
Noncommutative Polynomials
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Univariate Ore Polynomials 1

2 Noncommutative Multivariate Polynomials 77

3 Indices and Tables 97

Python Module Index 99

Index 101

i

ii

CHAPTER

ONE

UNIVARIATE ORE POLYNOMIALS

1.1 Univariate Ore polynomial rings

This module provides the OrePolynomialRing, which constructs a general dense univariate Ore polynomial ring over
a commutative base with equipped with an endomorphism and/or a derivation.

AUTHOR:

• Xavier Caruso (2020-04)

class sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing(base_ring, morphism,
derivation, name, sparse,
category=None)

Bases: UniqueRepresentation, Algebra

Construct and return the globally unique Ore polynomial ring with the given properties and variable names.

Given a ring 𝑅 and a ring automorphism 𝜎 of 𝑅 and a 𝜎-derivation 𝜕, the ring of Ore polynomials 𝑅[𝑋;𝜎, 𝜕] is
the usual abelian group polynomial 𝑅[𝑋] equipped with the modification multiplication deduced from the rule
𝑋𝑎 = 𝜎(𝑎)𝑋 + 𝜕(𝑎). We refer to [Ore1933] for more material on Ore polynomials.

INPUT:

• base_ring – a commutative ring

• twisting_map – either an endomorphism of the base ring, or a (twisted) derivation of it

• names – a string or a list of strings

• sparse – a boolean (default: False); currently not supported

EXAMPLES:

The case of a twisting endomorphism

We create the Ore ring F53 [𝑥,Frob] where Frob is the Frobenius endomorphism:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S = OrePolynomialRing(k, Frob, 'x')
sage: S
Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^5

In particular, observe that it is not needed to create and pass in the twisting derivation (which is 0 in our example).

As a shortcut, we can use the square brackets notation as follow:

1

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.Algebra

Noncommutative Polynomials, Release 9.8

sage: T.<x> = k['x', Frob]
sage: T
Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^5
sage: T is S
True

We emphasize that it is necessary to repeat the name of the variable in the right hand side. Indeed, the following
fails (it is interpreted by Sage as a classical polynomial ring with variable name Frob):

sage: T.<x> = k[Frob]
Traceback (most recent call last):
...
ValueError: variable name 'Frobenius endomorphism a |--> a^5 on Finite Field in a␣
→˓of size 5^3' is not alphanumeric

Note moreover that, similarly to the classical case, using the brackets notation also sets the variable:

sage: x.parent() is S
True

We are now ready to carry on computations in the Ore ring:

sage: x*a
(2*a^2 + 4*a + 4)*x
sage: Frob(a)*x
(2*a^2 + 4*a + 4)*x

The case of a twisting derivation

We can similarly create the Ore ring of differential operators over Q[𝑡], namely Q[𝑡][𝑑, 𝑑
𝑑𝑡]:

sage: R.<t> = QQ[]
sage: der = R.derivation(); der
d/dt
sage: A = OrePolynomialRing(R, der, 'd')
sage: A
Ore Polynomial Ring in d over Univariate Polynomial Ring in t over Rational Field␣
→˓twisted by d/dt

Again, the brackets notation is available:

sage: B.<d> = R['d', der]
sage: A is B
True

and computations can be carried out:

sage: d*t
t*d + 1

2 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

The combined case

Ore polynomial rings involving at the same time a twisting morphism 𝜎 and a twisting 𝜎-derivation can be created
as well as follows:

sage: F.<u> = Qq(3^2)
sage: sigma = F.frobenius_endomorphism(); sigma
Frobenius endomorphism on 3-adic Unramified Extension Field in u
defined by x^2 + 2*x + 2 lifting u |--> u^3 on the residue field
sage: der = F.derivation(3, twist=sigma); der
(3 + O(3^21))*([Frob] - id)

sage: M.<X> = F['X', der]
sage: M
Ore Polynomial Ring in X over 3-adic Unramified Extension Field in u
defined by x^2 + 2*x + 2 twisted by Frob and (3 + O(3^21))*([Frob] - id)

We emphasize that we only need to pass in the twisted derivation as it already contains in it the datum of the
twisting endomorphism. Actually, passing in both twisting maps results in an error:

sage: F['X', sigma, der]
Traceback (most recent call last):
...
ValueError: variable name 'Frobenius endomorphism ...' is not alphanumeric

Examples of variable name context

Consider the following:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R, sigma); S
Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1

The names of the variables defined above cannot be arbitrarily modified because each Ore polynomial ring is
unique in Sage and other objects in Sage could have pointers to that Ore polynomial ring.

However, the variable can be changed within the scope of a with block using the localvars context:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R, sigma); S
Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1

sage: with localvars(S, ['y']):
....: print(S)
Ore Polynomial Ring in y over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1

1.1. Univariate Ore polynomial rings 3

Noncommutative Polynomials, Release 9.8

Uniqueness and immutability

In Sage, there is exactly one Ore polynomial ring for each quadruple (base ring, twisting morphism, twisting
derivation, name of the variable):

sage: k.<a> = GF(7^3)
sage: Frob = k.frobenius_endomorphism()
sage: S = k['x', Frob]
sage: T = k['x', Frob]
sage: S is T
True

Rings with different variables names are different:

sage: S is k['y', Frob]
False

Similarly, varying the twisting morphisms yields to different Ore rings (expect when the morphism coincide):

sage: S is k['x', Frob^2]
False
sage: S is k['x', Frob^3]
False
sage: S is k['x', Frob^4]
True

Todo:

• Sparse Ore Polynomial Ring

• Multivariate Ore Polynomial Ring

Element = None

change_var(var)
Return the Ore polynomial ring in variable var with the same base ring, twisting morphism and twisting
derivation as self.

INPUT:

• var – a string representing the name of the new variable

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: R.<x> = OrePolynomialRing(k,Frob); R
Ore Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^
→˓5
sage: Ry = R.change_var('y'); Ry
Ore Polynomial Ring in y over Finite Field in t of size 5^3 twisted by t |--> t^
→˓5
sage: Ry is R.change_var('y')
True

4 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

characteristic()

Return the characteristic of the base ring of self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: R['x',sigma].characteristic()
0

sage: k.<u> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: k['y',Frob].characteristic()
5

fraction_field()

Return the fraction field of this skew ring.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field(); K
Ore Function Field in x over Finite Field in a of size 5^3 twisted by a |--> a^5

sage: f = 1/(x + a); f
(x + a)^(-1)
sage: f.parent() is K
True

Below is another example with differentiel operators:

sage: R.<t> = QQ[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: A.fraction_field()
Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Rational Field twisted by d/dt

sage: f = t/d; f
(d - 1/t)^(-1) * t
sage: f*d
t

See also:

sage.rings.polynomial.ore_function_field

gen(n=0)
Return the indeterminate generator of this Ore polynomial ring.

INPUT:

• n – index of generator to return (default: 0); exists for compatibility with other polynomial rings

EXAMPLES:

1.1. Univariate Ore polynomial rings 5

Noncommutative Polynomials, Release 9.8

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational␣
→˓Field twisted by t |--> t + 1
sage: y = S.gen(); y
x
sage: y == x
True
sage: y is x
True
sage: S.gen(0)
x

This is also known as the parameter:

sage: S.parameter() is S.gen()
True

gens_dict()

Return a {name: variable} dictionary of the generators of this Ore polynomial ring.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R,sigma)
sage: S.gens_dict()
{'x': x}

is_commutative()

Return True if this Ore polynomial ring is commutative, i.e. if the twisting morphism is the identity and
the twisting derivation vanishes.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.is_commutative()
False

sage: T.<y> = k['y', Frob^3]
sage: T.is_commutative()
True

sage: R.<t> = GF(5)[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: A.is_commutative()
False

sage: B. = R['b', 5*der]
(continues on next page)

6 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: B.is_commutative()
True

is_exact()

Return True if elements of this Ore polynomial ring are exact. This happens if and only if elements of the
base ring are exact.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.is_exact()
True
sage: S.base_ring().is_exact()
True

sage: R.<u> = k[[]]
sage: sigma = R.hom([u+u^2])
sage: T.<y> = R['y', sigma]
sage: T.is_exact()
False
sage: T.base_ring().is_exact()
False

is_field(proof=False)
Return always False since Ore polynomial rings are never fields.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.is_field()
False

is_finite()

Return False since Ore polynomial rings are not finite (unless the base ring is 0).

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: k.is_finite()
True
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: S.is_finite()
False

is_sparse()

Return True if the elements of this Ore polynomial ring are sparsely represented.

1.1. Univariate Ore polynomial rings 7

Noncommutative Polynomials, Release 9.8

Warning: Since sparse Ore polynomials are not yet implemented, this function always returns False.

EXAMPLES:

sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: S.is_sparse()
False

ngens()

Return the number of generators of this Ore polynomial ring, which is 1.

EXAMPLES:

sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: S.ngens()
1

parameter(n=0)
Return the indeterminate generator of this Ore polynomial ring.

INPUT:

• n – index of generator to return (default: 0); exists for compatibility with other polynomial rings

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational␣
→˓Field twisted by t |--> t + 1
sage: y = S.gen(); y
x
sage: y == x
True
sage: y is x
True
sage: S.gen(0)
x

This is also known as the parameter:

sage: S.parameter() is S.gen()
True

random_element(degree=(-1, 2), monic=False, *args, **kwds)
Return a random Ore polynomial in this ring.

INPUT:

• degree – (default: (-1,2)) integer with degree or a tuple of integers with minimum and maximum
degrees

8 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

• monic – (default: False) if True, return a monic Ore polynomial

• *args, **kwds – passed on to the random_element method for the base ring

OUTPUT:

Ore polynomial such that the coefficients of 𝑥𝑖, for 𝑖 up to degree, are random elements from the base
ring, randomized subject to the arguments *args and **kwds.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.random_element() # random
(2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: S.random_element(monic=True) # random
x^2 + (2*t^2 + t + 1)*x + 3*t^2 + 3*t + 2

Use degree to obtain polynomials of higher degree:

sage: p = S.random_element(degree=5) # random
(t^2 + 3*t)*x^5 + (4*t + 4)*x^3 + (4*t^2 + 4*t)*x^2 + (2*t^2 + 1)*x + 3
sage: p.degree() == 5
True

If a tuple of two integers is given for the degree argument, a random integer will be chosen between the
first and second element of the tuple as the degree, both inclusive:

sage: S.random_element(degree=(2,7)) # random
(3*t^2 + 1)*x^4 + (4*t + 2)*x^3 + (4*t + 1)*x^2
+ (t^2 + 3*t + 3)*x + 3*t^2 + 2*t + 2

random_irreducible(degree=2, monic=True, *args, **kwds)
Return a random irreducible Ore polynomial.

Warning: Elements of this Ore polynomial ring need to have a method is_irreducible(). Currently,
this method is implemented only when the base ring is a finite field.

INPUT:

• degree - Integer with degree (default: 2) or a tuple of integers with minimum and maximum degrees

• monic - if True, returns a monic Ore polynomial (default: True)

• *args, **kwds - passed in to the random_element method for the base ring

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: A = S.random_irreducible()
sage: A.is_irreducible()
True
sage: B = S.random_irreducible(degree=3, monic=False)

(continues on next page)

1.1. Univariate Ore polynomial rings 9

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: B.is_irreducible()
True

twisting_derivation()

Return the twisting derivation defining this Ore polynomial ring or None if this Ore polynomial ring is not
twisted by a derivation.

EXAMPLES:

sage: R.<t> = QQ[]
sage: der = R.derivation(); der
d/dt
sage: A.<d> = R['d', der]
sage: A.twisting_derivation()
d/dt

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.twisting_derivation()

See also:

twisting_morphism()

twisting_morphism(n=1)
Return the twisting endomorphism defining this Ore polynomial ring iterated n times or None if this Ore
polynomial ring is not twisted by an endomorphism.

INPUT:

• n - an integer (default: 1)

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: S.twisting_morphism()
Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> t + 1

sage: S.twisting_morphism() == sigma
True
sage: S.twisting_morphism(10)
Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> t + 10

If n in negative, Sage tries to compute the inverse of the twisting morphism:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<y> = k['y',Frob]
sage: T.twisting_morphism(-1)
Frobenius endomorphism a |--> a^(5^2) on Finite Field in a of size 5^3

Sometimes it fails, even if the twisting morphism is actually invertible:

10 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: K = R.fraction_field()
sage: phi = K.hom([(t+1)/(t-1)])
sage: T.<y> = K['y', phi]
sage: T.twisting_morphism(-1)
Traceback (most recent call last):
...
NotImplementedError: inverse not implemented for morphisms of Fraction Field of␣
→˓Univariate Polynomial Ring in t over Rational Field

When the Ore polynomial ring is only twisted by a derivation, this method returns nothing:

sage: der = R.derivation()
sage: A.<d> = R['x', der]
sage: A
Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational␣
→˓Field twisted by d/dt
sage: A.twisting_morphism()

Here is an example where the twisting morphism is automatically inferred from the derivation:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: der = k.derivation(1, twist=Frob)
sage: der
[a |--> a^5] - id
sage: S.<x> = k['x', der]
sage: S.twisting_morphism()
Frobenius endomorphism a |--> a^5 on Finite Field in a of size 5^3

See also:

twisting_derivation()

1.2 Univariate Ore polynomials

This module provides the OrePolynomial, which constructs a single univariate Ore polynomial over a commutative
base equipped with an endomorphism and/or a derivation. It provides generic implementation of standard arithmetical
operations on Ore polynomials as addition, multiplication, gcd, lcm, etc.

The generic implementation of dense Ore polynomials is OrePolynomial_generic_dense. The classes
ConstantOrePolynomialSection and OrePolynomialBaseringInjection handle conversion from a Ore poly-
nomial ring to its base ring and vice versa.

AUTHORS:

• Xavier Caruso (2020-05)

class sage.rings.polynomial.ore_polynomial_element.ConstantOrePolynomialSection

Bases: Map

Representation of the canonical homomorphism from the constants of a Ore polynomial ring to the base ring.

This class is necessary for automatic coercion from zero-degree Ore polynomial ring into the base ring.

EXAMPLES:

1.2. Univariate Ore polynomials 11

../../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Map

Noncommutative Polynomials, Release 9.8

sage: from sage.rings.polynomial.ore_polynomial_element import␣
→˓ConstantOrePolynomialSection
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: m = ConstantOrePolynomialSection(S, R); m
Generic map:

From: Ore Polynomial Ring in x over Univariate Polynomial Ring in t over␣
→˓Rational Field twisted by t |--> t + 1

To: Univariate Polynomial Ring in t over Rational Field

class sage.rings.polynomial.ore_polynomial_element.OrePolynomial

Bases: AlgebraElement

Abstract base class for Ore polynomials.

This class must be inherited from and have key methods overridden.

Definition

Let 𝑅 be a commutative ring equipped with an automorphism 𝜎 and a 𝜎-derivation 𝜕.

A Ore polynomial is given by the equation:

𝐹 (𝑋) = 𝑎𝑛𝑋
𝑛 + · · ·+ 𝑎0,

where the coefficients 𝑎𝑖 ∈ 𝑅 and 𝑋 is a formal variable.

Addition between two Ore polynomials is defined by the usual addition operation and the modified multiplication
is defined by the rule 𝑋𝑎 = 𝜎(𝑎)𝑋 + 𝜕(𝑎) for all 𝑎 in 𝑅. Ore polynomials are thus non-commutative and the
degree of a product is equal to the sum of the degrees of the factors.

Let 𝑎 and 𝑏 be two Ore polynomials in the same ring 𝑆. The left (resp. right) euclidean division of 𝑎 by 𝑏 is a
couple (𝑞, 𝑟) of elements in 𝑆 such that

• 𝑎 = 𝑞𝑏+ 𝑟 (resp. 𝑎 = 𝑏𝑞 + 𝑟)

• the degree of 𝑟 is less than the degree of 𝑏

𝑞 (resp. 𝑟) is called the quotient (resp. the remainder) of this euclidean division.

Properties

Keeping the previous notation, if the leading coefficient of 𝑏 is a unit (e.g. if 𝑏 is monic) then the quotient and
the remainder in the right euclidean division exist and are unique.

The same result holds for the left euclidean division if in addition the twisting morphism defining the Ore poly-
nomial ring is invertible.

EXAMPLES:

We illustrate some functionalities implemented in this class.

We create the Ore polynomial ring (here the derivation is zero):

12 Chapter 1. Univariate Ore Polynomials

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AlgebraElement

Noncommutative Polynomials, Release 9.8

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1

and some elements in it:

sage: a = t + x + 1; a
x + t + 1
sage: b = S([t^2,t+1,1]); b
x^2 + (t + 1)*x + t^2
sage: c = S.random_element(degree=3,monic=True)
sage: c.parent() is S
True

Ring operations are supported:

sage: a + b
x^2 + (t + 2)*x + t^2 + t + 1
sage: a - b
-x^2 - t*x - t^2 + t + 1

sage: a * b
x^3 + (2*t + 3)*x^2 + (2*t^2 + 4*t + 2)*x + t^3 + t^2
sage: b * a
x^3 + (2*t + 4)*x^2 + (2*t^2 + 3*t + 2)*x + t^3 + t^2
sage: a * b == b * a
False

sage: b^2
x^4 + (2*t + 4)*x^3 + (3*t^2 + 7*t + 6)*x^2
+ (2*t^3 + 4*t^2 + 3*t + 1)*x + t^4
sage: b^2 == b*b
True

Sage also implements arithmetic over Ore polynomial rings. You will find below a short panorama:

sage: q,r = c.right_quo_rem(b)
sage: c == q*b + r
True

The operators // and % give respectively the quotient and the remainder of the right euclidean division:

sage: q == c // b
True
sage: r == c % b
True

Here we can see the effect of the operator evaluation compared to the usual polynomial evaluation:

sage: a = x^2
sage: a(t)
doctest:...: FutureWarning: This class/method/function is marked as experimental.

