make it better)

• David Joyner (2007-08): fixed bugs in composition_series, upper/lower_central_series, derived_series,

• David Joyner (2008-06): modified is_normal (reported by W. J. Palenstijn), and added normalizes

• David Joyner (2008-08): Added example to docstring of cohomology.

• Simon King (2009-04): __cmp__ methods for PermutationGroup_generic and PermutationGroup_subgroup

• Nicolas Borie (2009): Added orbit, transversals, stabiliser and strong_generating_system methods

• Christopher Swenson (2012): Added a special case to compute the order efficiently. (This patch Copyright 2012
Google Inc. All Rights Reserved.)

• Javier Lopez Pena (2013): Added conjugacy classes.

• Sebastian Oehms (2018): added _coerce_map_from_ in order to use isomorphism coming up with
as_permutation_group method (Trac #25706)

• Christian Stump (2018): Added alternative implementation of strong_generating_system directly using GAP.

• Sebastian Oehms (2018): Added PermutationGroup_generic._Hom_() to use sage.groups.
libgap_morphism.GroupHomset_libgap and PermutationGroup_generic.gap() and
PermutationGroup_generic._subgroup_constructor() (for compatibility to libgap framework,
see trac ticket #26750

REFERENCES:

• Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999.

• Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964.

24.3. Permutation groups 243

https://trac.sagemath.org/26750

Groups, Release 9.8

• Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.

Note: Though Suzuki groups are okay, Ree groups should not be wrapped as permutation groups - the construction
is too slow - unless (for small values or the parameter) they are made using explicit generators.

sage.groups.perm_gps.permgroup.PermutationGroup(gens=None, *args, **kwds)
Return the permutation group associated to 𝑥 (typically a list of generators).

INPUT:

• gens – (default: None) list of generators

• gap_group – (optional) a gap permutation group

• canonicalize – boolean (default: True); if True, sort generators and remove duplicates

OUTPUT:

• a permutation group

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G
Permutation Group with generators [(3,4), (1,2,3)(4,5)]

We can also make permutation groups from PARI groups:

sage: H = pari('x^4 - 2*x^3 - 2*x + 1').polgalois()
sage: G = PariGroup(H, 4); G
PARI group [8, -1, 3, "D(4)"] of degree 4
sage: H = PermutationGroup(G); H
Transitive group number 3 of degree 4
sage: H.gens()
((1,2,3,4), (1,3))

We can also create permutation groups whose generators are Gap permutation objects:

sage: p = gap('(1,2)(3,7)(4,6)(5,8)'); p
(1,2)(3,7)(4,6)(5,8)
sage: PermutationGroup([p])
Permutation Group with generators [(1,2)(3,7)(4,6)(5,8)]

Permutation groups can work on any domain. In the following examples, the permutations are specified in list
notation, according to the order of the elements of the domain:

sage: list(PermutationGroup([['b','c','a']], domain=['a','b','c']))
[(), ('a','b','c'), ('a','c','b')]
sage: list(PermutationGroup([['b','c','a']], domain=['b','c','a']))
[()]
sage: list(PermutationGroup([['b','c','a']], domain=['a','c','b']))
[(), ('a','b')]

There is an underlying gap object that implements each permutation group:

244 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G._gap_()
Group([(1,2,3,4)])
sage: gap(G)
Group([(1,2,3,4)])
sage: gap(G) is G._gap_()
True
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: current_randstate().set_seed_gap()
sage: G1, G2 = G._gap_().DerivedSeries()
sage: G1
Group([(3,4), (1,2,3)(4,5)])
sage: G2.GeneratorsSmallest()
[(3,4,5), (2,3)(4,5), (1,2)(4,5)]

We can create a permutation group from a group action:

sage: a = lambda x: (2*x) % 7
sage: H = PermutationGroup(action=a, domain=range(7))
sage: H.orbits()
((0,), (1, 2, 4), (3, 6, 5))
sage: H.gens()
((1,2,4), (3,6,5))

Note that we provide generators for the acting group. The permutation group we construct is its homomorphic
image:

sage: a = lambda g, x: vector(g*x, immutable=True)
sage: X = [vector(x, immutable=True) for x in GF(3)^2]
sage: G = SL(2,3); G.gens()
(
[1 1] [0 1]
[0 1], [2 0]
)
sage: H = PermutationGroup(G.gens(), action=a, domain=X)
sage: H.orbits()
(((0, 0),), ((1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)))
sage: H.gens()
(((0,1),(1,1),(2,1))((0,2),(2,2),(1,2)),
((1,0),(0,2),(2,0),(0,1))((1,1),(1,2),(2,2),(2,1)))

The orbits of the conjugation action are the conjugacy classes, i.e., in bijection with integer partitions:

sage: a = lambda g, x: g*x*g^-1
sage: [len(PermutationGroup(SymmetricGroup(n).gens(), action=a,␣
→˓domain=SymmetricGroup(n)).orbits()) for n in range(1, 8)]
[1, 2, 3, 5, 7, 11, 15]

class sage.groups.perm_gps.permgroup.PermutationGroup_action(gens, action, domain,
gap_group=None, category=None,
canonicalize=None)

Bases: PermutationGroup_generic

A permutation group given by a finite group action.

24.3. Permutation groups 245

Groups, Release 9.8

EXAMPLES:

A cyclic action:

sage: n = 3
sage: a = lambda x: SetPartition([[e % n + 1 for e in b] for b in x])
sage: S = SetPartitions(n)
sage: G = PermutationGroup(action=a, domain=S)
sage: G.orbits()
(({{1}, {2}, {3}},),
({{1, 2}, {3}}, {{1}, {2, 3}}, {{1, 3}, {2}}),
({{1, 2, 3}},))

The regular action of the symmetric group:

sage: a = lambda g, x: g*x*g^-1
sage: S = SymmetricGroup(3)
sage: G = PermutationGroup(S.gens(), action=a, domain=S)
sage: G.orbits()
(((),), ((1,3,2), (1,2,3)), ((2,3), (1,3), (1,2)))

The trivial action of the symmetric group:

sage: PermutationGroup(SymmetricGroup(3).gens(), action=lambda g, x: x, domain=[1])
Permutation Group with generators [()]

orbits()

Returns the orbits of the elements of the domain under the default group action.

EXAMPLES:

sage: a = lambda x: (2*x) % 7
sage: G = PermutationGroup(action=a, domain=range(7))
sage: G.orbits()
((0,), (1, 2, 4), (3, 6, 5))

class sage.groups.perm_gps.permgroup.PermutationGroup_generic(gens=None, gap_group=None,
canonicalize=True, domain=None,
category=None)

Bases: FiniteGroup

A generic permutation group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G
Permutation Group with generators [(3,4), (1,2,3)(4,5)]
sage: G.center()
Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,
→˓5)])
sage: G.group_id()
[120, 34]
sage: n = G.order(); n
120

(continues on next page)

246 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: TestSuite(G).run()

Element

alias of PermutationGroupElement

Subgroup

alias of PermutationGroup_subgroup

as_finitely_presented_group(reduced=False)
Return a finitely presented group isomorphic to self.

This method acts as wrapper for the GAP function IsomorphismFpGroupByGenerators, which yields
an isomorphism from a given group to a finitely presented group.

INPUT:

• reduced – Default False, if True FinitelyPresentedGroup.simplified is called, attempting
to simplify the presentation of the finitely presented group to be returned.

OUTPUT:

Finite presentation of self, obtained by taking the image of the isomorphism returned by the GAP function,
IsomorphismFpGroupByGenerators.

ALGORITHM:

Uses GAP.

EXAMPLES:

sage: CyclicPermutationGroup(50).as_finitely_presented_group()
Finitely presented group < a | a^50 >
sage: DihedralGroup(4).as_finitely_presented_group()
Finitely presented group < a, b | b^2, a^4, (b*a)^2 >
sage: GeneralDihedralGroup([2,2]).as_finitely_presented_group()
Finitely presented group < a, b, c | a^2, b^2, c^2, (c*b)^2, (c*a)^2, (b*a)^2 >

GAP algorithm is not guaranteed to produce minimal or canonical presentation:

sage: G = PermutationGroup(['(1,2,3,4,5)', '(1,5)(2,4)'])
sage: G.is_isomorphic(DihedralGroup(5))
True
sage: K = G.as_finitely_presented_group(); K
Finitely presented group < a, b | b^2, (b*a)^2, b*a^-3*b*a^2 >
sage: K.as_permutation_group().is_isomorphic(DihedralGroup(5))
True

We can attempt to reduce the output presentation:

sage: PermutationGroup(['(1,2,3,4,5)','(1,3,5,2,4)']).as_finitely_presented_
→˓group()
Finitely presented group < a, b | b^-2*a^-1, b*a^-2 >
sage: PermutationGroup(['(1,2,3,4,5)','(1,3,5,2,4)']).as_finitely_presented_
→˓group(reduced=True)
Finitely presented group < a | a^5 >

AUTHORS:

24.3. Permutation groups 247

Groups, Release 9.8

• Davis Shurbert (2013-06-21): initial version

base(seed=None)
Return a (minimum) base of this permutation group.

A base 𝐵 of a permutation group is a subset of the domain of the group such that the only group element
stabilizing all of 𝐵 is the identity.

INPUT:

• seed (optional, default: None), if given must be a subset of the domain of 𝑏𝑎𝑠𝑒. When used, an attempt
to create a base containing all or part of 𝑠𝑒𝑒𝑑 will be made.

EXAMPLES:

sage: G = PermutationGroup([(1,2,3),(6,7,8)])
sage: G.base()
[1, 6]
sage: G.base([2])
[2, 6]

sage: H = PermutationGroup([('a','b','c'),('a','y')])
sage: H.base()
['a', 'b', 'c']

sage: S = SymmetricGroup(13)
sage: S.base()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

sage: S = MathieuGroup(12)
sage: S.base()
[1, 2, 3, 4, 5]
sage: S.base([1,3,5,7,9,11]) # create a base for M12 with only odd integers
[1, 3, 5, 7, 9]

blocks_all(representatives=True)
Return the list of block systems of imprimitivity.

For more information on primitivity, see the Wikipedia article on primitive group actions.

INPUT:

• representative (boolean) – whether to return all possible block systems of imprimitivity or only
one of their representatives (the block can be obtained from its representative set 𝑆 by computing the
orbit of 𝑆 under self).

This parameter is set to True by default (as it is GAP’s default behaviour).

OUTPUT:

This method returns a description of all block systems. Hence, the output is a “list of lists of lists” or a “list
of lists” depending on the value of representatives. A bit more clearly, output is:

• A list of length (#number of different block systems) of

– block systems, each of them being defined as

∗ If representatives = True : a list of representatives of each set of the block system

∗ If representatives = False : a partition of the elements defining an imprimitivity block.

See also:

248 Chapter 24. Permutation Groups

https://en.wikipedia.org/wiki/Primitive_permutation_group

Groups, Release 9.8

• is_primitive()

EXAMPLES:

Picking an interesting group:

sage: g = graphs.DodecahedralGraph()
sage: g.is_vertex_transitive()
True
sage: ag = g.automorphism_group()
sage: ag.is_primitive()
False

Computing its blocks representatives:

sage: ag.blocks_all()
[[0, 15]]

Now the full block:

sage: sorted(ag.blocks_all(representatives = False)[0])
[[0, 15], [1, 16], [2, 12], [3, 13], [4, 9], [5, 10], [6, 11], [7, 18], [8, 17],
→˓ [14, 19]]

cardinality()

Return the number of elements of this group. See also: G.degree()

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.order()
12
sage: G = PermutationGroup([()])
sage: G.order()
1
sage: G = PermutationGroup([])
sage: G.order()
1

cardinality is just an alias:

sage: PermutationGroup([(1,2,3)]).cardinality()
3

center()

Return the subgroup of elements that commute with every element of this group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G.center()
Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2,3,
→˓4)])
sage: G = PermutationGroup([[(1,2,3,4)], [(1,2)]])
sage: G.center()

(continues on next page)

24.3. Permutation groups 249

Groups, Release 9.8

(continued from previous page)

Subgroup generated by [()] of (Permutation Group with generators [(1,2), (1,2,3,
→˓4)])

centralizer(g)
Return the centralizer of g in self.

EXAMPLES:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: g = G([(1,3)])
sage: G.centralizer(g)
Subgroup generated by [(2,4), (1,3)] of (Permutation Group with generators [(1,
→˓2)(3,4), (1,2,3,4)])
sage: g = G([(1,2,3,4)])
sage: G.centralizer(g)
Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,
→˓2)(3,4), (1,2,3,4)])
sage: H = G.subgroup([G([(1,2,3,4)])])
sage: G.centralizer(H)
Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,
→˓2)(3,4), (1,2,3,4)])

character(values)
Return a group character from values, where values is a list of the values of the character evaluated on
the conjugacy classes.

EXAMPLES:

sage: G = AlternatingGroup(4)
sage: n = len(G.conjugacy_classes_representatives())
sage: G.character([1]*n)
Character of Alternating group of order 4!/2 as a permutation group

character_table()

Return the matrix of values of the irreducible characters of a permutation group𝐺 at the conjugacy classes
of 𝐺.

The columns represent the conjugacy classes of𝐺 and the rows represent the different irreducible characters
in the ordering given by GAP.

EXAMPLES:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: G.order()
12
sage: G.character_table()
[1 1 1 1]
[1 -zeta3 - 1 zeta3 1]
[1 zeta3 -zeta3 - 1 1]
[3 0 0 -1]
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: CT = gap(G).CharacterTable()

Type CT.Display() to display this nicely.

250 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: G.order()
8
sage: G.character_table()
[1 1 1 1 1]
[1 -1 -1 1 1]
[1 -1 1 -1 1]
[1 1 -1 -1 1]
[2 0 0 0 -2]
sage: CT = gap(G).CharacterTable()

Again, type CT.Display() to display this nicely.

sage: SymmetricGroup(2).character_table()
[1 -1]
[1 1]
sage: SymmetricGroup(3).character_table()
[1 -1 1]
[2 0 -1]
[1 1 1]
sage: SymmetricGroup(5).character_table()
[1 -1 1 1 -1 -1 1]
[4 -2 0 1 1 0 -1]
[5 -1 1 -1 -1 1 0]
[6 0 -2 0 0 0 1]
[5 1 1 -1 1 -1 0]
[4 2 0 1 -1 0 -1]
[1 1 1 1 1 1 1]
sage: list(AlternatingGroup(6).character_table())
[(1, 1, 1, 1, 1, 1, 1), (5, 1, 2, -1, -1, 0, 0), (5, 1, -1, 2, -1, 0, 0), (8, 0,
→˓ -1, -1, 0, zeta5^3 + zeta5^2 + 1, -zeta5^3 - zeta5^2), (8, 0, -1, -1, 0, -
→˓zeta5^3 - zeta5^2, zeta5^3 + zeta5^2 + 1), (9, 1, 0, 0, 1, -1, -1), (10, -2,␣
→˓1, 1, 0, 0, 0)]

Suppose that you have a class function 𝑓(𝑔) on𝐺 and you know the values 𝑣1, . . . , 𝑣𝑛 on the conjugacy class
elements in conjugacy_classes_representatives(G) = [𝑔1, . . . , 𝑔𝑛]. Since the irreducible characters
𝜌1, . . . , 𝜌𝑛 of 𝐺 form an 𝐸-basis of the space of all class functions (𝐸 a “sufficiently large” cyclotomic
field), such a class function is a linear combination of these basis elements, 𝑓 = 𝑐1𝜌1 + · · · + 𝑐𝑛𝜌𝑛. To
find the coefficients 𝑐𝑖, you simply solve the linear system character_table_values(G) [𝑣1, ..., 𝑣𝑛] =
[𝑐1, ..., 𝑐𝑛], where [𝑣1, . . . , 𝑣𝑛] = character_table_values(G) (−1)[𝑐1, ..., 𝑐𝑛].

AUTHORS:

• David Joyner and William Stein (2006-01-04)

cohomology(n, p=0)
Computes the group cohomology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0 and 𝐹 = Z/𝑝Z if 𝑝 > 0 is a prime.

Wraps HAP’s GroupHomology function, written by Graham Ellis.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: G.cohomology(1,2) # optional - gap_packages

(continues on next page)

24.3. Permutation groups 251

Groups, Release 9.8

(continued from previous page)

Multiplicative Abelian group isomorphic to C2
sage: G = SymmetricGroup(3)
sage: G.cohomology(5) # optional - gap_packages
Trivial Abelian group
sage: G.cohomology(5,2) # optional - gap_packages
Multiplicative Abelian group isomorphic to C2
sage: G.homology(5,3) # optional - gap_packages
Trivial Abelian group
sage: G.homology(5,4) # optional - gap_packages
Traceback (most recent call last):
...
ValueError: p must be 0 or prime

This computes 𝐻4(𝑆3,Z) and 𝐻4(𝑆3,Z/2Z), respectively.

AUTHORS:

• David Joyner and Graham Ellis

REFERENCES:

• G. Ellis, ‘Computing group resolutions’, J. Symbolic Computation. Vol.38, (2004)1077-1118 (Avail-
able at http://hamilton.nuigalway.ie/).

• D. Joyner, ‘A primer on computational group homology and cohomology’, http://front.math.ucdavis.
edu/0706.0549.

cohomology_part(n, p=0)
Compute the p-part of the group cohomology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0 and 𝐹 = Z/𝑝Z if 𝑝 > 0
is a prime.

Wraps HAP’s Homology function, written by Graham Ellis, applied to the 𝑝-Sylow subgroup of 𝐺.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.cohomology_part(7,2) # optional - gap_packages
Multiplicative Abelian group isomorphic to C2 x C2 x C2
sage: G = SymmetricGroup(3)
sage: G.cohomology_part(2,3) # optional - gap_packages
Multiplicative Abelian group isomorphic to C3

AUTHORS:

• David Joyner and Graham Ellis

commutator(other=None)
Return the commutator subgroup of a group, or of a pair of groups.

INPUT:

• other - default: None - a permutation group.

OUTPUT:

252 Chapter 24. Permutation Groups

http://hamilton.nuigalway.ie/
http://front.math.ucdavis.edu/0706.0549
http://front.math.ucdavis.edu/0706.0549

Groups, Release 9.8

Let 𝐺 denote self. If other is None then this method returns the subgroup of 𝐺 generated by the set of
commutators,

{[𝑔1, 𝑔2]|𝑔1, 𝑔2 ∈ 𝐺} = {𝑔−1
1 𝑔−1

2 𝑔1𝑔2|𝑔1, 𝑔2 ∈ 𝐺}

Let 𝐻 denote other, in the case that it is not None. Then this method returns the group generated by the
set of commutators,

{[𝑔, ℎ]|𝑔 ∈ 𝐺ℎ ∈ 𝐻} = {𝑔−1ℎ−1𝑔ℎ|𝑔 ∈ 𝐺ℎ ∈ 𝐻}

The two groups need only be permutation groups, there is no notion of requiring them to explicitly be
subgroups of some other group.

Note: For the identical statement, the generators of the returned group can vary from one execution to the
next.

EXAMPLES:

sage: G = DiCyclicGroup(4)
sage: G.commutator()
Permutation Group with generators [(1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)]

sage: G = SymmetricGroup(5)
sage: H = CyclicPermutationGroup(5)
sage: C = G.commutator(H)
sage: C.is_isomorphic(AlternatingGroup(5))
True

An abelian group will have a trivial commutator.

sage: G = CyclicPermutationGroup(10)
sage: G.commutator()
Permutation Group with generators [()]

The quotient of a group by its commutator is always abelian.

sage: G = DihedralGroup(20)
sage: C = G.commutator()
sage: Q = G.quotient(C)
sage: Q.is_abelian()
True

When forming commutators from two groups, the order of the groups does not matter.

sage: D = DihedralGroup(3)
sage: S = SymmetricGroup(2)
sage: C1 = D.commutator(S); C1
Permutation Group with generators [(1,2,3)]
sage: C2 = S.commutator(D); C2
Permutation Group with generators [(1,3,2)]
sage: C1 == C2
True

This method calls two different functions in GAP, so this tests that their results are consistent. The com-
mutator groups may have different generators, but the groups are equal.

24.3. Permutation groups 253

Groups, Release 9.8

sage: G = DiCyclicGroup(3)
sage: C = G.commutator(); C
Permutation Group with generators [(5,7,6)]
sage: CC = G.commutator(G); CC
Permutation Group with generators [(5,6,7)]
sage: C == CC
True

The second group is checked.

sage: G = SymmetricGroup(2)
sage: G.commutator('junk')
Traceback (most recent call last):
...
TypeError: junk is not a permutation group

composition_series()

Return the composition series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing.

sage: set_random_seed(0)
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.composition_series()
[Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with␣
→˓generators [(3,4), (1,2,3)(4,5)]),
Subgroup generated by [(1,3,5), (1,5)(3,4), (1,5)(2,4)] of (Permutation Group␣
→˓with generators [(3,4), (1,2,3)(4,5)]),
Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,
→˓3)(4,5)])]
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: CS = G.composition_series()
sage: CS[3]
Subgroup generated by [()] of (Permutation Group with generators [(1,2), (1,2,
→˓3)(4,5)])

conjugacy_class(g)
Return the conjugacy class of g inside the group self.

INPUT:

• g – an element of the permutation group self

OUTPUT:

The conjugacy class of g in the group self. If self is the group denoted by 𝐺, this method computes the
set {𝑥−1𝑔𝑥 | 𝑥 ∈ 𝐺}

EXAMPLES:

sage: G = DihedralGroup(3)
sage: g = G.gen(0)
sage: G.conjugacy_class(g)
Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group

254 Chapter 24. Permutation Groups

Groups, Release 9.8

conjugacy_classes()

Return a list with all the conjugacy classes of self.

EXAMPLES:

sage: G = DihedralGroup(3)
sage: G.conjugacy_classes()
[Conjugacy class of () in Dihedral group of order 6 as a permutation group,
Conjugacy class of (2,3) in Dihedral group of order 6 as a permutation group,
Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group]

conjugacy_classes_representatives()

Return a complete list of representatives of conjugacy classes in a permutation group 𝐺.

The ordering is that given by GAP.

EXAMPLES:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: cl = G.conjugacy_classes_representatives(); cl
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3)(2,4)]
sage: cl[3] in G
True

sage: G = SymmetricGroup(5)
sage: G.conjugacy_classes_representatives()
[(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5)]

sage: S = SymmetricGroup(['a','b','c'])
sage: S.conjugacy_classes_representatives()
[(), ('a','b'), ('a','b','c')]

AUTHORS:

• David Joyner and William Stein (2006-01-04)

conjugacy_classes_subgroups()

Return a complete list of representatives of conjugacy classes of subgroups in a permutation group 𝐺.

The ordering is that given by GAP.

EXAMPLES:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: cl = G.conjugacy_classes_subgroups()
sage: cl
[Subgroup generated by [()] of (Permutation Group with generators [(1,2)(3,4),␣
→˓(1,2,3,4)]),
Subgroup generated by [(1,2)(3,4)] of (Permutation Group with generators [(1,
→˓2)(3,4), (1,2,3,4)]),
Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(1,
→˓2)(3,4), (1,2,3,4)]),
Subgroup generated by [(2,4)] of (Permutation Group with generators [(1,2)(3,
→˓4), (1,2,3,4)]),
Subgroup generated by [(1,2)(3,4), (1,4)(2,3)] of (Permutation Group with␣
→˓generators [(1,2)(3,4), (1,2,3,4)]),

(continues on next page)

24.3. Permutation groups 255

Groups, Release 9.8

(continued from previous page)

Subgroup generated by [(2,4), (1,3)(2,4)] of (Permutation Group with␣
→˓generators [(1,2)(3,4), (1,2,3,4)]),
Subgroup generated by [(1,2,3,4), (1,3)(2,4)] of (Permutation Group with␣
→˓generators [(1,2)(3,4), (1,2,3,4)]),
Subgroup generated by [(2,4), (1,2)(3,4), (1,4)(2,3)] of (Permutation Group␣
→˓with generators [(1,2)(3,4), (1,2,3,4)])]

sage: G = SymmetricGroup(3)
sage: G.conjugacy_classes_subgroups()
[Subgroup generated by [()] of (Symmetric group of order 3! as a permutation␣
→˓group),
Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a permutation␣
→˓group),
Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a␣
→˓permutation group),
Subgroup generated by [(2,3), (1,2,3)] of (Symmetric group of order 3! as a␣
→˓permutation group)]

AUTHORS:

• David Joyner (2006-10)

conjugate(g)
Return the group formed by conjugating self with g.

INPUT:

• g - a permutation group element, or an object that converts to a permutation group element, such as a
list of integers or a string of cycles.

OUTPUT:

If self is the group denoted by 𝐻 , then this method computes the group

𝑔−1𝐻𝑔 = {𝑔−1ℎ𝑔|ℎ ∈ 𝐻}

which is the group 𝐻 conjugated by 𝑔.

There are no restrictions on self and g belonging to a common permutation group, and correspondingly,
there is no relationship (such as a common parent) between self and the output group.

EXAMPLES:

sage: G = DihedralGroup(6)
sage: a = PermutationGroupElement("(1,2,3,4)")
sage: G.conjugate(a)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]

The element performing the conjugation can be specified in several ways.

sage: G = DihedralGroup(6)
sage: strng = "(1,2,3,4)"
sage: G.conjugate(strng)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]
sage: G = DihedralGroup(6)
sage: lst = [2,3,4,1]

(continues on next page)

256 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

sage: G.conjugate(lst)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]
sage: G = DihedralGroup(6)
sage: cycles = [(1,2,3,4)]
sage: G.conjugate(cycles)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]

Conjugation is a group automorphism, so conjugate groups will be isomorphic.

sage: G = DiCyclicGroup(6)
sage: G.degree()
11
sage: cycle = [i+1 for i in range(1,11)] + [1]
sage: C = G.conjugate(cycle)
sage: G.is_isomorphic(C)
True

The conjugating element may be from a symmetric group with larger degree than the group being conju-
gated.

sage: G = AlternatingGroup(5)
sage: G.degree()
5
sage: g = "(1,3)(5,6,7)"
sage: H = G.conjugate(g); H
Permutation Group with generators [(1,4,6,3,2), (1,4,6)]
sage: H.degree()
6

The conjugating element is checked.

sage: G = SymmetricGroup(3)
sage: G.conjugate("junk")
Traceback (most recent call last):
...
TypeError: junk does not convert to a permutation group element

construction()

Return the construction of self.

EXAMPLES:

sage: P1 = PermutationGroup([[(1,2)]])
sage: P1.construction()
(PermutationGroupFunctor[(1,2)], Permutation Group with generators [()])

sage: PermutationGroup([]).construction() is None
True

This allows us to perform computations like the following:

sage: P1 = PermutationGroup([[(1,2)]]); p1 = P1.gen()
sage: P2 = PermutationGroup([[(1,3)]]); p2 = P2.gen()

(continues on next page)

24.3. Permutation groups 257

Groups, Release 9.8

(continued from previous page)

sage: p = p1*p2; p
(1,2,3)
sage: p.parent()
Permutation Group with generators [(1,2), (1,3)]
sage: p.parent().domain()
{1, 2, 3}

Note that this will merge permutation groups with different domains:

sage: g1 = PermutationGroupElement([(1,2),(3,4,5)])
sage: g2 = PermutationGroup([('a','b')], domain=['a', 'b']).gens()[0]
sage: g2
('a','b')
sage: p = g1*g2; p
(1,2)(3,4,5)('a','b')
sage: P = parent(p)
sage: P
Permutation Group with generators [('a','b'), (1,2), (1,2,3,4,5)]

cosets(S, side='right')
Return a list of the cosets of S in self.

INPUT:

• S - a subgroup of self. An error is raised if S is not a subgroup.

• side - default: ‘right’ - determines if right cosets or left cosets are returned. side refers to where the
representative is placed in the products forming the cosets and thus allowable values are only ‘right’
and ‘left’.

OUTPUT:

A list of lists. Each inner list is a coset of the subgroup in the group. The first element of each coset is the
smallest element (based on the ordering of the elements of self) of all the group elements that have not yet
appeared in a previous coset. The elements of each coset are in the same order as the subgroup elements
used to build the coset’s elements.

As a consequence, the subgroup itself is the first coset, and its first element is the identity element. For each
coset, the first element listed is the element used as a representative to build the coset. These representatives
form an increasing sequence across the list of cosets, and within a coset the representative is the smallest
element of its coset (both orderings are based on of the ordering of elements of self).

In the case of a normal subgroup, left and right cosets should appear in the same order as part of the outer
list. However, the list of the elements of a particular coset may be in a different order for the right coset
versus the order in the left coset. So, if you check to see if a subgroup is normal, it is necessary to sort each
individual coset first (but not the list of cosets, due to the ordering of the representatives). See below for
examples of this.

Note: This is a naive implementation intended for instructional purposes, and hence is slow for larger
groups. Sage and GAP provide more sophisticated functions for working quickly with cosets of larger
groups.

EXAMPLES:

The default is to build right cosets. This example works with the symmetry group of an 8-gon and a normal
subgroup. Notice that a straight check on the equality of the output is not sufficient to check normality,

258 Chapter 24. Permutation Groups

Groups, Release 9.8

while sorting the individual cosets is sufficient to then simply test equality of the list of lists. Study the
second coset in each list to understand the need for sorting the elements of the cosets.

sage: G = DihedralGroup(8)
sage: quarter_turn = G('(1,3,5,7)(2,4,6,8)'); quarter_turn
(1,3,5,7)(2,4,6,8)
sage: S = G.subgroup([quarter_turn])
sage: rc = G.cosets(S); rc
[[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)],
[(2,8)(3,7)(4,6), (1,7)(2,6)(3,5), (1,5)(2,4)(6,8), (1,3)(4,8)(5,7)],
[(1,2)(3,8)(4,7)(5,6), (1,8)(2,7)(3,6)(4,5), (1,6)(2,5)(3,4)(7,8), (1,4)(2,
→˓3)(5,8)(6,7)],
[(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]]
sage: lc = G.cosets(S, side='left'); lc
[[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)],
[(2,8)(3,7)(4,6), (1,3)(4,8)(5,7), (1,5)(2,4)(6,8), (1,7)(2,6)(3,5)],
[(1,2)(3,8)(4,7)(5,6), (1,4)(2,3)(5,8)(6,7), (1,6)(2,5)(3,4)(7,8), (1,8)(2,
→˓7)(3,6)(4,5)],
[(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]]

sage: S.is_normal(G)
True
sage: rc == lc
False
sage: rc_sorted = [sorted(c) for c in rc]
sage: lc_sorted = [sorted(c) for c in lc]
sage: rc_sorted == lc_sorted
True

An example with the symmetry group of a regular tetrahedron and a subgroup that is not normal. Thus,
the right and left cosets are different (and so are the representatives). With each individual coset sorted, a
naive test of normality is possible.

sage: A = AlternatingGroup(4)
sage: face_turn = A('(1,2,3)'); face_turn
(1,2,3)
sage: stabilizer = A.subgroup([face_turn])
sage: rc = A.cosets(stabilizer, side='right'); rc
[[(), (1,2,3), (1,3,2)],
[(2,3,4), (1,3)(2,4), (1,4,2)],
[(2,4,3), (1,4,3), (1,2)(3,4)],
[(1,2,4), (1,4)(2,3), (1,3,4)]]
sage: lc = A.cosets(stabilizer, side='left'); lc
[[(), (1,2,3), (1,3,2)],
[(2,3,4), (1,2)(3,4), (1,3,4)],
[(2,4,3), (1,2,4), (1,3)(2,4)],
[(1,4,2), (1,4,3), (1,4)(2,3)]]

sage: stabilizer.is_normal(A)
False
sage: rc_sorted = [sorted(c) for c in rc]
sage: lc_sorted = [sorted(c) for c in lc]
sage: rc_sorted == lc_sorted
False

24.3. Permutation groups 259

Groups, Release 9.8

AUTHOR:

• Rob Beezer (2011-01-31)

degree()

Return the degree of this permutation group.

EXAMPLES:

sage: S = SymmetricGroup(['a','b','c'])
sage: S.degree()
3
sage: G = PermutationGroup([(1,3),(4,5)])
sage: G.degree()
5

Note that you can explicitly specify the domain to get a permutation group of smaller degree:

sage: G = PermutationGroup([(1,3),(4,5)], domain=[1,3,4,5])
sage: G.degree()
4

derived_series()

Return the derived series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing.

sage: set_random_seed(0)
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.derived_series()
[Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with␣
→˓generators [(3,4), (1,2,3)(4,5)]),
Subgroup generated by [(1,3,5), (1,5)(3,4), (1,5)(2,4)] of (Permutation Group␣
→˓with generators [(3,4), (1,2,3)(4,5)])]

direct_product(other, maps=True)
Wraps GAP’s DirectProduct, Embedding, and Projection.

Sage calls GAP’s DirectProduct, which chooses an efficient representation for the direct product. The
direct product of permutation groups will be a permutation group again. For a direct product D, the GAP
operation Embedding(D,i) returns the homomorphism embedding the i-th factor into D. The GAP oper-
ation Projection(D,i) gives the projection of D onto the i-th factor. This method returns a 5-tuple: a
permutation group and 4 morphisms.

INPUT:

• self, other - permutation groups

OUTPUT:

• D - a direct product of the inputs, returned as a permutation group as well

• iota1 - an embedding of self into D

• iota2 - an embedding of other into D

• pr1 - the projection of D onto self (giving a splitting 1 - other - D - self - 1)

• pr2 - the projection of D onto other (giving a splitting 1 - self - D - other - 1)

260 Chapter 24. Permutation Groups

Groups, Release 9.8

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: D = G.direct_product(G,False)
sage: D
Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
sage: D,iota1,iota2,pr1,pr2 = G.direct_product(G)
sage: D; iota1; iota2; pr1; pr2
Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
Permutation group morphism:
From: Cyclic group of order 4 as a permutation group
To: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
Defn: Embedding(Group([(1,2,3,4), (5,6,7,8)]), 1)

Permutation group morphism:
From: Cyclic group of order 4 as a permutation group
To: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
Defn: Embedding(Group([(1,2,3,4), (5,6,7,8)]), 2)

Permutation group morphism:
From: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
To: Cyclic group of order 4 as a permutation group
Defn: Projection(Group([(1,2,3,4), (5,6,7,8)]), 1)

Permutation group morphism:
From: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
To: Cyclic group of order 4 as a permutation group
Defn: Projection(Group([(1,2,3,4), (5,6,7,8)]), 2)

sage: g = D([(1,3),(2,4)]); g
(1,3)(2,4)
sage: d = D([(1,4,3,2),(5,7),(6,8)]); d
(1,4,3,2)(5,7)(6,8)
sage: iota1(g); iota2(g); pr1(d); pr2(d)
(1,3)(2,4)
(5,7)(6,8)
(1,4,3,2)
(1,3)(2,4)

domain()

Return the underlying set that this permutation group acts on.

EXAMPLES:

sage: P = PermutationGroup([(1,2),(3,5)])
sage: P.domain()
{1, 2, 3, 4, 5}
sage: S = SymmetricGroup(['a', 'b', 'c'])
sage: S.domain()
{'a', 'b', 'c'}

exponent()

Computes the exponent of the group.

The exponent 𝑒 of a group 𝐺 is the LCM of the orders of its elements, that is, 𝑒 is the smallest integer such
that 𝑔𝑒 = 1 for all 𝑔 ∈ 𝐺.

EXAMPLES:

24.3. Permutation groups 261

Groups, Release 9.8

sage: G = AlternatingGroup(4)
sage: G.exponent()
6

fitting_subgroup()

Return the Fitting subgroup of self.

The Fitting subgroup of a group 𝐺 is the largest nilpotent normal subgroup of 𝐺.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.fitting_subgroup()
Subgroup generated by [(2,4), (1,2,3,4), (1,3)] of (Permutation Group with␣
→˓generators [(2,4), (1,2,3,4)])
sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]])
sage: G.fitting_subgroup()
Subgroup generated by [(1,2)(3,4), (1,3)(2,4)] of (Permutation Group with␣
→˓generators [(1,2), (1,2,3,4)])

fixed_points()

Return the list of points fixed by self, i.e., the subset of .domain() not moved by any element of self.

EXAMPLES:

sage: G = PermutationGroup([(1,2,3)])
sage: G.fixed_points()
[]
sage: G = PermutationGroup([(1,2,3),(5,6)])
sage: G.fixed_points()
[4]
sage: G = PermutationGroup([[(1,4,7)],[(4,3),(6,7)]])
sage: G.fixed_points()
[2, 5]

frattini_subgroup()

Return the Frattini subgroup of self.

The Frattini subgroup of a group 𝐺 is the intersection of all maximal subgroups of 𝐺.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.frattini_subgroup()
Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(2,4),
→˓ (1,2,3,4)])
sage: G = SymmetricGroup(4)
sage: G.frattini_subgroup()
Subgroup generated by [()] of (Symmetric group of order 4! as a permutation␣
→˓group)

gap()

this method from sage.groups.libgap_wrapper.ParentLibGAP is added in order to achieve compati-
bility and have sage.groups.libgap_morphism.GroupHomset_libgap work for permutation groups,
as well

262 Chapter 24. Permutation Groups

Groups, Release 9.8

OUTPUT:

an instance of sage.libs.gap.element.GapElement representing this group

EXAMPLES:

sage: P8=PSp(8,3)
sage: P8.gap()
<permutation group of size 65784756654489600 with 2 generators>
sage: gap(P8) == P8.gap()
False
sage: S3 = SymmetricGroup(3)
sage: S3.gap()
Sym([1 .. 3])
sage: gap(S3) == S3.gap()
False

gen(i=None)
Return the i-th generator of self; that is, the i-th element of the list self.gens().

The argument 𝑖 may be omitted if there is only one generator (but this will raise an error otherwise).

EXAMPLES:

We explicitly construct the alternating group on four elements:

sage: A4 = PermutationGroup([[(1,2,3)],[(2,3,4)]]); A4
Permutation Group with generators [(2,3,4), (1,2,3)]
sage: A4.gens()
((2,3,4), (1,2,3))
sage: A4.gen(0)
(2,3,4)
sage: A4.gen(1)
(1,2,3)
sage: A4.gens()[0]; A4.gens()[1]
(2,3,4)
(1,2,3)

sage: P1 = PermutationGroup([[(1,2)]]); P1.gen()
(1,2)

gens()

Return tuple of generators of this group.

These need not be minimal, as they are the generators used in defining this group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3)], [(1,2)]])
sage: G.gens()
((1,2), (1,2,3))

Note that the generators need not be minimal, though duplicates are removed:

sage: G = PermutationGroup([[(1,2)], [(1,3)], [(2,3)], [(1,2)]])
sage: G.gens()
((2,3), (1,2), (1,3))

24.3. Permutation groups 263

../../../../../../../html/en/reference/libs/sage/libs/gap/element.html#sage.libs.gap.element.GapElement

Groups, Release 9.8

We can use index notation to access the generators returned by self.gens:

sage: G = PermutationGroup([[(1,2,3,4), (5,6)], [(1,2)]])
sage: g = G.gens()
sage: g[0]
(1,2)
sage: g[1]
(1,2,3,4)(5,6)

gens_small()

For this group, returns a generating set which has few elements.

As neither irredundancy nor minimal length is proven, it is fast.

EXAMPLES:

sage: R = "(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)" #
→˓# R = right
sage: U = "(1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)(11,35,27,19)" #
→˓# U = top
sage: L = "(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)" #
→˓# L = left
sage: F = "(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)" #
→˓# F = front
sage: B = "(33,35,40,38)(34,37,39,36)(3, 9,46,32)(2,12,47,29)(1,14,48,27)" #
→˓# B = back or rear
sage: D = "(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)" #
→˓# D = down or bottom
sage: G = PermutationGroup([R,L,U,F,B,D])
sage: len(G.gens_small())
2

The output may be unpredictable, due to the use of randomized algorithms in GAP. Note that both the
following answers are equally valid.

sage: G = PermutationGroup([[('a','b')], [('b', 'c')], [('a', 'c')]])
sage: G.gens_small() # random
[('b','c'), ('a','c','b')] ## (on 64-bit Linux)
[('a','b'), ('a','c','b')] ## (on Solaris)
sage: len(G.gens_small()) == 2
True

group_id()

Return the ID code of this group, which is a list of two integers.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.group_id()
[12, 4]

group_primitive_id()

Return the index of this group in the GAP database of primitive groups.

OUTPUT:

A positive integer, following GAP’s conventions. A ValueError is raised if the group is not primitive.

264 Chapter 24. Permutation Groups

Groups, Release 9.8

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3,4,5)], [(1,5),(2,4)]])
sage: G.group_primitive_id()
2
sage: G.degree()
5

From the information of the degree and the identification number, you can recover the isomorphism class
of your group in the GAP database:

sage: H = PrimitiveGroup(5,2)
sage: G == H
False
sage: G.is_isomorphic(H)
True

has_element(item)

Return whether item is an element of this group - however ignores parentage.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: gens = G.gens()
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)]); g
(1,2,3,4)
sage: G.has_element(g)
doctest:warning
...
DeprecationWarning: G.has_element(g) is deprecated; use :meth:`__contains__`, i.
→˓e., `g in G` instead
See https://trac.sagemath.org/33831 for details.
True
sage: h = H([(1,2),(3,4)]); h
(1,2)(3,4)
sage: G.has_element(h)
False

has_regular_subgroup(return_group=False)
Return whether the group contains a regular subgroup.

INPUT:

• return_group (boolean) – If return_group = True, a regular subgroup is returned if there is one,
and None if there isn’t. When return_group = False (default), only a boolean indicating whether
such a group exists is returned instead.

EXAMPLES:

The symmetric group on 4 elements has a regular subgroup:

sage: S4 = groups.permutation.Symmetric(4)
sage: S4.has_regular_subgroup()
True
sage: S4.has_regular_subgroup(return_group = True) # random

(continues on next page)

24.3. Permutation groups 265

Groups, Release 9.8

(continued from previous page)

Subgroup of (Symmetric group of order 4! as a permutation group) generated by␣
→˓[(1,3)(2,4), (1,4)(2,3)]

But the automorphism group of Petersen’s graph does not:

sage: G = graphs.PetersenGraph().automorphism_group()
sage: G.has_regular_subgroup()
False

holomorph()

The holomorph of a group as a permutation group.

The holomorph of a group 𝐺 is the semidirect product 𝐺o𝑖𝑑 𝐴𝑢𝑡(𝐺), where 𝑖𝑑 is the identity function on
𝐴𝑢𝑡(𝐺), the automorphism group of 𝐺.

See Wikipedia article Holomorph (mathematics)

OUTPUT:

Return the holomorph of a given group as permutation group via a wrapping of GAP’s semidirect product
function.

EXAMPLES:

Thomas and Wood’s ‘Group Tables’ (Shiva Publishing, 1980) tells us that the holomorph of𝐶5 is the unique
group of order 20 with a trivial center.

sage: C5 = CyclicPermutationGroup(5)
sage: A = C5.holomorph()
sage: A.order()
20
sage: A.is_abelian()
False
sage: A.center()
Subgroup generated by [()] of (Permutation Group with generators [(5,6,7,8,9),␣
→˓(1,2,4,3)(6,7,9,8)])
sage: A
Permutation Group with generators [(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]

Noting that the automorphism group of𝐷4 is itself𝐷4, it can easily be shown that the holomorph is indeed
an internal semidirect product of these two groups.

sage: D4 = DihedralGroup(4)
sage: H = D4.holomorph()
sage: H.gens()
((3,8)(4,7), (2,3,5,8), (2,5)(3,8), (1,4,6,7)(2,3,5,8), (1,8)(2,7)(3,6)(4,5))
sage: G = H.subgroup([H.gens()[0],H.gens()[1],H.gens()[2]])
sage: N = H.subgroup([H.gens()[3],H.gens()[4]])
sage: N.is_normal(H)
True
sage: G.is_isomorphic(D4)
True
sage: N.is_isomorphic(D4)
True
sage: G.intersection(N)

(continues on next page)

266 Chapter 24. Permutation Groups

https://en.wikipedia.org/wiki/Holomorph (mathematics)

Groups, Release 9.8

(continued from previous page)

Permutation Group with generators [()]
sage: L = [H(x)*H(y) for x in G for y in N]; L.sort()
sage: L1 = H.list(); L1.sort()
sage: L == L1
True

Author:

• Kevin Halasz (2012-08-14)

homology(n, p=0)
Computes the group homology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0 and 𝐹 = Z/𝑝Z if 𝑝 > 0 is a prime.
Wraps HAP’s GroupHomology function, written by Graham Ellis.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

AUTHORS:

• David Joyner and Graham Ellis

The example below computes𝐻7(𝑆5,Z),𝐻7(𝑆5,Z/2Z),𝐻7(𝑆5,Z/3Z), and𝐻7(𝑆5,Z/5Z), respectively.
To compute the 2-part of 𝐻7(𝑆5,Z), use the homology_part function.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.homology(7) # optional - gap_packages
Multiplicative Abelian group isomorphic to C2 x C2 x C4 x C3 x C5
sage: G.homology(7,2) # optional - gap_packages
Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C2
sage: G.homology(7,3) # optional - gap_packages
Multiplicative Abelian group isomorphic to C3
sage: G.homology(7,5) # optional - gap_packages
Multiplicative Abelian group isomorphic to C5

REFERENCES:

• G. Ellis, “Computing group resolutions”, J. Symbolic Computation. Vol.38, (2004)1077-1118 (Avail-
able at http://hamilton.nuigalway.ie/.

• D. Joyner, “A primer on computational group homology and cohomology”, http://front.math.ucdavis.
edu/0706.0549

homology_part(n, p=0)
Computes the 𝑝-part of the group homology 𝐻𝑛(𝐺,𝐹), where 𝐹 = Z if 𝑝 = 0 and 𝐹 = Z/𝑝Z if 𝑝 > 0 is
a prime. Wraps HAP’s Homology function, written by Graham Ellis, applied to the 𝑝-Sylow subgroup of
𝐺.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.homology_part(7,2) # optional - gap_
→˓packages
Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C4

AUTHORS:

24.3. Permutation groups 267

http://hamilton.nuigalway.ie/
http://front.math.ucdavis.edu/0706.0549
http://front.math.ucdavis.edu/0706.0549

Groups, Release 9.8

• David Joyner and Graham Ellis

id()

(Same as self.group_id().) Return the ID code of this group, which is a list of two integers.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.group_id()
[12, 4]

identity()

Return the identity element of this group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)]])
sage: e = G.identity() # indirect␣
→˓doctest
sage: e
()
sage: g = G.gen(0)
sage: g*e
(1,2,3)(4,5)
sage: e*g
(1,2,3)(4,5)

sage: S = SymmetricGroup(['a','b','c'])
sage: S.identity()
()

intersection(other)
Return the permutation group that is the intersection of self and other.

INPUT:

• other - a permutation group.

OUTPUT:

A permutation group that is the set-theoretic intersection of self with other. The groups are viewed as
subgroups of a symmetric group big enough to contain both group’s symbol sets. So there is no strict notion
of the two groups being subgroups of a common parent.

EXAMPLES:

sage: H = DihedralGroup(4)

sage: K = CyclicPermutationGroup(4)
sage: H.intersection(K)
Permutation Group with generators [(1,2,3,4)]

sage: L = DihedralGroup(5)
sage: H.intersection(L)
Permutation Group with generators [(1,4)(2,3)]

sage: M = PermutationGroup(["()"])
(continues on next page)

268 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

sage: H.intersection(M)
Permutation Group with generators [()]

Some basic properties.

sage: H = DihedralGroup(4)
sage: L = DihedralGroup(5)
sage: H.intersection(L) == L.intersection(H)
True
sage: H.intersection(H) == H
True

The group other is verified as such.

sage: H = DihedralGroup(4)
sage: H.intersection('junk')
Traceback (most recent call last):
...
TypeError: junk is not a permutation group

irreducible_characters()

Return a list of the irreducible characters of self.

EXAMPLES:

sage: irr = SymmetricGroup(3).irreducible_characters()
sage: [x.values() for x in irr]
[[1, -1, 1], [2, 0, -1], [1, 1, 1]]

is_abelian()

Return True if this group is abelian.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_abelian()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_abelian()
True

is_commutative()

Return True if this group is commutative.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_commutative()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_commutative()
True

24.3. Permutation groups 269

Groups, Release 9.8

is_cyclic()

Return True if this group is cyclic.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_cyclic()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_cyclic()
True

is_elementary_abelian()

Return True if this group is elementary abelian. An elementary abelian group is a finite abelian group,
where every nontrivial element has order 𝑝, where 𝑝 is a prime.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_elementary_abelian()
False
sage: G = PermutationGroup(['(1,2,3)','(4,5,6)'])
sage: G.is_elementary_abelian()
True

is_isomorphic(right)
Return True if the groups are isomorphic.

INPUT:

• self - this group

• right - a permutation group

OUTPUT:

• boolean; True if self and right are isomorphic groups; False otherwise.

EXAMPLES:

sage: v = ['(1,2,3)(4,5)', '(1,2,3,4,5)']
sage: G = PermutationGroup(v)
sage: H = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_isomorphic(H)
False
sage: G.is_isomorphic(G)
True
sage: G.is_isomorphic(PermutationGroup(list(reversed(v))))
True

is_monomial()

Return True if the group is monomial. A finite group is monomial if every irreducible complex character
is induced from a linear character of a subgroup.

EXAMPLES:

270 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_monomial()
True

is_nilpotent()

Return True if this group is nilpotent.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_nilpotent()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_nilpotent()
True

is_normal(other)
Return True if this group is a normal subgroup of other.

EXAMPLES:

sage: AlternatingGroup(4).is_normal(SymmetricGroup(4))
True
sage: H = PermutationGroup(['(1,2,3)(4,5)'])
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: H.is_normal(G)
False

is_perfect()

Return True if this group is perfect. A group is perfect if it equals its derived subgroup.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_perfect()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_perfect()
False

is_pgroup()

Return True if this group is a 𝑝-group.

A finite group is a 𝑝-group if its order is of the form 𝑝𝑛 for a prime integer 𝑝 and a nonnegative integer 𝑛.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3,4,5)'])
sage: G.is_pgroup()
True

is_polycyclic()

Return True if this group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors.
(For finite groups, this is the same as if the group is solvable - see is_solvable.)

EXAMPLES:

24.3. Permutation groups 271

Groups, Release 9.8

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_polycyclic()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_polycyclic()
True

is_primitive(domain=None)
Return True if self acts primitively on domain.

A group 𝐺 acts primitively on a set 𝑆 if

1. 𝐺 acts transitively on 𝑆 and

2. the action induces no non-trivial block system on 𝑆.

INPUT:

• domain (optional)

See also:

• blocks_all()

EXAMPLES:

By default, test for primitivity of self on its domain:

sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]])
sage: G.is_primitive()
True
sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.is_primitive()
False

You can specify a domain on which to test primitivity:

sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.is_primitive([1..4])
False
sage: G.is_primitive([1,2,3])
True
sage: G = PermutationGroup([[(3,4,5,6)],[(3,4)]]) #S_4 on [3..6]
sage: G.is_primitive(G.non_fixed_points())
True

is_regular(domain=None)
Return True if self acts regularly on domain.

A group 𝐺 acts regularly on a set 𝑆 if

1. 𝐺 acts transitively on 𝑆 and

2. 𝐺 acts semi-regularly on 𝑆.

EXAMPLES:

272 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G.is_regular()
True
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_regular()
False

You can pass in a domain on which to test regularity:

sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_regular([1..4])
True
sage: G.is_regular(G.non_fixed_points())
False

is_semi_regular(domain=None)
Return True if self acts semi-regularly on domain.

A group 𝐺 acts semi-regularly on a set 𝑆 if the point stabilizers of 𝑆 in 𝐺 are trivial.

domain is optional and may take several forms. See examples.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G.is_semi_regular()
True
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_semi_regular()
False

You can pass in a domain to test semi-regularity:

sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_semi_regular([1..4])
True
sage: G.is_semi_regular(G.non_fixed_points())
False

is_simple()

Return True if the group is simple.

A group is simple if it has no proper normal subgroups.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_simple()
False

is_solvable()

Return True if the group is solvable.

EXAMPLES:

24.3. Permutation groups 273

Groups, Release 9.8

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_solvable()
True

is_subgroup(other)
Return True if self is a subgroup of other.

EXAMPLES:

sage: G = AlternatingGroup(5)
sage: H = SymmetricGroup(5)
sage: G.is_subgroup(H)
True

is_supersolvable()

Return True if the group is supersolvable.

A finite group is supersolvable if it has a normal series with cyclic factors.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_supersolvable()
True

is_transitive(domain=None)
Return True if self acts transitively on domain.

A group 𝐺 acts transitively on set 𝑆 if for all 𝑥, 𝑦 ∈ 𝑆 there is some 𝑔 ∈ 𝐺 such that 𝑥𝑔 = 𝑦.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.is_transitive()
True
sage: G = PermutationGroup(['(1,2)(3,4)(5,6)'])
sage: G.is_transitive()
False

sage: G = PermutationGroup([[(1,2,3,4,5)],[(1,2)]]) #S_5 on [1..5]
sage: G.is_transitive([1,4,5])
True
sage: G.is_transitive([2..6])
False
sage: G.is_transitive(G.non_fixed_points())
True
sage: H = PermutationGroup([[(1,2,3)],[(4,5,6)]])
sage: H.is_transitive(H.non_fixed_points())
False

Note that this differs from the definition in GAP, where IsTransitive returns whether the group is tran-
sitive on the set of points moved by the group.

sage: G = PermutationGroup([(2,3)])
sage: G.is_transitive()

(continues on next page)

274 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

False
sage: gap(G).IsTransitive()
true

isomorphism_to(right)
Return an isomorphism from self to right if the groups are isomorphic, otherwise None.

INPUT:

• self - this group

• right - a permutation group

OUTPUT:

• None or a morphism of permutation groups.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: H = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.isomorphism_to(H) is None
True
sage: G = PermutationGroup([(1,2,3), (2,3)])
sage: H = PermutationGroup([(1,2,4), (1,4)])
sage: G.isomorphism_to(H) # not tested, see below
Permutation group morphism:
From: Permutation Group with generators [(2,3), (1,2,3)]
To: Permutation Group with generators [(1,2,4), (1,4)]
Defn: [(2,3), (1,2,3)] -> [(2,4), (1,2,4)]

isomorphism_type_info_simple_group()

If the group is simple, then this returns the name of the group.

EXAMPLES:

sage: G = CyclicPermutationGroup(5)
sage: G.isomorphism_type_info_simple_group()
rec(
name := "Z(5)",
parameter := 5,
series := "Z",
shortname := "C5")

iteration(algorithm='SGS')
Return an iterator over the elements of this group.

