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CHAPTER
ONE

PATH ALGEBRAS

class sage.quivers.algebra.PathAlgebra(k, P, order='negdegreviex")

Bases: CombinatorialFreelModule
Create the path algebra of a quiver over a given field.

Given a quiver () and a field k, the path algebra k() is defined as follows. As a vector space it has basis the set of
all paths in (). Multiplication is defined on this basis and extended bilinearly. If p is a path with terminal vertex
t and q is a path with initial vertex ¢ then the product p * ¢ is defined to be the composition of the paths p and ¢
if £ = 7 and O otherwise.

INPUT:
* k —field (or commutative ring), the base field of the path algebra
¢ P — the path semigroup of a quiver @

9

* order — optional string, one of “negdegrevlex” (default), “degrevlex”, “negdeglex” or “deglex”, defining
the monomial order to be used.

OUTPUT:

e the path algebra kP with the given monomial order

Note: Monomial orders that are not degree orders are not supported.

EXAMPLES:

sage: P = DiGraph({1:{2:['a"]}, 2:{3:['b"']1}}) .path_semigroup()

sage: A P.algebra(GF(7))

sage: A

Path algebra of Multi-digraph on 3 vertices over Finite Field of size 7
sage: A.variable_names()

('e_1', 'e_2"', 'e_3', '"a', 'b")

Note that path algebras are uniquely defined by their quiver, field and monomial order:

sage: A is P.algebra(GF(7))

True

sage: A is P.algebra(GF(7), order="degrevlex")

False

sage: A is P.algebra(RR)

False

sage: A is DiGraph({1:{2:['a']}}) .path_semigroup().algebra(GF(7))
False
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The path algebra of an acyclic quiver has a finite basis:

sage: A.dimension()

6

sage: list(A.basis())
[e_1, e_2, e_3, a, b, a*b]

The path algebra can create elements from paths or from elements of the base ring:

sage: A(5)

5*e_1 + 5*%e_2 + 5%e_3
sage: S = A.semigroup()
sage: S

Partial semigroup formed by the directed paths of Multi-digraph on 3 vertices
sage: p = S([(1, 2, "a")D)
sage: r = SC[(2, 3, 'b'D)D)
sage: e2 = S([(2, 2)D
sage: x = A(p) + A(e2)
sage: X

a + e_2

sage: y = A(p) + A(r)
sage: y

a+b

Path algebras are graded algebras. The grading is given by assigning to each basis element the length of the path
corresponding to that basis element:

sage: x.is_homogeneous()

False

sage: x.degree()

Traceback (most recent call last):

ValueError: element is not homogeneous
sage: y.is_homogeneous()

True

sage: y.degree()

1

sage: A[1]

Free module spanned by [a, b] over Finite Field of size 7
sage: A[2]

Free module spanned by [a*b] over Finite Field of size 7

Element
alias of PathAlgebraElement

arrows()
Return the arrows of this algebra (corresponding to edges of the underlying quiver).

EXAMPLES:

sage: P = DiGraph({1:{2:['a"]}, 2:{3:['b", 'c']}, 4:{}3}) .path_semigroup()
sage: A = P.algebra(GF(5))

sage: A.arrows()

(a, b, ©
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degree_on_basis(x)
Return x.degree().

This function is here to make some methods work that are inherited from CombinatorialFreeModule.

EXAMPLES:

sage: A = DiGraph({0:{1:['a'], 2:['b"]}, 1:{0:['c'], 1:['d"']}, 2:{0:['e'],2:['£f
—"'1}}) .path_semigroup() .algebra(Zz)

sage: A.inject_variables()

Defining e_0, e_1, e_2, a, b, ¢, d, e, £

sage: X = a+2*b+3*c*e-a*d+5*e_0+3*%e_2

sage: X
5*¢_0 + a - a*d + 2*b + 3*e_2
sage: X.homogeneous_component () # indirect doctest
5%e_0 + 3%e_2
sage: X.homogeneous_component (1)
a+ 2%b
sage: X.homogeneous_component (2)
-a*d
sage: X.homogeneous_component(3)
0

gen(i)

Return the i-th generator of this algebra.

This is an idempotent (corresponding to a trivial path at a vertex) if ¢ < n (where n is the number of vertices
of the quiver), and a single-edge path otherwise.

EXAMPLES:

sage: P = DiGraph({1:{2:['a"]}, 2:{3:['b"', 'c']}, 4:{}3}) .path_semigroup()
sage: A = P.algebra(GF(5))

sage: A.gens()

(e_1l, e 2, e_3, e_4, a, b, ©

sage: A.gen(2)

e_3
sage: A.gen(5)
b
gens()
Return the generators of this algebra (idempotents and arrows).
EXAMPLES:

sage: P = DiGraph({1:{2:['a']1}, 2:{3:['b", 'c']1}, 4:{}}) .path_semigroup()
sage: A = P.algebra(GF(5))

sage: A.variable_names()

('e_1', 'e_2'", 'e_3", 'e_4', 'a', 'b', 'c")

sage: A.gens()

(e_1, e_2, e_3, e_4, a, b, ©

homogeneous_component (1)
Return the n-th homogeneous piece of the path algebra.

INPUT:
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* n—integer
OUTPUT:
e CombinatorialFreelModule, module spanned by the paths of length n in the quiver

EXAMPLES:

sage: P = DiGraph({1:{2:['a"'], 3:['b"']1}, 2:{4:['c']1}, 3:{4:['d']1}}).path_
—semigroup()

sage: A = P.algebra(GF(7))

sage: A.homogeneous_component(2)

Free module spanned by [a*c, b*d] over Finite Field of size 7

sage: D = DiGraph({1: {2: "a'}, 2: {3: 'b'}, 3: {1: "c'}})
sage: P = D.path_semigroup()
sage: A = P.algebra(Zz)

sage: A.homogeneous_component(3)
Free module spanned by [a*b*c, b*c*a, c*a*b] over Integer Ring

homogeneous_components ()

Return the non-zero homogeneous components of self.

EXAMPLES:

sage: Q = DiGraph([[1,2,'a'],[2,3,'b"'],[3,4,'c"']])

sage: PQ = Q.path_semigroup()

sage: A = PQ.algebra(GF(7))

sage: A.homogeneous_components()

[Free module spanned by [e_1, e_2, e_3, e_4] over Finite Field of size 7,
Free module spanned by [a, b, c] over Finite Field of size 7,

Free module spanned by [a*b, b*c] over Finite Field of size 7,

Free module spanned by [a*b*c] over Finite Field of size 7]

Warning: Backward incompatible change: since trac ticket #12630 and until trac ticket #8678, this
feature was implemented under the syntax 1ist(A) by means of A.__iter__. This was incorrect
since A.__iter__, when defined for a parent, should iterate through the elements of A.

idempotents()

Return the idempotents of this algebra (corresponding to vertices of the underlying quiver).

EXAMPLES:

sage: P DiGraph({1:{2:['a"]}, 2:{3:['b", 'c'1}, 4:{}}).path_semigroup()
sage: A = P.algebra(GF(5))

sage: A.idempotents()

(e_1, e_2, e_3, e_4)

ngens ()

Number of generators of this algebra.

EXAMPLES:

4 Chapter 1. Path Algebras
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sage: P DiGraph({1:{2:['a"]}, 2:{3:['b", "c'1}, 4:{}}).path_semigroup()
sage: A = P.algebra(GF(5))

sage: A.ngens()

7

one()
Return the multiplicative identity element.

The multiplicative identity of a path algebra is the sum of the basis elements corresponding to the trivial
paths at each vertex.

EXAMPLES:

sage: A = DiGraph({1:{2:['a']}, 2:{3:['b']1}}) .path_semigroup() .algebra(QQ)
sage: A.one()
e_l + e_2 + e_3

order_string()
Return the string that defines the monomial order of this algebra.

EXAMPLES:

sage: P1 = DiGraph({1:{1:['x"','y"',"'z"']}}) .path_semigroup() .algebra(GF(25,'t"'))
sage: P2 = DiGraph({1:{1:['x",'y"',"'z"]1}}) .path_semigroup() .algebra(GF(25,'t"),.
—order="degrevlex")

sage: P3 = DiGraph({1:{1:['x"','y',"'z"]}}).path_semigroup() .algebra(GF(25,'t"),.
—order="negdeglex")

sage: P4 = DiGraph({1:{1:['x"','y"',"'z"]1}}) .path_semigroup().algebra(GF(25,'t"),.
—order="deglex")

sage: Pl.order_string()

'negdegrevlex'

sage: P2.order_string()

'degrevlex’

sage: P3.order_string()

'negdeglex’

sage: P4.order_string()

'deglex’

quiver()

Return the quiver from which the algebra self was formed.
OUTPUT:

* DiGraph, the quiver of the algebra
EXAMPLES:

sage: P = DiGraph({1:{2:['a"', 'b']}}).path_semigroup()
sage: A = P.algebra(GF(3))

sage: A.quiver() is P.quiver()

True

semigroup ()

Return the (partial) semigroup from which the algebra self was constructed.
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Note: The partial semigroup is formed by the paths of a quiver, multiplied by concatenation. If the quiver
has more than a single vertex, then multiplication in the path semigroup is not always defined.

OUTPUT:

* the path semigroup from which self was formed (a partial semigroup)

EXAMPLES:

sage: P DiGraph({1:{2:['a", 'b']1}}) .path_semigroup()
sage: A = P.algebra(GF(3))

sage: A.semigroup() is P

True

sum(iter_of _elements)

Return the sum of all elements in iter_of_elements
INPUT:

e jter_of_elements: iterator of elements of self

Note: It overrides a method inherited from CombinatorialFreelModule, which relies on a private at-
tribute of elements—an implementation detail that is simply not available for PathAlgebraElement.

EXAMPLES:

sage: A = DiGraph({0:{1:['a'], 2:['b"]}, 1:{0:['c"'], 1:['d"']}, 2:{0:['e"],2:['£f
—"'1}}) .path_semigroup() .algebra(Zz)

sage: A.inject_variables()

Defining e_0, e_1, e_2, a, b, ¢, d, e, £

sage: A.sum((a, 2*b, 3*c*e, -a*d, 5*e_0, 3*e_2))

5%e_0 + a - a*d + 2*b + 3*e_2

6 Chapter 1. Path Algebras



../../../../../../html/en/reference/combinat/sage/combinat/free_module.html#sage.combinat.free_module.CombinatorialFreeModule

CHAPTER
TWO

PATH ALGEBRA ELEMENTS

AUTHORS:
* Simon King (2015-08)

class sage.quivers.algebra_elements.PathAlgebraElement
Bases: RingElement

Elements of a PathAlgebra.

Note: Upon creation of a path algebra, one can choose among several monomial orders, which are all positive
or negative degree orders. Monomial orders that are not degree orders are not supported.

EXAMPLES:

After creating a path algebra and getting hold of its generators, one can create elements just as usual:

sage: A = DiGraph({0:{1:['a'], 2:['b"]}, 1:{0:['c'], 1:['d']1}, 2:{0:['e'],2:["£']13}}
) .path_semigroup() .algebra(ZZ)

sage: A.inject_variables()

Defining e_0, e_1, e_2, a, b, ¢, d, e, f

sage: x = a+2*b+3*c+5%e_0+3%e_2

sage: X

5%¢_0 + a + 2%b + 3*c + 3%e_2

The path algebra decomposes as a direct sum according to start- and endpoints:

sage: x.sort_by_vertices()
[(5%e_0, 0, 0),

(a, 0, 1),
(2*b, 0, 2),
(3*c, 1, ®,

(3*e_2, 2, 2)]

sage: (x*3+x*2).sort_by_vertices()
[(150%e_® + 33*a*c, 0, 0),

(30%a + 3*a*c*a, 0, 1),

(114*b + 6*a*c*b, 0, 2),

(99*c + 9*c*a*c, 1, 0),
(18*c*a, 1, 1),
(54%c*b, 1, 2),
(36%e_2, 2, 2)]
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For a consistency test, we create a path algebra that is isomorphic to a free associative algebra, and compare
arithmetic with two other implementations of free algebras (note that the letterplace implementation only allows
weighted homogeneous elements):

sage: F.<x,y,z> = FreeAlgebra(GF(25,'t"))

sage: pF = x+y*z*x+2%y-z+1

sage: pF2 = xM+x*y*x*z+2%zr2%X*y

sage: P = DiGraph({1:{1:['x","'y",'z"]}}) .path_semigroup() .algebra(GF(25,'t"))
sage: pP = sage_eval('x+y*z*x+2*y-z+1', P.gens_dict())

sage: pPA5+3*pPA3 == sage_eval (repr(pFA5+3*pF+3), P.gens_dict())

True

sage: L.<x,y,z> = FreeAlgebra(GF(25,'t"'), implementation='letterplace')
sage: pL2 = XAM+XFy*X¥z+2%zA2% X"y

sage: pP2 = sage_eval('xM+x*y*x*z+2%zA2%x*y"', P.gens_dict())

sage: pP247 == sage_eval(repr(pF2+7), P.gens_dict())

True

sage: pP227 == sage_eval (repr(pL247), P.gens_dict())

True

When the Cython implementation of path algebra elements was introduced, it was faster than both the default
implementation and the letterplace implementation of free algebras. The following timings where obtained with
a 32-bit operating system; using 64-bit on the same machine, the letterplace implementation has not become
faster, but the timing for path algebra elements has improved by about 20%:

sage: timeit('pFA5+3*pFA3") # not tested
1 loops, best of 3: 338 ms per loop

sage: timeit('pPA5+3*pPA3") # not tested
100 loops, best of 3: 2.55 ms per loop

sage: timeit('pF247"') # not tested
10000 loops, best of 3: 513 ms per loop
sage: timeit('pL247') # not tested
125 loops, best of 3: 1.99 ms per loop
sage: timeit('pP247") # not tested

10000 loops, best of 3: 1.54 ms per loop

So, if one is merely interested in basic arithmetic operations for free associative algebras, it could make sense
to model the free associative algebra as a path algebra. However, standard basis computations are not available
for path algebras, yet. Hence, to implement computations in graded quotients of free algebras, the letterplace
implementation currently is the only option.

coefficient(P)
Return the coeflicient of a monomial.

INPUT:

An element of the underlying partial semigroup.

OUTPUT:

The coefficient of the given semigroup element in self, or zero if it does not appear.