(continues on next page)

1.2. Univariate Ore polynomials 13

Noncommutative Polynomials, Release 9.8

(continued from previous page)

It, its functionality or its interface might change without a formal deprecation.
See http://trac.sagemath.org/13215 for details.
t + 2

Here is another example over a finite field:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^4 + (4*t + 1)*x^3 + (t^2 + 3*t + 3)*x^2 + (3*t^2 + 2*t + 2)*x + (3*t^2␣
→˓+ 3*t + 1)
sage: b = (2*t^2 + 3)*x^2 + (3*t^2 + 1)*x + 4*t + 2
sage: q,r = a.left_quo_rem(b)
sage: q
(4*t^2 + t + 1)*x^2 + (2*t^2 + 2*t + 2)*x + 2*t^2 + 4*t + 3
sage: r
(t + 2)*x + 3*t^2 + 2*t + 4
sage: a == b*q + r
True

Once we have euclidean divisions, we have for free gcd and lcm (at least if the base ring is a field):

sage: a = (x + t) * (x + t^2)^2
sage: b = (x + t) * (t*x + t + 1) * (x + t^2)
sage: a.right_gcd(b)
x + t^2
sage: a.left_gcd(b)
x + t

The left lcm has the following meaning: given Ore polynomials 𝑎 and 𝑏, their left lcm is the least degree poly-
nomial 𝑐 = 𝑢𝑎 = 𝑣𝑏 for some Ore polynomials 𝑢, 𝑣. Such a 𝑐 always exist if the base ring is a field:

sage: c = a.left_lcm(b); c
x^5 + (4*t^2 + t + 3)*x^4 + (3*t^2 + 4*t)*x^3 + 2*t^2*x^2 + (2*t^2 + t)*x + 4*t^2 +␣
→˓4
sage: c.is_right_divisible_by(a)
True
sage: c.is_right_divisible_by(b)
True

The right lcm is defined similarly as the least degree polynomial 𝑐 = 𝑎𝑢 = 𝑏𝑣 for some 𝑢, 𝑣:

sage: d = a.right_lcm(b); d
x^5 + (t^2 + 1)*x^4 + (3*t^2 + 3*t + 3)*x^3 + (3*t^2 + t + 2)*x^2 + (4*t^2 + 3*t)*x␣
→˓+ 4*t + 4
sage: d.is_left_divisible_by(a)
True
sage: d.is_left_divisible_by(b)
True

See also:

• sage.rings.polynomial.ore_polynomial_ring

14 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

base_ring()

Return the base ring of self.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = S.random_element()
sage: a.base_ring()
Univariate Polynomial Ring in t over Integer Ring
sage: a.base_ring() is R
True

change_variable_name(var)
Change the name of the variable of self.

This will create the Ore polynomial ring with the new name but same base ring, twisting morphism and
twisting derivation. The returned Ore polynomial will be an element of that Ore polynomial ring.

INPUT:

• var – the name of the new variable

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: a = x^3 + (2*t + 1)*x + t^2 + 3*t + 5
sage: b = a.change_variable_name('y'); b
y^3 + (2*t + 1)*y + t^2 + 3*t + 5

Note that a new parent is created at the same time:

sage: b.parent()
Ore Polynomial Ring in y over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1

coefficients(sparse=True)
Return the coefficients of the monomials appearing in self.

If sparse=True (the default), return only the non-zero coefficients. Otherwise, return the same value as
self.list().

Note: This should be overridden in subclasses.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.coefficients()
[t^2 + 1, t + 1, 1]

(continues on next page)

1.2. Univariate Ore polynomials 15

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: a.coefficients(sparse=False)
[t^2 + 1, 0, t + 1, 0, 1]

constant_coefficient()

Return the constant coefficient (i.e. the coefficient of term of degree 0) of self.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t^2 + 2
sage: a.constant_coefficient()
t^2 + 2

degree()

Return the degree of self.

By convention, the zero Ore polynomial has degree −1.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x + 1
sage: a.degree()
3
sage: S.zero().degree()
-1
sage: S(5).degree()
0

exponents()

Return the exponents of the monomials appearing in self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.exponents()
[0, 2, 4]

hamming_weight()

Return the number of non-zero coefficients of self.

This is also known as the weight, hamming weight or sparsity.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]

(continues on next page)

16 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.number_of_terms()
3

This is also an alias for hamming_weight:

sage: a.hamming_weight()
3

is_constant()

Return whether self is a constant polynomial.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: R(2).is_constant()
True
sage: (x + 1).is_constant()
False

is_left_divisible_by(other)
Check if self is divisible by other on the left.

INPUT:

• other – a Ore polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: c.is_left_divisible_by(a)
True
sage: c.is_left_divisible_by(b)
False

Divisibility by 0 does not make sense:

sage: c.is_left_divisible_by(S(0))
Traceback (most recent call last):
...
ZeroDivisionError: division by zero is not valid

is_monic()

Return True if this Ore polynomial is monic.

1.2. Univariate Ore polynomials 17

Noncommutative Polynomials, Release 9.8

The zero polynomial is by definition not monic.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t
sage: a.is_monic()
True
sage: a = 0*x
sage: a.is_monic()
False
sage: a = t*x^3 + x^4 + (t+1)*x^2
sage: a.is_monic()
True
sage: a = (t^2 + 2*t)*x^2 + x^3 + t^10*x^5
sage: a.is_monic()
False

is_monomial()

Return True if self is a monomial, i.e., a power of the generator.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_monomial()
True
sage: (x+1).is_monomial()
False
sage: (x^2).is_monomial()
True
sage: S(1).is_monomial()
True

The coefficient must be 1:

sage: (2*x^5).is_monomial()
False
sage: S(t).is_monomial()
False

To allow a non-1 leading coefficient, use is_term():

sage: (2*x^5).is_term()
True
sage: S(t).is_term()
True

is_nilpotent()

Check if self is nilpotent.

Note: The paper “Nilpotents and units in skew polynomial rings over commutative rings” by M. Rimmer

18 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

and K.R. Pearson describes a method to check whether a given skew polynomial is nilpotent. That method
however, requires one to know the order of the automorphism which is not available in Sage. This method
is thus not yet implemented.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_nilpotent()
Traceback (most recent call last):
...
NotImplementedError

is_one()

Test whether this polynomial is 1.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: R(1).is_one()
True
sage: (x + 3).is_one()
False

is_right_divisible_by(other)
Check if self is divisible by other on the right.

INPUT:

• other – a Ore polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: c.is_right_divisible_by(a)
False
sage: c.is_right_divisible_by(b)
True

Divisibility by 0 does not make sense:

sage: c.is_right_divisible_by(S(0))
Traceback (most recent call last):
...
ZeroDivisionError: division by zero is not valid

1.2. Univariate Ore polynomials 19

Noncommutative Polynomials, Release 9.8

This function does not work if the leading coefficient of the divisor is not a unit:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + 2*x + t
sage: b = (t+1)*x + t^2
sage: c = a*b
sage: c.is_right_divisible_by(b)
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient of the divisor is not invertible

is_term()

Return True if self is an element of the base ring times a power of the generator.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_term()
True
sage: R(1).is_term()
True
sage: (3*x^5).is_term()
True
sage: (1+3*x^5).is_term()
False

If you want to test that self also has leading coefficient 1, use is_monomial() instead:

sage: (3*x^5).is_monomial()
False

is_unit()

Return True if this Ore polynomial is a unit.

When the base ring 𝑅 is an integral domain, then a Ore polynomial 𝑓 is a unit if and only if degree of 𝑓 is
0 and 𝑓 is then a unit in 𝑅.

Note: The case when 𝑅 is not an integral domain is not yet implemented.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + (t+1)*x^5 + t^2*x^3 - x^5
sage: a.is_unit()
False

is_zero()

Return True if self is the zero polynomial.

20 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + 1
sage: a.is_zero()
False
sage: b = S.zero()
sage: b.is_zero()
True

leading_coefficient()

Return the coefficient of the highest-degree monomial of self.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (t+1)*x^5 + t^2*x^3 + x
sage: a.leading_coefficient()
t + 1

By convention, the leading coefficient to the zero polynomial is zero:

sage: S(0).leading_coefficient()
0

left_divides(other)
Check if self divides other on the left.

INPUT:

• other – a Ore polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: a.left_divides(c)
True
sage: b.left_divides(c)
False

Divisibility by 0 does not make sense:

sage: S(0).left_divides(c)
Traceback (most recent call last):

(continues on next page)

1.2. Univariate Ore polynomials 21

Noncommutative Polynomials, Release 9.8

(continued from previous page)

...
ZeroDivisionError: division by zero is not valid

left_gcd(other, monic=True)
Return the left gcd of self and other.

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – boolean (default: True); return whether the left gcd should be normalized to be monic

OUTPUT:

The left gcd of self and other, that is a Ore polynomial 𝑔 with the following property: any Ore polynomial
is divisible on the left by 𝑔 iff it is divisible on the left by both self and other. If monic is True, 𝑔 is in
addition monic. (With this extra condition, it is uniquely determined.)

Note: Works only if following two conditions are fulfilled (otherwise left gcd do not exist in general): 1)
the base ring is a field and 2) the twisting morphism is bijective.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_gcd(b)
x + t

Specifying monic=False, we can get a nonmonic gcd:

sage: a.left_gcd(b,monic=False)
2*t*x + 4*t + 2

The base ring needs to be a field:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_gcd(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field

And the twisting morphism needs to be bijective:

sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x^2 + t*x + 1)

(continues on next page)

22 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_gcd(b)
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism Ring endomorphism of␣
→˓Fraction Field of Univariate Polynomial Ring in t over Rational Field

Defn: t |--> t^2

left_lcm(other, monic=True)
Return the left lcm of self and other.

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – boolean (default: True); return whether the left lcm should be normalized to be monic

OUTPUT:

The left lcm of self and other, that is a Ore polynomial 𝑔 with the following property: any Ore polynomial
divides 𝑔 on the right iff it divides both self and other on the right. If monic is True, 𝑔 is in addition
monic. (With this extra condition, it is uniquely determined.)

Note: Works only if the base ring is a field (otherwise left lcm do not exist in general).

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t^2) * (x + t)
sage: b = 2 * (x^2 + t + 1) * (x * t)
sage: c = a.left_lcm(b); c
x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t␣
→˓+ 2)*x
sage: c.is_right_divisible_by(a)
True
sage: c.is_right_divisible_by(b)
True
sage: a.degree() + b.degree() == c.degree() + a.right_gcd(b).degree()
True

Specifying monic=False, we can get a nonmonic gcd:

sage: a.left_lcm(b,monic=False)
(t^2 + t)*x^5 + (4*t^2 + 4*t + 1)*x^4 + (t + 1)*x^3 + (t^2 + 2)*x^2 + (3*t +␣
→˓4)*x

The base ring needs to be a field:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t^2) * (x + t)

(continues on next page)

1.2. Univariate Ore polynomials 23

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: b = 2 * (x^2 + t + 1) * (x * t)
sage: a.left_lcm(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field

left_mod(other)
Return the remainder of left division of self by other.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = 1 + t*x^2
sage: b = x + 1
sage: a.left_mod(b)
2*t^2 + 4*t

left_monic()

Return the unique monic Ore polynomial 𝑚 which divides this polynomial on the left and has the same
degree.

Given a Ore polynomial 𝑃 of degree 𝑛, its left monic is given by 𝑃 · 𝜎−𝑛(1/𝑘), where 𝑘 is the leading
coefficient of 𝑃 and 𝜎 is the twisting morphism.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 +␣
→˓2
sage: b = a.left_monic(); b
x^3 + (4*t^2 + 3*t)*x^2 + (4*t + 2)*x + 2*t^2 + 4*t + 3

Check list:

sage: b.degree() == a.degree()
True
sage: b.is_left_divisible_by(a)
True
sage: twist = S.twisting_morphism(-a.degree())
sage: a == b * twist(a.leading_coefficient())
True

Note that 𝑏 does not divide 𝑎 on the right:

sage: a.is_right_divisible_by(b)
False

This function does not work if the leading coefficient is not a unit:

24 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: R.<t> = QQ[]
sage: der = R.derivation()
sage: S.<x> = R['x', der]
sage: a = t*x
sage: a.left_monic()
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient is not a unit

left_quo_rem(other)
Return the quotient and remainder of the left euclidean division of self by other.

INPUT:

• other – a Ore polynomial in the same ring as self

OUTPUT:

• the quotient and the remainder of the left euclidean division of this Ore polynomial by other

Note: This will fail if the leading coefficient of other is not a unit or if Sage can’t invert the twisting
morphism.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 +␣
→˓2
sage: b = (3*t^2 + 4*t + 2)*x^2 + (2*t^2 + 4*t + 3)*x + 2*t^2 + t + 1
sage: q,r = a.left_quo_rem(b)
sage: a == b*q + r
True

In the following example, Sage does not know the inverse of the twisting morphism:

sage: R.<t> = QQ[]
sage: K = R.fraction_field()
sage: sigma = K.hom([(t+1)/(t-1)])
sage: S.<x> = K['x',sigma]
sage: a = (-2*t^2 - t + 1)*x^3 + (-t^2 + t)*x^2 + (-12*t - 2)*x - t^2 - 95*t + 1
sage: b = x^2 + (5*t - 6)*x - 4*t^2 + 4*t - 1
sage: a.left_quo_rem(b)
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism Ring endomorphism of␣
→˓Fraction Field of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> (t + 1)/(t - 1)

left_xgcd(other, monic=True)
Return the left gcd of self and other along with the coefficients for the linear combination.

If 𝑎 is self and 𝑏 is other, then there are Ore polynomials 𝑢 and 𝑣 such that 𝑔 = 𝑎𝑢+ 𝑏𝑣, where 𝑔 is the
left gcd of 𝑎 and 𝑏. This method returns (𝑔, 𝑢, 𝑣).

1.2. Univariate Ore polynomials 25

Noncommutative Polynomials, Release 9.8

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – boolean (default: True); return whether the left gcd should be normalized to be monic

OUTPUT:

• The left gcd of self and other, that is a Ore polynomial 𝑔 with the following property: any Ore
polynomial is divisible on the left by 𝑔 iff it is divisible on the left by both self and other. If monic
is True, 𝑔 is in addition monic. (With this extra condition, it is uniquely determined.)

• Two Ore polynomials 𝑢 and 𝑣 such that:

𝑔 = 𝑎 * 𝑢+ 𝑏 * 𝑣,

where 𝑠 is self and 𝑏 is other.

Note: Works only if following two conditions are fulfilled (otherwise left gcd do not exist in general): 1)
the base ring is a field and 2) the twisting morphism is bijective.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: g,u,v = a.left_xgcd(b); g
x + t
sage: a*u + b*v == g
True

Specifying monic=False, we can get a nonmonic gcd:

sage: g,u,v = a.left_xgcd(b, monic=False); g
2*t*x + 4*t + 2
sage: a*u + b*v == g
True

The base ring must be a field:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_xgcd(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field

And the twisting morphism must be bijective:

sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])

(continues on next page)

26 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_xgcd(b)
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism Ring endomorphism of␣
→˓Fraction Field of Univariate Polynomial Ring in t over Rational Field

Defn: t |--> t^2

left_xlcm(other, monic=True)
Return the left lcm 𝐿 of self and other together with two Ore polynomials 𝑈 and 𝑉 such that

𝑈 · self = 𝑉 · other = 𝐿.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: P = (x + t^2) * (x + t)
sage: Q = 2 * (x^2 + t + 1) * (x * t)
sage: L, U, V = P.left_xlcm(Q)
sage: L
x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t␣
→˓+ 2)*x

sage: U*P == L
True
sage: V*Q == L
True

number_of_terms()

Return the number of non-zero coefficients of self.

This is also known as the weight, hamming weight or sparsity.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.number_of_terms()
3

This is also an alias for hamming_weight:

sage: a.hamming_weight()
3

padded_list(n=None)
Return list of coefficients of self up to (but not including) degree 𝑛.

Includes 0‘𝑠𝑖𝑛𝑡ℎ𝑒𝑙𝑖𝑠𝑡𝑜𝑛𝑡ℎ𝑒𝑟𝑖𝑔ℎ𝑡𝑠𝑜𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑙𝑖𝑠𝑡𝑎𝑙𝑤𝑎𝑦𝑠ℎ𝑎𝑠𝑙𝑒𝑛𝑔𝑡ℎ𝑒𝑥𝑎𝑐𝑡𝑙𝑦‘𝑛.

1.2. Univariate Ore polynomials 27

Noncommutative Polynomials, Release 9.8

INPUT:

• n – (default: None); if given, an integer that is at least 0

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + t*x^3 + t^2*x^5
sage: a.padded_list()
[1, 0, 0, t, 0, t^2]
sage: a.padded_list(10)
[1, 0, 0, t, 0, t^2, 0, 0, 0, 0]
sage: len(a.padded_list(10))
10
sage: a.padded_list(3)
[1, 0, 0]
sage: a.padded_list(0)
[]
sage: a.padded_list(-1)
Traceback (most recent call last):
...
ValueError: n must be at least 0

prec()

Return the precision of self.

