
Chain complexes and homology
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Chain complexes 3

2 Chains and cochains 17

3 Morphisms of chain complexes 25

4 Chain homotopies and chain contractions 29

5 Homspaces between chain complexes 35

6 Koszul Complexes 39

7 Hochschild Complexes 41

8 Homology Groups 47

9 Homology and cohomology with a basis 49

10 Algebraic topological model for a cell complex 59

11 Induced morphisms on homology 63

12 Utility Functions for Matrices 67

13 Interface to CHomP 69

14 Indices and Tables 77

Python Module Index 79

Index 81

i

ii

Chain complexes and homology, Release 9.8

Sage includes some tools for algebraic topology, and in particular computing homology groups.

CONTENTS 1

Chain complexes and homology, Release 9.8

2 CONTENTS

CHAPTER

ONE

CHAIN COMPLEXES

This module implements bounded chain complexes of free 𝑅-modules, for any commutative ring 𝑅 (although the
interesting things, like homology, only work if 𝑅 is the integers or a field).

Fix a ring 𝑅. A chain complex over 𝑅 is a collection of 𝑅-modules {𝐶𝑛} indexed by the integers, with 𝑅-module maps
𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛+1 such that 𝑑𝑛+1 ∘ 𝑑𝑛 = 0 for all 𝑛. The maps 𝑑𝑛 are called differentials.

One can vary this somewhat: the differentials may decrease degree by one instead of increasing it: sometimes a chain
complex is defined with 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛−1 for each 𝑛. Indeed, the differentials may change dimension by any fixed
integer.

Also, the modules may be indexed over an abelian group other than the integers, e.g., Z𝑚 for some integer 𝑚 ≥ 1, in
which case the differentials may change the grading by any element of that grading group. The elements of the grading
group are generally called degrees, so 𝐶𝑛 is the module in degree 𝑛 and so on.

In this implementation, the ring 𝑅 must be commutative and the modules 𝐶𝑛 must be free 𝑅-modules. As noted above,
homology calculations will only work if the ring 𝑅 is either Z or a field. The modules may be indexed by any free
abelian group. The differentials may increase degree by 1 or decrease it, or indeed change it by any fixed amount: this
is controlled by the degree_of_differential parameter used in defining the chain complex.

AUTHORS:

• John H. Palmieri (2009-04): initial implementation

sage.homology.chain_complex.ChainComplex(data=None, base_ring=None, grading_group=None,
degree_of_differential=1, degree=1, check=True)

Define a chain complex.

INPUT:

• data – the data defining the chain complex; see below for more details.

The following keyword arguments are supported:

• base_ring – a commutative ring (optional), the ring over which the chain complex is defined. If this is
not specified, it is determined by the data defining the chain complex.

• grading_group – a additive free abelian group (optional, default ZZ), the group over which the chain
complex is indexed.

• degree_of_differential – element of grading_group (optional, default 1). The degree of the differen-
tial.

• degree – alias for degree_of_differential.

• check – boolean (optional, default True). If True, check that each consecutive pair of differentials are
composable and have composite equal to zero.

3

Chain complexes and homology, Release 9.8

OUTPUT:

A chain complex.

Warning: Right now, homology calculations will only work if the base ring is either Z or a field, so please
take this into account when defining a chain complex.

Use data to define the chain complex. This may be in any of the following forms.

1. a dictionary with integers (or more generally, elements of grading_group) for keys, and with data[n] a
matrix representing (via left multiplication) the differential coming from degree 𝑛. (Note that the shape of
the matrix then determines the rank of the free modules 𝐶𝑛 and 𝐶𝑛+𝑑.)

2. a list/tuple/iterable of the form [𝐶0, 𝑑0, 𝐶1, 𝑑1, 𝐶2, 𝑑2, ...], where each 𝐶𝑖 is a free module and each 𝑑𝑖 is a
matrix, as above. This only makes sense if grading_group is Z and degree is 1.

3. a list/tuple/iterable of the form [𝑟0, 𝑑0, 𝑟1, 𝑑1, 𝑟2, 𝑑2, . . .], where 𝑟𝑖 is the rank of the free module 𝐶𝑖 and
each 𝑑𝑖 is a matrix, as above. This only makes sense if grading_group is Z and degree is 1.

4. a list/tuple/iterable of the form [𝑑0, 𝑑1, 𝑑2, . . .] where each 𝑑𝑖 is a matrix, as above. This only makes sense
if grading_group is Z and degree is 1.

Note: In fact, the free modules 𝐶𝑖 in case 2 and the ranks 𝑟𝑖 in case 3 are ignored: only the matrices are kept,
and from their shapes, the ranks of the modules are determined. (Indeed, if data is a list or tuple, then any
element which is not a matrix is discarded; thus the list may have any number of different things in it, and all of
the non-matrices will be ignored.) No error checking is done to make sure, for instance, that the given modules
have the appropriate ranks for the given matrices. However, as long as check is True, the code checks to see if
the matrices are composable and that each appropriate composite is zero.

If the base ring is not specified, then the matrices are examined to determine a ring over which they are all
naturally defined, and this becomes the base ring for the complex. If no such ring can be found, an error is raised.
If the base ring is specified, then the matrices are converted automatically to this ring when defining the chain
complex. If some matrix cannot be converted, then an error is raised.

EXAMPLES:

sage: ChainComplex()
Trivial chain complex over Integer Ring

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C
Chain complex with at most 2 nonzero terms over Integer Ring

sage: m = matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: D = ChainComplex([m, m], base_ring=GF(2)); D
Chain complex with at most 3 nonzero terms over Finite Field of size 2
sage: D == loads(dumps(D))
True
sage: D.differential(0)==m, m.is_immutable(), D.differential(0).is_immutable()
(True, False, True)

Note that when a chain complex is defined in Sage, new differentials may be created: every nonzero module in
the chain complex must have a differential coming from it, even if that differential is zero:

4 Chapter 1. Chain complexes

Chain complexes and homology, Release 9.8

sage: IZ = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: diff = IZ.differential() # the differentials in the chain complex
sage: diff[-1], diff[0], diff[1]
([], [1], [])
sage: IZ.differential(1).parent()
Full MatrixSpace of 0 by 1 dense matrices over Integer Ring
sage: mat = ChainComplex({0: matrix(ZZ, 3, 4)}).differential(1)
sage: mat.nrows(), mat.ncols()
(0, 3)

Defining the base ring implicitly:

sage: ChainComplex([matrix(QQ, 3, 1), matrix(ZZ, 4, 3)])
Chain complex with at most 3 nonzero terms over Rational Field
sage: ChainComplex([matrix(GF(125, 'a'), 3, 1), matrix(ZZ, 4, 3)])
Chain complex with at most 3 nonzero terms over Finite Field in a of size 5^3

If the matrices are defined over incompatible rings, an error results:

sage: ChainComplex([matrix(GF(125, 'a'), 3, 1), matrix(QQ, 4, 3)])
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents: 'Finite Field in a␣
→˓of size 5^3' and 'Rational Field'

If the base ring is given explicitly but is not compatible with the matrices, an error results:

sage: ChainComplex([matrix(GF(125, 'a'), 3, 1)], base_ring=QQ)
Traceback (most recent call last):
...
TypeError: unable to convert 0 to a rational

class sage.homology.chain_complex.ChainComplex_class(grading_group, degree_of_differential,
base_ring, differentials)

Bases: Parent

See ChainComplex() for full documentation.

The differentials are required to be in the following canonical form:

• All differentials that are not 0 × 0 must be specified (even if they have zero rows or zero columns), and

• Differentials that are 0 × 0 must not be specified.

• Immutable matrices over the base_ring

This and more is ensured by the assertions in the constructor. The ChainComplex() factory function must
ensure that only valid input is passed.

EXAMPLES:

sage: C = ChainComplex(); C
Trivial chain complex over Integer Ring

sage: D = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: D
Chain complex with at most 2 nonzero terms over Integer Ring

5

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Chain complexes and homology, Release 9.8

Element

alias of Chain_class

betti(deg=None, base_ring=None)
The Betti number of the chain complex.

That is, write the homology in this degree as a direct sum of a free module and a torsion module; the Betti
number is the rank of the free summand.

INPUT:

• deg – an element of the grading group for the chain complex or None (default None); if None, then
return every Betti number, as a dictionary indexed by degree, or if an element of the grading group,
then return the Betti number in that degree

• base_ring – a commutative ring (optional, default is the base ring for the chain complex); compute
homology with these coefficients – must be either the integers or a field

OUTPUT:

The Betti number in degree deg – the rank of the free part of the homology module in this degree.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.betti(0)
2
sage: [C.betti(n) for n in range(5)]
[2, 1, 0, 0, 0]
sage: C.betti()
{0: 2, 1: 1}

sage: D = ChainComplex({0:matrix(GF(5), [[3, 1],[1, 2]])})
sage: D.betti()
{0: 1, 1: 1}

cartesian_product(*factors, **kwds)
Return the direct sum (Cartesian product) of self with D.

Let 𝐶 and 𝐷 be two chain complexes with differentials 𝜕𝐶 and 𝜕𝐷, respectively, of the same degree (so
they must also have the same grading group). The direct sum 𝑆 = 𝐶 ⊕ 𝐷 is a chain complex given by
𝑆𝑖 = 𝐶𝑖 ⊕𝐷𝑖 with differential 𝜕 = 𝜕𝐶 ⊕ 𝜕𝐷.

INPUT:

• subdivide – (default: False) whether to subdivide the the differential matrices

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: C = ChainComplex([matrix([[-y],[x]]), matrix([[x, y]])])
sage: D = ChainComplex([matrix([[x-y]]), matrix([[0], [0]])])
sage: ascii_art(C.cartesian_product(D))

[x y 0] [-y 0]
[0 0 0] [x 0]
[0 0 0] [0 x - y]

0 <-- C_2 <-------- C_1 <-------------- C_0 <-- 0

sage: D = ChainComplex({1:matrix([[x-y]]), 4:matrix([[x], [y]])})
(continues on next page)

6 Chapter 1. Chain complexes

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: ascii_art(D)
[x]
[y] [x - y]

0 <-- C_5 <---- C_4 <-- 0 <-- C_2 <-------- C_1 <-- 0
sage: ascii_art(cartesian_product([C, D]))

[-y]
[x] [x y 0] [x]
[y] [0 0 x - y] [0]

0 <-- C_5 <---- C_4 <-- 0 <-- C_2 <-------------------- C_1 <----- C_0 <-- 0

The degrees of the differentials must agree:

sage: C = ChainComplex({1:matrix([[x]])}, degree_of_differential=-1)
sage: D = ChainComplex({1:matrix([[x]])}, degree_of_differential=1)
sage: C.cartesian_product(D)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match

degree_of_differential()

Return the degree of the differentials of the complex

OUTPUT:

An element of the grading group.

EXAMPLES:

sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.degree_of_differential()
1

differential(dim=None)
The differentials which make up the chain complex.

INPUT:

• dim – element of the grading group (optional, default None); if this is None, return a dictionary of all
of the differentials, or if this is a single element, return the differential starting in that dimension

OUTPUT:

Either a dictionary of all of the differentials or a single differential (i.e., a matrix).

EXAMPLES:

sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.differential(0)
[1 0]
[0 2]
sage: D.differential(-1)
[]
sage: C = ChainComplex({0: identity_matrix(ZZ, 40)})
sage: diff = C.differential()
sage: diff[-1]
40 x 0 dense matrix over Integer Ring (use the '.str()' method to see the␣

(continues on next page)

7

Chain complexes and homology, Release 9.8

(continued from previous page)

→˓entries)
sage: diff[0]
40 x 40 dense matrix over Integer Ring (use the '.str()' method to see the␣
→˓entries)
sage: diff[1]
[]

dual()

The dual chain complex to self.

Since all modules in self are free of finite rank, the dual in dimension 𝑛 is isomorphic to the original
chain complex in dimension 𝑛, and the corresponding boundary matrix is the transpose of the matrix in the
original complex. This converts a chain complex to a cochain complex and vice versa.

EXAMPLES:

sage: C = ChainComplex({2: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.degree_of_differential()
1
sage: C.differential(2)
[3 0 0]
[0 0 0]
sage: C.dual().degree_of_differential()
-1
sage: C.dual().differential(3)
[3 0]
[0 0]
[0 0]

free_module(degree=None)
Return the free module at fixed degree, or their sum.

INPUT:

• degree – an element of the grading group or None (default).

OUTPUT:

The free module 𝐶𝑛 at the given degree 𝑛. If the degree is not specified, the sum
⨁︀

𝐶𝑛 is returned.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]), 1: matrix(ZZ,␣
→˓[[0, 1]])})
sage: C.free_module()
Ambient free module of rank 6 over the principal ideal domain Integer Ring
sage: C.free_module(0)
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: C.free_module(1)
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: C.free_module(2)
Ambient free module of rank 1 over the principal ideal domain Integer Ring

free_module_rank(degree)
Return the rank of the free module at the given degree.

INPUT:

8 Chapter 1. Chain complexes

Chain complexes and homology, Release 9.8

• degree – an element of the grading group

OUTPUT:

Integer. The rank of the free module 𝐶𝑛 at the given degree 𝑛.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]), 1: matrix(ZZ,␣
→˓[[0, 1]])})
sage: [C.free_module_rank(i) for i in range(-2, 5)]
[0, 0, 3, 2, 1, 0, 0]

grading_group()

Return the grading group.

OUTPUT:

The discrete abelian group that indexes the individual modules of the complex. Usually Z.

EXAMPLES:

sage: G = AdditiveAbelianGroup([0, 3])
sage: C = ChainComplex(grading_group=G, degree=G(vector([1,2])))
sage: C.grading_group()
Additive abelian group isomorphic to Z + Z/3
sage: C.degree_of_differential()
(1, 2)

homology(deg=None, base_ring=None, generators=False, verbose=False, algorithm='pari')
The homology of the chain complex.

INPUT:

• deg – an element of the grading group for the chain complex (default: None); the degree in which to
compute homology – if this is None, return the homology in every degree in which the chain complex
is possibly nonzero.

• base_ring – a commutative ring (optional, default is the base ring for the chain complex); must be
either the integers Z or a field

• generators – boolean (optional, default False); if True, return generators for the homology groups
along with the groups. See trac ticket #6100

• verbose - boolean (optional, default False); if True, print some messages as the homology is com-
puted

• algorithm - string (optional, default 'pari'); the options are:

– 'auto'

– 'dhsw'

– 'pari'

– 'chomp' (this option is deprecated)

See below for descriptions.

OUTPUT:

If the degree is specified, the homology in degree deg. Otherwise, the homology in every dimension as a
dictionary indexed by dimension.

9

https://trac.sagemath.org/6100

Chain complexes and homology, Release 9.8

ALGORITHM:

Over a field, just compute ranks and nullities, thus obtaining dimensions of the homology groups as vector
spaces. Over the integers, compute Smith normal form of the boundary matrices defining the chain complex
according to the value of algorithm. If algorithm is 'auto', then for each relatively small matrix, use
the standard Sage method, which calls the Pari package. For any large matrix, reduce it using the Dumas,
Heckenbach, Saunders, and Welker elimination algorithm [DHSW2003]: see dhsw_snf() for details.