EXAMPLES:

sage: P = DiGraph({1:{1:['x",'y"',"'z"]}}) .path_semigroup().algebra(GF(25,'t"'),..
—order="degrevlex")

sage: P.inject_variables()

Defining e_1, x, y, 2z

(continues on next page)
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(continued from previous page)

sage: p = (x+2%z+1)*3
sage: p
3:‘:27':27':2 + 4:‘:X~.':Z:':Z + 4:‘:2-.':X:‘rz + z*X*X*Z + 47‘:27':27':)( + 2*X*Z*X + 2*2*){*){ + X:‘:X:':X +.
2%z%z + X*z 4+ z¥X + 3*X*X + z + 3*x + e_1l
sage: p.coefficient(sage_eval('x*x*z', P.semigroup().gens_dict()))
2
sage: p.coefficient(sage_eval('z*x*x*x"', P.semigroup().gens_dict()))
0
coefficients()

Return the list of coefficients.

Note: The order in which the coefficients are returned corresponds to the order in which the terms are
printed. That is not the same as the order given by the monomial order, since the terms are first ordered
according to initial and terminal vertices, before applying the monomial order of the path algebra.

EXAMPLES:

sage: P = DiGraph({1:{1:['x"',"'y"',"'z"]}}) .path_semigroup() .algebra(GF(25,'t"'),.
—order="degrevlex")

sage: P.inject_variables()

Defining e_1, x, y, 2z

sage: p = (x+2%z+1)*3

sage: p

3%z*z¥z + A*X*z¥z + 4¥z¥X¥Zz + 2¥XFXFZ 4+ 4%FZzFZz2FX + 2FXFZzFX + 2¥ZFXFX + XFXFX 4o
—2%z%z + X¥zZ + z¥X + 3*x*x 4+ z + 3¥*x + e_l

sage: p.coefficients()

[3, 4, 4, 2, 4, 2, 2, 1, 2, 1, 1, 3, 1, 3, 1]

degree()

Return the degree, provided the element is homogeneous.
An error is raised if the element is not homogeneous.

EXAMPLES:

sage: P = DiGraph({1:{1:['x"',"'y"',"'z"]}}) .path_semigroup() .algebra(GF(25, " 't"))
sage: P.inject_variables()

Defining e_1, x, y, z

sage: q = (x+y+2%z)A3

sage: q.degree()

3

sage: p = (x+2%z+1)"3

sage: p.degree()

Traceback (most recent call last):

ValueError: element is not homogeneous

is_homogeneous ()

Tells whether this element is homogeneous.

EXAMPLES:
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sage: P = DiGraph({1:{1:['x"','y"',"'z"]}}) .path_semigroup() .algebra(GF(25, " 't"))
sage: P.inject_variables()

Defining e_1, x, y, z

sage: q = (x+y+2%z)*3

sage: q.is_homogeneous()

True

sage: p = (x+2%z+1)*3

sage: p.is_homogeneous()

False

monomial_coefficients()

Return the dictionary keyed by the monomials appearing in this element, the values being the coefficients.

EXAMPLES:

sage: P = DiGraph({1:{1:['x"',"'y"',"'z"]}}) .path_semigroup() .algebra(GF(25,'t"'),.
—order="degrevlex")

sage: P.inject_variables()

Defining e_1, x, y, 2z

sage: p = (x+2%z+1)*3

sage: sorted(p.monomial_coefficients().items())

[(x*x*x, 1),
(z*x*x, 2),
(x*z*x, 2),
(z*z*x, 4),
(x*x*z, 2),
(z*x*z, 4),
(x*z*z, 4),
(z*¥z*z, 3),
x*x, 3),
(z*x, 1),
x*z, 1),
(z*z, 2),
%, 3,

(z, D,
(e_1, D]

Note that the dictionary can be fed to the algebra, to reconstruct the element:

sage: P(p.monomial_coefficients()) == p
True
monomials()

Return the list of monomials appearing in this element.

Note: The order in which the monomials are returned corresponds to the order in which the element’s
terms are printed. That is not the same as the order given by the monomial order, since the terms are first
ordered according to initial and terminal vertices, before applying the monomial order of the path algebra.

The monomials are not elements of the underlying partial semigroup, but of the algebra.

See also:

support()
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EXAMPLES:

sage: P = DiGraph({1:{1:['x",'y"',"'z"]}}) .path_semigroup().algebra(GF(25,'t"'),..
—order="degrevlex")

sage: P.inject_variables()

Defining e_1, x, y, 2z

sage: p = (x+2%z+1)"3

sage: p

3*z*z¥z + 4%X*z¥z + 4%z¥xX¥z + 2¥X*x¥z + 4%zFzFx + 2¥Fx¥z¥X + 2¥ZFXFX + XFXFX 4.
—2%z%z + X¥z + z¥X + 3%x¥*x + z + 3%*x + e_l

sage: p.monomials()

[z*z*
x*z%
ZRx*
P& &
VAT A

*“*“b&rNNNNN

e_1]
sage: p.monomials()[1].parent() is P
True

sort_by_vertices()

Return a list of triples (element, v1, v2), where element is an element whose monomials all have
initial vertex v1 and terminal vertex v2, so that the sum of elements is self.

EXAMPLES:

sage: Al = DiGraph({0:{1:['a'], 2:['b"']1}, 1:{0:['c'], 1:['d']}, 2:{0:['e'],2:['£f
—"'13}3}) .path_semigroup() .algebra(ZZ.quo(15))

sage: Al.inject_variables()

Defining e_0®, e_1, e_2, a, b, c, d, e, £

sage: x = (b*e*b*e+4*b+e_0)*2

sage: y = (a*c*b+1)73

sage: x.sort_by_vertices()

[(e_® + 2*%b*e*b*e + b*e*b*e*b*e*b*e, 0, 0), (4*b + 4*b*e*b*e*b, 0, 2)]
sage: sum(c[0] for c in x.sort_by_vertices()) == x

True

sage: y.sort_by_vertices()

[(e_®, O, O, (3*a*c*b, 0, 2), (e_1, 1, 1), (e_2, 2, 2)]

sage: sum(c[0] for c in y.sort_by_vertices()) ==y

True

support ()

Return the list of monomials, as elements of the underlying partial semigroup.

Note: The order in which the monomials are returned corresponds to the order in which the element’s

11
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terms are printed. That is not the same as the order given by the monomial order, since the terms are first
ordered according to initial and terminal vertices, before applying the monomial order of the path algebra.

See also:
monomials()

EXAMPLES:

sage: P = DiGraph({1:{1:['x"',"'y"',"'z"]}}) .path_semigroup() .algebra(GF(25,'t"'),..

—order="degrevlex")

sage: P.inject_variables()

Defining e_1, x, y, z

sage: p = (x+2%z+1)*3

sage: p

3%z%z*z + A4%X¥z%z + 4%zFX¥z + 2¥XFXFZz + 4%z%zFX + 2FXFzFX + 2¥zFXFX 4+ XFXFX 4.

w2%z%z + X¥z + z¥X + 3¥X*X + z + 3%x + e_l

sage: p.support()

[z¥*z*
x*z%
zkx
x*Ex*
z*z%

>4'r>ér>&‘-><NNNN

e_1]
sage: p.support()[1].parent() is P.semigroup()
True

support_of_term()

If self consists of a single term, return the corresponding element of the underlying path semigroup.

EXAMPLES:

sage: A = DiGraph({0:{1:['a'], 2:['b"']}, 1:{0:['c'], 1:['d']1}, 2:{0:['e'],2:['£f
—"'13}3}) .path_semigroup() .algebra(Zz)

sage: A.inject_variables()

Defining e_0®, e_1, e_2, a, b, c, d, e, £

sage: x = 4*%a*d*c*b*e

sage: x.support_of_term()

a:‘: dz‘:cz':bz':e
sage: x.support_of_term().parent() is A.semigroup()
True

sage: (x + f).support_of_term()
Traceback (most recent call last):

ValueError: 4*a*d*c*b*e + £ is not a single term

12
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sage.

terms ()

Return the list of terms.

Note: The order in which the terms are returned corresponds to the order in which they are printed. That
is not the same as the order given by the monomial order, since the terms are first ordered according to
initial and terminal vertices, before applying the monomial order of the path algebra.

EXAMPLES:

sage: P = DiGraph({1:{1:['x",'y"',"'z"]}}) .path_semigroup().algebra(GF(25,'t"'),..
—order="degrevlex")
sage: P.inject_variables()
Defining e_1, x, y, z
sage: p = (x+2%z+1)*3
sage: p
3%z%z%7 + 4%X¥z2%Z + 4%Z2%X¥Z + 2¥XFX¥Z + 4%Z2FZ2%¥X + 2FXFZ¥X + 2%¥ZFXFX 4+ XFXFX +o
2%z%z7 + X¥zZ + Z¥X + 3*x*x 4+ z + 3¥x + e_1
sage: p.terms()
[3*z*z*z,
T :':Z:':z ,
.':X:':Z ,
kxz':z ,
"‘Z*X ,
A&
*XEX,

"
5

E

bl

s

sk k: * sk 3k *
MM N N M N X N XN
R >él' "

k-
= M

P W N WN X DN M DNNDDDNDD
prfi] * el
—l -

quivers.algebra_elements.path_algebra_element_unpickle (P, data)
Auxiliary function for unpickling.

EXAMPLES:

sage: A = DiGraph({0:{1:['a"'], 2:['b']1}, 1:{0:['c'], 1:['d'1}, 2:{0:['e'],2:['£']13}}
) .path_semigroup() .algebra(ZZ.quo(1l5), order='negdeglex')

sage: A.inject_variables()

Defining e_0, e_1, e_2, a, b, ¢, d, e, f

sage: X = a+2*b+3*c+5%e_0+3%e_2

sage: loads(dumps(X)) == X # indirect doctest

True
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CHAPTER
THREE

QUIVER HOMSPACE

class sage.quivers.homspace.QuiverHomSpace (domain, codomain, category=None)
Bases: Homset

A homomorphism of quiver representations (of one and the same quiver) is given by specifying, for each vertex
of the quiver, a homomorphism of the spaces assigned to this vertex such that these homomorphisms commute
with the edge maps. This class handles the set of all such maps, Homg (M, N).

INPUT:

¢ domain — the domain of the homomorphism space

e codomain — the codomain of the homomorphism space
OUTPUT:

* QuiverHomSpace, the homomorphism space Hom_Q(domain, codomain)

Note: The quivers of the domain and codomain must be equal or a ValueError is raised.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b']}}) .path_semigroup()

sage: H = Q.5(QQ, 2).Hom(Q.P(QQ, 1))

sage: H.dimension()

2

sage: H.gens()

(Homomorphism of representations of Multi-digraph on 2 vertices,
Homomorphism of representations of Multi-digraph on 2 vertices)

Element
alias of QuiverRepHom
base_ring()
Return the base ring of the representations.

EXAMPLES:

sage: Q DiGraph({1:{2:['a", 'b']1}}) .path_semigroup()
sage: H = Q.5(QQ, 2).Hom(Q.P(QQ, 1))

sage: H.base_ring()

Rational Field
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codomain()

Return the codomain of the hom space.

OUTPUT:

* QuiverRep, the codomain of the Hom space

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b']}}) .path_semigroup()
sage: P = Q.P(QQ, 1
sage: H = Q.S(QQ, 2).Hom(P)
sage: H.codomain() is P
True
coordinates (hom)

Return the coordinates of the map when expressed in terms of the generators (i. e., the output of the gens
method) of the hom space.

INPUT:

e hom — QuiverRepHom

OUTPUT:

* list, the coordinates of the given map when written in terms of the generators of the QuiverHomSpace

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: S = Q.S(QQ, 2)
sage: P = Q.P(QQ, 1
sage: H = S.Hom(P)
sage: £ = S.hom({2: [[1,-1]1]13}, P)
sage: H.coordinates(f)
[11 _1]
dimension()

Return the dimension of the hom space.

OUTPUT:

* integer, the dimension

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
sage: H.dimension()
2
domain()

Return the domain of the hom space.

OUTPUT:

* QuiverRep, the domain of the Hom space

EXAMPLES:
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sage: Q = DiGraph({1l:{2:['a"', 'b']}}).path_semigroup()
sage: S = Q.S(QQ, 2)
sage: H = S.Hom(Q.P(QQ, 1))
sage: H.domain() is S
True
gens()
Return a tuple of generators of the hom space (as a k-vector space).
OUTPUT:

* tuple of QuiverRepHom objects, the generators

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()

sage: H = Q.5(QQ, 2).Hom(Q.P(QQ, 1))

sage: H.gens()

(Homomorphism of representations of Multi-digraph on 2 vertices,
Homomorphism of representations of Multi-digraph on 2 vertices)

left_module (basis=False)

Create the QuiverRep of self as a module over the opposite quiver.
INPUT:

* basis - bool. If False, then only the module is returned. If True, then a tuple is returned. The first
element is the QuiverRep and the second element is a dictionary which associates to each vertex a list.
The elements of this list are the homomorphisms which correspond to the basis elements of that vertex
in the module.

OUTPUT:

* QuiverRep or tuple

Warning: The codomain of the Hom space must be a left module.

Note: The left action of a path e on a map f is given by (ef)(m) = ef(m). This gives the Hom space
its structure as a left module over the path algebra. This is then converted to a right module over the path
algebra of the opposite quiver Q.reverse() and returned.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b'], 3: ['c', 'd']1}, 2:{3:['e']1}}).path_
—semigroup()

sage: P = Q.P(GF(3), 3)

sage: A = Q.free_module(GF(3))

sage: H = P.Hom(A)

sage: H.dimension()

6

sage: M, basis_dict = H.left_module(true)
sage: M.dimension_vector()

4, 1, 1

(continues on next page)
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(continued from previous page)

sage: Q.reverse().P(GF(3), 3).dimension_vector()
(4, 1, D

As lists start indexing at 0 the i-th vertex corresponds to the (i — 1)-th entry of the dimension vector:

sage: len(basis_dict[2]) == M.dimension_vector()[1]
True
natural_map()

The natural map from domain to codomain.
This is the zero map.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b'1}, 2:{3:['c']}}) .path_semigroup()
sage: spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}

sage: maps = {(1, 2, 'a'): [[1, ®], [®, O11, (1, 2, 'b'): [[6, O], [®, 111, (2,
-3, 'c'): [[11, [111}

sage: M = Q.representation(QQ, spaces, maps)

sage: spaces2 = {2: QQ*1, 3: QQ*1}

sage: S = Q.representation(QQ, spaces2)

sage: S.hom(M) # indirect doctest

Homomorphism of representations of Multi-digraph on 3 vertices
sage: S.hom(M) == S.Hom(M) .natural_map()

True

quiver()

Return the quiver of the representations.
OUTPUT:
e DiGraph, the quiver of the representations

EXAMPLES:

sage: P = DiGraph({1:{2:['a', 'b']}}).path_semigroup()

sage: H = P.S(QQ, 2).Hom(P.P(QQ, 1))
sage: H.quiver() is P.quiver()
True

zero()

Return the zero morphism.