INPUT:

• algorithm – (default: "SGS") either

– "SGS" - using strong generating system

– "BFS" - a breadth first search on the Cayley graph with
respect to self.gens()

– "DFS" - a depth first search on the Cayley graph with
respect to self.gens()

24.3. Permutation groups 275

Groups, Release 9.8

Note: In general, the algorithm "SGS" is faster. Yet, for small groups, "BFS" and "DFS" might be faster.

Note: The order in which the iterator visits the elements differs in the algorithms.

EXAMPLES:

sage: G = PermutationGroup([[(1,2)], [(2,3)]])

sage: list(G.iteration())
[(), (1,2,3), (1,3,2), (2,3), (1,2), (1,3)]

sage: list(G.iteration(algorithm="BFS"))
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

sage: list(G.iteration(algorithm="DFS"))
[(), (1,2), (1,3,2), (1,3), (1,2,3), (2,3)]

largest_moved_point()

Return the largest point moved by a permutation in this group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: G.largest_moved_point()
4
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.largest_moved_point()
10

sage: G = PermutationGroup([[('a','b','c'),('d','e')]])
sage: G.largest_moved_point()
'e'

Warning: The name of this function is not good; this function should be deprecated in term of degree:

sage: P = PermutationGroup([[1,2,3,4]])
sage: P.largest_moved_point()
4
sage: P.cardinality()
1

list()

Return list of all elements of this group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3,4)], [(1,2)]])
sage: G.list()
[(), (1,4)(2,3), (1,2)(3,4), (1,3)(2,4), (2,4,3), (1,4,2),

(continues on next page)

276 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

(1,2,3), (1,3,4), (2,3,4), (1,4,3), (1,2,4), (1,3,2), (3,4),
(1,4,2,3), (1,2), (1,3,2,4), (2,4), (1,4,3,2), (1,2,3,4),
(1,3), (2,3), (1,4), (1,2,4,3), (1,3,4,2)]

sage: G = PermutationGroup([[('a','b')]], domain=('a', 'b')); G
Permutation Group with generators [('a','b')]
sage: G.list()
[(), ('a','b')]

lower_central_series()

Return the lower central series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing.

sage: set_random_seed(0)
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.lower_central_series()
[Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with␣
→˓generators [(3,4), (1,2,3)(4,5)]),
Subgroup generated by [(1,3,5), (1,5)(3,4), (1,5)(2,4)] of (Permutation Group␣
→˓with generators [(3,4), (1,2,3)(4,5)])]

minimal_generating_set()

Return a minimal generating set

EXAMPLES:

sage: g = graphs.CompleteGraph(4)
sage: g.relabel(['a','b','c','d'])
sage: mgs = g.automorphism_group().minimal_generating_set(); len(mgs)
2
sage: mgs # random
[('b','d','c'), ('a','c','b','d')]

molien_series()

Return the Molien series of a permutation group. The function

𝑀(𝑥) = (1/|𝐺|)
∑︁
𝑔∈𝐺

det(1 − 𝑥 * 𝑔)−1

is sometimes called the “Molien series” of 𝐺. GAP’s MolienSeries is associated to a character of a
group 𝐺. How are these related? A group 𝐺, given as a permutation group on 𝑛 points, has a “natural”
representation of dimension 𝑛, given by permutation matrices. The Molien series of𝐺 is the one associated
to that permutation representation of 𝐺 using the above formula. Character values then count fixed points
of the corresponding permutations.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.molien_series()
-1/(x^15 - x^14 - x^13 + x^10 + x^9 + x^8 - x^7 - x^6 - x^5 + x^2 + x - 1)
sage: G = SymmetricGroup(3)

(continues on next page)

24.3. Permutation groups 277

Groups, Release 9.8

(continued from previous page)

sage: G.molien_series()
-1/(x^6 - x^5 - x^4 + x^2 + x - 1)

Some further tests (after trac ticket #15817):

sage: G = PermutationGroup([[(1,2,3,4)]])
sage: S4ms = SymmetricGroup(4).molien_series()
sage: G.molien_series() / S4ms
x^5 + 2*x^4 + x^3 + x^2 + 1

This works for not-transitive groups:

sage: G = PermutationGroup([[(1,2)],[(3,4)]])
sage: G.molien_series() / S4ms
x^4 + x^3 + 2*x^2 + x + 1

This works for groups with fixed points:

sage: G = PermutationGroup([[(2,)]])
sage: G.molien_series()
1/(x^2 - 2*x + 1)

ngens()

Return the number of generators of self.

EXAMPLES:

sage: A4 = PermutationGroup([[(1,2,3)], [(2,3,4)]]); A4
Permutation Group with generators [(2,3,4), (1,2,3)]
sage: A4.ngens()
2

non_fixed_points()

Return the list of points not fixed by self, i.e., the subset of self.domain() moved by some element of
self.

EXAMPLES:

sage: G = PermutationGroup([[(3,4,5)],[(7,10)]])
sage: G.non_fixed_points()
[3, 4, 5, 7, 10]
sage: G = PermutationGroup([[(2,3,6)],[(9,)]]) # note: 9 is fixed
sage: G.non_fixed_points()
[2, 3, 6]

normal_subgroups()

Return the normal subgroups of this group as a (sorted in increasing order) list of permutation groups.

The normal subgroups of 𝐻 = 𝑃𝑆𝐿(2, 7) × 𝑃𝑆𝐿(2, 7) are 1, two copies of 𝑃𝑆𝐿(2, 7) and 𝐻 itself, as
the following example shows.

EXAMPLES:

278 Chapter 24. Permutation Groups

https://trac.sagemath.org/15817

Groups, Release 9.8

sage: G = PSL(2,7)
sage: D = G.direct_product(G)
sage: H = D[0]
sage: NH = H.normal_subgroups()
sage: len(NH)
4
sage: NH[1].is_isomorphic(G)
True
sage: NH[2].is_isomorphic(G)
True

normalizer(g)
Return the normalizer of g in self.

EXAMPLES:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: g = G([(1,3)])
sage: G.normalizer(g)
Subgroup generated by [(2,4), (1,3)] of (Permutation Group with generators [(1,
→˓2)(3,4), (1,2,3,4)])
sage: g = G([(1,2,3,4)])
sage: G.normalizer(g)
Subgroup generated by [(2,4), (1,2,3,4), (1,3)(2,4)] of (Permutation Group with␣
→˓generators [(1,2)(3,4), (1,2,3,4)])
sage: H = G.subgroup([G([(1,2,3,4)])])
sage: G.normalizer(H)
Subgroup generated by [(2,4), (1,2,3,4), (1,3)(2,4)] of (Permutation Group with␣
→˓generators [(1,2)(3,4), (1,2,3,4)])

normalizes(other)
Return True if the group other is normalized by self.

Wraps GAP’s IsNormal function.

A group 𝐺 normalizes a group 𝑈 if and only if for every 𝑔 ∈ 𝐺 and 𝑢 ∈ 𝑈 the element 𝑢𝑔 is a member of
𝑈 . Note that 𝑈 need not be a subgroup of 𝐺.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: H = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: H.normalizes(G)
False
sage: G = SymmetricGroup(3)
sage: H = PermutationGroup([(4,5,6)])
sage: G.normalizes(H)
True
sage: H.normalizes(G)
True

In the last example, 𝐺 and 𝐻 are disjoint, so each normalizes the other.

one()

Return the identity element of this group.

24.3. Permutation groups 279

Groups, Release 9.8

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)]])
sage: e = G.identity() # indirect␣
→˓doctest
sage: e
()
sage: g = G.gen(0)
sage: g*e
(1,2,3)(4,5)
sage: e*g
(1,2,3)(4,5)

sage: S = SymmetricGroup(['a','b','c'])
sage: S.identity()
()

orbit(point, action='OnPoints')
Return the orbit of a point under a group action.

INPUT:

• point – can be a point or any of the list above, depending on the action to be considered.

• action – string. if point is an element from the domain, a tuple of elements of the domain, a tuple
of tuples [. . .], this variable describes how the group is acting.

The actions currently available through this method are "OnPoints", "OnTuples", "OnSets",
"OnPairs", "OnSetsSets", "OnSetsDisjointSets", "OnSetsTuples", "OnTuplesSets",
"OnTuplesTuples". They are taken from GAP’s list of group actions, see gap.help('Group
Actions').

It is set to "OnPoints" by default. See below for examples.

OUTPUT:

The orbit of point as a tuple. Each entry is an image under the action of the permutation group, if necessary
converted to the corresponding container. That is, if action='OnSets' then each entry will be a set even
if point was given by a list/tuple/iterable.

EXAMPLES:

sage: G = PermutationGroup([[(3,4)], [(1,3)]])
sage: G.orbit(3)
(3, 4, 1)
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.orbit(3)
(3, 4, 10, 1, 2)
sage: G = PermutationGroup([[('c','d')], [('a','c')]])
sage: G.orbit('a')
('a', 'c', 'd')

Action of 𝑆3 on sets:

sage: S3 = groups.permutation.Symmetric(3)
sage: S3.orbit((1,2), action = "OnSets")
({1, 2}, {2, 3}, {1, 3})

280 Chapter 24. Permutation Groups

Groups, Release 9.8

On tuples:

sage: S3.orbit((1,2), action = "OnTuples")
((1, 2), (2, 3), (2, 1), (3, 1), (1, 3), (3, 2))

Action of 𝑆4 on sets of disjoint sets:

sage: S4 = groups.permutation.Symmetric(4)
sage: O = S4.orbit(((1,2),(3,4)), action="OnSetsDisjointSets")
sage: {1, 2} in O[0] and {3, 4} in O[0]
True
sage: {1, 4} in O[1] and {2, 3} in O[1]
True
sage: all(x[0].union(x[1]) == {1,2,3,4} for x in O)
True

Action of 𝑆4 (on a nonstandard domain) on tuples of sets:

sage: S4 = PermutationGroup([[('c','d')], [('a','c')], [('a','b')]])
sage: orb = S4.orbit((('a','c'),('b','d')),"OnTuplesSets")
sage: expect = (({'a', 'c'}, {'b', 'd'}), ({'a', 'd'}, {'c', 'b'}),
....: ({'c', 'b'}, {'a', 'd'}), ({'b', 'd'}, {'a', 'c'}),
....: ({'c', 'd'}, {'a', 'b'}), ({'a', 'b'}, {'c', 'd'}))
sage: expect == orb
True

Action of 𝑆4 (on a very nonstandard domain) on tuples of sets:

sage: S4 = PermutationGroup([[((11,(12,13)),'d')],
....: [((12,(12,11)),(11,(12,13)))], [((12,(12,11)),'b')]])
sage: orb = S4.orbit((((11,(12,13)), (12,(12,11))),('b','d')),"OnTuplesSets")
sage: expect = (({(11, (12, 13)), (12, (12, 11))}, {'b', 'd'}),
....: ({'d', (12, (12, 11))}, {(11, (12, 13)), 'b'}),
....: ({(11, (12, 13)), 'b'}, {'d', (12, (12, 11))}),
....: ({(11, (12, 13)), 'd'}, {'b', (12, (12, 11))}),
....: ({'b', 'd'}, {(11, (12, 13)), (12, (12, 11))}),
....: ({'b', (12, (12, 11))}, {(11, (12, 13)), 'd'}))
sage: all(x in orb for x in expect) and len(orb) == len(expect)
True

orbits()

Return the orbits of the elements of the domain under the default group action.

EXAMPLES:

sage: G = PermutationGroup([[(3,4)], [(1,3)]])
sage: G.orbits()
((1, 3, 4), (2,))
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.orbits()
((1, 2, 3, 4, 10), (5,), (6,), (7,), (8,), (9,))

sage: G = PermutationGroup([[('c','d')], [('a','c')],[('b',)]])
sage: G.orbits()
(('a', 'c', 'd'), ('b',))

24.3. Permutation groups 281

Groups, Release 9.8

The answer is cached:

sage: G.orbits() is G.orbits()
True

AUTHORS:

• Nathan Dunfield

order()

Return the number of elements of this group. See also: G.degree()

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.order()
12
sage: G = PermutationGroup([()])
sage: G.order()
1
sage: G = PermutationGroup([])
sage: G.order()
1

cardinality is just an alias:

sage: PermutationGroup([(1,2,3)]).cardinality()
3

poincare_series(p=2, n=10)
Return the Poincaré series of 𝐺 mod 𝑝 (𝑝 ≥ 2 must be a prime), for 𝑛 large.

In other words, if you input a finite group 𝐺, a prime 𝑝, and a positive integer 𝑛, it returns a quotient of
polynomials 𝑓(𝑥) = 𝑃 (𝑥)/𝑄(𝑥) whose coefficient of 𝑥𝑘 equals the rank of the vector space𝐻𝑘(𝐺,Z/𝑝Z),
for all 𝑘 in the range 1 ≤ 𝑘 ≤ 𝑛.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.poincare_series(2,10) # optional - gap_
→˓packages
(x^2 + 1)/(x^4 - x^3 - x + 1)
sage: G = SymmetricGroup(3)
sage: G.poincare_series(2,10) # optional - gap_
→˓packages
-1/(x - 1)

AUTHORS:

• David Joyner and Graham Ellis

quotient(N, **kwds)
Return the quotient of this permutation group by the normal subgroup 𝑁 , as a permutation group.

Further named arguments are passed to the permutation group constructor.

Wraps the GAP operator “/”.

282 Chapter 24. Permutation Groups

Groups, Release 9.8

EXAMPLES:

sage: G = PermutationGroup([(1,2,3), (2,3)])
sage: N = PermutationGroup([(1,2,3)])
sage: G.quotient(N)
Permutation Group with generators [(1,2)]
sage: G.quotient(G)
Permutation Group with generators [()]

random_element()

Return a random element of this group.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: a = G.random_element()
sage: a in G
True
sage: a.parent() is G
True
sage: a^6
()

representative_action(x, y)
Return an element of self that maps 𝑥 to 𝑦 if it exists.

This method wraps the gap function RepresentativeAction, which can also return elements that map a
given set of points on another set of points.

INPUT:

• x,y – two elements of the domain.

EXAMPLES:

sage: G = groups.permutation.Cyclic(14)
sage: g = G.representative_action(1,10)
sage: all(g(x) == 1+((x+9-1)%14) for x in G.domain())
True

semidirect_product(N, mapping, check=True)
The semidirect product of self with N.

INPUT:

• N - A group which is acted on by self and naturally embeds as a normal subgroup of the returned
semidirect product.

• mapping - A pair of lists that together define a homomorphism, 𝜑 : self → Aut(N), by giving, in the
second list, the images of the generators of self in the order given in the first list.

• check - A boolean that, if set to False, will skip the initial tests which are made on mapping. This
may be beneficial for large N, since in such cases the injectivity test can be expensive. Set to True by
default.

OUTPUT:

The semidirect product of self and N defined by the action of self on N given in mapping (note that a
homomorphism from A to the automorphism group of B is equivalent to an action of A on the B’s underlying

24.3. Permutation groups 283

Groups, Release 9.8

set). The semidirect product of two groups, 𝐻 and 𝑁 , is a construct similar to the direct product in so far
as the elements are the Cartesian product of the elements of 𝐻 and the elements of 𝑁 . The operation,
however, is built upon an action of 𝐻 on 𝑁 , and is defined as such:

(ℎ1, 𝑛1)(ℎ2, 𝑛2) = (ℎ1ℎ2, 𝑛
ℎ2
1 𝑛2)

This function is a wrapper for GAP’s SemidirectProduct command. The permutation group returned is
built upon a permutation representation of the semidirect product of self and N on a set of size | 𝑁 |. The
generators of N are given as their right regular representations, while the generators of self are defined
by the underlying action of self on N. It should be noted that the defining action is not always faithful,
and in this case the inputted representations of the generators of self are placed on additional letters and
adjoined to the output’s generators of self.

EXAMPLES:

Perhaps the most common example of a semidirect product comes from the family of dihedral groups. Each
dihedral group is the semidirect product of 𝐶2 with 𝐶𝑛, where, by convention, 3 ≤ 𝑛. In this case, the
nontrivial element of 𝐶2 acts on 𝐶𝑛 so as to send each element to its inverse.

sage: C2 = CyclicPermutationGroup(2)
sage: C8 = CyclicPermutationGroup(8)
sage: alpha = PermutationGroupMorphism_im_gens(C8,C8,[(1,8,7,6,5,4,3,2)])
sage: S = C2.semidirect_product(C8,[[(1,2)],[alpha]])
sage: S == DihedralGroup(8)
False
sage: S.is_isomorphic(DihedralGroup(8))
True
sage: S.gens()
((3,4,5,6,7,8,9,10), (1,2)(4,10)(5,9)(6,8))

A more complicated example can be drawn from [TW1980]. It is there given that a semidirect product of
𝐷4 and 𝐶3 is isomorphic to one of 𝐶2 and the dicyclic group of order 12. This nonabelian group of order
24 has very similar structure to the dicyclic and dihedral groups of order 24, the three being the only groups
of order 24 with a two-element center and 9 conjugacy classes.

sage: D4 = DihedralGroup(4)
sage: C3 = CyclicPermutationGroup(3)
sage: alpha1 = PermutationGroupMorphism_im_gens(C3,C3,[(1,3,2)])
sage: alpha2 = PermutationGroupMorphism_im_gens(C3,C3,[(1,2,3)])
sage: S1 = D4.semidirect_product(C3,[[(1,2,3,4),(1,3)],[alpha1,alpha2]])
sage: C2 = CyclicPermutationGroup(2)
sage: Q = DiCyclicGroup(3)
sage: a = Q.gens()[0]; b=Q.gens()[1].inverse()
sage: alpha = PermutationGroupMorphism_im_gens(Q,Q,[a,b])
sage: S2 = C2.semidirect_product(Q,[[(1,2)],[alpha]])
sage: S1.is_isomorphic(S2)
True
sage: S1.is_isomorphic(DihedralGroup(12))
False
sage: S1.is_isomorphic(DiCyclicGroup(6))
False
sage: S1.center()
Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(5,6,
→˓7), (1,2,3,4)(6,7), (1,3)])
sage: len(S1.conjugacy_classes_representatives())
9

284 Chapter 24. Permutation Groups

Groups, Release 9.8

If your normal subgroup is large, and you are confident that your inputs will successfully create a semidirect
product, then it is beneficial, for the sake of time efficiency, to set the check parameter to False.

sage: C2 = CyclicPermutationGroup(2)
sage: C2000 = CyclicPermutationGroup(500)
sage: alpha = PermutationGroupMorphism(C2000,C2000,[C2000.gen().inverse()])
sage: S = C2.semidirect_product(C2000,[[(1,2)],[alpha]],check=False)

AUTHOR:

• Kevin Halasz (2012-8-12)

sign_representation(base_ring=None, side='twosided')
Return the sign representation of self over base_ring.

INPUT:

• base_ring – (optional) the base ring; the default is Z

• side – ignored

EXAMPLES:

sage: G = groups.permutation.Dihedral(4)
sage: G.sign_representation()
Sign representation of Dihedral group of order 8
as a permutation group over Integer Ring

smallest_moved_point()

Return the smallest point moved by a permutation in this group.

EXAMPLES:

sage: G = PermutationGroup([[(3,4)], [(2,3,4)]])
sage: G.smallest_moved_point()
2
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.smallest_moved_point()
1

Note that this function uses the ordering from the domain:

sage: S = SymmetricGroup(['a','b','c'])
sage: S.smallest_moved_point()
'a'

socle()

Return the socle of self.

The socle of a group 𝐺 is the subgroup generated by all minimal normal subgroups.

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: G.socle()
Subgroup generated by [(1,2)(3,4), (1,4)(2,3)] of (Symmetric group of order 4!␣
→˓as a permutation group)
sage: G.socle().socle()

(continues on next page)

24.3. Permutation groups 285

Groups, Release 9.8

(continued from previous page)

Subgroup generated by [(1,2)(3,4), (1,4)(2,3)] of (Subgroup generated by [(1,
→˓2)(3,4), (1,4)(2,3)] of (Symmetric group of order 4! as a permutation group))

solvable_radical()

Return the solvable radical of self.

The solvable radical (or just radical) of a group 𝐺 is the largest solvable normal subgroup of 𝐺.

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: G.solvable_radical()
Subgroup generated by [(1,2), (1,2,3,4)] of (Symmetric group of order 4! as a␣
→˓permutation group)
sage: G = SymmetricGroup(5)
sage: G.solvable_radical()
Subgroup generated by [()] of (Symmetric group of order 5! as a permutation␣
→˓group)

stabilizer(point, action='OnPoints')
Return the subgroup of self which stabilize the given position. self and its stabilizers must have same
degree.

INPUT:

• point – a point of the domain(), or a set of points depending on the value of action.

• action (string; default "OnPoints") – should the group be considered to act on points
(action="OnPoints") or on sets of points (action="OnSets") ? In the latter case, the first ar-
gument must be a subset of domain().

EXAMPLES:

sage: G = PermutationGroup([[(3,4)], [(1,3)]])
sage: G.stabilizer(1)
Subgroup generated by [(3,4)] of (Permutation Group with generators [(3,4), (1,
→˓3)])
sage: G.stabilizer(3)
Subgroup generated by [(1,4)] of (Permutation Group with generators [(3,4), (1,
→˓3)])

The stabilizer of a set of points:

sage: s10 = groups.permutation.Symmetric(10)
sage: s10.stabilizer([1..3],"OnSets").cardinality()
30240
sage: factorial(3)*factorial(7)
30240

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.stabilizer(10)
Subgroup generated by [(2,3,4), (1,2)(3,4)] of (Permutation Group with␣
→˓generators [(1,2)(3,4), (1,2,3,4,10)])
sage: G.stabilizer(1)
Subgroup generated by [(2,3)(4,10), (2,10,3)] of (Permutation Group with␣

(continues on next page)

286 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

→˓generators [(1,2)(3,4), (1,2,3,4,10)])
sage: G = PermutationGroup([[(2,3,4)],[(6,7)]])
sage: G.stabilizer(1)
Subgroup generated by [(6,7), (2,3,4)] of (Permutation Group with generators␣
→˓[(6,7), (2,3,4)])
sage: G.stabilizer(2)
Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,
→˓3,4)])
sage: G.stabilizer(3)
Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,
→˓3,4)])
sage: G.stabilizer(4)
Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,
→˓3,4)])
sage: G.stabilizer(5)
Subgroup generated by [(6,7), (2,3,4)] of (Permutation Group with generators␣
→˓[(6,7), (2,3,4)])
sage: G.stabilizer(6)
Subgroup generated by [(2,3,4)] of (Permutation Group with generators [(6,7),␣
→˓(2,3,4)])
sage: G.stabilizer(7)
Subgroup generated by [(2,3,4)] of (Permutation Group with generators [(6,7),␣
→˓(2,3,4)])
sage: G.stabilizer(8)
Traceback (most recent call last):
...
ValueError: 8 does not belong to the domain

sage: G = PermutationGroup([[('c','d')], [('a','c')]], domain='abcd')
sage: G.stabilizer('a')
Subgroup generated by [('c','d')] of (Permutation Group with generators [('c','d
→˓'), ('a','c')])
sage: G.stabilizer('b')
Subgroup generated by [('c','d'), ('a','c')] of (Permutation Group with␣
→˓generators [('c','d'), ('a','c')])
sage: G.stabilizer('c')
Subgroup generated by [('a','d')] of (Permutation Group with generators [('c','d
→˓'), ('a','c')])
sage: G.stabilizer('d')
Subgroup generated by [('a','c')] of (Permutation Group with generators [('c','d
→˓'), ('a','c')])

strong_generating_system(base_of_group=None, implementation='sage')
Return a Strong Generating System of self according the given base for the right action of self on itself.

base_of_group is a list of the positions on which self acts, in any order. The algorithm returns a list
of transversals and each transversal is a list of permutations. By default, base_of_group is [1, 2, 3,
..., d] where 𝑑 is the degree of the group.

For base_of_group = [pos1,pos2, . . . ,pos𝑑] let 𝐺𝑖 be the subgroup of 𝐺 = self which stabilizes
pos1,pos2, . . . ,pos𝑖, so

𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ 𝐺2 ⊃ · · · ⊃ 𝐺𝑛 = {𝑒}

24.3. Permutation groups 287

Groups, Release 9.8

Then the algorithm returns [𝐺𝑖.transversals(pos𝑖+1)]1≤𝑖≤𝑛

INPUT:

• base_of_group (optional) – (default: [1, 2, 3, ..., d]) a list containing the integers 1, 2, . . . , 𝑑
in any order, where 𝑑 is the degree of self

• implementation – (default: "sage") either

– "sage" - use the direct implementation in Sage

– "gap" - if used, the base_of_group must be None
and the computation is directly performed in GAP

OUTPUT:

A list of lists of permutations from the group, which form a strong generating system.

Warning: The outputs for implementations "sage" and "gap" differ: First, the output is reversed,
and second, it might be that "sage" does not contain the trivial subgroup while "gap" does.

Also, both algorithms might yield different results based on the order in which base_of_group is given
in the first situation.

EXAMPLES:

sage: G = PermutationGroup([[(7,8)],[(3,4)],[(4,5)]])
sage: G.strong_generating_system()
[[()], [()], [(), (3,4), (3,5,4)], [(), (4,5)], [()], [()], [(), (7,8)], [()]]
sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]])
sage: G.strong_generating_system()
[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)],
[(), (2,4), (2,3,4)], [(), (3,4)], [()]]
sage: G = PermutationGroup([[(1,2,3)],[(4,5,7)],[(1,4,6)]])
sage: G.strong_generating_system()
[[(), (1,2,3), (1,4,6), (1,3,2), (1,5,7,4,6), (1,6,4), (1,7,5,4,6)],
[(), (2,3,6), (2,6,3), (2,7,5,6,3), (2,5,6,3)(4,7), (2,4,5,6,3)],
[(), (3,5,6), (3,4,7,5,6), (3,6)(5,7), (3,7,4,5,6)],
[(), (4,7,5), (4,5,7), (4,6,7)],
[(), (5,6,7), (5,7,6)], [()], [()]]
sage: G = PermutationGroup([[(1,2,3)],[(2,3,4)],[(3,4,5)]])
sage: G.strong_generating_system([5,4,3,2,1])
[[(), (1,5,3,4,2), (1,5,4,3,2), (1,5)(2,3), (1,5,2)],
[(1,4)(2,3), (1,4,3), (1,4,2), ()],
[(1,2,3), (1,3,2), ()], [()], [()]]
sage: G = PermutationGroup([[(3,4)]])
sage: G.strong_generating_system()
[[()], [()], [(), (3,4)], [()]]
sage: G.strong_generating_system(base_of_group=[3,1,2,4])
[[(), (3,4)], [()], [()], [()]]
sage: G = TransitiveGroup(12,17)
sage: G.strong_generating_system()
[[(), (1,4,11,2)(3,6,5,8)(7,10,9,12), (1,8,3,2)(4,11,10,9)(5,12,7,6),
(1,7)(2,8)(3,9)(4,10)(5,11)(6,12), (1,12,7,2)(3,10,9,8)(4,11,6,5),
(1,11)(2,8)(3,5)(4,10)(6,12)(7,9), (1,10,11,8)(2,3,12,5)(4,9,6,7),
(1,3)(2,8)(4,10)(5,7)(6,12)(9,11), (1,2,3,8)(4,9,10,11)(5,6,7,12),

(continues on next page)

288 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

(1,6,7,8)(2,3,4,9)(5,10,11,12), (1,5,9)(3,11,7), (1,9,5)(3,7,11)],
[(), (2,6,10)(4,12,8), (2,10,6)(4,8,12)],
[()], [()], [()], [()], [()], [()], [()], [()], [()], [()]]

sage: A = PermutationGroup([(1,2),(1,2,3,4,5,6,7,8,9)])
sage: X = A.strong_generating_system()
sage: Y = A.strong_generating_system(implementation="gap")
sage: [len(x) for x in X]
[9, 8, 7, 6, 5, 4, 3, 2, 1]
sage: [len(y) for y in Y]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

structure_description(G, latex=False)
Return a string that tries to describe the structure of G.

This methods wraps GAP’s StructureDescription method.

For full details, including the form of the returned string and the algorithm to build it, see GAP’s documen-
tation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

• string

Warning: From GAP’s documentation: The string returned by StructureDescription is not an
isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic
groups in different representations can produce different strings.

EXAMPLES:

sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()
'C6'
sage: G.structure_description(latex=True)
'C_{6}'
sage: G2 = G.direct_product(G, maps=False)
sage: LatexExpr(G2.structure_description(latex=True))
C_{6} \times C_{6}

This method is mainly intended for small groups or groups with few normal subgroups. Even then there
are some surprises:

sage: D3 = DihedralGroup(3)
sage: D3.structure_description()
'S3'

We use the Sage notation for the degree of dihedral groups:

24.3. Permutation groups 289

https://www.gap-system.org/Manuals/doc/ref/chap39.html
https://www.gap-system.org/Manuals/doc/ref/chap39.html

Groups, Release 9.8

sage: D4 = DihedralGroup(4)
sage: D4.structure_description()
'D4'

Works for finitely presented groups (trac ticket #17573):

sage: F.<x, y> = FreeGroup()
sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description()
'C7'

And matrix groups (trac ticket #17573):

sage: groups.matrix.GL(4,2).structure_description()
'A8'

subgroup(gens=None, gap_group=None, domain=None, category=None, canonicalize=True, check=True)
Wraps the PermutationGroup_subgroup constructor. The argument gens is a list of elements of self.

EXAMPLES:

sage: G = PermutationGroup([(1,2,3),(3,4,5)])
sage: g = G((1,2,3))
sage: G.subgroup([g])
Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(3,4,5),␣
→˓(1,2,3)])

subgroups()

Return a list of all the subgroups of self.

OUTPUT:

Each possible subgroup of self is contained once in the returned list. The list is in order, according to
the size of the subgroups, from the trivial subgroup with one element on through up to the whole group.
Conjugacy classes of subgroups are contiguous in the list.

Warning: For even relatively small groups this method can take a very long time to execute, or create
vast amounts of output. Likely both. Its purpose is instructional, as it can be useful for studying small
groups. The 156 subgroups of the full symmetric group on 5 symbols of order 120, 𝑆5, can be computed
in about a minute on commodity hardware in 2011. The 64 subgroups of the cyclic group of order
30030 = 2 · 3 · 5 · 7 · 11 · 13 takes about twice as long.

For faster results, which still exhibit the structure of the possible subgroups, use
conjugacy_classes_subgroups().

EXAMPLES:

sage: G = SymmetricGroup(3)
sage: G.subgroups()
[Subgroup generated by [()] of (Symmetric group of order 3! as a permutation␣
→˓group),
Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a permutation␣
→˓group),
Subgroup generated by [(1,2)] of (Symmetric group of order 3! as a permutation␣

(continues on next page)

290 Chapter 24. Permutation Groups

https://trac.sagemath.org/17573
https://trac.sagemath.org/17573

Groups, Release 9.8

(continued from previous page)

→˓group),
Subgroup generated by [(1,3)] of (Symmetric group of order 3! as a permutation␣
→˓group),
Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a␣
→˓permutation group),
Subgroup generated by [(2,3), (1,2,3)] of (Symmetric group of order 3! as a␣
→˓permutation group)]

sage: G = CyclicPermutationGroup(14)
sage: G.subgroups()
[Subgroup generated by [()] of (Cyclic group of order 14 as a permutation␣
→˓group),
Subgroup generated by [(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)] of (Cyclic␣
→˓group of order 14 as a permutation group),
Subgroup generated by [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)] of (Cyclic group␣
→˓of order 14 as a permutation group),
Subgroup generated by [(1,2,3,4,5,6,7,8,9,10,11,12,13,14), (1,3,5,7,9,11,13)(2,
→˓4,6,8,10,12,14)] of (Cyclic group of order 14 as a permutation group)]

AUTHOR:

• Rob Beezer (2011-01-24)

sylow_subgroup(p)
Return a Sylow 𝑝-subgroup of the finite group 𝐺, where 𝑝 is a prime.

This is a 𝑝-subgroup of 𝐺 whose index in 𝐺 is coprime to 𝑝.

Wraps the GAP function SylowSubgroup.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)', '(2,3)'])
sage: G.sylow_subgroup(2)
Subgroup generated by [(2,3)] of (Permutation Group with generators [(2,3), (1,
→˓2,3)])
sage: G.sylow_subgroup(5)
Subgroup generated by [()] of (Permutation Group with generators [(2,3), (1,2,
→˓3)])

transversals(point)
If G is a permutation group acting on the set𝑋 = {1, 2,, 𝑛} and H is the stabilizer subgroup of <integer>,
a right (respectively left) transversal is a set containing exactly one element from each right (respectively
left) coset of H. This method returns a right transversal of self by the stabilizer of self on <integer>
position.

EXAMPLES:

sage: G = PermutationGroup([[(3,4)], [(1,3)]])
sage: G.transversals(1)
[(), (1,3,4), (1,4,3)]
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.transversals(1)
[(), (1,2)(3,4), (1,3,2,10,4), (1,4,2,10,3), (1,10,4,3,2)]

(continues on next page)

24.3. Permutation groups 291

Groups, Release 9.8

(continued from previous page)

sage: G = PermutationGroup([[('c','d')], [('a','c')]])
sage: G.transversals('a')
[(), ('a','c','d'), ('a','d','c')]

trivial_character()

Return the trivial character of self.

EXAMPLES:

sage: SymmetricGroup(3).trivial_character()
Character of Symmetric group of order 3! as a permutation group

upper_central_series()

Return the upper central series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing:

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.upper_central_series()
[Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,
→˓3)(4,5)])]

class sage.groups.perm_gps.permgroup.PermutationGroup_subgroup(ambient, gens=None,
gap_group=None, domain=None,
category=None,
canonicalize=True, check=True)

Bases: PermutationGroup_generic

Subgroup subclass of PermutationGroup_generic, so instance methods are inherited.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: gens = G.gens()
sage: H = DihedralGroup(4)
sage: H.subgroup(gens)
Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a permutation␣
→˓group)
sage: K = H.subgroup(gens)
sage: K.list()
[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)]
sage: K.ambient_group()
Dihedral group of order 8 as a permutation group
sage: K.gens()
((1,2,3,4),)

ambient_group()

Return the ambient group related to self.

EXAMPLES:

An example involving the dihedral group on four elements, 𝐷8:

292 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: G = DihedralGroup(4)
sage: H = CyclicPermutationGroup(4)
sage: gens = H.gens()
sage: S = PermutationGroup_subgroup(G, list(gens))
sage: S.ambient_group()
Dihedral group of order 8 as a permutation group
sage: S.ambient_group() == G
True

is_normal(other=None)
Return True if this group is a normal subgroup of other. If other is not specified, then it is assumed to
be the ambient group.

EXAMPLES:

sage: S = SymmetricGroup(['a','b','c'])
sage: H = S.subgroup([('a', 'b', 'c')]); H
Subgroup generated by [('a','b','c')] of (Symmetric group of order 3! as a␣
→˓permutation group)
sage: H.is_normal()
True

sage.groups.perm_gps.permgroup.direct_product_permgroups(P)
Takes the direct product of the permutation groups listed in P.

EXAMPLES:

sage: G1 = AlternatingGroup([1,2,4,5])
sage: G2 = AlternatingGroup([3,4,6,7])
sage: D = direct_product_permgroups([G1,G2,G1])
sage: D.order()
1728
sage: D = direct_product_permgroups([G1])
sage: D == G1
True
sage: direct_product_permgroups([])
Symmetric group of order 0! as a permutation group

sage.groups.perm_gps.permgroup.from_gap_list(G, src)
Convert a string giving a list of GAP permutations into a list of elements of G.

EXAMPLES:

sage: from sage.groups.perm_gps.permgroup import from_gap_list
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: L = from_gap_list(G, "[(1,2,3)(4,5), (3,4)]"); L
[(1,2,3)(4,5), (3,4)]
sage: L[0].parent() is G
True
sage: L[1].parent() is G
True

sage.groups.perm_gps.permgroup.hap_decorator(f)
A decorator for permutation group methods that require HAP. It checks to see that HAP is installed as well as
checks that the argument p is either 0 or prime.

24.3. Permutation groups 293

Groups, Release 9.8

EXAMPLES:

sage: from sage.groups.perm_gps.permgroup import hap_decorator
sage: def foo(self, n, p=0): print("Done")
sage: foo = hap_decorator(foo)
sage: foo(None, 3) #optional - gap_packages
Done
sage: foo(None, 3, 0) # optional - gap_packages
Done
sage: foo(None, 3, 5) # optional - gap_packages
Done
sage: foo(None, 3, 4) #optional - gap_packages
Traceback (most recent call last):
...
ValueError: p must be 0 or prime

sage.groups.perm_gps.permgroup.load_hap()

Load the GAP hap package into the default GAP interpreter interface.

EXAMPLES:

sage: sage.groups.perm_gps.permgroup.load_hap() # optional - gap_packages

24.4 “Named” Permutation groups (such as the symmetric group,
S_n)

You can construct the following permutation groups:

– SymmetricGroup, 𝑆𝑛 of order 𝑛! (n can also be a list 𝑋 of distinct
positive integers, in which case it returns 𝑆𝑋)

– AlternatingGroup, 𝐴𝑛 of order 𝑛!/2 (n can also be a list 𝑋
of distinct positive integers, in which case it returns 𝐴𝑋)

– DihedralGroup, 𝐷𝑛 of order 2𝑛

– GeneralDihedralGroup, 𝐷𝑖ℎ(𝐺), where G is an abelian group

– CyclicPermutationGroup, 𝐶𝑛 of order 𝑛

– DiCyclicGroup, nonabelian groups of order 4𝑚 with a unique element of order 2

– TransitiveGroup, 𝑛𝑡ℎ transitive group of degree 𝑑
from the GAP tables of transitive groups

– TransitiveGroups(d), TransitiveGroups(), set of all of the above

– PrimitiveGroup, 𝑛𝑡ℎ primitive group of degree 𝑑
from the GAP tables of primitive groups

– PrimitiveGroups(d), PrimitiveGroups(), set of all of the above

– MathieuGroup(degree), Mathieu group of degree 9, 10, 11, 12, 21, 22, 23, or 24.

– KleinFourGroup, subgroup of 𝑆4 of order 4 which is not 𝐶2 × 𝐶2

– QuaternionGroup, non-abelian group of order 8, {±1,±𝐼,±𝐽,±𝐾}

– SplitMetacyclicGroup, nonabelian groups of order 𝑝𝑚 with cyclic subgroups of index p

294 Chapter 24. Permutation Groups

Groups, Release 9.8

– SemidihedralGroup, nonabelian 2-groups with cyclic subgroups of index 2

– PGL(n,q), projective general linear group of 𝑛× 𝑛 matrices over
the finite field GF(q)

– PSL(n,q), projective special linear group of 𝑛× 𝑛 matrices over
the finite field GF(q)

– PSp(2n,q), projective symplectic linear group of 2𝑛× 2𝑛 matrices
over the finite field GF(q)

– PSU(n,q), projective special unitary group of 𝑛× 𝑛 matrices having
coefficients in the finite field 𝐺𝐹 (𝑞2) that respect a fixed nondegenerate sesquilinear form, of determinant 1.

– PGU(n,q), projective general unitary group of 𝑛× 𝑛 matrices having
coefficients in the finite field 𝐺𝐹 (𝑞2) that respect a fixed nondegenerate sesquilinear form, modulo the centre.

– SuzukiGroup(q), Suzuki group over GF(q), 2𝐵2(22𝑘+1) = 𝑆𝑧(22𝑘+1).

– ComplexReflectionGroup, the complex reflection group 𝐺(𝑚, 𝑝, 𝑛) or
the exceptional complex reflection group 𝐺𝑚

AUTHOR:

• David Joyner (2007-06): split from permgp.py (suggested by Nick Alexander)

REFERENCES:

• Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999.

• Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964.

• Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.

Note: Though Suzuki groups are okay, Ree groups should not be wrapped as permutation groups - the construction
is too slow - unless (for small values or the parameter) they are made using explicit generators.

class sage.groups.perm_gps.permgroup_named.AlternatingGroup(domain=None)
Bases: PermutationGroup_symalt

The alternating group of order 𝑛!/2, as a permutation group.

INPUT:

• n – a positive integer, or list or tuple thereof

Note: This group is also available via groups.permutation.Alternating().

EXAMPLES:

sage: G = AlternatingGroup(6)
sage: G.order()
360
sage: G
Alternating group of order 6!/2 as a permutation group
sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run() # long time

(continues on next page)

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 295

Groups, Release 9.8

(continued from previous page)

sage: G = AlternatingGroup([1,2,4,5])
sage: G
Alternating group of order 4!/2 as a permutation group
sage: G.domain()
{1, 2, 4, 5}
sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run()

class sage.groups.perm_gps.permgroup_named.ComplexReflectionGroup(m, p=None, n=None)
Bases: PermutationGroup_unique

A finite complex reflection group as a permutation group.

We can realize 𝐺(𝑚, 1, 𝑛) as 𝑚 copies of the symmetric group 𝑆𝑛 with 𝑠𝑖 for 1 ≤ 𝑖 < 𝑛 acting as the usual
adjacent transposition on each copy of 𝑆𝑛. We construct the cycle 𝑠𝑛 = (𝑛, 2𝑛, . . . ,𝑚𝑛).

We construct 𝐺(𝑚, 𝑝, 𝑛) as a subgroup of 𝐺(𝑚, 1, 𝑛) by 𝑠𝑖 ↦→ 𝑠𝑖 for all 1 ≤ 𝑖 < 𝑛,

𝑠𝑛 ↦→ 𝑠−1
𝑛 𝑠𝑛−1𝑠𝑛, 𝑠𝑛+1 ↦→ 𝑠𝑝𝑛.

Note that if 𝑝 = 𝑚, then 𝑠𝑛+1 = 1, in which case we do not consider it as a generator.

The exceptional complex reflection groups 𝐺𝑚 (in the Shephard-Todd classification) are not yet implemented.

INPUT:

One of the following:

• m, p, n – positive integers to construct 𝐺(𝑚, 𝑝, 𝑛)

• m – integer such that 4 ≤ 𝑚 ≤ 37 to construct an exceptional complex reflection 𝐺𝑚

Note: This group is also available via groups.permutation.ComplexReflection().

Note: The convention for the index set is for 𝐺(𝑚, 1, 𝑛) to have the complex reflection of order 𝑚 correspond
to 𝑠𝑛; i.e., 𝑠𝑚𝑛 = 1 and 𝑠2𝑖 = 1 for all 𝑖 < 𝑚.

EXAMPLES:

sage: G = groups.permutation.ComplexReflection(3, 1, 5)
sage: G.order()
29160
sage: G
Complex reflection group G(3, 1, 5) as a permutation group
sage: G.category()
Join of Category of finite enumerated permutation groups

and Category of finite complex reflection groups

sage: G = groups.permutation.ComplexReflection(3, 3, 4)
sage: G.cardinality()
648
sage: s1, s2, s3, s4 = G.simple_reflections()
sage: s4*s2*s4 == s2*s4*s2

(continues on next page)

296 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

True
sage: (s4*s3*s2)^2 == (s2*s4*s3)^2
True

sage: G = groups.permutation.ComplexReflection(6, 2, 3)
sage: G.cardinality()
648
sage: s1, s2, s3, s4 = G.simple_reflections()
sage: s3^2 == G.one()
True
sage: s4^3 == G.one()
True
sage: s4 * s3 * s2 == s3 * s2 * s4
True
sage: (s3*s2*s1)^2 == (s1*s3*s2)^2
True
sage: s3 * s1 * s3 == s1 * s3 * s1
True
sage: s4 * s3 * (s2*s3)^(2-1) == s2 * s4
True

sage: G = groups.permutation.ComplexReflection(4, 2, 5)
sage: G.cardinality()
61440

sage: G = groups.permutation.ComplexReflection(4)
Traceback (most recent call last):
...
NotImplementedError: exceptional complex reflection groups are not yet implemented

REFERENCES:

• Wikipedia article Complex_reflection_group

codegrees()

Return the codegrees of self.

Let 𝐺 be a complex reflection group. The codegrees 𝑑*1 ≤ 𝑑*2 ≤ · · · ≤ 𝑑*ℓ of 𝐺 can be defined by:

ℓ∏︁
𝑖=1

(𝑞 − 𝑑*𝑖 − 1) =
∑︁
𝑔∈𝐺

det(𝑔)𝑞dim(𝑉 𝑔),

where 𝑉 is the natural complex vector space that 𝐺 acts on and ℓ is the rank().

If𝑚 = 1, then we are in the special case of the symmetric group and the codegrees are (𝑛−2, 𝑛−3, . . . 1, 0).
Otherwise the codegrees are ((𝑛− 1)𝑚, (𝑛− 2)𝑚, . . . ,𝑚, 0).

EXAMPLES:

sage: C = groups.permutation.ComplexReflection(4, 1, 3)
sage: C.codegrees()
(8, 4, 0)
sage: G = groups.permutation.ComplexReflection(3, 3, 4)
sage: G.codegrees()

(continues on next page)

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 297

https://en.wikipedia.org/wiki/Complex_reflection_group

Groups, Release 9.8

(continued from previous page)

(6, 5, 3, 0)
sage: S = groups.permutation.ComplexReflection(1, 1, 3)
sage: S.codegrees()
(1, 0)

degrees()

Return the degrees of self.

The degrees of a complex reflection group are the degrees of the fundamental invariants of the ring of
polynomial invariants.

If 𝑚 = 1, then we are in the special case of the symmetric group and the degrees are (2, 3, . . . , 𝑛, 𝑛+ 1).
Otherwise the degrees are (𝑚, 2𝑚, . . . , (𝑛− 1)𝑚,𝑛𝑚/𝑝).

EXAMPLES:

sage: C = groups.permutation.ComplexReflection(4, 1, 3)
sage: C.degrees()
(4, 8, 12)
sage: G = groups.permutation.ComplexReflection(4, 2, 3)
sage: G.degrees()
(4, 6, 8)
sage: Gp = groups.permutation.ComplexReflection(4, 4, 3)
sage: Gp.degrees()
(3, 4, 8)
sage: S = groups.permutation.ComplexReflection(1, 1, 3)
sage: S.degrees()
(2, 3)

Check that the product of the degrees is equal to the cardinality:

sage: prod(C.degrees()) == C.cardinality()
True
sage: prod(G.degrees()) == G.cardinality()
True
sage: prod(Gp.degrees()) == Gp.cardinality()
True
sage: prod(S.degrees()) == S.cardinality()
True

index_set()

Return the index set of self.

EXAMPLES:

sage: G = groups.permutation.ComplexReflection(4, 1, 3)
sage: G.index_set()
(1, 2, 3)

sage: G = groups.permutation.ComplexReflection(1, 1, 3)
sage: G.index_set()
(1, 2)

sage: G = groups.permutation.ComplexReflection(4, 2, 3)
(continues on next page)

298 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

sage: G.index_set()
(1, 2, 3, 4)

sage: G = groups.permutation.ComplexReflection(4, 4, 3)
sage: G.index_set()
(1, 2, 3)

simple_reflection(i)
Return the i-th simple reflection of self.

EXAMPLES:

sage: G = groups.permutation.ComplexReflection(3, 1, 4)
sage: G.simple_reflection(2)
(2,3)(6,7)(10,11)
sage: G.simple_reflection(4)
(4,8,12)

sage: G = groups.permutation.ComplexReflection(1, 1, 4)
sage: G.simple_reflections()
Finite family {1: (1,2), 2: (2,3), 3: (3,4)}

class sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup(n)
Bases: PermutationGroup_unique

A cyclic group of order n, as a permutation group.

INPUT:

n – a positive integer

Note: This group is also available via groups.permutation.Cyclic().

EXAMPLES:

sage: G = CyclicPermutationGroup(8)
sage: G.order()
8
sage: G
Cyclic group of order 8 as a permutation group
sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run()
sage: C = CyclicPermutationGroup(10)
sage: C.is_abelian()
True
sage: C = CyclicPermutationGroup(10)
sage: C.as_AbelianGroup()
Multiplicative Abelian group isomorphic to C2 x C5

as_AbelianGroup()

Returns the corresponding Abelian Group instance.

EXAMPLES:

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 299

Groups, Release 9.8

sage: C = CyclicPermutationGroup(8)
sage: C.as_AbelianGroup()
Multiplicative Abelian group isomorphic to C8

is_abelian()

Return True if this group is abelian.

EXAMPLES:

sage: C = CyclicPermutationGroup(8)
sage: C.is_abelian()
True

is_commutative()

Return True if this group is commutative.

EXAMPLES:

sage: C = CyclicPermutationGroup(8)
sage: C.is_commutative()
True

class sage.groups.perm_gps.permgroup_named.DiCyclicGroup(n)
Bases: PermutationGroup_unique

The dicyclic group of order 4𝑛, for 𝑛 ≥ 2.

INPUT:

• n – a positive integer, two or greater

OUTPUT:

This is a nonabelian group similar in some respects to the dihedral group of the same order, but with far fewer
elements of order 2 (it has just one). The permutation representation constructed here is based on the presentation

⟨𝑎, 𝑥 | 𝑎2𝑛 = 1, 𝑥2 = 𝑎𝑛, 𝑥−1𝑎𝑥 = 𝑎−1⟩

For 𝑛 = 2 this is the group of quaternions (±1,±𝐼,±𝐽,±𝐾), which is the nonabelian group of order 8 that is
not the dihedral group 𝐷4, the symmetries of a square. For 𝑛 = 3 this is the nonabelian group of order 12 that
is not the dihedral group𝐷6 nor the alternating group 𝐴4. This group of order 12 is also the semi-direct product
of 𝐶2 by 𝐶4, 𝐶3 o 𝐶4. [Con]

When the order of the group is a power of 2 it is known as a “generalized quaternion group.”

IMPLEMENTATION:

The presentation above means every element can be written as 𝑎𝑖𝑥𝑗 with 0 ≤ 𝑖 < 2𝑛, 𝑗 = 0, 1. We code 𝑎𝑖 as
the symbol 𝑖 + 1 and code 𝑎𝑖𝑥 as the symbol 2𝑛 + 𝑖 + 1. The two generators are then represented using a left
regular representation.

Note: This group is also available via groups.permutation.DiCyclic().

EXAMPLES:

A dicyclic group of order 384, with a large power of 2 as a divisor:

300 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: n = 3*2^5
sage: G = DiCyclicGroup(n)
sage: G.order()
384
sage: a = G.gen(0)
sage: x = G.gen(1)
sage: a^(2*n)
()
sage: a^n==x^2
True
sage: x^-1*a*x==a^-1
True

A large generalized quaternion group (order is a power of 2):

sage: n = 2^10
sage: G = DiCyclicGroup(n)
sage: G.order()
4096
sage: a = G.gen(0)
sage: x = G.gen(1)
sage: a^(2*n)
()
sage: a^n==x^2
True
sage: x^-1*a*x==a^-1
True

Just like the dihedral group, the dicyclic group has an element whose order is half the order of the group. Unlike
the dihedral group, the dicyclic group has only one element of order 2. Like the dihedral groups of even order,
the center of the dicyclic group is a subgroup of order 2 (thus has the unique element of order 2 as its non-identity
element).

sage: G = DiCyclicGroup(3*5*4)
sage: G.order()
240
sage: two = [g for g in G if g.order()==2]; two
[(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)]
sage: G.center().order()
2

For small orders, we check this is really a group we do not have in Sage otherwise.

sage: G = DiCyclicGroup(2)
sage: H = DihedralGroup(4)
sage: G.is_isomorphic(H)
False
sage: G = DiCyclicGroup(3)
sage: H = DihedralGroup(6)
sage: K = AlternatingGroup(6)
sage: G.is_isomorphic(H) or G.is_isomorphic(K)
False

AUTHOR:

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 301

Groups, Release 9.8

• Rob Beezer (2009-10-18)

is_abelian()

Return True if this group is abelian.

EXAMPLES:

sage: D = DiCyclicGroup(12)
sage: D.is_abelian()
False

is_commutative()

Return True if this group is commutative.

EXAMPLES:

sage: D = DiCyclicGroup(12)
sage: D.is_commutative()
False

class sage.groups.perm_gps.permgroup_named.DihedralGroup(n)
Bases: PermutationGroup_unique

The Dihedral group of order 2𝑛 for any integer 𝑛 ≥ 1.

INPUT:

• n – a positive integer

OUTPUT:

The dihedral group of order 2𝑛, as a permutation group

Note: This group is also available via groups.permutation.Dihedral().

EXAMPLES:

sage: DihedralGroup(1)
Dihedral group of order 2 as a permutation group

sage: DihedralGroup(2)
Dihedral group of order 4 as a permutation group
sage: DihedralGroup(2).gens()
((3,4), (1,2))

sage: DihedralGroup(5).gens()
((1,2,3,4,5), (1,5)(2,4))
sage: sorted(DihedralGroup(5))
[(), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5), (1,3)(4,5), (1,3,5,2,4), (1,4)(2,3), (1,4,
→˓2,5,3), (1,5,4,3,2), (1,5)(2,4)]

sage: G = DihedralGroup(6)
sage: G.order()
12
sage: G = DihedralGroup(5)
sage: G.order()

(continues on next page)

302 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

10
sage: G
Dihedral group of order 10 as a permutation group
sage: G.gens()
((1,2,3,4,5), (1,5)(2,4))

sage: DihedralGroup(0)
Traceback (most recent call last):
...
ValueError: n must be positive

class sage.groups.perm_gps.permgroup_named.GeneralDihedralGroup(factors)
Bases: PermutationGroup_generic

The Generalized Dihedral Group generated by the abelian group with direct factors in the input list.

INPUT:

• factors - a list of the sizes of the cyclic factors of the abelian group being dihedralized (this will be sorted
once entered)

OUTPUT:

For a given abelian group (noting that each finite abelian group can be represented as the direct product of cyclic
groups), the General Dihedral Group it generates is simply the semi-direct product of the given group with 𝐶2,
where the nonidentity element of 𝐶2 acts on the abelian group by turning each element into its inverse. In this
implementation, each input abelian group will be standardized so as to act on a minimal amount of letters. This
will be done by breaking the direct factors into products of p-groups, before this new set of factors is ordered
from smallest to largest for complete standardization. Note that the generalized dihedral group corresponding to
a cyclic group, 𝐶𝑛, is simply the dihedral group 𝐷𝑛.