'no_chomp' is a synonym for 'auto', maintained for backward-compatibility.

algorithm may also be 'pari' or 'dhsw', which forces the named algorithm to be used regardless of
the size of the matrices.

Finally, if algorithm is set to 'chomp', then use CHomP. CHomP is available at the web page http:
//chomp.rutgers.edu/, although the software has not been tested recently in Sage. The use of this option is
deprecated; see trac ticket #33777.

As of this writing, 'pari' is the fastest standard option.

Warning: This only works if the base ring is the integers or a field. Other values will return an error.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.homology()
{0: Z x Z, 1: Z x C3}
sage: C.homology(deg=1, base_ring = GF(3))
Vector space of dimension 2 over Finite Field of size 3
sage: D = ChainComplex({0: identity_matrix(ZZ, 4), 4: identity_matrix(ZZ, 30)})
sage: D.homology()
{0: 0, 1: 0, 4: 0, 5: 0}

Generators: generators are given as a list of cycles, each of which is an element in the appropriate free
module, and hence is represented as a vector. Each summand of the homology is listed separately, with a
corresponding generator:

sage: C.homology(1, generators=True)
[(C3, Chain(1:(1, 0))), (Z, Chain(1:(0, 1)))]

Tests for trac ticket #6100, the Klein bottle with generators:

sage: d0 = matrix(ZZ, 0,1)
sage: d1 = matrix(ZZ, 1,3, [[0,0,0]])
sage: d2 = matrix(ZZ, 3,2, [[1,1], [1,-1], [-1,1]])
sage: C_k = ChainComplex({0:d0, 1:d1, 2:d2}, degree=-1)
sage: C_k.homology(generators=true)
{0: [(Z, Chain(0:(1)))],
1: [(C2, Chain(1:(0, 1, -1))), (Z, Chain(1:(0, 1, 0)))],
2: []}

From a torus using a field:

sage: T = simplicial_complexes.Torus()
sage: C_t = T.chain_complex()
sage: C_t.homology(base_ring=QQ, generators=True)

(continues on next page)

10 Chapter 1. Chain complexes

http://chomp.rutgers.edu/
http://chomp.rutgers.edu/
https://trac.sagemath.org/33777
https://trac.sagemath.org/6100

Chain complexes and homology, Release 9.8

(continued from previous page)

{0: [(Vector space of dimension 1 over Rational Field,
Chain(0:(0, 0, 0, 0, 0, 0, 1)))],

1: [(Vector space of dimension 1 over Rational Field,
Chain(1:(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1))),

(Vector space of dimension 1 over Rational Field,
Chain(1:(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0)))],

2: [(Vector space of dimension 1 over Rational Field,
Chain(2:(1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1)))]}

nonzero_degrees()

Return the degrees in which the module is non-trivial.

See also ordered_degrees().

OUTPUT:

The tuple containing all degrees 𝑛 (grading group elements) such that the module 𝐶𝑛 of the chain is non-
trivial.

EXAMPLES:

sage: one = matrix(ZZ, [[1]])
sage: D = ChainComplex({0: one, 2: one, 6:one})
sage: ascii_art(D)

[1] [1] [0] [1]
0 <-- C_7 <---- C_6 <-- 0 ... 0 <-- C_3 <---- C_2 <---- C_1 <---- C_0 <-- 0
sage: D.nonzero_degrees()
(0, 1, 2, 3, 6, 7)

ordered_degrees(start=None, exclude_first=False)
Sort the degrees in the order determined by the differential

INPUT:

• start – (default: None) a degree (element of the grading group) or None

• exclude_first – boolean (optional; default: False); whether to exclude the lowest degree – this is
a handy way to just get the degrees of the non-zero modules, as the domain of the first differential is
zero.

OUTPUT:

If start has been specified, the longest tuple of degrees

• containing start (unless start would be the first and exclude_first=True),

• in ascending order relative to degree_of_differential(), and

• such that none of the corresponding differentials are 0 × 0.

If start has not been specified, a tuple of such tuples of degrees. One for each sequence of non-zero
differentials. They are returned in sort order.

EXAMPLES:

sage: one = matrix(ZZ, [[1]])
sage: D = ChainComplex({0: one, 2: one, 6:one})
sage: ascii_art(D)

[1] [1] [0] [1]
(continues on next page)

11

Chain complexes and homology, Release 9.8

(continued from previous page)

0 <-- C_7 <---- C_6 <-- 0 ... 0 <-- C_3 <---- C_2 <---- C_1 <---- C_0 <-- 0
sage: D.ordered_degrees()
((-1, 0, 1, 2, 3), (5, 6, 7))
sage: D.ordered_degrees(exclude_first=True)
((0, 1, 2, 3), (6, 7))
sage: D.ordered_degrees(6)
(5, 6, 7)
sage: D.ordered_degrees(5, exclude_first=True)
(6, 7)

random_element()

Return a random element.

EXAMPLES:

sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.random_element() # random output
Chain with 1 nonzero terms over Integer Ring

rank(degree, ring=None)
Return the rank of a differential

INPUT:

• degree – an element 𝛿 of the grading group. Which differential 𝑑𝛿 we want to know the rank of

• ring – (optional) a commutative ring 𝑆; if specified, the rank is computed after changing to this ring

OUTPUT:

The rank of the differential 𝑑𝛿 ⊗𝑅 𝑆, where 𝑅 is the base ring of the chain complex.

EXAMPLES:

sage: C = ChainComplex({0:matrix(ZZ, [[2]])})
sage: C.differential(0)
[2]
sage: C.rank(0)
1
sage: C.rank(0, ring=GF(2))
0

shift(n=1)
Shift this chain complex 𝑛 times.

INPUT:

• n – an integer (optional, default 1)

The shift operation is also sometimes called translation or suspension.

To shift a chain complex by 𝑛, shift its entries up by 𝑛 (if it is a chain complex) or down by 𝑛 (if it is a
cochain complex); that is, shifting by 1 always shifts in the opposite direction of the differential. In symbols,
if 𝐶 is a chain complex and 𝐶[𝑛] is its 𝑛-th shift, then 𝐶[𝑛]𝑗 = 𝐶𝑗−𝑛. The differential in the shift 𝐶[𝑛] is
obtained by multiplying each differential in 𝐶 by (−1)𝑛.

Caveat: different sources use different conventions for shifting: what we call 𝐶[𝑛] might be called 𝐶[−𝑛]
in some places. See for example. https://ncatlab.org/nlab/show/suspension+of+a+chain+complex (which
uses 𝐶[𝑛] as we do but acknowledges 𝐶[−𝑛]) or 1.2.8 in [Wei1994] (which uses 𝐶[−𝑛]).

12 Chapter 1. Chain complexes

https://ncatlab.org/nlab/show/suspension+of+a+chain+complex

Chain complexes and homology, Release 9.8

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1).chain_complex()
sage: S1.shift(1).differential(2) == -S1.differential(1)
True
sage: S1.shift(2).differential(3) == S1.differential(1)
True
sage: S1.shift(3).homology(4)
Z

For cochain complexes, shifting goes in the other direction. Topologically, this makes sense if we grade the
cochain complex for a space negatively:

sage: T = simplicial_complexes.Torus()
sage: co_T = T.chain_complex()._flip_()
sage: co_T.homology()
{-2: Z, -1: Z x Z, 0: Z}
sage: co_T.degree_of_differential()
1
sage: co_T.shift(2).homology()
{-4: Z, -3: Z x Z, -2: Z}

You can achieve the same result by tensoring (on the left, to get the signs right) with a rank one free module
in degree -n * deg, if deg is the degree of the differential:

sage: C = ChainComplex({-2: matrix(ZZ, 0, 1)})
sage: C.tensor(co_T).homology()
{-4: Z, -3: Z x Z, -2: Z}

tensor(*factors, **kwds)
Return the tensor product of self with D.

Let 𝐶 and 𝐷 be two chain complexes with differentials 𝜕𝐶 and 𝜕𝐷, respectively, of the same degree (so
they must also have the same grading group). The tensor product 𝑆 = 𝐶 ⊗𝐷 is a chain complex given by

𝑆𝑖 =
⨁︁

𝑎+𝑏=𝑖

𝐶𝑎 ⊗𝐷𝑏

with differential

𝜕(𝑥⊗ 𝑦) = 𝜕𝐶𝑥⊗ 𝑦 + (−1)|𝑎|·|𝜕𝐷|𝑥⊗ 𝜕𝐷𝑦

for 𝑥 ∈ 𝐶𝑎 and 𝑦 ∈ 𝐷𝑏, where |𝑎| is the degree of 𝑎 and |𝜕𝐷| is the degree of 𝜕𝐷.

Warning: If the degree of the differential is even, then this may not result in a valid chain complex.

INPUT:

• subdivide – (default: False) whether to subdivide the the differential matrices

Todo: Make subdivision work correctly on multiple factors.

EXAMPLES:

13

Chain complexes and homology, Release 9.8

sage: R.<x,y,z> = QQ[]
sage: C1 = ChainComplex({1:matrix([[x]])}, degree_of_differential=-1)
sage: C2 = ChainComplex({1:matrix([[y]])}, degree_of_differential=-1)
sage: C3 = ChainComplex({1:matrix([[z]])}, degree_of_differential=-1)
sage: ascii_art(C1.tensor(C2))

[x]
[y x] [-y]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: ascii_art(C1.tensor(C2).tensor(C3))

[y x 0] [x]
[-z 0 x] [-y]

[z y x] [0 -z -y] [z]
0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0

sage: C = ChainComplex({2:matrix([[-y],[x]]), 1:matrix([[x, y]])},
....: degree_of_differential=-1); ascii_art(C)

[-y]
[x y] [x]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: T = C.tensor(C)
sage: T.differential(1)
[x y x y]
sage: T.differential(2)
[-y x 0 y 0 0]
[x 0 x 0 y 0]
[0 -x -y 0 0 -y]
[0 0 0 -x -y x]
sage: T.differential(3)
[x y 0 0]
[y 0 -y 0]
[-x 0 0 -y]
[0 y x 0]
[0 -x 0 x]
[0 0 x y]
sage: T.differential(4)
[-y]
[x]
[-y]
[x]

The degrees of the differentials must agree:

sage: C1p = ChainComplex({1:matrix([[x]])}, degree_of_differential=1)
sage: C1.tensor(C1p)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match

torsion_list(max_prime, min_prime=2)
Look for torsion in this chain complex by computing its mod 𝑝 homology for a range of primes 𝑝.

INPUT:

• max_prime – prime number; search for torsion mod 𝑝 for all 𝑝 strictly less than this number

14 Chapter 1. Chain complexes

Chain complexes and homology, Release 9.8

• min_prime – prime (optional, default 2); search for torsion mod 𝑝 for primes at least as big as this

Return a list of pairs (𝑝, 𝑑) where 𝑝 is a prime at which there is torsion and 𝑑 is a list of dimensions in which
this torsion occurs.

The base ring for the chain complex must be the integers; if not, an error is raised.

ALGORITHM:

let𝐶 denote the chain complex. Let 𝑃 equal max_prime. Compute the mod 𝑃 homology of𝐶, and use this
as the base-line computation: the assumption is that this is isomorphic to the integral homology tensored
with F𝑃 . Then compute the mod 𝑝 homology for a range of primes 𝑝, and record whenever the answer
differs from the base-line answer.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.homology()
{0: Z x Z, 1: Z x C3}
sage: C.torsion_list(11)
[(3, [1])]
sage: C = ChainComplex([matrix(ZZ, 1, 1, [2]), matrix(ZZ, 1, 1), matrix(1, 1,␣
→˓[3])])
sage: C.homology(1)
C2
sage: C.homology(3)
C3
sage: C.torsion_list(5)
[(2, [1]), (3, [3])]

class sage.homology.chain_complex.Chain_class(parent, vectors, check=True)
Bases: ModuleElement

A Chain in a Chain Complex

A chain is collection of module elements for each module 𝐶𝑛 of the chain complex (𝐶𝑛, 𝑑𝑛). There is no
restriction on how the differentials 𝑑𝑛 act on the elements of the chain.

Note: You must use the chain complex to construct chains.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])}, base_ring=GF(7))
sage: C.category()
Category of chain complexes over Finite Field of size 7

is_boundary()

Return whether the chain is a boundary.

OUTPUT:

Boolean. Whether the elements of the chain are in the image of the differentials.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0:vector([0, 1, 2]), 1:vector([3, 4])})

(continues on next page)

15

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: c.is_boundary()
False
sage: z3 = C({1:(1, 0)})
sage: z3.is_cycle()
True
sage: (2*z3).is_boundary()
False
sage: (3*z3).is_boundary()
True

is_cycle()

Return whether the chain is a cycle.

OUTPUT:

Boolean. Whether the elements of the chain are in the kernel of the differentials.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0:vector([0, 1, 2]), 1:vector([3, 4])})
sage: c.is_cycle()
True

vector(degree)
Return the free module element in degree.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0:vector([1, 2, 3]), 1:vector([4, 5])})
sage: c.vector(0)
(1, 2, 3)
sage: c.vector(1)
(4, 5)
sage: c.vector(2)
()

16 Chapter 1. Chain complexes

CHAPTER

TWO

CHAINS AND COCHAINS

This module implements formal linear combinations of cells of a given cell complex (Chains) and their dual
(Cochains). It is closely related to the sage.topology.chain_complex module. The main differences are that
chains and cochains here are of homogeneous dimension only, and that they reference their cell complex.

class sage.homology.chains.CellComplexReference(cell_complex, degree, cells=None)
Bases: object

Auxiliary base class for chains and cochains

INPUT:

• cell_complex – The cell complex to reference

• degree – integer. The degree of the (co)chains

• cells – tuple of cells or None. Does not necessarily have to be the cells in the given degree, for compu-
tational purposes this could also be any collection that is in one-to-one correspondence with the cells. If
None, the cells of the complex in the given degree are used.

EXAMPLES:

sage: X = simplicial_complexes.Simplex(2)
sage: from sage.homology.chains import CellComplexReference
sage: c = CellComplexReference(X, 1)
sage: c.cell_complex() is X
True

cell_complex()

Return the underlying cell complex

OUTPUT:

A cell complex.

EXAMPLES:

sage: X = simplicial_complexes.Simplex(2)
sage: X.n_chains(1).cell_complex() is X
True

degree()

Return the dimension of the cells

OUTPUT:

Integer. The dimension of the cells.

17

Chain complexes and homology, Release 9.8

EXAMPLES:

sage: X = simplicial_complexes.Simplex(2)
sage: X.n_chains(1).degree()
1

class sage.homology.chains.Chains(cell_complex, degree, cells=None, base_ring=None)
Bases: CellComplexReference, CombinatorialFreeModule

Class for the free module of chains in a given degree.

INPUT:

• n_cells – tuple of 𝑛-cells, which thus forms a basis for this module

• base_ring – optional (default Z)

One difference between chains and cochains is notation. In a simplicial complex, for example, a simplex (0,1,2)
is written as “(0,1,2)” in the group of chains but as “\chi_(0,1,2)” in the group of cochains.