Note: It is needed to override the method inherited from the category of modules, because it would create
a morphism that is of the wrong type and does not comply with QuiverRepHom.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: H = Q.5(QQ, 2).Hom(Q.P(QQ, 1))

sage: H.zero() + H.an_element() == H.an_element()

True

(continues on next page)
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(continued from previous page)

sage: isinstance(H.zero(), H.element_class)
True

19
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CHAPTER
FOUR

QUIVER MORPHISMS

class sage.quivers.morphism.QuiverRepHom (domain, codomain, data={})

Bases: CallMorphism

A homomorphism of quiver representations (of one and the same quiver) is given by specifying, for each vertex
of the quiver, a homomorphism of the spaces assigned to this vertex such that these homomorphisms commute
with the edge maps. The domain and codomain of the homomorphism are required to be representations of the
same quiver over the same base ring.

INPUT:

¢ domain — QuiverRep, the domain of the homomorphism

* codomain — QuiverRep, the codomain of the homomorphism

e data - dict, list, or QuiverRepElement (default: empty dict), with the following meaning:

— list: data can be a list of images for the generators of the domain. “Generators” means the output of

the gens () method. An error will be generated if the map so defined is not equivariant with respect
to the action of the quiver.

dictionary: data can be a dictionary associating to each vertex of the quiver either a homomorphism
with domain and codomain the spaces associated to this vertex in the domain and codomain modules
respectively, or a matrix defining such a homomorphism, or an object that sage can construct such a
matrix from. Not all vertices must be specified, unspecified vertices are assigned the zero map, and
keys not corresponding to vertices of the quiver are ignored. An error will be generated if these maps
do not commute with the edge maps of the domain and codomain.

QuiverRepElement: if the domain is a QuiverRep_with_path_basis then data can be a sin-
gle QuiverRepElement belonging to the codomain. The map is then defined by sending each
path, p, in the basis to data*p. If data is not an element of the codomain or the domain is not a
QuiverRep_with_path_basis then an error will be generated.

QuiverRepHom: the input can also be amap f : D — C' such that there is a coercion from the domain
of self toD and from C to the codomain of self. The composition of these maps is the result.

OUTPUT:

* QuiverRepHom

EXAMPLES:

~'c')e:

sage: Q = DiGraph({1:{2:['a", 'b']1}, 2:{3:['c']1}}) .path_semigroup()
sage: spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}
sage: maps = {(1, 2, 'a'): [[1, 0], [0, 0]], (1, 2, 'b'): [[0, O], [0, 1]1, (2, 3,

(i1, [111%

sage: M = Q.representation(QQ, spaces, maps)

(continues on next page)
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(continued from previous page)

sage: spaces2 = {2: QQ*1, 3: QQ*1}
sage: S = Q.representation(QQ, spaces2)

With no additional data this creates the zero map:

sage: £ = S.hom(M)
sage: f.is_zero()
True

We must specify maps at the vertices to get a nonzero homomorphism. Note that if the dimensions of the spaces
assigned to the domain and codomain of a vertex are equal then Sage will construct the identity matrix from 1:

sage: maps2 = {2:[1, -1], 3:1}
sage: g = S.hom(maps2, M)

Here we create the same map by specifying images for the generators:

sage: x = M({2: (1, -DD
sage: y = M({3: (1,0D)
sage: h = S.hom([x, y], M)
sage: g ==

True

If the domain is a module of type QuiverRep_with_path_basis (for example, the indecomposable projectives) we
can create maps by specifying a single image:

sage: Proj Q.P(GF(7), 3)

sage: Simp = Q.S(GF(7), 3)

sage: im = Simp({3: (1,0}

sage: Proj.hom(im, Simp).is_surjective()
True

algebraic_dual )
Compute the algebraic dual f*: N* — M* of self=f: M — N where (=)' = Homg(—, kQ).

OUTPUT:
 QuiverRepHom, the map f!: Nt — M*

Note: If e is an edge of the quiver ) and g is an element of Homg (N, kQ) then we let (ge)(m) = eg(m).
This gives Homg (N, kQ) its structure as a module over the opposite quiver Q.reverse(). The map
Homg (N, kQ) — Homg(M, kQ) returned sends g to g f.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b",'c','d']1}, 2:{4:['e"',"£'13}, 3:{4:['g"'1},
—5:{2:['h","1"]}}) .path_semigroup ()

sage: P1 = Q.P(QQ, 4)

sage: Pl.algebraic_dual()

Representation with dimension vector (5, 2, 1, 1, 4)

The algebraic dual of an indecomposable projective is the indecomposable projective of the same vertex in
the opposite quiver.
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sage: Q.reverse().P(QQ, 4) Representation with dimension vector (5, 2, 1, 1, 4)

base_ring()

Return the base ring of the representation in the codomain.

OUTPUT:

* ring, the base ring of the codomain

EXAMPLES:
sage: Q = DiGraph({1:{2:['a"', 'b'1}, 2:{3:['c']}}) .path_semigroup()
sage: P = Q.P(QQ, 1)
sage: £ = P.hom({1: 1, 2: 1, 3: 1}, P)
sage: f.base_ring() is QQ
True
codomain()

Return the codomain of the homomorphism.

OUTPUT:

e QuiverRep, the codomain

EXAMPLES:

<~>3,

True

sage:
sage:
sage:

sage:
sage:
sage:
sage:

Q = DiGraph({1:{2:['a"', 'b'1}, 2:{3:['c']1}}) .path_semigroup()

spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}

maps = {(1, 2, 'a'): [[1, o], [6, 011, (1, 2, 'b'D: [[®, O], [0, 111, (2,.
'c'): [[11, [111%

M = Q.representation(QQ, spaces, maps)

Q.representation(QQ)

S.hom (1)

.codomain() is M

Q a wn
Il

cokernel ()

Return the cokernel of self.

OUTPUT:

¢ QuiverRep, the cokernel

Note: To get the factor map of the codomain, D, onto the cokernel, C, use C.coerce_map_from(D).
EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}, 2:{3:['c']1}}) .path_semigroup()

sage: spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}

sage: maps = {(1, 2, 'a'): [[1, ], [0, 011, (1, 2, 'b'): [[6, 01, [0, 111, (2,
~3, 'c'): [[11, [111%

sage: M = Q.representation(QQ, spaces, maps)

sage: spaces2 = {2: QQ*2, 3: QQ*1}

sage: N = Q.representation(QQ, spaces2, {(2, 3, 'c'): [[11, [0]11})

sage: maps2 = {2:[[1, 0], [0, 0]], 3:1}

sage: g = N.hom(maps2, M)

(continues on next page)

23




Quivers, Release 9.8
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2,

sage: g.cokernel().dimension_vector()

1, ®

direct_sum(maps, return_maps=False, pinch=None)

Retu

rn the direct sum of self with the maps in the list maps.

INPUT:

maps — QuiverRepHom or list of QuiverRepHom’s

return_maps — bool (default: False). If False, then the return value is a QuiverRepHom which is
the direct sum of self with the QuiverRepHoms in maps. If True, then the return value is a tuple of
length either 3 or 5. The first entry of the tuple is the QuiverRepHom giving the direct sum. If pinch
is either None or 'codomain' then the next two entries in the tuple are lists giving respectively the
inclusion and the projection maps for the factors of the direct sum. Summands are ordered as given
in maps with self as the zeroth summand. If pinch is either None or 'domain' then the next two
entries in the tuple are the inclusion and projection maps for the codomain. Thus if pinch is None
then the tuple will have length 5. If pinch is either 'domain' or 'codomain’ then the tuple will have
length 3.

pinch — string or None (default: None). If this is equal to 'domain’, then the domains of self and
the given maps must be equal. The direct sum of f : A — B and g : A — C returned is then the map
A — B ® C defined by sending x to (f(z), g(z)). If pinch equals 'codomain’, then the codomains
of self and the given maps must be equal. The direct sum of f : A — C and g : B — C returned
is then the map A @ B — C defined by sending (z,y) to f(x) + g(y). Finally, if pinch is anything
other than 'domain' or 'codomain', then the direct sumof f : A — Band g : C' — D returned is
the map A @ C — B @ D defined by sending (z,y) to (f(z), g(y))-

OUTPUT:

QuiverRepHom or tuple

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()

sage: P1 = Q.P(GF(3), 1)
sage: P2 = Q.P(GF(3), 2)
sage: S1 = P1/Pl.radical()
sage: S2 = P2/P2.radical()

sage: pil = Sl.coerce_map_from(P1)
sage: pi2 = S2.coerce_map_from(P2)
sage: f = pil.direct_sum(pi2)

sage: f.domain().dimension_vector() == Q.free_module(GF(3)).dimension_vector()
True

sage: f.is_surjective()

True

sage: id = P1l.Hom(P1l).identity()

sage: g = pil.direct_sum(id, pinch="domain')
sage: g.is_surjective()

False

domain()
Retu

rn the domain of the homomorphism.

OUTPUT:

QuiverRep, the domain
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EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b'1}, 2:{3:['c']1}}) .path_semigroup()

sage: spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}

sage: maps = {(1, 2, 'a'): [[1, ®], [0, 011, (1, 2, 'b'D: [[6, 0], [®, 111, (2,
<3, 'c'): [[11, [111%

sage: M = Q.representation(QQ, spaces, maps)

sage: S = Q.representation(QQ)
sage: g = M.hom(S)
sage: g.domain() is M
True
get_map (vertex)
Return the homomorphism at the given vertex vertex.
INPUT:

e vertex — integer, a vertex of the quiver
OUTPUT:

e homomorphism, the homomorphism associated to the given vertex

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b']1}, 2:{3:['c']1}}) .path_semigroup()
sage: P = Q.P(QQ, 1
sage: S = P/P.radical()
sage: f = S.coerce_map_from(P)
sage: f.get_map(l).is_bijective()
True
get_matrix(vertex)

Return the matrix of the homomorphism attached to vertex vertex.
INPUT:
* vertex — integer, a vertex of the quiver

OUTPUT:

* matrix, the matrix representing the homomorphism associated to the given vertex

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b']1}, 2:{3:['c']1}}) .path_semigroup()
sage: I = Q.I(QQ, 3)
sage: M = I/I.radical()
sage: f = M.coerce_map_from(I)
sage: f.get_matrix(l)
[1 0]
[0 1]
image()

Return the image of self.
OUTPUT:

* QuiverRep, the image
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Note: To get the inclusion map of the image, I, into the codomain, C, use C.coerce_map_from(I).

EXAMPLES:

sage: spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}

3, 'c"): [[11, [111%
sage: M = Q.representation(QQ, spaces, maps)
sage: spaces2 = {2: QQ*2, 3: QQ*1}

sage: maps2 = {2:[[1, 0], [0, 0]], 3:1}
sage: g = N.hom(maps2, M)

sage: g.image().dimension_vector()

@, 1, 1)

sage: N = Q.representation(QQ, spaces2, {(2, 3, 'c'):

sage: Q = DiGraph({1:{2:['a', 'b']}, 2:{3:['c']1}}) .path_semigroup()

sage: maps = {(1, 2, 'a'): [[1, 0], [O, 011, (1, 2, 'b'): [[0, O], [0, 11T, (2,.

(11, [0111

is_endomorphism()

Test whether the homomorphism is an endomorphism.
OUTPUT:

* bool, True if the domain equals the codomain, False otherwise

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b'1}, 2:{3:['c']1}}) .path_semigroup()
sage: P = Q.P(QQ, D)

sage: £ = P.hom({1: 1, 2: 1, 3: 1}, P)

sage: f.is_endomorphism()

True

sage:

S = P/P.radical()
sage: g = S.coerce_map_from(P)
sage: ¢g.is_endomorphism()
False

is_injective()
Test whether the homomorphism is injective.

OUTPUT:

* bool, True if the homomorphism is injective, False otherwise

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b'1}, 2:{3:['c']1}}) .path_semigroup()
sage: P = Q.P(QQ, 1

sage: f = P.hom({1: 1, 2: 1, 3: 1}, P)

sage: f.is_injective()

True

sage: g = P.hom(P)

sage: g.is_injective()

False

is_isomorphism()

Test whether the homomorphism is an isomorphism.
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OUTPUT:
* bool, True if the homomorphism is bijective, False otherwise

EXAMPLES:

sage: Q DiGraph({1:{2:['a", 'b']1}, 2:{3:['c']1}}) .path_semigroup()
sage: P = Q.P(QQ, 1

sage: £ = P.hom({1: 1, 2: 1, 3: 1}, P)

sage: f.is_isomorphism()

True

sage: g = P.hom(P)

sage: g.is_isomorphism()

False

is_surjective()
Test whether the homomorphism is surjective.

OUTPUT:

* bool, True if the homomorphism is surjective, False otherwise

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b']}, 2:{3:['c']13}}) .path_semigroup()
sage: P = Q.P(QQ, 1
sage: £ = P.hom({1: 1, 2: 1, 3: 1}, P)
sage: f.is_surjective()
True
sage: g = P.hom(P)
sage: g.is_surjective()
False
is_zero()

Test whether the homomorphism is the zero homomorphism.
OUTPUT:

* bool, True if the homomorphism is zero, False otherwise

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b']}, 2:{3:['c']1}}) .path_semigroup()
sage: P = Q.P(QQ, 1

sage: £ = P.hom({1: 1, 2: 1, 3: 1}, P)

sage: f.is_zero()

False

sage: g = P.hom(P)
sage: g.is_zero()
True

iscalar_mult (scalar)
Multiply self by scalar in place.

EXAMPLES:

sage: Q DiGraph({1:{2:['a",'b"']1}}) .path_semigroup()
sage: M = Q.P(QQ, 1

(continues on next page)
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sage: £ = M.Hom(M) .an_element()
sage: x = M.an_element()
sage: y = f(x)

sage: f.iscalar_mult(6)
sage: f(x) == 6%y
True

kernel O
Return the kernel of self.

OUTPUT:

¢ QuiverRep, the kernel

Note: To get the inclusion map of the kernel, K, into the domain, D, use D.coerce_map_£from(K).