EXAMPLES:

As is noted in [TW1980], 𝐷𝑖ℎ(𝐶3 × 𝐶3) has the presentation

⟨𝑎, 𝑏, 𝑐 | 𝑎3, 𝑏3, 𝑐2, 𝑎𝑏 = 𝑏𝑎, 𝑎𝑐 = 𝑐𝑎−1, 𝑏𝑐 = 𝑐𝑏−1⟩

Note also the fact, verified by [TW1980], that the dihedralization of 𝐶3 × 𝐶3 is the only nonabelian group of
order 18 with no element of order 6.

sage: G = GeneralDihedralGroup([3,3])
sage: G
Generalized dihedral group generated by C3 x C3
sage: G.order()
18
sage: G.gens()
((4,5,6), (2,3)(5,6), (1,2,3))
sage: a = G.gens()[2]; b = G.gens()[0]; c = G.gens()[1]
sage: a.order() == 3, b.order() == 3, c.order() == 2
(True, True, True)
sage: a*b == b*a, a*c == c*a.inverse(), b*c == c*b.inverse()
(True, True, True)
sage: G.subgroup([a,b,c]) == G
True
sage: G.is_abelian()
False

(continues on next page)

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 303

Groups, Release 9.8

(continued from previous page)

sage: all(x.order() != 6 for x in G)
True

If all of the direct factors are𝐶2, then the action turning each element into its inverse is trivial, and the semi-direct
product becomes a direct product.

sage: G = GeneralDihedralGroup([2,2,2])
sage: G.order()
16
sage: G.gens()
((7,8), (5,6), (3,4), (1,2))
sage: G.is_abelian()
True
sage: H = KleinFourGroup()
sage: G.is_isomorphic(H.direct_product(H)[0])
True

If two nonidentical input lists generate isomorphic abelian groups, then they will generate identical groups (with
each direct factor broken up into its prime factors), but they will still have distinct descriptions. Note that If
𝑔𝑐𝑑(𝑛,𝑚) = 1, then 𝐶𝑛 × 𝐶𝑚

∼= 𝐶𝑛𝑚, while the general dihedral groups generated by isomorphic abelian
groups should be themselves isomorphic.

sage: G = GeneralDihedralGroup([6,34,46,14])
sage: H = GeneralDihedralGroup([7,17,3,46,2,2,2])
sage: G == H, G.gens() == H.gens()
(True, True)
sage: [x.order() for x in G.gens()]
[23, 17, 7, 2, 3, 2, 2, 2, 2]
sage: G
Generalized dihedral group generated by C6 x C34 x C46 x C14
sage: H
Generalized dihedral group generated by C7 x C17 x C3 x C46 x C2 x C2 x C2

A cyclic input yields a Classical Dihedral Group.

sage: G = GeneralDihedralGroup([6])
sage: D = DihedralGroup(6)
sage: G.is_isomorphic(D)
True

A Generalized Dihedral Group will always have size twice the underlying group, be solvable (as it has an abelian
subgroup with index 2), and, unless the underlying group is of the form 𝐶2

𝑛, be nonabelian (by the structure
theorem of finite abelian groups and the fact that a semi-direct product is a direct product only when the underlying
action is trivial).

sage: G = GeneralDihedralGroup([6,18,33,60])
sage: (6*18*33*60)*2
427680
sage: G.order()
427680
sage: G.is_solvable()
True

(continues on next page)

304 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

sage: G.is_abelian()
False

AUTHOR:

• Kevin Halasz (2012-7-12)

class sage.groups.perm_gps.permgroup_named.JankoGroup(n)
Bases: PermutationGroup_unique

Janko Groups 𝐽1, 𝐽2, and 𝐽3. (Note that 𝐽4 is too big to be treated here.)

INPUT:

• n – an integer among {1, 2, 3}.

EXAMPLES:

sage: G = groups.permutation.Janko(1); G # optional - gap_packages internet
Janko group J1 of order 175560 as a permutation group

class sage.groups.perm_gps.permgroup_named.KleinFourGroup

Bases: PermutationGroup_unique

The Klein 4 Group, which has order 4 and exponent 2, viewed as a subgroup of 𝑆4.

OUTPUT:

the Klein 4 group of order 4, as a permutation group of degree 4.

Note: This group is also available via groups.permutation.KleinFour().

EXAMPLES:

sage: G = KleinFourGroup(); G
The Klein 4 group of order 4, as a permutation group
sage: sorted(G)
[(), (3,4), (1,2), (1,2)(3,4)]

AUTHOR:
– Bobby Moretti (2006-10)

class sage.groups.perm_gps.permgroup_named.MathieuGroup(n)
Bases: PermutationGroup_unique

The Mathieu group of degree 𝑛.

INPUT:

n – a positive integer in {9, 10, 11, 12, 21, 22, 23, 24}.

OUTPUT:

the Mathieu group of degree n, as a permutation group

Note: This group is also available via groups.permutation.Mathieu().

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 305

Groups, Release 9.8

EXAMPLES:

sage: G = MathieuGroup(12)
sage: G
Mathieu group of degree 12 and order 95040 as a permutation group

class sage.groups.perm_gps.permgroup_named.PGL(n, q, name='a')
Bases: PermutationGroup_plg

The projective general linear groups over GF(q).

INPUT:

• n – positive integer; the degree

• q – prime power; the size of the ground field

• name – (default: ‘a’) variable name of indeterminate of finite field GF(q)

OUTPUT:

PGL(n,q)

Note: This group is also available via groups.permutation.PGL().

EXAMPLES:

sage: G = PGL(2,3); G
Permutation Group with generators [(3,4), (1,2,4)]
sage: print(G)
The projective general linear group of degree 2 over Finite Field of size 3
sage: G.base_ring()
Finite Field of size 3
sage: G.order()
24

sage: G = PGL(2, 9, 'b'); G
Permutation Group with generators [(3,10,9,8,4,7,6,5), (1,2,4)(5,6,8)(7,9,10)]
sage: G.base_ring()
Finite Field in b of size 3^2

sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run() # long time

class sage.groups.perm_gps.permgroup_named.PGU(n, q, name='a')
Bases: PermutationGroup_pug

The projective general unitary groups over GF(q).

INPUT:

• n – positive integer; the degree

• q – prime power; the size of the ground field

• name – (default: ‘a’) variable name of indeterminate of finite field GF(q)

306 Chapter 24. Permutation Groups

Groups, Release 9.8

OUTPUT:

PGU(n,q)

Note: This group is also available via groups.permutation.PGU().

EXAMPLES:

sage: PGU(2,3)
The projective general unitary group of degree 2 over Finite Field of size 3

sage: G = PGU(2, 8, name='alpha'); G
The projective general unitary group of degree 2 over Finite Field in alpha of size␣
→˓2^3
sage: G.base_ring()
Finite Field in alpha of size 2^3

class sage.groups.perm_gps.permgroup_named.PSL(n, q, name='a')
Bases: PermutationGroup_plg

The projective special linear groups over GF(q).

INPUT:

• n – positive integer; the degree

• q – either a prime power (the size of the ground field) or a finite field

• name – (default: ‘a’) variable name of indeterminate of finite field GF(q)

OUTPUT:

the group PSL(n,q)

Note: This group is also available via groups.permutation.PSL().

EXAMPLES:

sage: G = PSL(2,3); G
Permutation Group with generators [(2,3,4), (1,2)(3,4)]
sage: G.order()
12
sage: G.base_ring()
Finite Field of size 3
sage: print(G)
The projective special linear group of degree 2 over Finite Field of size 3

We create two groups over nontrivial finite fields:

sage: G = PSL(2, 4, 'b'); G
Permutation Group with generators [(3,4,5), (1,2,3)]
sage: G.base_ring()
Finite Field in b of size 2^2
sage: G = PSL(2, 8); G
Permutation Group with generators [(3,8,6,4,9,7,5), (1,2,3)(4,7,5)(6,9,8)]

(continues on next page)

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 307

Groups, Release 9.8

(continued from previous page)

sage: G.base_ring()
Finite Field in a of size 2^3

sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run() # long time

ramification_module_decomposition_hurwitz_curve()

Helps compute the decomposition of the ramification module for the Hurwitz curves X (over CC say) with
automorphism group G = PSL(2,q), q a “Hurwitz prime” (ie, p is ±1 (mod 7)). Using this computation
and Borne’s formula helps determine the G-module structure of the RR spaces of equivariant divisors can
be determined explicitly.

The output is a list of integer multiplicities: [m1,. . . ,mn], where n is the number of conj classes
of G=PSL(2,p) and mi is the multiplicity of pi_i in the ramification module of a Hurwitz curve
with automorphism group G. Here IrrRepns(G) = [pi_1,. . . ,pi_n] (in the order listed in the output of
self.character_table()).

REFERENCE: David Joyner, Amy Ksir, Roger Vogeler,
“Group representations on Riemann-Roch spaces of some Hurwitz curves,” preprint, 2006.

EXAMPLES:

sage: G = PSL(2,13)
sage: G.ramification_module_decomposition_hurwitz_curve() # random, optional -␣
→˓gap_packages
[0, 7, 7, 12, 12, 12, 13, 15, 14]

This means, for example, that the trivial representation does not occur in the ramification module of a
Hurwitz curve with automorphism group PSL(2,13), since the trivial representation is listed first and that
entry has multiplicity 0. The “randomness” is due to the fact that GAP randomly orders the conjugacy
classes of the same order in the list of all conjugacy classes. Similarly, there is some randomness to the
ordering of the characters.

If you try to use this function on a group PSL(2,q) where q is not a (smallish) “Hurwitz prime”, an error
message will be printed.

ramification_module_decomposition_modular_curve()

Helps compute the decomposition of the ramification module for the modular curve X(p) (over CC say)
with automorphism group G = PSL(2,q), q a prime > 5. Using this computation and Borne’s formula helps
determine the G-module structure of the RR spaces of equivariant divisors can be determined explicitly.

The output is a list of integer multiplicities: [m1,. . . ,mn], where n is the number of conj classes
of G=PSL(2,p) and mi is the multiplicity of pi_i in the ramification module of a modular curve
with automorphism group G. Here IrrRepns(G) = [pi_1,. . . ,pi_n] (in the order listed in the output of
self.character_table()).

REFERENCE: D. Joyner and A. Ksir, ‘Modular representations
on some Riemann-Roch spaces of modular curves 𝑋(𝑁)’, Computational Aspects of Algebraic
Curves, (Editor: T. Shaska) Lecture Notes in Computing, WorldScientific, 2005.)

EXAMPLES:

sage: G = PSL(2,7)
sage: G.ramification_module_decomposition_modular_curve() # random, optional -␣

(continues on next page)

308 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

→˓gap_packages
[0, 4, 3, 6, 7, 8]

This means, for example, that the trivial representation does not occur in the ramification module of X(7),
since the trivial representation is listed first and that entry has multiplicity 0. The “randomness” is due
to the fact that GAP randomly orders the conjugacy classes of the same order in the list of all conjugacy
classes. Similarly, there is some randomness to the ordering of the characters.

sage.groups.perm_gps.permgroup_named.PSP

alias of PSp

class sage.groups.perm_gps.permgroup_named.PSU(n, q, name='a')
Bases: PermutationGroup_pug

The projective special unitary groups over GF(q).

INPUT:

• n – positive integer; the degree

• q – prime power; the size of the ground field

• name – (default: ‘a’) variable name of indeterminate of finite field GF(q)

OUTPUT:

PSU(n,q)

Note: This group is also available via groups.permutation.PSU().

EXAMPLES:

sage: PSU(2,3)
The projective special unitary group of degree 2 over Finite Field of size 3

sage: G = PSU(2, 8, name='alpha'); G
The projective special unitary group of degree 2 over Finite Field in alpha of size␣
→˓2^3
sage: G.base_ring()
Finite Field in alpha of size 2^3

class sage.groups.perm_gps.permgroup_named.PSp(n, q, name='a')
Bases: PermutationGroup_plg

The projective symplectic linear groups over GF(q).

INPUT:

• n – positive integer; the degree

• q – prime power; the size of the ground field

• name – (default: ‘a’) variable name of indeterminate of finite field GF(q)

OUTPUT:

PSp(n,q)

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 309

Groups, Release 9.8

Note: This group is also available via groups.permutation.PSp().

EXAMPLES:

sage: G = PSp(2,3); G
Permutation Group with generators [(2,3,4), (1,2)(3,4)]
sage: G.order()
12
sage: G = PSp(4,3); G
Permutation Group with generators [(3,4)(6,7)(9,10)(12,13)(17,20)(18,21)(19,22)(23,
→˓32)(24,33)(25,34)(26,38)(27,39)(28,40)(29,35)(30,36)(31,37), (1,5,14,17,27,22,19,
→˓36,3)(2,6,32)(4,7,23,20,37,13,16,26,40)(8,24,29,30,39,10,33,11,34)(9,15,35)(12,25,
→˓38)(21,28,31)]
sage: G.order()
25920
sage: print(G)
The projective symplectic linear group of degree 4 over Finite Field of size 3
sage: G.base_ring()
Finite Field of size 3

sage: G = PSp(2, 8, name='alpha'); G
Permutation Group with generators [(3,8,6,4,9,7,5), (1,2,3)(4,7,5)(6,9,8)]
sage: G.base_ring()
Finite Field in alpha of size 2^3

class sage.groups.perm_gps.permgroup_named.PermutationGroup_plg(gens=None, gap_group=None,
canonicalize=True,
domain=None, category=None)

Bases: PermutationGroup_unique

base_ring()

EXAMPLES:

sage: G = PGL(2,3)
sage: G.base_ring()
Finite Field of size 3

sage: G = PSL(2,3)
sage: G.base_ring()
Finite Field of size 3

matrix_degree()

EXAMPLES:

sage: G = PSL(2,3)
sage: G.matrix_degree()
2

class sage.groups.perm_gps.permgroup_named.PermutationGroup_pug(gens=None, gap_group=None,
canonicalize=True,
domain=None, category=None)

Bases: PermutationGroup_plg

310 Chapter 24. Permutation Groups

Groups, Release 9.8

field_of_definition()

EXAMPLES:

sage: PSU(2,3).field_of_definition()
Finite Field in a of size 3^2

class sage.groups.perm_gps.permgroup_named.PermutationGroup_symalt(gens=None,
gap_group=None,
canonicalize=True,
domain=None,
category=None)

Bases: PermutationGroup_unique

This is a class used to factor out some of the commonality in the SymmetricGroup and AlternatingGroup classes.

class sage.groups.perm_gps.permgroup_named.PermutationGroup_unique(gens=None,
gap_group=None,
canonicalize=True,
domain=None,
category=None)

Bases: CachedRepresentation, PermutationGroup_generic

Todo: Fix the broken hash.

sage: G = SymmetricGroup(6)
sage: G3 = G.subgroup([G((1,2,3,4,5,6)),G((1,2))])
sage: hash(G) == hash(G3) # todo: Should be True!
False

class sage.groups.perm_gps.permgroup_named.PrimitiveGroup(d, n)
Bases: PermutationGroup_unique

The primitive group from the GAP tables of primitive groups.

INPUT:

• d – non-negative integer. the degree of the group.

• n – positive integer. the index of the group in the GAP database, starting at 1

OUTPUT:

The n-th primitive group of degree d.

EXAMPLES:

sage: PrimitiveGroup(0,1)
Trivial group
sage: PrimitiveGroup(1,1)
Trivial group
sage: G = PrimitiveGroup(5, 2); G
D(2*5)
sage: G.gens()
((2,4)(3,5), (1,2,3,5,4))
sage: G.category()
Category of finite enumerated permutation groups

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 311

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.CachedRepresentation

Groups, Release 9.8

Warning: this follows GAP’s naming convention of indexing the primitive groups starting from 1:

sage: PrimitiveGroup(5,0)
Traceback (most recent call last):
...
ValueError: index n must be in {1,..,5}

Only primitive groups of “small” degree are available in GAP’s database:

sage: PrimitiveGroup(2^12,1)
Traceback (most recent call last):
...
GAPError: Error, Primitive groups of degree 4096 are not known!

group_primitive_id()

Return the index of this group in the GAP database of primitive groups.

OUTPUT:

A positive integer, following GAP’s conventions.

EXAMPLES:

sage: G = PrimitiveGroup(5,2); G.group_primitive_id()
2

sage.groups.perm_gps.permgroup_named.PrimitiveGroups(d=None)
Return the set of all primitive groups of a given degree d

INPUT:

• d – an integer (optional)

OUTPUT:

The set of all primitive groups of a given degree d up to isomorphisms using GAP. If d is not specified, it returns
the set of all primitive groups up to isomorphisms stored in GAP.

EXAMPLES:

sage: PrimitiveGroups(3)
Primitive Groups of degree 3
sage: PrimitiveGroups(7)
Primitive Groups of degree 7
sage: PrimitiveGroups(8)
Primitive Groups of degree 8
sage: PrimitiveGroups()
Primitive Groups

The database is currently limited:

sage: PrimitiveGroups(2^12).cardinality()
Traceback (most recent call last):
...
GAPError: Error, Primitive groups of degree 4096 are not known!

312 Chapter 24. Permutation Groups

Groups, Release 9.8

Todo: This enumeration helper could be extended based on PrimitiveGroupsIterator in GAP. This method
allows to enumerate groups with specified properties such as transitivity, solvability, . . . , without creating all
groups.

class sage.groups.perm_gps.permgroup_named.PrimitiveGroupsAll

Bases: DisjointUnionEnumeratedSets

The infinite set of all primitive groups up to isomorphisms.

EXAMPLES:

sage: L = PrimitiveGroups(); L
Primitive Groups
sage: L.category()
Category of facade infinite enumerated sets
sage: L.cardinality()
+Infinity

sage: p = L.__iter__()
sage: (next(p), next(p), next(p), next(p),
....: next(p), next(p), next(p), next(p))
(Trivial group, Trivial group, S(2), A(3), S(3), A(4), S(4), C(5))

class sage.groups.perm_gps.permgroup_named.PrimitiveGroupsOfDegree(n)
Bases: CachedRepresentation, Parent

The set of all primitive groups of a given degree up to isomorphisms.

EXAMPLES:

sage: S = PrimitiveGroups(5); S
Primitive Groups of degree 5
sage: S.list()
[C(5), D(2*5), AGL(1, 5), A(5), S(5)]
sage: S.an_element()
C(5)

We write the cardinality of all primitive groups of degree 5:

sage: for G in PrimitiveGroups(5):
....: print(G.cardinality())
5
10
20
60
120

cardinality()

Return the cardinality of self.

OUTPUT:

An integer. The number of primitive groups of a given degree up to isomorphism.

EXAMPLES:

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 313

../../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.CachedRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Groups, Release 9.8

sage: PrimitiveGroups(0).cardinality()
1
sage: PrimitiveGroups(2).cardinality()
1
sage: PrimitiveGroups(7).cardinality()
7
sage: PrimitiveGroups(12).cardinality()
6
sage: [PrimitiveGroups(i).cardinality() for i in range(11)]
[1, 1, 1, 2, 2, 5, 4, 7, 7, 11, 9]

class sage.groups.perm_gps.permgroup_named.QuaternionGroup

Bases: DiCyclicGroup

The quaternion group of order 8.

OUTPUT:

The quaternion group of order 8, as a permutation group. See the DiCyclicGroup class for a generalization of
this construction.

Note: This group is also available via groups.permutation.Quaternion().

EXAMPLES:

The quaternion group is one of two non-abelian groups of order 8, the other being the dihedral group 𝐷4.
One way to describe this group is with three generators, 𝐼, 𝐽,𝐾, so the whole group is then given as the set
{±1,±𝐼,±𝐽,±𝐾} with relations such as 𝐼2 = 𝐽2 = 𝐾2 = −1, 𝐼𝐽 = 𝐾 and 𝐽𝐼 = −𝐾.

The examples below illustrate how to use this group in a similar manner, by testing some of these relations. The
representation used here is the left-regular representation.

sage: Q = QuaternionGroup()
sage: I = Q.gen(0)
sage: J = Q.gen(1)
sage: K = I*J
sage: [I,J,K]
[(1,2,3,4)(5,6,7,8), (1,5,3,7)(2,8,4,6), (1,8,3,6)(2,7,4,5)]
sage: neg_one = I^2; neg_one
(1,3)(2,4)(5,7)(6,8)
sage: J^2 == neg_one and K^2 == neg_one
True
sage: J*I == neg_one*K
True
sage: Q.center().order() == 2
True
sage: neg_one in Q.center()
True

AUTHOR:

• Rob Beezer (2009-10-09)

class sage.groups.perm_gps.permgroup_named.SemidihedralGroup(m)

Bases: PermutationGroup_unique

314 Chapter 24. Permutation Groups

Groups, Release 9.8

The semidihedral group of order 2𝑚.

INPUT:

• m - a positive integer; the power of 2 that is the group’s order

OUTPUT:

The semidihedral group of order 2𝑚. These groups can be thought of as a semidirect product of 𝐶2𝑚−1 with
𝐶2, where the nontrivial element of 𝐶2 is sent to the element of the automorphism group of 𝐶2𝑚−1 that sends
elements to their −1 + 2𝑚−2 th power. Thus, the group has the presentation:

⟨𝑥, 𝑦 | 𝑥2
𝑚−1

, 𝑦2, 𝑦−1𝑥𝑦 = 𝑥−1+2𝑚−2

⟩

This family is notable because it is made up of non-abelian 2-groups that all contain cyclic subgroups of index
2. It is one of only four such families.

EXAMPLES:

In [Gor1980] it is shown that the semidihedral groups have center of order 2. It is also shown that they have a
Frattini subgroup equal to their commutator, which is a cyclic subgroup of order 2𝑚−2.

sage: G = SemidihedralGroup(12)
sage: G.order() == 2^12
True
sage: G.commutator() == G.frattini_subgroup()
True
sage: G.commutator().order() == 2^10
True
sage: G.commutator().is_cyclic()
True
sage: G.center().order()
2

sage: G = SemidihedralGroup(4)
sage: len([H for H in G.subgroups() if H.is_cyclic() and H.order() == 8])
1
sage: G.gens()
((2,4)(3,7)(6,8), (1,2,3,4,5,6,7,8))
sage: x = G.gens()[1]; y = G.gens()[0]
sage: x.order() == 2^3; y.order() == 2
True
True
sage: y*x*y == x^(-1+2^2)
True

AUTHOR:

• Kevin Halasz (2012-8-7)

class sage.groups.perm_gps.permgroup_named.SplitMetacyclicGroup(p, m)

Bases: PermutationGroup_unique

The split metacyclic group of order 𝑝𝑚.

INPUT:

• p – a prime number that is the prime underlying this p-group

• m – a positive integer such that the order of this group is the 𝑝𝑚. Be aware that, for even 𝑝, 𝑚 must be
greater than 3, while for odd 𝑝, 𝑚 must be greater than 2.

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 315

Groups, Release 9.8

OUTPUT:

The split metacyclic group of order 𝑝𝑚. This family of groups has presentation

⟨𝑥, 𝑦 | 𝑥𝑝
𝑚−1

, 𝑦𝑝, 𝑦−1𝑥𝑦 = 𝑥1+𝑝𝑚−2

⟩

This family is notable because, for odd 𝑝, these are the only 𝑝-groups with a cyclic subgroup of index 𝑝, a result
proven in [Gor1980]. It is also shown in [Gor1980] that this is one of four families containing nonabelian 2-
groups with a cyclic subgroup of index 2 (with the others being the dicyclic groups, the dihedral groups, and the
semidihedral groups).

EXAMPLES:

Using the last relation in the group’s presentation, one can see that the elements of the form 𝑦𝑖𝑥, 0 ≤ 𝑖 ≤ 𝑝− 1

all have order 𝑝𝑚−1, as it can be shown that their 𝑝 th powers are all 𝑥𝑝𝑚−2+𝑝, an element with order 𝑝𝑚−2.
Manipulation of the same relation shows that none of these elements are powers of any other. Thus, there are
𝑝 cyclic maximal subgroups in each split metacyclic group. It is also proven in [Gor1980] that this family has
commutator subgroup of order 𝑝, and the Frattini subgroup is equal to the center, with this group being cyclic
of order 𝑝𝑚−2. These characteristics are necessary to identify these groups in the case that 𝑝 = 2, although the
possession of a cyclic maximal subgroup in a non-abelian 𝑝-group is enough for odd 𝑝 given the group’s order.

sage: G = SplitMetacyclicGroup(2,8)
sage: G.order() == 2**8
True
sage: G.is_abelian()
False
sage: len([H for H in G.subgroups() if H.order() == 2^7 and H.is_cyclic()])
2
sage: G.commutator().order()
2
sage: G.frattini_subgroup() == G.center()
True
sage: G.center().order() == 2^6
True
sage: G.center().is_cyclic()
True

sage: G = SplitMetacyclicGroup(3,3)
sage: len([H for H in G.subgroups() if H.order() == 3^2 and H.is_cyclic()])
3
sage: G.commutator().order()
3
sage: G.frattini_subgroup() == G.center()
True
sage: G.center().order()
3

AUTHOR:

• Kevin Halasz (2012-8-7)

class sage.groups.perm_gps.permgroup_named.SuzukiGroup(q, name='a')
Bases: PermutationGroup_unique

The Suzuki group over GF(q), 2𝐵2(22𝑘+1) = 𝑆𝑧(22𝑘+1).

A wrapper for the GAP function SuzukiGroup.

INPUT:

316 Chapter 24. Permutation Groups

Groups, Release 9.8

• q – 2^n, an odd power of 2; the size of the ground field. (Strictly speaking, n should be greater than 1, or
else this group os not simple.)

• name – (default: ‘a’) variable name of indeterminate of finite field GF(q)

OUTPUT:

• A Suzuki group.

Note: This group is also available via groups.permutation.Suzuki().

EXAMPLES:

sage: SuzukiGroup(8)
Permutation Group with generators [(1,2)(3,10)(4,42)(5,18)(6,50)(7,26)(8,58)(9,
→˓34)(12,28)(13,45)(14,44)(15,23)(16,31)(17,21)(19,39)(20,38)(22,25)(24,61)(27,
→˓60)(29,65)(30,55)(32,33)(35,52)(36,49)(37,59)(40,54)(41,62)(43,53)(46,48)(47,
→˓56)(51,63)(57,64),
(1,28,10,44)(3,50,11,42)(4,43,53,64)(5,9,39,52)(6,36,63,13)(7,51,60,57)(8,33,37,
→˓16)(12,24,55,29)(14,30,48,47)(15,19,61,54)(17,59,22,62)(18,23,34,31)(20,38,49,
→˓25)(21,26,45,58)(27,32,41,65)(35,46,40,56)]
sage: print(SuzukiGroup(8))
The Suzuki group over Finite Field in a of size 2^3

sage: G = SuzukiGroup(32, name='alpha')
sage: G.order()
32537600
sage: G.order().factor()
2^10 * 5^2 * 31 * 41
sage: G.base_ring()
Finite Field in alpha of size 2^5

REFERENCES:

• Wikipedia article Group_of_Lie_type#Suzuki-Ree_groups

base_ring()

EXAMPLES:

sage: G = SuzukiGroup(32, name='alpha')
sage: G.base_ring()
Finite Field in alpha of size 2^5

class sage.groups.perm_gps.permgroup_named.SuzukiSporadicGroup

Bases: PermutationGroup_unique

Suzuki Sporadic Group

EXAMPLES:

sage: G = groups.permutation.SuzukiSporadic(); G # optional - gap_packages internet
Sporadic Suzuki group acting on 1782 points

class sage.groups.perm_gps.permgroup_named.SymmetricGroup(domain=None)
Bases: PermutationGroup_symalt

The full symmetric group of order 𝑛!, as a permutation group.

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 317

https://en.wikipedia.org/wiki/Group_of_Lie_type#Suzuki-Ree_groups

Groups, Release 9.8

If 𝑛 is a list or tuple of positive integers then it returns the symmetric group of the associated set.

INPUT:

• n – a positive integer, or list or tuple thereof

Note: This group is also available via groups.permutation.Symmetric().

EXAMPLES:

sage: G = SymmetricGroup(8)
sage: G.order()
40320
sage: G
Symmetric group of order 8! as a permutation group
sage: G.degree()
8
sage: S8 = SymmetricGroup(8)
sage: G = SymmetricGroup([1,2,4,5])
sage: G
Symmetric group of order 4! as a permutation group
sage: G.domain()
{1, 2, 4, 5}
sage: G = SymmetricGroup(4)
sage: G
Symmetric group of order 4! as a permutation group
sage: G.domain()
{1, 2, 3, 4}
sage: G.category()
Join of Category of finite enumerated permutation groups and
Category of finite weyl groups and
Category of well generated finite irreducible complex reflection groups

Element

alias of SymmetricGroupElement

algebra(base_ring, category=None)
Return the symmetric group algebra associated to self.

INPUT:

• base_ring – a ring

• category – a category (default: the category of self)

If self is the symmetric group on 1, . . . , 𝑛, then this is special cased to take advantage of the features in
SymmetricGroupAlgebra. Otherwise the usual group algebra is returned.

EXAMPLES:

sage: S4 = SymmetricGroup(4)
sage: S4.algebra(QQ)
Symmetric group algebra of order 4 over Rational Field

sage: S3 = SymmetricGroup([1,2,3])
sage: A = S3.algebra(QQ); A

(continues on next page)

318 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

Symmetric group algebra of order 3 over Rational Field
sage: a = S3.an_element(); a
(2,3)
sage: A(a)
(2,3)

We illustrate the choice of the category:

sage: A.category()
Join of Category of coxeter group algebras over Rational Field

and Category of finite group algebras over Rational Field
and Category of finite dimensional cellular algebras with basis

over Rational Field
sage: A = S3.algebra(QQ, category=Semigroups())
sage: A.category()
Category of finite dimensional unital cellular semigroup algebras
over Rational Field

In the following case, a usual group algebra is returned:

sage: S = SymmetricGroup([2,3,5]) sage: S.algebra(QQ) Algebra of Symmetric group of or-
der 3! as a permutation group over Rational Field sage: a = S.an_element(); a (3,5) sage:
S.algebra(QQ)(a) (3,5)

cartan_type()

Return the Cartan type of self

The symmetric group 𝑆𝑛 is a Coxeter group of type 𝐴𝑛−1.

EXAMPLES:

sage: A = SymmetricGroup([2,3,7]); A.cartan_type()
['A', 2]

sage: A = SymmetricGroup([]); A.cartan_type()
['A', 0]

conjugacy_class(g)
Return the conjugacy class of g inside the symmetric group self.

INPUT:

• g – a partition or an element of the symmetric group self

OUTPUT:

A conjugacy class of a symmetric group.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: g = G((1,2,3,4))
sage: G.conjugacy_class(g)
Conjugacy class of cycle type [4, 1] in
Symmetric group of order 5! as a permutation group

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 319

Groups, Release 9.8

conjugacy_classes()

Return a list of the conjugacy classes of self.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.conjugacy_classes()
[Conjugacy class of cycle type [1, 1, 1, 1, 1] in

Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [2, 1, 1, 1] in

Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [2, 2, 1] in

Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [3, 1, 1] in

Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [3, 2] in

Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [4, 1] in

Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [5] in

Symmetric group of order 5! as a permutation group]

conjugacy_classes_iterator()

Iterate over the conjugacy classes of self.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: list(G.conjugacy_classes_iterator()) == G.conjugacy_classes()
True

conjugacy_classes_representatives()

Return a complete list of representatives of conjugacy classes in a permutation group 𝐺.

Let 𝑆𝑛 be the symmetric group on 𝑛 letters. The conjugacy classes are indexed by partitions 𝜆 of 𝑛. The
ordering of the conjugacy classes is reverse lexicographic order of the partitions.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: G.conjugacy_classes_representatives()
[(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3)(4,5),
(1,2,3,4), (1,2,3,4,5)]

sage: S = SymmetricGroup(['a','b','c'])
sage: S.conjugacy_classes_representatives()
[(), ('a','b'), ('a','b','c')]

coxeter_matrix()

Return the Coxeter matrix of self.

EXAMPLES:

sage: A = SymmetricGroup([2,3,7,'a']); A.coxeter_matrix()
[1 3 2]

(continues on next page)

320 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

[3 1 3]
[2 3 1]

index_set()

Return the index set for the descents of the symmetric group self.

EXAMPLES:

sage: S8 = SymmetricGroup(8)
sage: S8.index_set()
(1, 2, 3, 4, 5, 6, 7)

sage: S = SymmetricGroup([3,1,4,5])
sage: S.index_set()
(3, 1, 4)

major_index(parameter=None)
Return the major index generating polynomial of self, which is a gadget counting the elements of self
by major index.

INPUT:

• parameter – an element of a ring; the result is more explicit with a formal variable (default: element
q of Univariate Polynomial Ring in q over Integer Ring)

𝑃 (𝑞) =
∑︁
𝑔∈𝑆𝑛

𝑞major index(𝑔)

EXAMPLES:

sage: S4 = SymmetricGroup(4)
sage: S4.major_index()
q^6 + 3*q^5 + 5*q^4 + 6*q^3 + 5*q^2 + 3*q + 1
sage: K.<t> = QQ[]
sage: S4.major_index(t)
t^6 + 3*t^5 + 5*t^4 + 6*t^3 + 5*t^2 + 3*t + 1

reflections()

Return the list of all reflections in self.

EXAMPLES:

sage: A = SymmetricGroup(3)
sage: A.reflections()
[(1,2), (1,3), (2,3)]

simple_reflection(i)
For 𝑖 in the index set of self, this returns the elementary transposition 𝑠𝑖 = (𝑖, 𝑖+ 1).

EXAMPLES:

sage: A = SymmetricGroup(5)
sage: A.simple_reflection(3)
(3,4)

(continues on next page)

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 321

Groups, Release 9.8

(continued from previous page)

sage: A = SymmetricGroup([2,3,7])
sage: A.simple_reflections()
Finite family {2: (2,3), 3: (3,7)}

young_subgroup(comp)
Return the Young subgroup associated with the composition comp.

EXAMPLES:

sage: S = SymmetricGroup(8)
sage: c = Composition([2,2,2,2])
sage: S.young_subgroup(c)
Subgroup generated by [(7,8), (5,6), (3,4), (1,2)] of (Symmetric group of order␣
→˓8! as a permutation group)

sage: S = SymmetricGroup(['a','b','c'])
sage: S.young_subgroup([2,1])
Subgroup generated by [('a','b')] of (Symmetric group of order 3! as a␣
→˓permutation group)

sage: Y = S.young_subgroup([2,2,2,2,2])
Traceback (most recent call last):
...
ValueError: the composition is not of expected size

class sage.groups.perm_gps.permgroup_named.TransitiveGroup(d, n)
Bases: PermutationGroup_unique

The transitive group from the GAP tables of transitive groups.

INPUT:

• d – non-negative integer; the degree

• n – positive integer; the index of the group in the GAP database, starting at 1

OUTPUT:

the n-th transitive group of degree d

Note: This group is also available via groups.permutation.Transitive().

EXAMPLES:

sage: TransitiveGroup(0,1)
Transitive group number 1 of degree 0
sage: TransitiveGroup(1,1)
Transitive group number 1 of degree 1
sage: G = TransitiveGroup(5, 2); G
Transitive group number 2 of degree 5
sage: G.gens()
((1,2,3,4,5), (1,4)(2,3))

sage: G.category()
Category of finite enumerated permutation groups

322 Chapter 24. Permutation Groups

Groups, Release 9.8

Warning: this follows GAP’s naming convention of indexing the transitive groups starting from 1:

sage: TransitiveGroup(5,0)
Traceback (most recent call last):
...
ValueError: index n must be in {1,..,5}

Warning: only transitive groups of “small” degree are available in GAP’s database:

sage: TransitiveGroup(32,1)
Traceback (most recent call last):
...
NotImplementedError: only the transitive groups of degree at most 31 are␣
→˓available in GAP's database

degree()

Return the degree of this permutation group

EXAMPLES:

sage: TransitiveGroup(8, 44).degree()
8

transitive_number()

Return the index of this group in the GAP database, starting at 1

EXAMPLES:

sage: TransitiveGroup(8, 44).transitive_number()
44

sage.groups.perm_gps.permgroup_named.TransitiveGroups(d=None)
INPUT:

• d – an integer (optional)

Returns the set of all transitive groups of a given degree d up to isomorphisms. If d is not specified, it returns
the set of all transitive groups up to isomorphisms.

EXAMPLES:

sage: TransitiveGroups(3)
Transitive Groups of degree 3
sage: TransitiveGroups(7)
Transitive Groups of degree 7
sage: TransitiveGroups(8)
Transitive Groups of degree 8

sage: TransitiveGroups()
Transitive Groups

24.4. “Named” Permutation groups (such as the symmetric group, S_n) 323

Groups, Release 9.8

Warning: in practice, the database currently only contains transitive groups up to degree 31:

sage: TransitiveGroups(32).cardinality()
Traceback (most recent call last):
...
NotImplementedError: only the transitive groups of degree at most 31 are␣
→˓available in GAP's database

class sage.groups.perm_gps.permgroup_named.TransitiveGroupsAll

Bases: DisjointUnionEnumeratedSets

The infinite set of all transitive groups up to isomorphisms.

EXAMPLES:

sage: L = TransitiveGroups(); L
Transitive Groups
sage: L.category()
Category of facade infinite enumerated sets
sage: L.cardinality()
+Infinity

sage: p = L.__iter__()
sage: (next(p), next(p), next(p), next(p), next(p), next(p), next(p), next(p))
(Transitive group number 1 of degree 0, Transitive group number 1 of degree 1,
Transitive group number 1 of degree 2, Transitive group number 1 of degree 3,
Transitive group number 2 of degree 3, Transitive group number 1 of degree 4,
Transitive group number 2 of degree 4, Transitive group number 3 of degree 4)

class sage.groups.perm_gps.permgroup_named.TransitiveGroupsOfDegree(n)
Bases: CachedRepresentation, Parent

The set of all transitive groups of a given (small) degree up to isomorphism.

EXAMPLES:

sage: S = TransitiveGroups(4); S
Transitive Groups of degree 4
sage: list(S)
[Transitive group number 1 of degree 4,
Transitive group number 2 of degree 4,
Transitive group number 3 of degree 4,
Transitive group number 4 of degree 4,
Transitive group number 5 of degree 4]

sage: TransitiveGroups(5).an_element()
Transitive group number 1 of degree 5

We write the cardinality of all transitive groups of degree 5:

sage: for G in TransitiveGroups(5):
....: print(G.cardinality())
5
10

(continues on next page)

324 Chapter 24. Permutation Groups

../../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.CachedRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Groups, Release 9.8

(continued from previous page)

20
60
120

cardinality()

Return the cardinality of self, that is the number of transitive groups of a given degree.

EXAMPLES:

sage: TransitiveGroups(0).cardinality()
1
sage: TransitiveGroups(2).cardinality()
1
sage: TransitiveGroups(7).cardinality()
7
sage: TransitiveGroups(12).cardinality()
301
sage: [TransitiveGroups(i).cardinality() for i in range(11)]
[1, 1, 1, 2, 5, 5, 16, 7, 50, 34, 45]

Warning: GAP comes with a database containing all transitive groups up to degree 31:

sage: TransitiveGroups(32).cardinality()
Traceback (most recent call last):
...
NotImplementedError: only the transitive groups of degree at most 31 are␣
→˓available in GAP's database

24.5 Permutation group elements

AUTHORS:

• David Joyner (2006-02)

• David Joyner (2006-03): word problem method and reorganization

• Robert Bradshaw (2007-11): convert to Cython

• Sebastian Oehms (2018-11): Added gap() as synonym to _gap_() (compatibility to libgap framework, see trac
ticket #26750)

• Sebastian Oehms (2019-02): Implemented gap() properly (trac ticket #27234)

There are several ways to define a permutation group element:

• Define a permutation group 𝐺, then use G.gens() and multiplication * to construct elements.

• Define a permutation group 𝐺, then use, e.g., G([(1,2),(3,4,5)]) to construct an element of the group. You
could also use G('(1,2)(3,4,5)')

• Use, e.g., PermutationGroupElement([(1,2),(3,4,5)]) or PermutationGroupElement('(1,2)(3,4,
5)') to make a permutation group element with parent 𝑆5.

EXAMPLES:

24.5. Permutation group elements 325

https://trac.sagemath.org/26750
https://trac.sagemath.org/26750
https://trac.sagemath.org/27234

Groups, Release 9.8

We illustrate construction of permutation using several different methods.

First we construct elements by multiplying together generators for a group:

sage: G = PermutationGroup(['(1,2)(3,4)', '(3,4,5,6)'], canonicalize=False)
sage: s = G.gens()
sage: s[0]
(1,2)(3,4)
sage: s[1]
(3,4,5,6)
sage: s[0]*s[1]
(1,2)(3,5,6)
sage: (s[0]*s[1]).parent()
Permutation Group with generators [(1,2)(3,4), (3,4,5,6)]

Next we illustrate creation of a permutation using coercion into an already-created group:

sage: g = G([(1,2),(3,5,6)])
sage: g
(1,2)(3,5,6)
sage: g.parent()
Permutation Group with generators [(1,2)(3,4), (3,4,5,6)]
sage: g == s[0]*s[1]
True

We can also use a string or one-line notation to specify the permutation:

sage: h = G('(1,2)(3,5,6)')
sage: i = G([2,1,5,4,6,3])
sage: g == h == i
True

The Rubik’s cube group:

sage: f = [(17,19,24,22),(18,21,23,20),(6,25,43,16),(7,28,42,13),(8,30,41,11)]
sage: b = [(33,35,40,38),(34,37,39,36),(3, 9,46,32),(2,12,47,29),(1,14,48,27)]
sage: l = [(9,11,16,14),(10,13,15,12),(1,17,41,40),(4,20,44,37),(6,22,46,35)]
sage: r = [(25,27,32,30),(26,29,31,28),(3,38,43,19),(5,36,45,21),(8,33,48,24)]
sage: u = [(1, 3, 8, 6),(2, 5, 7, 4),(9,33,25,17),(10,34,26,18),(11,35,27,19)]
sage: d = [(41,43,48,46),(42,45,47,44),(14,22,30,38),(15,23,31,39),(16,24,32,40)]
sage: cube = PermutationGroup([f, b, l, r, u, d])
sage: F, B, L, R, U, D = cube.gens()
sage: cube.order()
43252003274489856000
sage: F.order()
4

We create element of a permutation group of large degree:

sage: G = SymmetricGroup(30)
sage: s = G(srange(30,0,-1)); s
(1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,
→˓17)(15,16)

class sage.groups.perm_gps.permgroup_element.PermutationGroupElement

326 Chapter 24. Permutation Groups

Groups, Release 9.8

Bases: MultiplicativeGroupElement

An element of a permutation group.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G
Permutation Group with generators [(1,2,3)(4,5)]
sage: g = G.random_element()
sage: g in G
True
sage: g = G.gen(0); g
(1,2,3)(4,5)
sage: print(g)
(1,2,3)(4,5)
sage: g*g
(1,3,2)
sage: g**(-1)
(1,3,2)(4,5)
sage: g**2
(1,3,2)
sage: G = PermutationGroup([(1,2,3)])
sage: g = G.gen(0); g
(1,2,3)
sage: g.order()
3

This example illustrates how permutations act on multivariate polynomials.

sage: R = PolynomialRing(RationalField(), 5, ["x","y","z","u","v"])
sage: x, y, z, u, v = R.gens()
sage: f = x**2 - y**2 + 3*z**2
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma = G.gen(0)
sage: f * sigma
3*x^2 + y^2 - z^2

cycle_string(singletons=False)

Return string representation of this permutation.

EXAMPLES:

sage: g = PermutationGroupElement([(1,2,3),(4,5)])
sage: g.cycle_string()
'(1,2,3)(4,5)'

sage: g = PermutationGroupElement([3,2,1])
sage: g.cycle_string(singletons=True)
'(1,3)(2)'

cycle_tuples(singletons=False)
Return self as a list of disjoint cycles, represented as tuples rather than permutation group elements.

INPUT:

24.5. Permutation group elements 327

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

• singletons - boolean (default: False) whether or not consider the cycle that correspond to fixed point

EXAMPLES:

sage: p = PermutationGroupElement('(2,6)(4,5,1)')
sage: p.cycle_tuples()
[(1, 4, 5), (2, 6)]
sage: p.cycle_tuples(singletons=True)
[(1, 4, 5), (2, 6), (3,)]

EXAMPLES:

sage: S = SymmetricGroup(4)
sage: S.gen(0).cycle_tuples()
[(1, 2, 3, 4)]

sage: S = SymmetricGroup(['a','b','c','d'])
sage: S.gen(0).cycle_tuples()
[('a', 'b', 'c', 'd')]
sage: S([('a', 'b'), ('c', 'd')]).cycle_tuples()
[('a', 'b'), ('c', 'd')]

cycle_type(singletons=True, as_list=False)
Return the partition that gives the cycle type of g as an element of self.

INPUT:

• g – an element of the permutation group self.parent()

• singletons – True or False depending on whether on or not trivial cycles should be counted (de-
fault: True)

• as_list – True or False depending on whether the cycle type should be returned as a list or as a
Partition (default: False)

OUTPUT:

A Partition, or list if is_list is True, giving the cycle type of g

If speed is a concern then as_list=True should be used.

EXAMPLES:

sage: G = DihedralGroup(3)
sage: [g.cycle_type() for g in G]
[[1, 1, 1], [3], [3], [2, 1], [2, 1], [2, 1]]
sage: PermutationGroupElement('(1,2,3)(4,5)(6,7,8)').cycle_type()
[3, 3, 2]
sage: G = SymmetricGroup(3); G('(1,2)').cycle_type()
[2, 1]
sage: G = SymmetricGroup(4); G('(1,2)').cycle_type()
[2, 1, 1]
sage: G = SymmetricGroup(4); G('(1,2)').cycle_type(singletons=False)
[2]
sage: G = SymmetricGroup(4); G('(1,2)').cycle_type(as_list=False)
[2, 1, 1]

328 Chapter 24. Permutation Groups

../../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partition
../../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partition

Groups, Release 9.8

cycles()

Return self as a list of disjoint cycles.

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5,6,7)'])
sage: g = G.0
sage: g.cycles()
[(1,2,3), (4,5,6,7)]
sage: a, b = g.cycles()
sage: a(1), b(1)
(2, 1)

dict()

Returns a dictionary associating each element of the domain with its image.

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4)); g
(1,2,3,4)
sage: v = g.dict(); v
{1: 2, 2: 3, 3: 4, 4: 1}
sage: type(v[1])
<... 'int'>
sage: x = G([2,1]); x
(1,2)
sage: x.dict()
{1: 2, 2: 1, 3: 3, 4: 4}

domain()

Returns the domain of self.

EXAMPLES:

sage: G = SymmetricGroup(4)
sage: x = G([2,1,4,3]); x
(1,2)(3,4)
sage: v = x.domain(); v
[2, 1, 4, 3]
sage: type(v[0])
<... 'int'>
sage: x = G([2,1]); x
(1,2)
sage: x.domain()
[2, 1, 3, 4]

gap()

Returns self as a libgap element

EXAMPLES:

sage: S = SymmetricGroup(4)
sage: p = S('(2,4)')
sage: p_libgap = libgap(p)

(continues on next page)

24.5. Permutation group elements 329

Groups, Release 9.8

(continued from previous page)

sage: p_libgap.Order()
2
sage: S(p_libgap) == p
True

sage: P = PGU(8,2)
sage: p, q = P.gens()
sage: p_libgap = p.gap()

has_descent(i, side='right', positive=False)
INPUT:

• i – an element of the index set

• side – “left” or “right” (default: “right”)

• positive – a boolean (default: False)

Returns whether self has a left (resp. right) descent at position i. If positive is True, then test for a non
descent instead.

Beware that, since permutations are acting on the right, the meaning of descents is the reverse of the usual
convention. Hence, self has a left descent at position i if self(i) > self(i+1).

EXAMPLES:

sage: S = SymmetricGroup([1,2,3])
sage: S.one().has_descent(1)
False
sage: S.one().has_descent(2)
False
sage: s = S.simple_reflections()
sage: x = s[1]*s[2]
sage: x.has_descent(1, side = "right")
False
sage: x.has_descent(2, side = "right")
True
sage: x.has_descent(1, side = "left")
True
sage: x.has_descent(2, side = "left")
False
sage: S._test_has_descent()

The symmetric group acting on a set not of the form (1, . . . , 𝑛) is also supported:

sage: S = SymmetricGroup([2,4,1])
sage: s = S.simple_reflections()
sage: x = s[2]*s[4]
sage: x.has_descent(4)
True
sage: S._test_has_descent()

inverse()

Returns the inverse permutation.

OUTPUT:

330 Chapter 24. Permutation Groups

Groups, Release 9.8

For an element of a permutation group, this method returns the inverse element, which is both the inverse
function and the inverse as an element of a group.

EXAMPLES:

sage: s = PermutationGroupElement("(1,2,3)(4,5)")
sage: s.inverse()
(1,3,2)(4,5)

sage: A = AlternatingGroup(4)
sage: t = A("(1,2,3)")
sage: t.inverse()
(1,3,2)

There are several ways (syntactically) to get an inverse of a permutation group element.

sage: s = PermutationGroupElement("(1,2,3,4)(6,7,8)")
sage: s.inverse() == s^-1
True
sage: s.inverse() == ~s
True

matrix()

Returns deg x deg permutation matrix associated to the permutation self

EXAMPLES:

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: g = G.gen(0)
sage: g.matrix()
[0 1 0 0 0]
[0 0 1 0 0]
[1 0 0 0 0]
[0 0 0 0 1]
[0 0 0 1 0]

multiplicative_order()

Return the order of this group element, which is the smallest positive integer 𝑛 for which 𝑔𝑛 = 1.

EXAMPLES:

sage: s = PermutationGroupElement('(1,2)(3,5,6)')
sage: s.multiplicative_order()
6

order is just an alias for multiplicative_order:

sage: s.order()
6

orbit(n, sorted=True)
Returns the orbit of the integer 𝑛 under this group element, as a sorted list.

EXAMPLES:

24.5. Permutation group elements 331

Groups, Release 9.8

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: g = G.gen(0)
sage: g.orbit(4)
[4, 5]
sage: g.orbit(3)
[1, 2, 3]
sage: g.orbit(10)
[10]

sage: s = SymmetricGroup(['a', 'b']).gen(0); s
('a','b')
sage: s.orbit('a')
['a', 'b']

sign()

Returns the sign of self, which is (−1)𝑠, where 𝑠 is the number of swaps.

EXAMPLES:

sage: s = PermutationGroupElement('(1,2)(3,5,6)')
sage: s.sign()
-1

ALGORITHM: Only even cycles contribute to the sign, thus

𝑠𝑖𝑔𝑛(𝑠𝑖𝑔𝑚𝑎) = (−1)
∑︀

𝑐 𝑙𝑒𝑛(𝑐)−1

where the sum is over cycles in self.

tuple()

Return tuple of images of the domain under self.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: s = G([2,1,5,3,4])
sage: s.tuple()
(2, 1, 5, 3, 4)

sage: S = SymmetricGroup(['a', 'b'])
sage: S.gen().tuple()
('b', 'a')

word_problem(words, display=True, as_list=False)
Try to solve the word problem for self.

INPUT:

• words – a list of elements of the ambient group, generating a subgroup

• display – boolean (default True) whether to display additional information

• as_list – boolean (default False) whether to return the result as a list of pairs (generator, exponent)

OUTPUT:

• a pair of strings, both representing the same word

332 Chapter 24. Permutation Groups

Groups, Release 9.8

or

• a list of pairs representing the word, each pair being (generator as a string, exponent as an integer)

Let 𝐺 be the ambient permutation group, containing the given element 𝑔. Let 𝐻 be the subgroup of 𝐺
generated by the list words of elements of 𝐺. If 𝑔 is in 𝐻 , this function returns an expression for 𝑔 as a
word in the elements of words and their inverses.

This function does not solve the word problem in Sage. Rather it pushes it over to GAP, which has op-
timized algorithms for the word problem. Essentially, this function is a wrapper for the GAP functions
“EpimorphismFromFreeGroup” and “PreImagesRepresentative”.

EXAMPLES:

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]], canonicalize=False)
sage: g1, g2 = G.gens()
sage: h = g1^2*g2*g1
sage: h.word_problem([g1,g2], False)
('x1^2*x2^-1*x1', '(1,2,3)(4,5)^2*(3,4)^-1*(1,2,3)(4,5)')

sage: h.word_problem([g1,g2])
x1^2*x2^-1*x1
[['(1,2,3)(4,5)', 2], ['(3,4)', -1], ['(1,2,3)(4,5)', 1]]

('x1^2*x2^-1*x1', '(1,2,3)(4,5)^2*(3,4)^-1*(1,2,3)(4,5)')

sage: h.word_problem([g1,g2], False, as_list=True)
[['(1,2,3)(4,5)', 2], ['(3,4)', -1], ['(1,2,3)(4,5)', 1]]

class sage.groups.perm_gps.permgroup_element.SymmetricGroupElement

Bases: PermutationGroupElement

An element of the symmetric group.

absolute_length()

Return the absolute length of self.

The absolute length is the size minus the number of its disjoint cycles. Alternatively, it is the length of the
shortest expression of the element as a product of reflections.

See also:

absolute_le()

EXAMPLES:

sage: S = SymmetricGroup(3)
sage: [x.absolute_length() for x in S]
[0, 2, 2, 1, 1, 1]

has_left_descent(i)
Return whether 𝑖 is a left descent of self.

EXAMPLES:

sage: W = SymmetricGroup(4)
sage: w = W.from_reduced_word([1,3,2,1])
sage: [i for i in W.index_set() if w.has_left_descent(i)]
[1, 3]

24.5. Permutation group elements 333

Groups, Release 9.8

sage.groups.perm_gps.permgroup_element.is_PermutationGroupElement(x)
Returns True if x is a PermutationGroupElement.

EXAMPLES:

sage: p = PermutationGroupElement([(1,2),(3,4,5)])
sage: from sage.groups.perm_gps.permgroup_element import is_PermutationGroupElement
sage: is_PermutationGroupElement(p)
True

sage.groups.perm_gps.permgroup_element.make_permgroup_element(G, x)
Returns a PermutationGroupElement given the permutation group G and the permutation x in list notation.

This is function is used when unpickling old (pre-domain) versions of permutation groups and their elements.
This now does a bit of processing and calls make_permgroup_element_v2() which is used in unpickling the
current PermutationGroupElements.

EXAMPLES:

sage: from sage.groups.perm_gps.permgroup_element import make_permgroup_element
sage: S = SymmetricGroup(3)
sage: make_permgroup_element(S, [1,3,2])
(2,3)

sage.groups.perm_gps.permgroup_element.make_permgroup_element_v2(G, x, domain)
Returns a PermutationGroupElement given the permutation group G, the permutation x in list notation, and the
domain domain of the permutation group.

This is function is used when unpickling permutation groups and their elements.