Also, since the free modules of chains and cochains are dual, there is a pairing ⟨𝑐, 𝑧⟩, sending a cochain 𝑐 and a
chain 𝑧 to a scalar.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6

class Element

Bases: IndexedFreeModuleElement

boundary()

Return the boundary of the chain

OUTPUT:

The boundary as a chain in one degree lower.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - 2 * C1(Cube([[0, 1], [0, 0]]))
sage: chain
-2*[0,1] x [0,0] + [1,1] x [0,1]

(continues on next page)

18 Chapter 2. Chains and cochains

../../../../../../html/en/reference/combinat/sage/combinat/free_module.html#sage.combinat.free_module.CombinatorialFreeModule
../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: chain.boundary()
2*[0,0] x [0,0] - 3*[1,1] x [0,0] + [1,1] x [1,1]

is_boundary()

Test whether the chain is a boundary

OUTPUT:

Boolean. Whether the chain is the boundary() of a chain in one degree higher.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: chain.is_boundary()
False

is_cycle()

Test whether the chain is a cycle

OUTPUT:

Boolean. Whether the boundary() vanishes.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: chain.is_cycle()
False

to_complex()

Return the corresponding chain complex element

OUTPUT:

An element of the chain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]]))
sage: chain.to_complex()
Chain(1:(0, 0, 0, 1))
sage: ascii_art(_)

d_0 [0] d_1 [0] d_2 d_3
0 <---- [0] <---- [0] <---- [0] <---- 0

[0] [0]
[0] [1]

19

Chain complexes and homology, Release 9.8

chain_complex()

Return the chain complex.

OUTPUT:

Chain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: CC = square.n_chains(2, QQ).chain_complex(); CC
Chain complex with at most 3 nonzero terms over Rational Field
sage: ascii_art(CC)

[-1 -1 0 0] [-1]
[1 0 -1 0] [1]
[0 1 0 -1] [-1]
[0 0 1 1] [1]

0 <-- C_0 <-------------- C_1 <----- C_2 <-- 0

dual()

Return the cochains.

OUTPUT:

The cochains of the same cells with the same base ring.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: chains = square.n_chains(1, ZZ); chains
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1] x␣
→˓[0,1]} over Integer Ring
sage: chains.dual()
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1] x␣
→˓[0,1]} over Integer Ring
sage: type(chains)
<class 'sage.homology.chains.Chains_with_category'>
sage: type(chains.dual())
<class 'sage.homology.chains.Cochains_with_category'>

class sage.homology.chains.Cochains(cell_complex, degree, cells=None, base_ring=None)
Bases: CellComplexReference, CombinatorialFreeModule

Class for the free module of cochains in a given degree.

INPUT:

• n_cells – tuple of 𝑛-cells, which thus forms a basis for this module

• base_ring – optional (default Z)

One difference between chains and cochains is notation. In a simplicial complex, for example, a simplex (0,1,2)
is written as “(0,1,2)” in the group of chains but as “\chi_(0,1,2)” in the group of cochains.

Also, since the free modules of chains and cochains are dual, there is a pairing ⟨𝑐, 𝑧⟩, sending a cochain 𝑐 and a
chain 𝑧 to a scalar.

EXAMPLES:

20 Chapter 2. Chains and cochains

../../../../../../html/en/reference/combinat/sage/combinat/free_module.html#sage.combinat.free_module.CombinatorialFreeModule

Chain complexes and homology, Release 9.8

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6

class Element

Bases: IndexedFreeModuleElement

coboundary()

Return the coboundary of this cochain

OUTPUT:

The coboundary as a cochain in one degree higher.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - 2 * C1(Cube([[0, 1], [0, 0]]))
sage: cochain
-2*\chi_[0,1] x [0,0] + \chi_[1,1] x [0,1]
sage: cochain.coboundary()
-\chi_[0,1] x [0,1]

cup_product(cochain)
Return the cup product with another cochain.

INPUT:
• cochain – cochain over the same cell complex

EXAMPLES:

sage: T2 = simplicial_complexes.Torus()
sage: C1 = T2.n_chains(1, base_ring=ZZ, cochains=True)
sage: def l(i, j):
....: return C1(Simplex([i, j]))
sage: l1 = l(1, 3) + l(1, 4) + l(1, 6) + l(2, 4) - l(4, 5) + l(5, 6)
sage: l2 = l(1, 6) - l(2, 3) - l(2, 5) + l(3, 6) - l(4, 5) + l(5, 6)

The two one-cocycles are cohomology generators:

sage: l1.is_cocycle(), l1.is_coboundary()
(True, False)

(continues on next page)

21

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: l2.is_cocycle(), l2.is_coboundary()
(True, False)

Their cup product is a two-cocycle that is again non-trivial in cohomology:

sage: l12 = l1.cup_product(l2)
sage: l12
\chi_(1, 3, 6) - \chi_(2, 4, 5) - \chi_(4, 5, 6)
sage: l1.parent().degree(), l2.parent().degree(), l12.parent().degree()
(1, 1, 2)
sage: l12.is_cocycle(), l12.is_coboundary()
(True, False)

eval(other)
Evaluate this cochain on the chain other.

INPUT:
• other – a chain for the same cell complex in the same dimension with the same base ring

OUTPUT: scalar

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6

is_coboundary()

Test whether the cochain is a coboundary

OUTPUT:

Boolean. Whether the cochain is the coboundary() of a cochain in one degree lower.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: cochain.is_coboundary()
True

22 Chapter 2. Chains and cochains

Chain complexes and homology, Release 9.8

is_cocycle()

Test whether the cochain is a cocycle

OUTPUT:

Boolean. Whether the coboundary() vanishes.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: cochain.is_cocycle()
True

to_complex()

Return the corresponding cochain complex element

OUTPUT:

An element of the cochain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]]))
sage: cochain.to_complex()
Chain(1:(0, 0, 0, 1))
sage: ascii_art(_)

d_2 d_1 [0] d_0 [0] d_-1
0 <---- [0] <---- [0] <---- [0] <----- 0

[0] [0]
[1] [0]

cochain_complex()

Return the cochain complex.

OUTPUT:

Cochain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C2 = square.n_chains(2, QQ, cochains=True)
sage: C2.cochain_complex()
Chain complex with at most 3 nonzero terms over Rational Field
sage: ascii_art(C2.cochain_complex())

[-1 1 0 0]
[-1 0 1 0]
[0 -1 0 1]

[-1 1 -1 1] [0 0 -1 1]
0 <-- C_2 <-------------- C_1 <-------------- C_0 <-- 0

23

Chain complexes and homology, Release 9.8

dual()

Return the chains

OUTPUT:

The chains of the same cells with the same base ring.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: cochains = square.n_chains(1, ZZ, cochains=True); cochains
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1] x␣
→˓[0,1]} over Integer Ring
sage: cochains.dual()
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1] x␣
→˓[0,1]} over Integer Ring
sage: type(cochains)
<class 'sage.homology.chains.Cochains_with_category'>
sage: type(cochains.dual())
<class 'sage.homology.chains.Chains_with_category'>

24 Chapter 2. Chains and cochains

CHAPTER

THREE

MORPHISMS OF CHAIN COMPLEXES

AUTHORS:

• Benjamin Antieau <d.ben.antieau@gmail.com> (2009.06)

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

This module implements morphisms of chain complexes. The input is a dictionary whose keys are in the grading group
of the chain complex and whose values are matrix morphisms.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: S
Minimal triangulation of the 1-sphere
sage: C = S.chain_complex()
sage: C.differential()
{0: [], 1: [-1 -1 0]
[1 0 -1]
[0 1 1], 2: []}
sage: f = {0:zero_matrix(ZZ,3,3),1:zero_matrix(ZZ,3,3)}
sage: G = Hom(C,C)
sage: x = G(f)
sage: x
Chain complex endomorphism of Chain complex with at most 2 nonzero terms over Integer␣
→˓Ring
sage: x._matrix_dictionary
{0: [0 0 0]
[0 0 0]
[0 0 0], 1: [0 0 0]
[0 0 0]
[0 0 0]}

class sage.homology.chain_complex_morphism.ChainComplexMorphism(matrices, C, D, check=True)
Bases: Morphism

An element of this class is a morphism of chain complexes.

dual()

The dual chain map to this one.

That is, the map from the dual of the codomain of this one to the dual of its domain, represented in each
degree by the transpose of the corresponding matrix.

EXAMPLES:

25

mailto:d.ben.antieau@gmail.com
../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Chain complexes and homology, Release 9.8

sage: X = simplicial_complexes.Simplex(1)
sage: Y = simplicial_complexes.Simplex(0)
sage: g = Hom(X,Y)({0:0, 1:0})
sage: f = g.associated_chain_complex_morphism()
sage: f.in_degree(0)
[1 1]
sage: f.dual()
Chain complex morphism:
From: Chain complex with at most 1 nonzero terms over Integer Ring
To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: f.dual().in_degree(0)
[1]
[1]
sage: ascii_art(f.domain())

[-1]
[1]

0 <-- C_0 <----- C_1 <-- 0
sage: ascii_art(f.dual().codomain())

[-1 1]
0 <-- C_1 <-------- C_0 <-- 0

in_degree(n)
The matrix representing this morphism in degree n

INPUT:

• n – degree

EXAMPLES:

sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f.in_degree(0)
[1]

Note that if the matrix is not specified in the definition of the map, it is assumed to be zero:

sage: f.in_degree(2)
[]
sage: f.in_degree(2).nrows(), f.in_degree(2).ncols()
(1, 0)
sage: C.free_module(2)
Ambient free module of rank 0 over the principal ideal domain Integer Ring
sage: D.free_module(2)
Ambient free module of rank 1 over the principal ideal domain Integer Ring

is_identity()

True if this is the identity map.

EXAMPLES:

sage: S = SimplicialComplex(is_mutable=False)
sage: H = Hom(S,S)
sage: i = H.identity()

(continues on next page)

26 Chapter 3. Morphisms of chain complexes

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: x = i.associated_chain_complex_morphism()
sage: x.is_identity()
True

is_injective()

True if this map is injective.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.associated_chain_complex_morphism().is_injective()
True

sage: pt = simplicial_complexes.Simplex(0)
sage: inclusion = Hom(pt, S1)({0:2})
sage: inclusion.associated_chain_complex_morphism().is_injective()
True
sage: inclusion.associated_chain_complex_morphism(cochain=True).is_injective()
False

is_surjective()

True if this map is surjective.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.associated_chain_complex_morphism().is_surjective()
True

sage: pt = simplicial_complexes.Simplex(0)
sage: inclusion = Hom(pt, S1)({0:2})
sage: inclusion.associated_chain_complex_morphism().is_surjective()
False
sage: inclusion.associated_chain_complex_morphism(cochain=True).is_surjective()
True

to_matrix(deg=None)
The matrix representing this chain map.

If the degree deg is specified, return the matrix in that degree; otherwise, return the (block) matrix for the
whole chain map.

INPUT:

• deg – (optional, default None) the degree

EXAMPLES:

sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})

(continues on next page)

27

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: f.to_matrix(0)
[1]
sage: f.to_matrix()
[1|0|]
[-+-+]
[0|0|]
[-+-+]
[0|0|]

sage.homology.chain_complex_morphism.is_ChainComplexMorphism(x)
Return True if and only if x is a chain complex morphism.

EXAMPLES:

sage: from sage.homology.chain_complex_morphism import is_ChainComplexMorphism
sage: S = simplicial_complexes.Sphere(14)
sage: H = Hom(S,S)
sage: i = H.identity() # long time (8s on sage.math, 2011)
sage: S = simplicial_complexes.Sphere(6)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism()
sage: x # indirect doctest
Chain complex morphism:
From: Chain complex with at most 7 nonzero terms over Integer Ring
To: Chain complex with at most 7 nonzero terms over Integer Ring

sage: is_ChainComplexMorphism(x)
True

28 Chapter 3. Morphisms of chain complexes

CHAPTER

FOUR

CHAIN HOMOTOPIES AND CHAIN CONTRACTIONS

Chain homotopies are standard constructions in homological algebra: given chain complexes 𝐶 and 𝐷 and chain maps
𝑓, 𝑔 : 𝐶 → 𝐷, say with differential of degree −1, a chain homotopy 𝐻 between 𝑓 and 𝑔 is a collection of maps
𝐻𝑛 : 𝐶𝑛 → 𝐷𝑛+1 satisfying

𝜕𝐷𝐻 + 𝐻𝜕𝐶 = 𝑓 − 𝑔.

The presence of a chain homotopy defines an equivalence relation (chain homotopic) on chain maps. If 𝑓 and 𝑔 are
chain homotopic, then one can show that 𝑓 and 𝑔 induce the same map on homology.

Chain contractions are not as well known. The papers [MAR2009], [RMA2009], and [PR2015] provide some refer-
ences. Given two chain complexes 𝐶 and 𝐷, a chain contraction is a chain homotopy 𝐻 : 𝐶 → 𝐶 for which there are
chain maps 𝜋 : 𝐶 → 𝐷 (“projection”) and 𝜄 : 𝐷 → 𝐶 (“inclusion”) such that

• 𝐻 is a chain homotopy between 1𝐶 and 𝜄𝜋,

• 𝜋𝜄 = 1𝐷,

• 𝜋𝐻 = 0,

• 𝐻𝜄 = 0,

• 𝐻𝐻 = 0.

Such a chain homotopy provides a strong relation between the chain complexes 𝐶 and 𝐷; for example, their homology
groups are isomorphic.

class sage.homology.chain_homotopy.ChainContraction(matrices, pi, iota)
Bases: ChainHomotopy

A chain contraction.

An algebraic gradient vector field 𝐻 : 𝐶 → 𝐶 (that is a chain homotopy satisfying 𝐻𝐻 = 0) for which there
are chain maps 𝜋 : 𝐶 → 𝐷 (“projection”) and 𝜄 : 𝐷 → 𝐶 (“inclusion”) such that

• 𝐻 is a chain homotopy between 1𝐶 and 𝜄𝜋,

• 𝜋𝜄 = 1𝐷,

• 𝜋𝐻 = 0,

• 𝐻𝜄 = 0.

H is defined by a dictionary matrices of matrices.

INPUT:

• matrices – dictionary of matrices, keyed by dimension

• pi – a chain map 𝐶 → 𝐷

• iota – a chain map 𝐷 → 𝐶

29

Chain complexes and homology, Release 9.8

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainContraction
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)})

The chain complex 𝐶 is chain homotopy equivalent to 𝐷, which is just a copy of Z in degree 0, and we construct
a chain contraction:

sage: pi = Hom(C,D)({0: identity_matrix(ZZ, 1)})
sage: iota = Hom(D,C)({0: identity_matrix(ZZ, 1)})
sage: H = ChainContraction({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2:␣
→˓identity_matrix(ZZ, 1)}, pi, iota)

dual()

The chain contraction dual to this one.

This is useful when switching from homology to cohomology.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: phi, M = S2.algebraic_topological_model(QQ)
sage: phi.iota()
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

Lifting the degree zero homology class gives a single vertex, but the degree zero cohomology class needs
to be detected on every vertex, and vice versa for degree 2:

sage: phi.iota().in_degree(0)
[0]
[0]
[0]
[1]
sage: phi.dual().iota().in_degree(0)
[1]
[1]
[1]
[1]
sage: phi.iota().in_degree(2)
[-1]
[1]
[-1]
[1]
sage: phi.dual().iota().in_degree(2)
[0]
[0]
[0]
[1]

iota()

The chain map 𝜄 associated to this chain contraction.