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']1}, 2:{3:['c']1}}) .path_semigroup()
sage: spaces = {1: QQ*2, 2: QQ*2, 3:QQ*1}

sage: maps = {(1, 2, 'a'): [[1, 0], [®, O11, (1, 2, 'b'): [[6, O], [0, 111, (2,.
~3, 'c'): [[11, [111%

sage: M = Q.representation(QQ, spaces, maps)

sage: spaces2 = {2: QQ*2, 3: QQ*1}

sage: N = Q.representation(QQ, spaces2, {(2, 3, 'c'): [[11, [0]11}H)
sage: maps2 = {2:[[1, 0], [0, 0]], 3:1}

sage: g = N.hom(maps2, M)

sage: g.kernel().dimension_vector()

@, 1, ®

lift()

Given an element x of the image, return an element of the domain that maps onto it under self.
INPUT:

¢ X — QuiverRepElement
OUTPUT:

¢ QuiverRepElement

EXAMPLES:

sage: Q DiGraph({1:{2:['a",'b"']1}, 2:{3:['c','d"]}}) .path_semigroup()
sage: P = Q.P(QQ, 3)

sage: S P/P.radical )

sage: proj = S.coerce_map_from(P)
sage: x = S.an_element()

sage: y = proj.lift(x)

sage: proj(y) == x

True

sage: zero = S.hom(S, {})

sage: zero.lift(x)

Traceback (most recent call last):

(continues on next page)
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ValueError: element is not in the image

linear_dual O
Compute the linear dual Df : DN — DM of self = f : M — N where D(—) = Homy(—, k).

OUTPUT:
e QuiverRepHom,the map Df : DN — DM

Note: If e is an edge of the quiver ) and g is an element of Homy (N, k) then we let (ga)(m) = g(ma).
This gives Homy (N, k) its structure as a module over the opposite quiver Q.reverse(). The map
Homy (N, k) — Homy (M, k) returned sends g to g f.

EXAMPLES:

sage: Q DiGraph({1:{2:['a", 'b']1}, 2:{3:['c'1}}) .path_semigroup()

sage: P = Q.P(QQ, 1)
sage: S = P/P.radical()
sage: f = S.coerce_map_from(P)

The dual of a surjective map is injective and vice versa:

sage: f.is_surjective()
True

sage: g = f.linear_dual()
sage: g.is_injective()
True

The dual of a right module is a left module for the same quiver, Sage represents this as a right module for
the opposite quiver:

sage: g.quiver().path_semigroup() is Q.reverse()
True

The double dual of a map is the original representation:

sage: g.linear_dual() ==
True

quiver()
Return the quiver of the representations in the domain/codomain.

OUTPUT:
e DiGraph, the quiver of the representations in the domain and codomain

EXAMPLES:

sage: Q DiGraph({1:{2:['a", 'b']1}, 2:{3:['c'1}}) .path_semigroup()
sage: P Q.P(QQ, D

sage: £ = P.hom({1: 1, 2: 1, 3: 1}, P)

sage: f.quiver() is Q.quiver()

True
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rank()

Return the rank of the homomorphism self (as a k-linear map).
OUTPUT:

* integer, the rank

EXAMPLES:
sage: Q = DiGraph({1:{2:['a', 'b'1}, 2:{3:['c']1}}) .path_semigroup()
sage: P = Q.P(QQ, 1
sage: S = P/P.radical()
sage: f = S.coerce_map_from(P)
sage: assert(f.rank() == 1)
scalar_mult (scalar)
Return the result of the scalar multiplication scalar * self, where scalar is an element of the base
ring k.
EXAMPLES:
sage: Q = DiGraph({1:{2:['a','b']}}) .path_semigroup()
sage: M = Q.P(QQ, 1)
sage: f = M.Hom(M).an_element()
sage: x = M.an_element()
sage: g = f.scalar_mult(6)
sage: g(x) == 6"f(x)
True

30 Chapter 4. Quiver Morphisms



CHAPTER
FIVE

PATH SEMIGROUPS

class sage.quivers.path_semigroup.PathSemigroup(Q)
Bases: UniqueRepresentation, Parent
The partial semigroup that is given by the directed paths of a quiver, subject to concatenation.
See representation for a definition of this semigroup and of the notion of a path in a quiver.

Note that a partial semigroup here is defined as a set G with a partial binary operation G x G — G U {None},
which is written infix as a * sign and satisfies associativity in the following sense: If a, b and c are three elements
of G, and if one of the products (a * b) * ¢ and a * (b * ¢) exists, then so does the other and the two products are
equal. A partial semigroup is not required to have a neutral element (and this one usually has no such element).

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"], 3:['c']}, 2:{3:['d'1}D)

sage: S = Q.path_semigroup()

sage: S

Partial semigroup formed by the directed paths of Multi-digraph on 3 vertices
sage: S.variable_names()

('e_1", 'e_2', 'e_3', 'a', 'b', 'c', 'd")

sage: S.gens()

(e_1, e_2, e_3, a, b, c, d)

sage: S.category()

Category of finite enumerated semigroups

In the test suite, we skip the associativity test, as in this example the paths used for testing cannot be concatenated:

sage: TestSuite(S).run(skip=['_test_associativity'])

If there is only a single vertex, the partial semigroup is a monoid. If the underlying quiver has cycles or loops,
then the (partial) semigroup only is an infinite enumerated set. This time, there is no need to skip tests:

sage: Q = DiGraph({1:{1:['a", 'b', 'c', 'd']1}})

sage: M = Q.path_semigroup()

sage: M

Monoid formed by the directed paths of Looped multi-digraph on 1 vertex
sage: M.category()

Category of infinite enumerated monoids

sage: TestSuite(M).run()

Element

alias of QuiverPath
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I(k, vertex)

Return the indecomposable injective module over k at the given vertex vertex.
This module is literally indecomposable only when £ is a field.
INPUT:
¢ k —ring, the base ring of the representation
* vertex — integer, a vertex of the quiver
OUTPUT:
* QuiverRep, the indecomposable injective module at vertex vertex with base ring k

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: I2 = Q.I(GF(3), 2)
sage: Q.I(ZZ, 3).dimension_vector()

4, 2, D
sage: Q.I(ZZ, 1).dimension_vector()
(1, 0, ®

The vertex given must be a vertex of the quiver:

sage: Q.I(QQ, 4

Traceback (most recent call last):

ValueError: must specify a valid vertex of the quiver

P (k, vertex)

Return the indecomposable projective module over k at the given vertex vertex.
This module is literally indecomposable only when £ is a field.
INPUT:
¢ k —ring, the base ring of the representation
e vertex — integer, a vertex of the quiver
OUTPUT:
* QuiverRep, the indecomposable projective module at vertex with base ring k

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: P2 = Q.P(GF(3), 2)
sage: Q.P(ZZ, 3).dimension_vector()

@, 0, D
sage: Q.P(ZZ, 1).dimension_vector()
1, 2, 4

The vertex given must be a vertex of the quiver:

sage: Q.P(QQ, 4

Traceback (most recent call last):

ValueError: must specify a valid vertex of the quiver
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S(k, vertex)

Return the simple module over k£ at the given vertex vertex.
This module is literally simple only when £ is a field.
INPUT:
¢ k —ring, the base ring of the representation
* vertex — integer, a vertex of the quiver
OUTPUT:
* QuiverRep, the simple module at vertex with base ring k&

EXAMPLES:

sage: P = DiGraph({1:{2:['a','b"']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: S1 = P.S(GF(3), 1)
sage: P.S(ZZ, 3).dimension_vector()

@, 0, 1
sage: P.S(ZZ, 1).dimension_vector()
(1, 0, ®

The vertex given must be a vertex of the quiver:

sage: P.S(QQ, 4)
Traceback (most recent call last):

ValueError: must specify a valid vertex of the quiver

algebra(k, order="negdegreviex")
Return the path algebra of the underlying quiver.

INPUT:

* k —a commutative ring

9 ¢

* order - optional string, one of “negdegrevlex” (default), “degrevlex”, “negdeglex” or “deglex”, defin-
ing the monomial order to be used.

Note: Monomial orders that are not degree orders are not supported.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b'1}, 2:{3:['d'1}, 3:{1:['c'1}D)

sage: P = Q.path_semigroup()

sage: P.algebra(GF(3))

Path algebra of Multi-digraph on 3 vertices over Finite Field of size 3

Now some example with different monomial orderings:

sage: Pl = DiGraph({1:{1:['x"','y"',"'z"]}}) .path_semigroup().algebra(GF(25,'t"))
sage: P2 = DiGraph({1:{1:['x"','y"',"'z"]1}}) .path_semigroup().algebra(GF(25,'t"'),.
—order="degrevlex")

sage: P3 = DiGraph({1:{1:['x",'y"',"'z"]1}}) .path_semigroup() .algebra(GF(25,'t"),.
—order="negdeglex")

(continues on next page)

33



Quivers, Release 9.8

(continued from previous page)

sage: P4 = DiGraph({1:{1:['x",'y',"'z"]}}) .path_semigroup() .algebra(GF(25,'t"),.
—order="deglex")

sage: Pl.order_string()

'negdegrevlex'

sage: sage_eval('(x+2*z+1)723"', Pl.gens_dict())

e_l + z + 3%x + 2%z%z + X*z + z¥X + 3%X*X + 3%z¥z¥z + 4%x*z¥z + 4%z%x*z +_
S2FXFX*Z 4+ AFzFZFX 4+ 2FXFzEX o+ 2¥ZFXFX + XFXFX

sage: sage_eval('(x+2*z+1)73"', P2.gens_dict())

3%z%z¥z + A4%X*z¥z + 4%z*X¥z + 2¥X¥X¥z + 4%zFzFX + 2¥XFzFX + 2¥ZzFXFX 4+ XFXFX 4.
—=2%z%z + X*z + z¥X + 3¥X*X + z + 3%x + e_l

sage: sage_eval('(x+2*z+1)23"', P3.gens_dict())

e_l + z + 3%x 4+ 2%z%z + z*X + X¥z + 3%X*X + 3%z¥z¥z + 4%z¥z¥x + 4%zFx¥z +.
2FZFXFX 4+ 4FXFZzFz + 2FXFzFX o+ 2¥XFX*z + XFX*X

sage: sage_eval(' (x+2*z+1)*3"', P4.gens_dict())

3%z%z¥z + 4%Zz*z*X + 4%zFX¥z + 2¥zFXFX + 4%X¥z¥z + 2FXFz¥X + 2¥X*X¥zZ + XFXFX +.
2%z%z7 + z¥X + X¥z + 3*x*x 4+ z + 3¥x + e_1

all_paths (start=None, end=None)
List of all paths between a pair of vertices (start, end).

INPUT:

* start —integer or None (default: None); the initial vertex of the paths in the output; if None is given
then the initial vertex is arbitrary.

* end — integer or None (default: None); the terminal vertex of the paths in the output; if None is given
then the terminal vertex is arbitrary

OUTPUT:

* list of paths, excluding the invalid path

Todo: This currently does not work for quivers with cycles, even if there are only finitely many paths from
start to end.

Note: If there are multiple edges between two vertices, the method sage.graphs.digraph.
all_paths() will not differentiate between them. But this method, which is not for digraphs but for
their path semigroup associated with them, will.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"','b"'], 3:['c'1}, 2:{3:['d"]}D
sage: F = Q.path_semigroup()

sage: F.all _paths(l, 3)

[a*d, b*d, c]

If start=end then we expect only the trivial path at that vertex:

sage: F.all_paths(l, 1)
[e_1]

The empty list is returned if there are no paths between the given vertices:
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sage: F.all_paths(3, 1)
[]

If end=None then all edge paths beginning at start are returned, including the trivial path:

sage: F.all_paths(2)
[e_2, d]

If start=None then all edge paths ending at end are returned, including the trivial path. Note that the two
edges from vertex 1 to vertex 2 count as two different edge paths:

sage: F.all_paths(None, 2)

[a, b, e_2]
sage: F.all_paths(end=2)
[a, b, e_2]

If start=end=None then all edge paths are returned, including trivial paths:

sage: F.all_pathsQ
[e_1, a, b, a*d, b*d, c, e_2, d, e_3]

The vertex given must be a vertex of the quiver:

sage: F.all_paths(l, 4)
Traceback (most recent call last):

ValueError: the end vertex 4 is not a vertex of the quiver

If the underlying quiver is cyclic, a ValueError is raised:

sage: Q = DiGraph({1:{2:['a','b'], 3:['c']1}, 3:{1:['d"1}D)
sage: F = Q.path_semigroup()

sage: F.all_pathsQ

Traceback (most recent call last):

ValueError: the underlying quiver has cycles, thus, there may be an infinity of.
—directed paths

arrows()

Return the elements corresponding to edges of the underlying quiver.

EXAMPLES:

sage: P = DiGraph({1:{2:['a"','b'], 3:['c'1}, 3:{1:['d"]1}}) .path_semigroup()
sage: P.arrows()
(a, b, ¢, d

cardinality(Q

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"'], 3:['c']}, 2:{3:['d"1}D)
sage: F = Q.path_semigroup()

sage: F.cardinality(Q

9

(continues on next page)
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sage: A = F.algebra(QQ)

sage: list(A.basis())

[e_1, e_2, e_3, a, b, ¢, d, a*d, b*d]

sage: Q = DiGraph({1:{2:['a"','b'], 3:['c'1}, 3:{1:['d"1}D
sage: F = Q.path_semigroup()

sage: F.cardinality(Q

+Infinity

sage: A = F.algebra(QQ)

sage: list(A.basis())

Traceback (most recent call last):

ValueError: the underlying quiver has cycles, thus, there may be an infinity of.
—directed paths

free_module (k)

Return a free module of rank 1 over kP, where P is self. (In other words, the regular representation.)
INPUT:

* k —ring, the base ring of the representation.
OUTPUT:

* QuiverRep_with_path_basis, the path algebra considered as a right module over itself.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b'], 3: ['c', 'd']}, 2:{3:['e']}}).path_
< semigroup ()

sage: Q.free_module(GF(3)).dimension_vector()

(1, 3, 6)

gen(i)
Return generator number :.

INPUT:
* i —integer
OUTPUT:

An idempotent, if 7 is smaller than the number of vertices, or an arrow otherwise.

EXAMPLES:
sage: P = DiGraph({1:{2:['a"','b'], 3:['c']1}, 3:{1:['d"]1}}) .path_semigroup()
sage: P.1 # indirect doctest
e_2
sage: P.idempotents()[1]
e_2
sage: P.5
C
sage: P.gens()[5]
C
gens()

Return the tuple of generators.
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Note: This coincides with the sum of the output of idempotents () and arrows ().

EXAMPLES:

sage: P = DiGraph({1:{2:['a','b"'], 3:['c'1}, 3:{1:['d"]}}) .path_semigroup()
sage: P.gens()
(e_1l, e_2, e_3, a, b, c, d

sage: P.gens() == P.idempotents() + P.arrows()
True
idempotents()

Return the idempotents corresponding to the vertices of the underlying quiver.