EXAMPLES:

sage: from sage.groups.perm_gps.permgroup_element import make_permgroup_element_v2
sage: S = SymmetricGroup(3)
sage: make_permgroup_element_v2(S, [1,3,2], S.domain())
(2,3)

24.6 Permutation group homomorphisms

AUTHORS:

• David Joyner (2006-03-21): first version

• David Joyner (2008-06): fixed kernel and image to return a group, instead of a string.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)])
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens()))
sage: phi.image(G)
Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a permutation group)
sage: phi.kernel()
Subgroup generated by [()] of (Cyclic group of order 4 as a permutation group)

(continues on next page)

334 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

sage: phi.image(g)
(1,2,3,4)
sage: phi(g)
(1,2,3,4)
sage: phi.codomain()
Dihedral group of order 8 as a permutation group
sage: phi.codomain()
Dihedral group of order 8 as a permutation group
sage: phi.domain()
Cyclic group of order 4 as a permutation group

class sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism

Bases: Morphism

A set-theoretic map between PermutationGroups.

image(J)
J must be a subgroup of G. Computes the subgroup of H which is the image of J.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)])
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens()))
sage: phi.image(G)
Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a␣
→˓permutation group)
sage: phi.image(g)
(1,2,3,4)

sage: G = PSL(2,7)
sage: D = G.direct_product(G)
sage: H = D[0]
sage: pr1 = D[3]
sage: pr1.image(G)
Subgroup generated by [(3,7,5)(4,8,6), (1,2,6)(3,4,8)] of (The projective␣
→˓special linear group of degree 2 over Finite Field of size 7)
sage: G.is_isomorphic(pr1.image(G))
True

Check that trac ticket #28324 is fixed:

sage: R.<x> = QQ[]
sage: f = x^4 + x^2 - 3
sage: L.<a> = f.splitting_field()
sage: G = L.galois_group()
sage: D4 = DihedralGroup(4)
sage: h = D4.isomorphism_to(G)
sage: h.image(D4).is_isomorphic(G)
True
sage: all(h.image(g) in G for g in D4.gens())
True

24.6. Permutation group homomorphisms 335

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism
https://trac.sagemath.org/28324

Groups, Release 9.8

kernel()

Return the kernel of this homomorphism as a permutation group.

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)])
sage: phi = PermutationGroupMorphism_im_gens(G, H, [1])
sage: phi.kernel()
Subgroup generated by [(1,2,3,4)] of (Cyclic group of order 4 as a permutation␣
→˓group)

sage: G = PSL(2,7)
sage: D = G.direct_product(G)
sage: H = D[0]
sage: pr1 = D[3]
sage: G.is_isomorphic(pr1.kernel())
True

class sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism_from_gap(G, H,
gap_hom)

Bases: PermutationGroupMorphism

This is a Python trick to allow Sage programmers to create a group homomorphism using GAP using very general
constructions. An example of its usage is in the direct_product instance method of the PermutationGroup_generic
class in permgroup.py.

Basic syntax:

PermutationGroupMorphism_from_gap(domain_group, range_group,’phi:=gap_hom_command;’,’phi’) And
don’t forget the line: from sage.groups.perm_gps.permgroup_morphism import PermutationGroupMor-
phism_from_gap in your program.

EXAMPLES:

sage: from sage.groups.perm_gps.permgroup_morphism import PermutationGroupMorphism_
→˓from_gap
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: H = G.subgroup([G([(1,2,3,4)])])
sage: PermutationGroupMorphism_from_gap(H, G, gap.Identity)
Permutation group morphism:
From: Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,

→˓2)(3,4), (1,2,3,4)])
To: Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]
Defn: Identity

class sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism_id

Bases: PermutationGroupMorphism

class sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism_im_gens(G, H,
gens=None)

Bases: PermutationGroupMorphism

Some python code for wrapping GAP’s GroupHomomorphismByImages function but only for permutation
groups. Can be expensive if G is large. This returns “fail” if gens does not generate self or if the map does
not extend to a group homomorphism, self - other.

336 Chapter 24. Permutation Groups

Groups, Release 9.8

EXAMPLES:

sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens())); phi
Permutation group morphism:
From: Cyclic group of order 4 as a permutation group
To: Dihedral group of order 8 as a permutation group
Defn: [(1,2,3,4)] -> [(1,2,3,4)]

sage: g = G([(1,3),(2,4)]); g
(1,3)(2,4)
sage: phi(g)
(1,3)(2,4)
sage: images = ((4,3,2,1),)
sage: phi = PermutationGroupMorphism_im_gens(G, G, images)
sage: g = G([(1,2,3,4)]); g
(1,2,3,4)
sage: phi(g)
(1,4,3,2)

AUTHORS:

• David Joyner (2006-02)

sage.groups.perm_gps.permgroup_morphism.is_PermutationGroupMorphism(f)
Return True if the argument f is a PermutationGroupMorphism.

EXAMPLES:

sage: from sage.groups.perm_gps.permgroup_morphism import is_
→˓PermutationGroupMorphism
sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens()))
sage: is_PermutationGroupMorphism(phi)
True

24.7 Rubik’s cube group functions

Note: “Rubiks cube” is trademarked. We shall omit the trademark symbol below for simplicity.

NOTATION:

𝐵 denotes a clockwise quarter turn of the back face,𝐷 denotes a clockwise quarter turn of the down face, and similarly
for 𝐹 (front), 𝐿 (left), 𝑅 (right), and 𝑈 (up). Products of moves are read right to left, so for example, 𝑅 · 𝑈 means
move 𝑈 first and then 𝑅.

See CubeGroup.parse() for all possible input notations.

The “Singmaster notation”:

• moves: 𝑈,𝐷,𝑅,𝐿, 𝐹,𝐵 as in the diagram below,

• corners: 𝑥𝑦𝑧 means the facet is on face 𝑥 (in 𝑅,𝐹, 𝐿, 𝑈,𝐷,𝐵) and the clockwise rotation of the corner sends
𝑥− 𝑦 − 𝑧

24.7. Rubik’s cube group functions 337

Groups, Release 9.8

• edges: 𝑥𝑦 means the facet is on face 𝑥 and a flip of the edge sends 𝑥− 𝑦.

sage: rubik = CubeGroup()
sage: rubik.display2d("")

+--------------+
| 1 2 3 |
| 4 top 5 |
| 6 7 8 |

+------------+--------------+-------------+------------+
9 10 11	17 18 19	25 26 27	33 34 35
12 left 13	20 front 21	28 right 29	36 rear 37
14 15 16	22 23 24	30 31 32	38 39 40
+------------+--------------+-------------+------------+

| 41 42 43 |
| 44 bottom 45 |
| 46 47 48 |
+--------------+

AUTHORS:

• David Joyner (2006-10-21): first version

• David Joyner (2007-05): changed faces, added legal and solve

• David Joyner(2007-06): added plotting functions

• David Joyner (2007, 2008): colors corrected, “solve” rewritten (again),typos fixed.

• Robert Miller (2007, 2008): editing, cleaned up display2d

• Robert Bradshaw (2007, 2008): RubiksCube object, 3d plotting.

• David Joyner (2007-09): rewrote docstring for CubeGroup’s “solve”.

• Robert Bradshaw (2007-09): Versatile parse function for all input types.

• Robert Bradshaw (2007-11): Cleanup.

REFERENCES:

• Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999.

• Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964.

• Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.

• Joyner,D., Adventures in Group Theory, Johns Hopkins Univ Press, 2002.

class sage.groups.perm_gps.cubegroup.CubeGroup

Bases: PermutationGroup_generic

A python class to help compute Rubik’s cube group actions.

Note: This group is also available via groups.permutation.RubiksCube().

EXAMPLES:

If G denotes the cube group then it may be regarded as a subgroup of SymmetricGroup(48), where the 48
facets are labeled as follows.

338 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: rubik = CubeGroup()
sage: rubik.display2d("")

+--------------+
| 1 2 3 |
| 4 top 5 |
| 6 7 8 |

+------------+--------------+-------------+------------+
9 10 11	17 18 19	25 26 27	33 34 35
12 left 13	20 front 21	28 right 29	36 rear 37
14 15 16	22 23 24	30 31 32	38 39 40
+------------+--------------+-------------+------------+

| 41 42 43 |
| 44 bottom 45 |
| 46 47 48 |
+--------------+

sage: rubik
The Rubik's cube group with generators R,L,F,B,U,D in SymmetricGroup(48).

B()

Return the generator 𝐵 in Singmaster notation.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.B()
(1,14,48,27)(2,12,47,29)(3,9,46,32)(33,35,40,38)(34,37,39,36)

D()

Return the generator 𝐷 in Singmaster notation.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.D()
(14,22,30,38)(15,23,31,39)(16,24,32,40)(41,43,48,46)(42,45,47,44)

F()

Return the generator 𝐹 in Singmaster notation.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.F()
(6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20)

L()

Return the generator 𝐿 in Singmaster notation.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.L()
(1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12)

24.7. Rubik’s cube group functions 339

Groups, Release 9.8

R()

Return the generator 𝑅 in Singmaster notation.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.R()
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)

U()

Return the generator 𝑈 in Singmaster notation.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.U()
(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)

display2d(mv)
Print the 2d representation of self.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.display2d("R")

+--------------+
| 1 2 38 |
| 4 top 36 |
| 6 7 33 |

+------------+--------------+-------------+------------+
9 10 11	17 18 3	27 29 32	48 34 35
12 left 13	20 front 5	26 right 31	45 rear 37
14 15 16	22 23 8	25 28 30	43 39 40
+------------+--------------+-------------+------------+

| 41 42 19 |
| 44 bottom 21 |
| 46 47 24 |
+--------------+

faces(mv)
Return the dictionary of faces created by the effect of the move mv, which is a string of the form𝑋𝑎*𝑌 𝑏*...,
where 𝑋,𝑌, . . . are in {𝑅,𝐿, 𝐹,𝐵,𝑈,𝐷} and 𝑎, 𝑏, . . . are integers. We call this ordering of the faces the
“BDFLRU, L2R, T2B ordering”.

EXAMPLES:

sage: rubik = CubeGroup()

Here is the dictionary of the solved state:

sage: sorted(rubik.faces("").items())
[('back', [[33, 34, 35], [36, 0, 37], [38, 39, 40]]),
('down', [[41, 42, 43], [44, 0, 45], [46, 47, 48]]),
('front', [[17, 18, 19], [20, 0, 21], [22, 23, 24]]),
('left', [[9, 10, 11], [12, 0, 13], [14, 15, 16]]),

(continues on next page)

340 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

('right', [[25, 26, 27], [28, 0, 29], [30, 31, 32]]),
('up', [[1, 2, 3], [4, 0, 5], [6, 7, 8]])]

Now the dictionary of the state obtained after making the move 𝑅 followed by 𝐿:

sage: sorted(rubik.faces("R*U").items())
[('back', [[48, 26, 27], [45, 0, 37], [43, 39, 40]]),
('down', [[41, 42, 11], [44, 0, 21], [46, 47, 24]]),
('front', [[9, 10, 8], [20, 0, 7], [22, 23, 6]]),
('left', [[33, 34, 35], [12, 0, 13], [14, 15, 16]]),
('right', [[19, 29, 32], [18, 0, 31], [17, 28, 30]]),
('up', [[3, 5, 38], [2, 0, 36], [1, 4, 25]])]

facets(g=None)
Return the set of facets on which the group acts. This function is a “constant”.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.facets() == list(range(1,49))
True

gen_names()

Return the names of the generators.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.gen_names()
['B', 'D', 'F', 'L', 'R', 'U']

legal(state, mode='quiet')
Return 1 (true) if the dictionary state (in the same format as returned by the faces method) represents a
legal position (or state) of the Rubik’s cube or 0 (false) otherwise.

EXAMPLES:

sage: rubik = CubeGroup()
sage: r0 = rubik.faces("")
sage: r1 = {'back': [[33, 34, 35], [36, 0, 37], [38, 39, 40]], 'down': [[41, 42,
→˓ 43], [44, 0, 45], [46, 47, 48]],'front': [[17, 18, 19], [20, 0, 21], [22, 23,
→˓ 24]],'left': [[9, 10, 11], [12, 0, 13], [14, 15, 16]],'right': [[25, 26, 27],
→˓ [28, 0, 29], [30, 31, 32]],'up': [[1, 2, 3], [4, 0, 5], [6, 8, 7]]}
sage: rubik.legal(r0)
1
sage: rubik.legal(r0,"verbose")
(1, ())
sage: rubik.legal(r1)
0

move(mv)
Return the group element and the reordered list of facets, as moved by the list mv (read left-to-right)

INPUT:

24.7. Rubik’s cube group functions 341

Groups, Release 9.8

• mv – A string of the form Xa*Yb*..., where X, Y, . . . are in R, L, F, B, U, D and a, b, . . . are integers.

EXAMPLES:

sage: rubik = CubeGroup()
sage: rubik.move("")[0]
()
sage: rubik.move("R")[0]
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)
sage: rubik.R()
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)

parse(mv, check=True)
This function allows one to create the permutation group element from a variety of formats.

INPUT:

• mv – Can one of the following:

– list - list of facets (as returned by self.facets())

– dict - list of faces (as returned by self.faces())

– str - either cycle notation (passed to GAP) or a product of generators or Singmaster notation

– perm_group element - returned as an element of self

• check – check if the input is valid

EXAMPLES:

sage: C = CubeGroup()
sage: C.parse(list(range(1,49)))
()
sage: g = C.parse("L"); g
(1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12)
sage: C.parse(str(g)) == g
True
sage: facets = C.facets(g); facets
[17, 2, 3, 20, 5, 22, 7, 8, 11, 13, 16, 10, 15, 9, 12, 14, 41, 18, 19, 44, 21,␣
→˓46, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 6, 36, 4, 38, 39, 1, 40,␣
→˓42, 43, 37, 45, 35, 47, 48]
sage: C.parse(facets)
(1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12)
sage: C.parse(facets) == g
True
sage: faces = C.faces("L"); faces
{'back': [[33, 34, 6], [36, 0, 4], [38, 39, 1]],
'down': [[40, 42, 43], [37, 0, 45], [35, 47, 48]],
'front': [[41, 18, 19], [44, 0, 21], [46, 23, 24]],
'left': [[11, 13, 16], [10, 0, 15], [9, 12, 14]],
'right': [[25, 26, 27], [28, 0, 29], [30, 31, 32]],
'up': [[17, 2, 3], [20, 0, 5], [22, 7, 8]]}
sage: C.parse(faces) == C.parse("L")
True
sage: C.parse("L' R2") == C.parse("L^(-1)*R^2")
True
sage: C.parse("L' R2")

(continues on next page)

342 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

(1,40,41,17)(3,43)(4,37,44,20)(5,45)(6,35,46,22)(8,48)(9,14,16,11)(10,12,15,
→˓13)(19,38)(21,36)(24,33)(25,32)(26,31)(27,30)(28,29)
sage: C.parse("L^4")
()
sage: C.parse("L^(-1)*R")
(1,40,41,17)(3,38,43,19)(4,37,44,20)(5,36,45,21)(6,35,46,22)(8,33,48,24)(9,14,
→˓16,11)(10,12,15,13)(25,27,32,30)(26,29,31,28)

plot3d_cube(mv, title=True)
Displays 𝐹,𝑈,𝑅 faces of the cube after the given move mv. Mostly included for the purpose of drawing
pictures and checking moves.

INPUT:

• mv – A string in the Singmaster notation

• title – (Default: True) Display the title information

The first one below is “superflip+4 spot” (in 26q* moves) and the second one is the superflip (in 20f*
moves). Type show(P) to view them.

EXAMPLES:

sage: rubik = CubeGroup()
sage: P = rubik.plot3d_cube("U^2*F*U^2*L*R^(-1)*F^2*U*F^3*B^3*R*L*U^2*R*D^3*U*L^
→˓3*R*D*R^3*L^3*D^2")
sage: P = rubik.plot3d_cube("R*L*D^2*B^3*L^2*F^2*R^2*U^3*D*R^3*D^2*F^3*B^3*D^
→˓3*F^2*D^3*R^2*U^3*F^2*D^3")

plot_cube(mv, title=True, colors=[(1, 0.63, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0), (1, 0.6, 0.3), (0, 0, 1)])
Input the move mv, as a string in the Singmaster notation, and output the 2D plot of the cube in that state.

Type P.show() to display any of the plots below.

EXAMPLES:

sage: rubik = CubeGroup()
sage: P = rubik.plot_cube("R^2*U^2*R^2*U^2*R^2*U^2", title = False)
sage: # (R^2U^2)^3 permutes 2 pairs of edges (uf,ub)(fr,br)
sage: P = rubik.plot_cube("R*L*D^2*B^3*L^2*F^2*R^2*U^3*D*R^3*D^2*F^3*B^3*D^3*F^
→˓2*D^3*R^2*U^3*F^2*D^3")
sage: # the superflip (in 20f* moves)
sage: P = rubik.plot_cube("U^2*F*U^2*L*R^(-1)*F^2*U*F^3*B^3*R*L*U^2*R*D^3*U*L^
→˓3*R*D*R^3*L^3*D^2")
sage: # "superflip+4 spot" (in 26q* moves)

repr2d(mv)
Displays a 2D map of the Rubik’s cube after the move mv has been made. Nothing is returned.

EXAMPLES:

sage: rubik = CubeGroup()
sage: print(rubik.repr2d(""))

+--------------+
| 1 2 3 |
| 4 top 5 |

(continues on next page)

24.7. Rubik’s cube group functions 343

Groups, Release 9.8

(continued from previous page)

| 6 7 8 |
+------------+--------------+-------------+------------+
9 10 11	17 18 19	25 26 27	33 34 35
12 left 13	20 front 21	28 right 29	36 rear 37
14 15 16	22 23 24	30 31 32	38 39 40
+------------+--------------+-------------+------------+

| 41 42 43 |
| 44 bottom 45 |
| 46 47 48 |
+--------------+

sage: print(rubik.repr2d("R"))
+--------------+
| 1 2 38 |
| 4 top 36 |
| 6 7 33 |

+------------+--------------+-------------+------------+
9 10 11	17 18 3	27 29 32	48 34 35
12 left 13	20 front 5	26 right 31	45 rear 37
14 15 16	22 23 8	25 28 30	43 39 40
+------------+--------------+-------------+------------+

| 41 42 19 |
| 44 bottom 21 |
| 46 47 24 |
+--------------+

You can see the right face has been rotated but not the left face.

solve(state, algorithm='default')
Solve the cube in the state, given as a dictionary as in legal. See the solve method of the RubiksCube
class for more details.

This may use GAP’s EpimorphismFromFreeGroup and PreImagesRepresentative as explained be-
low, if ‘gap’ is passed in as the algorithm.

This algorithm

1. constructs the free group on 6 generators then computes a reasonable set of relations which they satisfy

2. computes a homomorphism from the cube group to this free group quotient

3. takes the cube position, regarded as a group element, and maps it over to the free group quotient

4. using those relations and tricks from combinatorial group theory (stabilizer chains), solves the “word
problem” for that element.

5. uses python string parsing to rewrite that in cube notation.

The Rubik’s cube group has about 4.3 × 1019 elements, so this process is time-consuming. See https://
www.gap-system.org/Doc/Examples/rubik.html for an interesting discussion of some GAP code analyzing
the Rubik’s cube.

EXAMPLES:

sage: rubik = CubeGroup()
sage: state = rubik.faces("R")
sage: rubik.solve(state)

(continues on next page)

344 Chapter 24. Permutation Groups

https://www.gap-system.org/Doc/Examples/rubik.html
https://www.gap-system.org/Doc/Examples/rubik.html

Groups, Release 9.8

(continued from previous page)

'R'
sage: state = rubik.faces("R*U")
sage: rubik.solve(state, algorithm='gap') # long time
'R*U'

You can also check this another (but similar) way using the word_problem method (eg, G = rubik.group();
g = G(“(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)”); g.word_problem([b,d,f,l,r,u]),
though the output will be less intuitive).

class sage.groups.perm_gps.cubegroup.RubiksCube(state=None, history=[], colors=[(1, 0.63, 1), (1, 1, 0),
(1, 0, 0), (0, 1, 0), (1, 0.6, 0.3), (0, 0, 1)])

Bases: SageObject

The Rubik’s cube (in a given state).

EXAMPLES:

sage: C = RubiksCube().move("R U R'")
sage: C.show3d()

sage: C = RubiksCube("R*L"); C
+--------------+
| 17 2 38 |
| 20 top 36 |
| 22 7 33 |

+------------+--------------+-------------+------------+
11 13 16	41 18 3	27 29 32	48 34 6
10 left 15	44 front 5	26 right 31	45 rear 4
9 12 14	46 23 8	25 28 30	43 39 1
+------------+--------------+-------------+------------+

| 40 42 19 |
| 37 bottom 21 |
| 35 47 24 |
+--------------+

sage: C.show()
sage: C.solve(algorithm='gap') # long time
'L*R'
sage: C == RubiksCube("L*R")
True

cubie(size, gap, x, y, z, colors, stickers=True)
Return the cubie at (𝑥, 𝑦, 𝑧).

INPUT:

• size – The size of the cubie

• gap – The gap between cubies

• x,y,z – The position of the cubie

• colors – The list of colors

• stickers – (Default True) Boolean to display stickers

EXAMPLES:

24.7. Rubik’s cube group functions 345

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Groups, Release 9.8

sage: C = RubiksCube("R*U")
sage: C.cubie(0.15, 0.025, 0,0,0, C.colors*3)
Graphics3d Object

facets()

Return the facets of self.

EXAMPLES:

sage: C = RubiksCube("R*U")
sage: C.facets()
[3, 5, 38, 2, 36, 1, 4, 25, 33, 34, 35, 12, 13, 14, 15, 16, 9, 10,
8, 20, 7, 22, 23, 6, 19, 29, 32, 18, 31, 17, 28, 30, 48, 26, 27,
45, 37, 43, 39, 40, 41, 42, 11, 44, 21, 46, 47, 24]

move(g)
Move the Rubik’s cube by g.

EXAMPLES:

sage: RubiksCube().move("R*U") == RubiksCube("R*U")
True

plot()

Return a plot of self.

EXAMPLES:

sage: C = RubiksCube("R*U")
sage: C.plot()
Graphics object consisting of 55 graphics primitives

plot3d(stickers=True)
Return a 3D plot of self.

EXAMPLES:

sage: C = RubiksCube("R*U")
sage: C.plot3d()
Graphics3d Object

scramble(moves=30)
Scramble the Rubik’s cube.

EXAMPLES:

sage: C = RubiksCube()
sage: C.scramble() # random

+--------------+
| 38 29 35 |
| 20 top 42 |
| 11 44 30 |

+------------+--------------+-------------+------------+
| 48 13 17 | 6 15 24 | 43 23 9 | 1 36 32 |
| 4 left 18 | 7 front 37 | 12 right 26 | 5 rear 10 |

(continues on next page)

346 Chapter 24. Permutation Groups

Groups, Release 9.8

(continued from previous page)

| 33 31 40 | 14 28 8 | 25 47 16 | 22 2 3 |
+------------+--------------+-------------+------------+

| 46 21 19 |
| 45 bottom 39 |
| 27 34 41 |
+--------------+

show()

Show a plot of self.

EXAMPLES:

sage: C = RubiksCube("R*U")
sage: C.show()

show3d()

Show a 3D plot of self.

EXAMPLES:

sage: C = RubiksCube("R*U")
sage: C.show3d()

solve(algorithm='hybrid', timeout=15)
Solve the Rubik’s cube.

INPUT:

• algorithm – must be one of the following:

– hybrid - try kociemba for timeout seconds, then dietz

– kociemba - Use Dik T. Winter’s program (reasonable speed, few moves)

– dietz - Use Eric Dietz’s cubex program (fast but lots of moves)

– optimal - Use Michael Reid’s optimal program (may take a long time)

– gap - Use GAP word solution (can be slow)

Any choice other than gap requires the optional package rubiks. Otherwise, the gap algorithm is used.

EXAMPLES:

sage: C = RubiksCube("R U F L B D")
sage: C.solve() # optional - rubiks
'R U F L B D'

Dietz’s program is much faster, but may give highly non-optimal solutions:

sage: s = C.solve('dietz'); s # optional - rubiks
"U' L' L' U L U' L U D L L D' L' D L' D' L D L' U' L D' L' U L' B' U' L' U B L␣
→˓D L D' U' L' U L B L B' L' U L U' L' F' L' F L' F L F' L' D' L' D D L D' B L B
→˓' L B' L B F' L F F B' L F' B D' D' L D B' B' L' D' B U' U' L' B' D' F' F' L␣
→˓D F'"
sage: C2 = RubiksCube(s) # optional - rubiks
sage: C == C2 # optional - rubiks
True

24.7. Rubik’s cube group functions 347

Groups, Release 9.8

undo()

Undo the last move of the Rubik’s cube.

EXAMPLES:

sage: C = RubiksCube()
sage: D = C.move("R*U")
sage: D.undo() == C
True

sage.groups.perm_gps.cubegroup.color_of_square(facet, colors=['lpurple', 'yellow', 'red', 'green', 'orange',
'blue'])

Return the color the facet has in the solved state.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import color_of_square
sage: color_of_square(41)
'blue'

sage.groups.perm_gps.cubegroup.create_poly(face, color)
Create the polygon given by face with color color.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import create_poly, red
sage: create_poly('ur', red)
Graphics object consisting of 1 graphics primitive

sage.groups.perm_gps.cubegroup.cubie_centers(label)
Return the cubie center list element given by label.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import cubie_centers
sage: cubie_centers(3)
[0, 2, 2]

sage.groups.perm_gps.cubegroup.cubie_colors(label, state0)
Return the color of the cubie given by label at state0.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import cubie_colors
sage: G = CubeGroup()
sage: g = G.parse("R*U")
sage: cubie_colors(3, G.facets(g))
[(1, 1, 1), (1, 0.63, 1), (1, 0.6, 0.3)]

sage.groups.perm_gps.cubegroup.cubie_faces()

This provides a map from the 6 faces of the 27 cubies to the 48 facets of the larger cube.

-1,-1,-1 is left, top, front

EXAMPLES:

348 Chapter 24. Permutation Groups

Groups, Release 9.8

sage: from sage.groups.perm_gps.cubegroup import cubie_faces
sage: sorted(cubie_faces().items())
[((-1, -1, -1), [6, 17, 11, 0, 0, 0]),
((-1, -1, 0), [4, 0, 10, 0, 0, 0]),
((-1, -1, 1), [1, 0, 9, 0, 35, 0]),
((-1, 0, -1), [0, 20, 13, 0, 0, 0]),
((-1, 0, 0), [0, 0, -5, 0, 0, 0]),
((-1, 0, 1), [0, 0, 12, 0, 37, 0]),
((-1, 1, -1), [0, 22, 16, 41, 0, 0]),
((-1, 1, 0), [0, 0, 15, 44, 0, 0]),
((-1, 1, 1), [0, 0, 14, 46, 40, 0]),
((0, -1, -1), [7, 18, 0, 0, 0, 0]),
((0, -1, 0), [-6, 0, 0, 0, 0, 0]),
((0, -1, 1), [2, 0, 0, 0, 34, 0]),
((0, 0, -1), [0, -4, 0, 0, 0, 0]),
((0, 0, 0), [0, 0, 0, 0, 0, 0]),
((0, 0, 1), [0, 0, 0, 0, -2, 0]),
((0, 1, -1), [0, 23, 0, 42, 0, 0]),
((0, 1, 0), [0, 0, 0, -1, 0, 0]),
((0, 1, 1), [0, 0, 0, 47, 39, 0]),
((1, -1, -1), [8, 19, 0, 0, 0, 25]),
((1, -1, 0), [5, 0, 0, 0, 0, 26]),
((1, -1, 1), [3, 0, 0, 0, 33, 27]),
((1, 0, -1), [0, 21, 0, 0, 0, 28]),
((1, 0, 0), [0, 0, 0, 0, 0, -3]),
((1, 0, 1), [0, 0, 0, 0, 36, 29]),
((1, 1, -1), [0, 24, 0, 43, 0, 30]),
((1, 1, 0), [0, 0, 0, 45, 0, 31]),
((1, 1, 1), [0, 0, 0, 48, 38, 32])]

sage.groups.perm_gps.cubegroup.index2singmaster(facet)
Translate index used (eg, 43) to Singmaster facet notation (eg, fdr).

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import index2singmaster
sage: index2singmaster(41)
'dlf'

sage.groups.perm_gps.cubegroup.inv_list(lst)
Input a list of ints 1, . . . ,𝑚 (in any order), outputs inverse perm.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import inv_list
sage: L = [2,3,1]
sage: inv_list(L)
[3, 1, 2]

sage.groups.perm_gps.cubegroup.plot3d_cubie(cnt, clrs)
Plot the front, up and right face of a cubie centered at cnt and rgbcolors given by clrs (in the order FUR).

Type P.show() to view.

EXAMPLES:

24.7. Rubik’s cube group functions 349

Groups, Release 9.8

sage: from sage.groups.perm_gps.cubegroup import plot3d_cubie, blue, red, green
sage: clrF = blue; clrU = red; clrR = green
sage: P = plot3d_cubie([1/2,1/2,1/2],[clrF,clrU,clrR])

sage.groups.perm_gps.cubegroup.polygon_plot3d(points, tilt=30, turn=30, **kwargs)
Plot a polygon viewed from an angle determined by tilt, turn, and vertices points.

Warning: The ordering of the points is important to get “correct” and if you add several of these plots
together, the one added first is also drawn first (ie, addition of Graphics objects is not commutative).

The following example produced a green-colored square with vertices at the points indicated.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import polygon_plot3d,green
sage: P = polygon_plot3d([[1,3,1],[2,3,1],[2,3,2],[1,3,2],[1,3,1]],rgbcolor=green)

sage.groups.perm_gps.cubegroup.rotation_list(tilt, turn)
Return a list [sin(𝜃), sin(𝜑), cos(𝜃), cos(𝜑)] of rotations where 𝜃 is tilt and 𝜑 is turn.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import rotation_list
sage: rotation_list(30, 45)
[0.49999999999999994, 0.7071067811865475, 0.8660254037844387, 0.7071067811865476]

sage.groups.perm_gps.cubegroup.xproj(x, y, z, r)
Return the 𝑥-projection of (𝑥, 𝑦, 𝑧) rotated by 𝑟.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import rotation_list, xproj
sage: rot = rotation_list(30, 45)
sage: xproj(1,2,3,rot)
0.6123724356957945

sage.groups.perm_gps.cubegroup.yproj(x, y, z, r)
Return the 𝑦-projection of (𝑥, 𝑦, 𝑧) rotated by 𝑟.

EXAMPLES:

sage: from sage.groups.perm_gps.cubegroup import rotation_list, yproj
sage: rot = rotation_list(30, 45)
sage: yproj(1,2,3,rot)
1.378497416975604

350 Chapter 24. Permutation Groups

Groups, Release 9.8

24.8 Conjugacy Classes Of The Symmetric Group

AUTHORS:

• Vincent Delecroix, Travis Scrimshaw (2014-11-23)

class sage.groups.perm_gps.symgp_conjugacy_class.PermutationsConjugacyClass(P, part)
Bases: SymmetricGroupConjugacyClassMixin, ConjugacyClass

A conjugacy class of the permutations of 𝑛.

INPUT:

• P – the permutations of 𝑛

• part – a partition or an element of P

set()

The set of all elements in the conjugacy class self.

EXAMPLES:

sage: G = Permutations(3)
sage: g = G([2, 1, 3])
sage: C = G.conjugacy_class(g)
sage: S = [[1, 3, 2], [2, 1, 3], [3, 2, 1]]
sage: C.set() == Set(G(x) for x in S)
True

class sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClass(group, part)
Bases: SymmetricGroupConjugacyClassMixin, ConjugacyClassGAP

A conjugacy class of the symmetric group.

INPUT:

• group – the symmetric group

• part – a partition or an element of group

set()

The set of all elements in the conjugacy class self.

EXAMPLES:

sage: G = SymmetricGroup(3)
sage: g = G((1,2))
sage: C = G.conjugacy_class(g)
sage: S = [(2,3), (1,2), (1,3)]
sage: C.set() == Set(G(x) for x in S)
True

class sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClassMixin(domain,
part)

Bases: object

Mixin class which contains methods for conjugacy classes of the symmetric group.

24.8. Conjugacy Classes Of The Symmetric Group 351

Groups, Release 9.8

partition()

Return the partition of self.

EXAMPLES:

sage: G = SymmetricGroup(5)
sage: g = G([(1,2), (3,4,5)])
sage: C = G.conjugacy_class(g)

sage.groups.perm_gps.symgp_conjugacy_class.conjugacy_class_iterator(part, S=None)
Return an iterator over the conjugacy class associated to the partition part.

The elements are given as a list of tuples, each tuple being a cycle.

INPUT:

• part – partition

• S – (optional, default: {1, 2, . . . , 𝑛}, where 𝑛 is the size of part) a set

OUTPUT:

An iterator over the conjugacy class consisting of all permutations of the set S whose cycle type is part.

EXAMPLES:

sage: from sage.groups.perm_gps.symgp_conjugacy_class import conjugacy_class_
→˓iterator
sage: for p in conjugacy_class_iterator([2,2]): print(p)
[(1, 2), (3, 4)]
[(1, 4), (2, 3)]
[(1, 3), (2, 4)]

In order to get permutations, one just has to wrap:

sage: S = SymmetricGroup(5)
sage: for p in conjugacy_class_iterator([3,2]): print(S(p))
(1,3)(2,4,5)
(1,3)(2,5,4)
(1,2)(3,4,5)
(1,2)(3,5,4)
...
(1,4)(2,3,5)
(1,4)(2,5,3)

Check that the number of elements is the number of elements in the conjugacy class:

sage: s = lambda p: sum(1 for _ in conjugacy_class_iterator(p))
sage: all(s(p) == p.conjugacy_class_size() for p in Partitions(5))
True

It is also possible to specify any underlying set:

sage: it = conjugacy_class_iterator([2,2,2], 'abcdef')
sage: sorted(flatten(next(it)))
['a', 'b', 'c', 'd', 'e', 'f']
sage: all(len(x) == 2 for x in next(it))
True

352 Chapter 24. Permutation Groups

Groups, Release 9.8

sage.groups.perm_gps.symgp_conjugacy_class.default_representative(part, G)

Construct the default representative for the conjugacy class of cycle type part of a symmetric group G.

Let 𝜆 be a partition of 𝑛. We pick a representative by

(1, 2, . . . , 𝜆1)(𝜆1 + 1, . . . , 𝜆1 + 𝜆2)(𝜆1 + 𝜆2 + · · · + 𝜆ℓ−1, . . . , 𝑛),

where ℓ is the length (or number of parts) of 𝜆.

INPUT:

• part – partition

• G – a symmetric group

EXAMPLES:

sage: from sage.groups.perm_gps.symgp_conjugacy_class import default_representative
sage: S = SymmetricGroup(4)
sage: for p in Partitions(4):
....: print(default_representative(p, S))
(1,2,3,4)
(1,2,3)
(1,2)(3,4)
(1,2)
()

24.8. Conjugacy Classes Of The Symmetric Group 353

Groups, Release 9.8

354 Chapter 24. Permutation Groups

CHAPTER

TWENTYFIVE

MATRIX AND AFFINE GROUPS

25.1 Library of Interesting Groups

Type groups.matrix.<tab> to access examples of groups implemented as permutation groups.

25.2 Base classes for Matrix Groups

Loading, saving, . . . works:

sage: G = GL(2,5); G
General Linear Group of degree 2 over Finite Field of size 5
sage: TestSuite(G).run()

sage: g = G.1; g
[4 1]
[4 0]
sage: TestSuite(g).run()

We test that trac ticket #9437 is fixed:

sage: len(list(SL(2, Zmod(4))))
48

AUTHORS:

• William Stein: initial version

• David Joyner (2006-03-15): degree, base_ring, _contains_, list, random, order methods; examples

• William Stein (2006-12): rewrite

• David Joyner (2007-12): Added invariant_generators (with Martin Albrecht and Simon King)

• David Joyner (2008-08): Added module_composition_factors (interface to GAP’s MeatAxe implementation)
and as_permutation_group (returns isomorphic PermutationGroup).

• Simon King (2010-05): Improve invariant_generators by using GAP for the construction of the Reynolds operator
in Singular.

• Sebastian Oehms (2018-07): Add subgroup() and ambient() see trac ticket #25894

355

https://trac.sagemath.org/9437
https://trac.sagemath.org/25894

Groups, Release 9.8

class sage.groups.matrix_gps.matrix_group.MatrixGroup_base

Bases: Group

Base class for all matrix groups.

This base class just holds the base ring, but not the degree. So it can be a base for affine groups where the natural
matrix is larger than the degree of the affine group. Makes no assumption about the group except that its elements
have a matrix() method.

ambient()

Return the ambient group of a subgroup.

OUTPUT:

A group containing self. If self has not been defined as a subgroup, we just return self.

EXAMPLES:

sage: G = GL(2,QQ)
sage: m = matrix(QQ, 2,2, [[3, 0],[~5,1]])
sage: S = G.subgroup([m])
sage: S.ambient() is G
True

as_matrix_group()

Return a new matrix group from the generators.

This will throw away any extra structure (encoded in a derived class) that a group of special matrices has.

EXAMPLES:

sage: G = SU(4,GF(5))
sage: G.as_matrix_group()
Matrix group over Finite Field in a of size 5^2 with 2 generators (
[a 0 0 0] [1 0 4*a + 3 0]
[0 2*a + 3 0 0] [1 0 0 0]
[0 0 4*a + 1 0] [0 2*a + 4 0 1]
[0 0 0 3*a], [0 3*a + 1 0 0]
)

sage: G = GO(3,GF(5))
sage: G.as_matrix_group()
Matrix group over Finite Field of size 5 with 2 generators (
[2 0 0] [0 1 0]
[0 3 0] [1 4 4]
[0 0 1], [0 2 1]
)

sign_representation(base_ring=None, side='twosided')
Return the sign representation of self over base_ring.

WARNING: assumes self is a matrix group over a field which has embedding over real numbers.

INPUT:

• base_ring – (optional) the base ring; the default is Z

• side – ignored

EXAMPLES:

356 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

sage: G = GL(2, QQ)
sage: V = G.sign_representation()
sage: e = G.an_element()
sage: e
[1 0]
[0 1]
sage: V._default_sign(e)
1
sage: m2 = V.an_element()
sage: m2
2*B['v']
sage: m2*e
2*B['v']
sage: m2*e*e
2*B['v']

subgroup(generators, check=True)
Return the subgroup generated by the given generators.

INPUT:

• generators – a list/tuple/iterable of group elements of self

• check – boolean (optional, default: True). Whether to check that each matrix is invertible.

OUTPUT: The subgroup generated by generators as an instance of FinitelyGeneratedMatrixGroup_gap

EXAMPLES:

sage: UCF = UniversalCyclotomicField()
sage: G = GL(3, UCF)
sage: e3 = UCF.gen(3); e5 =UCF.gen(5)
sage: m = matrix(UCF, 3,3, [[e3, 1, 0], [0, e5, 7],[4, 3, 2]])
sage: S = G.subgroup([m]); S
Subgroup with 1 generators (
[E(3) 1 0]
[0 E(5) 7]
[4 3 2]
) of General Linear Group of degree 3 over Universal Cyclotomic Field

sage: CF3 = CyclotomicField(3)
sage: G = GL(3, CF3)
sage: e3 = CF3.gen()
sage: m = matrix(CF3, 3,3, [[e3, 1, 0], [0, ~e3, 7],[4, 3, 2]])
sage: S = G.subgroup([m]); S
Subgroup with 1 generators (
[zeta3 1 0]
[0 -zeta3 - 1 7]
[4 3 2]
) of General Linear Group of degree 3 over Cyclotomic Field of order 3 and␣
→˓degree 2

class sage.groups.matrix_gps.matrix_group.MatrixGroup_gap(degree, base_ring, libgap_group,
ambient=None, category=None)

Bases: GroupMixinLibGAP, MatrixGroup_generic, ParentLibGAP

25.2. Base classes for Matrix Groups 357

Groups, Release 9.8

Base class for matrix groups that implements GAP interface.

INPUT:

• degree – integer. The degree (matrix size) of the matrix group.

• base_ring – ring. The base ring of the matrices.

• libgap_group – the defining libgap group.

• ambient – A derived class of ParentLibGAP or None (default). The ambient class if libgap_group has
been defined as a subgroup.

Element

alias of MatrixGroupElement_gap

structure_description(G, latex=False)
Return a string that tries to describe the structure of G.

This methods wraps GAP’s StructureDescription method.

For full details, including the form of the returned string and the algorithm to build it, see GAP’s documen-
tation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

• string

Warning: From GAP’s documentation: The string returned by StructureDescription is not an
isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic
groups in different representations can produce different strings.

EXAMPLES:

sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()
'C6'
sage: G.structure_description(latex=True)
'C_{6}'
sage: G2 = G.direct_product(G, maps=False)
sage: LatexExpr(G2.structure_description(latex=True))
C_{6} \times C_{6}

This method is mainly intended for small groups or groups with few normal subgroups. Even then there
are some surprises:

sage: D3 = DihedralGroup(3)
sage: D3.structure_description()
'S3'

We use the Sage notation for the degree of dihedral groups:

sage: D4 = DihedralGroup(4)
sage: D4.structure_description()
'D4'

358 Chapter 25. Matrix and Affine Groups

https://www.gap-system.org/Manuals/doc/ref/chap39.html
https://www.gap-system.org/Manuals/doc/ref/chap39.html

Groups, Release 9.8

Works for finitely presented groups (trac ticket #17573):

sage: F.<x, y> = FreeGroup()
sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description()
'C7'

And matrix groups (trac ticket #17573):

sage: groups.matrix.GL(4,2).structure_description()
'A8'

class sage.groups.matrix_gps.matrix_group.MatrixGroup_generic(degree, base_ring, category=None)
Bases: MatrixGroup_base

Base class for matrix groups over generic base rings

You should not use this class directly. Instead, use one of the more specialized derived classes.

INPUT:

• degree – integer. The degree (matrix size) of the matrix group.

• base_ring – ring. The base ring of the matrices.

Element

alias of MatrixGroupElement_generic

degree()

Return the degree of this matrix group.

OUTPUT:

Integer. The size (number of rows equals number of columns) of the matrices.

EXAMPLES:

sage: SU(5,5).degree()
5

matrix_space()

Return the matrix space corresponding to this matrix group.

This is a matrix space over the field of definition of this matrix group.

EXAMPLES:

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: G = MatrixGroup([MS(1), MS([1,2,3,4])])
sage: G.matrix_space()
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 5
sage: G.matrix_space() is MS
True

sage.groups.matrix_gps.matrix_group.is_MatrixGroup(x)
Test whether x is a matrix group.

EXAMPLES:

25.2. Base classes for Matrix Groups 359

https://trac.sagemath.org/17573
https://trac.sagemath.org/17573

Groups, Release 9.8

sage: from sage.groups.matrix_gps.matrix_group import is_MatrixGroup
sage: is_MatrixGroup(MatrixSpace(QQ,3))
False
sage: is_MatrixGroup(Mat(QQ,3))
False
sage: is_MatrixGroup(GL(2,ZZ))
True
sage: is_MatrixGroup(MatrixGroup([matrix(2,[1,1,0,1])]))
True

25.3 Matrix Group Elements

EXAMPLES:

sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens); G
Matrix group over Finite Field of size 3 with 2 generators (
[1 0] [1 1]
[0 1], [0 1]
)
sage: g = G([[1,1],[0,1]])
sage: h = G([[1,2],[0,1]])
sage: g*h
[1 0]
[0 1]

You cannot add two matrices, since this is not a group operation. You can coerce matrices back to the matrix space
and add them there:

sage: g + h
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
'Matrix group over Finite Field of size 3 with 2 generators (
[1 0] [1 1]
[0 1], [0 1]
)' and
'Matrix group over Finite Field of size 3 with 2 generators (
[1 0] [1 1]
[0 1], [0 1]
)'

sage: g.matrix() + h.matrix()
[2 0]
[0 2]

Similarly, you cannot multiply group elements by scalars but you can do it with the underlying matrices:

sage: 2*g
Traceback (most recent call last):

(continues on next page)

360 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

...
TypeError: unsupported operand parent(s) for *: 'Integer Ring' and 'Matrix group over␣
→˓Finite Field of size 3 with 2 generators (
[1 0] [1 1]
[0 1], [0 1]
)'

AUTHORS:

• David Joyner (2006-05): initial version David Joyner

• David Joyner (2006-05): various modifications to address William Stein’s TODO’s.

• William Stein (2006-12-09): many revisions.

• Volker Braun (2013-1) port to new Parent, libGAP.

• Travis Scrimshaw (2016-01): reworks class hierarchy in order to cythonize

class sage.groups.matrix_gps.group_element.MatrixGroupElement_gap

Bases: ElementLibGAP

Element of a matrix group over a generic ring.

The group elements are implemented as wrappers around libGAP matrices.

INPUT:

• M – a matrix

• parent – the parent

• check – bool (default: True); if True does some type checking

• convert – bool (default: True); if True convert M to the right matrix space

list()

Return list representation of this matrix.

EXAMPLES:

sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: g = G.0
sage: g
[1 0]
[0 1]
sage: g.list()
[[1, 0], [0, 1]]

matrix()

Obtain the usual matrix (as an element of a matrix space) associated to this matrix group element.

EXAMPLES:

sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: m = G.gen(0).matrix(); m

(continues on next page)

25.3. Matrix Group Elements 361

Groups, Release 9.8

(continued from previous page)

[1 0]
[0 1]
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 3

sage: k = GF(7); G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])])
sage: g = G.0
sage: g.matrix()
[1 1]
[0 1]
sage: parent(g.matrix())
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7

Matrices have extra functionality that matrix group elements do not have:

sage: g.matrix().charpoly('t')
t^2 + 5*t + 1

multiplicative_order()

Return the order of this group element, which is the smallest positive integer 𝑛 such that 𝑔𝑛 = 1, or +Infinity
if no such integer exists.

EXAMPLES:

sage: k = GF(7)
sage: G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])]); G
Matrix group over Finite Field of size 7 with 2 generators (
[1 1] [1 0]
[0 1], [0 2]
)
sage: G.order()
21
sage: G.gen(0).multiplicative_order(), G.gen(1).multiplicative_order()
(7, 3)

order is just an alias for multiplicative_order:

sage: G.gen(0).order(), G.gen(1).order()
(7, 3)

sage: k = QQ
sage: G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])]); G
Matrix group over Rational Field with 2 generators (
[1 1] [1 0]
[0 1], [0 2]
)
sage: G.order()
+Infinity
sage: G.gen(0).order(), G.gen(1).order()
(+Infinity, +Infinity)

sage: gl = GL(2, ZZ); gl
General Linear Group of degree 2 over Integer Ring

(continues on next page)

362 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

sage: g = gl.gen(2); g
[1 1]
[0 1]
sage: g.order()
+Infinity

word_problem(gens=None)
Solve the word problem.

This method writes the group element as a product of the elements of the list gens, or the standard gener-
ators of the parent of self if gens is None.

INPUT:

• gens – a list/tuple/iterable of elements (or objects that can be converted to group elements), or None
(default). By default, the generators of the parent group are used.

OUTPUT:

A factorization object that contains information about the order of factors and the exponents. A
ValueError is raised if the group element cannot be written as a word in gens.

ALGORITHM:

Use GAP, which has optimized algorithms for solving the word problem (the GAP functions
EpimorphismFromFreeGroup and PreImagesRepresentative).

EXAMPLES:

sage: G = GL(2,5); G
General Linear Group of degree 2 over Finite Field of size 5
sage: G.gens()
(
[2 0] [4 1]
[0 1], [4 0]
)
sage: G(1).word_problem([G.gen(0)])
1
sage: type(_)
<class 'sage.structure.factorization.Factorization'>

sage: g = G([0,4,1,4])
sage: g.word_problem()
([4 1]
[4 0])^-1

Next we construct a more complicated element of the group from the generators:

sage: s,t = G.0, G.1
sage: a = (s * t * s); b = a.word_problem(); b
([2 0]
[0 1]) *

([4 1]
[4 0]) *

([2 0]
[0 1])

(continues on next page)

25.3. Matrix Group Elements 363

Groups, Release 9.8

(continued from previous page)

sage: flatten(b)
[
[2 0] [4 1] [2 0]
[0 1], 1, [4 0], 1, [0 1], 1
]
sage: b.prod() == a
True

We solve the word problem using some different generators:

sage: s = G([2,0,0,1]); t = G([1,1,0,1]); u = G([0,-1,1,0])
sage: a.word_problem([s,t,u])
([2 0]
[0 1])^-1 *

([1 1]
[0 1])^-1 *

([0 4]
[1 0]) *

([2 0]
[0 1])^-1

We try some elements that don’t actually generate the group:

sage: a.word_problem([t,u])
Traceback (most recent call last):
...
ValueError: word problem has no solution

AUTHORS:

• David Joyner and William Stein

• David Loeffler (2010): fixed some bugs

• Volker Braun (2013): LibGAP

class sage.groups.matrix_gps.group_element.MatrixGroupElement_generic

Bases: MultiplicativeGroupElement

Element of a matrix group over a generic ring.

The group elements are implemented as Sage matrices.

INPUT:

• M – a matrix

• parent – the parent

• check – bool (default: True); if True, then
does some type checking

• convert – bool (default: True); if True, then convert M to the right matrix space

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: g = W.an_element()

(continues on next page)

364 Chapter 25. Matrix and Affine Groups

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

(continued from previous page)

sage: g
[0 0 -1]
[1 0 -1]
[0 1 -1]

inverse()

Return the inverse group element

OUTPUT:

A matrix group element.

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: g = W.an_element()
sage: ~g
[-1 1 0]
[-1 0 1]
[-1 0 0]
sage: g * ~g == W.one()
True
sage: ~g * g == W.one()
True

sage: W = CoxeterGroup(['B',3])
sage: W.base_ring()
Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?
sage: g = W.an_element()
sage: ~g
[-1 1 0]
[-1 0 a]
[-a 0 1]

is_one()

Return whether self is the identity of the group.

EXAMPLES:

sage: W = CoxeterGroup(['A',3])
sage: g = W.gen(0)
sage: g.is_one()
False

sage: W.an_element().is_one()
False
sage: W.one().is_one()
True

list()

Return list representation of this matrix.

EXAMPLES:

25.3. Matrix Group Elements 365

Groups, Release 9.8

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: g = W.gen(0)
sage: g
[-1 1 0]
[0 1 0]
[0 0 1]
sage: g.list()
[[-1, 1, 0], [0, 1, 0], [0, 0, 1]]

matrix()

Obtain the usual matrix (as an element of a matrix space) associated to this matrix group element.

One reason to compute the associated matrix is that matrices support a huge range of functionality.

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: g = W.gen(0)
sage: g.matrix()
[-1 1 0]
[0 1 0]
[0 0 1]
sage: parent(g.matrix())
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

Matrices have extra functionality that matrix group elements do not have:

sage: g.matrix().charpoly('t')
t^3 - t^2 - t + 1

sage.groups.matrix_gps.group_element.is_MatrixGroupElement(x)
Test whether x is a matrix group element

INPUT:

• x – anything.

OUTPUT:

Boolean.

EXAMPLES:

sage: from sage.groups.matrix_gps.group_element import is_MatrixGroupElement
sage: is_MatrixGroupElement('helloooo')
False

sage: G = GL(2,3)
sage: is_MatrixGroupElement(G.an_element())
True

366 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

25.4 Finitely Generated Matrix Groups

This class is designed for computing with matrix groups defined by a finite set of generating matrices.

EXAMPLES:

sage: F = GF(3)
sage: gens = [matrix(F,2, [1,0, -1,1]), matrix(F,2, [1,1,0,1])]
sage: G = MatrixGroup(gens)
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
)

The finitely generated matrix groups can also be constructed as subgroups of matrix groups:

sage: SL2Z = SL(2,ZZ)
sage: S, T = SL2Z.gens()
sage: SL2Z.subgroup([T^2])
Subgroup with 1 generators (
[1 2]
[0 1]
) of Special Linear Group of degree 2 over Integer Ring

AUTHORS:

• William Stein: initial version

• David Joyner (2006-03-15): degree, base_ring, _contains_, list, random, order methods; examples

• William Stein (2006-12): rewrite

• David Joyner (2007-12): Added invariant_generators (with Martin Albrecht and Simon King)

• David Joyner (2008-08): Added module_composition_factors (interface to GAP’s MeatAxe implementation)
and as_permutation_group (returns isomorphic PermutationGroup).

• Simon King (2010-05): Improve invariant_generators by using GAP for the construction of the Reynolds operator
in Singular.

• Volker Braun (2013-1) port to new Parent, libGAP.

• Sebastian Oehms (2018-07): Added _permutation_group_element_ (Trac #25706)

• Sebastian Oehms (2019-01): Revision of trac ticket #25706 (trac ticket #26903 and trac ticket #27143).

class sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap(degree,
base_ring,
lib-
gap_group,
ambi-
ent=None,
cate-
gory=None)

Bases: MatrixGroup_gap

Matrix group generated by a finite number of matrices.

EXAMPLES:

25.4. Finitely Generated Matrix Groups 367

https://trac.sagemath.org/25706
https://trac.sagemath.org/26903
https://trac.sagemath.org/27143

Groups, Release 9.8

sage: m1 = matrix(GF(11), [[1,2],[3,4]])
sage: m2 = matrix(GF(11), [[1,3],[10,0]])
sage: G = MatrixGroup(m1, m2); G
Matrix group over Finite Field of size 11 with 2 generators (
[1 2] [1 3]
[3 4], [10 0]
)
sage: type(G)
<class 'sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap_
→˓with_category'>
sage: TestSuite(G).run()

as_permutation_group(algorithm=None, seed=None)
Return a permutation group representation for the group.

In most cases occurring in practice, this is a permutation group of minimal degree (the degree being deter-
mined from orbits under the group action). When these orbits are hard to compute, the procedure can be
time-consuming and the degree may not be minimal.

INPUT:

• algorithm – None or 'smaller'. In the latter case, try harder to find a permutation representation
of small degree.

• seed – None or an integer specifying the seed to fix results depending on pseudo-random-numbers.
Here it makes sense to be used with respect to the 'smaller' option, since gap produces random
output in that context.

OUTPUT:

A permutation group isomorphic to self. The algorithm='smaller' option tries to return an isomor-
phic group of low degree, but is not guaranteed to find the smallest one and must not even differ from the
one obtained without the option. In that case repeating the invocation may help (see the example below).