EXAMPLES:

30 Chapter 4. Chain homotopies and chain contractions

Chain complexes and homology, Release 9.8

sage: S2 = simplicial_complexes.Sphere(2)
sage: phi, M = S2.algebraic_topological_model(QQ)
sage: phi.iota()
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

Lifting the degree zero homology class gives a single vertex:

sage: phi.iota().in_degree(0)
[0]
[0]
[0]
[1]

Lifting the degree two homology class gives the signed sum of all of the 2-simplices:

sage: phi.iota().in_degree(2)
[-1]
[1]
[-1]
[1]

pi()

The chain map 𝜋 associated to this chain contraction.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: phi, M = S2.algebraic_topological_model(QQ)
sage: phi.pi()
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

sage: phi.pi().in_degree(0) # Every vertex represents a homology class.
[1 1 1 1]
sage: phi.pi().in_degree(1) # No homology in degree 1.
[]

The degree 2 homology generator is detected on a single simplex:

sage: phi.pi().in_degree(2)
[0 0 0 1]

class sage.homology.chain_homotopy.ChainHomotopy(matrices, f, g=None)
Bases: Morphism

A chain homotopy.

A chain homotopy 𝐻 between chain maps 𝑓, 𝑔 : 𝐶 → 𝐷 is a sequence of maps 𝐻𝑛 : 𝐶𝑛 → 𝐷𝑛+1 (if the chain
complexes are graded homologically) satisfying

𝜕𝐷𝐻 + 𝐻𝜕𝐶 = 𝑓 − 𝑔.

INPUT:

31

../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Chain complexes and homology, Release 9.8

• matrices – dictionary of matrices, keyed by dimension

• f – chain map 𝐶 → 𝐷

• g (optional) – chain map 𝐶 → 𝐷

The dictionary matrices defines H by specifying the matrix defining it in each degree: the entry𝑚 corresponding
to key 𝑖 gives the linear transformation 𝐶𝑖 → 𝐷𝑖+1.

If 𝑓 is specified but not 𝑔, then 𝑔 can be recovered from the defining formula. That is, if 𝑔 is not specified, then
it is defined to be 𝑓 − 𝜕𝐷𝐻 −𝐻𝜕𝐶 .

Note that the degree of the differential on the chain complex 𝐶 must agree with that for 𝐷, and those degrees
determine the “degree” of the chain homotopy map: if the degree of the differential is 𝑑, then the chain homotopy
consists of a sequence of maps 𝐶𝑛 → 𝐶𝑛−𝑑. The keys in the dictionary matrices specify the starting degrees.

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: g = Hom(C,D)({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1)}, f, g)

Note that the maps 𝑓 and 𝑔 are stored in the attributes H._f and H._g:

sage: H._f
Chain complex morphism:
From: Chain complex with at most 2 nonzero terms over Integer Ring
To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: H._f.in_degree(0)
[1]
sage: H._g.in_degree(0)
[0]

A non-example:

sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1)}, f, g)
Traceback (most recent call last):
...
ValueError: the data do not define a valid chain homotopy

dual()

Dual chain homotopy to this one.

That is, if this one is a chain homotopy between chain maps 𝑓, 𝑔 : 𝐶 → 𝐷, then its dual is a chain homotopy
between the dual of 𝑓 and the dual of 𝑔, from 𝐷* to 𝐶*. It is represented in each degree by the transpose
of the corresponding matrix.

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
sage: f = Hom(C, D)({})
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
sage: H.in_degree(1)

(continues on next page)

32 Chapter 4. Chain homotopies and chain contractions

Chain complexes and homology, Release 9.8

(continued from previous page)

[3 1]
sage: H.dual().in_degree(0)
[3]
[1]

in_degree(n)
The matrix representing this chain homotopy in degree n.

INPUT:

• n – degree

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
sage: f = Hom(C, D)({})
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
sage: H.in_degree(1)
[3 1]

This returns an appropriately sized zero matrix if the chain homotopy is not defined in degree n:

sage: H.in_degree(-3)
[]

is_algebraic_gradient_vector_field()

An algebraic gradient vector field is a linear map 𝐻 : 𝐶 → 𝐶 such that 𝐻𝐻 = 0.

(Some authors also require that 𝐻𝜕𝐻 = 𝐻 , whereas some make this part of the definition of “homology
gradient vector field. We have made the second choice.) See Molina-Abril and Réal [MAR2009] and Réal
and Molina-Abril [RMA2009] for this and related terminology.

See also is_homology_gradient_vector_field().

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})

The chain complex 𝐶 is chain homotopy equivalent to a copy of Z in degree 0. Two chain maps 𝐶 → 𝐶
will be chain homotopic as long as they agree in degree 0.

sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [3]), 2:␣
→˓matrix(ZZ, 1, 1, [3])})
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [2]), 2:␣
→˓matrix(ZZ, 1, 1, [2])})
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2:␣
→˓identity_matrix(ZZ, 1)}, f, g)
sage: H.is_algebraic_gradient_vector_field()
True

A chain homotopy which is not an algebraic gradient vector field:

33

Chain complexes and homology, Release 9.8

sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1),␣
→˓2: identity_matrix(ZZ, 1)}, f, g)
sage: H.is_algebraic_gradient_vector_field()
False

is_homology_gradient_vector_field()

A homology gradient vector field is an algebraic gradient vector field 𝐻 : 𝐶 → 𝐶 (i.e., a chain homotopy
satisfying 𝐻𝐻 = 0) such that 𝜕𝐻𝜕 = 𝜕 and 𝐻𝜕𝐻 = 𝐻 .

See Molina-Abril and Réal [MAR2009] and Réal and Molina-Abril [RMA2009] for this and related termi-
nology.

See also is_algebraic_gradient_vector_field().

EXAMPLES:

sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})

sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [3]), 2:␣
→˓matrix(ZZ, 1, 1, [3])})
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 1, [2]), 2:␣
→˓matrix(ZZ, 1, 1, [2])})
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2:␣
→˓identity_matrix(ZZ, 1)}, f, g)
sage: H.is_homology_gradient_vector_field()
True

34 Chapter 4. Chain homotopies and chain contractions

CHAPTER

FIVE

HOMSPACES BETWEEN CHAIN COMPLEXES

Note that some significant functionality is lacking. Namely, the homspaces are not actually modules over the base ring.
It will be necessary to enrich some of the structure of chain complexes for this to be naturally available. On other hand,
there are various overloaded operators. __mul__ acts as composition. One can __add__, and one can __mul__ with
a ring element on the right.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: T = simplicial_complexes.Torus()
sage: C = S.chain_complex(augmented=True,cochain=True)
sage: D = T.chain_complex(augmented=True,cochain=True)
sage: G = Hom(C,D)
sage: G
Set of Morphisms from Chain complex with at most 4 nonzero terms over Integer Ring to␣
→˓Chain complex with at most 4 nonzero terms over Integer Ring in Category of chain␣
→˓complexes over Integer Ring

sage: S = simplicial_complexes.ChessboardComplex(3,3)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism(augmented=True)
sage: x
Chain complex morphism:
From: Chain complex with at most 4 nonzero terms over Integer Ring
To: Chain complex with at most 4 nonzero terms over Integer Ring

sage: x._matrix_dictionary
{-1: [1], 0: [1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1], 1: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

(continues on next page)

35

Chain complexes and homology, Release 9.8

(continued from previous page)

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1], 2: [1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]}

sage: S = simplicial_complexes.Sphere(2)
sage: A = Hom(S,S)
sage: i = A.identity()
sage: x = i.associated_chain_complex_morphism()
sage: x
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: y = x*4
sage: z = y*y
sage: (y+z)
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: f = x._matrix_dictionary
sage: C = S.chain_complex()
sage: G = Hom(C,C)
sage: w = G(f)
sage: w == x
True

class sage.homology.chain_complex_homspace.ChainComplexHomspace(X, Y, category=None,
base=None, check=True)

Bases: Homset

Class of homspaces of chain complex morphisms.

EXAMPLES:

sage: T = SimplicialComplex([[1,2,3,4],[7,8,9]])
sage: C = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C,C)
sage: G
Set of Morphisms from Chain complex with at most 5 nonzero terms over Integer Ring␣
→˓to Chain complex with at most 5 nonzero terms over Integer Ring in Category of␣
→˓chain complexes over Integer Ring

36 Chapter 5. Homspaces between chain complexes

../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Homset

Chain complexes and homology, Release 9.8

sage.homology.chain_complex_homspace.is_ChainComplexHomspace(x)
Return True if and only if x is a morphism of chain complexes.

EXAMPLES:

sage: from sage.homology.chain_complex_homspace import is_ChainComplexHomspace
sage: T = SimplicialComplex([[1,2,3,4],[7,8,9]])
sage: C = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C,C)
sage: is_ChainComplexHomspace(G)
True

37

Chain complexes and homology, Release 9.8

38 Chapter 5. Homspaces between chain complexes

CHAPTER

SIX

KOSZUL COMPLEXES

class sage.homology.koszul_complex.KoszulComplex(R, elements)
Bases: ChainComplex_class, UniqueRepresentation

A Koszul complex.

Let 𝑅 be a ring and consider 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑅. The Koszul complex 𝐾*(𝑥1, . . . , 𝑥𝑛) is given by defining a
chain complex structure on the exterior algebra

⋀︀𝑛
𝑅 with the basis 𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑎 . The differential is given by

𝜕(𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑎) =

𝑎∑︁
𝑟=1

(−1)𝑟−1𝑥𝑖𝑟𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑟 ∧ · · · ∧ 𝑒𝑖𝑎 ,

where 𝑒𝑖𝑟 denotes the omitted factor.

Alternatively we can describe the Koszul complex by considering the basic complex 𝐾𝑥𝑖

0 → 𝑅
𝑥𝑖−→ 𝑅 → 0.

Then the Koszul complex is given by 𝐾*(𝑥1, . . . , 𝑥𝑛) =
⨂︀

𝑖 𝐾𝑥𝑖
.

INPUT:

• R – the base ring

• elements – a tuple of elements of R

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: K = KoszulComplex(R, [x,y])
sage: ascii_art(K)

[-y]
[x y] [x]

0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: K = KoszulComplex(R, [x,y,z])
sage: ascii_art(K)

[-y -z 0] [z]
[x 0 -z] [-y]

[x y z] [0 x y] [x]
0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0
sage: K = KoszulComplex(R, [x+y*z,x+y-z])
sage: ascii_art(K)

[-x - y + z]
[y*z + x x + y - z] [y*z + x]

0 <-- C_0 <---------------------- C_1 <------------- C_2 <-- 0

39

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Chain complexes and homology, Release 9.8

REFERENCES:

• Wikipedia article Koszul_complex

40 Chapter 6. Koszul Complexes

https://en.wikipedia.org/wiki/Koszul_complex

CHAPTER

SEVEN

HOCHSCHILD COMPLEXES

class sage.homology.hochschild_complex.HochschildComplex(A, M)

Bases: UniqueRepresentation, Parent

The Hochschild complex.

Let 𝐴 be an algebra over a commutative ring 𝑅 such that 𝐴 a projective 𝑅-module, and 𝑀 an 𝐴-bimodule. The
Hochschild complex is the chain complex given by

𝐶𝑛(𝐴,𝑀) := 𝑀 ⊗𝐴⊗𝑛

with the boundary operators given as follows. For fixed 𝑛, define the face maps

𝑓𝑛,𝑖(𝑚⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛) =

⎧⎪⎨⎪⎩
𝑚𝑎1 ⊗ · · · ⊗ 𝑎𝑛 if 𝑖 = 0,

𝑎𝑛𝑚⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛−1 if 𝑖 = 𝑛,

𝑚⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑖𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛 otherwise.

We define the boundary operators as

𝑑𝑛 =

𝑛∑︁
𝑖=0

(−1)𝑖𝑓𝑛,𝑖.

The Hochschild homology of 𝐴 is the homology of this complex. Alternatively, the Hochschild homology can
be described by 𝐻𝐻𝑛(𝐴,𝑀) = Tor𝐴

𝑒

𝑛 (𝐴,𝑀), where 𝐴𝑒 = 𝐴 ⊗ 𝐴𝑜 (𝐴𝑜 is the opposite algebra of 𝐴) is the
enveloping algebra of 𝐴.

Hochschild cohomology is the homology of the dual complex and can be described by 𝐻𝐻𝑛(𝐴,𝑀) =
Ext𝑛𝐴𝑒(𝐴,𝑀).

Another perspective on Hochschild homology is that 𝑓𝑛,𝑖 make the family 𝐶𝑛(𝐴,𝑀) a simplicial object in the
category of 𝑅-modules, and the degeneracy maps are

𝑠𝑖(𝑎0 ⊗ · · · ⊗ 𝑎𝑛) = 𝑎0 ⊗ · · · ⊗ 𝑎𝑖 ⊗ 1 ⊗ 𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛

The Hochschild homology can also be constructed as the homology of this simplicial module.

REFERENCES:

• Wikipedia article Hochschild_homology

• https://ncatlab.org/nlab/show/Hochschild+cohomology

• [Red2001]

41

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
https://en.wikipedia.org/wiki/Hochschild_homology
https://ncatlab.org/nlab/show/Hochschild+cohomology

Chain complexes and homology, Release 9.8

class Element(parent, vectors)
Bases: ModuleElement

A chain of the Hochschild complex.

INPUT:

Can be one of the following:

• A dictionary whose keys are the degree and whose 𝑑-th value is an element in the degree 𝑑 module.

• An element in the coefficient module 𝑀 .

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H(T.an_element())
Chain(0: 2*B['v'])
sage: H({0: T.an_element()})
Chain(0: 2*B['v'])
sage: H({1: H.module(1).an_element()})
Chain(1: 2*B['v'] # [1, 2, 3] + 2*B['v'] # [1, 3, 2] + 3*B['v'] # [2, 1, 3])
sage: H({0: H.module(0).an_element(), 3: H.module(3).an_element()})
Chain with 2 nonzero terms over Rational Field

sage: F.<x,y> = FreeAlgebra(ZZ)
sage: H = F.hochschild_complex(F)
sage: H(x + 2*y^2)
Chain(0: F[x] + 2*F[y^2])
sage: H({0: x*y - x})
Chain(0: -F[x] + F[x*y])
sage: H(2)
Chain(0: 2*F[1])
sage: H({0: x-y, 2: H.module(2).basis().an_element()})
Chain with 2 nonzero terms over Integer Ring

vector(degree)
Return the free module element in degree.