EXAMPLES:

sage: P = DiGraph({1:{2:['a"','b'], 3:['c']1}, 3:{1:['d"]1}}) .path_semigroup()
sage: P.idempotents()
(e_1, e_2, e_3)

injective(k, vertex)

Return the indecomposable injective module over & at the given vertex vertex.
This module is literally indecomposable only when £ is a field.
INPUT:
* k —ring, the base ring of the representation
* vertex — integer, a vertex of the quiver
OUTPUT:
* QuiverRep, the indecomposable injective module at vertex vertex with base ring k

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"','b']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: 12 = Q.I(GF(3), 2)
sage: Q.I(ZZ, 3).dimension_vector()

(4! 21 1)
sage: Q.I(ZZ, 1).dimension_vector()
(1, 0, ®

The vertex given must be a vertex of the quiver:

sage: Q.ICQQ, 4)

Traceback (most recent call last):

ValueError: must specify a valid vertex of the quiver

is_finite()
This partial semigroup is finite if and only if the underlying quiver is acyclic.

EXAMPLES:
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sage: Q = DiGraph({1:{2:['a','b"'], 3:['c'1}, 2:{3:['d"1}D
sage: Q.path_semigroup().is_finite()

True

sage: Q = DiGraph({1:{2:['a','b'], 3:['c']1}, 3:{1:['d"1}D
sage: Q.path_semigroup().is_finite()

False

iter_paths_by_length_and_endpoint(d, v)

An iterator over quiver paths with a fixed length and end point.
INPUT:

* d - an integer, the path length

e v —a vertex, end point of the paths

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"']1}, 2:{3:['d'1}, 3:{1:['c'1}D
sage: F = Q.path_semigroup()

sage: F.is_finite()

False

sage: list(F.iter_paths_by_length_and_endpoint(4,1))

[c*a*d*c, c*b*d*c]

sage: list(F.iter_paths_by_length_and_endpoint(5,1))
[d*c*a*d*c, d*c*b*d*c]

sage: list(F.iter_paths_by_length_and_endpoint(5,2))
[c*a*d*c*a, c*b*d*c*a, c*a*d*c*b, c*b*d*c*b]

iter_paths_by_length_and_startpoint(d, v)

An iterator over quiver paths with a fixed length and start point.
INPUT:

* d - an integer, the path length

* v —a vertex, start point of the paths

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"']1}, 2:{3:['d'1}, 3:{1:['c'1}D
sage: P = Q.path_semigroup()

sage: P.is_finite()

False

sage: list(P.iter_paths_by_length_and_startpoint(4,1))
[a*d*c*a, a*d*c*b, b*d*c*a, b*d*c*b]

sage: list(P.iter_paths_by_length_and_startpoint(5,1))
[a*d*c*a*d, a*d*c*b*d, b*d*c*a*d, b*d*c*b*d]

sage: list(P.iter_paths_by_length_and_startpoint(5,2))
[d*c*a*d*c, d*c*b*d*c]

ngens ()

Return the number of generators (arrows () and idempotents()).

EXAMPLES:
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sage: F = DiGraph({1:{2:['a"','b'], 3:['c']1}, 3:{1:['d"]1}}) .path_semigroup()
sage: F.ngens()
7

projective (k, vertex)

Return the indecomposable projective module over k at the given vertex vertex.
This module is literally indecomposable only when £ is a field.
INPUT:
¢ k —ring, the base ring of the representation
e vertex — integer, a vertex of the quiver
OUTPUT:
¢ QuiverRep, the indecomposable projective module at vertex with base ring k&

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: P2 = Q.P(GF(3), 2)
sage: Q.P(ZZ, 3).dimension_vector()

@, 0, 1
sage: Q.P(ZZ, 1).dimension_vector()
1, 2, 4

The vertex given must be a vertex of the quiver:

sage: Q.P(QQ, 4

Traceback (most recent call last):

ValueError: must specify a valid vertex of the quiver

quiver()
Return the underlying quiver (i.e., digraph) of this path semigroup.

Note: The returned digraph always is an immutable copy of the originally given digraph that is made
weighted.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"','b"']1}, 2:{3:['d']}, 3:{1:['c'1}},
I weighted=False)

sage: F = Q.path_semigroup()

sage: F.quiver() ==

False

sage: Q.weighted(True)

sage: F.quiver() == Q

True

representation(k, *args, **kwds)
Return a representation of the quiver.

For more information see the QuiverRep documentation.
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reverse()

The path semigroup of the reverse quiver.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b'1}, 2:{3:['d'1}, 3:{1:['c'1}D)
sage: F = Q.path_semigroup()

sage: F.reverse() is Q.reverse().path_semigroup()

True

simple(k, vertex)

Return the simple module over £ at the given vertex vertex.
This module is literally simple only when £ is a field.
INPUT:
* k —ring, the base ring of the representation
e vertex — integer, a vertex of the quiver
OUTPUT:
* QuiverRep, the simple module at vertex with base ring k

EXAMPLES:

sage: P = DiGraph({1:{2:['a','b']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: S1 = P.S(GF(3), 1)
sage: P.S(ZZ, 3).dimension_vector()

@, 0, D
sage: P.S(ZZ, 1).dimension_vector()
(1, 0, ®

The vertex given must be a vertex of the quiver:

sage: P.SCQQ, 4)
Traceback (most recent call last):

ValueError: must specify a valid vertex of the quiver
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sage.quivers.paths.NewQuiverPath(Q, start, end, biseq_data)
Return a new quiver path for given defining data.

INPUT:
¢ Q, the path semigroup of a quiver
e start, an integer, the label of the startpoint
* end, an integer, the label of the endpoint

* biseq_data, a tuple formed by

A string, encoding a bitmap representing the path as integer at base 32,

the number of bits used to store the path,

the number of bits used to store a single item

the number of items in the path.

class sage.quivers.paths.QuiverPath
Bases: MonoidElement

Class for paths in a quiver.

A path is given by two vertices, start and end, and a finite (possibly empty) list of edges e1,es, ..., e, such
that the initial vertex of e; is start, the final vertex of e; is the initial vertex of e;41, and the final vertex of e,
is end. In the case where no edges are specified, we must have start = end and the path is called the trivial
path at the given vertex.

Note: Do not use this constructor directly! Instead, pass the input to the path semigroup that shall be the parent
of this path.

EXAMPLES:

Specify a path by giving a list of edges:

sage: Q = DiGraph({1:{2:['a','d'], 3:['e'1}, 2:{3:['b"1}, 3:{1:["£f'], 4:['c'1}D)
sage: F = Q.path_semigroup()

sage: p = F([(1, 2, 'a"), (2, 3, 'b"OD)

sage: p

a*b

Paths are not unique, but different representations of “the same” path yield equal paths:

41



../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MonoidElement

Quivers, Release 9.8

sage: q = F([(1, DI * FCI(L, 2, "a"), (2, 3, 'b)1D) * F(L@, 3D
sage: p is q

False

sage: p ==

True

The * operator is concatenation of paths. If the two paths do not compose, its result is None:

sage: print(p*q)

None

sage: p*F([(@3, 4, '¢)D

a*b*c

sage: F([(2,3,'D"), (3,1,"fD)D*p
b*f*a*b

The length of a path is the number of edges in that path. Trivial paths are therefore length-0:

sage: len(p)

2

sage: triv = FC([(1, DD
sage: len(triv)

0

List index and slice notation can be used to access the edges in a path. QuiverPaths can also be iterated over.
Trivial paths have no elements:

sage: for x in p: print(x)

(1, 2, 'a")

@2, 3, 'b"Y)
sage: list(triv)
[]

There are methods giving the initial and terminal vertex of a path:

sage: p.initial_vertex()

1

sage: p.terminal_vertex()
3

complement (subpath)

Return a pair (a,b) of paths s.t. self = a*subpath*b, or (None, None) if subpath is not a subpath
of this path.

Note: a is chosen of minimal length.

EXAMPLES:

sage: S = DiGraph({1:{1:['a','b',"'c","'d"]}}) .path_semigroup()
sage: S.inject_variables()

Defining e_1, a, b, c, d

sage: (b*c*a*d*b*a*d*d).complement(a*d)

(b*c, b*a*d*d)

(continues on next page)
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sage: (b*c*a*d*b).complement(a*c)
(None, None)

degree()
Return the length of the path.

length() and degree() are aliases

gcd(P)
Greatest common divisor of two quiver paths, with co-factors.

For paths, by “greatest common divisor”, we mean the largest terminal segment of the first path that is an
initial segment of the second path.

INPUT:
A QuiverPath P
OUTPUT:
e QuiverPath's "~ " (C1,G,C2) suchthat self = Cl1*Gand P = G*C2, or

* (None, None, None), if the paths do not overlap (or belong to different quivers).

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"]}, 2:{1:['b"'], 3:['c'1}, 3:{1:['d"]1}}) .path_
—semigroup ()

Sage: pl:Q([ICI’Idl’lal,lbl’lal’lcl’ldl])

sage: pl

c*d*a*b*a*c*d

sage: p2 = Q(['a','b","a","'c",'d","a","'c","'d","a",'b"'])
sage: p2

a*b*a*c*d*a*c*d*a*b

sage: S1, G, S2 = pl.gcd(p2)
sage: S1, G, S2

(c*d, a*b*a*c*d, a*c*d*a*b)
sage: S1*G == pl

True

sage: G*S2 == p2

True

sage: p2.gcd(pl)
(a*b*a*c*d*a, c*d*a*b, a*c*d)

We test that a full overlap is detected:

sage: p2.gcd(p2)
(e_l’ a:‘:b:‘:a:':C:‘:d:‘raz':cz':d*a*b’ e_l)

The absence of an overlap is detected:

sage: p2[2:-1]

a*c*d*a*c*d*a

sage: p2[1:]

b*a*c*d*a*c*d*a*b

sage: print(p2[2:-1].gcd(p2[1:]1))
(None, None, None)
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has_prefix (subpath)
Tells whether this path starts with a given sub-path.

INPUT:

subpath, a path in the same path semigroup as this path.
OUTPUT:

® or 1, which stands for False resp. True.

EXAMPLES:

—"'1}}) .path_semigroup()

sage: S.inject_variables()
Defining e_0, e_1, e_2, a, b, ¢, d, e, f
sage: (c*b*e*a).has_prefix(b*e)
0

sage: (c*b*e*a).has_prefix(c*b)
1

sage: (c*b*e*a).has_prefix(e_1)
1

sage: (c*b*e*a).has_prefix(e_2)
0

sage: S = DiGraph({0:{1:['a"'], 2:['b'1}, 1:{0:['c'], 1:['d']}, 2:{0:['e'],2:['f

has_subpath (subpath)

Tells whether this path contains a given sub-path.

INPUT:

subpath, a path of positive length in the same path semigroup as this path.
EXAMPLES:

—"'13}3}) .path_semigroup ()

sage: S.inject_variables()

Defining e_0®, e_1, e_2, a, b, c, d, e, £
sage: (c*b*e*a).has_subpath(b*e)

1

sage: (c*b*e*a).has_subpath(b*f)

0

sage: (c*b*e*a).has_subpath(e_1)
Traceback (most recent call last):

ValueError: we only consider sub-paths of positive length
sage: (c*b*e*a).has_subpath(None)
Traceback (most recent call last):

ValueError: the given sub-path is empty

sage: S = DiGraph({0:{1:['a'], 2:['b']1}, 1:{0:['c'], 1:['d"']}, 2:{0:['e'],2:['£f

initial_vertex()
Return the initial vertex of the path.

OUTPUT:

* integer, the label of the initial vertex
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EXAMPLES:

sage: Q = DiGraph({1:{2:['a']1}, 2:{3:['b"']1}}) .path_semigroup()
sage: y = Q([(1, 2, 'a"), (2, 3, 'b)D)

sage: y.initial_vertex()

1

length()
Return the length of the path.

length() and degree() are aliases

reversal ()

Return the path along the same edges in reverse order in the opposite quiver.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a']1}, 2:{3:['b"'1}, 3:{4:['c'], 1:['d"]1}}).path_
—semigroup()

sage: p = Q(C[(1, 2, 'a"), (2, 3, 'b"), (3, 1, 'd"), (1, 2, "a"), (2, 3, "B,
-3, 4, '¢)D

sage: p

a*b*d*a*b*c

sage: p.reversal()

c*b*a*d*b*a

sage: e = Q.idempotents() [0]

sage: e

e_1

sage: e.reversal()

e_1l

terminal_vertex()

Return the terminal vertex of the path.
OUTPUT:
* integer, the label of the terminal vertex

EXAMPLES:

sage: Q = DiGraph({1:{2:['a']}, 2:{3:['b']1}}) .path_semigroup()
sage: y = Q([(1, 2, 'a"), (2, 3, 'b)D)

sage: y.terminal_vertex()

3
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CHAPTER
SEVEN

QUIVER REPRESENTATIONS

AUTHORS:
* Jim Stark (2012-03-04): Initial implementation of acyclic quivers without relations.
* Simon King (2013-05, 2014-02): Split code up. Allow cyclic quivers where possible.

A quiver is a directed graph used for representation theory. In our representation theoretic code, it is assumed that
* the vertices of the quiver are labelled by integers, and

* each edge of the quiver is labelled with a nonempty string. The label cannot begin with 'e_" or contain '*' and
distinct edges must have distinct labels.

As far as the DiGraph class is concerned, a path is a finite list of pairwise distinct vertices vy, ..., v, such that there
exists an edge from v; to v; 1. If there are multiple edges between the same two vertices this does not contribute
additional paths as listed by the DiGraph class; for example only two paths are listed from 1 to 3 in Q:

sage: Q = DiGraph({1:{2:['a','b"'], 3:['c'1}, 2:{3:['d"1}})
sage: Q.edges(sort=True)

[(1, 2, "a"), (1, 2, 'b"), (1, 3, 'c¢Y, (@2, 3, 'd)]
sage: Q.all_paths(1l, 3)

(r1, 2, 31, [1, 311

The notion of a path in a quiver (in representation theory) is fundamentally different in several aspects. First, paths are
no longer required to have distinct vertices, or even distinct edges; thus, “path” in quiver theory is closer to the notion
of “walk” in graph theory. Furthermore, paths in quiver theory “know” their edges, so parallel edges between the same
two vertices of a Quiver make different paths. But paths in quiver theory also “know” their vertices, so that a length-0
path from a to a is not the same as a length-0 path from b to b for a # b. Formally, we say that a path is given by two
vertices, start and end, and a finite (possibly empty) list of edges eq, e2, . . ., e, such that the initial vertex of e; is
start, the final vertex of e; is the initial vertex of e;, 1, and the final vertex of e, is end. In the case where no edges
are specified, we must have start = end and the path is called the trivial path at the given vertex.