EXAMPLES:

sage: MS = MatrixSpace(GF(2), 5, 5)
sage: A = MS([[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]])
sage: G = MatrixGroup([A])
sage: G.as_permutation_group().order()
2

A finite subgroup of GL(12,Z) as a permutation group:

sage: imf = libgap.function_factory('ImfMatrixGroup')
sage: GG = imf(12, 3)
sage: G = MatrixGroup(GG.GeneratorsOfGroup())
sage: G.cardinality()
21499084800
sage: P = G.as_permutation_group()
sage: Psmaller = G.as_permutation_group(algorithm="smaller", seed=6)
sage: P == Psmaller # see the note below
True
sage: Psmaller = G.as_permutation_group(algorithm="smaller")
sage: P == Psmaller
False

(continues on next page)

368 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

sage: P.cardinality()
21499084800
sage: P.degree()
144
sage: Psmaller.cardinality()
21499084800
sage: Psmaller.degree()
80

Note: In this case, the “smaller” option returned an isomorphic group of lower degree. The above ex-
ample used GAP’s library of irreducible maximal finite (“imf”) integer matrix groups to construct the
MatrixGroup G over GF(7). The section “Irreducible Maximal Finite Integral Matrix Groups” in the GAP
reference manual has more details.

Note: Concerning the option algorithm='smaller' you should note the following from GAP documen-
tation: “The methods used might involve the use of random elements and the permutation representation
(or even the degree of the representation) is not guaranteed to be the same for different calls of SmallerDe-
greePermutationRepresentation.”

To obtain a reproducible result the optional argument seed may be used as in the example above.

invariant_generators()

Return invariant ring generators.

Computes generators for the polynomial ring 𝐹 [𝑥1, . . . , 𝑥𝑛]𝐺, where 𝐺 in 𝐺𝐿(𝑛, 𝐹) is a finite matrix
group.

In the “good characteristic” case the polynomials returned form a minimal generating set for the algebra of
𝐺-invariant polynomials. In the “bad” case, the polynomials returned are primary and secondary invariants,
forming a not necessarily minimal generating set for the algebra of 𝐺-invariant polynomials.

ALGORITHM:

Wraps Singular’s invariant_algebra_reynolds and invariant_ring in finvar.lib.

EXAMPLES:

sage: F = GF(7); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[0,1],[-1,0]]),MS([[1,1],[2,3]])]
sage: G = MatrixGroup(gens)
sage: G.invariant_generators()
[x1^7*x2 - x1*x2^7,
x1^12 - 2*x1^9*x2^3 - x1^6*x2^6 + 2*x1^3*x2^9 + x2^12,
x1^18 + 2*x1^15*x2^3 + 3*x1^12*x2^6 + 3*x1^6*x2^12 - 2*x1^3*x2^15 + x2^18]

sage: q = 4; a = 2
sage: MS = MatrixSpace(QQ, 2, 2)
sage: gen1 = [[1/a,(q-1)/a],[1/a, -1/a]]; gen2 = [[1,0],[0,-1]]; gen3 = [[-1,0],
→˓[0,1]]
sage: G = MatrixGroup([MS(gen1),MS(gen2),MS(gen3)])
sage: G.cardinality()
12

(continues on next page)

25.4. Finitely Generated Matrix Groups 369

Groups, Release 9.8

(continued from previous page)

sage: G.invariant_generators()
[x1^2 + 3*x2^2, x1^6 + 15*x1^4*x2^2 + 15*x1^2*x2^4 + 33*x2^6]

sage: F = CyclotomicField(8)
sage: z = F.gen()
sage: a = z+1/z
sage: b = z^2
sage: MS = MatrixSpace(F,2,2)
sage: g1 = MS([[1/a, 1/a], [1/a, -1/a]])
sage: g2 = MS([[-b, 0], [0, b]])
sage: G = MatrixGroup([g1,g2])
sage: G.invariant_generators()
[x1^4 + 2*x1^2*x2^2 + x2^4,
x1^5*x2 - x1*x2^5,
x1^8 + 28/9*x1^6*x2^2 + 70/9*x1^4*x2^4 + 28/9*x1^2*x2^6 + x2^8]

AUTHORS:

• David Joyner, Simon King and Martin Albrecht.

REFERENCES:

• Singular reference manual

• [Stu1993]

• S. King, “Minimal Generating Sets of non-modular invariant rings of finite groups”, arXiv
math/0703035.

invariants_of_degree(deg, chi=None, R=None)
Return the (relative) invariants of given degree for this group.

For this group, compute the invariants of degree deg with respect to the group character chi. The method
is to project each possible monomial of degree deg via the Reynolds operator. Note that if the polynomial
ring R is specified it’s base ring may be extended if the resulting invariant is defined over a bigger field.

INPUT:

• degree – a positive integer

• chi – (default: trivial character) a linear group character of this group

• R – (optional) a polynomial ring

OUTPUT: list of polynomials

EXAMPLES:

sage: Gr = MatrixGroup(SymmetricGroup(2))
sage: sorted(Gr.invariants_of_degree(3))
[x0^2*x1 + x0*x1^2, x0^3 + x1^3]
sage: R.<x,y> = QQ[]
sage: sorted(Gr.invariants_of_degree(4, R=R))
[x^2*y^2, x^3*y + x*y^3, x^4 + y^4]

sage: R.<x,y,z> = QQ[]
sage: Gr = MatrixGroup(DihedralGroup(3))
sage: ct = Gr.character_table()

(continues on next page)

370 Chapter 25. Matrix and Affine Groups

https://arxiv.org/abs/math/0703035
https://arxiv.org/abs/math/0703035

Groups, Release 9.8

(continued from previous page)

sage: chi = Gr.character(ct[0])
sage: all(f(*(g.matrix()*vector(R.gens()))) == chi(g)*f
....: for f in Gr.invariants_of_degree(3, R=R, chi=chi) for g in Gr)
True

sage: i = GF(7)(3)
sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
sage: G.invariants_of_degree(25)
[]

sage: G = MatrixGroup(SymmetricGroup(5))
sage: R = QQ['x,y']
sage: G.invariants_of_degree(3, R=R)
Traceback (most recent call last):
...
TypeError: number of variables in polynomial ring must match size of matrices

sage: K.<i> = CyclotomicField(4)
sage: G = MatrixGroup(CyclicPermutationGroup(3))
sage: chi = G.character(G.character_table()[1])
sage: R.<x,y,z> = K[]
sage: sorted(G.invariants_of_degree(2, R=R, chi=chi))
[x*y + (-2*izeta3^3 - 3*izeta3^2 - 8*izeta3 - 4)*x*z + (2*izeta3^3 + 3*izeta3^2␣
→˓+ 8*izeta3 + 3)*y*z,
x^2 + (2*izeta3^3 + 3*izeta3^2 + 8*izeta3 + 3)*y^2 + (-2*izeta3^3 - 3*izeta3^2␣
→˓- 8*izeta3 - 4)*z^2]

sage: S3 = MatrixGroup(SymmetricGroup(3))
sage: chi = S3.character(S3.character_table()[0])
sage: sorted(S3.invariants_of_degree(5, chi=chi))
[x0^3*x1^2 - x0^2*x1^3 - x0^3*x2^2 + x1^3*x2^2 + x0^2*x2^3 - x1^2*x2^3,
x0^4*x1 - x0*x1^4 - x0^4*x2 + x1^4*x2 + x0*x2^4 - x1*x2^4]

module_composition_factors(algorithm=None)
Return a list of triples consisting of [base field, dimension, irreducibility], for each of the Meataxe com-
position factors modules. The algorithm="verbose" option returns more information, but in Meataxe
notation.

EXAMPLES:

sage: F = GF(3); MS = MatrixSpace(F,4,4)
sage: M = MS(0)
sage: M[0,1]=1;M[1,2]=1;M[2,3]=1;M[3,0]=1
sage: G = MatrixGroup([M])
sage: G.module_composition_factors()
[(Finite Field of size 3, 1, True),
(Finite Field of size 3, 1, True),
(Finite Field of size 3, 2, True)]
sage: F = GF(7); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[0,1],[-1,0]]),MS([[1,1],[2,3]])]
sage: G = MatrixGroup(gens)

(continues on next page)

25.4. Finitely Generated Matrix Groups 371

Groups, Release 9.8

(continued from previous page)

sage: G.module_composition_factors()
[(Finite Field of size 7, 2, True)]

Type G.module_composition_factors(algorithm='verbose') to get a more verbose version.

For more on MeatAxe notation, see https://www.gap-system.org/Manuals/doc/ref/chap69.html

molien_series(chi=None, return_series=True, prec=20, variable='t')
Compute the Molien series of this finite group with respect to the character chi. It can be returned either
as a rational function in one variable or a power series in one variable. The base field must be a finite field,
the rationals, or a cyclotomic field.

Note that the base field characteristic cannot divide the group order (i.e., the non-modular case).

ALGORITHM:

For a finite group 𝐺 in characteristic zero we construct the Molien series as

1

|𝐺|
∑︁
𝑔∈𝐺

𝜒(𝑔)

det(𝐼 − 𝑡𝑔)
,

where 𝐼 is the identity matrix and 𝑡 an indeterminate.

For characteristic 𝑝 not dividing the order of 𝐺, let 𝑘 be the base field and 𝑁 the order of 𝐺. Define 𝜆 as a
primitive 𝑁 -th root of unity over 𝑘 and 𝜔 as a primitive 𝑁 -th root of unity over Q. For each 𝑔 ∈ 𝐺 define
𝑘𝑖(𝑔) to be the positive integer such that 𝑒𝑖 = 𝜆𝑘𝑖(𝑔) for each eigenvalue 𝑒𝑖 of 𝑔. Then the Molien series is
computed as

1

|𝐺|
∑︁
𝑔∈𝐺

𝜒(𝑔)∏︀𝑛
𝑖=1(1 − 𝑡𝜔𝑘𝑖(𝑔))

,

where 𝑡 is an indeterminant. [Dec1998]

INPUT:

• chi – (default: trivial character) a linear group character of this group

• return_series – boolean (default: True) if True, then returns the Molien series as a power series,
False as a rational function

• prec – integer (default: 20); power series default precision

• variable – string (default: 't'); Variable name for the Molien series

OUTPUT: single variable rational function or power series with integer coefficients

EXAMPLES:

sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series()
Traceback (most recent call last):
...
NotImplementedError: characteristic cannot divide group order

Tetrahedral Group:

372 Chapter 25. Matrix and Affine Groups

https://www.gap-system.org/Manuals/doc/ref/chap69.html

Groups, Release 9.8

sage: K.<i> = CyclotomicField(4)
sage: Tetra = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0])
sage: Tetra.molien_series(prec=30)
1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30)
sage: mol = Tetra.molien_series(return_series=False); mol
(t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1)
sage: mol.parent()
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: chi = Tetra.character(Tetra.character_table()[1])
sage: Tetra.molien_series(chi, prec=30, variable='u')
u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36)
sage: chi = Tetra.character(Tetra.character_table()[2])
sage: Tetra.molien_series(chi)
t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)

sage: S3 = MatrixGroup(SymmetricGroup(3))
sage: mol = S3.molien_series(prec=10); mol
1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^
→˓10)
sage: mol.parent()
Power Series Ring in t over Integer Ring

Octahedral Group:

sage: K.<v> = CyclotomicField(8)
sage: a = v-v^3 #sqrt(2)
sage: i = v^2
sage: Octa = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [(1+i)/a,0, 0,
→˓(1-i)/a])
sage: Octa.molien_series(prec=30)
1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)

Icosahedral Group:

sage: K.<v> = CyclotomicField(10)
sage: z5 = v^2
sage: i = z5^5
sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5)
sage: Ico = MatrixGroup([[z5^3,0, 0,z5^2], [0,1, -1,0], [(z5^4-z5)/a, (z5^2-z5^
→˓3)/a, (z5^2-z5^3)/a, -(z5^4-z5)/a]])
sage: Ico.molien_series(prec=40)
1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)

sage: G = MatrixGroup(CyclicPermutationGroup(3))
sage: chi = G.character(G.character_table()[1])
sage: G.molien_series(chi, prec=10)
t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^10␣
→˓+ O(t^11)

sage: K = GF(5)
sage: S = MatrixGroup(SymmetricGroup(4))
sage: G = MatrixGroup([matrix(K,4,4,[K(y) for u in m.list() for y in u])for m␣

(continues on next page)

25.4. Finitely Generated Matrix Groups 373

Groups, Release 9.8

(continued from previous page)

→˓in S.gens()])
sage: G.molien_series(return_series=False)
1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)

sage: i = GF(7)(3)
sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
sage: chi = G.character(G.character_table()[4])
sage: G.molien_series(chi)
3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)

reynolds_operator(poly, chi=None)
Compute the Reynolds operator of this finite group 𝐺.

This is the projection from a polynomial ring to the ring of relative invariants [Stu1993]. If possible, the
invariant is returned defined over the base field of the given polynomial poly, otherwise, it is returned over
the compositum of the fields involved in the computation. Only implemented for absolute fields.

ALGORITHM:

Let 𝐾[𝑥] be a polynomial ring and 𝜒 a linear character for 𝐺. Let

be the ring of invariants of 𝐺 relative to 𝜒. Then the Reynold’s operator is a map 𝑅 from 𝐾[𝑥] into 𝐾[𝑥]𝐺𝜒
defined by

INPUT:

• poly – a polynomial

• chi – (default: trivial character) a linear group character of this group

OUTPUT: an invariant polynomial relative to 𝜒

AUTHORS:

Rebecca Lauren Miller and Ben Hutz

EXAMPLES:

sage: S3 = MatrixGroup(SymmetricGroup(3))
sage: R.<x,y,z> = QQ[]
sage: f = x*y*z^3
sage: S3.reynolds_operator(f)
1/3*x^3*y*z + 1/3*x*y^3*z + 1/3*x*y*z^3

sage: G = MatrixGroup(CyclicPermutationGroup(4))
sage: chi = G.character(G.character_table()[3])
sage: K.<v> = CyclotomicField(4)
sage: R.<x,y,z,w> = K[]
sage: G.reynolds_operator(x, chi)
1/4*x + (1/4*v)*y - 1/4*z + (-1/4*v)*w
sage: chi = G.character(G.character_table()[2])
sage: R.<x,y,z,w> = QQ[]
sage: G.reynolds_operator(x*y, chi)
1/4*x*y + (-1/4*zeta4)*y*z + (1/4*zeta4)*x*w - 1/4*z*w

374 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

sage: K.<i> = CyclotomicField(4)
sage: G = MatrixGroup(CyclicPermutationGroup(3))
sage: chi = G.character(G.character_table()[1])
sage: R.<x,y,z> = K[]
sage: G.reynolds_operator(x*y^5, chi)
1/3*x*y^5 + (-2/3*izeta3^3 - izeta3^2 - 8/3*izeta3 - 4/3)*x^5*z + (2/3*izeta3^3␣
→˓+ izeta3^2 + 8/3*izeta3 + 1)*y*z^5
sage: R.<x,y,z> = QQbar[]
sage: G.reynolds_operator(x*y^5, chi)
1/3*x*y^5 + (-0.1666666666666667? + 0.2886751345948129?*I)*x^5*z + (-0.
→˓1666666666666667? - 0.2886751345948129?*I)*y*z^5

sage: K.<i> = CyclotomicField(4)
sage: Tetra = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0])
sage: chi = Tetra.character(Tetra.character_table()[4])
sage: L.<v> = QuadraticField(-3)
sage: R.<x,y> = L[]
sage: Tetra.reynolds_operator(x^4)
0
sage: Tetra.reynolds_operator(x^4, chi)
1/4*x^4 + (1/2*v)*x^2*y^2 + 1/4*y^4
sage: R.<x>=L[]
sage: LL.<w> = L.extension(x^2+v)
sage: R.<x,y> = LL[]
sage: Tetra.reynolds_operator(x^4, chi)
Traceback (most recent call last):
...
NotImplementedError: only implemented for absolute fields

sage: G = MatrixGroup(DihedralGroup(4))
sage: chi = G.character(G.character_table()[1])
sage: R.<x,y> = QQ[]
sage: f = x^4
sage: G.reynolds_operator(f, chi)
Traceback (most recent call last):
...
TypeError: number of variables in polynomial must match size of matrices
sage: R.<x,y,z,w> = QQ[]
sage: f = x^3*y
sage: G.reynolds_operator(f, chi)
1/8*x^3*y - 1/8*x*y^3 + 1/8*y^3*z - 1/8*y*z^3 - 1/8*x^3*w + 1/8*z^3*w +
1/8*x*w^3 - 1/8*z*w^3

Characteristic p>0 examples:

sage: G = MatrixGroup([[0,1,1,0]])
sage: R.<w,x> = GF(2)[]
sage: G.reynolds_operator(x)
Traceback (most recent call last):
...
NotImplementedError: not implemented when characteristic divides group order

25.4. Finitely Generated Matrix Groups 375

Groups, Release 9.8

sage: i = GF(7)(3)
sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
sage: chi = G.character(G.character_table()[4])
sage: R.<w,x> = GF(7)[]
sage: f = w^5*x + x^6
sage: G.reynolds_operator(f, chi)
Traceback (most recent call last):
...
NotImplementedError: nontrivial characters not implemented for characteristic >␣
→˓0
sage: G.reynolds_operator(f)
x^6

sage: K = GF(3^2,'t')
sage: G = MatrixGroup([matrix(K,2,2, [0,K.gen(),1,0])])
sage: R.<x,y> = GF(3)[]
sage: G.reynolds_operator(x^8)
-x^8 - y^8

sage: K = GF(3^2,'t')
sage: G = MatrixGroup([matrix(GF(3),2,2, [0,1,1,0])])
sage: R.<x,y> = K[]
sage: f = -K.gen()*x
sage: G.reynolds_operator(f)
t*x + t*y

class sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic(degree,
base_ring,
gen-
era-
tor_matrices,
cate-
gory=None)

Bases: MatrixGroup_generic

gen(i)
Return the 𝑖-th generator

OUTPUT:

The 𝑖-th generator of the group.

EXAMPLES:

sage: H = GL(2, GF(3))
sage: h1, h2 = H([[1,0],[2,1]]), H([[1,1],[0,1]])
sage: G = H.subgroup([h1, h2])
sage: G.gen(0)
[1 0]
[2 1]
sage: G.gen(0).matrix() == h1.matrix()
True

gens()

376 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

Return the generators of the matrix group.

EXAMPLES:

sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,0],[0,1]]), MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: gens[0] in G
True
sage: gens = G.gens()
sage: gens[0] in G
True
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: G = MatrixGroup([MS(1), MS([1,2,3,4])])
sage: G
Matrix group over Finite Field of size 5 with 2 generators (
[1 0] [1 2]
[0 1], [3 4]
)
sage: G.gens()
(
[1 0] [1 2]
[0 1], [3 4]
)

ngens()

Return the number of generators

OUTPUT:

An integer. The number of generators.

EXAMPLES:

sage: H = GL(2, GF(3))
sage: h1, h2 = H([[1,0],[2,1]]), H([[1,1],[0,1]])
sage: G = H.subgroup([h1, h2])
sage: G.ngens()
2

sage.groups.matrix_gps.finitely_generated.MatrixGroup(*gens, **kwds)
Return the matrix group with given generators.

INPUT:

• *gens – matrices, or a single list/tuple/iterable of matrices, or a matrix group.

• check – boolean keyword argument (optional, default: True). Whether to check that each matrix is invert-
ible.

EXAMPLES:

sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]

(continues on next page)

25.4. Finitely Generated Matrix Groups 377

Groups, Release 9.8

(continued from previous page)

sage: G = MatrixGroup(gens); G
Matrix group over Finite Field of size 5 with 2 generators (
[1 2] [1 1]
[4 1], [0 1]
)

In the second example, the generators are a matrix over Z, a matrix over a finite field, and the integer 2. Sage
determines that they both canonically map to matrices over the finite field, so creates that matrix group there:

sage: gens = [matrix(2,[1,2, -1, 1]), matrix(GF(7), 2, [1,1, 0,1]), 2]
sage: G = MatrixGroup(gens); G
Matrix group over Finite Field of size 7 with 3 generators (
[1 2] [1 1] [2 0]
[6 1], [0 1], [0 2]
)

Each generator must be invertible:

sage: G = MatrixGroup([matrix(ZZ,2,[1,2,3,4])])
Traceback (most recent call last):
...
ValueError: each generator must be an invertible matrix

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: MatrixGroup([MS.0])
Traceback (most recent call last):
...
ValueError: each generator must be an invertible matrix
sage: MatrixGroup([MS.0], check=False) # works formally but is mathematical␣
→˓nonsense
Matrix group over Finite Field of size 5 with 1 generators (
[1 0]
[0 0]
)

Some groups are not supported, or do not have much functionality implemented:

sage: G = SL(0, QQ)
Traceback (most recent call last):
...
ValueError: the degree must be at least 1

sage: SL2C = SL(2, CC); SL2C
Special Linear Group of degree 2 over Complex Field with 53 bits of precision
sage: SL2C.gens()
Traceback (most recent call last):
...
AttributeError: 'LinearMatrixGroup_generic_with_category' object has no attribute
→˓'gens'

sage.groups.matrix_gps.finitely_generated.QuaternionMatrixGroupGF3()

The quaternion group as a set of 2 × 2 matrices over 𝐺𝐹 (3).

OUTPUT:

378 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

A matrix group consisting of 2 × 2 matrices with elements from the finite field of order 3. The group is the
quaternion group, the nonabelian group of order 8 that is not isomorphic to the group of symmetries of a square
(the dihedral group 𝐷4).

Note: This group is most easily available via groups.matrix.QuaternionGF3().

EXAMPLES:

The generators are the matrix representations of the elements commonly called 𝐼 and 𝐽 , while 𝐾 is the product
of 𝐼 and 𝐽 .

sage: from sage.groups.matrix_gps.finitely_generated import QuaternionMatrixGroupGF3
sage: Q = QuaternionMatrixGroupGF3()
sage: Q.order()
8
sage: aye = Q.gens()[0]; aye
[1 1]
[1 2]
sage: jay = Q.gens()[1]; jay
[2 1]
[1 1]
sage: kay = aye*jay; kay
[0 2]
[1 0]

sage.groups.matrix_gps.finitely_generated.normalize_square_matrices(matrices)
Find a common space for all matrices.

OUTPUT:

A list of matrices, all elements of the same matrix space.

EXAMPLES:

sage: from sage.groups.matrix_gps.finitely_generated import normalize_square_
→˓matrices
sage: m1 = [[1,2],[3,4]]
sage: m2 = [2, 3, 4, 5]
sage: m3 = matrix(QQ, [[1/2,1/3],[1/4,1/5]])
sage: m4 = MatrixGroup(m3).gen(0)
sage: normalize_square_matrices([m1, m2, m3, m4])
[
[1 2] [2 3] [1/2 1/3] [1/2 1/3]
[3 4], [4 5], [1/4 1/5], [1/4 1/5]
]

25.4. Finitely Generated Matrix Groups 379

Groups, Release 9.8

25.5 Homomorphisms Between Matrix Groups

Deprecated May, 2018; use sage.groups.libgap_morphism instead.

sage.groups.matrix_gps.morphism.to_libgap(x)
Helper to convert x to a LibGAP matrix or matrix group element.

Deprecated; use the x.gap() method or libgap(x) instead.

EXAMPLES:

sage: from sage.groups.matrix_gps.morphism import to_libgap
sage: to_libgap(GL(2,3).gen(0))
doctest:...: DeprecationWarning: this function is deprecated.
Use x.gap() or libgap(x) instead.
See https://trac.sagemath.org/25444 for details.
[[Z(3), 0*Z(3)], [0*Z(3), Z(3)^0]]
sage: to_libgap(matrix(QQ, [[1,2],[3,4]]))
[[1, 2], [3, 4]]

25.6 Matrix Group Homsets

AUTHORS:

• William Stein (2006-05-07): initial version

• Volker Braun (2013-1) port to new Parent, libGAP

sage.groups.matrix_gps.homset.is_MatrixGroupHomset(x)
Test whether x is a matrix group homset.

EXAMPLES:

sage: from sage.groups.matrix_gps.homset import is_MatrixGroupHomset
sage: is_MatrixGroupHomset(4)
doctest:...: DeprecationWarning:
Importing MatrixGroupHomset from here is deprecated; please use
"from sage.groups.libgap_morphism import GroupHomset_libgap as MatrixGroupHomset"␣
→˓instead.
See https://trac.sagemath.org/25444 for details.
False

sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: G = MatrixGroup(gens)
sage: from sage.groups.matrix_gps.homset import MatrixGroupHomset
sage: M = MatrixGroupHomset(G, G)
sage: is_MatrixGroupHomset(M)
True

380 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

25.7 Binary Dihedral Groups

AUTHORS:

• Travis Scrimshaw (2016-02): initial version

class sage.groups.matrix_gps.binary_dihedral.BinaryDihedralGroup(n)
Bases: UniqueRepresentation, FinitelyGeneratedMatrixGroup_gap

The binary dihedral group 𝐵𝐷𝑛 of order 4𝑛.

Let 𝑛 be a positive integer. The binary dihedral group 𝐵𝐷𝑛 is a finite group of order 4𝑛, and can be considered
as the matrix group generated by

𝑔1 =

(︂
𝜁2𝑛 0
0 𝜁−1

2𝑛

)︂
, 𝑔2 =

(︂
0 𝜁4
𝜁4 0

)︂
,

where 𝜁𝑘 = 𝑒2𝜋𝑖/𝑘 is the primitive 𝑘-th root of unity. Furthermore,𝐵𝐷𝑛 admits the following presentation (note
that there is a typo in [Sun2010]):

𝐵𝐷𝑛 = ⟨𝑥, 𝑦, 𝑧|𝑥2 = 𝑦2 = 𝑧𝑛 = 𝑥𝑦𝑧⟩.

(The 𝑥, 𝑦 and 𝑧 in this presentations correspond to the 𝑔2, 𝑔2𝑔−1
1 and 𝑔1 in the matrix group avatar.)

REFERENCES:

• [Dol2009]

• [Sun2010]

• Wikipedia article Dicyclic_group#Binary_dihedral_group

cardinality()

Return the order of self, which is 4𝑛.

EXAMPLES:

sage: G = groups.matrix.BinaryDihedral(3)
sage: G.order()
12

order()

Return the order of self, which is 4𝑛.

EXAMPLES:

sage: G = groups.matrix.BinaryDihedral(3)
sage: G.order()
12

25.7. Binary Dihedral Groups 381

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
https://en.wikipedia.org/wiki/Dicyclic_group#Binary_dihedral_group

Groups, Release 9.8

25.8 Coxeter Groups As Matrix Groups

This implements a general Coxeter group as a matrix group by using the reflection representation.

AUTHORS:

• Travis Scrimshaw (2013-08-28): Initial version

class sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup(coxeter_matrix, base_ring,
index_set)

Bases: UniqueRepresentation, FinitelyGeneratedMatrixGroup_generic

A Coxeter group represented as a matrix group.

Let (𝑊,𝑆) be a Coxeter system. We construct a vector space 𝑉 overRwith a basis of {𝛼𝑠}𝑠∈𝑆 and inner product

𝐵(𝛼𝑠, 𝛼𝑡) = − cos

(︂
𝜋

𝑚𝑠𝑡

)︂
where we have 𝐵(𝛼𝑠, 𝛼𝑡) = −1 if 𝑚𝑠𝑡 = ∞. Next we define a representation 𝜎𝑠 : 𝑉 → 𝑉 by

𝜎𝑠𝜆 = 𝜆− 2𝐵(𝛼𝑠, 𝜆)𝛼𝑠.

This representation is faithful so we can represent the Coxeter group 𝑊 by the set of matrices 𝜎𝑠 acting on 𝑉 .

INPUT:

• data – a Coxeter matrix or graph or a Cartan type

• base_ring – (default: the universal cyclotomic field or a number field) the base ring which contains all
values cos(𝜋/𝑚𝑖𝑗) where (𝑚𝑖𝑗)𝑖𝑗 is the Coxeter matrix

• index_set – (optional) an indexing set for the generators

For finite Coxeter groups, the default base ring is taken to be Q or a quadratic number field when possible.

For more on creating Coxeter groups, see CoxeterGroup().

Todo: Currently the label ∞ is implemented as −1 in the Coxeter matrix.

EXAMPLES:

We can create Coxeter groups from Coxeter matrices:

sage: W = CoxeterGroup([[1, 6, 3], [6, 1, 10], [3, 10, 1]])
sage: W
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
[1 6 3]
[6 1 10]
[3 10 1]
sage: W.gens()
(
[-1 -E(12)^7 + E(12)^11 1]
[0 1 0]
[0 0 1],

[1 0 0]
[-E(12)^7 + E(12)^11 -1 E(20) - E(20)^9]

(continues on next page)

382 Chapter 25. Matrix and Affine Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

(continued from previous page)

[0 0 1],

[1 0 0]
[0 1 0]
[1 E(20) - E(20)^9 -1]
)
sage: m = matrix([[1,3,3,3], [3,1,3,2], [3,3,1,2], [3,2,2,1]])
sage: W = CoxeterGroup(m)
sage: W.gens()
(
[-1 1 1 1] [1 0 0 0] [1 0 0 0] [1 0 0 0]
[0 1 0 0] [1 -1 1 0] [0 1 0 0] [0 1 0 0]
[0 0 1 0] [0 0 1 0] [1 1 -1 0] [0 0 1 0]
[0 0 0 1], [0 0 0 1], [0 0 0 1], [1 0 0 -1]
)
sage: a,b,c,d = W.gens()
sage: (a*b*c)^3
[5 1 -5 7]
[5 0 -4 5]
[4 1 -4 4]
[0 0 0 1]
sage: (a*b)^3
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: b*d == d*b
True
sage: a*c*a == c*a*c
True

We can create the matrix representation over different base rings and with different index sets. Note that the base
ring must contain all 2 * cos(𝜋/𝑚𝑖𝑗) where (𝑚𝑖𝑗)𝑖𝑗 is the Coxeter matrix:

sage: W = CoxeterGroup(m, base_ring=RR, index_set=['a','b','c','d'])
sage: W.base_ring()
Real Field with 53 bits of precision
sage: W.index_set()
('a', 'b', 'c', 'd')

sage: CoxeterGroup(m, base_ring=ZZ)
Coxeter group over Integer Ring with Coxeter matrix:
[1 3 3 3]
[3 1 3 2]
[3 3 1 2]
[3 2 2 1]
sage: CoxeterGroup([[1,4],[4,1]], base_ring=QQ)
Traceback (most recent call last):
...
TypeError: unable to convert sqrt(2) to a rational

Using the well-known conversion between Coxeter matrices and Coxeter graphs, we can input a Coxeter graph.
Following the standard convention, edges with no label (i.e. labelled by None) are treated as 3:

25.8. Coxeter Groups As Matrix Groups 383

Groups, Release 9.8

sage: G = Graph([(0,3,None), (1,3,15), (2,3,7), (0,1,3)])
sage: W = CoxeterGroup(G); W
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
[1 3 2 3]
[3 1 2 15]
[2 2 1 7]
[3 15 7 1]
sage: G2 = W.coxeter_diagram()
sage: CoxeterGroup(G2) is W
True

Because there currently is no class for Z ∪ {∞}, labels of ∞ are given by −1 in the Coxeter matrix:

sage: G = Graph([(0,1,None), (1,2,4), (0,2,oo)])
sage: W = CoxeterGroup(G)
sage: W.coxeter_matrix()
[1 3 -1]
[3 1 4]
[-1 4 1]

We can also create Coxeter groups from Cartan types using the implementation keyword:

sage: W = CoxeterGroup(['D',5], implementation="reflection")
sage: W
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2 2 2]
[3 1 3 2 2]
[2 3 1 3 3]
[2 2 3 1 2]
[2 2 3 2 1]
sage: W = CoxeterGroup(['H',3], implementation="reflection")
sage: W
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a␣
→˓= 2.236067977499790? with Coxeter matrix:
[1 3 2]
[3 1 5]
[2 5 1]

class Element

Bases: MatrixGroupElement_generic

A Coxeter group element.

action_on_root_indices(i, side='left')
Return the action on the set of roots.

The roots are ordered as in the output of the method 𝑟𝑜𝑜𝑡𝑠.

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: w = W.w0
sage: w.action_on_root_indices(0)
11

384 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

canonical_matrix()

Return the matrix of self in the canonical faithful representation, which is self as a matrix.

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = a*b*c
sage: elt.canonical_matrix()
[0 0 -1]
[1 0 -1]
[0 1 -1]

descents(side='right', index_set=None, positive=False)
Return the descents of self, as a list of elements of the index_set.

INPUT:
• index_set – (default: all of them) a subset (as a list or iterable) of the nodes of the Dynkin

diagram
• side – (default: 'right') 'left' or 'right'
• positive – (default: False) boolean

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = b*a*c
sage: elt.descents()
[1, 3]
sage: elt.descents(positive=True)
[2]
sage: elt.descents(index_set=[1,2])
[1]
sage: elt.descents(side='left')
[2]

first_descent(side='right', index_set=None, positive=False)
Return the first left (resp. right) descent of self, as ane element of index_set, or None if there is
none.

See descents() for a description of the options.

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = b*a*c
sage: elt.first_descent()
1
sage: elt.first_descent(side='left')
2

has_right_descent(i)
Return whether i is a right descent of self.

A Coxeter system (𝑊,𝑆) has a root system defined as {𝑤(𝛼𝑠)}𝑤∈𝑊 and we define the positive (resp.
negative) roots 𝛼 =

∑︀
𝑠∈𝑆 𝑐𝑠𝛼𝑠 by all 𝑐𝑠 ≥ 0 (resp. 𝑐𝑠 ≤ 0). In particular, we note that if ℓ(𝑤𝑠) >

25.8. Coxeter Groups As Matrix Groups 385

Groups, Release 9.8

ℓ(𝑤) then𝑤(𝛼𝑠) > 0 and if ℓ(𝑤𝑠) < ℓ(𝑤) then𝑤(𝛼𝑠) < 0. Thus 𝑖 ∈ 𝐼 is a right descent if𝑤(𝛼𝑠𝑖) < 0
or equivalently if the matrix representing 𝑤 has all entries of the 𝑖-th column being non-positive.

INPUT:
• i – an element in the index set

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = b*a*c
sage: [elt.has_right_descent(i) for i in [1, 2, 3]]
[True, False, True]

bilinear_form()

Return the bilinear form associated to self.

Given a Coxeter group 𝐺 with Coxeter matrix 𝑀 = (𝑚𝑖𝑗)𝑖𝑗 , the associated bilinear form 𝐴 = (𝑎𝑖𝑗)𝑖𝑗 is
given by

𝑎𝑖𝑗 = − cos

(︂
𝜋

𝑚𝑖𝑗

)︂
.

If 𝐴 is positive definite, then 𝐺 is of finite type (and so the associated Coxeter group is a finite group). If
𝐴 is positive semidefinite, then 𝐺 is affine type.

EXAMPLES:

sage: W = CoxeterGroup(['D',4])
sage: W.bilinear_form()
[1 -1/2 0 0]
[-1/2 1 -1/2 -1/2]
[0 -1/2 1 0]
[0 -1/2 0 1]

canonical_representation()

Return the canonical faithful representation of self, which is self.

EXAMPLES:

sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.canonical_representation() is W
True

coxeter_matrix()

Return the Coxeter matrix of self.

EXAMPLES:

sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.coxeter_matrix()
[1 3]
[3 1]
sage: W = CoxeterGroup(['H',3])
sage: W.coxeter_matrix()
[1 3 2]
[3 1 5]
[2 5 1]

386 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

fundamental_weight(i)
Return the fundamental weight with index i.

See also:

fundamental_weights()

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.fundamental_weight(1)
(3/2, 1, 1/2)

fundamental_weights()

Return the fundamental weights for self.

This is the dual basis to the basis of simple roots.

The base ring must be a field.

See also:

fundamental_weight()

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.fundamental_weights()
Finite family {1: (3/2, 1, 1/2), 2: (1, 2, 1), 3: (1/2, 1, 3/2)}

is_commutative()

Return whether self is commutative.

EXAMPLES:

sage: CoxeterGroup(['A', 2]).is_commutative()
False
sage: W = CoxeterGroup(['I',2])
sage: W.is_commutative()
True

is_finite()

Return True if this group is finite.

EXAMPLES:

sage: [l for l in range(2, 9) if
....: CoxeterGroup([[1,3,2],[3,1,l],[2,l,1]]).is_finite()]
[2, 3, 4, 5]
sage: [l for l in range(2, 9) if
....: CoxeterGroup([[1,3,2,2],[3,1,l,2],[2,l,1,3],[2,2,3,1]]).is_finite()]
[2, 3, 4]
sage: [l for l in range(2, 9) if
....: CoxeterGroup([[1,3,2,2,2], [3,1,3,3,2], [2,3,1,2,2],
....: [2,3,2,1,l], [2,2,2,l,1]]).is_finite()]
[2, 3]
sage: [l for l in range(2, 9) if
....: CoxeterGroup([[1,3,2,2,2], [3,1,2,3,3], [2,2,1,l,2],

(continues on next page)

25.8. Coxeter Groups As Matrix Groups 387

Groups, Release 9.8

(continued from previous page)

....: [2,3,l,1,2], [2,3,2,2,1]]).is_finite()]
[2, 3]
sage: [l for l in range(2, 9) if
....: CoxeterGroup([[1,3,2,2,2,2], [3,1,l,2,2,2], [2,l,1,3,l,2],
....: [2,2,3,1,2,2], [2,2,l,2,1,3], [2,2,2,2,3,1]]).is_finite()]
[2, 3]

order()

Return the order of self.

If the Coxeter group is finite, this uses an iterator.

EXAMPLES:

sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.order()
6
sage: W = CoxeterGroup([[1,-1],[-1,1]])
sage: W.order()
+Infinity

positive_roots()

Return the positive roots.

These are roots in the Coxeter sense, that all have the same norm. They are given by their coefficients in
the base of simple roots, also taken to have all the same norm.

See also:

reflections()

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.positive_roots()
((1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1))
sage: W = CoxeterGroup(['I',5], implementation='reflection')
sage: W.positive_roots()
((1, 0),
(-E(5)^2 - E(5)^3, 1),
(-E(5)^2 - E(5)^3, -E(5)^2 - E(5)^3),
(1, -E(5)^2 - E(5)^3),
(0, 1))

reflections()

Return the set of reflections.

The order is the one given by positive_roots().

EXAMPLES:

sage: W = CoxeterGroup(['A',2], implementation='reflection')
sage: list(W.reflections())
[
[-1 1] [0 -1] [1 0]

(continues on next page)

388 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

[0 1], [-1 0], [1 -1]
]

roots()

Return the roots.

These are roots in the Coxeter sense, that all have the same norm. They are given by their coefficients in
the base of simple roots, also taken to have all the same norm.

The positive roots are listed first, then the negative roots in the same order. The order is the one given by
roots().

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.roots()
((1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(1, 1, 1),
(0, 1, 1),
(0, 0, 1),
(-1, 0, 0),
(-1, -1, 0),
(0, -1, 0),
(-1, -1, -1),
(0, -1, -1),
(0, 0, -1))
sage: W = CoxeterGroup(['I',5], implementation='reflection')
sage: len(W.roots())
10

simple_reflection(i)
Return the simple reflection 𝑠𝑖.

INPUT:

• i – an element from the index set

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: W.simple_reflection(1)
[-1 1 0]
[0 1 0]
[0 0 1]
sage: W.simple_reflection(2)
[1 0 0]
[1 -1 1]
[0 0 1]
sage: W.simple_reflection(3)
[1 0 0]
[0 1 0]
[0 1 -1]

25.8. Coxeter Groups As Matrix Groups 389

Groups, Release 9.8

simple_root_index(i)
Return the index of the simple root 𝛼𝑖.

This is the position of 𝛼𝑖 in the list of all roots as given be roots().

EXAMPLES:

sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: [W.simple_root_index(i) for i in W.index_set()]
[0, 2, 5]

25.9 Linear Groups

EXAMPLES:

sage: GL(4,QQ)
General Linear Group of degree 4 over Rational Field
sage: GL(1,ZZ)
General Linear Group of degree 1 over Integer Ring
sage: GL(100,RR)
General Linear Group of degree 100 over Real Field with 53 bits of precision
sage: GL(3,GF(49,'a'))
General Linear Group of degree 3 over Finite Field in a of size 7^2

sage: SL(2, ZZ)
Special Linear Group of degree 2 over Integer Ring
sage: G = SL(2,GF(3)); G
Special Linear Group of degree 2 over Finite Field of size 3
sage: G.is_finite()
True
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
)
sage: G = SL(6,GF(5))
sage: G.gens()
(
[2 0 0 0 0 0] [4 0 0 0 0 1]
[0 3 0 0 0 0] [4 0 0 0 0 0]
[0 0 1 0 0 0] [0 4 0 0 0 0]
[0 0 0 1 0 0] [0 0 4 0 0 0]
[0 0 0 0 1 0] [0 0 0 4 0 0]
[0 0 0 0 0 1], [0 0 0 0 4 0]
)

AUTHORS:

• William Stein: initial version

• David Joyner: degree, base_ring, random, order methods; examples

• David Joyner (2006-05): added center, more examples, renamed random attributes, bug fixes.

• William Stein (2006-12): total rewrite

390 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

• Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.

REFERENCES: See [KL1990] and [Car1972].

sage.groups.matrix_gps.linear.GL(n, R, var='a')
Return the general linear group.

The general linear group 𝐺𝐿(𝑑,𝑅) consists of all 𝑑× 𝑑 matrices that are invertible over the ring 𝑅.

Note: This group is also available via groups.matrix.GL().

INPUT:

• n – a positive integer.

• R – ring or an integer. If an integer is specified, the corresponding finite field is used.

• var – variable used to represent generator of the finite field, if needed.

EXAMPLES:

sage: G = GL(6,GF(5))
sage: G.order()
11064475422000000000000000
sage: G.base_ring()
Finite Field of size 5
sage: G.category()
Category of finite groups
sage: TestSuite(G).run()

sage: G = GL(6, QQ)
sage: G.category()
Category of infinite groups
sage: TestSuite(G).run()

Here is the Cayley graph of (relatively small) finite General Linear Group:

sage: g = GL(2,3)
sage: d = g.cayley_graph(); d
Digraph on 48 vertices
sage: d.plot(color_by_label=True, vertex_size=0.03, vertex_labels=False) # long␣
→˓time
Graphics object consisting of 144 graphics primitives
sage: d.plot3d(color_by_label=True) # long time
Graphics3d Object

sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[2,0],[0,1]]), MS([[2,1],[2,0]])]
sage: G = MatrixGroup(gens)
sage: G.order()
48
sage: G.cardinality()
48
sage: H = GL(2,F)
sage: H.order()

(continues on next page)

25.9. Linear Groups 391

Groups, Release 9.8

(continued from previous page)

48
sage: H == G
True
sage: H.gens() == G.gens()
True
sage: H.as_matrix_group() == H
True
sage: H.gens()
(
[2 0] [2 1]
[0 1], [2 0]
)

class sage.groups.matrix_gps.linear.LinearMatrixGroup_gap(degree, base_ring, special, sage_name,
latex_string, gap_command_string,
category=None)

Bases: NamedMatrixGroup_gap, LinearMatrixGroup_generic, FinitelyGeneratedMatrixGroup_gap

The general or special linear group in GAP.

class sage.groups.matrix_gps.linear.LinearMatrixGroup_generic(degree, base_ring, special,
sage_name, latex_string,
category=None,
invariant_form=None)

Bases: NamedMatrixGroup_generic

sage.groups.matrix_gps.linear.SL(n, R, var='a')

Return the special linear group.

The special linear group 𝑆𝐿(𝑑,𝑅) consists of all 𝑑 × 𝑑 matrices that are invertible over the ring 𝑅
with determinant one.

Note: This group is also available via groups.matrix.SL().

INPUT:

• n – a positive integer.

• R – ring or an integer. If an integer is specified, the corresponding finite field is used.

• var – variable used to represent generator of the finite field, if needed.

EXAMPLES:

sage: SL(3, GF(2))
Special Linear Group of degree 3 over Finite Field of size 2
sage: G = SL(15, GF(7)); G
Special Linear Group of degree 15 over Finite Field of size 7
sage: G.category()
Category of finite groups
sage: G.order()
1956712595698146962015219062429586341124018007182049478916067369638713066737882363393519966343657677430907011270206265834819092046250232049187967718149558134226774650845658791865745408000000
sage: len(G.gens())
2

(continues on next page)

392 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

sage: G = SL(2, ZZ); G
Special Linear Group of degree 2 over Integer Ring
sage: G.category()
Category of infinite groups
sage: G.gens()
(
[0 1] [1 1]
[-1 0], [0 1]
)

Next we compute generators for SL3(Z)

sage: G = SL(3,ZZ); G
Special Linear Group of degree 3 over Integer Ring
sage: G.gens()
(
[0 1 0] [0 1 0] [1 1 0]
[0 0 1] [-1 0 0] [0 1 0]
[1 0 0], [0 0 1], [0 0 1]
)
sage: TestSuite(G).run()

25.10 Orthogonal Linear Groups

The general orthogonal group 𝐺𝑂(𝑛,𝑅) consists of all 𝑛 × 𝑛 matrices over the ring 𝑅 preserving an 𝑛-ary positive
definite quadratic form. In cases where there are multiple non-isomorphic quadratic forms, additional data needs to be
specified to disambiguate. The special orthogonal group is the normal subgroup of matrices of determinant one.

In characteristics different from 2, a quadratic form is equivalent to a bilinear symmetric form. Furthermore, over the
real numbers a positive definite quadratic form is equivalent to the diagonal quadratic form, equivalent to the bilinear
symmetric form defined by the identity matrix. Hence, the orthogonal group 𝐺𝑂(𝑛,R) is the group of orthogonal
matrices in the usual sense.

In the case of a finite field and if the degree 𝑛 is even, then there are two inequivalent quadratic forms and a third
parameter e must be specified to disambiguate these two possibilities. The index of 𝑆𝑂(𝑒, 𝑑, 𝑞) in 𝐺𝑂(𝑒, 𝑑, 𝑞) is 2 if
𝑞 is odd, but 𝑆𝑂(𝑒, 𝑑, 𝑞) = 𝐺𝑂(𝑒, 𝑑, 𝑞) if 𝑞 is even.)

Warning: GAP and Sage use different notations:

• GAP notation: The optional e comes first, that is, GO([e,] d, q), SO([e,] d, q).

• Sage notation: The optional e comes last, the standard Python convention: GO(d, GF(q), e=0), SO(d,
GF(q), e=0).

EXAMPLES:

sage: GO(3,7)
General Orthogonal Group of degree 3 over Finite Field of size 7

sage: G = SO(4, GF(7), 1); G
Special Orthogonal Group of degree 4 and form parameter 1 over Finite Field of size 7

(continues on next page)

25.10. Orthogonal Linear Groups 393

Groups, Release 9.8

(continued from previous page)

sage: G.random_element() # random
[4 3 5 2]
[6 6 4 0]
[0 4 6 0]
[4 4 5 1]

AUTHORS:

• David Joyner (2006-03): initial version

• David Joyner (2006-05): added examples, _latex_, __str__, gens, as_matrix_group

• William Stein (2006-12-09): rewrite

• Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.

• Sebastian Oehms (2018-8) add invariant_form() (as alias), _OG, option for user defined invariant bilinear
form, and bug-fix in cmd-string for calling GAP (see trac ticket #26028)

sage.groups.matrix_gps.orthogonal.GO(n, R, e=0, var='a', invariant_form=None)
Return the general orthogonal group.

The general orthogonal group 𝐺𝑂(𝑛,𝑅) consists of all 𝑛 × 𝑛 matrices over the ring 𝑅 preserving an 𝑛-ary
positive definite quadratic form. In cases where there are multiple non-isomorphic quadratic forms, additional
data needs to be specified to disambiguate.

In the case of a finite field and if the degree 𝑛 is even, then there are two inequivalent quadratic forms and a third
parameter e must be specified to disambiguate these two possibilities.

Note: This group is also available via groups.matrix.GO().

INPUT:

• n – integer; the degree

• R – ring or an integer; if an integer is specified, the corresponding finite field is used

• e – +1 or -1, and ignored by default; only relevant for finite fields and if the degree is even: a parameter
that distinguishes inequivalent invariant forms

• var – (optional, default: 'a') variable used to represent generator of the finite field, if needed

• invariant_form – (optional) instances being accepted by the matrix-constructor which define a 𝑛 × 𝑛
square matrix over R describing the symmetric form to be kept invariant by the orthogonal group; the form
is checked to be non-degenerate and symmetric but not to be positive definite

OUTPUT:

The general orthogonal group of given degree, base ring, and choice of invariant form.

EXAMPLES:

sage: GO(3, GF(7))
General Orthogonal Group of degree 3 over Finite Field of size 7
sage: GO(3, GF(7)).order()
672
sage: GO(3, GF(7)).gens()
(
[3 0 0] [0 1 0]

(continues on next page)

394 Chapter 25. Matrix and Affine Groups

https://trac.sagemath.org/26028

Groups, Release 9.8

(continued from previous page)

[0 5 0] [1 6 6]
[0 0 1], [0 2 1]
)

Using the invariant_form option:

sage: m = matrix(QQ, 3,3, [[0, 1, 0], [1, 0, 0], [0, 0, 3]])
sage: GO3 = GO(3,QQ)
sage: GO3m = GO(3,QQ, invariant_form=m)
sage: GO3 == GO3m
False
sage: GO3.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: GO3m.invariant_form()
[0 1 0]
[1 0 0]
[0 0 3]
sage: pm = Permutation([2,3,1]).to_matrix()
sage: g = GO3(pm); g in GO3; g
True
[0 0 1]
[1 0 0]
[0 1 0]
sage: GO3m(pm)
Traceback (most recent call last):
...
TypeError: matrix must be orthogonal with respect to the symmetric form
[0 1 0]
[1 0 0]
[0 0 3]

sage: GO(3,3, invariant_form=[[1,0,0],[0,2,0],[0,0,1]])
Traceback (most recent call last):
...
NotImplementedError: invariant_form for finite groups is fixed by GAP
sage: 5+5
10
sage: R.<x> = ZZ[]
sage: GO(2, R, invariant_form=[[x,0],[0,1]])
General Orthogonal Group of degree 2 over Univariate Polynomial Ring in x over␣
→˓Integer Ring with respect to symmetric form
[x 0]
[0 1]

class sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap(degree, base_ring, special,
sage_name, latex_string,
gap_command_string,
category=None)

Bases: OrthogonalMatrixGroup_generic, NamedMatrixGroup_gap, FinitelyGeneratedMatrixGroup_gap

The general or special orthogonal group in GAP.

25.10. Orthogonal Linear Groups 395

Groups, Release 9.8

invariant_bilinear_form()

Return the symmetric bilinear form preserved by the orthogonal group.

OUTPUT:

A matrix𝑀 such that, for every group element g, the identity 𝑔𝑚𝑔𝑇 = 𝑚 holds. In characteristic different
from two, this uniquely determines the orthogonal group.

EXAMPLES:

sage: G = GO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]

sage: G = GO(4, GF(7), +1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 6 0]
[0 0 0 2]

sage: G = SO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]

invariant_form()

Return the symmetric bilinear form preserved by the orthogonal group.

OUTPUT:

A matrix𝑀 such that, for every group element g, the identity 𝑔𝑚𝑔𝑇 = 𝑚 holds. In characteristic different
from two, this uniquely determines the orthogonal group.

EXAMPLES:

sage: G = GO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]

sage: G = GO(4, GF(7), +1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 6 0]
[0 0 0 2]

sage: G = SO(4, GF(7), -1)
(continues on next page)

396 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]

invariant_quadratic_form()

Return the quadratic form preserved by the orthogonal group.

OUTPUT:

The matrix 𝑄 defining “orthogonal” as follows. The matrix determines a quadratic form 𝑞 on the natural
vector space 𝑉 , on which 𝐺 acts, by 𝑞(𝑣) = 𝑣𝑄𝑣𝑡. A matrix 𝑀 is an element of the orthogonal group if
𝑞(𝑣) = 𝑞(𝑣𝑀) for all 𝑣 ∈ 𝑉 .

EXAMPLES:

sage: G = GO(4, GF(7), -1)
sage: G.invariant_quadratic_form()
[0 1 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 1]

sage: G = GO(4, GF(7), +1)
sage: G.invariant_quadratic_form()
[0 1 0 0]
[0 0 0 0]
[0 0 3 0]
[0 0 0 1]

sage: G = GO(4, QQ)
sage: G.invariant_quadratic_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage: G = SO(4, GF(7), -1)
sage: G.invariant_quadratic_form()
[0 1 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 1]

class sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic(degree, base_ring,
special, sage_name,
latex_string,
category=None,
invariant_form=None)

Bases: NamedMatrixGroup_generic

General Orthogonal Group over arbitrary rings.

EXAMPLES:

25.10. Orthogonal Linear Groups 397

Groups, Release 9.8

sage: G = GO(3, GF(7)); G
General Orthogonal Group of degree 3 over Finite Field of size 7
sage: latex(G)
\text{GO}_{3}(\Bold{F}_{7})

sage: G = SO(3, GF(5)); G
Special Orthogonal Group of degree 3 over Finite Field of size 5
sage: latex(G)
\text{SO}_{3}(\Bold{F}_{5})

sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m = matrix(CF3, 3,3, [[1,e3,0],[e3,2,0],[0,0,1]])
sage: G = SO(3, CF3, invariant_form=m)
sage: latex(G)
\text{SO}_{3}(\Bold{Q}(\zeta_{3}))\text{ with respect to non positive definite␣
→˓symmetric form }\left(\begin{array}{rrr}
1 & \zeta_{3} & 0 \\
\zeta_{3} & 2 & 0 \\
0 & 0 & 1
\end{array}\right)

invariant_bilinear_form()

Return the symmetric bilinear form preserved by self.

OUTPUT:

A matrix.

EXAMPLES:

sage: GO(2,3,+1).invariant_bilinear_form()
[0 1]
[1 0]
sage: GO(2,3,-1).invariant_bilinear_form()
[2 1]
[1 1]
sage: G = GO(4, QQ)
sage: G.invariant_bilinear_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO3m = GO(3,QQ, invariant_form=(1,0,0,0,2,0,0,0,3))
sage: GO3m.invariant_bilinear_form()
[1 0 0]
[0 2 0]
[0 0 3]

invariant_form()

Return the symmetric bilinear form preserved by self.

OUTPUT:

A matrix.

EXAMPLES:

398 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

sage: GO(2,3,+1).invariant_bilinear_form()
[0 1]
[1 0]
sage: GO(2,3,-1).invariant_bilinear_form()
[2 1]
[1 1]
sage: G = GO(4, QQ)
sage: G.invariant_bilinear_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO3m = GO(3,QQ, invariant_form=(1,0,0,0,2,0,0,0,3))
sage: GO3m.invariant_bilinear_form()
[1 0 0]
[0 2 0]
[0 0 3]

invariant_quadratic_form()

Return the symmetric bilinear form preserved by self.