This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.prec()
+Infinity

right_divides(other)
Check if self divides other on the right.

INPUT:

• other – a Ore polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: a.right_divides(c)

(continues on next page)

28 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

False
sage: b.right_divides(c)
True

Divisibility by 0 does not make sense:

sage: S(0).right_divides(c)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero is not valid

This function does not work if the leading coefficient of the divisor is not a unit:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + 2*x + t
sage: b = (t+1)*x + t^2
sage: c = a*b
sage: b.right_divides(c)
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient of the divisor is not invertible

right_gcd(other, monic=True)
Return the right gcd of self and other.

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – boolean (default: True); return whether the right gcd should be normalized to be monic

OUTPUT:

The right gcd of self and other, that is a Ore polynomial 𝑔 with the following property: any Ore polyno-
mial is divisible on the right by 𝑔 iff it is divisible on the right by both self and other. If monic is True,
𝑔 is in addition monic. (With this extra condition, it is uniquely determined.)

Note: Works only if the base ring is a field (otherwise right gcd do not exist in general).

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_gcd(b)
x + t

Specifying monic=False, we can get a nonmonic gcd:

1.2. Univariate Ore polynomials 29

Noncommutative Polynomials, Release 9.8

sage: a.right_gcd(b,monic=False)
(4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3

The base ring need to be a field:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_gcd(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field

right_lcm(other, monic=True)
Return the right lcm of self and other.

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – boolean (default: True); return whether the right lcm should be normalized to be monic

OUTPUT:

The right lcm of self and other, that is a Ore polynomial 𝑔 with the following property: any Ore polyno-
mial divides 𝑔 on the left iff it divides both self and other on the left. If monic is True, 𝑔 is in addition
monic. (With this extra condition, it is uniquely determined.)

Note: Works only if two following conditions are fulfilled (otherwise right lcm do not exist in general):
1) the base ring is a field and 2) the twisting morphism on this field is bijective.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: c = a.right_lcm(b); c
x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2 +␣
→˓4
sage: c.is_left_divisible_by(a)
True
sage: c.is_left_divisible_by(b)
True
sage: a.degree() + b.degree() == c.degree() + a.left_gcd(b).degree()
True

Specifying monic=False, we can get a nonmonic gcd:

sage: a.right_lcm(b,monic=False)
2*t*x^4 + (3*t + 1)*x^3 + (4*t^2 + 4*t + 3)*x^2
+ (3*t^2 + 4*t + 2)*x + 3*t^2 + 2*t + 3

30 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

The base ring needs to be a field:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: a.right_lcm(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field

And the twisting morphism needs to be bijective:

sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: a.right_lcm(b)
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism Ring endomorphism of␣
→˓Fraction Field of Univariate Polynomial Ring in t over Rational Field

Defn: t |--> t^2

right_mod(other)
Return the remainder of right division of self by other.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + t*x^2
sage: b = x + 1
sage: a % b
t + 1
sage: (x^3 + x - 1).right_mod(x^2 - 1)
2*x - 1

right_monic()

Return the unique monic Ore polynomial which divides this polynomial on the right and has the same
degree.

Given a Ore polynomial 𝑃 of degree 𝑛, its left monic is given by (1/𝑘)·𝑃 , where 𝑘 is the leading coefficient
of 𝑝.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 +␣
→˓2

(continues on next page)

1.2. Univariate Ore polynomials 31

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: b = a.right_monic(); b
x^3 + (2*t^2 + 3*t + 4)*x^2 + (3*t^2 + 4*t + 1)*x + 2*t^2 + 4*t + 3

Check list:

sage: b.degree() == a.degree()
True
sage: b.is_right_divisible_by(a)
True
sage: a == a.leading_coefficient() * b
True

Note that 𝑏 does not divide 𝑎 on the right:

sage: a.is_left_divisible_by(b)
False

This function does not work if the leading coefficient is not a unit:

sage: R.<t> = QQ[]
sage: der = R.derivation()
sage: S.<x> = R['x', der]
sage: a = t*x
sage: a.right_monic()
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient is not a unit

right_quo_rem(other)
Return the quotient and remainder of the right euclidean division of self by other.

INPUT:

• other – a Ore polynomial in the same ring as self

OUTPUT:

• the quotient and the remainder of the left euclidean division of this Ore polynomial by other

Note: This will fail if the leading coefficient of the divisor is not a unit.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = S.random_element(degree=4)
sage: b = S.random_element(monic=True)
sage: q,r = a.right_quo_rem(b)
sage: a == q*b + r
True

The leading coefficient of the divisor need to be invertible:

32 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: a.right_quo_rem(S(0))
Traceback (most recent call last):
...
ZeroDivisionError: division by zero is not valid
sage: c = S.random_element()
sage: while not c or c.leading_coefficient().is_unit():
....: c = S.random_element()
sage: while a.degree() < c.degree():
....: a = S.random_element(degree=4)
sage: a.right_quo_rem(c)
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient of the divisor is not invertible

right_xgcd(other, monic=True)
Return the right gcd of self and other along with the coefficients for the linear combination.

If 𝑎 is self and 𝑏 is other, then there are Ore polynomials 𝑢 and 𝑣 such that 𝑔 = 𝑢𝑎+ 𝑣𝑏, where 𝑔 is the
right gcd of 𝑎 and 𝑏. This method returns (𝑔, 𝑢, 𝑣).

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – boolean (default: True); return whether the right gcd should be normalized to be monic

OUTPUT:

• The right gcd of self and other, that is a Ore polynomial 𝑔 with the following property: any Ore
polynomial is divisible on the right by 𝑔 iff it is divisible on the right by both self and other. If
monic is True, 𝑔 is in addition monic. (With this extra condition, it is uniquely determined.)

• Two Ore polynomials 𝑢 and 𝑣 such that:

𝑔 = 𝑢 * 𝑎+ 𝑣 * 𝑏

where 𝑎 is self and 𝑏 is other.

Note: Works only if the base ring is a field (otherwise right gcd do not exist in general).

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: g,u,v = a.right_xgcd(b); g
x + t
sage: u*a + v*b == g
True

Specifying monic=False, we can get a nonmonic gcd:

1.2. Univariate Ore polynomials 33

Noncommutative Polynomials, Release 9.8

sage: g,u,v = a.right_xgcd(b,monic=False); g
(4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
sage: u*a + v*b == g
True

The base ring must be a field:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_xgcd(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field

right_xlcm(other, monic=True)
Return the right lcm 𝐿 of self and other together with two Ore polynomials 𝑈 and 𝑉 such that

self · 𝑈 = other · 𝑉 = 𝐿.

INPUT:

• other – a Ore polynomial in the same ring as self

• monic – a boolean (default: True); whether the right lcm should be normalized to be monic

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: P = (x + t) * (x + t^2)
sage: Q = 2 * (x + t) * (x^2 + t + 1)
sage: L, U, V = P.right_xlcm(Q)
sage: L
x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2 +␣
→˓4
sage: P*U == L
True
sage: Q*V == L
True

shift(n)
Return self multiplied on the right by the power 𝑥𝑛.

If 𝑛 is negative, terms below 𝑥𝑛 will be discarded.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^5 + t^4*x^4 + t^2*x^2 + t^10

(continues on next page)

34 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: a.shift(0)
x^5 + t^4*x^4 + t^2*x^2 + t^10
sage: a.shift(-1)
x^4 + t^4*x^3 + t^2*x
sage: a.shift(-5)
1
sage: a.shift(2)
x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2

One can also use the infix shift operator:

sage: a >> 2
x^3 + t^4*x^2 + t^2
sage: a << 2
x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2

square()

Return the square of self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: a = x + t; a
x + t
sage: a.square()
x^2 + (2*t + 1)*x + t^2
sage: a.square() == a*a
True

sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: (d + t).square()
d^2 + 2*t*d + t^2 + 1

variable_name()

Return the string name of the variable used in self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t
sage: a.variable_name()
'x'

class sage.rings.polynomial.ore_polynomial_element.OrePolynomialBaseringInjection

Bases: Morphism

Representation of the canonical homomorphism from a ring 𝑅 into a Ore polynomial ring over 𝑅.

This class is necessary for automatic coercion from the base ring to the Ore polynomial ring.

1.2. Univariate Ore polynomials 35

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Noncommutative Polynomials, Release 9.8

See also:

PolynomialBaseringInjection

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: S.coerce_map_from(S.base_ring()) #indirect doctest
Ore Polynomial base injection morphism:
From: Univariate Polynomial Ring in t over Rational Field
To: Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational␣

→˓Field twisted by t |--> t + 1

an_element()

Return an element of the codomain of the ring homomorphism.

EXAMPLES:

sage: from sage.rings.polynomial.ore_polynomial_element import␣
→˓OrePolynomialBaseringInjection
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: m = OrePolynomialBaseringInjection(k, k['x', Frob])
sage: m.an_element()
x

section()

Return the canonical homomorphism from the constants of a Ore polynomial ring to the base ring according
to self.

class sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense

Bases: OrePolynomial

Generic implementation of dense Ore polynomial supporting any valid base ring, twisting morphism and twisting
derivation.

coefficients(sparse=True)
Return the coefficients of the monomials appearing in self.

If sparse=True (the default), return only the non-zero coefficients. Otherwise, return the same value as
self.list().

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.coefficients()
[t^2 + 1, t + 1, 1]
sage: a.coefficients(sparse=False)
[t^2 + 1, 0, t + 1, 0, 1]

36 Chapter 1. Univariate Ore Polynomials

../../../../../../../html/en/reference/polynomial_rings/sage/rings/polynomial/polynomial_element.html#sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection

Noncommutative Polynomials, Release 9.8

degree()

Return the degree of self.

By convention, the zero Ore polynomial has degree −1.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x + 1
sage: a.degree()
3

By convention, the degree of 0 is −1:

sage: S(0).degree()
-1

dict()

Return a dictionary representation of self.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2012 + t*x^1006 + t^3 + 2*t
sage: a.dict()
{0: t^3 + 2*t, 1006: t, 2012: 1}

hilbert_shift(s, var=None)
Return this Ore polynomial with variable shifted by 𝑠, i.e. if this Ore polynomial is 𝑃 (𝑥), return 𝑃 (𝑥+ 𝑠).

INPUT:

• s – an element in the base ring

• var – a string; the variable name

EXAMPLES:

sage: R.<t> = GF(7)[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]

sage: L = d^3 + t*d^2
sage: L.hilbert_shift(t)
d^3 + 4*t*d^2 + (5*t^2 + 3)*d + 2*t^3 + 4*t
sage: (d+t)^3 + t*(d+t)^2
d^3 + 4*t*d^2 + (5*t^2 + 3)*d + 2*t^3 + 4*t

One can specify another variable name:

sage: L.hilbert_shift(t, var='x')
x^3 + 4*t*x^2 + (5*t^2 + 3)*x + 2*t^3 + 4*t

When the twisting morphism is not trivial, the output lies in a different Ore polynomial ring:

1.2. Univariate Ore polynomials 37

Noncommutative Polynomials, Release 9.8

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]

sage: P = x^2 + a*x + a^2
sage: Q = P.hilbert_shift(a); Q
x^2 + (2*a^2 + a + 4)*x + a^2 + 3*a + 4

sage: Q.parent()
Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^
→˓5 and a*([a |--> a^5] - id)
sage: Q.parent() is S
False

This behavior ensures that the Hilbert shift by a fixed element defines an homomorphism of rings:

sage: U = S.random_element(degree=5)
sage: V = S.random_element(degree=5)
sage: s = k.random_element()
sage: (U+V).hilbert_shift(s) == U.hilbert_shift(s) + V.hilbert_shift(s)
True
sage: (U*V).hilbert_shift(s) == U.hilbert_shift(s) * V.hilbert_shift(s)
True

We check that shifting by an element and then by its opposite gives back the initial Ore polynomial:

sage: P = S.random_element(degree=10)
sage: s = k.random_element()
sage: P.hilbert_shift(s).hilbert_shift(-s) == P
True

list(copy=True)
Return a list of the coefficients of self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: l = a.list(); l
[t^2 + 1, 0, t + 1, 0, 1]

Note that 𝑙 is a list, it is mutable, and each call to the list method returns a new list:

sage: type(l)
<... 'list'>
sage: l[0] = 5
sage: a.list()
[t^2 + 1, 0, t + 1, 0, 1]

truncate(n)
Return the polynomial resulting from discarding all monomials of degree at least 𝑛.

EXAMPLES:

38 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x^3 + x^4 + (t+1)*x^2
sage: a.truncate(4)
t*x^3 + (t + 1)*x^2
sage: a.truncate(3)
(t + 1)*x^2

valuation()

Return the minimal degree of a non-zero monomial of self.

By convention, the zero Ore polynomial has valuation +∞.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x
sage: a.valuation()
1

By convention, the valuation of 0 is +∞:

sage: S(0).valuation()
+Infinity

1.3 Univariate skew polynomial rings

This module provides the SkewPolynomialRing. In the class hierarchy in Sage, the locution Skew Polynomial is used
for a Ore polynomial without twisting derivation.

This module also provides:

• the class SkewPolynomialRing_finite_order, which is a specialized class for skew polynomial rings over
fields equipped with an automorphism of finite order. It inherits from SkewPolynomialRing but contains more
methods and provides better algorithms.

• the class SkewPolynomialRing_finite_field , which is a specialized class for skew polynomial rings over
finite fields.

See also:

OrePolynomialRing

AUTHOR:

• Xavier Caruso (2012-06-29): initial version

• Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods

• Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors

class sage.rings.polynomial.skew_polynomial_ring.SectionSkewPolynomialCenterInjection

Bases: Section

Section of the canonical injection of the center of a skew polynomial ring into this ring.

1.3. Univariate skew polynomial rings 39

../../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Section

Noncommutative Polynomials, Release 9.8

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialCenterInjection(domain,
codomain,
embed,
order)

Bases: RingHomomorphism

Canonical injection of the center of a skew polynomial ring into this ring.

section()

Return a section of this morphism.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism())
sage: Z = S.center()
sage: iota = S.convert_map_from(Z)
sage: sigma = iota.section()
sage: sigma(x^3)
z

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing(base_ring, morphism,
derivation, name, sparse,
category=None)

Bases: OrePolynomialRing

Initialize self.

INPUT:

• base_ring – a commutative ring

• twisting_morphism – an automorphism of the base ring

• name – string or list of strings representing the name of the variables of ring

• sparse – boolean (default: False)

• category – a category

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R,sigma)
sage: S.category()
Category of algebras over Univariate Polynomial Ring in t over Integer Ring
sage: S([1]) + S([-1])
0
sage: TestSuite(S).run()

lagrange_polynomial(points)
Return the minimal-degree polynomial which interpolates the given points.

More precisely, given 𝑛 pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) ∈ 𝑅2, where 𝑅 is self.base_ring(), compute a
skew polynomial 𝑝(𝑥) such that 𝑝(𝑥𝑖) = 𝑦𝑖 for each 𝑖, under the condition that the 𝑥𝑖 are linearly indepen-
dent over the fixed field of self.twisting_morphism().

40 Chapter 1. Univariate Ore Polynomials

../../../../../../../html/en/reference/rings/sage/rings/morphism.html#sage.rings.morphism.RingHomomorphism

Noncommutative Polynomials, Release 9.8

If the 𝑥𝑖 are linearly independent over the fixed field of self.twisting_morphism() then such a poly-
nomial is guaranteed to exist. Otherwise, it might exist depending on the 𝑦𝑖, but the algorithm used in this
implementation does not support that, and so an error is always raised.

INPUT:

• points – a list of pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) of elements of the base ring of self; the 𝑥𝑖 should be
linearly independent over the fixed field of self.twisting_morphism()

OUTPUT:

The Lagrange polynomial.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: points = [(t, 3*t^2 + 4*t + 4), (t^2, 4*t)]
sage: d = S.lagrange_polynomial(points); d
x + t

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: T.<x> = R['x', sigma]
sage: points = [(1, t^2 + 3*t + 4), (t, 2*t^2 + 3*t + 1), (t^2, t^2 + 3*t + 4)␣
→˓]
sage: p = T.lagrange_polynomial(points); p
((-t^4 - 2*t - 3)/-2)*x^2 + (-t^4 - t^3 - t^2 - 3*t - 2)*x + (-t^4 - 2*t^3 -␣
→˓4*t^2 - 10*t - 9)/-2
sage: p.multi_point_evaluation([1, t, t^2]) == [t^2 + 3*t + 4, 2*t^2 + 3*t + 1,
→˓ t^2 + 3*t + 4]
True

If the 𝑥𝑖 are linearly dependent over the fixed field of self.twisting_morphism(), then an error is
raised:

sage: T.lagrange_polynomial([(t, 1), (2*t, 3)])
Traceback (most recent call last):
...
ValueError: the given evaluation points are linearly dependent over the fixed␣
→˓field of the twisting morphism,
so a Lagrange polynomial could not be determined (and might not exist)

minimal_vanishing_polynomial(eval_pts)
Return the minimal-degree, monic skew polynomial which vanishes at all the given evaluation points.

The degree of the vanishing polynomial is at most the length of eval_pts. Equality holds if and only if
the elements of eval_pts are linearly independent over the fixed field of self.twisting_morphism().