Quiver paths in the sense stated above correspond to the elements of a partial semigroup, with multiplication of paths
given by concatenation. Hence, rather than overloading the method name inherited from DiGraph or inventing a new
method name, we move this functionality to this so-called path semigroup. Note that with this definition there are three
paths from 1 to 3 in our example:

sage: Q.path_semigroup().all_paths(1l, 3)
[a*d, b*d, c]

The returned paths are of type QuiverPath, which are elements in the path semigroup that is associated with the quiver
(a partial semigroup, which does not generally have a neutral element). You can specify a QuiverPath by giving an
edge or a list of edges, passed as arguments to the path semigroup containing this path. Here an edge is a tuple of the
form (i, j, 1), where i and j are vertices and 1 is the label of an edge from i to j:
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sage: p = Q.path_semigroup()([(1, 2, "a"'), (2, 3, 'd)D
sage: p
a*d

Trivial paths are indicated by passing a list containing the tuple (vertex, vertex):

sage: Q.path_semigroup(Q([(3, 3)1)
e_3

Here is an alternative way to define a path:

sage: PQ = Q.path_semigroup()
sage: q = PQ(['a", "d'D
sage: p == q

True

If the vertices along the path do not match, a value error is raised:

sage: invl = PQ([(2, 3, 'd"), (1, 2, "a")D)
Traceback (most recent call last):

ValueError: edge d ends at 3, but edge a starts at 1
sage: inv2 = PQ([(1, 2, 'a'), (1, 2, "a")D)
Traceback (most recent call last):

ValueError: edge a ends at 2, but edge a starts at 1
sage: inv3 = PQ(C[(1, 2, 'x")D)

Traceback (most recent call last):

ValueError: (1, 2, 'x') is not an edge

The * operator is concatenation of paths. If the two paths do not compose, then the result is None (whence the “partial”
in “partial semigroup”).

sage: print(p*q)
None

Let us now construct a larger quiver:

sage: Qbig = DiGraph({1:{2:['a','b"'], 3:['c'1}, 2:{3:['d'1}, 3:{4:['e']}, 4:{5:["£']1}, 5:
~{l:["g"1} B
sage: Pbig = Qbig.path_semigroup()

Since Q is a sub-digraph of Qbig, we have a coercion of the associated path semigroups:

sage: Pbig.has_coerce_map_from(PQ)
True

In particular, p is considered to be an element of Pbig, and can be composed with paths that were defined for the larger
quiver:

sage: p in Pbig
True
sage: p*Pbig([(3, 4, 'e)])

(continues on next page)
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(continued from previous page)

a:‘:d:’:e
sage: Pbig([(4, 5, '"f"), (5, 1, 'gDD*p
f:‘:gz':a:‘rd

The length of a path is the number of edges in that path:

sage: len(p)

2

sage: triv = PQC[(1, DD
sage: len(triv)

0

List index and slice notation can be used to access the edges in a path. QuiverPaths can also be iterated over. Trivial
paths have no elements:

sage: for x in p: print(x)

(1, 2, 'a")
2, 3, 'd"
sage: triv[:]
e_1

There are methods giving the initial and terminal vertex of a path:

sage: p.initial_vertex()
1

sage: p.terminal_vertex()
3

QuiverPath form the basis of the quiver algebra of a quiver. Given a field £ and a quiver (), the quiver algebra k() is,
as a vector space, the free k-vector space whose basis is the set of all paths in (). Multiplication is defined on this basis
and extended bilinearly. The product of two basis elements is given by path composition when it makes sense and is
set to be zero otherwise. Specifically, if the terminal vertex of the left path equals the initial vertex of the right path,
then their product is the concatenation of the two paths, and otherwise their product is zero. In sage, quiver algebras
are handled by the QuiverAlgebra class:

sage: A = PQ.algebra(GF(7))
sage: A
Path algebra of Multi-digraph on 3 vertices over Finite Field of size 7

Quivers have a method that creates their algebra over a given field (or, more generally, commutative ring). Note that
QuiverAlgebras are uniquely defined by their quiver and field, and play nicely with coercions of the underlying path
semigroups:

sage: A is PQ.algebra(GF(7))
True

sage: A is PQ.algebra(RR)

False

sage: Q1 = Q.copyQ)

sage: Ql.add_vertex(4)

sage: PQl = Ql.path_semigroup()
sage: A is PQl.algebra(GF(7))
False

(continues on next page)
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(continued from previous page)

sage: Pbig.algebra(GF(7)) .has_coerce_map_from(A)
True

The QuiverAlgebra can create elements from QuiverPaths or from elements of the base ring:

sage: A(5)

5*e_1 + 5%e_2 + 5%e_3

sage: r = PQC[(1, 2, 'b'), (2, 3, 'd)D
sage: e2 = PQ([(2, 2)D

sage: x = A(p) + A(e2)

sage:
a*d + e_2

sage: y = A(p) + A(r)
sage: y

b*d + a*d

>

QuiverAlgebras are IN-graded algebras. The grading is given by assigning to each basis element the length of the
path corresponding to that basis element:

sage: x.is_homogeneous()

False

sage: x.degree()

Traceback (most recent call last):

ValueError: element is not homogeneous
sage: y.is_homogeneous()

True

sage: y.degree()

2

sage: A[1]

Free module spanned by [a, b, c, d] over Finite Field of size 7
sage: A[2]

Free module spanned by [a*d, b*d] over Finite Field of size 7

The category of right modules over a given quiver algebra is equivalent to the category of representations of that quiver.
A quiver representation is a diagram in the category of vector spaces whose underlying graph is the quiver. So to each
vertex of the quiver we assign a vector space and to each edge of the quiver a linear map between the vector spaces
assigned to the start and end vertices of that edge. To create the zero representation we just specify the base ring and
the path semigroup:

sage: Z = Ql.path_semigroup().representation(GF(5))
sage: Z.is_zero()
True

To each vertex of a quiver there is associated a simple module, an indecomposable projective, and an indecomposable
injective, and these can be created from the quiver:

sage: S PQ.S(GF(3), 1)
sage: I = PQ.I(QQ, 2)
sage: P PQ.P(GF(3), 1)

Radicals, socles, tops, and quotients can all be computed and we can test if modules are simple or semisimple, get their
dimension, and test for equality. Like quivers, QuiverRep objects are unique and therefore equal if and only if they
are identical:
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sage: P.is_simple()

False

sage: P.dimension()

6

sage: R = P.radical(Q)

sage: P.socle()

Representation with dimension vector (0, 0, 3)
sage: (P/R).is_simple()

True

sage: P == R

False

sage: P.top() is P/R
True

There are special methods to deal with modules that are given as right ideals in the quiver algebra. To create such a
module pass the keyword option="paths' along with a path or list of paths that generate the desired ideal:

sage: M = PQ.representation(QQ, [[(1, 1)1, [(1, 2, "a')]], option='paths')
sage: M.dimension_vector()
(11 2’ 3)

There are also special methods to deal with modules that are given as the linear dual of a right ideal in the quiver
algebra. To create such a module, pass the keyword option="dual paths' to the constructor along with a path or
list of paths. The module returned is the dual of the ideal created in the opposite quiver by the reverses of the given
paths:

sage: D = PQ.representation(QQ, [[(1, 1)1, [(1, 2, 'a')]], option="dual paths')
sage: D.dimension_vector()
2, 0, ®

For modules that are not a standard module or an ideal of the quiver algebra QuiverRep can take as input two dictio-
naries. The first associates to each vertex a vector space or an integer (the desired dimension of the vector space), the
second associates to each edge a map or a matrix or something from which sage can construct a map:

sage: PQ2 = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: M2 = PQ2.representation(QQ, {1: QQ*2, 2: QQ~1}, {(1, 2, "a'"): [1, 0], (1, 2, 'b"):.
~[0, 11H

sage: M.get_space(2)

Vector space of dimension 2 over Rational Field

sage: M2.get_space(2)

Vector space of dimension 1 over Rational Field

sage: M.get_map((l, 2, "a"))

Vector space morphism represented by the matrix:

[1 0]

Domain: Vector space of dimension 1 over Rational Field
Codomain: Vector space of dimension 2 over Rational Field

A homomorphism between two quiver representations is given by homomorphisms between the spaces assigned to the
vertices of those representations such that those homomorphisms commute with the edge maps of the representations.
The homomorphisms are created in the usual Sage syntax, the defining data given by a dictionary associating maps to
vertices:

sage: P2 = PQ2.P(QQ, 1)
sage: £ = P2.hom({1:[1, 1], 2:[[1]1, [1113}, M2)
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When the domain is given as a right ideal in the quiver algebra we can also create a homomorphism by just giving a
single element in the codomain. The map is then induced by acting on that element:

sage: x = P2.gens('x"')[0]

sage: X

x_0

sage: f == P2.hom(£(x), M2)
True

As you can see, the above homomorphisms can be applied to elements. Just like elements, addition is defined via the +
operator. On elements scalar multiplication is defined via the * operator but on homomorphisms * defines composition,
so scalar multiplication is done using a method:

sage: g = f + f

sage: g == f.scalar_mult(2)

True

sage: g == 2*f # This multiplies the map with the scalar 2
True

sage: g(x) == 2*f(x) # This applies the map, then multiplies by the scalar
True

The direct_sum method for modules returns only the resulting module by default. But can also return the projection
and inclusion homomorphisms into the various factors:

sage: N2, inclusions, projections = M2.direct_sum([P2], return_maps=True)
sage: inclusions[0].domain() is M2

True

sage: projections[0].codomain() is M2

True

sage: (projections[0]*inclusions[0]).is_isomorphism()
True

As you see above we can determine if a given map is an isomorphism. Testing for injectivity and surjectivity works as
well:

sage: f.is_injective()
False
sage: f.is_surjective()
False

We can create all the standard modules associated to maps:

sage: f.kernel()

Representation with dimension vector (0, 1)
sage: f.cokernel()

Representation with dimension vector (1, 0)
sage: im = f.image(Q)

sage: im

Representation with dimension vector (1, 1)

These methods, as well as the submodule and quotient methods that are defined for representations, return only
the resulting representation. To get the inclusion map of a submodule or the factor homomorphism of a quotient use
coerce_map_from:
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sage: incl = M2.coerce_map_from(im)
sage: incl.domain() is im

True

sage: incl.codomain() is M2
True

sage: incl.is_injective()
True

Both QuiverRep objects and QuiverRepHom objects have linear_dual and algebraic_dual methods. The
linear_dual method applies the functor Homy(..., k) where k is the base ring of the representation, and the
algebraic_dual method applies the functor Homg(..., kQ) where kQ is the quiver algebra. Both these functors
yield left modules. A left module is equivalent to a right module over the opposite algebra, and the opposite of a quiver
algebra is the algebra of the opposite quiver, so both these methods yield modules and representations of the opposite
quiver:

sage: f.linear_dual()

Homomorphism of representations of Reverse of (): Multi-digraph on 2 vertices
sage: D = M2.algebraic_dual ()

sage: D.quiver() is PQ2.reverse().quiver()

True

Todo: Change the wording Reverse of () into something more meaningful.

There is a method returning the projective cover of any module. Note that this method returns the homomorphism; to
get the module take the domain of the homomorphism:

sage: cov = M2.projective_cover()

sage: cov

Homomorphism of representations of Multi-digraph on 2 vertices
sage: cov.domain()

Representation with dimension vector (2, 4)

As projective covers are computable, so are the transpose and Auslander-Reiten translates of modules:

sage: M2.transpose()

Representation with dimension vector (4, 3)
sage: PQ2.I(QQ, 1).AR_translate()
Representation with dimension vector (3, 2)

We have already used the gens method above to get an element of a quiver representation. An element of a quiver
representation is simply a choice of element from each of the spaces assigned to the vertices of the quiver. Addition,
subtraction, and scalar multiplication are performed pointwise and implemented by the usual operators:

sage: M2.dimension_vector()

@2, D

sage: x, y, z = M2.gens('xyz")
sage: 2¥*x +y !l=x + 2%y

True

To create a specific element of a given representation we just specify the representation and a dictionary associating to
each vertex an element of the space associated to that vertex in the representation:
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sage
sage

(1,

towo= M2({1:(1, -1, 2:(3OD
: w.get_element (1)
-1

The right action of a quiver algebra on an element is implemented via the * operator:

sage:
sage:
sage:

True

A2 = x.quiver() .path_semigroup() .algebra(QQ)
a = A2('a")
x*a == z

class sage.quivers.representation.QuiverRepElement (parent, elements=None, name=None)

Bases: ModuleElement

An element of a quiver representation is a choice of element from each of the spaces assigned to the vertices
of the quiver. Addition, subtraction, and scalar multiplication of these elements is done pointwise within these
spaces.

INPUT:
e module — QuiverRep (default: None), the module to which the element belongs

¢ elements - dict (default: empty), a dictionary associating to each vertex a vector or an object from which
sage can create a vector. Not all vertices must be specified, unspecified vertices will be assigned the zero
vector of the space associated to that vertex in the given module. Keys that do not correspond to a vertex
are ignored.

* name — string (default: None), the name of the element
OUTPUT:

¢ QuiverRepElement

Note: The constructor needs to know the quiver in order to create an element of a representation over that quiver.
The default is to read this information from module as well as to fill in unspecified vectors with the zeros of the
spaces in module. If module is None then quiver MUST be a quiver and each vertex MUST be specified or an
error will result. If both module and quiver are given then quiver is ignored.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b"]}, 2:{3:['c"]}}).path_semigroup()
sage: spaces = dict((v, GF(3)*2) for v in Q.quiver())
sage: M = Q.representation(GF(3), spaces)

sage: elems = {1: (1, 0, 2: (0, 1), 3: (2, D}

sage: M(elems)

Element of quiver representation

sage: v = M(elems, 'v')

sage: v

v

sage: (v + v + v).is_zero()

True

copy O
Return a copy of self.

EXAMPLES:
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sage: Q = DiGraph({1:{2:['a'], 3:['b"]1}, 2:{3:['c']}}) .path_semigroup()
sage: spaces = dict((v, GF(3)#2) for v in Q.quiver())

sage: M = Q.representation(GF(3), spaces)

sage: elems = {1: (1, 0), 2: (0, 1), 3: (2, D}

sage: v = M(elems)

sage: w = v.copy()

sage: w._set_element((0, 0), 1)

sage: w.get_element(1l)

©, ®
sage: v.get_element(1l)
(1, ®

get_element (vertex)

Return the element at the given vertex.
INPUT:

* vertex — integer, a vertex of the quiver
OUTPUT:

* vector, the vector assigned to the given vertex

EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b"]1}, 2:{3:['c"]1}}) .path_semigroup()
sage: spaces = dict((v, GF(3)*2) for v in Q.quiver())

sage: M = Q.representation(GF(3), spaces)

sage: elems = {1: (1, 0), 2: (0, 1), 3: (2, 1D}

sage: v = M(elems)

sage: v.get_element(1l)

1, ®

sage: v.get_element(3)

2z, 1

is_zero()
Test whether self is zero.