OUTPUT:

A matrix.

EXAMPLES:

sage: GO(2,3,+1).invariant_bilinear_form()
[0 1]
[1 0]
sage: GO(2,3,-1).invariant_bilinear_form()
[2 1]
[1 1]
sage: G = GO(4, QQ)
sage: G.invariant_bilinear_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO3m = GO(3,QQ, invariant_form=(1,0,0,0,2,0,0,0,3))
sage: GO3m.invariant_bilinear_form()
[1 0 0]
[0 2 0]
[0 0 3]

sage.groups.matrix_gps.orthogonal.SO(n, R, e=None, var='a', invariant_form=None)
Return the special orthogonal group.

The special orthogonal group 𝐺𝑂(𝑛,𝑅) consists of all 𝑛 × 𝑛 matrices with determinant one over the ring 𝑅
preserving an 𝑛-ary positive definite quadratic form. In cases where there are multiple non-isomorphic quadratic
forms, additional data needs to be specified to disambiguate.

Note: This group is also available via groups.matrix.SO().

25.10. Orthogonal Linear Groups 399

Groups, Release 9.8

INPUT:

• n – integer; the degree

• R – ring or an integer; if an integer is specified, the corresponding finite field is used

• e – +1 or -1, and ignored by default; only relevant for finite fields and if the degree is even: a parameter
that distinguishes inequivalent invariant forms

• var – (optional, default: 'a') variable used to represent generator of the finite field, if needed

• invariant_form – (optional) instances being accepted by the matrix-constructor which define a 𝑛 × 𝑛
square matrix over R describing the symmetric form to be kept invariant by the orthogonal group; the form
is checked to be non-degenerate and symmetric but not to be positive definite

OUTPUT:

The special orthogonal group of given degree, base ring, and choice of invariant form.

EXAMPLES:

sage: G = SO(3,GF(5))
sage: G
Special Orthogonal Group of degree 3 over Finite Field of size 5

sage: G = SO(3,GF(5))
sage: G.gens()
(
[2 0 0] [3 2 3] [1 4 4]
[0 3 0] [0 2 0] [4 0 0]
[0 0 1], [0 3 1], [2 0 4]
)
sage: G = SO(3,GF(5))
sage: G.as_matrix_group()
Matrix group over Finite Field of size 5 with 3 generators (
[2 0 0] [3 2 3] [1 4 4]
[0 3 0] [0 2 0] [4 0 0]
[0 0 1], [0 3 1], [2 0 4]
)

Using the invariant_form option:

sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m = matrix(CF3, 3,3, [[1,e3,0],[e3,2,0],[0,0,1]])
sage: SO3 = SO(3, CF3)
sage: SO3m = SO(3, CF3, invariant_form=m)
sage: SO3 == SO3m
False
sage: SO3.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: SO3m.invariant_form()
[1 zeta3 0]
[zeta3 2 0]
[0 0 1]
sage: pm = Permutation([2,3,1]).to_matrix()
sage: g = SO3(pm); g in SO3; g

(continues on next page)

400 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

True
[0 0 1]
[1 0 0]
[0 1 0]
sage: SO3m(pm)
Traceback (most recent call last):
...
TypeError: matrix must be orthogonal with respect to the symmetric form
[1 zeta3 0]
[zeta3 2 0]
[0 0 1]

sage: SO(3,5, invariant_form=[[1,0,0],[0,2,0],[0,0,3]])
Traceback (most recent call last):
...
NotImplementedError: invariant_form for finite groups is fixed by GAP
sage: 5+5
10

sage.groups.matrix_gps.orthogonal.normalize_args_e(degree, ring, e)
Normalize the arguments that relate the choice of quadratic form for special orthogonal groups over finite fields.

INPUT:

• degree – integer. The degree of the affine group, that is, the dimension of the affine space the group is
acting on.

• ring – a ring. The base ring of the affine space.

• e – integer, one of +1, 0, −1. Only relevant for finite fields and if the degree is even. A parameter that
distinguishes inequivalent invariant forms.

OUTPUT:

The integer e with values required by GAP.

25.11 Groups of isometries.

Let 𝑀 = Z𝑛 or Q𝑛, 𝑏 : 𝑀 ×𝑀 → Q a bilinear form and 𝑓 : 𝑀 → 𝑀 a linear map. We say that 𝑓 is an isometry
if for all elements 𝑥, 𝑦 of 𝑀 we have that 𝑏(𝑥, 𝑦) = 𝑏(𝑓(𝑥), 𝑓(𝑦)). A group of isometries is a subgroup of 𝐺𝐿(𝑀)
consisting of isometries.

EXAMPLES:

sage: L = IntegralLattice("D4")
sage: O = L.orthogonal_group()
sage: O
Group of isometries with 3 generators (
[0 0 0 1] [1 1 0 0] [1 0 0 0]
[0 1 0 0] [0 0 1 0] [-1 -1 -1 -1]
[0 0 1 0] [0 1 0 1] [0 0 1 0]
[1 0 0 0], [0 -1 -1 0], [0 0 0 1]
)

Basic functionality is provided by GAP:

25.11. Groups of isometries. 401

Groups, Release 9.8

sage: O.cardinality()
1152
sage: len(O.conjugacy_classes_representatives())
25

AUTHORS:

• Simon Brandhorst (2018-02): First created

class sage.groups.matrix_gps.isometries.GroupActionOnQuotientModule(MatrixGroup,
quotient_module,
is_left=False)

Bases: Action

Matrix group action on a quotient module from the right.

INPUT:

• MatrixGroup – the group acting GroupOfIsometries

• submodule – an invariant quotient module

• is_left – bool (default: False)

EXAMPLES:

sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: S = span(ZZ,[[0,1]])
sage: Q = S/(6*S)
sage: g = Matrix(QQ,2,[1,0,0,-1])
sage: G = GroupOfIsometries(2, ZZ, [g], invariant_bilinear_form=matrix.identity(2),␣
→˓invariant_quotient_module=Q)
sage: g = G.an_element()
sage: x = Q.an_element()
sage: x*g
(5)
sage: (x*g).parent()
Finitely generated module V/W over Integer Ring with invariants (6)

class sage.groups.matrix_gps.isometries.GroupActionOnSubmodule(MatrixGroup, submodule,
is_left=False)

Bases: Action

Matrix group action on a submodule from the right.

INPUT:

• MatrixGroup – an instance of GroupOfIsometries

• submodule – an invariant submodule

• is_left – bool (default: False)

EXAMPLES:

sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: S = span(ZZ,[[0,1]])
sage: g = Matrix(QQ,2,[1,0,0,-1])
sage: G = GroupOfIsometries(2, ZZ, [g], invariant_bilinear_form=matrix.identity(2),␣

(continues on next page)

402 Chapter 25. Matrix and Affine Groups

../../../../../../../html/en/reference/categories/sage/categories/action.html#sage.categories.action.Action
../../../../../../../html/en/reference/categories/sage/categories/action.html#sage.categories.action.Action

Groups, Release 9.8

(continued from previous page)

→˓invariant_submodule=S)
sage: g = G.an_element()
sage: x = S.an_element()
sage: x*g
(0, -1)
sage: (x*g).parent()
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1]

class sage.groups.matrix_gps.isometries.GroupOfIsometries(degree, base_ring, gens,
invariant_bilinear_form,
category=None, check=True,
invariant_submodule=None,
invariant_quotient_module=None)

Bases: FinitelyGeneratedMatrixGroup_gap

A base class for Orthogonal matrix groups with a gap backend.

Main difference to OrthogonalMatrixGroup_gap is that we can specify generators and a bilinear form. Fol-
lowing gap the group action is from the right.

INPUT:

• degree – integer, the degree (matrix size) of the matrix

• base_ring – ring, the base ring of the matrices

• gens – a list of matrices over the base ring

• invariant_bilinear_form – a symmetric matrix

• category – (default: None) a category of groups

• check – bool (default: True) check if the generators preserve the bilinear form

• invariant_submodule – a submodule preserved by the group action (default: None) registers an action
on this submodule.

• invariant_quotient_module – a quotient module preserved by the group action (default: None) regis-
ters an action on this quotient module.

EXAMPLES:

sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: bil = Matrix(ZZ,2,[3,2,2,3])
sage: gens = [-Matrix(ZZ,2,[0,1,1,0])]
sage: O = GroupOfIsometries(2,ZZ,gens,bil)
sage: O
Group of isometries with 1 generator (
[0 -1]
[-1 0]
)
sage: O.order()
2

Infinite groups are O.K. too:

25.11. Groups of isometries. 403

Groups, Release 9.8

sage: bil = Matrix(ZZ,4,[0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0])
sage: f = Matrix(ZZ,4,[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 1, 1, 1])
sage: O = GroupOfIsometries(2,ZZ,[f],bil)
sage: O.cardinality()
+Infinity

invariant_bilinear_form()

Return the symmetric bilinear form preserved by the orthogonal group.

OUTPUT:

• the matrix defining the bilinear form

EXAMPLES:

sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: bil = Matrix(ZZ,2,[3,2,2,3])
sage: gens = [-Matrix(ZZ,2,[0,1,1,0])]
sage: O = GroupOfIsometries(2,ZZ,gens,bil)
sage: O.invariant_bilinear_form()
[3 2]
[2 3]

25.12 Symplectic Linear Groups

EXAMPLES:

sage: G = Sp(4,GF(7)); G
Symplectic Group of degree 4 over Finite Field of size 7
sage: g = prod(G.gens()); g
[3 0 3 0]
[1 0 0 0]
[0 1 0 1]
[0 2 0 0]
sage: m = g.matrix()
sage: m * G.invariant_form() * m.transpose() == G.invariant_form()
True
sage: G.order()
276595200

AUTHORS:

• David Joyner (2006-03): initial version, modified from special_linear (by W. Stein)

• Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.

• Sebastian Oehms (2018-8) add option for user defined invariant bilinear form and bug-fix in invariant_form()
(see trac ticket #26028)

sage.groups.matrix_gps.symplectic.Sp(n, R, var='a', invariant_form=None)
Return the symplectic group.

The special linear group 𝐺𝐿(𝑑,𝑅) consists of all 𝑑 × 𝑑 matrices that are invertible over the ring 𝑅 with deter-
minant one.

404 Chapter 25. Matrix and Affine Groups

https://trac.sagemath.org/26028

Groups, Release 9.8

Note: This group is also available via groups.matrix.Sp().

INPUT:

• n – a positive integer

• R – ring or an integer; if an integer is specified, the corresponding finite field is used

• var – (optional, default: 'a') variable used to represent generator of the finite field, if needed

• invariant_form – (optional) instances being accepted by the matrix-constructor which define a 𝑛 × 𝑛
square matrix over R describing the alternating form to be kept invariant by the symplectic group

EXAMPLES:

sage: Sp(4, 5)
Symplectic Group of degree 4 over Finite Field of size 5

sage: Sp(4, IntegerModRing(15))
Symplectic Group of degree 4 over Ring of integers modulo 15

sage: Sp(3, GF(7))
Traceback (most recent call last):
...
ValueError: the degree must be even

Using the invariant_form option:

sage: m = matrix(QQ, 4,4, [[0, 0, 1, 0], [0, 0, 0, 2], [-1, 0, 0, 0], [0, -2, 0,␣
→˓0]])
sage: Sp4m = Sp(4, QQ, invariant_form=m)
sage: Sp4 = Sp(4, QQ)
sage: Sp4 == Sp4m
False
sage: Sp4.invariant_form()
[0 0 0 1]
[0 0 1 0]
[0 -1 0 0]
[-1 0 0 0]
sage: Sp4m.invariant_form()
[0 0 1 0]
[0 0 0 2]
[-1 0 0 0]
[0 -2 0 0]
sage: pm = Permutation([2,1,4,3]).to_matrix()
sage: g = Sp4(pm); g in Sp4; g
True
[0 1 0 0]
[1 0 0 0]
[0 0 0 1]
[0 0 1 0]
sage: Sp4m(pm)
Traceback (most recent call last):
...
TypeError: matrix must be symplectic with respect to the alternating form

(continues on next page)

25.12. Symplectic Linear Groups 405

Groups, Release 9.8

(continued from previous page)

[0 0 1 0]
[0 0 0 2]
[-1 0 0 0]
[0 -2 0 0]

sage: Sp(4,3, invariant_form=[[0,0,0,1],[0,0,1,0],[0,2,0,0], [2,0,0,0]])
Traceback (most recent call last):
...
NotImplementedError: invariant_form for finite groups is fixed by GAP

class sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_gap(degree, base_ring, special,
sage_name, latex_string,
gap_command_string,
category=None)

Bases: SymplecticMatrixGroup_generic, NamedMatrixGroup_gap, FinitelyGeneratedMatrixGroup_gap

Symplectic group in GAP.

EXAMPLES:

sage: Sp(2,4)
Symplectic Group of degree 2 over Finite Field in a of size 2^2

sage: latex(Sp(4,5))
\text{Sp}_{4}(\Bold{F}_{5})

invariant_form()

Return the quadratic form preserved by the symplectic group.

OUTPUT:

A matrix.

EXAMPLES:

sage: Sp(4, GF(3)).invariant_form()
[0 0 0 1]
[0 0 1 0]
[0 2 0 0]
[2 0 0 0]

class sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_generic(degree, base_ring,
special, sage_name,
latex_string,
category=None,
invariant_form=None)

Bases: NamedMatrixGroup_generic

Symplectic Group over arbitrary rings.

EXAMPLES:

sage: Sp43 = Sp(4,3); Sp43
Symplectic Group of degree 4 over Finite Field of size 3
sage: latex(Sp43)

(continues on next page)

406 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

\text{Sp}_{4}(\Bold{F}_{3})

sage: Sp4m = Sp(4,QQ, invariant_form=(0, 0, 1, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, -2, 0,
→˓ 0)); Sp4m
Symplectic Group of degree 4 over Rational Field with respect to alternating␣
→˓bilinear form
[0 0 1 0]
[0 0 0 2]
[-1 0 0 0]
[0 -2 0 0]
sage: latex(Sp4m)
\text{Sp}_{4}(\Bold{Q})\text{ with respect to alternating bilinear form}\left(\begin
→˓{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 \\
-1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right)

invariant_form()

Return the quadratic form preserved by the symplectic group.

OUTPUT:

A matrix.

EXAMPLES:

sage: Sp(4, QQ).invariant_form()
[0 0 0 1]
[0 0 1 0]
[0 -1 0 0]
[-1 0 0 0]

25.13 Unitary Groups 𝐺𝑈(𝑛, 𝑞) and 𝑆𝑈(𝑛, 𝑞)

These are 𝑛× 𝑛 unitary matrices with entries in 𝐺𝐹 (𝑞2).

EXAMPLES:

sage: G = SU(3,5)
sage: G.order()
378000
sage: G
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: G.gens()
(
[a 0 0] [4*a 4 1]
[0 2*a + 2 0] [4 4 0]
[0 0 3*a], [1 0 0]
)

(continues on next page)

25.13. Unitary Groups 𝐺𝑈(𝑛, 𝑞) and 𝑆𝑈(𝑛, 𝑞) 407

Groups, Release 9.8

(continued from previous page)

sage: G.base_ring()
Finite Field in a of size 5^2

AUTHORS:

• David Joyner (2006-03): initial version, modified from special_linear (by W. Stein)

• David Joyner (2006-05): minor additions (examples, _latex_, __str__, gens)

• William Stein (2006-12): rewrite

• Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.

• Sebastian Oehms (2018-8) add _UG, invariant_form(), option for user defined invariant bilinear form, and
bug-fix in _check_matrix (see trac ticket #26028)

sage.groups.matrix_gps.unitary.GU(n, R, var='a', invariant_form=None)
Return the general unitary group.

The general unitary group 𝐺𝑈(𝑑,𝑅) consists of all 𝑑 × 𝑑 matrices that preserve a nondegenerate sesquilinear
form over the ring 𝑅.

Note: For a finite field the matrices that preserve a sesquilinear form over 𝐹𝑞 live over 𝐹𝑞2 . So GU(n,q) for a
prime power q constructs the matrix group over the base ring GF(q^2).

Note: This group is also available via groups.matrix.GU().

INPUT:

• n – a positive integer

• R – ring or an integer; if an integer is specified, the corresponding finite field is used

• var – (optional, default: 'a') variable used to represent generator of the finite field, if needed

• invariant_form – (optional) instances being accepted by the matrix-constructor which define a 𝑛 × 𝑛
square matrix over R describing the hermitian form to be kept invariant by the unitary group; the form is
checked to be non-degenerate and hermitian but not to be positive definite

OUTPUT:

Return the general unitary group.

EXAMPLES:

sage: G = GU(3, 7); G
General Unitary Group of degree 3 over Finite Field in a of size 7^2
sage: G.gens()
(
[a 0 0] [6*a 6 1]
[0 1 0] [6 6 0]
[0 0 5*a], [1 0 0]
)
sage: GU(2,QQ)
General Unitary Group of degree 2 over Rational Field

(continues on next page)

408 Chapter 25. Matrix and Affine Groups

https://trac.sagemath.org/26028

Groups, Release 9.8

(continued from previous page)

sage: G = GU(3, 5, var='beta')
sage: G.base_ring()
Finite Field in beta of size 5^2
sage: G.gens()
(
[beta 0 0] [4*beta 4 1]
[0 1 0] [4 4 0]
[0 0 3*beta], [1 0 0]
)

Using the invariant_form option:

sage: UCF = UniversalCyclotomicField(); e5=UCF.gen(5)
sage: m = matrix(UCF, 3,3, [[1,e5,0],[e5.conjugate(),2,0],[0,0,1]])
sage: G = GU(3, UCF)
sage: Gm = GU(3, UCF, invariant_form=m)
sage: G == Gm
False
sage: G.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: Gm.invariant_form()
[1 E(5) 0]
[E(5)^4 2 0]
[0 0 1]
sage: pm = Permutation((1,2,3)).to_matrix()
sage: g = G(pm); g in G; g
True
[0 0 1]
[1 0 0]
[0 1 0]
sage: Gm(pm)
Traceback (most recent call last):
...
TypeError: matrix must be unitary with respect to the hermitian form
[1 E(5) 0]
[E(5)^4 2 0]
[0 0 1]

sage: GU(3,3, invariant_form=[[1,0,0],[0,2,0],[0,0,1]])
Traceback (most recent call last):
...
NotImplementedError: invariant_form for finite groups is fixed by GAP

sage: GU(2,QQ, invariant_form=[[1,0],[2,0]])
Traceback (most recent call last):
...
ValueError: invariant_form must be non-degenerate

sage.groups.matrix_gps.unitary.SU(n, R, var='a', invariant_form=None)
The special unitary group 𝑆𝑈(𝑑,𝑅) consists of all 𝑑 × 𝑑 matrices that preserve a nondegenerate sesquilinear
form over the ring 𝑅 and have determinant 1.

25.13. Unitary Groups 𝐺𝑈(𝑛, 𝑞) and 𝑆𝑈(𝑛, 𝑞) 409

Groups, Release 9.8

Note: For a finite field the matrices that preserve a sesquilinear form over 𝐹𝑞 live over 𝐹𝑞2 . So SU(n,q) for a
prime power q constructs the matrix group over the base ring GF(q^2).

Note: This group is also available via groups.matrix.SU().

INPUT:

• n – a positive integer

• R – ring or an integer; if an integer is specified, the corresponding finite field is used

• var – (optional, default: 'a') variable used to represent generator of the finite field, if needed

• invariant_form – (optional) instances being accepted by the matrix-constructor which define a 𝑛 × 𝑛
square matrix over R describing the hermitian form to be kept invariant by the unitary group; the form is
checked to be non-degenerate and hermitian but not to be positive definite

OUTPUT:

Return the special unitary group.

EXAMPLES:

sage: SU(3,5)
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: SU(3, GF(5))
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: SU(3,QQ)
Special Unitary Group of degree 3 over Rational Field

Using the invariant_form option:

sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m = matrix(CF3, 3,3, [[1,e3,0],[e3.conjugate(),2,0],[0,0,1]])
sage: G = SU(3, CF3)
sage: Gm = SU(3, CF3, invariant_form=m)
sage: G == Gm
False
sage: G.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: Gm.invariant_form()
[1 zeta3 0]
[-zeta3 - 1 2 0]
[0 0 1]
sage: pm = Permutation((1,2,3)).to_matrix()
sage: G(pm)
[0 0 1]
[1 0 0]
[0 1 0]
sage: Gm(pm)
Traceback (most recent call last):
...

(continues on next page)

410 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

(continued from previous page)

TypeError: matrix must be unitary with respect to the hermitian form
[1 zeta3 0]
[-zeta3 - 1 2 0]
[0 0 1]

sage: SU(3,5, invariant_form=[[1,0,0],[0,2,0],[0,0,3]])
Traceback (most recent call last):
...
NotImplementedError: invariant_form for finite groups is fixed by GAP

class sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_gap(degree, base_ring, special,
sage_name, latex_string,
gap_command_string,
category=None)

Bases: UnitaryMatrixGroup_generic, NamedMatrixGroup_gap, FinitelyGeneratedMatrixGroup_gap

The general or special unitary group in GAP.

invariant_form()

Return the hermitian form preserved by the unitary group.

OUTPUT:

A square matrix describing the bilinear form

EXAMPLES:

sage: G32=GU(3,2)
sage: G32.invariant_form()
[0 0 1]
[0 1 0]
[1 0 0]

class sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_generic(degree, base_ring, special,
sage_name, latex_string,
category=None,
invariant_form=None)

Bases: NamedMatrixGroup_generic

General Unitary Group over arbitrary rings.

EXAMPLES:

sage: G = GU(3, GF(7)); G
General Unitary Group of degree 3 over Finite Field in a of size 7^2
sage: latex(G)
\text{GU}_{3}(\Bold{F}_{7^{2}})

sage: G = SU(3, GF(5)); G
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: latex(G)
\text{SU}_{3}(\Bold{F}_{5^{2}})

sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m = matrix(CF3, 3,3, [[1,e3,0],[e3.conjugate(),2,0],[0,0,1]])

(continues on next page)

25.13. Unitary Groups 𝐺𝑈(𝑛, 𝑞) and 𝑆𝑈(𝑛, 𝑞) 411

Groups, Release 9.8

(continued from previous page)

sage: G = SU(3, CF3, invariant_form=m)
sage: latex(G)
\text{SU}_{3}(\Bold{Q}(\zeta_{3}))\text{ with respect to positive definite␣
→˓hermitian form }\left(\begin{array}{rrr}
1 & \zeta_{3} & 0 \\
-\zeta_{3} - 1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)

invariant_form()

Return the hermitian form preserved by the unitary group.

OUTPUT:

A square matrix describing the bilinear form

EXAMPLES:

sage: SU4 = SU(4,QQ)
sage: SU4.invariant_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage.groups.matrix_gps.unitary.finite_field_sqrt(ring)
Helper function.

INPUT:

A ring.

OUTPUT:

Integer q such that ring is the finite field with 𝑞2 elements.

EXAMPLES:

sage: from sage.groups.matrix_gps.unitary import finite_field_sqrt
sage: finite_field_sqrt(GF(4, 'a'))
2

25.14 Heisenberg Group

AUTHORS:

• Hilder Vitor Lima Pereira (2017-08): initial version

class sage.groups.matrix_gps.heisenberg.HeisenbergGroup(n=1, R=0)
Bases: UniqueRepresentation, FinitelyGeneratedMatrixGroup_gap

The Heisenberg group of degree 𝑛.

412 Chapter 25. Matrix and Affine Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

Let 𝑅 be a ring, and let 𝑛 be a positive integer. The Heisenberg group of degree 𝑛 over 𝑅 is a multiplicative
group whose elements are matrices with the following form:⎛⎝1 𝑥𝑇 𝑧

0 𝐼𝑛 𝑦
0 0 1

⎞⎠ ,

where 𝑥 and 𝑦 are column vectors in 𝑅𝑛, 𝑧 is a scalar in 𝑅, and 𝐼𝑛 is the identity matrix of size 𝑛.

INPUT:

• n – the degree of the Heisenberg group

• R – (default: Z) the ring 𝑅 or a positive integer as a shorthand for the ring Z/𝑅Z

EXAMPLES:

sage: H = groups.matrix.Heisenberg(); H
Heisenberg group of degree 1 over Integer Ring
sage: H.gens()
(
[1 1 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 1] [0 1 0]
[0 0 1], [0 0 1], [0 0 1]
)
sage: X, Y, Z = H.gens()
sage: Z * X * Y**-1
[1 1 0]
[0 1 -1]
[0 0 1]
sage: X * Y * X**-1 * Y**-1 == Z
True

sage: H = groups.matrix.Heisenberg(R=5); H
Heisenberg group of degree 1 over Ring of integers modulo 5
sage: H = groups.matrix.Heisenberg(n=3, R=13); H
Heisenberg group of degree 3 over Ring of integers modulo 13

REFERENCES:

• Wikipedia article Heisenberg_group

cardinality()

Return the order of self.

EXAMPLES:

sage: H = groups.matrix.Heisenberg()
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(n=4)
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(R=3)
sage: H.order()
27
sage: H = groups.matrix.Heisenberg(n=2, R=3)

(continues on next page)

25.14. Heisenberg Group 413

https://en.wikipedia.org/wiki/Heisenberg_group

Groups, Release 9.8

(continued from previous page)

sage: H.order()
243
sage: H = groups.matrix.Heisenberg(n=2, R=GF(4))
sage: H.order()
1024

order()

Return the order of self.

EXAMPLES:

sage: H = groups.matrix.Heisenberg()
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(n=4)
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(R=3)
sage: H.order()
27
sage: H = groups.matrix.Heisenberg(n=2, R=3)
sage: H.order()
243
sage: H = groups.matrix.Heisenberg(n=2, R=GF(4))
sage: H.order()
1024

25.15 Affine Groups

AUTHORS:

• Volker Braun: initial version

class sage.groups.affine_gps.affine_group.AffineGroup(degree, ring)
Bases: UniqueRepresentation, Group

An affine group.

The affine group Aff(𝐴) (or general affine group) of an affine space 𝐴 is the group of all invertible affine trans-
formations from the space into itself.

If we let 𝐴𝑉 be the affine space of a vector space 𝑉 (essentially, forgetting what is the origin) then the affine
group Aff(𝐴𝑉) is the group generated by the general linear group 𝐺𝐿(𝑉) together with the translations. Recall
that the group of translations acting on 𝐴𝑉 is just 𝑉 itself. The general linear and translation subgroups do not
quite commute, and in fact generate the semidirect product

Aff(𝐴𝑉) = 𝐺𝐿(𝑉) n 𝑉.

As such, the group elements can be represented by pairs (𝐴, 𝑏) of a matrix and a vector. This pair then represents
the transformation

𝑥 ↦→ 𝐴𝑥+ 𝑏.

414 Chapter 25. Matrix and Affine Groups

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Groups, Release 9.8

We can also represent affine transformations as linear transformations by considering dim(𝑉) + 1 dimensional
space. We take the affine transformation (𝐴, 𝑏) to (︂

𝐴 𝑏
0 1

)︂
and lifting 𝑥 = (𝑥1, . . . , 𝑥𝑛) to (𝑥1, . . . , 𝑥𝑛, 1). Here the (𝑛 + 1)-th component is always 1, so the linear
representations acts on the affine hyperplane 𝑥𝑛+1 = 1 as affine transformations which can be seen directly from
the matrix multiplication.

INPUT:

Something that defines an affine space. For example

• An affine space itself:

– A – affine space

• A vector space:

– V – a vector space

• Degree and base ring:

– degree – An integer. The degree of the affine group, that is, the dimension of the affine space the
group is acting on.

– ring – A ring or an integer. The base ring of the affine space. If an integer is given, it must be a prime
power and the corresponding finite field is constructed.

– var – (default: 'a') Keyword argument to specify the finite field generator name in the case where
ring is a prime power.

EXAMPLES:

sage: F = AffineGroup(3, QQ); F
Affine Group of degree 3 over Rational Field
sage: F(matrix(QQ,[[1,2,3],[4,5,6],[7,8,0]]), vector(QQ,[10,11,12]))

[1 2 3] [10]
x |-> [4 5 6] x + [11]

[7 8 0] [12]
sage: F([[1,2,3],[4,5,6],[7,8,0]], [10,11,12])

[1 2 3] [10]
x |-> [4 5 6] x + [11]

[7 8 0] [12]
sage: F([1,2,3,4,5,6,7,8,0], [10,11,12])

[1 2 3] [10]
x |-> [4 5 6] x + [11]

[7 8 0] [12]

Instead of specifying the complete matrix/vector information, you can also create special group elements:

sage: F.linear([1,2,3,4,5,6,7,8,0])
[1 2 3] [0]

x |-> [4 5 6] x + [0]
[7 8 0] [0]

sage: F.translation([1,2,3])
[1 0 0] [1]

x |-> [0 1 0] x + [2]
[0 0 1] [3]

25.15. Affine Groups 415

Groups, Release 9.8

Some additional ways to create affine groups:

sage: A = AffineSpace(2, GF(4,'a')); A
Affine Space of dimension 2 over Finite Field in a of size 2^2
sage: G = AffineGroup(A); G
Affine Group of degree 2 over Finite Field in a of size 2^2
sage: G is AffineGroup(2,4) # shorthand
True

sage: V = ZZ^3; V
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: AffineGroup(V)
Affine Group of degree 3 over Integer Ring

REFERENCES:

• Wikipedia article Affine_group

Element

alias of AffineGroupElement

cardinality()

Return the cardinality of self.

EXAMPLES:

sage: AffineGroup(6, GF(5)).cardinality()
172882428468750000000000000000
sage: AffineGroup(6, ZZ).cardinality()
+Infinity

degree()

Return the dimension of the affine space.

OUTPUT:

An integer.

EXAMPLES:

sage: G = AffineGroup(6, GF(5))
sage: g = G.an_element()
sage: G.degree()
6
sage: G.degree() == g.A().nrows() == g.A().ncols() == g.b().degree()
True

linear(A)
Construct the general linear transformation by A.

INPUT:

• A – anything that determines a matrix

OUTPUT:

The affine group element 𝑥 ↦→ 𝐴𝑥.

EXAMPLES:

416 Chapter 25. Matrix and Affine Groups

https://en.wikipedia.org/wiki/Affine_group

Groups, Release 9.8

sage: G = AffineGroup(3, GF(5))
sage: G.linear([1,2,3,4,5,6,7,8,0])

[1 2 3] [0]
x |-> [4 0 1] x + [0]

[2 3 0] [0]

linear_space()

Return the space of the affine transformations represented as linear transformations.

We can represent affine transformations 𝐴𝑥+ 𝑏 as linear transformations by(︂
𝐴 𝑏
0 1

)︂
and lifting 𝑥 = (𝑥1, . . . , 𝑥𝑛) to (𝑥1, . . . , 𝑥𝑛, 1).

See also:

• sage.groups.affine_gps.group_element.AffineGroupElement.matrix()

EXAMPLES:

sage: G = AffineGroup(3, GF(5))
sage: G.linear_space()
Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 5

matrix_space()

Return the space of matrices representing the general linear transformations.

OUTPUT:

The parent of the matrices 𝐴 defining the affine group element 𝐴𝑥+ 𝑏.

EXAMPLES:

sage: G = AffineGroup(3, GF(5))
sage: G.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 5

random_element()

Return a random element of this group.

EXAMPLES:

sage: G = AffineGroup(4, GF(3))
sage: G.random_element() # random

[2 0 1 2] [1]
[2 1 1 2] [2]

x |-> [1 0 2 2] x + [2]
[1 1 1 1] [2]

sage: G.random_element() in G
True

reflection(v)
Construct the Householder reflection.

25.15. Affine Groups 417

Groups, Release 9.8

A Householder reflection (transformation) is the affine transformation corresponding to an elementary re-
flection at the hyperplane perpendicular to 𝑣.

INPUT:

• v – a vector, or something that determines a vector.

OUTPUT:

The affine group element that is just the Householder transformation (a.k.a. Householder reflection, ele-
mentary reflection) at the hyperplane perpendicular to 𝑣.

EXAMPLES:

sage: G = AffineGroup(3, QQ)
sage: G.reflection([1,0,0])

[-1 0 0] [0]
x |-> [0 1 0] x + [0]

[0 0 1] [0]
sage: G.reflection([3,4,-5])

[16/25 -12/25 3/5] [0]
x |-> [-12/25 9/25 4/5] x + [0]

[3/5 4/5 0] [0]

some_elements()

Return some elements.

EXAMPLES:

sage: G = AffineGroup(4,5)
sage: G.some_elements()
[[2 0 0 0] [1]

[0 1 0 0] [0]
x |-> [0 0 1 0] x + [0]

[0 0 0 1] [0],
[2 0 0 0] [0]
[0 1 0 0] [0]

x |-> [0 0 1 0] x + [0]
[0 0 0 1] [0],
[2 0 0 0] [...]
[0 1 0 0] [...]

x |-> [0 0 1 0] x + [...]
[0 0 0 1] [...]]

sage: all(v.parent() is G for v in G.some_elements())
True

sage: G = AffineGroup(2,QQ)
sage: G.some_elements()
[[1 0] [1]
x |-> [0 1] x + [0],
...]

translation(b)
Construct the translation by b.

INPUT:

• b – anything that determines a vector

418 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

OUTPUT:

The affine group element 𝑥 ↦→ 𝑥+ 𝑏.

EXAMPLES:

sage: G = AffineGroup(3, GF(5))
sage: G.translation([1,4,8])

[1 0 0] [1]
x |-> [0 1 0] x + [4]

[0 0 1] [3]

vector_space()

Return the vector space of the underlying affine space.

EXAMPLES:

sage: G = AffineGroup(3, GF(5))
sage: G.vector_space()
Vector space of dimension 3 over Finite Field of size 5

25.16 Euclidean Groups

AUTHORS:

• Volker Braun: initial version

class sage.groups.affine_gps.euclidean_group.EuclideanGroup(degree, ring)
Bases: AffineGroup

an Euclidean group.

The Euclidean group 𝐸(𝐴) (or general affine group) of an affine space 𝐴 is the group of all invertible affine
transformations from the space into itself preserving the Euclidean metric.

If we let 𝐴𝑉 be the affine space of a vector space 𝑉 (essentially, forgetting what is the origin) then the Euclidean
group 𝐸(𝐴𝑉) is the group generated by the general linear group 𝑆𝑂(𝑉) together with the translations. Recall
that the group of translations acting on 𝐴𝑉 is just 𝑉 itself. The general linear and translation subgroups do not
quite commute, and in fact generate the semidirect product

𝐸(𝐴𝑉) = 𝑆𝑂(𝑉) n 𝑉.

As such, the group elements can be represented by pairs (𝐴, 𝑏) of a matrix and a vector. This pair then represents
the transformation

𝑥 ↦→ 𝐴𝑥+ 𝑏.

We can also represent this as a linear transformation in dim(𝑉) + 1 dimensional space as(︂
𝐴 𝑏
0 1

)︂
and lifting 𝑥 = (𝑥1, . . . , 𝑥𝑛) to (𝑥1, . . . , 𝑥𝑛, 1).

See also:

• AffineGroup

25.16. Euclidean Groups 419

Groups, Release 9.8

INPUT:

Something that defines an affine space. For example

• An affine space itself:

– A – affine space

• A vector space:

– V – a vector space

• Degree and base ring:

– degree – An integer. The degree of the affine group, that is, the dimension of the affine space the
group is acting on.

– ring – A ring or an integer. The base ring of the affine space. If an integer is given, it must be a prime
power and the corresponding finite field is constructed.

– var – (default: 'a') Keyword argument to specify the finite field generator name in the case where
ring is a prime power.

EXAMPLES:

sage: E3 = EuclideanGroup(3, QQ); E3
Euclidean Group of degree 3 over Rational Field
sage: E3(matrix(QQ,[(6/7, -2/7, 3/7), (-2/7, 3/7, 6/7), (3/7, 6/7, -2/7)]),␣
→˓vector(QQ,[10,11,12]))

[6/7 -2/7 3/7] [10]
x |-> [-2/7 3/7 6/7] x + [11]

[3/7 6/7 -2/7] [12]
sage: E3([[6/7, -2/7, 3/7], [-2/7, 3/7, 6/7], [3/7, 6/7, -2/7]], [10,11,12])

[6/7 -2/7 3/7] [10]
x |-> [-2/7 3/7 6/7] x + [11]

[3/7 6/7 -2/7] [12]
sage: E3([6/7, -2/7, 3/7, -2/7, 3/7, 6/7, 3/7, 6/7, -2/7], [10,11,12])

[6/7 -2/7 3/7] [10]
x |-> [-2/7 3/7 6/7] x + [11]

[3/7 6/7 -2/7] [12]

Instead of specifying the complete matrix/vector information, you can also create special group elements:

sage: E3.linear([6/7, -2/7, 3/7, -2/7, 3/7, 6/7, 3/7, 6/7, -2/7])
[6/7 -2/7 3/7] [0]

x |-> [-2/7 3/7 6/7] x + [0]
[3/7 6/7 -2/7] [0]

sage: E3.reflection([4,5,6])
[45/77 -40/77 -48/77] [0]

x |-> [-40/77 27/77 -60/77] x + [0]
[-48/77 -60/77 5/77] [0]

sage: E3.translation([1,2,3])
[1 0 0] [1]

x |-> [0 1 0] x + [2]
[0 0 1] [3]

Some additional ways to create Euclidean groups:

420 Chapter 25. Matrix and Affine Groups

Groups, Release 9.8

sage: A = AffineSpace(2, GF(4,'a')); A
Affine Space of dimension 2 over Finite Field in a of size 2^2
sage: G = EuclideanGroup(A); G
Euclidean Group of degree 2 over Finite Field in a of size 2^2
sage: G is EuclideanGroup(2,4) # shorthand
True

sage: V = ZZ^3; V
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: EuclideanGroup(V)
Euclidean Group of degree 3 over Integer Ring

sage: EuclideanGroup(2, QQ)
Euclidean Group of degree 2 over Rational Field

REFERENCES:

• Wikipedia article Euclidean_group

random_element()

Return a random element of this group.

EXAMPLES:

sage: G = EuclideanGroup(4, GF(3))
sage: G.random_element() # random

[2 1 2 1] [1]
[1 2 2 1] [0]

x |-> [2 2 2 2] x + [1]
[1 1 2 2] [2]

sage: G.random_element() in G
True

25.17 Elements of Affine Groups

The class in this module is used to represent the elements of AffineGroup() and its subgroups.

EXAMPLES:

sage: F = AffineGroup(3, QQ)
sage: F([1,2,3,4,5,6,7,8,0], [10,11,12])

[1 2 3] [10]
x |-> [4 5 6] x + [11]

[7 8 0] [12]

sage: G = AffineGroup(2, ZZ)
sage: g = G([[1,1],[0,1]], [1,0])
sage: h = G([[1,2],[0,1]], [0,1])
sage: g*h

[1 3] [2]
x |-> [0 1] x + [1]
sage: h*g

[1 3] [1]
(continues on next page)

25.17. Elements of Affine Groups 421

https://en.wikipedia.org/wiki/Euclidean_group

Groups, Release 9.8

(continued from previous page)

x |-> [0 1] x + [1]
sage: g*h != h*g
True

AUTHORS:

• Volker Braun

class sage.groups.affine_gps.group_element.AffineGroupElement(parent, A, b=0, convert=True,
check=True)

Bases: MultiplicativeGroupElement

An affine group element.

INPUT:

• A – an invertible matrix, or something defining a matrix if convert==True.

• b– a vector, or something defining a vector if convert==True (default: 0, defining the zero vector).

• parent – the parent affine group.

• convert - bool (default: True). Whether to convert A into the correct matrix space and b into the correct
vector space.

• check - bool (default: True). Whether to do some
checks or just accept the input as valid.

As a special case, A can be a matrix obtained from matrix(), that is, one row and one column larger. In that
case, the group element defining that matrix is reconstructed.

OUTPUT:

The affine group element 𝑥 ↦→ 𝐴𝑥+ 𝑏

EXAMPLES:

sage: G = AffineGroup(2, GF(3))
sage: g = G.random_element()
sage: type(g)
<class 'sage.groups.affine_gps.affine_group.AffineGroup_with_category.element_class
→˓'>
sage: G(g.matrix()) == g
True
sage: G(2)

[2 0] [0]
x |-> [0 2] x + [0]

Conversion from a matrix and a matrix group element:

sage: M = Matrix(4, 4, [0, 0, -1, 1, 0, -1, 0, 1, -1, 0, 0, 1, 0, 0, 0, 1])
sage: A = AffineGroup(3, ZZ)
sage: A(M)

[0 0 -1] [1]
x |-> [0 -1 0] x + [1]

[-1 0 0] [1]
sage: G = MatrixGroup([M])
sage: A(G.0)

(continues on next page)

422 Chapter 25. Matrix and Affine Groups

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

(continued from previous page)

[0 0 -1] [1]
x |-> [0 -1 0] x + [1]

[-1 0 0] [1]

A()

Return the general linear part of an affine group element.

OUTPUT:

The matrix 𝐴 of the affine group element 𝐴𝑥+ 𝑏.

EXAMPLES:

sage: G = AffineGroup(3, QQ)
sage: g = G([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g.A()
[1 2 3]
[4 5 6]
[7 8 0]

b()

Return the translation part of an affine group element.

OUTPUT:

The vector 𝑏 of the affine group element 𝐴𝑥+ 𝑏.

EXAMPLES:

sage: G = AffineGroup(3, QQ)
sage: g = G([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g.b()
(10, 11, 12)

list()

Return list representation of self.

EXAMPLES:

sage: F = AffineGroup(3, QQ)
sage: g = F([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g

[1 2 3] [10]
x |-> [4 5 6] x + [11]

[7 8 0] [12]
sage: g.matrix()
[1 2 3|10]
[4 5 6|11]
[7 8 0|12]
[--------+--]
[0 0 0| 1]
sage: g.list()
[[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 0, 12], [0, 0, 0, 1]]

matrix()

Return the standard matrix representation of self.

25.17. Elements of Affine Groups 423

Groups, Release 9.8

See also:

• AffineGroup.linear_space()

EXAMPLES:

sage: G = AffineGroup(3, GF(7))
sage: g = G([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g

[1 2 3] [3]
x |-> [4 5 6] x + [4]

[0 1 0] [5]
sage: g.matrix()
[1 2 3|3]
[4 5 6|4]
[0 1 0|5]
[-----+-]
[0 0 0|1]
sage: parent(g.matrix())
Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 7
sage: g.matrix() == matrix(g)
True

Composition of affine group elements equals multiplication of the matrices:

sage: g1 = G.random_element()
sage: g2 = G.random_element()
sage: g1.matrix() * g2.matrix() == (g1*g2).matrix()
True

424 Chapter 25. Matrix and Affine Groups

CHAPTER

TWENTYSIX

LIE GROUPS

26.1 Nilpotent Lie groups

AUTHORS:

• Eero Hakavuori (2018-09-25): initial version of nilpotent Lie groups

class sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup(L, name, **kwds)
Bases: Group, DifferentiableManifold

A nilpotent Lie group.

INPUT:

• L – the Lie algebra of the Lie group; must be a finite dimensional nilpotent Lie algebra with basis over a
topological field, e.g. Q or R

• name – a string; name (symbol) given to the Lie group

Two types of exponential coordinates are defined on any nilpotent Lie group using the basis of the Lie algebra,
see chart_exp1() and chart_exp2().

EXAMPLES:

Creation of a nilpotent Lie group:

sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group(); G
Lie group G of Heisenberg algebra of rank 1 over Rational Field

Giving a different name to the group:

sage: L.lie_group('H')
Lie group H of Heisenberg algebra of rank 1 over Rational Field

Elements can be created using the exponential map:

sage: p,q,z = L.basis()
sage: g = G.exp(p); g
exp(p1)
sage: h = G.exp(q); h
exp(q1)

Lie group multiplication has the usual product syntax:

425

../../../../../../../html/en/reference/manifolds/sage/manifolds/differentiable/manifold.html#sage.manifolds.differentiable.manifold.DifferentiableManifold

Groups, Release 9.8

sage: k = g*h; k
exp(p1 + q1 + 1/2*z)

The identity element is given by one():

sage: e = G.one(); e
exp(0)
sage: e*k == k and k*e == k
True

The default coordinate system is exponential coordinates of the first kind:

sage: G.default_chart() == G.chart_exp1()
True
sage: G.chart_exp1()
Chart (G, (x_0, x_1, x_2))

Changing the default coordinates to exponential coordinates of the second kind will change how elements are
printed:

sage: G.set_default_chart(G.chart_exp2())
sage: k
exp(z)exp(q1)exp(p1)
sage: G.set_default_chart(G.chart_exp1())
sage: k
exp(p1 + q1 + 1/2*z)

The frames of left- or right-invariant vector fields are created using left_invariant_frame() and
right_invariant_frame():

sage: X = G.left_invariant_frame(); X
Vector frame (G, (X_0,X_1,X_2))
sage: X[0]
Vector field X_0 on the Lie group G of Heisenberg algebra of rank 1 over Rational␣
→˓Field

A vector field can be displayed with respect to a coordinate frame:

sage: exp1_frame = G.chart_exp1().frame()
sage: exp2_frame = G.chart_exp2().frame()
sage: X[0].display(exp1_frame)
X_0 = 𝜕/𝜕x_0 - 1/2*x_1 𝜕/𝜕x_2
sage: X[0].display(exp2_frame)
X_0 = 𝜕/𝜕y_0
sage: X[1].display(exp1_frame)
X_1 = 𝜕/𝜕x_1 + 1/2*x_0 𝜕/𝜕x_2
sage: X[1].display(exp2_frame)
X_1 = 𝜕/𝜕y_1 + x_0 𝜕/𝜕y_2

Defining a left translation by a generic point:

sage: g = G.point([var('a'), var('b'), var('c')]); g
exp(a*p1 + b*q1 + c*z)
sage: L_g = G.left_translation(g); L_g

(continues on next page)

426 Chapter 26. Lie Groups

Groups, Release 9.8

(continued from previous page)

Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational␣
→˓Field
sage: L_g.display()
G → G

(x_0, x_1, x_2) ↦→ (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
(x_0, x_1, x_2) ↦→ (y_0, y_1, y_2) = (a + x_0, b + x_1,

1/2*a*b + 1/2*(2*a + x_0)*x_1 + c + x_2)
(y_0, y_1, y_2) ↦→ (x_0, x_1, x_2) = (a + y_0, b + y_1,

-1/2*b*y_0 + 1/2*(a - y_0)*y_1 + c + y_2)
(y_0, y_1, y_2) ↦→ (a + y_0, b + y_1, 1/2*a*b + a*y_1 + c + y_2)

Verifying the left-invariance of the left-invariant frame:

sage: x = G(G.chart_exp1()[:])
sage: L_g.differential(x)(X[0].at(x)) == X[0].at(L_g(x))
True
sage: L_g.differential(x)(X[1].at(x)) == X[1].at(L_g(x))
True
sage: L_g.differential(x)(X[2].at(x)) == X[2].at(L_g(x))
True

An element of the Lie algebra can be extended to a left or right invariant vector field:

sage: X_L = G.left_invariant_extension(p + 3*q); X_L
Vector field p1 + 3*q1 on the Lie group G of Heisenberg algebra of rank 1 over␣
→˓Rational Field
sage: X_L.display(exp1_frame)
p1 + 3*q1 = 𝜕/𝜕x_0 + 3 𝜕/𝜕x_1 + (3/2*x_0 - 1/2*x_1) 𝜕/𝜕x_2
sage: X_R = G.right_invariant_extension(p + 3*q)
sage: X_R.display(exp1_frame)
p1 + 3*q1 = 𝜕/𝜕x_0 + 3 𝜕/𝜕x_1 + (-3/2*x_0 + 1/2*x_1) 𝜕/𝜕x_2

The nilpotency step of the Lie group is the nilpotency step of its algebra. Nilpotency for Lie groups means that
group commutators that are longer than the nilpotency step vanish:

sage: G.step()
2
sage: g = G.exp(p); h = G.exp(q)
sage: c = g*h*~g*~h; c
exp(z)
sage: g*c*~g*~c
exp(0)

class Element(parent, **kwds)
Bases: ManifoldPoint, MultiplicativeGroupElement

A base class for an element of a Lie group.

EXAMPLES:

Elements of the group are printed in the default exponential coordinates:

sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()

(continues on next page)

26.1. Nilpotent Lie groups 427

../../../../../../../html/en/reference/manifolds/sage/manifolds/point.html#sage.manifolds.point.ManifoldPoint
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Groups, Release 9.8

(continued from previous page)

sage: g = G.exp(2*X + 3*Z); g
exp(2*X + 3*Z)
sage: h = G.point([var('a'), var('b'), 0]); h
exp(a*X + b*Y)
sage: G.set_default_chart(G.chart_exp2())
sage: g
exp(3*Z)exp(2*X)
sage: h
exp(1/2*a*b*Z)exp(b*Y)exp(a*X)

Multiplication of two elements uses the usual product syntax:

sage: G.exp(Y)*G.exp(X)
exp(Y)exp(X)
sage: G.exp(X)*G.exp(Y)
exp(Z)exp(Y)exp(X)
sage: G.set_default_chart(G.chart_exp1())
sage: G.exp(X)*G.exp(Y)
exp(X + Y + 1/2*Z)

adjoint(g)
Return the adjoint map as an automorphism of the Lie algebra of self.

INPUT:

• g – an element of self

For a Lie group element 𝑔, the adjoint map Ad𝑔 is the map on the Lie algebra g given by the differential of
the conjugation by 𝑔 at the identity.

If the Lie algebra of self does not admit symbolic coefficients, the adjoint is not in general defined for
abstract points.

EXAMPLES:

An example of an adjoint map:

sage: L = LieAlgebra(QQ, 2, step=3)
sage: G = L.lie_group()
sage: g = G.exp(L.basis().list()[0]); g
exp(X_1)
sage: Ad_g = G.adjoint(g); Ad_g
Lie algebra endomorphism of Free Nilpotent Lie algebra on 5
generators (X_1, X_2, X_12, X_112, X_122) over Rational Field
Defn: X_1 |--> X_1

X_2 |--> X_2 + X_12 + 1/2*X_112
X_12 |--> X_12 + X_112
X_112 |--> X_112
X_122 |--> X_122

Usually the adjoint map of a symbolic point is not defined:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: g = G.point([var('a'), var('b'), var('c')]); g

(continues on next page)

428 Chapter 26. Lie Groups

Groups, Release 9.8

(continued from previous page)

exp(a*X_1 + b*X_2 + c*X_12)
sage: G.adjoint(g)
Traceback (most recent call last):
...
TypeError: unable to convert -b to a rational

However, if the adjoint map is independent from the symbolic terms, the map is still well defined:

sage: g = G.point([0, 0, var('a')]); g
exp(a*X_12)
sage: G.adjoint(g)
Lie algebra endomorphism of Free Nilpotent Lie algebra on 3 generators (X_1, X_
→˓2, X_12) over Rational Field
Defn: X_1 |--> X_1

X_2 |--> X_2
X_12 |--> X_12

chart_exp1()

Return the chart of exponential coordinates of the first kind.

Exponential coordinates of the first kind are

exp(𝑥1𝑋1 + · · · + 𝑥𝑛𝑋𝑛) ↦→ (𝑥1, . . . , 𝑥𝑛).

EXAMPLES:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.chart_exp1()
Chart (G, (x_1, x_2, x_12))

chart_exp2()

Return the chart of exponential coordinates of the second kind.

Exponential coordinates of the second kind are

exp(𝑥𝑛𝑋𝑛) · · · exp(𝑥1𝑋1) ↦→ (𝑥1, . . . , 𝑥𝑛).

EXAMPLES:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.chart_exp2()
Chart (G, (y_1, y_2, y_12))

conjugation(g)
Return the conjugation by g as an automorphism of self.

The conjugation by 𝑔 on a Lie group 𝐺 is the map

𝐺→ 𝐺, ℎ ↦→ 𝑔ℎ𝑔−1.

INPUT:

• g – an element of self

26.1. Nilpotent Lie groups 429

Groups, Release 9.8

EXAMPLES:

A generic conjugation in the Heisenberg group:

sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: p,q,z = H.basis()
sage: G = H.lie_group()
sage: g = G.point([var('a'), var('b'), var('c')])
sage: C_g = G.conjugation(g); C_g
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational␣
→˓Field
sage: C_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G → G

(x_0, x_1, x_2) ↦→ (x_0, x_1, -b*x_0 + a*x_1 + x_2)

exp(X)
Return the group element 𝑒𝑥𝑝(𝑋).

INPUT:

• X – an element of the Lie algebra of self

EXAMPLES:

sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.exp(X)
exp(X)
sage: G.exp(Y)
exp(Y)
sage: G.exp(X + Y)
exp(X + Y)

gens()

Return a tuple of elements whose one-parameter subgroups generate the Lie group.

EXAMPLES:

sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group()
sage: G.gens()
(exp(p1), exp(q1), exp(z))

left_invariant_extension(X, name=None)
Return the left-invariant vector field that has the value X at the identity.

INPUT:

• X – an element of the Lie algebra of self

• name – (optional) a string to use as a name for the vector field; if nothing is given, the name of the
vector X is used

EXAMPLES:

A left-invariant extension in the Heisenberg group:

430 Chapter 26. Lie Groups

Groups, Release 9.8

sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: p, q, z = L.basis()
sage: H = L.lie_group('H')
sage: X = H.left_invariant_extension(p); X
Vector field p1 on the Lie group H of Heisenberg algebra of rank 1 over␣
→˓Rational Field
sage: X.display(H.chart_exp1().frame())
p1 = 𝜕/𝜕x_0 - 1/2*x_1 𝜕/𝜕x_2

Default vs. custom naming for the invariant vector field:

sage: Y = H.left_invariant_extension(p + q); Y
Vector field p1 + q1 on the Lie group H of Heisenberg algebra of rank 1 over␣
→˓Rational Field
sage: Z = H.left_invariant_extension(p + q, 'Z'); Z
Vector field Z on the Lie group H of Heisenberg algebra of rank 1 over Rational␣
→˓Field

left_invariant_frame(**kwds)
Return the frame of left-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in
sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame().

EXAMPLES:

The default left-invariant frame:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: livf = G.left_invariant_frame(); livf
Vector frame (G, (X_1,X_2,X_12))
sage: coord_frame = G.chart_exp1().frame()
sage: livf[0].display(coord_frame)
X_1 = 𝜕/𝜕x_1 - 1/2*x_2 𝜕/𝜕x_12
sage: livf[1].display(coord_frame)
X_2 = 𝜕/𝜕x_2 + 1/2*x_1 𝜕/𝜕x_12
sage: livf[2].display(coord_frame)
X_12 = 𝜕/𝜕x_12

Examples of custom labeling for the frame:

sage: G.left_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.left_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.left_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))

left_translation(g)
Return the left translation by g as an automorphism of self.