EXAMPLES:

sage: F.<x,y> = FreeAlgebra(ZZ)
sage: H = F.hochschild_complex(F)
sage: a = H({0: x-y, 2: H.module(2).basis().an_element()})
sage: [a.vector(i) for i in range(3)]
[F[x] - F[y], 0, F[1] # F[1] # F[1]]

algebra()

Return the defining algebra of self.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)

(continues on next page)

42 Chapter 7. Hochschild Complexes

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: H.algebra()
Symmetric group algebra of order 3 over Rational Field

boundary(d)
Return the boundary operator in degree d.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: d1 = H.boundary(1)
sage: z = d1.domain().an_element(); z
2*1 # 1 + 2*1 # x + 3*1 # y
sage: d1(z)
0
sage: d1.matrix()
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 2 0 0 -2 0 0 0 0 0 0]

sage: s = SymmetricFunctions(QQ).s()
sage: H = s.hochschild_complex(s)
sage: d1 = H.boundary(1)
sage: x = d1.domain().an_element(); x
2*s[] # s[] + 2*s[] # s[1] + 3*s[] # s[2]
sage: d1(x)
0
sage: y = tensor([s.an_element(), s.an_element()])
sage: d1(y)
0
sage: z = tensor([s[2,1] + s[3], s.an_element()])
sage: d1(z)
0

coboundary(d)
Return the coboundary morphism of degree d.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: del1 = H.coboundary(1)
sage: z = del1.domain().an_element(); z
2 + 2*x + 3*y
sage: del1(z)
0
sage: del1.matrix()
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

(continues on next page)

43

Chain complexes and homology, Release 9.8

(continued from previous page)

[0 0 0 0]
[0 0 0 2]
[0 0 0 0]
[0 0 0 0]
[0 0 0 -2]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

coefficients()

Return the coefficients of self.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.coefficients()
Trivial representation of Standard permutations of 3 over Rational Field

cohomology(d)
Return the d-th cohomology group.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.cohomology(0)
Vector space of dimension 3 over Rational Field
sage: H.cohomology(1)
Vector space of dimension 4 over Rational Field
sage: H.cohomology(2)
Vector space of dimension 6 over Rational Field

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.cohomology(0)
Vector space of dimension 1 over Rational Field
sage: H.cohomology(1)
Vector space of dimension 0 over Rational Field
sage: H.cohomology(2)
Vector space of dimension 0 over Rational Field

When working over general rings (except Z) and we can construct a unitriangular basis for the image
quotient, we fallback to a slower implementation using (combinatorial) free modules:

sage: R.<x,y> = QQ[]
sage: SGA = SymmetricGroupAlgebra(R, 2)
sage: T = SGA.trivial_representation()

(continues on next page)

44 Chapter 7. Hochschild Complexes

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: H = SGA.hochschild_complex(T)
sage: H.cohomology(1)
Free module generated by {} over Multivariate Polynomial Ring in x, y over␣
→˓Rational Field

differential(d)
Return the boundary operator in degree d.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: d1 = H.boundary(1)
sage: z = d1.domain().an_element(); z
2*1 # 1 + 2*1 # x + 3*1 # y
sage: d1(z)
0
sage: d1.matrix()
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 2 0 0 -2 0 0 0 0 0 0]

sage: s = SymmetricFunctions(QQ).s()
sage: H = s.hochschild_complex(s)
sage: d1 = H.boundary(1)
sage: x = d1.domain().an_element(); x
2*s[] # s[] + 2*s[] # s[1] + 3*s[] # s[2]
sage: d1(x)
0
sage: y = tensor([s.an_element(), s.an_element()])
sage: d1(y)
0
sage: z = tensor([s[2,1] + s[3], s.an_element()])
sage: d1(z)
0

homology(d)
Return the d-th homology group.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.homology(0)
Vector space of dimension 3 over Rational Field
sage: H.homology(1)
Vector space of dimension 4 over Rational Field
sage: H.homology(2)
Vector space of dimension 6 over Rational Field

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()

(continues on next page)

45

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: H = SGA.hochschild_complex(T)
sage: H.homology(0)
Vector space of dimension 1 over Rational Field
sage: H.homology(1)
Vector space of dimension 0 over Rational Field
sage: H.homology(2)
Vector space of dimension 0 over Rational Field

When working over general rings (except Z) and we can construct a unitriangular basis for the image
quotient, we fallback to a slower implementation using (combinatorial) free modules:

sage: R.<x,y> = QQ[]
sage: SGA = SymmetricGroupAlgebra(R, 2)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.homology(1)
Free module generated by {} over Multivariate Polynomial Ring in x, y over␣
→˓Rational Field

module(d)
Return the module in degree d.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.module(0)
Trivial representation of Standard permutations of 3 over Rational Field
sage: H.module(1)
Trivial representation of Standard permutations of 3 over Rational Field
Symmetric group algebra of order 3 over Rational Field
sage: H.module(2)
Trivial representation of Standard permutations of 3 over Rational Field
Symmetric group algebra of order 3 over Rational Field
Symmetric group algebra of order 3 over Rational Field

trivial_module()

Return the trivial module of self.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.trivial_module()
Free module generated by {} over Rational Field

46 Chapter 7. Hochschild Complexes

CHAPTER

EIGHT

HOMOLOGY GROUPS

This module defines a HomologyGroup() class which is an abelian group that prints itself in a way that is suitable for
homology groups.

sage.homology.homology_group.HomologyGroup(n, base_ring, invfac=None)
Abelian group on 𝑛 generators which represents a homology group in a fixed degree.

INPUT:

• n – integer; the number of generators

• base_ring – ring; the base ring over which the homology is computed

• inv_fac – list of integers; the invariant factors – ignored if the base ring is a field

OUTPUT:

A class that can represent the homology group in a fixed homological degree.

EXAMPLES:

sage: from sage.homology.homology_group import HomologyGroup
sage: G = AbelianGroup(5, [5,5,7,8,9]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: H = HomologyGroup(5, ZZ, [5,5,7,8,9]); H
C5 x C5 x C7 x C8 x C9
sage: AbelianGroup(4)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z
sage: HomologyGroup(4, ZZ)
Z x Z x Z x Z
sage: HomologyGroup(100, ZZ)
Z^100

class sage.homology.homology_group.HomologyGroup_class(n, invfac)
Bases: AdditiveAbelianGroup_fixed_gens

Discrete Abelian group on 𝑛 generators. This class inherits from AdditiveAbelianGroup_fixed_gens; see
sage.groups.additive_abelian.additive_abelian_group for more documentation. The main differ-
ence between the classes is in the print representation.

EXAMPLES:

sage: from sage.homology.homology_group import HomologyGroup
sage: G = AbelianGroup(5, [5,5,7,8,9]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: H = HomologyGroup(5, ZZ, [5,5,7,8,9]); H

(continues on next page)

47

../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_group.html#sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens
../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_group.html#sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens
../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_group.html#module-sage.groups.additive_abelian.additive_abelian_group

Chain complexes and homology, Release 9.8

(continued from previous page)

C5 x C5 x C7 x C8 x C9
sage: G == loads(dumps(G))
True
sage: AbelianGroup(4)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z
sage: HomologyGroup(4, ZZ)
Z x Z x Z x Z
sage: HomologyGroup(100, ZZ)
Z^100

48 Chapter 8. Homology Groups

CHAPTER

NINE

HOMOLOGY AND COHOMOLOGY WITH A BASIS

This module provides homology and cohomology vector spaces suitable for computing cup products and cohomology
operations.

REFERENCES:

• [GDR2003]

• [GDR1999]

AUTHORS:

• John H. Palmieri, Travis Scrimshaw (2015-09)

class sage.homology.homology_vector_space_with_basis.CohomologyRing(base_ring, cell_complex)
Bases: HomologyVectorSpaceWithBasis

The cohomology ring.

Note: This is not intended to be created directly by the user, but instead via the cohomology ring of a cell
complex.

INPUT:

• base_ring – must be a field

• cell_complex – the cell complex whose homology we are computing

EXAMPLES:

sage: CP2 = simplicial_complexes.ComplexProjectivePlane()
sage: H = CP2.cohomology_ring(QQ)
sage: H.basis(2)
Finite family {(2, 0): h^{2,0}}
sage: x = H.basis(2)[2,0]

The product structure is the cup product:

sage: x.cup_product(x)
-h^{4,0}
sage: x * x
-h^{4,0}

There are mod 2 cohomology operations defined, also, for simplicial complexes and simplicial sets:

49

../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.cohomology_ring
../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex
../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex

Chain complexes and homology, Release 9.8

sage: Hmod2 = CP2.cohomology_ring(GF(2))
sage: y = Hmod2.basis(2)[2,0]
sage: y.Sq(2)
h^{4,0}

sage: Y = simplicial_sets.RealProjectiveSpace(6).suspension()
sage: H_Y = Y.cohomology_ring(GF(2))
sage: b = H_Y.basis()[2,0]
sage: b.Sq(1)
h^{3,0}
sage: b.Sq(2)
0
sage: c = H_Y.basis()[4,0]
sage: c.Sq(1)
h^{5,0}
sage: c.Sq(2)
h^{6,0}
sage: c.Sq(3)
h^{7,0}
sage: c.Sq(4)
0

class Element

Bases: Element

Sq(i)
Return the result of applying 𝑆𝑞𝑖 to this element.

INPUT:
• i – nonnegative integer

Warning: This is only implemented for simplicial complexes.

This cohomology operation is only defined in characteristic 2.

Algorithm: see González-Díaz and Réal [GDR1999], Corollary 3.2.

EXAMPLES:

sage: RP2 = simplicial_complexes.RealProjectiveSpace(2)
sage: x = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: x.Sq(1)
h^{2,0}

sage: K = RP2.suspension()
sage: K.set_immutable()
sage: y = K.cohomology_ring(GF(2)).basis()[2,0]
sage: y.Sq(1)
h^{3,0}

sage: RP4 = simplicial_complexes.RealProjectiveSpace(4)
sage: H = RP4.cohomology_ring(GF(2))
sage: x = H.basis()[1,0]

(continues on next page)

50 Chapter 9. Homology and cohomology with a basis

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: y = H.basis()[2,0]
sage: z = H.basis()[3,0]
sage: x.Sq(1) == y
True
sage: z.Sq(1) # long time
h^{4,0}

This calculation is much faster with simplicial sets (on one machine, 20 seconds with a simplicial
complex, 4 ms with a simplicial set).

sage: RP4_ss = simplicial_sets.RealProjectiveSpace(4)
sage: z_ss = RP4_ss.cohomology_ring(GF(2)).basis()[3,0]
sage: z_ss.Sq(1)
h^{4,0}

cup_product(other)
Return the cup product of this element and other.

Algorithm: see González-Díaz and Réal [GDR2003], p. 88. Given two cohomology classes, lift them
to cocycle representatives via the chain contraction for this complex, using to_cycle(). In the sum
of their dimensions, look at all of the homology classes 𝛾: lift each of those to a cycle representative,
apply the Alexander-Whitney diagonal map to each cell in the cycle, evaluate the two cocycles on these
factors, and multiply. The result is the value of the cup product cocycle on this homology class. After
this has been done for all homology classes, since homology and cohomology are dual, one can tell
which cohomology class corresponds to the cup product.

See also:

CohomologyRing.product_on_basis()

EXAMPLES:

sage: RP3 = simplicial_complexes.RealProjectiveSpace(3)
sage: H = RP3.cohomology_ring(GF(2))
sage: c = H.basis()[1,0]
sage: c.cup_product(c)
h^{2,0}
sage: c * c * c
h^{3,0}

We can also take powers:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: a = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: a**0
h^{0,0}
sage: a**1
h^{1,0}
sage: a**2
h^{2,0}
sage: a**3
0

A non-connected example:

51

Chain complexes and homology, Release 9.8

sage: K = cubical_complexes.Torus().disjoint_union(cubical_complexes.
→˓Sphere(2))
sage: a,b = K.cohomology_ring(QQ).basis(2)
sage: a**0
h^{0,0} + h^{0,1}

one()

The multiplicative identity element.

EXAMPLES:

sage: H = simplicial_complexes.Torus().cohomology_ring(QQ)
sage: H.one()
h^{0,0}
sage: all(H.one() * x == x == x * H.one() for x in H.basis())
True

product_on_basis(li, ri)
The cup product of the basis elements indexed by li and ri in this cohomology ring.

INPUT:

• li, ri – index of a cohomology class

See also:

CohomologyRing.Element.cup_product() – the documentation for this method describes the algo-
rithm.

EXAMPLES:

sage: RP3 = simplicial_complexes.RealProjectiveSpace(3)
sage: H = RP3.cohomology_ring(GF(2))
sage: c = H.basis()[1,0]
sage: c.cup_product(c).cup_product(c) # indirect doctest
h^{3,0}

sage: T = simplicial_complexes.Torus()
sage: x,y = T.cohomology_ring(QQ).basis(1)
sage: x.cup_product(y)
-h^{2,0}
sage: x.cup_product(x)
0

sage: one = T.cohomology_ring(QQ).basis()[0,0]
sage: x.cup_product(one)
h^{1,0}
sage: one.cup_product(y) == y
True
sage: one.cup_product(one)
h^{0,0}
sage: x.cup_product(y) + y.cup_product(x)
0

This also works with cubical complexes:

52 Chapter 9. Homology and cohomology with a basis

Chain complexes and homology, Release 9.8

sage: T = cubical_complexes.Torus()
sage: x,y = T.cohomology_ring(QQ).basis(1)
sage: x.cup_product(y)
h^{2,0}
sage: x.cup_product(x)
0

∆-complexes:

sage: T_d = delta_complexes.Torus()
sage: a,b = T_d.cohomology_ring(QQ).basis(1)
sage: a.cup_product(b)
h^{2,0}
sage: b.cup_product(a)
-h^{2,0}
sage: RP2 = delta_complexes.RealProjectivePlane()
sage: w = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: w.cup_product(w)
h^{2,0}

and simplicial sets:

sage: from sage.topology.simplicial_set_examples import RealProjectiveSpace
sage: RP5 = RealProjectiveSpace(5)
sage: x = RP5.cohomology_ring(GF(2)).basis()[1,0]
sage: x**4
h^{4,0}

A non-connected example:

sage: K = cubical_complexes.Torus().disjoint_union(cubical_complexes.Torus())
sage: a,b,c,d = K.cohomology_ring(QQ).basis(1)
sage: x,y = K.cohomology_ring(QQ).basis(0)
sage: a.cup_product(x) == a
True
sage: a.cup_product(y)
0

class sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis(base_ring,
cell_complex,
cohomol-
ogy=False,
cate-
gory=None)

Bases: CombinatorialFreeModule

Homology (or cohomology) vector space.

This provides enough structure to allow the computation of cup products and cohomology operations. See the
class CohomologyRing (which derives from this) for examples.

It also requires field coefficients (hence the “VectorSpace” in the name of the class).

Note: This is not intended to be created directly by the user, but instead via the methods

53

../../../../../../html/en/reference/combinat/sage/combinat/free_module.html#sage.combinat.free_module.CombinatorialFreeModule

Chain complexes and homology, Release 9.8

homology_with_basis() and cohomology_ring() for the class of cell complexes.