• eval_pts – list of evaluation points which are linearly independent over the fixed field of the twisting
morphism of the associated skew polynomial ring

OUTPUT:

The minimal vanishing polynomial.

EXAMPLES:

1.3. Univariate skew polynomial rings 41

Noncommutative Polynomials, Release 9.8

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: eval_pts = [1, t, t^2]
sage: b = S.minimal_vanishing_polynomial(eval_pts); b
x^3 + 4

The minimal vanishing polynomial evaluates to 0 at each of the evaluation points:

sage: eval = b.multi_point_evaluation(eval_pts); eval
[0, 0, 0]

If the evaluation points are linearly dependent over the fixed field of the twisting morphism, then the returned
polynomial has lower degree than the number of evaluation points:

sage: S.minimal_vanishing_polynomial([t])
x + 3*t^2 + 3*t
sage: S.minimal_vanishing_polynomial([t, 3*t])
x + 3*t^2 + 3*t

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_finite_field(base_ring,
morphism,
derivation,
names,
sparse,
cate-
gory=None)

Bases: SkewPolynomialRing_finite_order

A specialized class for skew polynomial rings over finite fields.

See also:

• sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing

• sage.rings.polynomial.skew_polynomial_finite_field

Todo: Add methods related to center of skew polynomial ring, irreducibility, karatsuba multiplication and
factorization.

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_finite_order(base_ring,
morphism,
derivation,
name,
sparse,
cate-
gory=None)

Bases: SkewPolynomialRing

A specialized class for skew polynomial rings whose twising morphism has finite order.

See also:

• sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing

42 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

• sage.rings.polynomial.skew_polynomial_finite_order

center(name=None, names=None, default=False)
Return the center of this skew polynomial ring.

Note: If 𝐹 denotes the subring of 𝑅 fixed by 𝜎 and 𝜎 has order 𝑟, the center of 𝐾[𝑥, 𝜎] is 𝐹 [𝑥𝑟], that is a
univariate polynomial ring over 𝐹 .

INPUT:

• name – a string or None (default: None); the name for the central variable (namely 𝑥𝑟)

• default – a boolean (default: False); if True, set the default variable name for the center to name

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]; S
Ore Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^
→˓5

sage: Z = S.center(); Z
Univariate Polynomial Ring in z over Finite Field of size 5
sage: Z.gen()
z

We can pass in another variable name:

sage: S.center(name='y')
Univariate Polynomial Ring in y over Finite Field of size 5

or use the bracket notation:

sage: Zy.<y> = S.center(); Zy
Univariate Polynomial Ring in y over Finite Field of size 5
sage: y.parent() is Zy
True

A coercion map from the center to the skew polynomial ring is set:

sage: S.has_coerce_map_from(Zy)
True

sage: P = y + x; P
x^3 + x
sage: P.parent()
Ore Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^
→˓5
sage: P.parent() is S
True

together with a conversion map in the reverse direction:

1.3. Univariate skew polynomial rings 43

Noncommutative Polynomials, Release 9.8

sage: Zy(x^6 + 2*x^3 + 3)
y^2 + 2*y + 3

sage: Zy(x^2)
Traceback (most recent call last):
...
ValueError: x^2 is not in the center

Two different skew polynomial rings can share the same center:

sage: S1.<x1> = k['x1', Frob]
sage: S2.<x2> = k['x2', Frob]
sage: S1.center() is S2.center()
True

About the default name of the central variable

A priori, the default is z.

However, a variable name is given the first time this method is called, the given name become the default
for the next calls:

sage: K.<t> = GF(11^3)
sage: phi = K.frobenius_endomorphism()
sage: A.<X> = K['X', phi]

sage: C.<u> = A.center() # first call
sage: C
Univariate Polynomial Ring in u over Finite Field of size 11
sage: A.center() # second call: the variable name is still u
Univariate Polynomial Ring in u over Finite Field of size 11
sage: A.center() is C
True

We can update the default variable name by passing in the argument default=True:

sage: D.<v> = A.center(default=True)
sage: D
Univariate Polynomial Ring in v over Finite Field of size 11
sage: A.center()
Univariate Polynomial Ring in v over Finite Field of size 11
sage: A.center() is D
True

44 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

1.4 Univariate skew polynomials

This module provides the SkewPolynomial. In the class hierarchy in Sage, the locution Skew Polynomial is used for
a Ore polynomial without twisting derivation.

Warning: The current semantics of __call__() are experimental, so a warning is thrown when a skew polyno-
mial is evaluated for the first time in a session. See the method documentation for details.

AUTHORS:

• Xavier Caruso (2012-06-29): initial version

• Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods

• Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors

class sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense

Bases: OrePolynomial_generic_dense

Generic implementation of dense skew polynomial supporting any valid base ring and twisting morphism.

conjugate(n)
Return self conjugated by 𝑥𝑛, where 𝑥 is the variable of self.

The conjugate is obtained from self by applying the 𝑛-th iterate of the twisting morphism to each of its
coefficients.

INPUT:

• 𝑛 – an integer, the power of conjugation

EXAMPLES:

sage: R.<t> = QQ[]
sage: K = R.fraction_field()
sage: sigma = K.hom([1 + 1/t])
sage: S.<x> = K['x',sigma]
sage: a = t*x^3 + (t^2 + 1)*x^2 + 2*t
sage: b = a.conjugate(2); b
((2*t + 1)/(t + 1))*x^3 + ((5*t^2 + 6*t + 2)/(t^2 + 2*t + 1))*x^2 + (4*t + 2)/
→˓(t + 1)
sage: x^2*a == b*x^2
True

In principle, negative values for 𝑛 are allowed, but Sage needs to be able to invert the twisting morphism:

sage: b = a.conjugate(-1)
Traceback (most recent call last):
...
NotImplementedError: inverse not implemented for morphisms of Fraction Field of␣
→˓Univariate Polynomial Ring in t over Rational Field

Here is a working example:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()

(continues on next page)

1.4. Univariate skew polynomials 45

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: T.<y> = k['y',Frob]
sage: u = T.random_element()
sage: v = u.conjugate(-1)
sage: u*y == y*v
True

left_power_mod(exp, modulus)
Return the remainder of self**exp in the left euclidean division by modulus.

INPUT:

• exp – an Integer

• modulus – a skew polynomial in the same ring as self

OUTPUT:

Remainder of self**exp in the left euclidean division by modulus.

REMARK:

The quotient of the underlying skew polynomial ring by the principal ideal generated by modulus is in
general not a ring.

As a consequence, Sage first computes exactly self**exp and then reduce it modulo modulus.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t
sage: modulus = x^3 + t*x^2 + (t+3)*x - 2
sage: a.left_power_mod(100,modulus)
(4*t^2 + t + 1)*x^2 + (t^2 + 4*t + 1)*x + 3*t^2 + 3*t

multi_point_evaluation(eval_pts)
Evaluate self at list of evaluation points.

INPUT:

• eval_pts – list of points at which self is to be evaluated

OUTPUT:

List of values of self at the eval_pts.

Todo: This method currently trivially calls the evaluation function repeatedly. If fast skew polynomial
multiplication is available, an asymptotically faster method is possible using standard divide and conquer
techniques and minimal_vanishing_polynomial().

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t

(continues on next page)

46 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: eval_pts = [1, t, t^2]
sage: c = a.multi_point_evaluation(eval_pts); c
[t + 1, 3*t^2 + 4*t + 4, 4*t]
sage: c == [a(e) for e in eval_pts]
True

operator_eval(eval_pt)
Evaluate self at eval_pt by the operator evaluation method.

INPUT:

• eval_pt – element of the base ring of self

OUTPUT:

The value of the polynomial at the point specified by the argument.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<x> = k['x',Frob]
sage: a = 3*t^2*x^2 + (t + 1)*x + 2
sage: a(t) #indirect test
2*t^2 + 2*t + 3
sage: a.operator_eval(t)
2*t^2 + 2*t + 3

Evaluation points outside the base ring is usually not possible due to the twisting morphism:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x + 1
sage: a.operator_eval(1/t)
Traceback (most recent call last):
...
TypeError: 1/t fails to convert into the map's domain
Univariate Polynomial Ring in t over Rational Field,
but a `pushforward` method is not properly implemented

right_power_mod(exp, modulus)
Return the remainder of self**exp in the right euclidean division by modulus.

INPUT:

• exp – an integer

• modulus – a skew polynomial in the same ring as self

OUTPUT:

Remainder of self**exp in the right euclidean division by modulus.

REMARK:

The quotient of the underlying skew polynomial ring by the principal ideal generated by modulus is in
general not a ring.

1.4. Univariate skew polynomials 47

Noncommutative Polynomials, Release 9.8

As a consequence, Sage first computes exactly self**exp and then reduce it modulo modulus.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t
sage: b = a^5 # indirect doctest
sage: b
x^5 + (2*t^2 + 4)*x^4 + (t^2 + 2)*x^3 + 2*x^2 + (4*t^2 + 2)*x + 2*t^2 + 4*t + 4
sage: b == a * a * a * a * a
True

sage: modulus = x^3 + t*x^2 + (t+3)*x - 2
sage: br = a.right_power_mod(5, modulus); br
(t + 1)*x^2 + (2*t^2 + t + 1)*x + 2*t^2 + 4*t + 2
sage: br == b % modulus
True

sage: a.right_power_mod(100, modulus)
(2*t^2 + 3)*x^2 + (t^2 + 4*t + 2)*x + t^2 + 2*t + 1

Negative exponents are supported:

sage: a^(-5) (x^5 + (2*t^2 + 4)*x^4 + (t^2 + 2)*x^3 + 2*x^2 + (4*t^2 + 2)*x + 2*t^2 + 4*t +
4)^(-1) sage: b * a^(-5) 1

However, they cannot be combined with modulus:

sage: a.right_power_mod(-10, modulus)
Traceback (most recent call last):
...
ValueError: modulus cannot be combined with negative exponent

1.5 Univariate dense skew polynomials over a field with a finite order
automorphism

AUTHOR:

- Xavier Caruso (2012-06-29): initial version

• Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods

class
sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense

Bases: SkewPolynomial_generic_dense

This method constructs a generic dense skew polynomial over a field equipped with an automorphism of finite
order.

INPUT:

• parent – parent of self

• x – list of coefficients from which self can be constructed

48 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

• check – flag variable to normalize the polynomial

• construct – boolean (default: False)

bound()

Return a bound of this skew polynomial (i.e. a multiple of this skew polynomial lying in the center).

Note: Since 𝑏 is central, it divides a skew polynomial on the left iff it divides it on the right

ALGORITHM:

1. Sage first checks whether self is itself in the center. It if is, it returns self

2. If an optimal bound was previously computed and cached, Sage returns it

3. Otherwise, Sage returns the reduced norm of self

As a consequence, the output of this function may depend on previous computations (an example is given
below).

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: Z = S.center(); Z
Univariate Polynomial Ring in z over Finite Field of size 5

sage: a = x^2 + (4*t + 2)*x + 4*t^2 + 3
sage: b = a.bound(); b
z^2 + z + 4

We observe that the bound is explicitly given as an element of the center (which is a univariate polynomial
ring in the variable 𝑧). We can use conversion to send it in the skew polynomial ring:

sage: S(b)
x^6 + x^3 + 4

We check that 𝑏 is divisible by 𝑎:

sage: S(b).is_right_divisible_by(a)
True
sage: S(b).is_left_divisible_by(a)
True

Actually, 𝑏 is the reduced norm of 𝑎:

sage: b == a.reduced_norm()
True

Now, we compute the optimal bound of 𝑎 and see that it affects the behaviour of bound():

sage: a.optimal_bound()
z + 3
sage: a.bound()
z + 3

1.5. Univariate dense skew polynomials over a field with a finite order automorphism 49

Noncommutative Polynomials, Release 9.8

is_central()

Return True if this skew polynomial lies in the center.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]

sage: x.is_central()
False
sage: (t*x^3).is_central()
False
sage: (x^6 + x^3).is_central()
True

optimal_bound()

Return the optimal bound of this skew polynomial (i.e. the monic multiple of this skew polynomial of
minimal degree lying in the center).

Note: The result is cached.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: Z = S.center(); Z
Univariate Polynomial Ring in z over Finite Field of size 5

sage: a = x^2 + (4*t + 2)*x + 4*t^2 + 3
sage: b = a.optimal_bound(); b
z + 3

We observe that the bound is explicitly given as an element of the center (which is a univariate polynomial
ring in the variable 𝑧). We can use conversion to send it in the skew polynomial ring:

sage: S(b)
x^3 + 3

We check that 𝑏 is divisible by 𝑎:

sage: S(b).is_right_divisible_by(a)
True
sage: S(b).is_left_divisible_by(a)
True

reduced_charpoly(var=None)
Return the reduced characteristic polynomial of this skew polynomial.

INPUT:

• var – a string, a pair of strings or None (default: None); the variable names used for the characteristic
polynomial and the center

50 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

Note: The result is cached.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<u> = k['u', Frob]
sage: a = u^3 + (2*t^2 + 3)*u^2 + (4*t^2 + t + 4)*u + 2*t^2 + 2
sage: chi = a.reduced_charpoly()
sage: chi
x^3 + (2*z + 1)*x^2 + (3*z^2 + 4*z)*x + 4*z^3 + z^2 + 1

The reduced characteristic polynomial has coefficients in the center of 𝑆, which is itself a univariate poly-
nomial ring in the variable 𝑧 = 𝑢3 over F5. Hence it appears as a bivariate polynomial:

sage: chi.parent()
Univariate Polynomial Ring in x over Univariate Polynomial Ring in z over␣
→˓Finite Field of size 5

The constant coefficient of the reduced characteristic polynomial is the reduced norm, up to a sign:

sage: chi[0] == -a.reduced_norm()
True

Its coefficient of degree deg(𝑎)− 1 is the opposite of the reduced trace:

sage: chi[2] == -a.reduced_trace()
True

By default, the name of the variable of the reduced characteristic polynomial is x and the name of central
variable is usually z (see center() for more details about this). The user can speciify different names if
desired:

sage: a.reduced_charpoly(var='T') # variable name for the caracteristic␣
→˓polynomial
T^3 + (2*z + 1)*T^2 + (3*z^2 + 4*z)*T + 4*z^3 + z^2 + 1

sage: a.reduced_charpoly(var=('T', 'c'))
T^3 + (2*c + 1)*T^2 + (3*c^2 + 4*c)*T + 4*c^3 + c^2 + 1

See also:

reduced_trace(), reduced_norm()

reduced_norm(var=None)
Return the reduced norm of this skew polynomial.

INPUT:

• var – a string or False or None (default: None); the variable name; if False, return the list of
coefficients

Note: The result is cached.

1.5. Univariate dense skew polynomials over a field with a finite order automorphism 51

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: a = x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: N = a.reduced_norm(); N
z^3 + 4*z^2 + 4

The reduced norm lies in the center of 𝑆, which is a univariate polynomial ring in the variable 𝑧 = 𝑥3 over
F5:

sage: N.parent()
Univariate Polynomial Ring in z over Finite Field of size 5
sage: N.parent() is S.center()
True

We can use explicit conversion to view N as a skew polynomial:

sage: S(N)
x^9 + 4*x^6 + 4

By default, the name of the central variable is usually z (see center() for more details about this). How-
ever, the user can specify a different variable name if desired:

sage: a.reduced_norm(var='u')
u^3 + 4*u^2 + 4

When passing in var=False, a tuple of coefficients (instead of an actual polynomial) is returned:

sage: a.reduced_norm(var=False)
(4, 0, 4, 1)

ALGORITHM:

If 𝑟 (= the order of the twist map) is small compared to 𝑑 (= the degree of this skew polynomial), the
reduced norm is computed as the determinant of the multiplication by 𝑃 (= this skew polynomial) acting
on 𝐾[𝑋,𝜎] (= the underlying skew ring) viewed as a free module of rank 𝑟 over 𝐾[𝑋𝑟].

Otherwise, the reduced norm is computed as the characteristic polynomial of the left multiplication by 𝑋
on the quotient 𝐾[𝑋,𝜎]/𝐾[𝑋,𝜎]𝑃 (which is a 𝐾-vector space of dimension 𝑑).

See also:

reduced_trace(), reduced_charpoly()

reduced_trace(var=None)
Return the reduced trace of this skew polynomial.

INPUT:

• var – a string or False or None (default: None); the variable name; if False, return the list of
coefficients

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()

(continues on next page)

52 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: S.<x> = k['x', Frob]
sage: a = x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: tr = a.reduced_trace(); tr
3*z + 4

The reduced trace lies in the center of 𝑆, which is a univariate polynomial ring in the variable 𝑧 = 𝑥3 over
F5:

sage: tr.parent()
Univariate Polynomial Ring in z over Finite Field of size 5
sage: tr.parent() is S.center()
True

We can use explicit conversion to view tr as a skew polynomial:

sage: S(tr)
3*x^3 + 4

By default, the name of the central variable is usually z (see center() for more details about this). How-
ever, the user can specify a different variable name if desired:

sage: a.reduced_trace(var='u')
3*u + 4

When passing in var=False, a tuple of coefficients (instead of an actual polynomial) is returned:

sage: a.reduced_trace(var=False)
(4, 3)

See also:

reduced_norm(), reduced_charpoly()

1.6 Univariate dense skew polynomials over finite fields

This module provides the class: 𝑠𝑎𝑔𝑒.𝑟𝑖𝑛𝑔𝑠.𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙.𝑠𝑘𝑒𝑤𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑓 𝑖𝑛𝑖𝑡𝑒𝑓 𝑖𝑒𝑙𝑑.𝑆𝑘𝑒𝑤𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑓 𝑖𝑛𝑖𝑡𝑒𝑓 𝑖𝑒𝑙𝑑𝑑𝑒𝑛𝑠𝑒,
which constructs a single univariate skew polynomial over a finite field equipped with the Frobenius endomorphism.
Among other things, it implements the fast factorization algorithm designed in [CL2017].