The left translation by 𝑔 on a Lie group 𝐺 is the map

𝐺→ 𝐺, ℎ ↦→ 𝑔ℎ.

26.1. Nilpotent Lie groups 431

../../../../../../../html/en/reference/manifolds/sage/manifolds/differentiable/manifold.html#sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame

Groups, Release 9.8

INPUT:

• g – an element of self

EXAMPLES:

A left translation in the Heisenberg group:

sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: p,q,z = H.basis()
sage: G = H.lie_group()
sage: g = G.exp(p)
sage: L_g = G.left_translation(g); L_g
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational␣
→˓Field
sage: L_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G → G

(x_0, x_1, x_2) ↦→ (x_0 + 1, x_1, 1/2*x_1 + x_2)

Left translation by a generic element:

sage: h = G.point([var('a'), var('b'), var('c')])
sage: L_h = G.left_translation(h)
sage: L_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G → G

(x_0, x_1, x_2) ↦→ (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)

lie_algebra()

Return the Lie algebra of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.lie_algebra() == L
True

livf(**kwds)
Return the frame of left-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in
sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame().

EXAMPLES:

The default left-invariant frame:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: livf = G.left_invariant_frame(); livf
Vector frame (G, (X_1,X_2,X_12))
sage: coord_frame = G.chart_exp1().frame()
sage: livf[0].display(coord_frame)
X_1 = 𝜕/𝜕x_1 - 1/2*x_2 𝜕/𝜕x_12
sage: livf[1].display(coord_frame)
X_2 = 𝜕/𝜕x_2 + 1/2*x_1 𝜕/𝜕x_12
sage: livf[2].display(coord_frame)
X_12 = 𝜕/𝜕x_12

432 Chapter 26. Lie Groups

../../../../../../../html/en/reference/manifolds/sage/manifolds/differentiable/manifold.html#sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame

Groups, Release 9.8

Examples of custom labeling for the frame:

sage: G.left_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.left_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.left_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))

log(x)
Return the logarithm of the element x of self.

INPUT:

• x – an element of self

The logarithm is by definition the inverse of exp().

If the Lie algebra of self does not admit symbolic coefficients, the logarithm is not defined for abstract,
i.e. symbolic, points.

EXAMPLES:

The logarithm is the inverse of the exponential:

sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.log(G.exp(X)) == X
True
sage: G.log(G.exp(X)*G.exp(Y))
X + Y + 1/2*Z

The logarithm is not defined for abstract (symbolic) points:

sage: g = G.point([var('a'), 1, 2]); g
exp(a*X + Y + 2*Z)
sage: G.log(g)
Traceback (most recent call last):
...
TypeError: unable to convert a to a rational

one()

Return the identity element of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, 2, step=4)
sage: G = L.lie_group()
sage: G.one()
exp(0)

right_invariant_extension(X, name=None)
Return the right-invariant vector field that has the value X at the identity.

INPUT:

• X – an element of the Lie algebra of self

26.1. Nilpotent Lie groups 433

Groups, Release 9.8

• name – (optional) a string to use as a name for the vector field; if nothing is given, the name of the
vector X is used

EXAMPLES:

A right-invariant extension in the Heisenberg group:

sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: p, q, z = L.basis()
sage: H = L.lie_group('H')
sage: X = H.right_invariant_extension(p); X
Vector field p1 on the Lie group H of Heisenberg algebra of rank 1 over␣
→˓Rational Field
sage: X.display(H.chart_exp1().frame())
p1 = 𝜕/𝜕x_0 + 1/2*x_1 𝜕/𝜕x_2

Default vs. custom naming for the invariant vector field:

sage: Y = H.right_invariant_extension(p + q); Y
Vector field p1 + q1 on the Lie group H of Heisenberg algebra of rank 1 over␣
→˓Rational Field
sage: Z = H.right_invariant_extension(p + q, 'Z'); Z
Vector field Z on the Lie group H of Heisenberg algebra of rank 1 over Rational␣
→˓Field

right_invariant_frame(**kwds)
Return the frame of right-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in
sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame().

EXAMPLES:

The default right-invariant frame:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: rivf = G.right_invariant_frame(); rivf
Vector frame (G, (XR_1,XR_2,XR_12))
sage: coord_frame = G.chart_exp1().frame()
sage: rivf[0].display(coord_frame)
XR_1 = 𝜕/𝜕x_1 + 1/2*x_2 𝜕/𝜕x_12
sage: rivf[1].display(coord_frame)
XR_2 = 𝜕/𝜕x_2 - 1/2*x_1 𝜕/𝜕x_12
sage: rivf[2].display(coord_frame)
XR_12 = 𝜕/𝜕x_12

Examples of custom labeling for the frame:

sage: G.right_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.right_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.right_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))

434 Chapter 26. Lie Groups

../../../../../../../html/en/reference/manifolds/sage/manifolds/differentiable/manifold.html#sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame

Groups, Release 9.8

right_translation(g)
Return the right translation by g as an automorphism of self.

The right translation by 𝑔 on a Lie group 𝐺 is the map

𝐺→ 𝐺, ℎ ↦→ ℎ𝑔.

INPUT:

• g – an element of self

EXAMPLES:

A right translation in the Heisenberg group:

sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: p,q,z = H.basis()
sage: G = H.lie_group()
sage: g = G.exp(p)
sage: R_g = G.right_translation(g); R_g
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational␣
→˓Field
sage: R_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G → G

(x_0, x_1, x_2) ↦→ (x_0 + 1, x_1, -1/2*x_1 + x_2)

Right translation by a generic element:

sage: h = G.point([var('a'), var('b'), var('c')])
sage: R_h = G.right_translation(h)
sage: R_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G → G

(x_0, x_1, x_2) ↦→ (a + x_0, b + x_1, 1/2*b*x_0 - 1/2*a*x_1 + c + x_2)

rivf(**kwds)
Return the frame of right-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in
sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame().

EXAMPLES:

The default right-invariant frame:

sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: rivf = G.right_invariant_frame(); rivf
Vector frame (G, (XR_1,XR_2,XR_12))
sage: coord_frame = G.chart_exp1().frame()
sage: rivf[0].display(coord_frame)
XR_1 = 𝜕/𝜕x_1 + 1/2*x_2 𝜕/𝜕x_12
sage: rivf[1].display(coord_frame)
XR_2 = 𝜕/𝜕x_2 - 1/2*x_1 𝜕/𝜕x_12
sage: rivf[2].display(coord_frame)
XR_12 = 𝜕/𝜕x_12

Examples of custom labeling for the frame:

26.1. Nilpotent Lie groups 435

../../../../../../../html/en/reference/manifolds/sage/manifolds/differentiable/manifold.html#sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame

Groups, Release 9.8

sage: G.right_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.right_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.right_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))

step()

Return the nilpotency step of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, 2, step=4)
sage: G = L.lie_group()
sage: G.step()
4

436 Chapter 26. Lie Groups

CHAPTER

TWENTYSEVEN

PARTITION REFINEMENT

27.1 Canonical augmentation

This module implements a general algorithm for generating isomorphism classes of objects. The class of objects in
question must be some kind of structure which can be built up out of smaller objects by a process of augmentation, and
for which an automorphism is a permutation in 𝑆𝑛 for some 𝑛. This process consists of starting with a finite number
of “seed objects” and building up to more complicated objects by a sequence of “augmentations.” It should be noted
that the word “canonical” in the term canonical augmentation is used loosely. Given an object 𝑋 , one must define a
canonical parent 𝑀(𝑋), which is essentially an arbitrary choice.

The class of objects in question must satisfy the assumptions made in the module
automorphism_group_canonical_label, in particular the three custom functions mentioned there must be
implemented:

A. refine_and_return_invariant:

Signature:

int refine_and_return_invariant(PartitionStack *PS, void *S, int
*cells_to_refine_by, int ctrb_len)

B. compare_structures:

Signature:

int compare_structures(int *gamma_1, int *gamma_2, void *S1, void *S2, int
degree)

C. all_children_are_equivalent:

Signature:

bint all_children_are_equivalent(PartitionStack *PS, void *S)

In the following functions there is frequently a mem_err input. This is a pointer to an integer which must be set to a
nonzero value in case of an allocation failure. Other functions have an int return value which serves the same purpose.
The idea is that if a memory error occurs, the canonical generator should still be able to iterate over the objects already
generated before it terminates.

More details about these functions can be found in that module. In addition, several other functions must be imple-
mented, which will make use of the following:

ctypedef struct iterator:
void *data
void *(*next)(void *data, int *degree, int *mem_err)

437

Groups, Release 9.8

The following functions must be implemented for each specific type of object to be generated. Each function following
which takes a mem_err variable as input should make use of this variable.

D. generate_children:

Signature:

int generate_children(void *S, aut_gp_and_can_lab *group, iterator *it)

This function receives a pointer to an iterator it. The iterator has two fields: data and next. The
function generate_children should set these two fields, returning 1 to indicate a memory error, or
0 for no error.

The function that next points to takes data as an argument, and should return a (void *) pointer to
the next object to be iterated. It also takes a pointer to an int, and must update that int to reflect the
degree of each generated object. The objects to be iterated over should satisfy the property that if 𝛾 is
an automorphism of the parent object 𝑆, then for any two child objects 𝐶1, 𝐶2 given by the iterator, it
is not the case that 𝛾(𝐶1) = 𝐶2, where in the latter 𝛾 is appropriately extended if necessary to operate
on𝐶1 and𝐶2. It is essential for this iterator to handle its own data. If the next function is called and
no suitable object is yielded, a NULL pointer indicates a termination of the iteration. At this point,
the data pointed to by the data variable should be cleared by the next function, because the iterator
struct itself will be deallocated.

The next function must check mem_err[0] before proceeding. If it is nonzero then the function
should deallocate the iterator right away and return NULL to end the iteration. This ensures that the
canonical augmentation software will finish iterating over the objects found before finishing, and the
mem_err attribute of the canonical_generator_data will reflect this.

The objects which the iterator generates can be thought of as augmentations, which the following
function must turn into objects.

E. apply_augmentation:

Signature:

void *apply_augmentation(void *parent, void *aug, void *child, int *degree,
bint *mem_err)

This function takes the parent, applies the augmentation aug and returns a pointer to the correspond-
ing child object (freeing aug if necessary). Should also update degree[0] to be the degree of the new
child.

F. free_object:

Signature:

void free_object(void *child)

This function is a simple deallocation function for children which are not canonically generated, and
therefore rejected in the canonical augmentation process. They should deallocate the contents of
child.

G. free_iter_data:

Signature:

void free_iter_data(void *data)

This function deallocates the data part of the iterator which is set up by generate_children.

H. free_aug:

Signature:

void free_aug(void *aug)

438 Chapter 27. Partition Refinement

Groups, Release 9.8

This function frees an augmentation as generated by the iterator returned by generate_children.

I. canonical_parent:

Signature:

void *canonical_parent(void *child, void *parent, int *permutation, int
*degree, bint *mem_err)

Apply the permutation to the child, determine an arbitrary but fixed parent, apply the inverse of
permutation to that parent, and return the resulting object. Must also set the integer degree points
to the degree of the returned object.

Note: It is a good idea to try to implement an augmentation scheme where the degree of objects on each level of the
augmentation tree is constant. The iteration will be more efficient in this case, as the relevant work spaces will never
need to be reallocated. Otherwise, one should at least strive to iterate over augmentations in such a way that all children
of the same degree are given in the same segment of iteration.

EXAMPLES:

sage: import sage.groups.perm_gps.partn_ref.canonical_augmentation

REFERENCE:

• [1] McKay, Brendan D. Isomorph-free exhaustive generation. J Algorithms, Vol. 26 (1998), pp. 306-324.

27.2 Data structures

This module implements basic data structures essential to the rest of the partn_ref module.

REFERENCES:

[1] McKay, Brendan D. Practical Graph Isomorphism. Congressus Numerantium,
Vol. 30 (1981), pp. 45-87.

[2] Fredman, M. and Saks, M. The cell probe complexity of dynamic data
structures. Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp.
345–354. May 1989.

[3] Seress, Akos. Permutation Group Algorithms. Cambridge University Press,

2003.

sage.groups.perm_gps.partn_ref.data_structures.OP_represent(n, merges, perm)

Demonstration and testing.

sage.groups.perm_gps.partn_ref.data_structures.PS_represent(partition, splits)
Demonstration and testing.

sage.groups.perm_gps.partn_ref.data_structures.SC_test_list_perms(L, n, limit, gap,
limit_complain, test_contains)

Test that the permutation group generated by list perms in L of degree n is of the correct order, by comparing
with GAP. Don’t test if the group is of size greater than limit.

27.2. Data structures 439

Groups, Release 9.8

27.3 Graph-theoretic partition backtrack functions

EXAMPLES:

sage: import sage.groups.perm_gps.partn_ref.refinement_graphs

REFERENCE:

• [1] McKay, Brendan D. Practical Graph Isomorphism. Congressus Numerantium, Vol. 30 (1981), pp. 45-87.

class sage.groups.perm_gps.partn_ref.refinement_graphs.GraphStruct

Bases: object

sage.groups.perm_gps.partn_ref.refinement_graphs.all_labeled_graphs(n)
Return all labeled graphs on n vertices {0,1,. . . ,n-1}.

Used in classifying isomorphism types (naive approach), and more importantly in benchmarking the search
algorithm.

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import all_labeled_
→˓graphs
sage: st = sage.groups.perm_gps.partn_ref.refinement_graphs.search_tree
sage: Glist = {}
sage: Giso = {}
sage: for n in [1..5]: # long time (4s on sage.math, 2011)
....: Glist[n] = all_labeled_graphs(n)
....: Giso[n] = []
....: for g in Glist[n]:
....: a, b = st(g, [range(n)])
....: inn = False
....: for gi in Giso[n]:
....: if b == gi:
....: inn = True
....: if not inn:
....: Giso[n].append(b)
sage: for n in Giso: # long time
....: print("{} {}".format(n, len(Giso[n])))
1 1
2 2
3 4
4 11
5 34

sage.groups.perm_gps.partn_ref.refinement_graphs.coarsest_equitable_refinement(G, partition,
directed)

Return the coarsest equitable refinement of partition for G.

This is a helper function for the graph function of the same name.

DOCTEST (More thorough testing in sage/graphs/graph.py):

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import coarsest_
→˓equitable_refinement
sage: from sage.graphs.base.sparse_graph import SparseGraph

(continues on next page)

440 Chapter 27. Partition Refinement

Groups, Release 9.8

(continued from previous page)

sage: coarsest_equitable_refinement(SparseGraph(7), [[0], [1,2,3,4], [5,6]], 0)
[[0], [1, 2, 3, 4], [5, 6]]

sage.groups.perm_gps.partn_ref.refinement_graphs.generate_dense_graphs_edge_addition(n,
loops,
G=None,
depth=None,
con-
struct=False,
indi-
cate_mem_err=True)

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import generate_dense_
→˓graphs_edge_addition

sage: for n in [0..6]:
....: print(generate_dense_graphs_edge_addition(n,1))
1
2
6
20
90
544
5096

sage: for n in [0..7]:
....: print(generate_dense_graphs_edge_addition(n,0))
1
1
2
4
11
34
156
1044
sage: generate_dense_graphs_edge_addition(8,0) # long time - about 14 seconds at 2.
→˓4 GHz
12346

sage.groups.perm_gps.partn_ref.refinement_graphs.generate_dense_graphs_vert_addition(n,
base_G=None,
con-
struct=False,
indi-
cate_mem_err=True)

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import generate_dense_
→˓graphs_vert_addition

27.3. Graph-theoretic partition backtrack functions 441

Groups, Release 9.8

sage: for n in [0..7]:
....: generate_dense_graphs_vert_addition(n)
1
2
4
8
19
53
209
1253
sage: generate_dense_graphs_vert_addition(8) # long time
13599

sage.groups.perm_gps.partn_ref.refinement_graphs.get_orbits(gens, n)
Compute orbits given a list of generators of a permutation group, in list format.

This is a helper function for automorphism groups of graphs.

DOCTEST (More thorough testing in sage/graphs/graph.py):

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import get_orbits
sage: get_orbits([[1,2,3,0,4,5], [0,1,2,3,5,4]], 6)
[[0, 1, 2, 3], [4, 5]]

sage.groups.perm_gps.partn_ref.refinement_graphs.isomorphic(G1, G2, partn, ordering2, dig,
use_indicator_function,
sparse=False)

Test whether two graphs are isomorphic.

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import isomorphic

sage: G = Graph(2)
sage: H = Graph(2)
sage: isomorphic(G, H, [[0,1]], [0,1], 0, 1)
{0: 0, 1: 1}
sage: isomorphic(G, H, [[0,1]], [0,1], 0, 1)
{0: 0, 1: 1}
sage: isomorphic(G, H, [[0],[1]], [0,1], 0, 1)
{0: 0, 1: 1}
sage: isomorphic(G, H, [[0],[1]], [1,0], 0, 1)
{0: 1, 1: 0}

sage: G = Graph(3)
sage: H = Graph(3)
sage: isomorphic(G, H, [[0,1,2]], [0,1,2], 0, 1)
{0: 0, 1: 1, 2: 2}
sage: G.add_edge(0,1)
sage: isomorphic(G, H, [[0,1,2]], [0,1,2], 0, 1)
False
sage: H.add_edge(1,2)
sage: isomorphic(G, H, [[0,1,2]], [0,1,2], 0, 1)
{0: 1, 1: 2, 2: 0}

442 Chapter 27. Partition Refinement

Groups, Release 9.8

sage.groups.perm_gps.partn_ref.refinement_graphs.orbit_partition(gamma, list_perm=False)
Assuming that G is a graph on vertices 0,1,. . . ,n-1, and gamma is an element of SymmetricGroup(n), returns the
partition of the vertex set determined by the orbits of gamma, considered as action on the set 1,2,. . . ,n where we
take 0 = n. In other words, returns the partition determined by a cyclic representation of gamma.

INPUT:

• list_perm - if True, assumes gamma is a list representing the map 𝑖 ↦→ “𝑔𝑎𝑚𝑚𝑎“[𝑖]

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import orbit_partition
sage: G = graphs.PetersenGraph()
sage: S = SymmetricGroup(10)
sage: gamma = S('(10,1,2,3,4)(5,6,7)(8,9)')
sage: orbit_partition(gamma)
[[1, 2, 3, 4, 0], [5, 6, 7], [8, 9]]
sage: gamma = S('(10,5)(1,6)(2,7)(3,8)(4,9)')
sage: orbit_partition(gamma)
[[1, 6], [2, 7], [3, 8], [4, 9], [5, 0]]

sage.groups.perm_gps.partn_ref.refinement_graphs.random_tests(num=10, n_max=60,
perms_per_graph=5)

Tests to make sure that C(gamma(G)) == C(G) for random permutations gamma and random graphs G, and that
isomorphic returns an isomorphism.

INPUT:

• num – run tests for this many graphs

• n_max – test graphs with at most this many vertices

• perms_per_graph – test each graph with this many random permutations

DISCUSSION:

This code generates num random graphs G on at most n_max vertices. The density of edges is chosen randomly
between 0 and 1.

For each graph G generated, we uniformly generate perms_per_graph random permutations and verify that the
canonical labels of G and the image of G under the generated permutation are equal, and that the isomorphic
function returns an isomorphism.

sage.groups.perm_gps.partn_ref.refinement_graphs.search_tree(G_in, partition, lab=True,
dig=False, dict_rep=False,
certificate=False, verbosity=0,
use_indicator_function=True,
sparse=True, base=False,
order=False)

Compute canonical labels and automorphism groups of graphs.

INPUT:

• G_in – a Sage graph

• partition – a list of lists representing a partition of the vertices

• lab – if True, compute and return the canonical label in addition to the automorphism group

• dig – set to True for digraphs and graphs with loops. If True, does not use optimizations based on Lemma
2.25 in [1] that are valid only for simple graphs.

27.3. Graph-theoretic partition backtrack functions 443

Groups, Release 9.8

• dict_rep – if True, return a dictionary with keys the vertices of the input graph G_in and values elements
of the set the permutation group acts on. (The point is that graphs are arbitrarily labelled, often 0..n-1, and
permutation groups always act on 1..n. This dictionary maps vertex labels (such as 0..n-1) to the domain
of the permutations.)

• certificate – if True, return the permutation from G to its canonical label.

• verbosity – currently ignored

• use_indicator_function – option to turn off indicator function (True is generally faster)

• sparse – whether to use sparse or dense representation of the graph (ignored if G is already a CGraph -
see sage.graphs.base)

• base – whether to return the first sequence of split vertices (used in computing the order of the group)

• order – whether to return the order of the automorphism group

OUTPUT:

Depends on the options. If more than one thing is returned, they are in a tuple in the following order:

• list of generators in list-permutation format – always

• dict – if dict_rep

• graph – if lab

• dict – if certificate

• list – if base

• integer – if order

EXAMPLES:

sage: st = sage.groups.perm_gps.partn_ref.refinement_graphs.search_tree
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: from sage.graphs.base.sparse_graph import SparseGraph

Graphs on zero vertices:

sage: G = Graph()
sage: st(G, [[]], order=True)
([], Graph on 0 vertices, 1)

Graphs on one vertex:

sage: G = Graph(1)
sage: st(G, [[0]], order=True)
([], Graph on 1 vertex, 1)

Graphs on two vertices:

sage: G = Graph(2)
sage: st(G, [[0,1]], order=True)
([[1, 0]], Graph on 2 vertices, 2)
sage: st(G, [[0],[1]], order=True)
([], Graph on 2 vertices, 1)
sage: G.add_edge(0,1)
sage: st(G, [[0,1]], order=True)

(continues on next page)

444 Chapter 27. Partition Refinement

Groups, Release 9.8

(continued from previous page)

([[1, 0]], Graph on 2 vertices, 2)
sage: st(G, [[0],[1]], order=True)
([], Graph on 2 vertices, 1)

Graphs on three vertices:

sage: G = Graph(3)
sage: st(G, [[0,1,2]], order=True)
([[0, 2, 1], [1, 0, 2]], Graph on 3 vertices, 6)
sage: st(G, [[0],[1,2]], order=True)
([[0, 2, 1]], Graph on 3 vertices, 2)
sage: st(G, [[0],[1],[2]], order=True)
([], Graph on 3 vertices, 1)
sage: G.add_edge(0,1)
sage: st(G, [range(3)], order=True)
([[1, 0, 2]], Graph on 3 vertices, 2)
sage: st(G, [[0],[1,2]], order=True)
([], Graph on 3 vertices, 1)
sage: st(G, [[0,1],[2]], order=True)
([[1, 0, 2]], Graph on 3 vertices, 2)

The Dodecahedron has automorphism group of size 120:

sage: G = graphs.DodecahedralGraph()
sage: Pi = [range(20)]
sage: st(G, Pi, order=True)[2]
120

The three-cube has automorphism group of size 48:

sage: G = graphs.CubeGraph(3)
sage: G.relabel()
sage: Pi = [G.vertices(sort=False)]
sage: st(G, Pi, order=True)[2]
48

We obtain the same output using different types of Sage graphs:

sage: G = graphs.DodecahedralGraph()
sage: GD = DenseGraph(20)
sage: GS = SparseGraph(20)
sage: for i,j,_ in G.edge_iterator():
....: GD.add_arc(i,j); GD.add_arc(j,i)
....: GS.add_arc(i,j); GS.add_arc(j,i)
sage: Pi = [range(20)]
sage: a,b = st(G, Pi)
sage: asp,bsp = st(GS, Pi)
sage: ade,bde = st(GD, Pi)
sage: bsg = Graph()
sage: bdg = Graph()
sage: for i in range(20):
....: for j in range(20):
....: if bsp.has_arc(i,j):

(continues on next page)

27.3. Graph-theoretic partition backtrack functions 445

Groups, Release 9.8

(continued from previous page)

....: bsg.add_edge(i,j)

....: if bde.has_arc(i,j):

....: bdg.add_edge(i,j)
sage: a, b.graph6_string()
([[0, 19, 3, 2, 6, 5, 4, 17, 18, 11, 10, 9, 13, 12, 16, 15, 14, 7, 8, 1], [0, 1, 8,␣
→˓9, 13, 14, 7, 6, 2, 3, 19, 18, 17, 4, 5, 15, 16, 12, 11, 10], [1, 8, 9, 10, 11,␣
→˓12, 13, 14, 7, 6, 2, 3, 4, 5, 15, 16, 17, 18, 19, 0]], 'S?[PG__OQ@?_?_?P?CO?_?AE?
→˓EC?Ac?@O')
sage: a == asp
True
sage: a == ade
True
sage: b == bsg
True
sage: b == bdg
True

Cubes!:

sage: C = graphs.CubeGraph(1)
sage: gens, order = st(C, [C.vertices(sort=False)], lab=False, order=True); order
2
sage: C = graphs.CubeGraph(2)
sage: gens, order = st(C, [C.vertices(sort=False)], lab=False, order=True); order
8
sage: C = graphs.CubeGraph(3)
sage: gens, order = st(C, [C.vertices(sort=False)], lab=False, order=True); order
48
sage: C = graphs.CubeGraph(4)
sage: gens, order = st(C, [C.vertices(sort=False)], lab=False, order=True); order
384
sage: C = graphs.CubeGraph(5)
sage: gens, order = st(C, [C.vertices(sort=False)], lab=False, order=True); order
3840
sage: C = graphs.CubeGraph(6)
sage: gens, order = st(C, [C.vertices(sort=False)], lab=False, order=True); order
46080

One can also turn off the indicator function (note: this will take longer):

sage: D1 = DiGraph({0:[2],2:[0],1:[1]}, loops=True)
sage: D2 = DiGraph({1:[2],2:[1],0:[0]}, loops=True)
sage: a,b = st(D1, [D1.vertices(sort=False)], dig=True, use_indicator_
→˓function=False)
sage: c,d = st(D2, [D2.vertices(sort=False)], dig=True, use_indicator_
→˓function=False)
sage: b==d
True

This example is due to Chris Godsil:

sage: HS = graphs.HoffmanSingletonGraph()
sage: alqs = [Set(c) for c in (HS.complement()).cliques_maximum()]

(continues on next page)

446 Chapter 27. Partition Refinement

Groups, Release 9.8

(continued from previous page)

sage: Y = Graph([alqs, lambda s,t: len(s.intersection(t))==0])
sage: Y0,Y1 = Y.connected_components_subgraphs()
sage: st(Y0, [Y0.vertices(sort=False)])[1] == st(Y1, [Y1.vertices(sort=False)])[1]
True
sage: st(Y0, [Y0.vertices(sort=False)])[1] == st(HS, [HS.vertices(sort=False)])[1]
True
sage: st(HS, [HS.vertices(sort=False)])[1] == st(Y1, [Y1.vertices(sort=False)])[1]
True

Certain border cases need to be tested as well:

sage: G = Graph('Fll^G')
sage: a,b,c = st(G, [range(G.num_verts())], order=True); b
Graph on 7 vertices
sage: c
48
sage: G = Graph(21)
sage: st(G, [range(G.num_verts())], order=True)[2] == factorial(21)
True

sage: G = Graph('^????????????????????{??N??@w??FaGa?PCO@CP?AGa?_QO?Q@G?CcA??cc????
→˓Bo????{????F_')
sage: perm = {3:15, 15:3}
sage: H = G.relabel(perm, inplace=False)
sage: st(G, [range(G.num_verts())])[1] == st(H, [range(H.num_verts())])[1]
True

sage: st(Graph(':Dkw'), [range(5)], lab=False, dig=True)
[[4, 1, 2, 3, 0], [0, 2, 1, 3, 4]]

27.4 Partition backtrack functions for lists – a simple example of us-
ing partn_ref

EXAMPLES:

sage: import sage.groups.perm_gps.partn_ref.refinement_lists

sage.groups.perm_gps.partn_ref.refinement_lists.is_isomorphic(self, other)
Return the bijection as a permutation if two lists are isomorphic, return False otherwise.

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_lists import is_isomorphic
sage: is_isomorphic([0,0,1],[1,0,0])
[1, 2, 0]

27.4. Partition backtrack functions for lists – a simple example of using partn_ref 447

Groups, Release 9.8

27.5 Partition backtrack functions for matrices

EXAMPLES:

sage: import sage.groups.perm_gps.partn_ref.refinement_matrices

REFERENCE:

• [1] McKay, Brendan D. Practical Graph Isomorphism. Congressus Numerantium, Vol. 30 (1981), pp. 45-87.

• [2] Leon, Jeffrey. Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms. J. Symbolic
Computation, Vol. 12 (1991), pp. 533-583.

class sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct

Bases: object

automorphism_group()

Returns a list of generators of the automorphism group, along with its order and a base for which the list of
generators is a strong generating set.

For more examples, see self.run().

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import␣
→˓MatrixStruct

sage: M = MatrixStruct(matrix(GF(3),[[0,1,2],[0,2,1]]))
sage: M.automorphism_group()
([[0, 2, 1]], 2, [1])

canonical_relabeling()

Returns a canonical relabeling (in list permutation format).

For more examples, see self.run().

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import␣
→˓MatrixStruct

sage: M = MatrixStruct(matrix(GF(3),[[0,1,2],[0,2,1]]))
sage: M.canonical_relabeling()
[0, 1, 2]

display()

Display the matrix, and associated data.

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import␣
→˓MatrixStruct
sage: M = MatrixStruct(Matrix(GF(5), [[0,1,1,4,4],[0,4,4,1,1]]))
sage: M.display()
[0 1 1 4 4]
[0 4 4 1 1]

(continues on next page)

448 Chapter 27. Partition Refinement

Groups, Release 9.8

(continued from previous page)

01100
00011
1

00011
01100
4

is_isomorphic(other)
Calculate whether self is isomorphic to other.

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import␣
→˓MatrixStruct
sage: M = MatrixStruct(Matrix(GF(11), [[1,2,3,0,0,0],[0,0,0,1,2,3]]))
sage: N = MatrixStruct(Matrix(GF(11), [[0,1,0,2,0,3],[1,0,2,0,3,0]]))
sage: M.is_isomorphic(N)
[0, 2, 4, 1, 3, 5]

run(partition=None)
Perform the canonical labeling and automorphism group computation, storing results to self.

INPUT:

partition – an optional list of lists partition of the columns.

Default is the unit partition.

EXAMPLES:

sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import␣
→˓MatrixStruct

sage: M = MatrixStruct(matrix(GF(3),[[0,1,2],[0,2,1]]))
sage: M.run()
sage: M.automorphism_group()
([[0, 2, 1]], 2, [1])
sage: M.canonical_relabeling()
[0, 1, 2]

sage: M = MatrixStruct(matrix(GF(3),[[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,
→˓1,0]]))
sage: M.automorphism_group()[1] == 6
True

sage: M = MatrixStruct(matrix(GF(3),[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2]]))
sage: M.automorphism_group()[1] == factorial(14)
True

sage.groups.perm_gps.partn_ref.refinement_matrices.random_tests(n=10, nrows_max=50,
ncols_max=50,
nsymbols_max=10,
perms_per_matrix=5,
density_range=(0.1, 0.9))

27.5. Partition backtrack functions for matrices 449

Groups, Release 9.8

Tests to make sure that C(gamma(M)) == C(M) for random permutations gamma and random matrices M, and
that M.is_isomorphic(gamma(M)) returns an isomorphism.

INPUT:

• n – run tests on this many matrices

• nrows_max – test matrices with at most this many rows

• ncols_max – test matrices with at most this many columns

• perms_per_matrix – test each matrix with this many random permutations

• nsymbols_max – maximum number of distinct symbols in the matrix

This code generates n random matrices M on at most ncols_max columns and at most nrows_max rows. The
density of entries in the basis is chosen randomly between 0 and 1.

For each matrix M generated, we uniformly generate perms_per_matrix random permutations and verify that the
canonical labels of M and the image of M under the generated permutation are equal, and that the isomorphism
is discovered by the double coset function.

450 Chapter 27. Partition Refinement

CHAPTER

TWENTYEIGHT

INTERNALS

28.1 Base for Classical Matrix Groups

This module implements the base class for matrix groups that have various famous names, like the general linear group.

EXAMPLES:

sage: SL(2, ZZ)
Special Linear Group of degree 2 over Integer Ring
sage: G = SL(2,GF(3)); G
Special Linear Group of degree 2 over Finite Field of size 3
sage: G.is_finite()
True
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
)
sage: G = SL(6,GF(5))
sage: G.gens()
(
[2 0 0 0 0 0] [4 0 0 0 0 1]
[0 3 0 0 0 0] [4 0 0 0 0 0]
[0 0 1 0 0 0] [0 4 0 0 0 0]
[0 0 0 1 0 0] [0 0 4 0 0 0]
[0 0 0 0 1 0] [0 0 0 4 0 0]
[0 0 0 0 0 1], [0 0 0 0 4 0]
)

class sage.groups.matrix_gps.named_group.NamedMatrixGroup_gap(degree, base_ring, special,
sage_name, latex_string,
gap_command_string,
category=None)

Bases: NamedMatrixGroup_generic, MatrixGroup_gap

Base class for “named” matrix groups using LibGAP

INPUT:

• degree – integer. The degree (number of rows/columns of matrices).

• base_ring – ring. The base ring of the matrices.

• special – boolean. Whether the matrix group is special, that is, elements have determinant one.

451

Groups, Release 9.8

• latex_string – string. The latex representation.

• gap_command_string – string. The GAP command to construct the matrix group.

EXAMPLES:

sage: G = GL(2, GF(3))
sage: from sage.groups.matrix_gps.named_group import NamedMatrixGroup_gap
sage: isinstance(G, NamedMatrixGroup_gap)
True

class sage.groups.matrix_gps.named_group.NamedMatrixGroup_generic(degree, base_ring, special,
sage_name, latex_string,
category=None,
invariant_form=None)

Bases: CachedRepresentation, MatrixGroup_generic

Base class for “named” matrix groups

INPUT:

• degree – integer; the degree (number of rows/columns of matrices)

• base_ring – ring; the base ring of the matrices

• special – boolean; whether the matrix group is special, that is, elements have determinant one

• sage_name – string; the name of the group

• latex_string – string; the latex representation

• category – (optional) a subcategory of sage.categories.groups.Groups passed to the constructor
of sage.groups.matrix_gps.matrix_group.MatrixGroup_generic

• invariant_form – (optional) square-matrix of the given degree over the given base_ring describing a
bilinear form to be kept invariant by the group

EXAMPLES:

sage: G = GL(2, QQ)
sage: from sage.groups.matrix_gps.named_group import NamedMatrixGroup_generic
sage: isinstance(G, NamedMatrixGroup_generic)
True

See also:

See the examples for GU(), SU(), Sp(), etc. as well.

sage.groups.matrix_gps.named_group.normalize_args_invariant_form(R, d, invariant_form)

Normalize the input of a user defined invariant bilinear form for orthogonal, unitary and symplectic groups.

Further informations and examples can be found in the defining functions (GU(), SU(), Sp(), etc.) for unitary,
symplectic groups, etc.

INPUT:

• R – instance of the integral domain which should become the base_ring of the classical group

• d – integer giving the dimension of the module the classical group is operating on

• invariant_form – (optional) instances being accepted by the matrix-constructor that define a 𝑑×𝑑 square
matrix over R describing the bilinear form to be kept invariant by the classical group

452 Chapter 28. Internals

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.CachedRepresentation
../../../../../../../html/en/reference/categories/sage/categories/groups.html#sage.categories.groups.Groups

Groups, Release 9.8

OUTPUT:

None if invariant_form was not specified (or None). A matrix if the normalization was possible; otherwise
an error is raised.

AUTHORS:

• Sebastian Oehms (2018-8) (see trac ticket #26028)

sage.groups.matrix_gps.named_group.normalize_args_vectorspace(*args, **kwds)
Normalize the arguments that relate to a vector space.

INPUT:

Something that defines an affine space. For example

• An affine space itself:

– A – affine space

• A vector space:

– V – a vector space

• Degree and base ring:

– degree – integer. The degree of the affine group, that is, the dimension of the affine space the group
is acting on.

– ring – a ring or an integer. The base ring of the affine space. If an integer is given, it must be a prime
power and the corresponding finite field is constructed.

– var='a' – optional keyword argument to specify the finite field generator name in the case where
ring is a prime power.

OUTPUT:

A pair (degree, ring).

28.1. Base for Classical Matrix Groups 453

https://trac.sagemath.org/26028

Groups, Release 9.8

454 Chapter 28. Internals

CHAPTER

TWENTYNINE

INDICES AND TABLES

• Index

• Module Index

• Search Page

455

../genindex.html
../py-modindex.html
../search.html

Groups, Release 9.8

456 Chapter 29. Indices and Tables

BIBLIOGRAPHY

[Cohen1] H. Cohen, Advanced topics in computational number theory, Springer, 2000.

[Cohen2] H. Cohen, A course in computational algebraic number theory, Springer, 1996.

[Rotman] J. Rotman, An introduction to the theory of groups, 4th ed, Springer, 1995.

457

Groups, Release 9.8

458 Bibliography

PYTHON MODULE INDEX

g
sage.groups.abelian_gps.abelian_aut, 200
sage.groups.abelian_gps.abelian_group, 175
sage.groups.abelian_gps.abelian_group_element,

215
sage.groups.abelian_gps.abelian_group_gap,

191
sage.groups.abelian_gps.abelian_group_morphism,

219
sage.groups.abelian_gps.dual_abelian_group,

209
sage.groups.abelian_gps.dual_abelian_group_element,

217
sage.groups.abelian_gps.element_base, 213
sage.groups.abelian_gps.values, 204
sage.groups.additive_abelian.additive_abelian_group,

220
sage.groups.additive_abelian.additive_abelian_wrapper,

225
sage.groups.affine_gps.affine_group, 414
sage.groups.affine_gps.euclidean_group, 419
sage.groups.affine_gps.group_element, 421
sage.groups.braid, 87
sage.groups.class_function, 159
sage.groups.conjugacy_classes, 171
sage.groups.cubic_braid, 113
sage.groups.finitely_presented, 61
sage.groups.finitely_presented_named, 81
sage.groups.free_group, 53
sage.groups.generic, 37
sage.groups.group, 3
sage.groups.group_exp, 139
sage.groups.group_semidirect_product, 143
sage.groups.groups_catalog, 1
sage.groups.indexed_free_group, 129
sage.groups.libgap_group, 21
sage.groups.libgap_mixin, 23
sage.groups.libgap_morphism, 7
sage.groups.libgap_wrapper, 13
sage.groups.lie_gps.nilpotent_lie_group, 425
sage.groups.matrix_gps.binary_dihedral, 381
sage.groups.matrix_gps.catalog, 355

sage.groups.matrix_gps.coxeter_group, 382
sage.groups.matrix_gps.finitely_generated,

367
sage.groups.matrix_gps.group_element, 360
sage.groups.matrix_gps.heisenberg, 412
sage.groups.matrix_gps.homset, 380
sage.groups.matrix_gps.isometries, 401
sage.groups.matrix_gps.linear, 390
sage.groups.matrix_gps.matrix_group, 355
sage.groups.matrix_gps.morphism, 380
sage.groups.matrix_gps.named_group, 451
sage.groups.matrix_gps.orthogonal, 393
sage.groups.matrix_gps.symplectic, 404
sage.groups.matrix_gps.unitary, 407
sage.groups.misc_gps.argument_groups, 229
sage.groups.misc_gps.imaginary_groups, 235
sage.groups.misc_gps.misc_groups, 149
sage.groups.pari_group, 35
sage.groups.perm_gps.constructor, 237
sage.groups.perm_gps.cubegroup, 337
sage.groups.perm_gps.partn_ref.canonical_augmentation,

437
sage.groups.perm_gps.partn_ref.data_structures,

439
sage.groups.perm_gps.partn_ref.refinement_graphs,

440
sage.groups.perm_gps.partn_ref.refinement_lists,

447
sage.groups.perm_gps.partn_ref.refinement_matrices,

448
sage.groups.perm_gps.permgroup, 240
sage.groups.perm_gps.permgroup_element, 325
sage.groups.perm_gps.permgroup_morphism, 334
sage.groups.perm_gps.permgroup_named, 294
sage.groups.perm_gps.permutation_groups_catalog,

237
sage.groups.perm_gps.symgp_conjugacy_class,

351
sage.groups.raag, 133
sage.groups.semimonomial_transformations.semimonomial_transformation,

155
sage.groups.semimonomial_transformations.semimonomial_transformation_group,

459

Groups, Release 9.8

151

460 Python Module Index

INDEX

A
A() (sage.groups.affine_gps.group_element.AffineGroupElement

method), 423
abelian_invariants()

(sage.groups.finitely_presented.FinitelyPresentedGroup
method), 63

abelian_invariants()
(sage.groups.free_group.FreeGroup_class
method), 57

AbelianGroup (class in sage.groups.group), 3
AbelianGroup() (in module

sage.groups.abelian_gps.abelian_group),
177

AbelianGroup_class (class in
sage.groups.abelian_gps.abelian_group),
178

AbelianGroup_gap (class in
sage.groups.abelian_gps.abelian_group_gap),
196

AbelianGroup_subgroup (class in
sage.groups.abelian_gps.abelian_group),
188

AbelianGroupAutomorphism (class in
sage.groups.abelian_gps.abelian_aut), 201

AbelianGroupAutomorphismGroup (class in
sage.groups.abelian_gps.abelian_aut), 202

AbelianGroupAutomorphismGroup_gap (class in
sage.groups.abelian_gps.abelian_aut), 202

AbelianGroupAutomorphismGroup_subgroup (class
in sage.groups.abelian_gps.abelian_aut), 203

AbelianGroupElement (class in
sage.groups.abelian_gps.abelian_group_element),
215

AbelianGroupElement_gap (class in
sage.groups.abelian_gps.abelian_group_gap),
191

AbelianGroupElement_polycyclic (class in
sage.groups.abelian_gps.abelian_group_gap),
192

AbelianGroupElementBase (class in
sage.groups.abelian_gps.element_base),
213

AbelianGroupGap (class in
sage.groups.abelian_gps.abelian_group_gap),
193

AbelianGroupMap (class in
sage.groups.abelian_gps.abelian_group_morphism),
219

AbelianGroupMorphism (class in
sage.groups.abelian_gps.abelian_group_morphism),
219

AbelianGroupQuotient_gap (class in
sage.groups.abelian_gps.abelian_group_gap),
193

AbelianGroupSubgroup_gap (class in
sage.groups.abelian_gps.abelian_group_gap),
195

AbelianGroupWithValues() (in module
sage.groups.abelian_gps.values), 205

AbelianGroupWithValues_class (class in
sage.groups.abelian_gps.values), 207

AbelianGroupWithValuesElement (class in
sage.groups.abelian_gps.values), 206

AbelianGroupWithValuesEmbedding (class in
sage.groups.abelian_gps.values), 206

absolute_length() (sage.groups.perm_gps.permgroup_element.SymmetricGroupElement
method), 333

AbstractArgument (class in
sage.groups.misc_gps.argument_groups),
229

AbstractArgumentGroup (class in
sage.groups.misc_gps.argument_groups),
229

act_to_right() (sage.groups.group_semidirect_product.GroupSemidirectProduct
method), 144

action_on_root_indices()
(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element
method), 384

adams_operation() (sage.groups.class_function.ClassFunction_gap
method), 160

adams_operation() (sage.groups.class_function.ClassFunction_libgap
method), 164

AdditiveAbelianGroup() (in module
sage.groups.additive_abelian.additive_abelian_group),

461

Groups, Release 9.8

220
AdditiveAbelianGroup_class (class in

sage.groups.additive_abelian.additive_abelian_group),
222

AdditiveAbelianGroup_fixed_gens (class in
sage.groups.additive_abelian.additive_abelian_group),
224

AdditiveAbelianGroupElement (class in
sage.groups.additive_abelian.additive_abelian_group),
222

AdditiveAbelianGroupWrapper (class in
sage.groups.additive_abelian.additive_abelian_wrapper),
225

AdditiveAbelianGroupWrapperElement (class in
sage.groups.additive_abelian.additive_abelian_wrapper),
228

adjoint() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 428

AffineGroup (class in
sage.groups.affine_gps.affine_group), 414

AffineGroupElement (class in
sage.groups.affine_gps.group_element), 422

alexander_matrix() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 64

alexander_polynomial() (sage.groups.braid.Braid
method), 90

algebra() (sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 318

algebra_generators()
(sage.groups.raag.CohomologyRAAG method),
133

AlgebraicGroup (class in sage.groups.group), 3
all_labeled_graphs() (in module

sage.groups.perm_gps.partn_ref.refinement_graphs),
440

all_subgroups() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 196

AlternatingGroup (class in
sage.groups.perm_gps.permgroup_named),
295

AlternatingPresentation() (in module
sage.groups.finitely_presented_named), 81

ambient() (sage.groups.libgap_wrapper.ParentLibGAP
method), 17

ambient() (sage.groups.matrix_gps.matrix_group.MatrixGroup_base
method), 356

ambient_group() (sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup
method), 188

ambient_group() (sage.groups.perm_gps.permgroup.PermutationGroup_subgroup
method), 292

an_element() (sage.groups.braid.BraidGroup_class
method), 108

an_element() (sage.groups.conjugacy_classes.ConjugacyClass
method), 172

an_element() (sage.groups.group_exp.GroupExp_Class
method), 141

annular_khovanov_complex()
(sage.groups.braid.Braid method), 91

annular_khovanov_homology()
(sage.groups.braid.Braid method), 91

ArgumentByElement (class in
sage.groups.misc_gps.argument_groups),
230

ArgumentByElementGroup (class in
sage.groups.misc_gps.argument_groups),
230

ArgumentGroup (in module
sage.groups.misc_gps.argument_groups),
230

ArgumentGroupFactory (class in
sage.groups.misc_gps.argument_groups),
230

as_AbelianGroup() (sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup
method), 299

as_classical_group()
(sage.groups.cubic_braid.CubicBraidGroup
method), 118

as_finitely_presented_group()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 247

as_matrix_group() (sage.groups.cubic_braid.CubicBraidGroup
method), 119

as_matrix_group() (sage.groups.matrix_gps.matrix_group.MatrixGroup_base
method), 356

as_permutation() (sage.groups.abelian_gps.abelian_group_element.AbelianGroupElement
method), 216

as_permutation_group()
(sage.groups.braid.BraidGroup_class method),
108

as_permutation_group()
(sage.groups.cubic_braid.CubicBraidGroup
method), 120

as_permutation_group()
(sage.groups.finitely_presented.FinitelyPresentedGroup
method), 64

as_permutation_group()
(sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
method), 368

as_reflection_group()
(sage.groups.cubic_braid.CubicBraidGroup
method), 121

AssionGroupS() (in module sage.groups.cubic_braid),
113

AssionGroupU() (in module sage.groups.cubic_braid),
114

AssionS (sage.groups.cubic_braid.CubicBraidGroup.type
attribute), 127

AssionU (sage.groups.cubic_braid.CubicBraidGroup.type

462 Index

Groups, Release 9.8

attribute), 127
aut() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap

method), 197
automorphism_group()

(sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 197

automorphism_group()
(sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct
method), 448

B
b() (sage.groups.affine_gps.group_element.AffineGroupElement

method), 423
B() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 339
base() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 248
base_ring() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class

method), 210
base_ring() (sage.groups.perm_gps.permgroup_named.PermutationGroup_plg

method), 310
base_ring() (sage.groups.perm_gps.permgroup_named.SuzukiGroup

method), 317
base_ring() (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup

method), 153
bilinear_form() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup

method), 386
BinaryDihedralGroup (class in

sage.groups.matrix_gps.binary_dihedral),
381

BinaryDihedralPresentation() (in module
sage.groups.finitely_presented_named), 82

blocks_all() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 248

Braid (class in sage.groups.braid), 88
braid() (sage.groups.cubic_braid.CubicBraidElement

method), 115
braid_group() (sage.groups.cubic_braid.CubicBraidGroup

method), 122
BraidGroup() (in module sage.groups.braid), 105
BraidGroup_class (class in sage.groups.braid), 105
bsgs() (in module sage.groups.generic), 38
burau_matrix() (sage.groups.braid.Braid method), 92
burau_matrix() (sage.groups.cubic_braid.CubicBraidElement

method), 115

C
canonical_matrix() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element

method), 384
canonical_relabeling()

(sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct
method), 448

canonical_representation()
(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup

method), 386
cardinality() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 179
cardinality() (sage.groups.affine_gps.affine_group.AffineGroup

method), 416
cardinality() (sage.groups.braid.BraidGroup_class

method), 108
cardinality() (sage.groups.conjugacy_classes.ConjugacyClassGAP

method), 174
cardinality() (sage.groups.cubic_braid.CubicBraidGroup

method), 122
cardinality() (sage.groups.finitely_presented.FinitelyPresentedGroup

method), 65
cardinality() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 23
cardinality() (sage.groups.matrix_gps.binary_dihedral.BinaryDihedralGroup

method), 381
cardinality() (sage.groups.matrix_gps.heisenberg.HeisenbergGroup

method), 413
cardinality() (sage.groups.pari_group.PariGroup

method), 35
cardinality() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 249
cardinality() (sage.groups.perm_gps.permgroup_named.PrimitiveGroupsOfDegree

method), 313
cardinality() (sage.groups.perm_gps.permgroup_named.TransitiveGroupsOfDegree

method), 325
cartan_type() (sage.groups.perm_gps.permgroup_named.SymmetricGroup

method), 319
center() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 24
center() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 249
central_character()

(sage.groups.class_function.ClassFunction_gap
method), 160

central_character()
(sage.groups.class_function.ClassFunction_libgap
method), 165

centralizer() (sage.groups.braid.Braid method), 93
centralizer() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 250
centralizing_element()

(sage.groups.cubic_braid.CubicBraidGroup
method), 123

character() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 24

character() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 250

character_table() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 25

character_table() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 250

chart_exp1() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup

Index 463

Groups, Release 9.8

method), 429
chart_exp2() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup

method), 429
class_function() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 25
ClassFunction() (in module

sage.groups.class_function), 159
ClassFunction_gap (class in

sage.groups.class_function), 159
ClassFunction_libgap (class in

sage.groups.class_function), 164
classical_invariant_form()

(sage.groups.cubic_braid.CubicBraidGroup
method), 123

coarsest_equitable_refinement() (in module
sage.groups.perm_gps.partn_ref.refinement_graphs),
440

codegrees() (sage.groups.cubic_braid.CubicBraidGroup
method), 124

codegrees() (sage.groups.perm_gps.permgroup_named.ComplexReflectionGroup
method), 297

cohomology() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 251

cohomology() (sage.groups.raag.RightAngledArtinGroup
method), 136

cohomology_part() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 252

CohomologyRAAG (class in sage.groups.raag), 133
CohomologyRAAG.Element (class in sage.groups.raag),

133
color_of_square() (in module

sage.groups.perm_gps.cubegroup), 348
colored_jones_polynomial()

(sage.groups.braid.Braid method), 93
commutator() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 252
ComplexReflectionGroup (class in

sage.groups.perm_gps.permgroup_named),
296

components_in_closure() (sage.groups.braid.Braid
method), 94

composition_series()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 254

conjugacy_class() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 26

conjugacy_class() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 254

conjugacy_class() (sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 319

conjugacy_class_iterator() (in module
sage.groups.perm_gps.symgp_conjugacy_class),
352

conjugacy_classes()

(sage.groups.libgap_mixin.GroupMixinLibGAP
method), 26

conjugacy_classes()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 254

conjugacy_classes()
(sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 319

conjugacy_classes_iterator()
(sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 320

conjugacy_classes_representatives()
(sage.groups.libgap_mixin.GroupMixinLibGAP
method), 26

conjugacy_classes_representatives()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 255

conjugacy_classes_representatives()
(sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 320

conjugacy_classes_subgroups()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 255

ConjugacyClass (class in
sage.groups.conjugacy_classes), 171

ConjugacyClassGAP (class in
sage.groups.conjugacy_classes), 173

conjugate() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 256

conjugating_braid() (sage.groups.braid.Braid
method), 94

conjugation() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 429

construction() (sage.groups.group_semidirect_product.GroupSemidirectProduct
method), 145

construction() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 257

cosets() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 258

cover() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupQuotient_gap
method), 194

cover_and_relations_from_invariants() (in mod-
ule sage.groups.additive_abelian.additive_abelian_group),
224

covering_matrix_ring()
(sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap
method), 203

Coxeter (sage.groups.cubic_braid.CubicBraidGroup.type
attribute), 127

coxeter_matrix() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 386

coxeter_matrix() (sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 320

CoxeterMatrixGroup (class in

464 Index

Groups, Release 9.8

sage.groups.matrix_gps.coxeter_group),
382

CoxeterMatrixGroup.Element (class in
sage.groups.matrix_gps.coxeter_group),
384

create_key_and_extra_args()
(sage.groups.misc_gps.argument_groups.ArgumentGroupFactory
method), 232

create_object() (sage.groups.misc_gps.argument_groups.ArgumentGroupFactory
method), 232

create_poly() (in module
sage.groups.perm_gps.cubegroup), 348

CubeGroup (class in sage.groups.perm_gps.cubegroup),
338

cubic_braid_subgroup()
(sage.groups.cubic_braid.CubicBraidGroup
method), 124

CubicBraidElement (class in
sage.groups.cubic_braid), 114

CubicBraidGroup (class in sage.groups.cubic_braid),
116

CubicBraidGroup.type (class in
sage.groups.cubic_braid), 126

cubie() (sage.groups.perm_gps.cubegroup.RubiksCube
method), 345

cubie_centers() (in module
sage.groups.perm_gps.cubegroup), 348

cubie_colors() (in module
sage.groups.perm_gps.cubegroup), 348

cubie_faces() (in module
sage.groups.perm_gps.cubegroup), 348

cycle_string() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 327

cycle_tuples() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 327

cycle_type() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 328

cycles() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 328

CyclicPermutationGroup (class in
sage.groups.perm_gps.permgroup_named),
299

CyclicPresentation() (in module
sage.groups.finitely_presented_named), 82

D
D() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 339
decompose() (sage.groups.class_function.ClassFunction_gap

method), 160
decompose() (sage.groups.class_function.ClassFunction_libgap

method), 165
default_representative() (in module

sage.groups.perm_gps.symgp_conjugacy_class),

352
deformed_burau_matrix() (sage.groups.braid.Braid

method), 95
degree() (sage.groups.affine_gps.affine_group.AffineGroup

method), 416
degree() (sage.groups.class_function.ClassFunction_gap

method), 160
degree() (sage.groups.class_function.ClassFunction_libgap

method), 165
degree() (sage.groups.matrix_gps.matrix_group.MatrixGroup_generic

method), 359
degree() (sage.groups.pari_group.PariGroup method),

35
degree() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 260
degree() (sage.groups.perm_gps.permgroup_named.TransitiveGroup

method), 323
degree() (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup

method), 153
degree_on_basis() (sage.groups.raag.CohomologyRAAG

method), 133
degrees() (sage.groups.cubic_braid.CubicBraidGroup

method), 125
degrees() (sage.groups.perm_gps.permgroup_named.ComplexReflectionGroup

method), 298
derived_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 260
descents() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element

method), 385
determinant_character()