INPUT:

• base_ring – must be a field

• cell_complex – the cell complex whose homology we are computing

• cohomology – (default: False) if True, return the cohomology as a module

• category – (optional) a subcategory of modules with basis

EXAMPLES:

Homology classes are denoted by h_{d,i} where d is the degree of the homology class and i is their index in
the list of basis elements in that degree. Cohomology classes are denoted h^{1,0}:

sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: RP2.homology_with_basis(GF(2))
Homology module of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
sage: RP2.cohomology_ring(GF(2))
Cohomology ring of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
sage: simplicial_complexes.Torus().homology_with_basis(QQ)
Homology module of Minimal triangulation of the torus
over Rational Field

To access a basis element, use its degree and index (0 or 1 in the 1st cohomology group of a torus):

sage: H = simplicial_complexes.Torus().cohomology_ring(QQ)
sage: H.basis(1)
Finite family {(1, 0): h^{1,0}, (1, 1): h^{1,1}}
sage: x = H.basis()[1,0]; x
h^{1,0}
sage: y = H.basis()[1,1]; y
h^{1,1}
sage: 2*x-3*y
2*h^{1,0} - 3*h^{1,1}

You can compute cup products of cohomology classes:

sage: x.cup_product(y)
-h^{2,0}
sage: y.cup_product(x)
h^{2,0}
sage: x.cup_product(x)
0

This works with simplicial, cubical, and ∆-complexes, and also simplicial sets:

sage: Torus_c = cubical_complexes.Torus()
sage: H = Torus_c.cohomology_ring(GF(2))
sage: x,y = H.basis(1)
sage: x.cup_product(x)
0

(continues on next page)

54 Chapter 9. Homology and cohomology with a basis

../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.homology_with_basis
../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.cohomology_ring
../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: x.cup_product(y)
h^{2,0}
sage: y.cup_product(y)
0

sage: Klein_d = delta_complexes.KleinBottle()
sage: H = Klein_d.cohomology_ring(GF(2))
sage: u,v = sorted(H.basis(1))
sage: u.cup_product(u)
h^{2,0}
sage: u.cup_product(v)
0
sage: v.cup_product(v)
h^{2,0}

An isomorphism between the rings for the cubical model and the ∆-complex model can be obtained by sending
𝑥 to 𝑢 + 𝑣, 𝑦 to 𝑣.

sage: X = simplicial_sets.RealProjectiveSpace(6)
sage: H_X = X.cohomology_ring(GF(2))
sage: a = H_X.basis()[1,0]
sage: a**6
h^{6,0}
sage: a**7
0

All products of positive-dimensional elements in a suspension should be zero:

sage: Y = X.suspension()
sage: H_Y = Y.cohomology_ring(GF(2))
sage: b = H_Y.basis()[2,0]
sage: b**2
0
sage: B = sorted(H_Y.basis())[1:]
sage: B
[h^{2,0}, h^{3,0}, h^{4,0}, h^{5,0}, h^{6,0}, h^{7,0}]
sage: import itertools
sage: [a*b for (a,b) in itertools.combinations(B, 2)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The basis elements in the simplicial complex case have been chosen differently; apply the change of basis 𝑥 ↦→
𝑎 + 𝑏, 𝑦 ↦→ 𝑏 to see the same product structure.

sage: Klein_s = simplicial_complexes.KleinBottle()
sage: H = Klein_s.cohomology_ring(GF(2))
sage: a,b = H.basis(1)
sage: a.cup_product(a)
0
sage: a.cup_product(b)
h^{2,0}
sage: (a+b).cup_product(a+b)
h^{2,0}

(continues on next page)

55

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: b.cup_product(b)
h^{2,0}

class Element

Bases: IndexedFreeModuleElement

to_cycle()

(Co)cycle representative of this homogeneous (co)homology class.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: H = S2.homology_with_basis(QQ)
sage: h20 = H.basis()[2,0]; h20
h_{2,0}
sage: h20.to_cycle()
-(0, 1, 2) + (0, 1, 3) - (0, 2, 3) + (1, 2, 3)

Chains are written as linear combinations of simplices 𝜎. Cochains are written as linear combinations
of characteristic functions 𝜒𝜎 for those simplices:

sage: S2.cohomology_ring(QQ).basis()[2,0].to_cycle()
\chi_(1, 2, 3)
sage: S2.cohomology_ring(QQ).basis()[0,0].to_cycle()
\chi_(0,) + \chi_(1,) + \chi_(2,) + \chi_(3,)

basis(d=None)
Return (the degree d homogeneous component of) the basis of this graded vector space.

INPUT:

• d – (optional) the degree

EXAMPLES:

sage: RP2 = simplicial_complexes.ProjectivePlane()
sage: H = RP2.homology_with_basis(QQ)
sage: H.basis()
Finite family {(0, 0): h_{0,0}}
sage: H.basis(0)
Finite family {(0, 0): h_{0,0}}
sage: H.basis(1)
Finite family {}
sage: H.basis(2)
Finite family {}

complex()

The cell complex whose homology is being computed.

EXAMPLES:

sage: H = simplicial_complexes.Simplex(2).homology_with_basis(QQ)
sage: H.complex()
The 2-simplex

56 Chapter 9. Homology and cohomology with a basis

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Chain complexes and homology, Release 9.8

contraction()

The chain contraction associated to this homology computation.

That is, to work with chain representatives of homology classes, we need the chain complex 𝐶 associated to
the cell complex, the chain complex 𝐻 of its homology (with trivial differential), chain maps 𝜋 : 𝐶 → 𝐻
and 𝜄 : 𝐻 → 𝐶, and a chain contraction 𝜑 giving a chain homotopy between 1𝐶 and 𝜄 ∘ 𝜋.

OUTPUT: 𝜑

See ChainContraction for information about chain contractions, and see
algebraic_topological_model() for the construction of this particular chain contraction 𝜑.

EXAMPLES:

sage: H = simplicial_complexes.Simplex(2).homology_with_basis(QQ)
sage: H.contraction()
Chain homotopy between:
Chain complex endomorphism of Chain complex with at most 3 nonzero terms over␣

→˓Rational Field
and Chain complex endomorphism of Chain complex with at most 3 nonzero terms␣

→˓over Rational Field

From the chain contraction, one can also recover the maps 𝜋 and 𝜄:

sage: phi = H.contraction()
sage: phi.pi()
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 1 nonzero terms over Rational Field

sage: phi.iota()
Chain complex morphism:
From: Chain complex with at most 1 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

degree_on_basis(i)
Return the degree of the basis element indexed by i.

EXAMPLES:

sage: H = simplicial_complexes.Torus().homology_with_basis(GF(7))
sage: H.degree_on_basis((2,0))
2

sage.homology.homology_vector_space_with_basis.sum_indices(k, i_k_plus_one, S_k_plus_one)
This is a recursive function for computing the indices for the nested sums in González-Díaz and Réal [GDR1999],
Corollary 3.2.

In the paper, given indices 𝑖𝑛, 𝑖𝑛−1, . . . , 𝑖𝑘+1, given 𝑘, and given 𝑆(𝑘 + 1), the number 𝑆(𝑘) is defined to be

𝑆(𝑘) = −𝑆(𝑘 + 1) + 𝑓𝑙𝑜𝑜𝑟(𝑘/2) + 𝑓𝑙𝑜𝑜𝑟((𝑘 + 1)/2) + 𝑖𝑘+1,

and 𝑖𝑘 ranges from 𝑆(𝑘) to 𝑖𝑘+1−1. There are two special cases: if 𝑘 = 0, then 𝑖0 = 𝑆(0). Also, the initial case
of 𝑆(𝑘) is 𝑆(𝑛), which is set in the method Sq() before calling this function. For this function, given 𝑘, 𝑖𝑘+1,
and 𝑆(𝑘 + 1), return a list consisting of the allowable possible indices [𝑖𝑘, 𝑖𝑘−1, ..., 𝑖1, 𝑖0] given by the above
formula.

INPUT:

57

Chain complexes and homology, Release 9.8

• k – non-negative integer

• i_k_plus_one – the positive integer 𝑖𝑘+1

• S_k_plus_one – the integer 𝑆(𝑘 + 1)

EXAMPLES:

sage: from sage.homology.homology_vector_space_with_basis import sum_indices
sage: sum_indices(1, 3, 3)
[[1, 0], [2, 1]]
sage: sum_indices(0, 4, 2)
[[2]]

58 Chapter 9. Homology and cohomology with a basis

CHAPTER

TEN

ALGEBRAIC TOPOLOGICAL MODEL FOR A CELL COMPLEX

This file contains two functions, algebraic_topological_model() and algebraic_topological_model_delta_complex().
The second works more generally: for all simplicial, cubical, and ∆-complexes. The first only works for simplicial
and cubical complexes, but it is faster in those cases.

AUTHORS:

• John H. Palmieri (2015-09)

sage.homology.algebraic_topological_model.algebraic_topological_model(K, base_ring=None)
Algebraic topological model for cell complex K with coefficients in the field base_ring.

INPUT:

• K – either a simplicial complex or a cubical complex

• base_ring – coefficient ring; must be a field

OUTPUT: a pair (phi, M) consisting of

• chain contraction phi

• chain complex 𝑀

This construction appears in a paper by Pilarczyk and Réal [PR2015]. Given a cell complex 𝐾 and a field 𝐹 ,
there is a chain complex 𝐶 associated to 𝐾 with coefficients in 𝐹 . The algebraic topological model for 𝐾 is a
chain complex 𝑀 with trivial differential, along with chain maps 𝜋 : 𝐶 → 𝑀 and 𝜄 : 𝑀 → 𝐶 such that

• 𝜋𝜄 = 1𝑀 , and

• there is a chain homotopy 𝜑 between 1𝐶 and 𝜄𝜋.

In particular, 𝜋 and 𝜄 induce isomorphisms on homology, and since 𝑀 has trivial differential, it is its own
homology, and thus also the homology of 𝐶. Thus 𝜄 lifts homology classes to their cycle representatives.

The chain homotopy 𝜑 satisfies some additional properties, making it a chain contraction:

• 𝜑𝜑 = 0,

• 𝜋𝜑 = 0,

• 𝜑𝜄 = 0.

Given an algebraic topological model for 𝐾, it is then easy to compute cup products and cohomology operations
on the cohomology of 𝐾, as described in [GDR2003] and [PR2015].

Implementation details: the cell complex 𝐾 must have an n_cells() method from which we can extract a list
of cells in each dimension. Combining the lists in increasing order of dimension then defines a filtration of the
complex: a list of cells in which the boundary of each cell consists of cells earlier in the list. This is required by
Pilarczyk and Réal’s algorithm. There must also be a chain_complex()method, to construct the chain complex
𝐶 associated to this chain complex.

59

../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.n_cells
../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.chain_complex

Chain complexes and homology, Release 9.8

In particular, this works for simplicial complexes and cubical complexes. It doesn’t work for ∆-complexes,
though: the list of their 𝑛-cells has the wrong format.

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and phi.
iota(). Then one can recover𝐶 and𝑀 from, for example, phi.pi().domain() and phi.pi().codomain(),
respectively.

EXAMPLES:

sage: from sage.homology.algebraic_topological_model import algebraic_topological_
→˓model
sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = algebraic_topological_model(RP2, GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = cubical_complexes.Torus()
sage: phi, M = algebraic_topological_model(T, QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

If you want to work with cohomology rather than homology, just dualize the outputs of this function:

sage: M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
sage: M.dual().degree_of_differential()
1
sage: phi.dual()
Chain homotopy between:
Chain complex endomorphism of Chain complex with at most 3 nonzero terms over␣

→˓Rational Field
and Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

In degree 0, the inclusion of the homology 𝑀 into the chain complex 𝐶 sends the homology generator to a single
vertex:

sage: K = simplicial_complexes.Simplex(2)
sage: phi, M = algebraic_topological_model(K, QQ)
sage: phi.iota().in_degree(0)
[0]
[0]
[1]

In cohomology, though, one needs the dual of every degree 0 cell to detect the degree 0 cohomology generator:

sage: phi.dual().iota().in_degree(0)
[1]

(continues on next page)

60 Chapter 10. Algebraic topological model for a cell complex

Chain complexes and homology, Release 9.8

(continued from previous page)

[1]
[1]

sage.homology.algebraic_topological_model.algebraic_topological_model_delta_complex(K,
base_ring=None)

Algebraic topological model for cell complex K with coefficients in the field base_ring.

This has the same basic functionality as algebraic_topological_model(), but it also works for ∆-
complexes. For simplicial and cubical complexes it is somewhat slower, though.

INPUT:

• K – a simplicial complex, a cubical complex, or a ∆-complex

• base_ring – coefficient ring; must be a field

OUTPUT: a pair (phi, M) consisting of

• chain contraction phi

• chain complex 𝑀

See algebraic_topological_model() for the main documentation. The difference in implementation be-
tween the two: this uses matrix and vector algebra. The other function does more of the computations “by hand”
and uses cells (given as simplices or cubes) to index various dictionaries. Since the cells in ∆-complexes are not
as nice, the other function does not work for them, while this function relies almost entirely on the structure of
the associated chain complex.

EXAMPLES:

sage: from sage.homology.algebraic_topological_model import algebraic_topological_
→˓model_delta_complex as AT_model
sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = AT_model(RP2, GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = delta_complexes.Torus()
sage: phi, M = AT_model(T, QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

If you want to work with cohomology rather than homology, just dualize the outputs of this function:

sage: M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
sage: M.dual().degree_of_differential()
1
sage: phi.dual()
Chain homotopy between:
Chain complex endomorphism of Chain complex with at most 3 nonzero terms over␣

(continues on next page)

61

Chain complexes and homology, Release 9.8

(continued from previous page)

→˓Rational Field
and Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

In degree 0, the inclusion of the homology 𝑀 into the chain complex 𝐶 sends the homology generator to a single
vertex:

sage: K = delta_complexes.Simplex(2)
sage: phi, M = AT_model(K, QQ)
sage: phi.iota().in_degree(0)
[0]
[0]
[1]

In cohomology, though, one needs the dual of every degree 0 cell to detect the degree 0 cohomology generator:

sage: phi.dual().iota().in_degree(0)
[1]
[1]
[1]

62 Chapter 10. Algebraic topological model for a cell complex

CHAPTER

ELEVEN

INDUCED MORPHISMS ON HOMOLOGY

This module implements morphisms on homology induced by morphisms of simplicial complexes. It requires working
with field coefficients.

See InducedHomologyMorphism for documentation.

AUTHORS:

• John H. Palmieri (2015.09)

class sage.homology.homology_morphism.InducedHomologyMorphism(map, base_ring=None,
cohomology=False)

Bases: Morphism

An element of this class is a morphism of (co)homology groups induced by a map of simplicial complexes. It
requires working with field coefficients.

INPUT:

• map – the map of simplicial complexes

• base_ring – a field (optional, default QQ)

• cohomology – boolean (optional, default False). If True, return the induced map in cohomology rather
than homology.

Note: This is not intended to be used directly by the user, but instead via the method
induced_homology_morphism().