OUTPUT:
¢ bool, True if the element is the zero element, False otherwise

EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b"]1}, 2:{3:["'c"]1}}) .path_semigroup()
sage: spaces = dict((v, GF(3)*2) for v in Q.quiver())

sage: M = Q.representation(GF(3), spaces)

sage: elems = {1: (1, 0), 2: (0, 1), 3: (2, 1D}

sage: v = M(elems)

sage: v.is_zero()

False

sage: w = MO

sage: w.is_zero()

True

quiver()

Return the quiver of the representation.
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OUTPUT:
* DiGraph, the quiver of the representation

EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b']1}, 2:{3:['c'1}}) .path_semigroup()
sage: P = Q.P(QQ, 1

sage: v = P.an_element()

sage: v.quiver() is Q.quiver()

True

support ()
Return the support of self as a list.

The support is the set of vertices to which a nonzero vector is associated.
OUTPUT:

* list, the support
EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b"]1}, 2:{3:['c']1}}) .path_semigroup()
sage: spaces = dict((v, GF(3)*2) for v in Q.quiver())

sage: M = Q.representation(GF(3), spaces)

sage: elems = {1: (1, 0), 2: (0, 0, 3: (2, D}

sage: v = M(elems)

sage: v.support()

[1, 3]

class sage.quivers.representation.QuiverRepFactory

Bases: UniqueFactory

A quiver representation is a diagram in the category of vector spaces whose underlying graph is the quiver.
Giving a finite dimensional representation is equivalent to giving a finite dimensional right module for the path
algebra of the quiver.

INPUT:

The first two arguments specify the base ring and the quiver, and they are always required:
¢ k —ring, the base ring of the representation
* P — the partial semigroup formed by the paths of the quiver of the representation

Then to specify the spaces and maps associated to the quiver there are three possible options. The first is the
'values' option, where the next two arguments give the data to be assigned. The following can either be the
next two entries in the argument list or they can be passed by keyword. If the argument list is long enough the
keywords are ignored; the keywords are only checked in the event that the argument list does not have enough
entries after P.

* spaces — dict (default: empty); a dictionary associating to each vertex a free module over the base ring k.
Not all vertices must be specified; unspecified vertices are automatically set to k°. Keys of the dictionary
that don’t correspond to vertices are ignored.

* maps - dict (default: empty); a dictionary associating to each edge a map whose domain and codomain
are the spaces associated to the initial and terminal vertex of the edge respectively. Not all edges must
be specified; unspecified edges are automatically set to the zero map. Keys of the dictionary that don’t
correspond to edges are ignored.
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The second option is the paths option which creates a module by generating a right ideal from a list of paths.
Thus the basis elements of this module correspond to paths of the quiver and the maps are given by right multi-
plication by the corresponding edge. As above this can be passed either as the next entry in the argument list or
as a keyword. The keyword is only checked if there is no entry in the argument list after Q.

* basis - list; a nonempty list of paths in the quiver Q. Entries that do not represent valid paths are ignored
and duplicate paths are deleted. There must be at least one valid path in the list or a ValueError is raised.
The closure of this list under right multiplication forms the basis of the resulting representation.

The third option is the dual paths option which creates the dual of a left ideal in the quiver algebra. Thus
the basis elements of this module correspond to paths of the quiver and the maps are given by deleting the
corresponding edge from the start of the path (the edge map is zero on a path if that edge is not the initial edge
of the path). As above this can be passed either as the next entry in the argument list or as a keyword.

¢ basis — list; a nonempty list of paths in the quiver Q. Entries that do not represent valid paths are ignored
and duplicate paths are deleted. There must be at least one valid path in the list or a ValueError is raised.
The closure of this list under left multiplication of edges forms the basis of the resulting representation.

Using the second and third options requires that the following keyword be passed to the constructor. This must
be passed as a keyword.

e option - string (default: None), either 'values' or 'paths' or 'dual paths'. None is equivalent to
'values'.

OUTPUT:
e QuiverRep

EXAMPLES:

sage: Q1 = DiGraph({1:{2:['a']}}) .path_semigroup()

When the option keyword is not supplied the constructor uses the 'values' option and expects the spaces and
maps to be specified. If no maps or spaces are given the zero module is created:

sage: M = Ql.representation(GF(5))
sage: M.is_zero()
True

The simple modules, indecomposable projectives, and indecomposable injectives are examples of quiver repre-
sentations:

sage: S Q1.S(GF(3), 1
sage: I Q1.I(QQ, 2)
sage: P = QLl.P(GF(3), D)

Various standard submodules can be computed, such as radicals and socles. We can also form quotients and test
for certain attributes such as semisimplicity:

sage: R = P.radical(Q)
sage: R.is_zero()

False

sage: (P/R).is_simple()
True

sage: P == R

False
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With the option 'paths' the input data should be a list of QuiverPaths or things that QuiverPaths can be
constructed from. The resulting module is the submodule generated by these paths in the quiver algebra, when
considered as a right module over itself:

sage: Pl = Ql.representation(QQ, [[(1, 1)]], option="paths')
sage: Pl.dimension()
2

In the following example, the 3rd and 4th paths are actually the same, so the duplicate is removed:

sage: N = Ql.representation(QQ, [[(1, 1)1, [(2, 2)]1, [(1, 2, "a")], [(1, 2, 'a")]1]l,.
—option="paths"')

sage: N.dimension()

3

The dimension at each vertex equals the number of paths in the closed basis whose terminal point is that vertex:

sage: Q2 = DiGraph({1:{2:['a'], 3:['b", 'c'1}, 2:{3:['d']1}}) .path_semigroup()
sage: M = Q2.representation(QQ, [[(2, 2)]1, [(l, 2, "a')]], option='paths"')
sage: M.dimension_vector()

@, 2, 2)

sage: N = Q2.representation(QQ, [[(2, 2)]1, [(1, 2, '"a'), (2, 3, 'd')]], option=
< 'paths")

sage: N.dimension_vector()

@, 1, 2)

create_key(k, P, *args, **kwds)
Return a key for the specified module.

The key is a tuple. The first and second entries are the base ring k and the partial semigroup P formed by
the paths of a quiver. The third entry is the option and the remaining entries depend on that option. If
the option is 'values' and the quiver has n vertices then the next n entries are the vector spaces to be
assigned to those vertices. After that are the matrices of the maps assigned to edges, listed in the same
order that Q. edges(sort=True) uses. If the option is 'paths' or 'dual paths' then the next entry is
a tuple containing a sorted list of the paths that form a basis of the quiver.

INPUT:
See the class documentation.
OUTPUT:
* tuple
EXAMPLES:

sage: P = DiGraph({1:{2:['a']}}) .path_semigroup()
sage: from sage.quivers.representation import QuiverRep
sage: QuiverRep.create_key(GF(5), P)
(Finite Field of size 5,

Partial semigroup formed by the directed paths of Multi-digraph on 2 vertices,
'values',

Vector space of dimension ® over Finite Field of size 5,

Vector space of dimension O over Finite Field of size 5,

[
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create_object (version, key, **extra_args)
Create a QuiverRep_generic or QuiverRep_with_path_basis object from the key.

The key is a tuple. The first and second entries are the base ring k and the quiver Q. The third entry is the
'option’' and the remaining entries depend on that option. If the option is 'values' and the quiver has
n vertices then the next n entries are the vector spaces to be assigned to those vertices. After that are the
matrices of the maps assigned to edges, listed in the same order that Q. edges (sort=True) uses. If the
option is 'paths’ or 'dual paths' then the next entry is a tuple containing a sorted list of the paths that
form a basis of the quiver.

INPUT:
* version — the version of sage, this is currently ignored
* key —tuple
OUTPUT:
e QuiverRep_generic or QuiverRep_with_path_basis

EXAMPLES:

sage: Q = DiGraph({1:{2:['a']}}) .path_semigroup()

sage: from sage.quivers.representation import QuiverRep
sage: key = QuiverRep.create_key(GF(5), Q)

sage: QuiverRep.create_object(0, key)

Representation with dimension vector (0, 0)

class sage.quivers.representation.QuiverRep_generic(k, P, spaces, maps)
Bases: WithEqualityById, Module

A generic quiver representation.
This class should not be called by the user.
Call QuiverRep with option="'values' (which is the default) instead.
INPUT:
¢ k —ring, the base ring of the representation
e P — the path semigroup of the quiver @ of the representation

* spaces — dict (default: empty), a dictionary associating to each vertex a free module over the base ring k.
Not all vertices need to be specified, unspecified vertices are automatically set to k°. Keys of the dictionary
that don’t correspond to vertices are ignored.

e maps — dict (default: empty), a dictionary associating to each edge a map whose domain and codomain
are the spaces associated to the initial and terminal vertex of the edge respectively. Not all edges need to
be specified, unspecified edges are automatically set to the zero map. Keys of the dictionary that don’t
correspond to edges are ignored.

OUTPUT:
e QuiverRep

EXAMPLES:

sage: Q = DiGraph({1:{3:['a']}, 2:{3:['b"']1}}) .path_semigroup()

sage: spaces = {1: QQ*2, 2: QQ*3, 3: QQ*2}

sage: maps = {(1, 3, 'a'"): (QQ*2).Hom(QQ*2).identity(), (2, 3, 'b'): [[1, 0], [O,.
01, [0, 0113}

sage: M = Q.representation(QQ, spaces, maps)
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sage: Q = DiGraph({1:{2:["'a']}}) .path_semigroup()
sage: P = Q.P(GF(3), 1)

sage: I = Q.I(QQ, D

sage: P.an_element() in P

True

sage: I.an_element() in P

False

AR_translate()

Return the Auslander-Reiten translate of self.

EXAMPLES:

sage: Q = DiGraph({1l:{2:['a', 'b']}}).path_semigroup()

sage: M = Q.representation(GF(3), {1: 1, 2: 1}, {(1, 2, 'a'): 1})
sage: tauM = M.AR_translate()

sage: taulM

Representation with dimension vector (1, 1)

sage: tauM.get_map((l, 2, 'a')).matrix()

[1]

sage: tauM.get_map((l, 2, 'b")).matrix()

[0]

The module M above is its own AR translate. This is not always true:

sage: Q2 = DiGraph({3:{1:['b']1}, 5:{3:["a']}}) .path_semigroup()
sage: Q2.S5(QQ, 5).AR_translate()
Representation with dimension vector (0, 1, 0)

Element

alias of QuiverRepElement

Hom (codomain)

Return the hom space from self to codomain.

For more information see the QuiverHomSpace documentation.

actor()

Return the quiver path algebra acting on this representation.
OUTPUT:
* aquiver path algebra

EXAMPLES:

sage: Q = DiGraph({1:{2:['a']}}) .path_semigroup()

sage: M = Q.representation(GF(5))

sage: M.base_ring()

Finite Field of size 5

sage: M.actor()

Path algebra of Multi-digraph on 2 vertices over Finite Field of size 5

algebraic_dual (basis=False)

Compute the algebraic dual Homg (M, kQ) of the module M = self.
INPUT:
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* basis — bool; if False, then only the module is returned. If True, then a tuple is returned. The first
element is the QuiverRep and the second element is a dictionary which associates to each vertex a
list. The elements of this list are the homomorphisms which correspond to the basis elements of that
vertex in the module.

OUTPUT:

* QuiverRep or tuple

Note: Here k(Q) is the path algebra considered as a right module over itself. If e is an edge of the quiver
@ then we let (fe)(m) = ef(m). This gives Homg (M, kQ) a module structure over the opposite quiver
Q.reverse().

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b'], 3: ['c', 'd']}, 2:{3:['e']}}) .path_
—semigroup ()

sage: Q.free_module(GF(7)) .algebraic_dual().dimension_vector()

(7! 21 1)

an_element ()

Return an element of self.
OUTPUT:
* QuiverRepElement

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: M = Q.P(QQ, 1

sage: M.an_element()

Element of quiver representation

coordinates (vector)

Return the coordinates when vector is expressed in terms of the gens.
INPUT:
e vector — QuiverRepElement
OUTPUT:
* list, the coefficients when the vector is expressed as a linear combination of the generators of the module

EXAMPLES:

sage: Q DiGraph({1:{2:['a", 'b']1}}) .path_semigroup()
sage: M Q.P(QQ, D

sage: x, y, z = M.gens('xyz")

sage: M.coordinates(x - y + z)

[1, -1, 1]

sage: M.coordinates(M.an_element())
[1, 1, 0]

sage: M.an_element() == x + y

True
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dimension (vertex=None)

Return the dimension of the space associated to the given vertex vertex.
INPUT:
* vertex — integer or None (default: None), the given vertex

OUTPUT:

* integer, the dimension over the base ring of the space associated to the given vertex. If vertex=None
then the dimension over the base ring of the module is returned

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b']}}).path_semigroup()
sage: P = Q.P(GF(2), 1)

sage: P.dimension(1)

1

sage: P.dimension(2)

2

The total dimension of the module is the sum of the dimensions at each vertex:

sage: P.dimension()
3

dimension_vector()

Return the dimension vector of the representation.
OUTPUT:

* tuple

Note: The order of the entries in the tuple matches the order given by calling the vertices () method on
the quiver.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: P = Q.P(GF(2), 1)
sage: P.dimension_vector()

1, 2

Each coordinate of the dimension vector is the dimension of the space associated to that coordinate:

sage: P.get_space(2).dimension()
2

direct_sum(mnodules, return_maps=False)

Return the direct sum of self with the given modules modules.
The modules must be modules over the same quiver and base ring.
INPUT:

¢ modules — QuiverRep or list of QuiverRep’s
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* return_maps — Boolean (default: False); if False, then the output is a single QuiverRep object
which is the direct sum of self with the given module or modules. If True, then the output is a list
[sum, iota, pi]. The first entry sum is the direct sum of self with the given module or modules.
Both iota and pi are lists of QuiverRepHoms with one entry for each summand; iota[i] is the
inclusion map and pi[i] is the projection map of the i-th summand. The summands are ordered as
given with self being the zeroth summand.