(sage.groups.class_function.ClassFunction_gap
method), 161

determinant_character()
(sage.groups.class_function.ClassFunction_libgap
method), 165

dict() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 329

DiCyclicGroup (class in
sage.groups.perm_gps.permgroup_named),
300

DiCyclicPresentation() (in module
sage.groups.finitely_presented_named), 82

DihedralGroup (class in
sage.groups.perm_gps.permgroup_named),
302

DihedralPresentation() (in module
sage.groups.finitely_presented_named), 83

dimension_of_TL_space()
(sage.groups.braid.BraidGroup_class method),
108

direct_product() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 66

direct_product() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 260

Index 465

Groups, Release 9.8

direct_product_permgroups() (in module
sage.groups.perm_gps.permgroup), 293

discrete_exp() (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper
method), 226

discrete_log() (in module sage.groups.generic), 40
discrete_log() (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper

method), 226
discrete_log_generic() (in module

sage.groups.generic), 43
discrete_log_lambda() (in module

sage.groups.generic), 43
discrete_log_rho() (in module sage.groups.generic),

44
display() (sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct

method), 448
display2d() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 340
domain() (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap

method), 203
domain() (sage.groups.class_function.ClassFunction_gap

method), 161
domain() (sage.groups.class_function.ClassFunction_libgap

method), 166
domain() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 261
domain() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement

method), 329
dual_group() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 179
DualAbelianGroup_class (class in

sage.groups.abelian_gps.dual_abelian_group),
209

DualAbelianGroupElement (class in
sage.groups.abelian_gps.dual_abelian_group_element),
218

E
Element (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup

attribute), 202
Element (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap

attribute), 203
Element (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_subgroup

attribute), 204
Element (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

attribute), 179
Element (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap

attribute), 196
Element (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class

attribute), 210
Element (sage.groups.abelian_gps.values.AbelianGroupWithValues_class

attribute), 207
Element (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class

attribute), 222

Element (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper
attribute), 226

Element (sage.groups.affine_gps.affine_group.AffineGroup
attribute), 416

Element (sage.groups.braid.BraidGroup_class at-
tribute), 106

Element (sage.groups.cubic_braid.CubicBraidGroup at-
tribute), 118

Element (sage.groups.finitely_presented.FinitelyPresentedGroup
attribute), 63

Element (sage.groups.free_group.FreeGroup_class at-
tribute), 57

Element (sage.groups.group_exp.GroupExp_Class at-
tribute), 141

Element (sage.groups.group_semidirect_product.GroupSemidirectProduct
attribute), 144

Element (sage.groups.libgap_group.GroupLibGAP at-
tribute), 21

Element (sage.groups.libgap_morphism.GroupHomset_libgap
attribute), 7

Element (sage.groups.matrix_gps.matrix_group.MatrixGroup_gap
attribute), 358

Element (sage.groups.matrix_gps.matrix_group.MatrixGroup_generic
attribute), 359

Element (sage.groups.misc_gps.argument_groups.AbstractArgumentGroup
attribute), 230

Element (sage.groups.misc_gps.argument_groups.ArgumentByElementGroup
attribute), 230

Element (sage.groups.misc_gps.argument_groups.RootsOfUnityGroup
attribute), 233

Element (sage.groups.misc_gps.argument_groups.SignGroup
attribute), 234

Element (sage.groups.misc_gps.argument_groups.UnitCircleGroup
attribute), 234

Element (sage.groups.misc_gps.imaginary_groups.ImaginaryGroup
attribute), 236

Element (sage.groups.perm_gps.permgroup.PermutationGroup_generic
attribute), 247

Element (sage.groups.perm_gps.permgroup_named.SymmetricGroup
attribute), 318

Element (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup
attribute), 152

element() (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapperElement
method), 229

elementary_divisors()
(sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 180

elementary_divisors()
(sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 197

ElementLibGAP (class in sage.groups.libgap_wrapper),
13

epimorphisms() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 67

466 Index

Groups, Release 9.8

eps() (sage.groups.braid.RightQuantumWord method),
111

equals() (sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup
method), 188

EuclideanGroup (class in
sage.groups.affine_gps.euclidean_group),
419

exp() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 430

exponent (sage.groups.misc_gps.argument_groups.UnitCirclePoint
property), 234

exponent() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 180

exponent() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 197

exponent() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class
method), 222

exponent() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 261

exponent_denominator()
(sage.groups.misc_gps.argument_groups.RootOfUnity
method), 232

exponent_numerator()
(sage.groups.misc_gps.argument_groups.RootOfUnity
method), 232

exponents() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap
method), 191

exponents() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_polycyclic
method), 192

exponents() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase
method), 213

exterior_power() (sage.groups.class_function.ClassFunction_gap
method), 161

exterior_power() (sage.groups.class_function.ClassFunction_libgap
method), 166

F
F() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 339
faces() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 340
facets() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 341
facets() (sage.groups.perm_gps.cubegroup.RubiksCube

method), 346
field_of_definition()

(sage.groups.perm_gps.permgroup_named.PermutationGroup_pug
method), 310

finite_field_sqrt() (in module
sage.groups.matrix_gps.unitary), 412

FiniteGroup (class in sage.groups.group), 3
finitely_presented_group()

(sage.groups.finitely_presented.RewritingSystem
method), 75

FinitelyGeneratedAbelianPresentation() (in
module sage.groups.finitely_presented_named),
83

FinitelyGeneratedHeisenbergPresentation() (in
module sage.groups.finitely_presented_named),
84

FinitelyGeneratedMatrixGroup_gap (class in
sage.groups.matrix_gps.finitely_generated),
367

FinitelyGeneratedMatrixGroup_generic (class in
sage.groups.matrix_gps.finitely_generated),
376

FinitelyPresentedGroup (class in
sage.groups.finitely_presented), 63

FinitelyPresentedGroupElement (class in
sage.groups.finitely_presented), 73

first_descent() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element
method), 385

fitting_subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 262

fixed_points() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 262

fox_derivative() (sage.groups.free_group.FreeGroupElement
method), 55

frattini_subgroup()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 262

free_group() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 68

free_group() (sage.groups.finitely_presented.RewritingSystem
method), 76

FreeGroup() (in module sage.groups.free_group), 54
FreeGroup_class (class in sage.groups.free_group), 57
FreeGroupElement (class in sage.groups.free_group),

54
from_gap_list() (in module

sage.groups.perm_gps.permgroup), 293
fundamental_weight()

(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 386

fundamental_weights()
(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 387

G
gap() (sage.groups.class_function.ClassFunction_libgap

method), 166
gap() (sage.groups.finitely_presented.RewritingSystem

method), 76
gap() (sage.groups.libgap_morphism.GroupMorphism_libgap

method), 9
gap() (sage.groups.libgap_wrapper.ElementLibGAP

method), 14

Index 467

Groups, Release 9.8

gap() (sage.groups.libgap_wrapper.ParentLibGAP
method), 17

gap() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 262

gap() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 329

gcd() (sage.groups.braid.Braid method), 96
gen() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 181
gen() (sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup

method), 189
gen() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class

method), 210
gen() (sage.groups.abelian_gps.values.AbelianGroupWithValues_class

method), 207
gen() (sage.groups.indexed_free_group.IndexedFreeAbelianGroup

method), 129
gen() (sage.groups.indexed_free_group.IndexedFreeGroup

method), 130
gen() (sage.groups.libgap_wrapper.ParentLibGAP

method), 18
gen() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic

method), 376
gen() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 263
gen() (sage.groups.raag.CohomologyRAAG method),

134
gen() (sage.groups.raag.RightAngledArtinGroup

method), 136
gen_names() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 341
GeneralDihedralGroup (class in

sage.groups.perm_gps.permgroup_named),
303

generate_dense_graphs_edge_addition() (in mod-
ule sage.groups.perm_gps.partn_ref.refinement_graphs),
441

generate_dense_graphs_vert_addition() (in mod-
ule sage.groups.perm_gps.partn_ref.refinement_graphs),
441

generator_orders() (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper
method), 227

generators() (sage.groups.libgap_wrapper.ParentLibGAP
method), 18

gens() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 181

gens() (sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup
method), 189

gens() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 210

gens() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens
method), 224

gens() (sage.groups.indexed_free_group.IndexedGroup
method), 131

gens() (sage.groups.libgap_wrapper.ParentLibGAP
method), 18

gens() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 430

gens() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic
method), 376

gens() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 263

gens() (sage.groups.raag.CohomologyRAAG method),
134

gens() (sage.groups.raag.RightAngledArtinGroup
method), 137

gens() (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup
method), 153

gens_orders() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 181

gens_orders() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 197

gens_orders() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 210

gens_small() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 264

gens_values() (sage.groups.abelian_gps.values.AbelianGroupWithValues_class
method), 208

get_autom() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
method), 156

get_orbits() (in module
sage.groups.perm_gps.partn_ref.refinement_graphs),
442

get_perm() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
method), 156

get_v() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
method), 156

get_v_inverse() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
method), 156

GL() (in module sage.groups.matrix_gps.linear), 391
GO() (in module sage.groups.matrix_gps.orthogonal),

394
graph() (sage.groups.raag.RightAngledArtinGroup

method), 137
GraphStruct (class in

sage.groups.perm_gps.partn_ref.refinement_graphs),
440

Group (class in sage.groups.group), 3
group() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class

method), 211
group_generators() (sage.groups.group_exp.GroupExp_Class

method), 141
group_generators() (sage.groups.group_semidirect_product.GroupSemidirectProduct

method), 145
group_generators() (sage.groups.indexed_free_group.IndexedGroup

method), 131
group_id() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 264

468 Index

Groups, Release 9.8

group_primitive_id()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 264

group_primitive_id()
(sage.groups.perm_gps.permgroup_named.PrimitiveGroup
method), 312

GroupActionOnQuotientModule (class in
sage.groups.matrix_gps.isometries), 402

GroupActionOnSubmodule (class in
sage.groups.matrix_gps.isometries), 402

GroupExp (class in sage.groups.group_exp), 139
GroupExp_Class (class in sage.groups.group_exp), 140
GroupExpElement (class in sage.groups.group_exp),

140
GroupHomset_libgap (class in

sage.groups.libgap_morphism), 7
GroupLibGAP (class in sage.groups.libgap_group), 21
GroupMixinLibGAP (class in sage.groups.libgap_mixin),

23
GroupMorphism_libgap (class in

sage.groups.libgap_morphism), 8
GroupMorphismWithGensImages (class in

sage.groups.finitely_presented), 74
GroupOfIsometries (class in

sage.groups.matrix_gps.isometries), 403
GroupSemidirectProduct (class in

sage.groups.group_semidirect_product),
143

GroupSemidirectProductElement (class in
sage.groups.group_semidirect_product),
146

GU() (in module sage.groups.matrix_gps.unitary), 408

H
hap_decorator() (in module

sage.groups.perm_gps.permgroup), 293
has_descent() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement

method), 330
has_element() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 265
has_left_descent() (sage.groups.perm_gps.permgroup_element.SymmetricGroupElement

method), 333
has_regular_subgroup()

(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 265

has_right_descent()
(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element
method), 385

HeisenbergGroup (class in
sage.groups.matrix_gps.heisenberg), 412

holomorph() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 266

homology() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 267

homology_part() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 267

I
id() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 268
identity() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 182
identity() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap

method), 198
identity() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens

method), 224
identity() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 268
imag() (sage.groups.misc_gps.imaginary_groups.ImaginaryElement

method), 235
image() (sage.groups.abelian_gps.abelian_group_morphism.AbelianGroupMorphism

method), 219
image() (sage.groups.libgap_morphism.GroupMorphism_libgap

method), 9
image() (sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism

method), 335
ImaginaryElement (class in

sage.groups.misc_gps.imaginary_groups),
235

ImaginaryGroup (class in
sage.groups.misc_gps.imaginary_groups),
236

index2singmaster() (in module
sage.groups.perm_gps.cubegroup), 349

index_set() (sage.groups.cubic_braid.CubicBraidGroup
method), 125

index_set() (sage.groups.perm_gps.permgroup_named.ComplexReflectionGroup
method), 298

index_set() (sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 321

IndexedFreeAbelianGroup (class in
sage.groups.indexed_free_group), 129

IndexedFreeAbelianGroup.Element (class in
sage.groups.indexed_free_group), 129

IndexedFreeGroup (class in
sage.groups.indexed_free_group), 129

IndexedFreeGroup.Element (class in
sage.groups.indexed_free_group), 130

IndexedGroup (class in
sage.groups.indexed_free_group), 131

induct() (sage.groups.class_function.ClassFunction_gap
method), 161

induct() (sage.groups.class_function.ClassFunction_libgap
method), 166

intersection() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 27

intersection() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 268

Index 469

Groups, Release 9.8

inv_list() (in module
sage.groups.perm_gps.cubegroup), 349

invariant_bilinear_form()
(sage.groups.matrix_gps.isometries.GroupOfIsometries
method), 404

invariant_bilinear_form()
(sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap
method), 395

invariant_bilinear_form()
(sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic
method), 398

invariant_form() (sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap
method), 396

invariant_form() (sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic
method), 398

invariant_form() (sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_gap
method), 406

invariant_form() (sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_generic
method), 407

invariant_form() (sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_gap
method), 411

invariant_form() (sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_generic
method), 412

invariant_generators()
(sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
method), 369

invariant_quadratic_form()
(sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap
method), 397

invariant_quadratic_form()
(sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic
method), 399

invariants() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 182

invariants() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 211

invariants_of_degree()
(sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
method), 370

inverse() (sage.groups.libgap_wrapper.ElementLibGAP
method), 14

inverse() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic
method), 365

inverse() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 330

invert_v() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
method), 156

irreducible_characters()
(sage.groups.libgap_mixin.GroupMixinLibGAP
method), 27

irreducible_characters()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 269

irreducible_constituents()

(sage.groups.class_function.ClassFunction_gap
method), 162

irreducible_constituents()
(sage.groups.class_function.ClassFunction_libgap
method), 167

is_abelian() (sage.groups.group.AbelianGroup
method), 3

is_abelian() (sage.groups.group.Group method), 3
is_abelian() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 28
is_abelian() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 269
is_abelian() (sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup

method), 300
is_abelian() (sage.groups.perm_gps.permgroup_named.DiCyclicGroup

method), 302
is_AbelianGroup() (in module

sage.groups.abelian_gps.abelian_group),
189

is_AbelianGroupElement() (in module
sage.groups.abelian_gps.abelian_group_element),
217

is_AbelianGroupMorphism() (in module
sage.groups.abelian_gps.abelian_group_morphism),
220

is_commutative() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 183

is_commutative() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 211

is_commutative() (sage.groups.group.Group method),
4

is_commutative() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 387

is_commutative() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 269

is_commutative() (sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup
method), 300

is_commutative() (sage.groups.perm_gps.permgroup_named.DiCyclicGroup
method), 302

is_confluent() (sage.groups.finitely_presented.RewritingSystem
method), 76

is_conjugate() (sage.groups.libgap_wrapper.ElementLibGAP
method), 14

is_conjugated() (sage.groups.braid.Braid method), 96
is_cyclic() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 183
is_cyclic() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class

method), 223
is_cyclic() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 269
is_DualAbelianGroup() (in module

sage.groups.abelian_gps.dual_abelian_group),
212

is_DualAbelianGroupElement() (in module

470 Index

Groups, Release 9.8

sage.groups.abelian_gps.dual_abelian_group_element),
218

is_elementary_abelian()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 270

is_finite() (sage.groups.cubic_braid.CubicBraidGroup
method), 125

is_finite() (sage.groups.group.FiniteGroup method),
3

is_finite() (sage.groups.group.Group method), 4
is_finite() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 28
is_finite() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup

method), 387
is_FreeGroup() (in module sage.groups.free_group),

58
is_Group() (in module sage.groups.group), 5
is_irreducible() (sage.groups.class_function.ClassFunction_gap

method), 162
is_irreducible() (sage.groups.class_function.ClassFunction_libgap

method), 167
is_isomorphic() (in module

sage.groups.perm_gps.partn_ref.refinement_lists),
447

is_isomorphic() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 184

is_isomorphic() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 28

is_isomorphic() (sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct
method), 449

is_isomorphic() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 270

is_MatrixGroup() (in module
sage.groups.matrix_gps.matrix_group), 359

is_MatrixGroupElement() (in module
sage.groups.matrix_gps.group_element),
366

is_MatrixGroupHomset() (in module
sage.groups.matrix_gps.homset), 380

is_minus_one() (sage.groups.misc_gps.argument_groups.Sign
method), 233

is_minus_one() (sage.groups.misc_gps.argument_groups.UnitCirclePoint
method), 234

is_monomial() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 270

is_multiplicative()
(sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class
method), 223

is_multiplicative() (sage.groups.group.Group
method), 4

is_nilpotent() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 29

is_nilpotent() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 271

is_normal() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 271

is_normal() (sage.groups.perm_gps.permgroup.PermutationGroup_subgroup
method), 293

is_one() (sage.groups.libgap_wrapper.ElementLibGAP
method), 15

is_one() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic
method), 365

is_one() (sage.groups.misc_gps.argument_groups.Sign
method), 233

is_one() (sage.groups.misc_gps.argument_groups.UnitCirclePoint
method), 235

is_p_group() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 29

is_perfect() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 29

is_perfect() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 271

is_periodic() (sage.groups.braid.Braid method), 96
is_PermutationGroupElement() (in module

sage.groups.perm_gps.permgroup_element),
333

is_PermutationGroupMorphism() (in module
sage.groups.perm_gps.permgroup_morphism),
337

is_pgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 271

is_polycyclic() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 29

is_polycyclic() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 271

is_primitive() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 272

is_pseudoanosov() (sage.groups.braid.Braid method),
96

is_rational() (sage.groups.conjugacy_classes.ConjugacyClass
method), 172

is_real() (sage.groups.conjugacy_classes.ConjugacyClass
method), 172

is_reducible() (sage.groups.braid.Braid method), 97
is_regular() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 272
is_semi_regular() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 273
is_simple() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 30
is_simple() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 273
is_solvable() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 30
is_solvable() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 273
is_subgroup() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 184

Index 471

Groups, Release 9.8

is_subgroup() (sage.groups.libgap_wrapper.ParentLibGAP
method), 19

is_subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 274

is_subgroup_of() (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap
method), 203

is_subgroup_of() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 198

is_supersolvable() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 30

is_supersolvable() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 274

is_transitive() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 274

is_trivial() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 184

is_trivial() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 198

is_trivial() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase
method), 213

isomorphic() (in module
sage.groups.perm_gps.partn_ref.refinement_graphs),
442

isomorphism_to() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 275

isomorphism_type_info_simple_group()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 275

iteration() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 275

J
JankoGroup (class in sage.groups.perm_gps.permgroup_named),

305
jones_polynomial() (sage.groups.braid.Braid

method), 97

K
kernel() (sage.groups.abelian_gps.abelian_group_morphism.AbelianGroupMorphism

method), 220
kernel() (sage.groups.libgap_morphism.GroupMorphism_libgap

method), 10
kernel() (sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism

method), 335
KleinFourGroup (class in

sage.groups.perm_gps.permgroup_named),
305

KleinFourPresentation() (in module
sage.groups.finitely_presented_named), 85

L
L() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 339

label() (sage.groups.pari_group.PariGroup method),
35

largest_moved_point()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 276

lcm() (sage.groups.braid.Braid method), 98
left_invariant_extension()

(sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 430

left_invariant_frame()
(sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 431

left_translation() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 431

legal() (sage.groups.perm_gps.cubegroup.CubeGroup
method), 341

length() (sage.groups.indexed_free_group.IndexedFreeGroup.Element
method), 130

lie_algebra() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 432

lift() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupQuotient_gap
method), 194

lift() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupSubgroup_gap
method), 195

lift() (sage.groups.libgap_morphism.GroupMorphism_libgap
method), 10

linear() (sage.groups.affine_gps.affine_group.AffineGroup
method), 416

linear_relation() (in module sage.groups.generic),
45

linear_space() (sage.groups.affine_gps.affine_group.AffineGroup
method), 417

LinearMatrixGroup_gap (class in
sage.groups.matrix_gps.linear), 392

LinearMatrixGroup_generic (class in
sage.groups.matrix_gps.linear), 392

links_gould_matrix() (sage.groups.braid.Braid
method), 99

links_gould_polynomial() (sage.groups.braid.Braid
method), 99

list() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 184

list() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 211

list() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase
method), 214

list() (sage.groups.affine_gps.group_element.AffineGroupElement
method), 423

list() (sage.groups.conjugacy_classes.ConjugacyClass
method), 172

list() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 30

list() (sage.groups.matrix_gps.group_element.MatrixGroupElement_gap
method), 361

472 Index

Groups, Release 9.8

list() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic
method), 365

list() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 276

livf() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 432

LKB_matrix() (sage.groups.braid.Braid method), 88
load_hap() (in module

sage.groups.perm_gps.permgroup), 294
log() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup

method), 433
lower_central_series()

(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 277

M
major_index() (sage.groups.perm_gps.permgroup_named.SymmetricGroup

method), 321
make_confluent() (sage.groups.finitely_presented.RewritingSystem

method), 77
make_permgroup_element() (in module

sage.groups.perm_gps.permgroup_element),
334

make_permgroup_element_v2() (in module
sage.groups.perm_gps.permgroup_element),
334

mapping_class_action()
(sage.groups.braid.BraidGroup_class method),
108

MappingClassGroupAction (class in
sage.groups.braid), 110

markov_trace() (sage.groups.braid.Braid method), 100
MathieuGroup (class in

sage.groups.perm_gps.permgroup_named),
305

matrix() (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphism
method), 201

matrix() (sage.groups.affine_gps.group_element.AffineGroupElement
method), 423

matrix() (sage.groups.matrix_gps.group_element.MatrixGroupElement_gap
method), 361

matrix() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic
method), 366

matrix() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 331

matrix_degree() (sage.groups.perm_gps.permgroup_named.PermutationGroup_plg
method), 310

matrix_space() (sage.groups.affine_gps.affine_group.AffineGroup
method), 417

matrix_space() (sage.groups.matrix_gps.matrix_group.MatrixGroup_generic
method), 359

MatrixGroup() (in module
sage.groups.matrix_gps.finitely_generated),
377

MatrixGroup_base (class in
sage.groups.matrix_gps.matrix_group), 355

MatrixGroup_gap (class in
sage.groups.matrix_gps.matrix_group), 357

MatrixGroup_generic (class in
sage.groups.matrix_gps.matrix_group), 359

MatrixGroupElement_gap (class in
sage.groups.matrix_gps.group_element),
361

MatrixGroupElement_generic (class in
sage.groups.matrix_gps.group_element),
364

MatrixStruct (class in
sage.groups.perm_gps.partn_ref.refinement_matrices),
448

merge_points() (in module sage.groups.generic), 46
minimal_generating_set()

(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 277

mirror_image() (sage.groups.braid.Braid method), 100
mirror_involution()

(sage.groups.braid.BraidGroup_class method),
109

module
sage.groups.abelian_gps.abelian_aut, 200
sage.groups.abelian_gps.abelian_group,

175
sage.groups.abelian_gps.abelian_group_element,

215
sage.groups.abelian_gps.abelian_group_gap,

191
sage.groups.abelian_gps.abelian_group_morphism,

219
sage.groups.abelian_gps.dual_abelian_group,

209
sage.groups.abelian_gps.dual_abelian_group_element,

217
sage.groups.abelian_gps.element_base, 213
sage.groups.abelian_gps.values, 204
sage.groups.additive_abelian.additive_abelian_group,

220
sage.groups.additive_abelian.additive_abelian_wrapper,

225
sage.groups.affine_gps.affine_group, 414
sage.groups.affine_gps.euclidean_group,

419
sage.groups.affine_gps.group_element, 421
sage.groups.braid, 87
sage.groups.class_function, 159
sage.groups.conjugacy_classes, 171
sage.groups.cubic_braid, 113
sage.groups.finitely_presented, 61
sage.groups.finitely_presented_named, 81
sage.groups.free_group, 53

Index 473

Groups, Release 9.8

sage.groups.generic, 37
sage.groups.group, 3
sage.groups.group_exp, 139
sage.groups.group_semidirect_product, 143
sage.groups.groups_catalog, 1
sage.groups.indexed_free_group, 129
sage.groups.libgap_group, 21
sage.groups.libgap_mixin, 23
sage.groups.libgap_morphism, 7
sage.groups.libgap_wrapper, 13
sage.groups.lie_gps.nilpotent_lie_group,

425
sage.groups.matrix_gps.binary_dihedral,

381
sage.groups.matrix_gps.catalog, 355
sage.groups.matrix_gps.coxeter_group, 382
sage.groups.matrix_gps.finitely_generated,

367
sage.groups.matrix_gps.group_element, 360
sage.groups.matrix_gps.heisenberg, 412
sage.groups.matrix_gps.homset, 380
sage.groups.matrix_gps.isometries, 401
sage.groups.matrix_gps.linear, 390
sage.groups.matrix_gps.matrix_group, 355
sage.groups.matrix_gps.morphism, 380
sage.groups.matrix_gps.named_group, 451
sage.groups.matrix_gps.orthogonal, 393
sage.groups.matrix_gps.symplectic, 404
sage.groups.matrix_gps.unitary, 407
sage.groups.misc_gps.argument_groups, 229
sage.groups.misc_gps.imaginary_groups,

235
sage.groups.misc_gps.misc_groups, 149
sage.groups.pari_group, 35
sage.groups.perm_gps.constructor, 237
sage.groups.perm_gps.cubegroup, 337
sage.groups.perm_gps.partn_ref.canonical_augmentation,

437
sage.groups.perm_gps.partn_ref.data_structures,

439
sage.groups.perm_gps.partn_ref.refinement_graphs,

440
sage.groups.perm_gps.partn_ref.refinement_lists,

447
sage.groups.perm_gps.partn_ref.refinement_matrices,

448
sage.groups.perm_gps.permgroup, 240
sage.groups.perm_gps.permgroup_element,

325
sage.groups.perm_gps.permgroup_morphism,

334
sage.groups.perm_gps.permgroup_named, 294
sage.groups.perm_gps.permutation_groups_catalog,

237

sage.groups.perm_gps.symgp_conjugacy_class,
351

sage.groups.raag, 133
sage.groups.semimonomial_transformations.semimonomial_transformation,

155
sage.groups.semimonomial_transformations.semimonomial_transformation_group,

151
module_composition_factors()

(sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
method), 371

molien_series() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
method), 372

molien_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 277

move() (sage.groups.perm_gps.cubegroup.CubeGroup
method), 341

move() (sage.groups.perm_gps.cubegroup.RubiksCube
method), 346

multiple() (in module sage.groups.generic), 47
multiples (class in sage.groups.generic), 48
multiplicative_order()

(sage.groups.abelian_gps.element_base.AbelianGroupElementBase
method), 214

multiplicative_order()
(sage.groups.libgap_wrapper.ElementLibGAP
method), 15

multiplicative_order()
(sage.groups.matrix_gps.group_element.MatrixGroupElement_gap
method), 362

multiplicative_order()
(sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 331

N
NamedMatrixGroup_gap (class in

sage.groups.matrix_gps.named_group), 451
NamedMatrixGroup_generic (class in

sage.groups.matrix_gps.named_group), 452
natural_homomorphism()

(sage.groups.abelian_gps.abelian_group_gap.AbelianGroupQuotient_gap
method), 194

natural_map() (sage.groups.libgap_morphism.GroupHomset_libgap
method), 8

next() (sage.groups.generic.multiples method), 49
ngens() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 185
ngens() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class

method), 211
ngens() (sage.groups.libgap_wrapper.ParentLibGAP

method), 19
ngens() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic

method), 377
ngens() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 278

474 Index

Groups, Release 9.8

ngens() (sage.groups.raag.CohomologyRAAG method),
134

ngens() (sage.groups.raag.RightAngledArtinGroup
method), 137

NilpotentLieGroup (class in
sage.groups.lie_gps.nilpotent_lie_group),
425

NilpotentLieGroup.Element (class in
sage.groups.lie_gps.nilpotent_lie_group),
427

non_fixed_points() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 278

norm() (sage.groups.class_function.ClassFunction_gap
method), 162

norm() (sage.groups.class_function.ClassFunction_libgap
method), 168

normal_subgroups() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 278

normalize_args_e() (in module
sage.groups.matrix_gps.orthogonal), 401

normalize_args_invariant_form() (in module
sage.groups.matrix_gps.named_group), 452

normalize_args_vectorspace() (in module
sage.groups.matrix_gps.named_group), 453

normalize_square_matrices() (in module
sage.groups.matrix_gps.finitely_generated),
379

normalizer() (sage.groups.libgap_wrapper.ElementLibGAP
method), 15

normalizer() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 279

normalizes() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 279

nth_roots() (sage.groups.libgap_wrapper.ElementLibGAP
method), 15

number_of_subgroups()
(sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 185

O
one() (sage.groups.group_exp.GroupExp_Class

method), 141
one() (sage.groups.group_semidirect_product.GroupSemidirectProduct

method), 145
one() (sage.groups.indexed_free_group.IndexedFreeAbelianGroup

method), 129
one() (sage.groups.indexed_free_group.IndexedFreeGroup

method), 131
one() (sage.groups.libgap_wrapper.ParentLibGAP

method), 19
one() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup

method), 433
one() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 279

one() (sage.groups.raag.RightAngledArtinGroup
method), 137

one_basis() (sage.groups.raag.CohomologyRAAG
method), 134

one_element() (sage.groups.raag.RightAngledArtinGroup
method), 137

OP_represent() (in module
sage.groups.perm_gps.partn_ref.data_structures),
439

opposite_semidirect_product()
(sage.groups.group_semidirect_product.GroupSemidirectProduct
method), 145

orbit() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 280

orbit() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 331

orbit_partition() (in module
sage.groups.perm_gps.partn_ref.refinement_graphs),
442

orbits() (sage.groups.perm_gps.permgroup.PermutationGroup_action
method), 246

orbits() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 281

order() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 185

order() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap
method), 192

order() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 212

order() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase
method), 214

order() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class
method), 223

order() (sage.groups.braid.BraidGroup_class method),
109

order() (sage.groups.cubic_braid.CubicBraidGroup
method), 126

order() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 68

order() (sage.groups.group.Group method), 4
order() (sage.groups.indexed_free_group.IndexedGroup

method), 131
order() (sage.groups.libgap_mixin.GroupMixinLibGAP

method), 31
order() (sage.groups.libgap_wrapper.ElementLibGAP

method), 16
order() (sage.groups.matrix_gps.binary_dihedral.BinaryDihedralGroup

method), 381
order() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup

method), 388
order() (sage.groups.matrix_gps.heisenberg.HeisenbergGroup

method), 414
order() (sage.groups.pari_group.PariGroup method),

36

Index 475

Groups, Release 9.8

order() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 282

order() (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup
method), 153

order_from_bounds() (in module
sage.groups.generic), 49

order_from_multiple() (in module
sage.groups.generic), 49

OrthogonalMatrixGroup_gap (class in
sage.groups.matrix_gps.orthogonal), 395

OrthogonalMatrixGroup_generic (class in
sage.groups.matrix_gps.orthogonal), 397

P
ParentLibGAP (class in sage.groups.libgap_wrapper),

16
PariGroup (class in sage.groups.pari_group), 35
parse() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 342
partition() (sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClassMixin

method), 351
permutation() (sage.groups.braid.Braid method), 100
permutation_group()

(sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 186

permutation_group()
(sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens
method), 224

permutation_group()
(sage.groups.pari_group.PariGroup method),
36

PermutationGroup() (in module
sage.groups.perm_gps.permgroup), 244

PermutationGroup_action (class in
sage.groups.perm_gps.permgroup), 245

PermutationGroup_generic (class in
sage.groups.perm_gps.permgroup), 246

PermutationGroup_plg (class in
sage.groups.perm_gps.permgroup_named),
310

PermutationGroup_pug (class in
sage.groups.perm_gps.permgroup_named),
310

PermutationGroup_subgroup (class in
sage.groups.perm_gps.permgroup), 292

PermutationGroup_symalt (class in
sage.groups.perm_gps.permgroup_named),
311

PermutationGroup_unique (class in
sage.groups.perm_gps.permgroup_named),
311

PermutationGroupElement (class in
sage.groups.perm_gps.permgroup_element),
326

PermutationGroupElement() (in module
sage.groups.perm_gps.constructor), 237

PermutationGroupMorphism (class in
sage.groups.perm_gps.permgroup_morphism),
335

PermutationGroupMorphism_from_gap (class in
sage.groups.perm_gps.permgroup_morphism),
336

PermutationGroupMorphism_id (class in
sage.groups.perm_gps.permgroup_morphism),
336

PermutationGroupMorphism_im_gens (class in
sage.groups.perm_gps.permgroup_morphism),
336

PermutationsConjugacyClass (class in
sage.groups.perm_gps.symgp_conjugacy_class),
351

PGL (class in sage.groups.perm_gps.permgroup_named),
306

PGU (class in sage.groups.perm_gps.permgroup_named),
306

plot() (sage.groups.braid.Braid method), 101
plot() (sage.groups.perm_gps.cubegroup.RubiksCube

method), 346
plot3d() (sage.groups.braid.Braid method), 101
plot3d() (sage.groups.perm_gps.cubegroup.RubiksCube

method), 346
plot3d_cube() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 343
plot3d_cubie() (in module

sage.groups.perm_gps.cubegroup), 349
plot_cube() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 343
poincare_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 282
polygon_plot3d() (in module

sage.groups.perm_gps.cubegroup), 350
positive_roots() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup

method), 388
preimage() (sage.groups.libgap_morphism.GroupMorphism_libgap

method), 10
PrimitiveGroup (class in

sage.groups.perm_gps.permgroup_named),
311

PrimitiveGroups() (in module
sage.groups.perm_gps.permgroup_named),
312

PrimitiveGroupsAll (class in
sage.groups.perm_gps.permgroup_named),
313

PrimitiveGroupsOfDegree (class in
sage.groups.perm_gps.permgroup_named),
313

product() (sage.groups.group_exp.GroupExp_Class

476 Index

Groups, Release 9.8

method), 141
product() (sage.groups.group_semidirect_product.GroupSemidirectProduct

method), 146
PS_represent() (in module

sage.groups.perm_gps.partn_ref.data_structures),
439

PSL (class in sage.groups.perm_gps.permgroup_named),
307

PSp (class in sage.groups.perm_gps.permgroup_named),
309

PSP (in module sage.groups.perm_gps.permgroup_named),
309

PSU (class in sage.groups.perm_gps.permgroup_named),
309

pushforward() (sage.groups.libgap_morphism.GroupMorphism_libgap
method), 11

Q
QuaternionGroup (class in

sage.groups.perm_gps.permgroup_named),
314

QuaternionMatrixGroupGF3() (in module
sage.groups.matrix_gps.finitely_generated),
378

QuaternionPresentation() (in module
sage.groups.finitely_presented_named), 85

quotient() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap
method), 199

quotient() (sage.groups.free_group.FreeGroup_class
method), 57

quotient() (sage.groups.group.Group method), 4
quotient() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 282

R
R() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 339
ramification_module_decomposition_hurwitz_curve()

(sage.groups.perm_gps.permgroup_named.PSL
method), 308

ramification_module_decomposition_modular_curve()
(sage.groups.perm_gps.permgroup_named.PSL
method), 308

random_element() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 186

random_element() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class
method), 212

random_element() (sage.groups.affine_gps.affine_group.AffineGroup
method), 417

random_element() (sage.groups.affine_gps.euclidean_group.EuclideanGroup
method), 421

random_element() (sage.groups.libgap_mixin.GroupMixinLibGAP
method), 32

random_element() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 283

random_tests() (in module
sage.groups.perm_gps.partn_ref.refinement_graphs),
443

random_tests() (in module
sage.groups.perm_gps.partn_ref.refinement_matrices),
449

rank() (sage.groups.free_group.FreeGroup_class
method), 58

rank() (sage.groups.indexed_free_group.IndexedGroup
method), 132

real() (sage.groups.misc_gps.imaginary_groups.ImaginaryElement
method), 236

reduce() (sage.groups.finitely_presented.RewritingSystem
method), 78

reduced_word() (sage.groups.braid.RightQuantumWord
method), 111

reflection() (sage.groups.affine_gps.affine_group.AffineGroup
method), 417

reflections() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 388

reflections() (sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 321

relations() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupQuotient_gap
method), 194

relations() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 68

repr2d() (sage.groups.perm_gps.cubegroup.CubeGroup
method), 343

representative() (sage.groups.conjugacy_classes.ConjugacyClass
method), 172

representative_action()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 283

restrict() (sage.groups.class_function.ClassFunction_gap
method), 163

restrict() (sage.groups.class_function.ClassFunction_libgap
method), 168

retract() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupSubgroup_gap
method), 195

reverse() (sage.groups.braid.Braid method), 102
rewriting_system() (sage.groups.finitely_presented.FinitelyPresentedGroup

method), 69
RewritingSystem (class in

sage.groups.finitely_presented), 74
reynolds_operator()

(sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
method), 374

right_invariant_extension()
(sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 433

right_invariant_frame()
(sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup

Index 477

Groups, Release 9.8

method), 434
right_normal_form() (sage.groups.braid.Braid

method), 102
right_translation()

(sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 434

RightAngledArtinGroup (class in sage.groups.raag),
134

RightAngledArtinGroup.Element (class in
sage.groups.raag), 136

RightQuantumWord (class in sage.groups.braid), 110
rigidity() (sage.groups.braid.Braid method), 102
rivf() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup

method), 435
RootOfUnity (class in

sage.groups.misc_gps.argument_groups),
232

roots() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 389

RootsOfUnityGroup (class in
sage.groups.misc_gps.argument_groups),
232

rotation_list() (in module
sage.groups.perm_gps.cubegroup), 350

RubiksCube (class in sage.groups.perm_gps.cubegroup),
345

rules() (sage.groups.finitely_presented.RewritingSystem
method), 78

run() (sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct
method), 449

S
sage.groups.abelian_gps.abelian_aut

module, 200
sage.groups.abelian_gps.abelian_group

module, 175
sage.groups.abelian_gps.abelian_group_element

module, 215
sage.groups.abelian_gps.abelian_group_gap

module, 191
sage.groups.abelian_gps.abelian_group_morphism

module, 219
sage.groups.abelian_gps.dual_abelian_group

module, 209
sage.groups.abelian_gps.dual_abelian_group_element

module, 217
sage.groups.abelian_gps.element_base

module, 213
sage.groups.abelian_gps.values

module, 204
sage.groups.additive_abelian.additive_abelian_group

module, 220
sage.groups.additive_abelian.additive_abelian_wrapper

module, 225

sage.groups.affine_gps.affine_group
module, 414

sage.groups.affine_gps.euclidean_group
module, 419

sage.groups.affine_gps.group_element
module, 421

sage.groups.braid
module, 87

sage.groups.class_function
module, 159

sage.groups.conjugacy_classes
module, 171

sage.groups.cubic_braid
module, 113

sage.groups.finitely_presented
module, 61

sage.groups.finitely_presented_named
module, 81

sage.groups.free_group
module, 53

sage.groups.generic
module, 37

sage.groups.group
module, 3

sage.groups.group_exp
module, 139

sage.groups.group_semidirect_product
module, 143

sage.groups.groups_catalog
module, 1

sage.groups.indexed_free_group
module, 129

sage.groups.libgap_group
module, 21

sage.groups.libgap_mixin
module, 23

sage.groups.libgap_morphism
module, 7

sage.groups.libgap_wrapper
module, 13

sage.groups.lie_gps.nilpotent_lie_group
module, 425

sage.groups.matrix_gps.binary_dihedral
module, 381

sage.groups.matrix_gps.catalog
module, 355

sage.groups.matrix_gps.coxeter_group
module, 382

sage.groups.matrix_gps.finitely_generated
module, 367

sage.groups.matrix_gps.group_element
module, 360

sage.groups.matrix_gps.heisenberg
module, 412

478 Index

Groups, Release 9.8

sage.groups.matrix_gps.homset
module, 380

sage.groups.matrix_gps.isometries
module, 401

sage.groups.matrix_gps.linear
module, 390

sage.groups.matrix_gps.matrix_group
module, 355

sage.groups.matrix_gps.morphism
module, 380

sage.groups.matrix_gps.named_group
module, 451

sage.groups.matrix_gps.orthogonal
module, 393

sage.groups.matrix_gps.symplectic
module, 404

sage.groups.matrix_gps.unitary
module, 407

sage.groups.misc_gps.argument_groups
module, 229

sage.groups.misc_gps.imaginary_groups
module, 235

sage.groups.misc_gps.misc_groups
module, 149

sage.groups.pari_group
module, 35

sage.groups.perm_gps.constructor
module, 237

sage.groups.perm_gps.cubegroup
module, 337

sage.groups.perm_gps.partn_ref.canonical_augmentation
module, 437

sage.groups.perm_gps.partn_ref.data_structures
module, 439

sage.groups.perm_gps.partn_ref.refinement_graphs
module, 440

sage.groups.perm_gps.partn_ref.refinement_lists
module, 447

sage.groups.perm_gps.partn_ref.refinement_matrices
module, 448

sage.groups.perm_gps.permgroup
module, 240

sage.groups.perm_gps.permgroup_element
module, 325

sage.groups.perm_gps.permgroup_morphism
module, 334

sage.groups.perm_gps.permgroup_named
module, 294

sage.groups.perm_gps.permutation_groups_catalog
module, 237

sage.groups.perm_gps.symgp_conjugacy_class
module, 351

sage.groups.raag
module, 133

sage.groups.semimonomial_transformations.semimonomial_transformation
module, 155

sage.groups.semimonomial_transformations.semimonomial_transformation_group
module, 151

SC_test_list_perms() (in module
sage.groups.perm_gps.partn_ref.data_structures),
439

scalar_product() (sage.groups.class_function.ClassFunction_gap
method), 163

scalar_product() (sage.groups.class_function.ClassFunction_libgap
method), 168

scramble() (sage.groups.perm_gps.cubegroup.RubiksCube
method), 346

search_tree() (in module
sage.groups.perm_gps.partn_ref.refinement_graphs),
443

section() (sage.groups.libgap_morphism.GroupMorphism_libgap
method), 12

SemidihedralGroup (class in
sage.groups.perm_gps.permgroup_named),
314

semidirect_product()
(sage.groups.finitely_presented.FinitelyPresentedGroup
method), 69

semidirect_product()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 283

SemimonomialActionMat (class in
sage.groups.semimonomial_transformations.semimonomial_transformation_group),
151

SemimonomialActionVec (class in
sage.groups.semimonomial_transformations.semimonomial_transformation_group),
151

SemimonomialTransformation (class in
sage.groups.semimonomial_transformations.semimonomial_transformation),
155

SemimonomialTransformationGroup (class in
sage.groups.semimonomial_transformations.semimonomial_transformation_group),
152

set() (sage.groups.conjugacy_classes.ConjugacyClass
method), 173

set() (sage.groups.conjugacy_classes.ConjugacyClassGAP
method), 174

set() (sage.groups.perm_gps.symgp_conjugacy_class.PermutationsConjugacyClass
method), 351

set() (sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClass
method), 351

short_name() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class
method), 223

show() (sage.groups.perm_gps.cubegroup.RubiksCube
method), 347

show3d() (sage.groups.perm_gps.cubegroup.RubiksCube
method), 347

Sign (class in sage.groups.misc_gps.argument_groups),

Index 479

Groups, Release 9.8

233
sign() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement

method), 332
sign_representation()

(sage.groups.matrix_gps.matrix_group.MatrixGroup_base
method), 356

sign_representation()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 285

signature() (sage.groups.pari_group.PariGroup
method), 36

SignGroup (class in sage.groups.misc_gps.argument_groups),
233

simple_reflection()
(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 389

simple_reflection()
(sage.groups.perm_gps.permgroup_named.ComplexReflectionGroup
method), 299

simple_reflection()
(sage.groups.perm_gps.permgroup_named.SymmetricGroup
method), 321

simple_reflections()
(sage.groups.cubic_braid.CubicBraidGroup
method), 126

simple_root_index()
(sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup
method), 389

simplification_isomorphism()
(sage.groups.finitely_presented.FinitelyPresentedGroup
method), 71

simplified() (sage.groups.finitely_presented.FinitelyPresentedGroup
method), 71

SL() (in module sage.groups.matrix_gps.linear), 392
sliding_circuits() (sage.groups.braid.Braid

method), 102
smallest_moved_point()

(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 285

SO() (in module sage.groups.matrix_gps.orthogonal),
399

socle() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 285

solvable_radical() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 286

solve() (sage.groups.perm_gps.cubegroup.CubeGroup
method), 344

solve() (sage.groups.perm_gps.cubegroup.RubiksCube
method), 347

some_elements() (sage.groups.affine_gps.affine_group.AffineGroup
method), 418

some_elements() (sage.groups.braid.BraidGroup_class
method), 109

Sp() (in module sage.groups.matrix_gps.symplectic), 404

SplitMetacyclicGroup (class in
sage.groups.perm_gps.permgroup_named),
315

stabilizer() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 286

standardize_generator() (in module
sage.groups.perm_gps.constructor), 238

step() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup
method), 436

strands() (sage.groups.braid.Braid method), 103
strands() (sage.groups.braid.BraidGroup_class

method), 110
strands() (sage.groups.cubic_braid.CubicBraidGroup

method), 126
string_to_tuples() (in module

sage.groups.perm_gps.constructor), 239
strong_generating_system()

(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 287

structure_description() (in module
sage.groups.generic), 50

structure_description()
(sage.groups.finitely_presented.FinitelyPresentedGroup
method), 72

structure_description()
(sage.groups.matrix_gps.matrix_group.MatrixGroup_gap
method), 358

structure_description()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 289

SU() (in module sage.groups.matrix_gps.unitary), 409
Subgroup (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

attribute), 179
Subgroup (sage.groups.perm_gps.permgroup.PermutationGroup_generic

attribute), 247
subgroup() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 186
subgroup() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap

method), 199
subgroup() (sage.groups.libgap_wrapper.ParentLibGAP

method), 19
subgroup() (sage.groups.matrix_gps.matrix_group.MatrixGroup_base

method), 357
subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 290
subgroup_reduced() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 187
subgroups() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class

method), 187
subgroups() (sage.groups.perm_gps.permgroup.PermutationGroup_generic

method), 290
super_summit_set() (sage.groups.braid.Braid

method), 103
SuzukiGroup (class in

480 Index

Groups, Release 9.8

sage.groups.perm_gps.permgroup_named),
316

SuzukiSporadicGroup (class in
sage.groups.perm_gps.permgroup_named),
317

syllables() (sage.groups.free_group.FreeGroupElement
method), 57

sylow_subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 291

symmetric_power() (sage.groups.class_function.ClassFunction_gap
method), 163

symmetric_power() (sage.groups.class_function.ClassFunction_libgap
method), 168

SymmetricGroup (class in
sage.groups.perm_gps.permgroup_named),
317

SymmetricGroupConjugacyClass (class in
sage.groups.perm_gps.symgp_conjugacy_class),
351

SymmetricGroupConjugacyClassMixin (class in
sage.groups.perm_gps.symgp_conjugacy_class),
351

SymmetricGroupElement (class in
sage.groups.perm_gps.permgroup_element),
333

SymmetricPresentation() (in module
sage.groups.finitely_presented_named), 86

SymplecticMatrixGroup_gap (class in
sage.groups.matrix_gps.symplectic), 406

SymplecticMatrixGroup_generic (class in
sage.groups.matrix_gps.symplectic), 406

T
tensor_product() (sage.groups.class_function.ClassFunction_gap

method), 164
tensor_product() (sage.groups.class_function.ClassFunction_libgap

method), 169
thurston_type() (sage.groups.braid.Braid method),

103
Tietze() (sage.groups.finitely_presented.FinitelyPresentedGroupElement

method), 73
Tietze() (sage.groups.free_group.FreeGroupElement

method), 55
TL_basis_with_drain()

(sage.groups.braid.BraidGroup_class method),
106

TL_matrix() (sage.groups.braid.Braid method), 89
TL_representation()

(sage.groups.braid.BraidGroup_class method),
106

to_libgap() (in module
sage.groups.matrix_gps.morphism), 380

to_opposite() (sage.groups.group_semidirect_product.GroupSemidirectProductElement
method), 146

to_word_list() (sage.groups.indexed_free_group.IndexedFreeGroup.Element
method), 130

torsion_subgroup() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class
method), 187

torsion_subgroup() (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper
method), 227

transitive_number()
(sage.groups.pari_group.PariGroup method),
36

transitive_number()
(sage.groups.perm_gps.permgroup_named.TransitiveGroup
method), 323

TransitiveGroup (class in
sage.groups.perm_gps.permgroup_named),
322

TransitiveGroups() (in module
sage.groups.perm_gps.permgroup_named),
323

TransitiveGroupsAll (class in
sage.groups.perm_gps.permgroup_named),
324

TransitiveGroupsOfDegree (class in
sage.groups.perm_gps.permgroup_named),
324

translation() (sage.groups.affine_gps.affine_group.AffineGroup
method), 418

transversals() (sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 291

trivial_character()
(sage.groups.libgap_mixin.GroupMixinLibGAP
method), 33

trivial_character()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 292

tropical_coordinates() (sage.groups.braid.Braid
method), 104

tuple() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 332

tuples() (sage.groups.braid.RightQuantumWord
method), 112

U
U() (sage.groups.perm_gps.cubegroup.CubeGroup

method), 340
ultra_summit_set() (sage.groups.braid.Braid

method), 104
undo() (sage.groups.perm_gps.cubegroup.RubiksCube

method), 347
UnitaryMatrixGroup_gap (class in

sage.groups.matrix_gps.unitary), 411
UnitaryMatrixGroup_generic (class in

sage.groups.matrix_gps.unitary), 411
UnitCircleGroup (class in

sage.groups.misc_gps.argument_groups),

Index 481

Groups, Release 9.8

234
UnitCirclePoint (class in

sage.groups.misc_gps.argument_groups),
234

universe() (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper
method), 228

UnwrappingMorphism (class in
sage.groups.additive_abelian.additive_abelian_wrapper),
229

upper_central_series()
(sage.groups.perm_gps.permgroup.PermutationGroup_generic
method), 292

V
value() (sage.groups.abelian_gps.values.AbelianGroupWithValuesElement

method), 206
values() (sage.groups.class_function.ClassFunction_gap

method), 164
values() (sage.groups.class_function.ClassFunction_libgap

method), 169
values_embedding() (sage.groups.abelian_gps.values.AbelianGroupWithValues_class

method), 208
values_group() (sage.groups.abelian_gps.values.AbelianGroupWithValues_class

method), 208
vector_space() (sage.groups.affine_gps.affine_group.AffineGroup

method), 419

W
word_problem() (in module

sage.groups.abelian_gps.abelian_group),
190

word_problem() (sage.groups.abelian_gps.abelian_group_element.AbelianGroupElement
method), 216

word_problem() (sage.groups.abelian_gps.dual_abelian_group_element.DualAbelianGroupElement
method), 218

word_problem() (sage.groups.matrix_gps.group_element.MatrixGroupElement_gap
method), 363

word_problem() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement
method), 332

wrap_FpGroup() (in module
sage.groups.finitely_presented), 78

wrap_FreeGroup() (in module sage.groups.free_group),
59

X
xproj() (in module sage.groups.perm_gps.cubegroup),

350

Y
young_subgroup() (sage.groups.perm_gps.permgroup_named.SymmetricGroup

method), 322
yproj() (in module sage.groups.perm_gps.cubegroup),

350

482 Index

	Examples of Groups
	Base class for groups
	Group homomorphisms for groups with a GAP backend
	LibGAP-based Groups
	Generic LibGAP-based Group
	Mix-in Class for GAP-based Groups
	PARI Groups
	Miscellaneous generic functions
	Free Groups
	Finitely Presented Groups
	Named Finitely Presented Groups
	Braid groups
	Cubic Braid Groups
	Indexed Free Groups
	Right-Angled Artin Groups
	Functor that converts a commutative additive group into a multiplicative group.
	Semidirect product of groups
	Miscellaneous Groups
	Semimonomial transformation group
	Elements of a semimonomial transformation group
	Class functions of groups.
	Conjugacy classes of groups
	Abelian Groups
	Multiplicative Abelian Groups
	Finitely generated abelian groups with GAP.
	Automorphisms of abelian groups
	Multiplicative Abelian Groups With Values
	Dual groups of Finite Multiplicative Abelian Groups
	Base class for abelian group elements
	Abelian group elements
	Elements (characters) of the dual group of a finite Abelian group
	Homomorphisms of abelian groups
	Additive Abelian Groups
	Wrapper class for abelian groups
	Groups of elements representing (complex) arguments.
	Classes and Methods

	Groups of imaginary elements
	Classes and Methods

	Permutation Groups
	Catalog of permutation groups
	Constructor for permutations
	Permutation groups
	Index of methods

	“Named” Permutation groups (such as the symmetric group, S_n)
	Permutation group elements
	Permutation group homomorphisms
	Rubik’s cube group functions
	Conjugacy Classes Of The Symmetric Group

	Matrix and Affine Groups
	Library of Interesting Groups
	Base classes for Matrix Groups
	Matrix Group Elements
	Finitely Generated Matrix Groups
	Homomorphisms Between Matrix Groups
	Matrix Group Homsets
	Binary Dihedral Groups
	Coxeter Groups As Matrix Groups
	Linear Groups
	Orthogonal Linear Groups
	Groups of isometries.
	Symplectic Linear Groups
	Unitary Groups GU(n,q) and SU(n,q)
	Heisenberg Group
	Affine Groups
	Euclidean Groups
	Elements of Affine Groups

	Lie Groups
	Nilpotent Lie groups

	Partition Refinement
	Canonical augmentation
	Data structures
	Graph-theoretic partition backtrack functions
	Partition backtrack functions for lists – a simple example of using partn_ref
	Partition backtrack functions for matrices

	Internals
	Base for Classical Matrix Groups

	Indices and Tables
	Bibliography
	Python Module Index
	Index