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: f = H({0:0, 1:2, 2:1}) # f switches two vertices
sage: f_star = f.induced_homology_morphism(QQ, cohomology=True)
sage: f_star
Graded algebra endomorphism of Cohomology ring of Minimal triangulation of the 1-
→˓sphere over Rational Field
Defn: induced by:
Simplicial complex endomorphism of Minimal triangulation of the 1-sphere

Defn: 0 |--> 0
1 |--> 2
2 |--> 1

sage: f_star.to_matrix(1)
[-1]

(continues on next page)

63

../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism
../../../../../../html/en/reference/topology/sage/topology/simplicial_complex_morphism.html#sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism.induced_homology_morphism

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: f_star.to_matrix()
[1| 0]
[--+--]
[0|-1]

sage: T = simplicial_complexes.Torus()
sage: y = T.homology_with_basis(QQ).basis()[(1,1)]
sage: y.to_cycle()
(0, 5) - (0, 6) + (5, 6)

Since (0, 2)− (0, 5) + (2, 5) is a cycle representing a homology class in the torus, we can define a map 𝑆1 → 𝑇
inducing an inclusion on 𝐻1:

sage: Hom(S1, T)({0:0, 1:2, 2:5})
Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Minimal triangulation of the torus
Defn: 0 |--> 0

1 |--> 2
2 |--> 5

sage: g = Hom(S1, T)({0:0, 1:2, 2: 5})
sage: g_star = g.induced_homology_morphism(QQ)
sage: g_star.to_matrix(0)
[1]
sage: g_star.to_matrix(1)
[-1]
[0]
sage: g_star.to_matrix()
[1| 0]
[--+--]
[0|-1]
[0| 0]
[--+--]
[0| 0]

We can evaluate such a map on (co)homology classes:

sage: H = S1.homology_with_basis(QQ)
sage: a = H.basis()[(1,0)]
sage: g_star(a)
-h_{1,0}

sage: T = S1.product(S1, is_mutable=False)
sage: diag = Hom(S1,T).diagonal_morphism()
sage: b,c = list(T.cohomology_ring().basis(1))
sage: diag_c = diag.induced_homology_morphism(cohomology=True)
sage: diag_c(b)
h^{1,0}
sage: diag_c(c)
h^{1,0}

base_ring()

The base ring for this map

64 Chapter 11. Induced morphisms on homology

Chain complexes and homology, Release 9.8

EXAMPLES:

sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(K,K)
sage: id = H.identity()
sage: id.induced_homology_morphism(QQ).base_ring()
Rational Field
sage: id.induced_homology_morphism(GF(13)).base_ring()
Finite Field of size 13

is_identity()

True if this is the identity map on (co)homology.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.induced_homology_morphism(QQ).is_identity()
False
sage: flip.induced_homology_morphism(GF(2)).is_identity()
True
sage: rotate = H({0:1, 1:2, 2:0})
sage: rotate.induced_homology_morphism(QQ).is_identity()
True

is_injective()

True if this map is injective on (co)homology.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(S1, K)
sage: f = H({0:0, 1:1, 2:2})
sage: f.induced_homology_morphism().is_injective()
False
sage: f.induced_homology_morphism(cohomology=True).is_injective()
True

sage: T = simplicial_complexes.Torus()
sage: g = Hom(S1, T)({0:0, 1:3, 2: 6})
sage: g_star = g.induced_homology_morphism(QQ)
sage: g.is_injective()
True

is_surjective()

True if this map is surjective on (co)homology.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(S1, K)
sage: f = H({0:0, 1:1, 2:2})

(continues on next page)

65

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: f.induced_homology_morphism().is_surjective()
True
sage: f.induced_homology_morphism(cohomology=True).is_surjective()
False

to_matrix(deg=None)
The matrix for this map.

If degree deg is specified, return the matrix just in that degree; otherwise, return the block matrix repre-
senting the entire map.

INPUT:

• deg – (optional, default None) the degree

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1_b = S1.barycentric_subdivision()
sage: S1_b.set_immutable()
sage: d = {(0,): 0, (0,1): 1, (1,): 2, (1,2): 0, (2,): 1, (0,2): 2}
sage: f = Hom(S1_b, S1)(d)
sage: h = f.induced_homology_morphism(QQ)
sage: h.to_matrix(1)
[2]
sage: h.to_matrix()
[1|0]
[-+-]
[0|2]

66 Chapter 11. Induced morphisms on homology

CHAPTER

TWELVE

UTILITY FUNCTIONS FOR MATRICES

The actual computation of homology groups ends up being linear algebra with the differentials thought of as matrices.
This module contains some utility functions for this purpose.

sage.homology.matrix_utils.dhsw_snf(mat, verbose=False)
Preprocess a matrix using the “Elimination algorithm” described by Dumas et al. [DHSW2003], and then call
elementary_divisors on the resulting (smaller) matrix.

Note: ‘snf’ stands for ‘Smith Normal Form’.

INPUT:

• mat – an integer matrix, either sparse or dense.

(They use the transpose of the matrix considered here, so they use rows instead of columns.)

ALGORITHM:

Go through mat one column at a time. For each column, add multiples of previous columns to it until either

• it’s zero, in which case it should be deleted.

• its first nonzero entry is 1 or -1, in which case it should be kept.

• its first nonzero entry is something else, in which case it is deferred until the second pass.

Then do a second pass on the deferred columns.

At this point, the columns with 1 or -1 in the first entry contribute to the rank of the matrix, and these can be
counted and then deleted (after using the 1 or -1 entry to clear out its row). Suppose that there were 𝑁 of these.

The resulting matrix should be much smaller; we then feed it to Sage’s elementary_divisors function, and
prepend 𝑁 1’s to account for the rows deleted in the previous step.

EXAMPLES:

sage: from sage.homology.matrix_utils import dhsw_snf
sage: mat = matrix(ZZ, 3, 4, range(12))
sage: dhsw_snf(mat)
[1, 4, 0]
sage: mat = random_matrix(ZZ, 20, 20, x=-1, y=2)
sage: mat.elementary_divisors() == dhsw_snf(mat)
True

67

Chain complexes and homology, Release 9.8

68 Chapter 12. Utility Functions for Matrices

CHAPTER

THIRTEEN

INTERFACE TO CHOMP

This module is deprecated: see trac ticket #33777.

CHomP stands for “Computation Homology Program”, and is good at computing homology of simplicial complexes,
cubical complexes, and chain complexes. It can also compute homomorphisms induced on homology by maps. See
the CHomP web page http://chomp.rutgers.edu/ for more information.

AUTHOR:

• John H. Palmieri

class sage.interfaces.chomp.CHomP

Bases: object

Interface to the CHomP package.

Parameters

• program (string) – which CHomP program to use

• complex – a simplicial or cubical complex

• subcomplex – a subcomplex of complex or None (the default)

• base_ring (ring; optional, default Z) – ring over which to perform computations – must be
Z or F𝑝.

• generators (boolean; optional, default False) – if True, also return list of gener-
ators

• verbose (boolean; optional, default False) – if True, print helpful messages as
the computation progresses

• extra_opts (string) – options passed directly to program

Returns
homology groups as a dictionary indexed by dimension

The programs homsimpl, homcubes, and homchain are available through this interface. homsimpl computes
the relative or absolute homology groups of simplicial complexes. homcubes computes the relative or absolute
homology groups of cubical complexes. homchain computes the homology groups of chain complexes. For
consistency with Sage’s other homology computations, the answers produced by homsimpl and homcubes in
the absolute case are converted to reduced homology.

Note also that CHomP can only compute over the integers or F𝑝. CHomP is fast enough, though, that if you want
rational information, you should consider using CHomP with integer coefficients, or with mod 𝑝 coefficients for
a sufficiently large 𝑝, rather than using Sage’s built-in homology algorithms.

See also the documentation for the functions homchain(), homcubes(), and homsimpl() for more examples,
including illustrations of some of the optional parameters.

69

https://trac.sagemath.org/33777
http://chomp.rutgers.edu/

Chain complexes and homology, Release 9.8

EXAMPLES:

sage: from sage.interfaces.chomp import CHomP
sage: T = cubical_complexes.Torus()
sage: CHomP()('homcubes', T) # optional - CHomP
{0: 0, 1: Z x Z, 2: Z}

Relative homology of a segment relative to its endpoints:

sage: edge = simplicial_complexes.Simplex(1)
sage: ends = edge.n_skeleton(0)
sage: CHomP()('homsimpl', edge) # optional - CHomP
{0: 0}
sage: CHomP()('homsimpl', edge, ends) # optional - CHomP
{0: 0, 1: Z}

Homology of a chain complex:

sage: C = ChainComplex({3: 2 * identity_matrix(ZZ, 2)}, degree=-1)
sage: CHomP()('homchain', C) # optional - CHomP
{2: C2 x C2}

help(program)

Print a help message for program, a program from the CHomP suite.

Parameters
program (string) – which CHomP program to use

Returns
nothing – just print a message

EXAMPLES:

sage: from sage.interfaces.chomp import CHomP
sage: CHomP().help('homcubes') # optional - CHomP
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
HOMCUBES, ver. ... Copyright (C) ... by Pawel Pilarczyk...

sage.interfaces.chomp.have_chomp(program='homsimpl')
Return True if this computer has program installed.

The first time it is run, this function caches its result in the variable _have_chomp – a dictionary indexed by
program name – and any subsequent time, it just checks the value of the variable.

This program is used in the routine CHomP.__call__.

If this computer doesn’t have CHomP installed, you may obtain it from http://chomp.rutgers.edu/.

EXAMPLES:

sage: from sage.interfaces.chomp import have_chomp
sage: have_chomp() # random -- depends on whether CHomP is installed
doctest:...: DeprecationWarning: the CHomP interface is deprecated; hence so is␣
→˓this function
See https://trac.sagemath.org/33777 for details.
True

(continues on next page)

70 Chapter 13. Interface to CHomP

http://chomp.rutgers.edu/

Chain complexes and homology, Release 9.8

(continued from previous page)

sage: 'homsimpl' in sage.interfaces.chomp._have_chomp
True
sage: sage.interfaces.chomp._have_chomp['homsimpl'] == have_chomp()
True

sage.interfaces.chomp.homchain(complex=None, **kwds)
Compute the homology of a chain complex using the CHomP program homchain.

This function is deprecated: see trac ticket #33777.

Parameters

• complex – a chain complex

• generators (boolean; optional, default False) – if True, also return list of gener-
ators

• verbose (boolean; optional, default False) – if True, print helpful messages as
the computation progresses

• help (boolean; optional, default False) – if True, just print a help message and
exit

• extra_opts (string) – options passed directly to homchain

Returns
homology groups as a dictionary indexed by dimension

EXAMPLES:

sage: from sage.interfaces.chomp import homchain
sage: C = cubical_complexes.Sphere(3).chain_complex()
sage: homchain(C)[3] # optional - CHomP
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
Z

Generators: these are given as a list after the homology group. Each generator is specified as a cycle, an element
in the appropriate free module over the base ring:

sage: C2 = delta_complexes.Sphere(2).chain_complex()
sage: homchain(C2, generators=True)[2] # optional - CHomP
(Z, [(1, -1)])
sage: homchain(C2, generators=True, base_ring=GF(2))[2] # optional - CHomP
(Vector space of dimension 1 over Finite Field of size 2, [(1, 1)])

sage.interfaces.chomp.homcubes(complex=None, subcomplex=None, **kwds)
Compute the homology of a cubical complex using the CHomP program homcubes. If the argument
subcomplex is present, compute homology of complex relative to subcomplex.

This function is deprecated: see trac ticket #33777.

Parameters

• complex – a cubical complex

• subcomplex – a subcomplex of complex or None (the default)

• base_ring (ring; optional, default Z) – ring over which to perform computations – must be
Z or F𝑝.

71

https://trac.sagemath.org/33777
https://trac.sagemath.org/33777

Chain complexes and homology, Release 9.8

• generators (boolean; optional, default False) – if True, also return list of gener-
ators

• verbose (boolean; optional, default False) – if True, print helpful messages as
the computation progresses

• help (boolean; optional, default False) – if True, just print a help message and
exit

• extra_opts (string) – options passed directly to homcubes

Returns
homology groups as a dictionary indexed by dimension

EXAMPLES:

sage: from sage.interfaces.chomp import homcubes
sage: S = cubical_complexes.Sphere(3)
sage: homcubes(S)[3] # optional - CHomP
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
Z

Relative homology:

sage: C3 = cubical_complexes.Cube(3)
sage: bdry = C3.n_skeleton(2)
sage: homcubes(C3, bdry) # optional - CHomP
{0: 0, 1: 0, 2: 0, 3: Z}

Generators: these are given as a list after the homology group. Each generator is specified as a linear combination
of cubes:

sage: homcubes(cubical_complexes.Sphere(1), generators=True, base_ring=GF(2))[1][1]␣
→˓ # optional - CHomP
[[[1,1] x [0,1]] + [[0,1] x [1,1]] + [[0,1] x [0,0]] + [[0,0] x [0,1]]]

sage.interfaces.chomp.homsimpl(complex=None, subcomplex=None, **kwds)
Compute the homology of a simplicial complex using the CHomP program homsimpl. If the argument
subcomplex is present, compute homology of complex relative to subcomplex.

This function is deprecated: see trac ticket #33777.

Parameters

• complex – a simplicial complex

• subcomplex – a subcomplex of complex or None (the default)

• base_ring (ring; optional, default Z) – ring over which to perform computations – must be
Z or F𝑝.

• generators (boolean; optional, default False) – if True, also return list of gener-
ators

• verbose (boolean; optional, default False) – if True, print helpful messages as
the computation progresses

• help (boolean; optional, default False) – if True, just print a help message and
exit

72 Chapter 13. Interface to CHomP

https://trac.sagemath.org/33777

Chain complexes and homology, Release 9.8

• extra_opts (string) – options passed directly to program

Returns
homology groups as a dictionary indexed by dimension

EXAMPLES:

sage: from sage.interfaces.chomp import homsimpl
sage: T = simplicial_complexes.Torus()
sage: M8 = simplicial_complexes.MooreSpace(8)
sage: M4 = simplicial_complexes.MooreSpace(4)
sage: X = T.disjoint_union(T).disjoint_union(T).disjoint_union(M8).disjoint_
→˓union(M4)
sage: homsimpl(X)[1] # optional - CHomP
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
Z^6 x C4 x C8

Relative homology:

sage: S = simplicial_complexes.Simplex(3)
sage: bdry = S.n_skeleton(2)
sage: homsimpl(S, bdry)[3] # optional - CHomP
Z

Generators: these are given as a list after the homology group. Each generator is specified as a linear combination
of simplices:

sage: homsimpl(S, bdry, generators=True)[3] # optional - CHomP
(Z, [(0, 1, 2, 3)])

sage: homsimpl(simplicial_complexes.Sphere(1), generators=True) # optional - CHomP
{0: 0, 1: (Z, [(0, 1) - (0, 2) + (1, 2)])}

sage.interfaces.chomp.process_generators_chain(gen_string, dim, base_ring=None)
Process CHomP generator information for simplicial complexes.

This function is deprecated: see trac ticket #33777.

Parameters

• gen_string (string) – generator output from CHomP

• dim (integer) – dimension in which to find generators

• base_ring (optional, default ZZ) – base ring over which to do the computations

Returns
list of generators in each dimension, as described below

gen_string has the form

[H_0]
a1

[H_1]
a2
a3

(continues on next page)

73

https://trac.sagemath.org/33777

Chain complexes and homology, Release 9.8

(continued from previous page)

[H_2]
a1 - a2

For each homology group, each line lists a homology generator as a linear combination of generators ai of the
group of chains in the appropriate dimension. The elements ai are indexed starting with 𝑖 = 1. Each generator is
converted, using regular expressions, from a string to a vector (an element in the free module over base_ring),
with ai representing the unit vector in coordinate 𝑖− 1. For example, the string a1 - a2 gets converted to the
vector (1, -1).