AUTHOR:

- Xavier Caruso (2012-06-29): initial version

• Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods

class
sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense

Bases: SkewPolynomial_finite_order_dense

count_factorizations()

Return the number of factorizations (as a product of a unit and a product of irreducible monic factors) of
this skew polynomial.

EXAMPLES:

1.6. Univariate dense skew polynomials over finite fields 53

Noncommutative Polynomials, Release 9.8

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^4 + (4*t + 3)*x^3 + t^2*x^2 + (4*t^2 + 3*t)*x + 3*t
sage: a.count_factorizations()
216

We illustrate that an irreducible polynomial in the center have in general a lot of distinct factorizations in
the skew polynomial ring:

sage: Z.<x3> = S.center()
sage: N = x3^5 + 4*x3^4 + 4*x3^2 + 4*x3 + 3
sage: N.is_irreducible()
True
sage: S(N).count_factorizations()
30537115626

count_irreducible_divisors()

Return the number of irreducible monic divisors of this skew polynomial.

Note: One can prove that there are always as many left irreducible monic divisors as right irreducible
monic divisors.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]

We illustrate that a skew polynomial may have a number of irreducible divisors greater than its degree:

sage: a = x^4 + (4*t + 3)*x^3 + t^2*x^2 + (4*t^2 + 3*t)*x + 3*t
sage: a.count_irreducible_divisors()
12

We illustrate that an irreducible polynomial in the center have in general a lot of irreducible divisors in the
skew polynomial ring:

sage: Z.<x3> = S.center()
sage: N = x3^5 + 4*x3^4 + 4*x3^2 + 4*x3 + 3; N
x3^5 + 4*x3^4 + 4*x3^2 + 4*x3 + 3
sage: N.is_irreducible()
True
sage: S(N).count_irreducible_divisors()
9768751

factor(uniform=False)
Return a factorization of this skew polynomial.

INPUT:

• uniform – a boolean (default: False); whether the output irreducible divisor should be uniformly
distributed among all possibilities

54 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^3 + (t^2 + 4*t + 2)*x^2 + (3*t + 3)*x + t^2 + 1
sage: F = a.factor(); F # random
(x + t^2 + 4) * (x + t + 3) * (x + t)
sage: F.value() == a
True

The result of the factorization is cached. Hence, if we try again to factor 𝑎, we will get the same answer:

sage: a.factor() # random
(x + t^2 + 4) * (x + t + 3) * (x + t)

However, the algorithm is probabilistic. Hence if we first reinitialiaze 𝑎, we may get a different answer:

sage: a = x^3 + (t^2 + 4*t + 2)*x^2 + (3*t + 3)*x + t^2 + 1
sage: F = a.factor(); F # random
(x + t^2 + t + 2) * (x + 2*t^2 + t + 4) * (x + t)
sage: F.value() == a
True

There is a priori no guarantee on the distribution of the factorizations we get. Passing in the keyword
uniform=True ensures the output is uniformly distributed among all factorizations:

sage: a.factor(uniform=True) # random
(x + t^2 + 4) * (x + t) * (x + t + 3)
sage: a.factor(uniform=True) # random
(x + 2*t^2) * (x + t^2 + t + 1) * (x + t^2 + t + 2)
sage: a.factor(uniform=True) # random
(x + 2*t^2 + 3*t) * (x + 4*t + 2) * (x + 2*t + 2)

By convention, the zero skew polynomial has no factorization:

sage: S(0).factor()
Traceback (most recent call last):
...
ValueError: factorization of 0 not defined

factorizations()

Return an iterator over all factorizations (as a product of a unit and a product of irreducible monic factors)
of this skew polynomial.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^3 + (t^2 + 1)*x^2 + (2*t + 3)*x + t^2 + t + 2
sage: iter = a.factorizations(); iter
<generator object at 0x...>
sage: next(iter) # random
(x + 3*t^2 + 4*t) * (x + 2*t^2) * (x + 4*t^2 + 4*t + 2)

(continues on next page)

1.6. Univariate dense skew polynomials over finite fields 55

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: next(iter) # random
(x + 3*t^2 + 4*t) * (x + 3*t^2 + 2*t + 2) * (x + 4*t^2 + t + 2)

We can use this function to build the list of factorizations of 𝑎:

sage: factorizations = [F for F in a.factorizations()]

We do some checks:

sage: len(factorizations) == a.count_factorizations()
True
sage: len(factorizations) == Set(factorizations).cardinality() # check no␣
→˓duplicates
True
sage: for F in factorizations:
....: assert F.value() == a, "factorization has a different value"
....: for d,_ in F:
....: assert d.is_irreducible(), "a factor is not irreducible"

Note that the algorithm used in this method is probabilistic. As a consequence, if we call it two times with
the same input, we can get different orderings:

sage: factorizations2 = [F for F in a.factorizations()]
sage: factorizations == factorizations2
False
sage: sorted(factorizations) == sorted(factorizations2)
True

is_irreducible()

Return True if this skew polynomial is irreducible.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]

sage: a = x^2 + t*x + 1
sage: a.is_irreducible()
False
sage: a.factor()
(x + 4*t^2 + 4*t + 1) * (x + 3*t + 2)

sage: a = x^2 + t*x + t + 1
sage: a.is_irreducible()
True
sage: a.factor()
x^2 + t*x + t + 1

Skew polynomials of degree 1 are of course irreducible:

sage: a = x + t
sage: a.is_irreducible()
True

56 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

A random irreducible skew polynomial is irreducible:

sage: a = S.random_irreducible(degree=4,monic=True); a # random
x^4 + (t + 1)*x^3 + (3*t^2 + 2*t + 3)*x^2 + 3*t*x + 3*t
sage: a.is_irreducible()
True

By convention, constant skew polynomials are not irreducible:

sage: S(1).is_irreducible()
False
sage: S(0).is_irreducible()
False

left_irreducible_divisor(uniform=False)
Return a left irreducible divisor of this skew polynomial.

INPUT:

• uniform – a boolean (default: False); whether the output irreducible divisor should be uniformly
distributed among all possibilities

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^6 + 3*t*x^5 + (3*t + 1)*x^3 + (4*t^2 + 3*t + 4)*x^2 + (t^2 + 2)*x +␣
→˓4*t^2 + 3*t + 3
sage: dl = a.left_irreducible_divisor(); dl # random
x^3 + (t^2 + t + 2)*x^2 + (t + 2)*x + 3*t^2 + t + 4
sage: a.is_left_divisible_by(dl)
True

The algorithm is probabilistic. Hence, if we ask again for a left irreducible divisor of 𝑎, we may get a
different answer:

sage: a.left_irreducible_divisor() # random
x^3 + (4*t + 3)*x^2 + (2*t^2 + 3*t + 4)*x + 4*t^2 + 2*t

We can also generate uniformly distributed irreducible monic divisors as follows:

sage: a.left_irreducible_divisor(uniform=True) # random
x^3 + (4*t^2 + 3*t + 4)*x^2 + (t^2 + t + 3)*x + 2*t^2 + 3
sage: a.left_irreducible_divisor(uniform=True) # random
x^3 + (2*t^2 + t + 4)*x^2 + (2*t^2 + 4*t + 4)*x + 2*t + 3
sage: a.left_irreducible_divisor(uniform=True) # random
x^3 + (t^2 + t + 2)*x^2 + (3*t^2 + t)*x + 2*t + 1

By convention, the zero skew polynomial has no irreducible divisor:

sage: S(0).left_irreducible_divisor()
Traceback (most recent call last):
...
ValueError: 0 has no irreducible divisor

1.6. Univariate dense skew polynomials over finite fields 57

Noncommutative Polynomials, Release 9.8

left_irreducible_divisors()

Return an iterator over all irreducible monic left divisors of this skew polynomial.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^4 + 2*t*x^3 + 3*t^2*x^2 + (t^2 + t + 1)*x + 4*t + 3
sage: iter = a.left_irreducible_divisors(); iter
<generator object at 0x...>
sage: next(iter) # random
x + 3*t + 3
sage: next(iter) # random
x + 4*t + 2

We can use this function to build the list of all monic irreducible divisors of 𝑎:

sage: leftdiv = [d for d in a.left_irreducible_divisors()]

Note that the algorithm is probabilistic. As a consequence, if we build again the list of left monic irreducible
divisors of 𝑎, we may get a different ordering:

sage: leftdiv2 = [d for d in a.left_irreducible_divisors()]
sage: Set(leftdiv) == Set(leftdiv2)
True

right_irreducible_divisor(uniform=False)
Return a right irreducible divisor of this skew polynomial.

INPUT:

• uniform – a boolean (default: False); whether the output irreducible divisor should be uniformly
distributed among all possibilities

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^6 + 3*t*x^5 + (3*t + 1)*x^3 + (4*t^2 + 3*t + 4)*x^2 + (t^2 + 2)*x +␣
→˓4*t^2 + 3*t + 3

sage: dr = a.right_irreducible_divisor(); dr # random
x^3 + (2*t^2 + t + 4)*x^2 + (4*t + 1)*x + 4*t^2 + t + 1
sage: a.is_right_divisible_by(dr)
True

Right divisors are cached. Hence, if we ask again for a right divisor, we will get the same answer:

sage: a.right_irreducible_divisor() # random
x^3 + (2*t^2 + t + 4)*x^2 + (4*t + 1)*x + 4*t^2 + t + 1

However the algorithm is probabilistic. Hence, if we first reinitialize 𝑎, we may get a different answer:

58 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: a = x^6 + 3*t*x^5 + (3*t + 1)*x^3 + (4*t^2 + 3*t + 4)*x^2 + (t^2 + 2)*x +␣
→˓4*t^2 + 3*t + 3
sage: a.right_irreducible_divisor() # random
x^3 + (t^2 + 3*t + 4)*x^2 + (t + 2)*x + 4*t^2 + t + 1

We can also generate uniformly distributed irreducible monic divisors as follows:

sage: a.right_irreducible_divisor(uniform=True) # random
x^3 + (4*t + 2)*x^2 + (2*t^2 + 2*t + 2)*x + 2*t^2 + 2
sage: a.right_irreducible_divisor(uniform=True) # random
x^3 + (t^2 + 2)*x^2 + (3*t^2 + 1)*x + 4*t^2 + 2*t
sage: a.right_irreducible_divisor(uniform=True) # random
x^3 + x^2 + (4*t^2 + 2*t + 4)*x + t^2 + 3

By convention, the zero skew polynomial has no irreducible divisor:

sage: S(0).right_irreducible_divisor()
Traceback (most recent call last):
...
ValueError: 0 has no irreducible divisor

right_irreducible_divisors()

Return an iterator over all irreducible monic right divisors of this skew polynomial.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^4 + 2*t*x^3 + 3*t^2*x^2 + (t^2 + t + 1)*x + 4*t + 3
sage: iter = a.right_irreducible_divisors(); iter
<generator object at 0x...>
sage: next(iter) # random
x + 2*t^2 + 4*t + 4
sage: next(iter) # random
x + 3*t^2 + 4*t + 1

We can use this function to build the list of all monic irreducible divisors of 𝑎:

sage: rightdiv = [d for d in a.right_irreducible_divisors()]

Note that the algorithm is probabilistic. As a consequence, if we build again the list of right monic irre-
ducible divisors of 𝑎, we may get a different ordering:

sage: rightdiv2 = [d for d in a.right_irreducible_divisors()]
sage: rightdiv == rightdiv2
False
sage: Set(rightdiv) == Set(rightdiv2)
True

type(N)

Return the 𝑁 -type of this skew polynomial (see definition below).

INPUT:

• N – an irreducible polynomial in the center of the underlying skew polynomial ring

1.6. Univariate dense skew polynomials over finite fields 59

Noncommutative Polynomials, Release 9.8

Note: The result is cached.

DEFINITION:

The 𝑁 -type of a skew polynomial 𝑎 is the Partition (𝑡0, 𝑡1, 𝑡2, . . .) defined by

𝑡0 + · · ·+ 𝑡𝑖 =
deg 𝑔𝑐𝑑(𝑎,𝑁 𝑖)

deg𝑁
,

where deg𝑁 is the degree of 𝑁 considered as an element in the center.

This notion has an important mathematical interest because it corresponds to the Jordan type of the 𝑁 -
typical part of the associated Galois representation.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: Z = S.center(); x3 = Z.gen()

sage: a = x^4 + x^3 + (4*t^2 + 4)*x^2 + (t^2 + 2)*x + 4*t^2
sage: N = x3^2 + x3 + 1
sage: a.type(N)
[1]
sage: N = x3 + 1
sage: a.type(N)
[2]

sage: a = x^3 + (3*t^2 + 1)*x^2 + (3*t^2 + t + 1)*x + t + 1
sage: N = x3 + 1
sage: a.type(N)
[2, 1]

If 𝑁 does not divide the reduced map of 𝑎, the type is empty:

sage: N = x3 + 2
sage: a.type(N)
[]

If 𝑎 = 𝑁 , the type is just [𝑟] where 𝑟 is the order of the twisting morphism Frob:

sage: N = x3^2 + x3 + 1
sage: S(N).type(N)
[3]

𝑁 must be irreducible:

sage: N = (x3 + 1) * (x3 + 2)
sage: a.type(N)
Traceback (most recent call last):
...
ValueError: N is not irreducible

60 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

1.7 Fraction fields of Ore polynomial rings

Sage provides support for building the fraction field of any Ore polynomial ring and performing basic opera-
tions in it. The fraction field is constructed by the method sage.rings.polynomial.ore_polynomial_ring.
OrePolynomialRing.fraction_field() as demonstrated below:

sage: R.<t> = QQ[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: K = A.fraction_field()
sage: K
Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field twisted by d/dt

The simplest way to build elements in 𝐾 is to use the division operator over Ore polynomial rings:

sage: f = 1/d
sage: f
d^(-1)
sage: f.parent() is K
True

REPRESENTATION OF ELEMENTS:

Elements in 𝐾 are internally represented by fractions of the form 𝑠−1𝑡 with the denominator on the left. Notice that,
because of noncommutativity, this is not the same that fractions with denominator on the right. For example, a fraction
created by the division operator is usually displayed with a different numerator and/or a different denominator:

sage: g = t / d
sage: g
(d - 1/t)^(-1) * t

The left numerator and right denominator are accessible as follows:

sage: g.left_numerator() t sage: g.right_denominator() d

Similarly the methods OrePolynomial.left_denominator() and OrePolynomial.right_numerator() give ac-
cess to the Ore polynomials 𝑠 and 𝑡 in the representation 𝑠−1𝑡:

sage: g.left_denominator()
d - 1/t
sage: g.right_numerator()
t

We favored the writing 𝑠−1𝑡 because it always exists. On the contrary, the writing 𝑠𝑡−1 is only guaranteed when
the twisting morphism defining the Ore polynomial ring is bijective. As a consequence, when the latter assumption
is not fulfilled (or actually if Sage cannot invert the twisting morphism), computing the left numerator and the right
denominator fails:

sage: sigma = R.hom([t^2])
sage: S.<x> = R['x', sigma]
sage: F = S.fraction_field()
sage: f = F.random_element()
sage: while not f:
....: f = F.random_element()

(continues on next page)

1.7. Fraction fields of Ore polynomial rings 61

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: f.left_numerator()
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction␣
→˓Field of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> t^2

On a related note, fractions are systematically simplified when the twisting morphism is bijective but they are not
otherwise. As an example, compare the two following computations:

sage: P = d^2 + t*d + 1
sage: Q = d + t^2
sage: D = d^3 + t^2 + 1
sage: f = P^(-1) * Q
sage: f
(d^2 + t*d + 1)^(-1) * (d + t^2)
sage: g = (D*P)^(-1) * (D*Q)
sage: g
(d^2 + t*d + 1)^(-1) * (d + t^2)

sage: P = x^2 + t*x + 1
sage: Q = x + t^2
sage: D = x^3 + t^2 + 1
sage: f = P^(-1) * Q
sage: f
(x^2 + t*x + 1)^(-1) * (x + t^2)
sage: g = (D*P)^(-1) * (D*Q)
sage: g
(x^5 + t^8*x^4 + x^3 + (t^2 + 1)*x^2 + (t^3 + t)*x + t^2 + 1)^(-1) * (x^4 + t^16*x^3 +␣
→˓(t^2 + 1)*x + t^4 + t^2)
sage: f == g
True

OPERATIONS:

Basic arithmetical operations are available:

sage: f = 1 / d
sage: g = 1 / (d + t)
sage: u = f + g; u
(d^2 + ((t^2 - 1)/t)*d)^(-1) * (2*d + (t^2 - 2)/t)
sage: v = f - g; v
(d^2 + ((t^2 - 1)/t)*d)^(-1) * t
sage: u + v
d^(-1) * 2

sage: f * g
(d^2 + t*d)^(-1)
sage: f / g
d^(-1) * (d + t)

Of course, multiplication remains noncommutative:

62 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: g * f
(d^2 + t*d + 1)^(-1)
sage: g^(-1) * f
(d - 1/t)^(-1) * (d + (t^2 - 1)/t)

AUTHOR:

• Xavier Caruso (2020-05)

class sage.rings.polynomial.ore_function_field.OreFunctionCenterInjection(domain, codomain,
ringembed)

Bases: RingHomomorphism

Canonical injection of the center of a Ore function field into this field.

section()

Return a section of this morphism.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism())
sage: K = S.fraction_field()
sage: Z = K.center()
sage: iota = K.coerce_map_from(Z)
sage: sigma = iota.section()
sage: sigma(x^3 / (x^6 + 1))
z/(z^2 + 1)

class sage.rings.polynomial.ore_function_field.OreFunctionField(ring, category=None)
Bases: Algebra, UniqueRepresentation

A class for fraction fields of Ore polynomial rings.