OUTPUT:
* QuiverRep or tuple

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"'], 3:['b"'1}, 2:{4:['c'1}, 3:{4:['d']1}}).path_
—semigroup ()

sage: P1 = Q.P(QQ, D)

sage: P2 = Q.P(QQ, 2)

sage: S = Pl.direct_sum(P2)

sage: Pl.dimension_vector()

(1, 1, 1, 2)
sage: P2.dimension_vector()
@, 1, 0, D
sage: S.dimension_vector()
(1, 2, 1, 3

sage: S, iota, pi = Pl.direct_sum(P2, return_maps=True)
sage: iota[0].domain() is P1

True

sage: iota[l].domain() is P2
True

sage: pi[0].codomain() is P1
True

sage: pi[l].codomain() is P2
True

sage: iota[0].codomain() is S
True

sage: iota[l].codomain() is S
True

sage: pi[0].domain() is S
True

sage: pi[l].domain() is S
True

sage: iota[0].get_matrix(4)
[1 0 0]

[0 1 0]

sage: pi[0].get_matrix(4)

[1 0]

[0 1]

[0 0]

sage: Plprime = S/iota[l].image()
sage: f = Plprime.coerce_map_from(S)
sage: g = f*iotal0]

sage: g.is_isomorphism()

True

gens (names="v")
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Return a tuple of generators of self as a k-module.
INPUT:

* names — an iterable variable of length equal to the number of generators, or a string (default: 'v');
gives the names of the generators either by giving a name to each generator or by giving a name to
which an index will be appended

OUTPUT:

* tuple of QuiverRepElement objects, the linear generators of the module (over the base ring)

Note: The generators are ordered first by vertex and then by the order given by the gens () method of the
space associated to that vertex.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: M = Q.P(QQ, D

sage: M.gens()

(v_0, v_1, v_2)

If a string is given then it is used as the name of each generator, with the index of the generator appended
in order to differentiate them:

sage: M.gens('generator')
(generator_0, generator_1, generator_2)

If a list or other iterable variable is given then each generator is named using the appropriate entry. The
length of the variable must equal the number of generators (the dimension of the module):

sage: M.gens(['w', 'x', 'y', 'z'D)
Traceback (most recent call last):

TypeError: can only concatenate list (not "str") to list
sage: M.gens(['x', 'y', 'z'D
x, vy, 2)

Strings are iterable, so if the length of the string is equal to the number of generators then the characters of
the string will be used as the names:

sage: M.gens('xyz')
x, vy, 2

get_map (edge)

Return the map associated to the given edge edge.
INPUT:

* edge — tuple of the form (initial vertex, terminal vertex, label) specifying the edge whose map is
returned

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: Q.P(ZZ, 1).get_map((1l, 2, 'a"))

(continues on next page)
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(continued from previous page)

Free module morphism defined by the matrix

[1 0]

Domain: Ambient free module of rank 1 over the principal ideal domain Integer.
—Ring

Codomain: Ambient free module of rank 2 over the principal ideal domain Integer..
—Ring

get_space (vertex)

Return the module associated to the given vertex vertex.
INPUT:
* vertex —integer, a vertex of the quiver of the module

EXAMPLES:

sage: Q = DiGraph({1:{2:['a'], 3:['b"']}}).path_semigroup()
sage: Q.P(QQ, 1).get_space(l)
Vector space of dimension 1 over Rational Field

is_semisimple()
Test whether the representation is semisimple.
OUTPUT:
* bool

EXAMPLES:

sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
sage: M = Q.P(QQ, 1

sage: (M/M.radical()).is_semisimple()

True

is_simple()
Test whether the representation is simple.
OUTPUT:
* bool

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b']}}).path_semigroup()
sage: Q.P(RR, 1).is_simple()

False

sage: Q.S(RR, 1).is_simple()

True

is_zero()

Test whether the representation is zero.
OUTPUT:
* bool

EXAMPLES:
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sage: Q = DiGraph({1l:{2:['a"', 'b']}}).path_semigroup()
sage: M = Q.representation(ZZ)

sage: N = Q.representation(zZz, {1: 1})

sage: M

Representation with dimension vector (0, 0)

sage: N

Representation with dimension vector (1, 0)
sage: M.is_zero(Q)

True

sage: N.is_zero()

False

linear_combination_of_basis(coordinates)

Return the linear combination of the basis for self given by coordinates.
INPUT:

* coordinates — list; a list whose length is the dimension of self. The i-th element of this list defines
the coefficient of the i-th basis vector in the linear combination.

OUTPUT:

* QuiverRepElement

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b']}}).path_semigroup()
sage: M = Q.P(QQ, 1)

sage: x, y, z = M.gens('xyz")

sage: e =X -y + Z

sage: M.coordinates(e)

[1, -1, 1]

sage: M.linear_combination_of_basis([1, -1, 1]) == e
True

linear_dual O
Compute the linear dual Homy (M, k) of the module M = self over the base ring .

OUTPUT:

* QuiverRep, the dual representation

Note: If e is an edge of the quiver @ then we let (fe)(m) = f(me). This gives Homy (M, k) a module
structure over the opposite quiver Q.reverse().

EXAMPLES:

sage: Q DiGraph({1:{2:['a",'b"']1}, 2:{3:['c']1}}) .path_semigroup()
sage: M Q.P(QQ, D

sage: M.linear_dual()

Representation with dimension vector (1, 2, 2)

sage: M.linear_dual().quiver() is Q.reverse().quiver()

True
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projective_cover (return_maps=False)
Return the projective cover of self.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b"']}, 2:{3:['c',"'d"]1}}) .path_semigroup()
sage: S1 Q.S(GF(3), 1)

sage: fl Sl.projective_cover()

sage: fl.is_surjective()

True

sage: fl._domain

Representation with dimension vector (1, 2, 4)

sage: Q.P(GF(3), D

Representation with dimension vector (1, 2, 4)

quiver()
Return the quiver of the representation.

OUTPUT:
¢ DiGraph
EXAMPLES:

sage: Q = DiGraph({1:{2:['a']}}) .path_semigroup()
sage: M = Q.representation(GF(5))

sage: M.quiver() is Q.quiver()

True

quotient (sub, check=True)
Return the quotient of self by the submodule sub.

INPUT:

e sub — QuiverRep; this must be a submodule of self, meaning the space associated to each vertex
v of sub is a subspace of the space associated to v in self and the map associated to each edge e of
sub is the restriction of the map associated to e in self

* check —bool; if True then sub is checked to verify that it is indeed a submodule of self and an error
is raised if it is not

OUTPUT:

* QuiverRep, the quotient module self / sub

Note: This function returns only a QuiverRep object quot. The projection map from self to quot can
be obtained by calling quot.coerce_map_from(self).

EXAMPLES:

sage: Q DiGraph({1:{2:['a",'b"']1}, 2:{3:['c']1}}) .path_semigroup()
sage: M Q.I(GF(3), 3)

sage: N = Q.S(GF(3), 3)

sage: M.quotient(N)

Representation with dimension vector (2, 1, 0)

sage: M.quotient(M.radical())

Representation with dimension vector (2, 0, 0)

(continues on next page)
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(continued from previous page)

sage: M.quotient(M)
Representation with dimension vector (0, 0, 0)

radical

Return the Jacobson radical of self.
OUTPUT:
¢ QuiverRep, the Jacobson radical

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b'1}, 2:{3:['c']1}}) .path_semigroup()
sage: M Q.P(QQ, 1

sage: M.radical(Q)

Representation with dimension vector (0, 2, 2)

right_edge_action(element, path)
Return the result of element*path.

INPUT:
e element — QuiverRepElement, an element of self
e path — QuiverPath or list of tuples

OUTPUT:

e QuiverRepElement, the result of element*path when path is considered an element of the path
algebra of the quiver

EXAMPLES:
sage: Q = DiGraph({1:{2:['a"','b']1}, 2:{3:['c']1}}) .path_semigroup()
sage: M = Q.P(QQ, 1)
sage: v = M.an_element()
sage: v.support()
[1! 21 3]
sage: M.right_edge_action(v, [(1, 1)]).support()
[1]
sage: M.right_edge_action(v, [(1, 1)]).support()
[1]
sage: M.right_edge_action(v, [(1, 2, "a')]).support()
[2]
sage: M.right_edge_action(v, 'a') == M.right_edge_action(v, [(1, 2, 'a')])
True
socle()
The socle of self.
OUTPUT:

¢ QuiverRep, the socle

EXAMPLES:
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sage: Q DiGraph({1:{2:['a",'b"']1}, 2:{3:['c']1}}) .path_semigroup()
sage: M = Q.P(QQ, 1

sage: M.socle()

Representation with dimension vector (0, 0, 2)

submodule (elements=[], spaces=None)
Return the submodule generated by the data.

INPUT:

* elements — a collection of QuiverRepElements (default: empty list), each should be an element of
self

* spaces — dictionary (default: empty), this dictionary should contain entries of the form {v: S}
where v is a vertex of the quiver and S is a subspace of the vector space associated to v

OUTPUT:

* QuiverRep, the smallest subrepresentation of self containing the given elements and the given sub-
spaces

Note: This function returns only a QuiverRep object sub. The inclusion map of sub intoM = self can
be obtained by calling M. coerce_map_£from(sub).

EXAMPLES:

sage: Q = DiGraph({1:{3:['a']1}, 2:{3:['b']1}}) .path_semigroup()

sage: spaces = {1: QQ*2, 2: QQ*3, 3: QQ*2}

sage: maps = {(1, 3, 'a'): (QQ*2).Hom(QQ*2).identity(), (2, 3, 'b'): [[1, 0],.
~[0, 01, [0, 011}

sage: M = Q.representation(QQ, spaces, maps)

sage: v = M.an_element()

sage: M.submodule([v])

Representation with dimension vector (1, 1, 1)

The smallest submodule containing the vector space at vertex 1 also contains the entire vector space asso-
ciated to vertex 3 because there is an isomorphism associated to the edge (1, 3, 'a'):

sage: M.submodule(spaces={1: QQ*2})
Representation with dimension vector (2, 0, 2)

The smallest submodule containing the vector space at vertex 2 also contains the image of the rank 1
homomorphism associated to the edge (2, 3, 'b'):

sage: M.submodule(spaces={2: QQ”*3})
Representation with dimension vector (0, 3, 1)

As v is not already contained in this submodule, adding it as a generator yields a larger submodule:

sage: v.support()

[1, 2, 3]

sage: M.submodule([v], {2: QQ*3})
Representation with dimension vector (1, 3, 1)

Giving no generating data yields the zero submodule:
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sage: M.submodule().is_zero()
True

If the given data generates all of M then the result is M:

sage: M.submodule(M.gens()) is M
True

support()

Return the support of self as a list.
OUTPUT:

« list, the vertices of the representation that have nonzero spaces associated to them

EXAMPLES:

sage: Q = DiGraph({1:{2:['a']1}, 3:{2:['b'], 4:['c']1}}).path_semigroup()
sage: M = Q.P(QQ, 3)

sage: M

Representation with dimension vector (0, 1, 1, 1)
sage: M.support()
[2! 31 4]

top()
Return the top of self.

OUTPUT:
* QuiverRep, the quotient of self by its radical

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"','b']}, 2:{3:['c']}}) .path_semigroup()
sage: M = Q.P(QQ, 1)

sage: M.top(Q)

Representation with dimension vector (1, 0, 0)

sage: M.top() == M/M.radical()

True

transpose()

Return the transpose of self.

The transpose, TrM, of a module M is defined as follows. Let p : P, — P» be the second map in a
minimal projective presentation P, — Py — M — 0 of M. If p' is the algebraic dual of p then define
TrM = cokerp'.

OUTPUT:
e QuiverRep

EXAMPLES:

sage: Q = DiGraph({1:{2:['a"', 'b']}}).path_semigroup()

sage: M = Q.representation(GF(3), {1: 1, 2: 1}, {(1, 2, 'a'): 1})
sage: M.transpose()

Representation with dimension vector (1, 1)
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zero_submodule ()
Return the zero submodule of self.

OUTPUT:
¢ QuiverRep, the zero submodule of self.

EXAMPLES:

sage: Q = DiGraph({1:{2:['a','b'1}, 2:{3:['c']1}}) .path_semigroup()
sage: M = Q.P(QQ, 1

sage: M.zero_submodule()

Representation with dimension vector (0, 0, 0)

sage: M.zero_submodule().is_zero()

True

class sage.quivers.representation.QuiverRep_with_dual_path_basis(k, P, basis)
Bases: QuiverRep_generic

The basis of the module must be closed under left deletion of an edge; that is, deleting any edge from the beginning
of any path in the basis must result in a path also contained in the basis of the module.

INPUT:
* k —ring; the base ring of the representation
¢ P — the path semigroup of the quiver () of the representation

e basis - list (default: empty); should be a list of paths (also lists) in the quiver ). Entries that do not
represent valid paths are ignored and duplicate paths are deleted. The closure of this list under left deletion
forms the basis of the resulting representation.

class sage.quivers.representation.QuiverRep_with_path_basis(k, P, basis)

Bases: QuiverRep_generic

The basis of the module must be closed under right multiplication by an edge; that is, appending any edge to the
end of any path in the basis must result in either an invalid path or a valid path also contained in the basis of the
module.

INPUT:
* k —ring, the base ring of the representation
* P —the path semigroup of the quiver () of the representation

* basis — list (default: empty); should be a list of paths (also lists) in the quiver (). Entries that do not
represent valid paths are ignored and duplicate paths are deleted. The closure of this list under right multi-
plication forms the basis of the resulting representation.

is_left_module()
Test whether the basis is closed under left multiplication.

EXAMPLES:

sage: Q1 = DiGraph({1:{2:['a"']}}) .path_semigroup()

sage: P2 = Ql.representation(QQ, [[(2, 2)]], option='paths')
sage: P2.is_left_module()

False

The supplied basis is not closed under left multiplication, but it’s not closed under right multiplication either.
When the closure under right multiplication is taken the result is also closed under left multiplication and
therefore produces a left module structure:
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sage: kQ = Ql.representation(QQ, [[(1, 1)1, [(2, 2)]1], option="paths')
sage: kQ.is_left_module()
True

Taking the right closure of a left closed set produces another left closed set:

sage: Q2 = DiGraph({1:{2:['a'], 3:['b", 'c'1}, 2:{3:['d"]}}) .path_semigroup()
sage: M = Q2.representation(QQ, [[(2, 2)], [(1, 2, '"a')]], option='paths')
sage: M.is_left_module()

True

Note that the second path is length 2, so even though the edge (1, 2, ‘a’) appears in the input the path [(1,
2, ‘a’)] is not in the right closure:

sage: N = Q2.representation(QQ, [[(2, 2)], [(C1, 2, '"a'), (2, 3, 'd')]], option=
< 'paths")

sage: N.is_left_module()

False
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