Therefore the return value is a list of vectors.

EXAMPLES:

sage: from sage.interfaces.chomp import process_generators_chain
sage: s = "[H_0]\na1\n\n[H_1]\na2\na3\n"
sage: process_generators_chain(s, 1)
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
[(0, 1), (0, 0, 1)]
sage: s = "[H_0]\na1\n\n[H_1]\n5 * a2 - a1\na3\n"
sage: process_generators_chain(s, 1, base_ring=ZZ)
[(-1, 5), (0, 0, 1)]
sage: process_generators_chain(s, 1, base_ring=GF(2))
[(1, 1), (0, 0, 1)]

sage.interfaces.chomp.process_generators_cubical(gen_string, dim)

Process CHomP generator information for cubical complexes.

This function is deprecated: see trac ticket #33777.

Parameters

• gen_string (string) – generator output from CHomP

• dim (integer) – dimension in which to find generators

Returns
list of generators in each dimension, as described below

gen_string has the form

The 2 generators of H_1 follow:
generator 1
-1 * [(0,0,0,0,0)(0,0,0,0,1)]
1 * [(0,0,0,0,0)(0,0,1,0,0)]
...
generator 2
-1 * [(0,1,0,1,1)(1,1,0,1,1)]
-1 * [(0,1,0,0,1)(0,1,0,1,1)]
...

Each line consists of a coefficient multiplied by a cube; the cube is specified by its “bottom left” and “upper
right” corners.

For technical reasons, we remove the first coordinate of each tuple, and using regular expressions, the remaining
parts get converted from a string to a pair (coefficient, Cube), with the cube represented as a product of

74 Chapter 13. Interface to CHomP

https://trac.sagemath.org/33777

Chain complexes and homology, Release 9.8

tuples. For example, the first line in “generator 1” gets turned into

(-1, [0,0] x [0,0] x [0,0] x [0,1])

representing an element in the free abelian group with basis given by cubes. Each generator is a list of such pairs,
representing the sum of such elements. These are reassembled in CHomP.__call__() to actual elements in the
free module generated by the cubes of the cubical complex in the appropriate dimension.

Therefore the return value is a list of lists of pairs, one list of pairs for each generator.

EXAMPLES:

sage: from sage.interfaces.chomp import process_generators_cubical
sage: s = "The 2 generators of H_1 follow:\ngenerator 1:\n-1 * [(0,0,0,0,0)(0,0,0,0,
→˓1)]\n1 * [(0,0,0,0,0)(0,0,1,0,0)]"
sage: process_generators_cubical(s, 1)
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
[[(-1, [0,0] x [0,0] x [0,0] x [0,1]), (1, [0,0] x [0,1] x [0,0] x [0,0])]]
sage: len(process_generators_cubical(s, 1)) # only one generator
1

sage.interfaces.chomp.process_generators_simplicial(gen_string, dim, complex)
Process CHomP generator information for simplicial complexes.

This function is deprecated: see trac ticket #33777

Parameters

• gen_string (string) – generator output from CHomP

• dim (integer) – dimension in which to find generators

• complex – simplicial complex under consideration

Returns
list of generators in each dimension, as described below

gen_string has the form

The 2 generators of H_1 follow:
generator 1
-1 * (1,6)
1 * (1,4)
...
generator 2
-1 * (1,6)
1 * (1,4)
...

where each line contains a coefficient and a simplex. Each line is converted, using regular expressions, from a
string to a pair (coefficient, Simplex), like

(-1, (1,6))

representing an element in the free abelian group with basis given by simplices. Each generator is a list of such
pairs, representing the sum of such elements. These are reassembled in CHomP.__call__() to actual elements
in the free module generated by the simplices of the simplicial complex in the appropriate dimension.

Therefore the return value is a list of lists of pairs, one list of pairs for each generator.

75

https://trac.sagemath.org/33777

Chain complexes and homology, Release 9.8

EXAMPLES:

sage: from sage.interfaces.chomp import process_generators_simplicial
sage: s = "The 2 generators of H_1 follow:\ngenerator 1:\n-1 * (1,6)\n1 * (1,4)"
sage: process_generators_simplicial(s, 1, simplicial_complexes.Torus())
doctest:...: DeprecationWarning: the CHomP interface is deprecated
See https://trac.sagemath.org/33777 for details.
[[(-1, (1, 6)), (1, (1, 4))]]

76 Chapter 13. Interface to CHomP

CHAPTER

FOURTEEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

77

../genindex.html
../py-modindex.html
../search.html

Chain complexes and homology, Release 9.8

78 Chapter 14. Indices and Tables

PYTHON MODULE INDEX

h
sage.homology.algebraic_topological_model, 59
sage.homology.chain_complex, 3
sage.homology.chain_complex_homspace, 35
sage.homology.chain_complex_morphism, 25
sage.homology.chain_homotopy, 29
sage.homology.chains, 17
sage.homology.hochschild_complex, 41
sage.homology.homology_group, 47
sage.homology.homology_morphism, 63
sage.homology.homology_vector_space_with_basis,

49
sage.homology.koszul_complex, 39
sage.homology.matrix_utils, 67

i
sage.interfaces.chomp, 69

79

Chain complexes and homology, Release 9.8

80 Python Module Index

INDEX

A
algebra() (sage.homology.hochschild_complex.HochschildComplex

method), 42
algebraic_topological_model() (in module

sage.homology.algebraic_topological_model),
59

algebraic_topological_model_delta_complex()
(in module sage.homology.algebraic_topological_model),
61

B
base_ring() (sage.homology.homology_morphism.InducedHomologyMorphism

method), 64
basis() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis

method), 56
betti() (sage.homology.chain_complex.ChainComplex_class

method), 6
boundary() (sage.homology.chains.Chains.Element

method), 18
boundary() (sage.homology.hochschild_complex.HochschildComplex

method), 43

C
cartesian_product()

(sage.homology.chain_complex.ChainComplex_class
method), 6

cell_complex() (sage.homology.chains.CellComplexReference
method), 17

CellComplexReference (class in
sage.homology.chains), 17

Chain_class (class in sage.homology.chain_complex),
15

chain_complex() (sage.homology.chains.Chains
method), 19

ChainComplex() (in module
sage.homology.chain_complex), 3

ChainComplex_class (class in
sage.homology.chain_complex), 5

ChainComplexHomspace (class in
sage.homology.chain_complex_homspace),
36

ChainComplexMorphism (class in
sage.homology.chain_complex_morphism),
25

ChainContraction (class in
sage.homology.chain_homotopy), 29

ChainHomotopy (class in
sage.homology.chain_homotopy), 31

Chains (class in sage.homology.chains), 18
Chains.Element (class in sage.homology.chains), 18
CHomP (class in sage.interfaces.chomp), 69
coboundary() (sage.homology.chains.Cochains.Element

method), 21
coboundary() (sage.homology.hochschild_complex.HochschildComplex

method), 43
cochain_complex() (sage.homology.chains.Cochains

method), 23
Cochains (class in sage.homology.chains), 20
Cochains.Element (class in sage.homology.chains), 21
coefficients() (sage.homology.hochschild_complex.HochschildComplex

method), 44
cohomology() (sage.homology.hochschild_complex.HochschildComplex

method), 44
CohomologyRing (class in

sage.homology.homology_vector_space_with_basis),
49

CohomologyRing.Element (class in
sage.homology.homology_vector_space_with_basis),
50

complex() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis
method), 56

contraction() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis
method), 56

cup_product() (sage.homology.chains.Cochains.Element
method), 21

cup_product() (sage.homology.homology_vector_space_with_basis.CohomologyRing.Element
method), 51

D
degree() (sage.homology.chains.CellComplexReference

method), 17
degree_of_differential()

(sage.homology.chain_complex.ChainComplex_class

81

Chain complexes and homology, Release 9.8

method), 7
degree_on_basis() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis

method), 57
dhsw_snf() (in module sage.homology.matrix_utils), 67
differential() (sage.homology.chain_complex.ChainComplex_class

method), 7
differential() (sage.homology.hochschild_complex.HochschildComplex

method), 45
dual() (sage.homology.chain_complex.ChainComplex_class

method), 8
dual() (sage.homology.chain_complex_morphism.ChainComplexMorphism

method), 25
dual() (sage.homology.chain_homotopy.ChainContraction

method), 30
dual() (sage.homology.chain_homotopy.ChainHomotopy

method), 32
dual() (sage.homology.chains.Chains method), 20
dual() (sage.homology.chains.Cochains method), 23

E
Element (sage.homology.chain_complex.ChainComplex_class

attribute), 5
eval() (sage.homology.chains.Cochains.Element

method), 22

F
free_module() (sage.homology.chain_complex.ChainComplex_class

method), 8
free_module_rank() (sage.homology.chain_complex.ChainComplex_class

method), 8

G
grading_group() (sage.homology.chain_complex.ChainComplex_class

method), 9

H
have_chomp() (in module sage.interfaces.chomp), 70
help() (sage.interfaces.chomp.CHomP method), 70
HochschildComplex (class in

sage.homology.hochschild_complex), 41
HochschildComplex.Element (class in

sage.homology.hochschild_complex), 41
homchain() (in module sage.interfaces.chomp), 71
homcubes() (in module sage.interfaces.chomp), 71
homology() (sage.homology.chain_complex.ChainComplex_class

method), 9
homology() (sage.homology.hochschild_complex.HochschildComplex

method), 45
HomologyGroup() (in module

sage.homology.homology_group), 47
HomologyGroup_class (class in

sage.homology.homology_group), 47

HomologyVectorSpaceWithBasis (class in
sage.homology.homology_vector_space_with_basis),
53

HomologyVectorSpaceWithBasis.Element (class in
sage.homology.homology_vector_space_with_basis),
56

homsimpl() (in module sage.interfaces.chomp), 72

I
in_degree() (sage.homology.chain_complex_morphism.ChainComplexMorphism

method), 26
in_degree() (sage.homology.chain_homotopy.ChainHomotopy

method), 33
InducedHomologyMorphism (class in

sage.homology.homology_morphism), 63
iota() (sage.homology.chain_homotopy.ChainContraction

method), 30
is_algebraic_gradient_vector_field()

(sage.homology.chain_homotopy.ChainHomotopy
method), 33

is_boundary() (sage.homology.chain_complex.Chain_class
method), 15

is_boundary() (sage.homology.chains.Chains.Element
method), 19

is_ChainComplexHomspace() (in module
sage.homology.chain_complex_homspace),
36

is_ChainComplexMorphism() (in module
sage.homology.chain_complex_morphism),
28

is_coboundary() (sage.homology.chains.Cochains.Element
method), 22

is_cocycle() (sage.homology.chains.Cochains.Element
method), 22

is_cycle() (sage.homology.chain_complex.Chain_class
method), 16

is_cycle() (sage.homology.chains.Chains.Element
method), 19

is_homology_gradient_vector_field()
(sage.homology.chain_homotopy.ChainHomotopy
method), 34

is_identity() (sage.homology.chain_complex_morphism.ChainComplexMorphism
method), 26

is_identity() (sage.homology.homology_morphism.InducedHomologyMorphism
method), 65

is_injective() (sage.homology.chain_complex_morphism.ChainComplexMorphism
method), 27

is_injective() (sage.homology.homology_morphism.InducedHomologyMorphism
method), 65

is_surjective() (sage.homology.chain_complex_morphism.ChainComplexMorphism
method), 27

is_surjective() (sage.homology.homology_morphism.InducedHomologyMorphism
method), 65

82 Index

Chain complexes and homology, Release 9.8

K
KoszulComplex (class in

sage.homology.koszul_complex), 39

M
module

sage.homology.algebraic_topological_model,
59

sage.homology.chain_complex, 3
sage.homology.chain_complex_homspace, 35
sage.homology.chain_complex_morphism, 25
sage.homology.chain_homotopy, 29
sage.homology.chains, 17
sage.homology.hochschild_complex, 41
sage.homology.homology_group, 47
sage.homology.homology_morphism, 63
sage.homology.homology_vector_space_with_basis,

49
sage.homology.koszul_complex, 39
sage.homology.matrix_utils, 67
sage.interfaces.chomp, 69

module() (sage.homology.hochschild_complex.HochschildComplex
method), 46

N
nonzero_degrees() (sage.homology.chain_complex.ChainComplex_class

method), 11

O
one() (sage.homology.homology_vector_space_with_basis.CohomologyRing

method), 52
ordered_degrees() (sage.homology.chain_complex.ChainComplex_class

method), 11

P
pi() (sage.homology.chain_homotopy.ChainContraction

method), 31
process_generators_chain() (in module

sage.interfaces.chomp), 73
process_generators_cubical() (in module

sage.interfaces.chomp), 74
process_generators_simplicial() (in module

sage.interfaces.chomp), 75
product_on_basis() (sage.homology.homology_vector_space_with_basis.CohomologyRing

method), 52

R
random_element() (sage.homology.chain_complex.ChainComplex_class

method), 12
rank() (sage.homology.chain_complex.ChainComplex_class

method), 12

S
sage.homology.algebraic_topological_model

module, 59
sage.homology.chain_complex

module, 3
sage.homology.chain_complex_homspace

module, 35
sage.homology.chain_complex_morphism

module, 25
sage.homology.chain_homotopy

module, 29
sage.homology.chains

module, 17
sage.homology.hochschild_complex

module, 41
sage.homology.homology_group

module, 47
sage.homology.homology_morphism

module, 63
sage.homology.homology_vector_space_with_basis

module, 49
sage.homology.koszul_complex

module, 39
sage.homology.matrix_utils

module, 67
sage.interfaces.chomp

module, 69
shift() (sage.homology.chain_complex.ChainComplex_class

method), 12
Sq() (sage.homology.homology_vector_space_with_basis.CohomologyRing.Element

method), 50
sum_indices() (in module

sage.homology.homology_vector_space_with_basis),
57

T
tensor() (sage.homology.chain_complex.ChainComplex_class

method), 13
to_complex() (sage.homology.chains.Chains.Element

method), 19
to_complex() (sage.homology.chains.Cochains.Element

method), 23
to_cycle() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis.Element

method), 56
to_matrix() (sage.homology.chain_complex_morphism.ChainComplexMorphism

method), 27
to_matrix() (sage.homology.homology_morphism.InducedHomologyMorphism

method), 66
torsion_list() (sage.homology.chain_complex.ChainComplex_class

method), 14
trivial_module() (sage.homology.hochschild_complex.HochschildComplex

method), 46

V
vector() (sage.homology.chain_complex.Chain_class

method), 16

Index 83

Chain complexes and homology, Release 9.8

vector() (sage.homology.hochschild_complex.HochschildComplex.Element
method), 42

84 Index

	Chain complexes
	Chains and cochains
	Morphisms of chain complexes
	Chain homotopies and chain contractions
	Homspaces between chain complexes
	Koszul Complexes
	Hochschild Complexes
	Homology Groups
	Homology and cohomology with a basis
	Algebraic topological model for a cell complex
	Induced morphisms on homology
	Utility Functions for Matrices
	Interface to CHomP
	Indices and Tables
	Python Module Index
	Index