Element = None

change_var(var)
Return the Ore function field in variable var with the same base ring, twisting morphism and twisting
derivation as self.

INPUT:

• var – a string representing the name of the new variable.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: R.<x> = OrePolynomialRing(k,Frob)
sage: K = R.fraction_field()
sage: K
Ore Function Field in x over Finite Field in t of size 5^3 twisted by t |--> t^5

sage: Ky = K.change_var('y'); Ky
Ore Function Field in y over Finite Field in t of size 5^3 twisted by t |--> t^5
sage: Ky is K.change_var('y')
True

1.7. Fraction fields of Ore polynomial rings 63

../../../../../../../html/en/reference/rings/sage/rings/morphism.html#sage.rings.morphism.RingHomomorphism
../../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.Algebra
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Noncommutative Polynomials, Release 9.8

characteristic()

Return the characteristic of this Ore function field.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S = R['x',sigma]
sage: S.fraction_field().characteristic()
0

sage: k.<u> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S = k['y',Frob]
sage: S.fraction_field().characteristic()
5

fraction_field()

Return the fraction field of this Ore function field, i.e. this Ore function field itself.

EXAMPLES:

sage: R.<t> = QQ[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: K = A.fraction_field()

sage: K
Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Rational Field twisted by d/dt
sage: K.fraction_field()
Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Rational Field twisted by d/dt
sage: K.fraction_field() is K
True

gen(n=0)
Return the indeterminate generator of this Ore function field.

INPUT:

• n – index of generator to return (default: 0). Exists for compatibility with other polynomial rings.

EXAMPLES:

sage: k.<a> = GF(5^4)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()
sage: K.gen()
x

gens_dict()

Return a {name: variable} dictionary of the generators of this Ore function field.

EXAMPLES:

64 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = OrePolynomialRing(R, sigma)
sage: K = S.fraction_field()

sage: K.gens_dict()
{'x': x}

is_commutative()

Return True if this Ore function field is commutative, i.e. if the twisting morphism is the identity and the
twisting derivation vanishes.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()
sage: K.is_commutative()
False

sage: T.<y> = k['y', Frob^3]
sage: L = T.fraction_field()
sage: L.is_commutative()
True

is_exact()

Return True if elements of this Ore function field are exact. This happens if and only if elements of the
base ring are exact.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()
sage: K.is_exact()
True

sage: k.<u> = Qq(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()
sage: K.is_exact()
False

is_field(proof=False)
Return always True since Ore function field are (skew) fields.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]

(continues on next page)

1.7. Fraction fields of Ore polynomial rings 65

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: K = S.fraction_field()

sage: S.is_field()
False
sage: K.is_field()
True

is_finite()

Return False since Ore function field are not finite.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: k.is_finite()
True
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: K = S.fraction_field()
sage: K.is_finite()
False

is_sparse()

Return True if the elements of this Ore function field are sparsely represented.

Warning: Since sparse Ore polynomials are not yet implemented, this function always returns False.

EXAMPLES:

sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: K = S.fraction_field()
sage: K.is_sparse()
False

ngens()

Return the number of generators of this Ore function field, which is 1.

EXAMPLES:

sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: K = S.fraction_field()
sage: K.ngens()
1

parameter(n=0)
Return the indeterminate generator of this Ore function field.

INPUT:

• n – index of generator to return (default: 0). Exists for compatibility with other polynomial rings.

66 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: k.<a> = GF(5^4)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()
sage: K.gen()
x

random_element(degree=2, monic=False, *args, **kwds)
Return a random Ore function in this field.

INPUT:

• degree – (default: 2) an integer or a list of two integers; the degrees of the denominator and numerator

• monic – (default: False) if True, return a monic Ore function with monic numerator and denominator

• *args, **kwds – passed in to the random_element method for the base ring

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()

sage: K.random_element() # random
(x^2 + (2*t^2 + t + 1)*x + 2*t^2 + 2*t + 3)^(-1) * ((2*t^2 + 3)*x^2 + (4*t^2 +␣
→˓t + 4)*x + 2*t^2 + 2)
sage: K.random_element(monic=True) # random
(x^2 + (4*t^2 + 3*t + 4)*x + 4*t^2 + t)^(-1) * (x^2 + (2*t^2 + t + 3)*x + 3*t^2␣
→˓+ t + 2)
sage: K.random_element(degree=3) # random
(x^3 + (2*t^2 + 3)*x^2 + (2*t^2 + 4)*x + t + 3)^(-1) * ((t + 4)*x^3 + (4*t^2 +␣
→˓2*t + 2)*x^2 + (2*t^2 + 3*t + 3)*x + 3*t^2 + 3*t + 1)
sage: K.random_element(degree=[2,5]) # random
(x^2 + (4*t^2 + 2*t + 2)*x + 4*t^2 + t + 2)^(-1) * ((3*t^2 + t + 1)*x^5 + (2*t^
→˓2 + 2*t)*x^4 + (t^2 + 2*t + 4)*x^3 + (3*t^2 + 2*t)*x^2 + (t^2 + t + 4)*x)

twisting_derivation()

Return the twisting derivation defining this Ore function field or None if this Ore function field is not twisted
by a derivation.

EXAMPLES:

sage: R.<t> = QQ[]
sage: der = R.derivation(); der
d/dt
sage: A.<d> = R['d', der]
sage: F = A.fraction_field()
sage: F.twisting_derivation()
d/dt

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()

(continues on next page)

1.7. Fraction fields of Ore polynomial rings 67

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()
sage: K.twisting_derivation()

See also:

sage.rings.polynomial.ore_polynomial_element.OrePolynomial.twisting_derivation(),
twisting_morphism()

twisting_morphism(n=1)
Return the twisting endomorphism defining this Ore function field iterated n times or None if this Ore
function field is not twisted by an endomorphism.

INPUT:

• n - an integer (default: 1)

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: K = S.fraction_field()
sage: K.twisting_morphism()
Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field
Defn: t |--> t + 1

When the Ore polynomial ring is only twisted by a derivation, this method returns nothing:

sage: der = R.derivation()
sage: A.<d> = R['x', der]
sage: F = A.fraction_field()
sage: F.twisting_morphism()

See also:

sage.rings.polynomial.ore_polynomial_element.OrePolynomial.twisting_morphism(),
twisting_derivation()

class sage.rings.polynomial.ore_function_field.OreFunctionField_with_large_center(ring,
cate-
gory=None)

Bases: OreFunctionField

A specialized class for Ore polynomial fields whose center has finite index.

center(name=None, names=None, default=False)
Return the center of this Ore function field.

Note: One can prove that the center is a field of rational functions over a subfield of the base ring of this
Ore function field.

INPUT:

• name – a string or None (default: None); the name for the central variable

68 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

• default – a boolean (default: False); if True, set the default variable name for the center to name

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: K = S.fraction_field()

sage: Z = K.center(); Z
Fraction Field of Univariate Polynomial Ring in z over Finite Field of size 5

We can pass in another variable name:

sage: K.center(name='y')
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5

or use the bracket notation:

sage: Zy.<y> = K.center(); Zy
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5

A coercion map from the center to the Ore function field is set:

sage: K.has_coerce_map_from(Zy)
True

and pushout works:

sage: x.parent()
Ore Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^
→˓5
sage: y.parent()
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
sage: P = x + y; P
x^3 + x
sage: P.parent()
Ore Function Field in x over Finite Field in t of size 5^3 twisted by t |--> t^5

A conversion map in the reverse direction is also set:

sage: Zy(x^(-6) + 2)
(2*y^2 + 1)/y^2

sage: Zy(1/x^2)
Traceback (most recent call last):
...
ValueError: x^(-2) is not in the center

ABOUT THE DEFAULT NAME OF THE CENTRAL VARIABLE:

A priori, the default is z.

However, a variable name is given the first time this method is called, the given name become the default
for the next calls:

1.7. Fraction fields of Ore polynomial rings 69

Noncommutative Polynomials, Release 9.8

sage: k.<t> = GF(11^3)
sage: phi = k.frobenius_endomorphism()
sage: S.<X> = k['X', phi]
sage: K = S.fraction_field()

sage: C.<u> = K.center() # first call
sage: C
Fraction Field of Univariate Polynomial Ring in u over Finite Field of size 11
sage: K.center() # second call: the variable name is still u
Fraction Field of Univariate Polynomial Ring in u over Finite Field of size 11

We can update the default variable name by passing in the argument default=True:

sage: D.<v> = K.center(default=True)
sage: D
Fraction Field of Univariate Polynomial Ring in v over Finite Field of size 11
sage: K.center()
Fraction Field of Univariate Polynomial Ring in v over Finite Field of size 11

class sage.rings.polynomial.ore_function_field.SectionOreFunctionCenterInjection(embed)
Bases: Section

Section of the canonical injection of the center of a Ore function field into this field

1.8 Fraction field elements of Ore polynomial rings

AUTHOR:

• Xavier Caruso (2020-05)

class sage.rings.polynomial.ore_function_element.ConstantOreFunctionSection

Bases: Map

Representation of the canonical homomorphism from the constants of a Ore function field to the base field.

This class is needed by the coercion system.

EXAMPLES:

sage: from sage.rings.polynomial.ore_polynomial_element import␣
→˓ConstantOrePolynomialSection
sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()

sage: iota = K.coerce_map_from(k)
sage: sigma = iota.section()
sage: sigma
Generic map:
From: Ore Function Field in x over Finite Field in a of size 5^3 twisted by a |-->

→˓ a^5
To: Finite Field in a of size 5^3

70 Chapter 1. Univariate Ore Polynomials

../../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Section
../../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Map

Noncommutative Polynomials, Release 9.8

class sage.rings.polynomial.ore_function_element.OreFunction(parent, numerator,
denominator=None, simplify=True)

Bases: AlgebraElement

An element in a Ore function field.

hilbert_shift(s, var=None)
Return this Ore function with variable shifted by 𝑠, i.e. if this Ore function is 𝑓(𝑥), return 𝑓(𝑥+ 𝑠).

INPUT:

• s – an element in the base ring

• var – a string; the variable name

EXAMPLES:

sage: R.<t> = GF(7)[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: K = A.fraction_field()

sage: f = 1 / (d-t)
sage: f.hilbert_shift(t)
d^(-1)

One can specify another variable name:

sage: f.hilbert_shift(t, var='x')
x^(-1)

When the twisting morphism is not trivial, the output lies in a different Ore polynomial ring:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()

sage: f = (x-a)^(-2)
sage: g = f.hilbert_shift(a); g
x^(-2)

sage: g.parent()
Ore Function Field in x over Finite Field in a of size 5^3 twisted by a |--> a^
→˓5 and a*([a |--> a^5] - id)
sage: g.parent() is S
False

This behavior ensures that the Hilbert shift by a fixed element defines an homomorphism of fields:

sage: U = K.random_element(degree=5)
sage: V = K.random_element(degree=5)
sage: s = k.random_element()
sage: (U+V).hilbert_shift(s) == U.hilbert_shift(s) + V.hilbert_shift(s)
True
sage: (U*V).hilbert_shift(s) == U.hilbert_shift(s) * V.hilbert_shift(s)
True

1.8. Fraction field elements of Ore polynomial rings 71

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AlgebraElement

Noncommutative Polynomials, Release 9.8

is_zero()

Return True if this element is equal to zero.

EXAMPLES:

sage: R.<t> = GF(3)[]
sage: der = R.derivation()
sage: A.<d> = R['x', der]
sage: f = t/d
sage: f.is_zero()
False
sage: (f-f).is_zero()
True

left_denominator()

Return 𝑠 if this element reads 𝑠−1𝑡.

WARNING:

When the twisting morphism is bijective, there is a unique irreducible fraction of the form 𝑠−1𝑡 representing
this element. Here irreducible means that 𝑠 and 𝑡 have no nontrivial common left divisor. Under this
additional assumption, this method always returns this distinguished denominator 𝑠.

On the contrary, when the twisting morphism is not bijective, this method returns the denominator
of some fraction representing the input element. However, the software guarantees that the method
right_numerator() outputs the numerator of the same fraction.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: s = x + a
sage: t = x^2 + a*x + a^2

sage: f = s^(-1) * t
sage: f.left_denominator()
x + a

In the example below, a simplification occurs:

sage: u = S.random_element(degree=2)
sage: g = (u*s)^(-1) * (u*t)
sage: g.left_denominator()
x + a

When the twisting morphism is not invertible, simplifications do not occur in general:

sage: R.<z> = GF(11)[]
sage: sigma = R.hom([z^2])
sage: S.<x> = R['x', sigma]
sage: s = (x + z)^2
sage: t = (x + z) * (x^2 + z^2)
sage: f = s^(-1) * t
sage: f.left_denominator()
x^2 + (z^2 + z)*x + z^2

72 Chapter 1. Univariate Ore Polynomials

Noncommutative Polynomials, Release 9.8

However, the following always holds true:

sage: f == f.left_denominator()^(-1) * f.right_numerator()
True

See also:

right_numerator(), left_numerator(), right_denominator()

left_numerator()

Return 𝑡 if this element reads 𝑡𝑠−1.

WARNING:

When the twisting morphism is bijective, there is a unique irreducible fraction of the form 𝑡𝑠−1 representing
this element. Here irreducible means that 𝑠 and 𝑡 have no nontrivial common right divisor. Under this
additional assumption, this method always returns this distinguished numerator 𝑡.

On the contrary, when the twisting morphism is not bijective, the existence of the writing 𝑡𝑠−1 is not
guaranteed in general. In this case, this method raises an error.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: s = x + a
sage: t = x^2 + a*x + a^2

sage: f = t/s
sage: f.left_numerator()
x^2 + a*x + a^2

In the example below, a simplification occurs:

sage: u = S.random_element(degree=2)
sage: g = (t*u) / (s*u)
sage: g.left_numerator()
x^2 + a*x + a^2

right_denominator()

Return 𝑠 if this element reads 𝑡𝑠−1.

WARNING:

When the twisting morphism is bijective, there is a unique irreducible fraction of the form 𝑡𝑠−1 representing
this element. Here irreducible means that 𝑠 and 𝑡 have no nontrivial common right divisor. Under this
additional assumption, this method always returns this distinguished denominator 𝑠.

On the contrary, when the twisting morphism is not bijective, the existence of the writing 𝑡𝑠−1 is not
guaranteed in general. In this case, this method raises an error.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: s = x + a

(continues on next page)

1.8. Fraction field elements of Ore polynomial rings 73

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: t = x^2 + a*x + a^2

sage: f = t/s
sage: f.right_denominator()
x + a

In the example below, a simplification occurs:

sage: u = S.random_element(degree=2)
sage: g = (t*u) / (s*u)
sage: g.right_denominator()
x + a

See also:

left_numerator(), left_denominator(), right_numerator()

right_numerator()

Return 𝑡 if this element reads 𝑠−1𝑡.

WARNING:

When the twisting morphism is bijective, there is a unique irreducible fraction of the form 𝑠−1𝑡 representing
this element. Here irreducible means that 𝑠 and 𝑡 have no nontrivial common left divisor. Under this
additional assumption, this method always returns this distinguished numerator 𝑡.

On the contrary, when the twisting morphism is not bijective, this method returns the numerator
of some fraction representing the input element. However, the software guarantees that the method
left_denominator() outputs the numerator of the same fraction.

EXAMPLES:

sage: k.<a> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: s = x + a
sage: t = x^2 + a*x + a^2

sage: f = s^(-1) * t
sage: f.right_numerator()
x^2 + a*x + a^2

In the example below, a simplification occurs:

sage: u = S.random_element(degree=2)
sage: g = (u*s)^(-1) * (u*t)
sage: g.right_numerator()
x^2 + a*x + a^2

See also:

left_denominator(), left_numerator(), right_denominator()

class sage.rings.polynomial.ore_function_element.OreFunctionBaseringInjection(domain,
codomain)

Bases: Morphism

74 Chapter 1. Univariate Ore Polynomials

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Noncommutative Polynomials, Release 9.8

Representation of the canonical homomorphism from a field 𝑘 into a Ore function field over 𝑘.

This class is needed by the coercion system.

an_element()

Return an element of the codomain of the ring homomorphism.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: K = S.fraction_field()
sage: m = K.coerce_map_from(k)
sage: m.an_element()
x

section()

Return the canonical homomorphism from the constants of a Ore function filed to its base field.

class sage.rings.polynomial.ore_function_element.OreFunction_with_large_center(parent,
numerator,
denomina-
tor=None,
sim-
plify=True)

Bases: OreFunction

A special class for elements of Ore function fields whose center has finite index.

reduced_norm(var=None)
Return the reduced norm of this Ore function.

INPUT:

• var – a string or None (default: None); the name of the central variable

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()

sage: a = (x + t) / (x^2 + t^2)
sage: N = a.reduced_norm(); N
(z + 2)/(z^2 + 4)

The reduced norm lies in the center of 𝑆, which is the fraction field of a univariate polynomial ring in the
variable 𝑧 = 𝑥3 over 𝐺𝐹 (5).

sage: N.parent() Fraction Field of Univariate Polynomial Ring in z over Finite Field of size 5 sage:
N.parent() is K.center() True

We can use explicit conversion to view N as a skew polynomial:

sage: K(N)
(x^6 + 4)^(-1) * (x^3 + 2)

1.8. Fraction field elements of Ore polynomial rings 75

Noncommutative Polynomials, Release 9.8

By default, the name of the central variable is usually z (see sage.rings.polynomial.
skew_polynomial_ring.SkewPolynomiaRing_finite_order.center() for more details about
this). However, the user can specify a different variable name if desired:

sage: a.reduced_norm(var='u')
(u + 2)/(u^2 + 4)

reduced_trace(var=None)
Return the reduced trace of this element.

INPUT:

• var – a string or None (default: None); the name of the central variable

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: K = S.fraction_field()

sage: a = 1 / (x^2 + t)
sage: tr = a.reduced_trace(); tr
3/(z^2 + 2)

The reduced trace lies in the center of 𝑆, which is the fraction field of a univariate polynomial ring in the
variable 𝑧 = 𝑥3 over 𝐺𝐹 (5).

sage: tr.parent() Fraction Field of Univariate Polynomial Ring in z over Finite Field of size 5 sage:
tr.parent() is K.center() True

We can use explicit conversion to view tr as a Ore function:

sage: K(tr)
(x^6 + 2)^(-1) * 3

By default, the name of the central variable is usually z (see sage.rings.polynomial.
skew_polynomial_ring.OreFunctionField_with_large_center.center() for more details
about this). However, the user can specify a different variable name if desired:

sage: a.reduced_trace(var='u')
3/(u^2 + 2)

76 Chapter 1. Univariate Ore Polynomials

CHAPTER

TWO

NONCOMMUTATIVE MULTIVARIATE POLYNOMIALS

2.1 Noncommutative polynomials via libSINGULAR/Plural

This module provides specialized and optimized implementations for noncommutative multivariate polynomials over
many coefficient rings, via the shared library interface to SINGULAR. In particular, the following coefficient rings are
supported by this implementation:

• the rational numbers Q, and

• finite fields F𝑝 for 𝑝 prime

AUTHORS:

The PLURAL wrapper is due to

• Burcin Erocal (2008-11 and 2010-07): initial implementation and concept

• Michael Brickenstein (2008-11 and 2010-07): initial implementation and concept

• Oleksandr Motsak (2010-07): complete overall noncommutative functionality and first release

• Alexander Dreyer (2010-07): noncommutative ring functionality and documentation

• Simon King (2011-09): left and two-sided ideals; normal forms; pickling; documentation

The underlying libSINGULAR interface was implemented by

• Martin Albrecht (2007-01): initial implementation

• Joel Mohler (2008-01): misc improvements, polishing

• Martin Albrecht (2008-08): added Q(𝑎) and Z support

• Simon King (2009-04): improved coercion

• Martin Albrecht (2009-05): added Z/𝑛Z support, refactoring

• Martin Albrecht (2009-06): refactored the code to allow better re-use

Todo: extend functionality towards those of libSINGULARs commutative part

EXAMPLES:

We show how to construct various noncommutative polynomial rings:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')

(continues on next page)

77

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: P
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-
→˓relations: {y*x: -x*y}

sage: y*x + 1/2
-x*y + 1/2

sage: A.<x,y,z> = FreeAlgebra(GF(17), 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P
Noncommutative Multivariate Polynomial Ring in x, y, z over Finite Field of size 17, nc-
→˓relations: {y*x: -x*y}

sage: y*x + 7
-x*y + 7

Raw use of this class; this is not the intended use!

sage: from sage.matrix.constructor import Matrix
sage: c = Matrix(3)
sage: c[0,1] = -2
sage: c[0,2] = 1
sage: c[1,2] = 1

sage: d = Matrix(3)
sage: d[0, 1] = 17
sage: P = QQ['x','y','z']
sage: c = c.change_ring(P)
sage: d = d.change_ring(P)

sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural
sage: R.<x,y,z> = NCPolynomialRing_plural(QQ, c = c, d = d, order=TermOrder('lex',3),
→˓category=Algebras(QQ))
sage: R
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-
→˓relations: {y*x: -2*x*y + 17}

sage: R.term_order()
Lexicographic term order

sage: a,b,c = R.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*x^2*y + 43*z + 1

sage.rings.polynomial.plural.ExteriorAlgebra(base_ring, names, order='degrevlex')
Return the exterior algebra on some generators

This is also known as a Grassmann algebra. This is a finite dimensional algebra, where all generators anti-
commute.

See Wikipedia article Exterior algebra

INPUT:

• base_ring – the ground ring

78 Chapter 2. Noncommutative Multivariate Polynomials

https://en.wikipedia.org/wiki/Exterior algebra

Noncommutative Polynomials, Release 9.8

• names – a list of variable names

EXAMPLES:

sage: from sage.rings.polynomial.plural import ExteriorAlgebra
sage: E = ExteriorAlgebra(QQ, ['x', 'y', 'z']) ; E #random
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational␣
→˓Field, nc-relations: {z*x: -x*z, z*y: -y*z, y*x: -x*y} by the ideal (z^2, y^2, x^
→˓2)
sage: sorted(E.cover().domain().relations().items(), key=str)
[(y*x, -x*y), (z*x, -x*z), (z*y, -y*z)]
sage: sorted(E.cover().kernel().gens(),key=str)
[x^2, y^2, z^2]
sage: E.inject_variables()
Defining xbar, ybar, zbar
sage: x,y,z = (xbar,ybar,zbar)
sage: y*x
-x*y
sage: all(v^2==0 for v in E.gens())
True
sage: E.one()
1

class sage.rings.polynomial.plural.ExteriorAlgebra_plural

Bases: NCPolynomialRing_plural

class sage.rings.polynomial.plural.G_AlgFactory

Bases: UniqueFactory

A factory for the creation of g-algebras as unique parents.

create_key_and_extra_args(base_ring, c, d, names=None, order=None, category=None, check=None)
Create a unique key for g-algebras.

INPUT:

• base_ring - a ring

• c,d - two matrices

• names - a tuple or list of names

• order - (optional) term order

• category - (optional) category

• check - optional bool

create_object(version, key, **extra_args)
Create a g-algebra to a given unique key.

INPUT:

• key - a 6-tuple, formed by a base ring, a tuple of names, two matrices over a polynomial ring over the
base ring with the given variable names, a term order, and a category

• extra_args - a dictionary, whose only relevant key is ‘check’.

class sage.rings.polynomial.plural.NCPolynomialRing_plural

Bases: Ring

A non-commutative polynomial ring.

2.1. Noncommutative polynomials via libSINGULAR/Plural 79

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory
../../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.Ring

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H._is_category_initialized()
True
sage: H.category()
Category of algebras over Rational Field
sage: TestSuite(H).run()

Note that two variables commute if they are not part of the given relations:

sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True

free_algebra()

The free algebra of which this is the quotient.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: B = P.free_algebra()
sage: A == B
True

gen(n=0)
Returns the n-th generator of this noncommutative polynomial ring.

INPUT:

• n – an integer >= 0

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.gen(),P.gen(1)
(x, y)

Note that the generators are not cached:

sage: P.gen(1) is P.gen(1)
False

ideal(*gens, **kwds)
Create an ideal in this polynomial ring.

INPUT:

• *gens - list or tuple of generators (or several input arguments)

• coerce - bool (default: True); this must be a keyword argument. Only set it to False if you are
certain that each generator is already in the ring.

• side - string (either “left”, which is the default, or “twosided”) Must be a keyword argument. Defines
whether the ideal is a left ideal or a two-sided ideal. Right ideals are not implemented.

80 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')

sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x])
Left Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2) of␣
→˓Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,␣
→˓nc-relations: {y*x: -x*y}
sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x], side=
→˓"twosided")
Twosided Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2)␣
→˓of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
→˓ nc-relations: {y*x: -x*y}

is_commutative()

Return False.

Todo: Provide a mathematically correct answer.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_commutative()
False

is_field(*args, **kwargs)
Return False.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_field()
False

monomial_all_divisors(t)
Return a list of all monomials that divide t.

Coefficients are ignored.

INPUT:

• t - a monomial

OUTPUT:

a list of monomials

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

(continues on next page)

2.1. Noncommutative polynomials via libSINGULAR/Plural 81

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]

ALGORITHM: addwithcarry idea by Toon Segers

monomial_divides(a, b)
Return False if a does not divide b and True otherwise.

Coefficients are ignored.

INPUT:

• a – monomial

• b – monomial

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False

monomial_lcm(f, g)
LCM for monomials. Coefficients are ignored.

INPUT:

• f - monomial

• g - monomial

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

sage: P.monomial_lcm(3/2*x*y,x)
x*y

monomial_pairwise_prime(g, h)
Return True if h and g are pairwise prime.

Both h and g are treated as monomials.

Coefficients are ignored.

INPUT:

• h - monomial

• g - monomial

82 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True

sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False

monomial_quotient(f, g, coeff=False)
Return f/g, where both f and g are treated as monomials.

Coefficients are ignored by default.

INPUT:

• f - monomial

• g - monomial

• coeff - divide coefficients as well (default: False)

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y

Note that Z behaves differently if coeff=True:

sage: P.monomial_quotient(2*x,3*x)
1
sage: P.monomial_quotient(2*x,3*x,coeff=True)
2/3

Warning: Assumes that the head term of f is a multiple of the head term of g and return the multiplicant
m. If this rule is violated, funny things may happen.

monomial_reduce(f, G)

Try to find a g in G where g.lm() divides f. If found (flt,g) is returned, (0,0) otherwise, where flt
is f/g.lm().

It is assumed that G is iterable and contains only elements in this polynomial ring.

Coefficients are ignored.

INPUT:

• f - monomial

2.1. Noncommutative polynomials via libSINGULAR/Plural 83

Noncommutative Polynomials, Release 9.8

• G - list/set of mpolynomials

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z

sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)

ngens()

Returns the number of variables in this noncommutative polynomial ring.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.ngens()
3

relations(add_commutative=False)
Return the relations of this g-algebra.

INPUT:

add_commutative (optional bool, default False)

OUTPUT:

The defining relations. There are some implicit relations: Two generators commute if they are not part of
any given relation. The implicit relations are not provided, unless add_commutative==True.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True
sage: H.relations()
{z*x: x*z + 2*x, z*y: y*z - 2*y}
sage: H.relations(add_commutative=True)
{y*x: x*y, z*x: x*z + 2*x, z*y: y*z - 2*y}

term_order()

Return the term ordering of the noncommutative ring.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.term_order()
Lexicographic term order

(continues on next page)

84 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: P = A.g_algebra(relations={y*x:-x*y})
sage: P.term_order()
Degree reverse lexicographic term order

class sage.rings.polynomial.plural.NCPolynomial_plural

Bases: RingElement

A noncommutative multivariate polynomial implemented using libSINGULAR.

coefficient(degrees)
Return the coefficient of the variables with the degrees specified in the python dictionary degrees.

Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in
degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function monomial_coefficient() which returns the coefficient in the
base ring of a monomial.

INPUT:

• degrees - Can be any of:

– a dictionary of degree restrictions

– a list of degree restrictions (with None in the unrestricted variables)

– a monomial (very fast, but not as flexible)

OUTPUT:

element of the parent of this element.

Note: For coefficients of specific monomials, look at monomial_coefficient().

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
sage: f.coefficient({x:0})
z + y^2 + y + 1

sage: f.coefficient(x)
y^2 - y + 1

sage: f.coefficient([0,None]) # not tested
y^2 + y + 1

Be aware that this may not be what you think! The physical appearance of the variable x is deceiving –
particularly if the exponent would be a variable.

2.1. Noncommutative polynomials via libSINGULAR/Plural 85

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.RingElement

Noncommutative Polynomials, Release 9.8

sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x^2 + x*y^2 - x*y + x + z + y^2 + y + 1

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5
sage: parent(c)
Noncommutative Multivariate Polynomial Ring in x, z, y over Finite Field of␣
→˓size 389, nc-relations: {y*x: -x*y + z}

AUTHOR:

• Joel B. Mohler (2007-10-31)

constant_coefficient()

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
sage: f = 3*x^2
sage: f.constant_coefficient()
0

degree(x=None)
Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of
this polynomial.

INPUT:

• x - multivariate polynomial (a generator of the parent of self) If x is not specified (or is None), return
the total degree, which is the maximum degree of any monomial.

OUTPUT:

integer

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9

(continues on next page)

86 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10

degrees()

Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered
by the order of the generators.

EXAMPLES:

sage: A.<y0,y1,y2> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y1*y0:-y0*y1 + y2}, order='lex')
sage: R.inject_variables()
Defining y0, y1, y2
sage: q = 3*y0*y1*y1*y2; q
3*y0*y1^2*y2
sage: q.degrees()
(1, 2, 1)
sage: (q + y0^5).degrees()
(5, 2, 1)

dict()

Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial:
The dictionary consists of ETuple:coefficient pairs.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y

sage: f = (2*x*y^3*z^2 + (7)*x^2 + (3))
sage: f.dict()
{(0, 0, 0): 3, (1, 2, 3): 2, (2, 0, 0): 7}

exponents(as_ETuples=True)
Return the exponents of the monomials appearing in this polynomial.

INPUT:

• as_ETuples - (default: True) if True returns the result as an list of ETuples otherwise returns a list
of tuples

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = x^3 + y + 2*z^2

(continues on next page)

2.1. Noncommutative polynomials via libSINGULAR/Plural 87

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]
sage: f.exponents(as_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]

is_constant()

Return True if this polynomial is constant.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_constant()
False
sage: P(1).is_constant()
True

is_homogeneous()

Return True if this polynomial is homogeneous.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: (x+y+z).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2+z^3).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

is_monomial()

Return True if this polynomial is a monomial.

A monomial is defined to be a product of generators with coefficient 1.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_monomial()
True

(continues on next page)

88 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y + x).is_monomial()
False

is_zero()

Return True if this polynomial is zero.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y

sage: x.is_zero()
False
sage: (x-x).is_zero()
True

lc()

Leading coefficient of this polynomial with respect to the term order of self.parent().

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z

sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lc()
3

sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lc()
5

lm()

Returns the lead monomial of self with respect to the term order of self.parent().

In Sage a monomial is a product of variables in some power without a coefficient.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^2 + y^3*z^4
sage: f.lm()
x*y^2

(continues on next page)

2.1. Noncommutative polynomials via libSINGULAR/Plural 89

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='deglex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^2*z^3 + x^3*y^2*z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^1*y^2*z^4 + x^1*y^1*z^5
sage: f.lm()
x*y^2*z^4

sage: A.<x,y,z> = FreeAlgebra(GF(127), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='degrevlex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^5*z^2 + x^4*y^1*z^3
sage: f.lm()
x*y^5*z^2
sage: f = x^4*y^7*z^1 + x^4*y^2*z^3
sage: f.lm()
x^4*y^7*z

lt()

Leading term of this polynomial.

In Sage a term is a product of variables in some power and a coefficient.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z

sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2

sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4

monomial_coefficient(mon)
Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent
as self.

This function contrasts with the function coefficient() which returns the coefficient of a monomial
viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

90 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

• mon - a monomial

OUTPUT:

coefficient in base ring

See also:

For coefficients in a base ring of fewer variables, look at coefficient()

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y

The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Finite Field of size 389

sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
388
sage: f.monomial_coefficient(x^10)
0

monomials()

Return the list of monomials in self

The returned list is decreasingly ordered by the term ordering of self.parent().

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = x + (3*2)*y*z^2 + (2+3)
sage: f.monomials()
[x, z^2*y, 1]
sage: f = P(3^2)
sage: f.monomials()
[1]

reduce(I)
EXAMPLES:

2.1. Noncommutative polynomials via libSINGULAR/Plural 91

Noncommutative Polynomials, Release 9.8

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)

The result of reduction is not the normal form, if one reduces by a list of polynomials:

sage: (x*z).reduce(I.gens())
x*z

However, if the argument is an ideal, then a normal form (reduction with respect to a two-sided Groebner
basis) is returned:

sage: (x*z).reduce(I)
-x

The Groebner basis shows that the result is correct:

sage: I.std() #random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational
Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(I.std().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]

total_degree()

Return the total degree of self, which is the maximum degree of all monomials in self.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=2*x*y^3*z^2
sage: f.total_degree()
6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree()
10

sage.rings.polynomial.plural.SCA(base_ring, names, alt_vars, order='degrevlex')
Return a free graded-commutative algebra

92 Chapter 2. Noncommutative Multivariate Polynomials

Noncommutative Polynomials, Release 9.8

This is also known as a free super-commutative algebra.

INPUT:

• base_ring – the ground field

• names – a list of variable names

• alt_vars – a list of indices of to be anti-commutative variables (odd variables)

• order – ordering to be used for the constructed algebra

EXAMPLES:

sage: from sage.rings.polynomial.plural import SCA
sage: E = SCA(QQ, ['x', 'y', 'z'], [0, 1], order = 'degrevlex')
sage: E
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational␣
→˓Field, nc-relations: {y*x: -x*y} by the ideal (y^2, x^2)
sage: E.inject_variables()
Defining xbar, ybar, zbar
sage: x,y,z = (xbar,ybar,zbar)
sage: y*x
-x*y
sage: z*x
x*z
sage: x^2
0
sage: y^2
0
sage: z^2
z^2
sage: E.one()
1

sage.rings.polynomial.plural.new_CRing(rw, base_ring)
Construct MPolynomialRing_libsingular from ringWrap, assuming the ground field to be base_ring

EXAMPLES:

sage: H.<x,y,z> = PolynomialRing(QQ, 3)
sage: from sage.libs.singular.function import singular_function

sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")

sage: L = ringlist(H, ring=H); L
[0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0]]

sage: len(L)
4

sage: W = ring(L, ring=H); W
<RingWrap>

sage: from sage.rings.polynomial.plural import new_CRing
sage: R = new_CRing(W, H.base_ring())

(continues on next page)

2.1. Noncommutative polynomials via libSINGULAR/Plural 93

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: R # indirect doctest
Multivariate Polynomial Ring in x, y, z over Rational Field

Check that trac ticket #13145 has been resolved:

sage: h = hash(R.gen() + 1) # sets currRing
sage: from sage.libs.singular.ring import ring_refcount_dict, currRing_wrapper
sage: curcnt = ring_refcount_dict[currRing_wrapper()]
sage: newR = new_CRing(W, H.base_ring())
sage: ring_refcount_dict[currRing_wrapper()] - curcnt
2

Check that trac ticket #29311 is fixed:

sage: R.<x,y,z> = QQ[]
sage: from sage.libs.singular.function_factory import ff
sage: W = ff.ring(ff.ringlist(R), ring=R)
sage: C = sage.rings.polynomial.plural.new_CRing(W, R.base_ring())
sage: C.one()
1

sage.rings.polynomial.plural.new_NRing(rw, base_ring)
Construct NCPolynomialRing_plural from ringWrap, assuming the ground field to be base_ring

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-1})
sage: H.inject_variables()
Defining x, y, z
sage: z*x
x*z
sage: z*y
y*z
sage: y*x
x*y - 1
sage: I = H.ideal([y^2, x^2, z^2-1])
sage: I._groebner_basis_libsingular()
[1]

sage: from sage.libs.singular.function import singular_function

sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")

sage: L = ringlist(H, ring=H); L
[

[0 1 1]
[0 0 1]

0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0], [0 0 0],

[0 -1 0]
[0 0 0]

(continues on next page)

94 Chapter 2. Noncommutative Multivariate Polynomials

https://trac.sagemath.org/13145
https://trac.sagemath.org/29311

Noncommutative Polynomials, Release 9.8

(continued from previous page)

[0 0 0]
]
sage: len(L)
6

sage: W = ring(L, ring=H); W
<noncommutative RingWrap>

sage: from sage.rings.polynomial.plural import new_NRing
sage: R = new_NRing(W, H.base_ring())
sage: R # indirect doctest
Noncommutative Multivariate Polynomial Ring in x, y, z over
Rational Field, nc-relations: {y*x: x*y - 1}

sage.rings.polynomial.plural.new_Ring(rw, base_ring)
Constructs a Sage ring out of low level RingWrap, which wraps a pointer to a Singular ring.

The constructed ring is either commutative or noncommutative depending on the Singular ring.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-1})
sage: H.inject_variables()
Defining x, y, z
sage: z*x
x*z
sage: z*y
y*z
sage: y*x
x*y - 1
sage: I = H.ideal([y^2, x^2, z^2-1])
sage: I._groebner_basis_libsingular()
[1]

sage: from sage.libs.singular.function import singular_function

sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")

sage: L = ringlist(H, ring=H); L
[

[0 1 1]
[0 0 1]

0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0], [0 0 0],

[0 -1 0]
[0 0 0]
[0 0 0]
]
sage: len(L)
6

(continues on next page)

2.1. Noncommutative polynomials via libSINGULAR/Plural 95

Noncommutative Polynomials, Release 9.8

(continued from previous page)

sage: W = ring(L, ring=H); W
<noncommutative RingWrap>

sage: from sage.rings.polynomial.plural import new_Ring
sage: R = new_Ring(W, H.base_ring()); R
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-
→˓relations: {y*x: x*y - 1}

sage.rings.polynomial.plural.unpickle_NCPolynomial_plural(R, d)
Auxiliary function to unpickle a non-commutative polynomial.

96 Chapter 2. Noncommutative Multivariate Polynomials

CHAPTER

THREE

INDICES AND TABLES

• Index

• Module Index

• Search Page

97

../genindex.html
../py-modindex.html
../search.html

Noncommutative Polynomials, Release 9.8

98 Chapter 3. Indices and Tables

PYTHON MODULE INDEX

r
sage.rings.polynomial.ore_function_element,

70
sage.rings.polynomial.ore_function_field, 61
sage.rings.polynomial.ore_polynomial_element,

11
sage.rings.polynomial.ore_polynomial_ring, 1
sage.rings.polynomial.plural, 77
sage.rings.polynomial.skew_polynomial_element,

45
sage.rings.polynomial.skew_polynomial_finite_field,

53
sage.rings.polynomial.skew_polynomial_finite_order,

48
sage.rings.polynomial.skew_polynomial_ring,

39

99

Noncommutative Polynomials, Release 9.8

100 Python Module Index

INDEX

A
an_element() (sage.rings.polynomial.ore_function_element.OreFunctionBaseringInjection

method), 75
an_element() (sage.rings.polynomial.ore_polynomial_element.OrePolynomialBaseringInjection

method), 36

B
base_ring() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 14
bound() (sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense

method), 49

C
center() (sage.rings.polynomial.ore_function_field.OreFunctionField_with_large_center

method), 68
center() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_finite_order

method), 43
change_var() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 63
change_var() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 4
change_variable_name()

(sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 15

characteristic() (sage.rings.polynomial.ore_function_field.OreFunctionField
method), 63

characteristic() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 4

coefficient() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 85

coefficients() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 15

coefficients() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense
method), 36

conjugate() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense
method), 45

constant_coefficient()
(sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 16

constant_coefficient()
(sage.rings.polynomial.plural.NCPolynomial_plural
method), 86

ConstantOreFunctionSection (class in
sage.rings.polynomial.ore_function_element),
70

ConstantOrePolynomialSection (class in
sage.rings.polynomial.ore_polynomial_element),
11

count_factorizations()
(sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 53

count_irreducible_divisors()
(sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 54

create_key_and_extra_args()
(sage.rings.polynomial.plural.G_AlgFactory
method), 79

create_object() (sage.rings.polynomial.plural.G_AlgFactory
method), 79

D
degree() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 16
degree() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense

method), 36
degree() (sage.rings.polynomial.plural.NCPolynomial_plural

method), 86
degrees() (sage.rings.polynomial.plural.NCPolynomial_plural

method), 87
dict() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense

method), 37
dict() (sage.rings.polynomial.plural.NCPolynomial_plural

method), 87

E
Element (sage.rings.polynomial.ore_function_field.OreFunctionField

attribute), 63
Element (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

attribute), 4
exponents() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 16
exponents() (sage.rings.polynomial.plural.NCPolynomial_plural

method), 87

101

Noncommutative Polynomials, Release 9.8

ExteriorAlgebra() (in module
sage.rings.polynomial.plural), 78

ExteriorAlgebra_plural (class in
sage.rings.polynomial.plural), 79

F
factor() (sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense

method), 54
factorizations() (sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense

method), 55
fraction_field() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 64
fraction_field() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 5
free_algebra() (sage.rings.polynomial.plural.NCPolynomialRing_plural

method), 80

G
G_AlgFactory (class in sage.rings.polynomial.plural),

79
gen() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 64
gen() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 5
gen() (sage.rings.polynomial.plural.NCPolynomialRing_plural

method), 80
gens_dict() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 64
gens_dict() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 6

H
hamming_weight() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 16
hilbert_shift() (sage.rings.polynomial.ore_function_element.OreFunction

method), 71
hilbert_shift() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense

method), 37

I
ideal() (sage.rings.polynomial.plural.NCPolynomialRing_plural

method), 80
is_central() (sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense

method), 49
is_commutative() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 65
is_commutative() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 6
is_commutative() (sage.rings.polynomial.plural.NCPolynomialRing_plural

method), 81
is_constant() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 17
is_constant() (sage.rings.polynomial.plural.NCPolynomial_plural

method), 88

is_exact() (sage.rings.polynomial.ore_function_field.OreFunctionField
method), 65

is_exact() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 7

is_field() (sage.rings.polynomial.ore_function_field.OreFunctionField
method), 65

is_field() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 7

is_field() (sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 81

is_finite() (sage.rings.polynomial.ore_function_field.OreFunctionField
method), 66

is_finite() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 7

is_homogeneous() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 88

is_irreducible() (sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 56

is_left_divisible_by()
(sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 17

is_monic() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 17

is_monomial() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 18

is_monomial() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 88

is_nilpotent() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 18

is_one() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 19

is_right_divisible_by()
(sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 19

is_sparse() (sage.rings.polynomial.ore_function_field.OreFunctionField
method), 66

is_sparse() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 7

is_term() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 20

is_unit() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 20

is_zero() (sage.rings.polynomial.ore_function_element.OreFunction
method), 71

is_zero() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 20

is_zero() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 89

L
lagrange_polynomial()

(sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing
method), 40

102 Index

Noncommutative Polynomials, Release 9.8

lc() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 89

leading_coefficient()
(sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 21

left_denominator() (sage.rings.polynomial.ore_function_element.OreFunction
method), 72

left_divides() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 21

left_gcd() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 22

left_irreducible_divisor()
(sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 57

left_irreducible_divisors()
(sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 57

left_lcm() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 23

left_mod() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 24

left_monic() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 24

left_numerator() (sage.rings.polynomial.ore_function_element.OreFunction
method), 73

left_power_mod() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense
method), 46

left_quo_rem() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 25

left_xgcd() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 25

left_xlcm() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 27

list() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense
method), 38

lm() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 89

lt() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 90

M
minimal_vanishing_polynomial()

(sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing
method), 41

module
sage.rings.polynomial.ore_function_element,

70
sage.rings.polynomial.ore_function_field,

61
sage.rings.polynomial.ore_polynomial_element,

11
sage.rings.polynomial.ore_polynomial_ring,

1
sage.rings.polynomial.plural, 77

sage.rings.polynomial.skew_polynomial_element,
45

sage.rings.polynomial.skew_polynomial_finite_field,
53

sage.rings.polynomial.skew_polynomial_finite_order,
48

sage.rings.polynomial.skew_polynomial_ring,
39

monomial_all_divisors()
(sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 81

monomial_coefficient()
(sage.rings.polynomial.plural.NCPolynomial_plural
method), 90

monomial_divides() (sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 82

monomial_lcm() (sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 82

monomial_pairwise_prime()
(sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 82

monomial_quotient()
(sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 83

monomial_reduce() (sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 83

monomials() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 91

multi_point_evaluation()
(sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense
method), 46

N
NCPolynomial_plural (class in

sage.rings.polynomial.plural), 85
NCPolynomialRing_plural (class in

sage.rings.polynomial.plural), 79
new_CRing() (in module sage.rings.polynomial.plural),

93
new_NRing() (in module sage.rings.polynomial.plural),

94
new_Ring() (in module sage.rings.polynomial.plural),

95
ngens() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 66
ngens() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 8
ngens() (sage.rings.polynomial.plural.NCPolynomialRing_plural

method), 84
number_of_terms() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 27

O
operator_eval() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense

Index 103

Noncommutative Polynomials, Release 9.8

method), 47
optimal_bound() (sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense

method), 50
OreFunction (class in

sage.rings.polynomial.ore_function_element),
70

OreFunction_with_large_center (class in
sage.rings.polynomial.ore_function_element),
75

OreFunctionBaseringInjection (class in
sage.rings.polynomial.ore_function_element),
74

OreFunctionCenterInjection (class in
sage.rings.polynomial.ore_function_field),
63

OreFunctionField (class in
sage.rings.polynomial.ore_function_field),
63

OreFunctionField_with_large_center (class in
sage.rings.polynomial.ore_function_field), 68

OrePolynomial (class in
sage.rings.polynomial.ore_polynomial_element),
12

OrePolynomial_generic_dense (class in
sage.rings.polynomial.ore_polynomial_element),
36

OrePolynomialBaseringInjection (class in
sage.rings.polynomial.ore_polynomial_element),
35

OrePolynomialRing (class in
sage.rings.polynomial.ore_polynomial_ring), 1

P
padded_list() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 27
parameter() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 66
parameter() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 8
prec() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 28

R
random_element() (sage.rings.polynomial.ore_function_field.OreFunctionField

method), 67
random_element() (sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing

method), 8
random_irreducible()

(sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 9

reduce() (sage.rings.polynomial.plural.NCPolynomial_plural
method), 91

reduced_charpoly() (sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense
method), 50

reduced_norm() (sage.rings.polynomial.ore_function_element.OreFunction_with_large_center
method), 75

reduced_norm() (sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense
method), 51

reduced_trace() (sage.rings.polynomial.ore_function_element.OreFunction_with_large_center
method), 76

reduced_trace() (sage.rings.polynomial.skew_polynomial_finite_order.SkewPolynomial_finite_order_dense
method), 52

relations() (sage.rings.polynomial.plural.NCPolynomialRing_plural
method), 84

right_denominator()
(sage.rings.polynomial.ore_function_element.OreFunction
method), 73

right_divides() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 28

right_gcd() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 29

right_irreducible_divisor()
(sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 58

right_irreducible_divisors()
(sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 59

right_lcm() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 30

right_mod() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 31

right_monic() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 31

right_numerator() (sage.rings.polynomial.ore_function_element.OreFunction
method), 74

right_power_mod() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense
method), 47

right_quo_rem() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 32

right_xgcd() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 33

right_xlcm() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 34

S
sage.rings.polynomial.ore_function_element

module, 70
sage.rings.polynomial.ore_function_field

module, 61
sage.rings.polynomial.ore_polynomial_element

module, 11
sage.rings.polynomial.ore_polynomial_ring

module, 1
sage.rings.polynomial.plural

module, 77
sage.rings.polynomial.skew_polynomial_element

module, 45
sage.rings.polynomial.skew_polynomial_finite_field

104 Index

Noncommutative Polynomials, Release 9.8

module, 53
sage.rings.polynomial.skew_polynomial_finite_order

module, 48
sage.rings.polynomial.skew_polynomial_ring

module, 39
SCA() (in module sage.rings.polynomial.plural), 92
section() (sage.rings.polynomial.ore_function_element.OreFunctionBaseringInjection

method), 75
section() (sage.rings.polynomial.ore_function_field.OreFunctionCenterInjection

method), 63
section() (sage.rings.polynomial.ore_polynomial_element.OrePolynomialBaseringInjection

method), 36
section() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialCenterInjection

method), 40
SectionOreFunctionCenterInjection (class in

sage.rings.polynomial.ore_function_field), 70
SectionSkewPolynomialCenterInjection (class in

sage.rings.polynomial.skew_polynomial_ring),
39

shift() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 34

SkewPolynomial_finite_field_dense (class in
sage.rings.polynomial.skew_polynomial_finite_field),
53

SkewPolynomial_finite_order_dense (class in
sage.rings.polynomial.skew_polynomial_finite_order),
48

SkewPolynomial_generic_dense (class in
sage.rings.polynomial.skew_polynomial_element),
45

SkewPolynomialCenterInjection (class in
sage.rings.polynomial.skew_polynomial_ring),
40

SkewPolynomialRing (class in
sage.rings.polynomial.skew_polynomial_ring),
40

SkewPolynomialRing_finite_field (class in
sage.rings.polynomial.skew_polynomial_ring),
42

SkewPolynomialRing_finite_order (class in
sage.rings.polynomial.skew_polynomial_ring),
42

square() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial
method), 35

T
term_order() (sage.rings.polynomial.plural.NCPolynomialRing_plural

method), 84
total_degree() (sage.rings.polynomial.plural.NCPolynomial_plural

method), 92
truncate() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense

method), 38
twisting_derivation()

(sage.rings.polynomial.ore_function_field.OreFunctionField

method), 67
twisting_derivation()

(sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 10

twisting_morphism()
(sage.rings.polynomial.ore_function_field.OreFunctionField
method), 68

twisting_morphism()
(sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing
method), 10

type() (sage.rings.polynomial.skew_polynomial_finite_field.SkewPolynomial_finite_field_dense
method), 59

U
unpickle_NCPolynomial_plural() (in module

sage.rings.polynomial.plural), 96

V
valuation() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense

method), 39
variable_name() (sage.rings.polynomial.ore_polynomial_element.OrePolynomial

method), 35

Index 105

	Univariate Ore Polynomials
	Univariate Ore polynomial rings
	Univariate Ore polynomials
	Univariate skew polynomial rings
	Univariate skew polynomials
	Univariate dense skew polynomials over a field with a finite order automorphism
	Univariate dense skew polynomials over finite fields
	Fraction fields of Ore polynomial rings
	Fraction field elements of Ore polynomial rings

	Noncommutative Multivariate Polynomials
	Noncommutative polynomials via libSINGULAR/Plural

	Indices and Tables
	Python Module Index
	Index

