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CHAPTER

ONE

BASE CLASSES FOR RINGS, ALGEBRAS AND FIELDS

1.1 Rings

This module provides the abstract base class Ring from which all rings in Sage (used to) derive, as well as a selection
of more specific base classes.

Warning: Those classes, except maybe for the lowest ones like Ring, CommutativeRing, Algebra and
CommutativeAlgebra, are being progressively deprecated in favor of the corresponding categories. which are
more flexible, in particular with respect to multiple inheritance.

The class inheritance hierarchy is:

• Ring

– Algebra

– CommutativeRing

∗ NoetherianRing

∗ CommutativeAlgebra

∗ IntegralDomain

· DedekindDomain

· PrincipalIdealDomain

Subclasses of PrincipalIdealDomain are

• EuclideanDomain

• Field

– FiniteField

Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes
do not support multiple inheritance. Hence, for instance, Field cannot be a subclass of both NoetherianRing and
PrincipalIdealDomain, although all fields are Noetherian PIDs.

(A distinct but equally awkward issue is that sometimes we may not know in advance whether or not a ring belongs in
one of these classes; e.g. some orders in number fields are Dedekind domains, but others are not, and we still want to
offer a unified interface, so orders are never instances of the DedekindDomain class.)

AUTHORS:

• David Harvey (2006-10-16): changed CommutativeAlgebra to derive from CommutativeRing instead of from
Algebra.
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• David Loeffler (2009-07-09): documentation fixes, added to reference manual.

• Simon King (2011-03-29): Proper use of the category framework for rings.

• Simon King (2011-05-20): Modify multiplication and _ideal_class_ to support ideals of non-commutative rings.

class sage.rings.ring.Algebra

Bases: Ring

Generic algebra

characteristic()

Return the characteristic of this algebra, which is the same as the characteristic of its base ring.

See objects with the base_ring attribute for additional examples. Here are some examples that explicitly
use the Algebra class.

EXAMPLES:

sage: A = Algebra(ZZ); A
<sage.rings.ring.Algebra object at ...>
sage: A.characteristic()
0
sage: A = Algebra(GF(7^3, 'a'))
sage: A.characteristic()
7

has_standard_involution()

Return True if the algebra has a standard involution and False otherwise. This algorithm follows Algo-
rithm 2.10 from John Voight’s Identifying the Matrix Ring. Currently the only type of algebra this will work
for is a quaternion algebra. Though this function seems redundant, once algebras have more functionality,
in particular have a method to construct a basis, this algorithm will have more general purpose.

EXAMPLES:

sage: B = QuaternionAlgebra(2)
sage: B.has_standard_involution()
True
sage: R.<x> = PolynomialRing(QQ)
sage: K.<u> = NumberField(x**2 - 2)
sage: A = QuaternionAlgebra(K,-2,5)
sage: A.has_standard_involution()
True
sage: L.<a,b> = FreeAlgebra(QQ,2)
sage: L.has_standard_involution()
Traceback (most recent call last):
...
NotImplementedError: has_standard_involution is not implemented for this algebra

class sage.rings.ring.CommutativeAlgebra

Bases: CommutativeRing

Generic commutative algebra

is_commutative()

Return True since this algebra is commutative.

EXAMPLES:
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Any commutative ring is a commutative algebra over itself:

sage: A = sage.rings.ring.CommutativeAlgebra
sage: A(ZZ).is_commutative()
True
sage: A(QQ).is_commutative()
True

Trying to create a commutative algebra over a non-commutative ring will result in a TypeError.

class sage.rings.ring.CommutativeRing

Bases: Ring

Generic commutative ring.

derivation(arg=None, twist=None)
Return the twisted or untwisted derivation over this ring specified by arg.

Note: A twisted derivation with respect to 𝜃 (or a 𝜃-derivation for short) is an additive map 𝑑 satisfying
the following axiom for all 𝑥, 𝑦 in the domain:

𝑑(𝑥𝑦) = 𝜃(𝑥)𝑑(𝑦) + 𝑑(𝑥)𝑦.

INPUT:

• arg – (optional) a generator or a list of coefficients that defines the derivation

• twist – (optional) the twisting homomorphism

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: R.derivation()
d/dx

In that case, arg could be a generator:

sage: R.derivation(y)
d/dy

or a list of coefficients:

sage: R.derivation([1,2,3])
d/dx + 2*d/dy + 3*d/dz

It is not possible to define derivations with respect to a polynomial which is not a variable:

sage: R.derivation(x^2)
Traceback (most recent call last):
...
ValueError: unable to create the derivation

Here is an example with twisted derivations:

1.1. Rings 3
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sage: R.<x,y,z> = QQ[]
sage: theta = R.hom([x^2, y^2, z^2])
sage: f = R.derivation(twist=theta); f
0
sage: f.parent()
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)

Specifying a scalar, the returned twisted derivation is the corresponding multiple of 𝜃 − 𝑖𝑑:

sage: R.derivation(1, twist=theta)
[x |--> x^2, y |--> y^2, z |--> z^2] - id
sage: R.derivation(x, twist=theta)
x*([x |--> x^2, y |--> y^2, z |--> z^2] - id)

derivation_module(codomain=None, twist=None)
Returns the module of derivations over this ring.

INPUT:

• codomain – an algebra over this ring or a ring homomorphism whose domain is this ring or None
(default: None); if it is a morphism, the codomain of derivations will be the codomain of the morphism
viewed as an algebra over self through the given morphism; if None, the codomain will be this ring

• twist – a morphism from this ring to codomain or None (default: None); if None, the coercion map
from this ring to codomain will be used

Note: A twisted derivation with respect to 𝜃 (or a 𝜃-derivation for short) is an additive map 𝑑 satisfying
the following axiom for all 𝑥, 𝑦 in the domain:

𝑑(𝑥𝑦) = 𝜃(𝑥)𝑑(𝑦) + 𝑑(𝑥)𝑦.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y, z over␣
→˓Rational Field
sage: M.gens()
(d/dx, d/dy, d/dz)

We can specify a different codomain:

sage: K = R.fraction_field()
sage: M = R.derivation_module(K); M
Module of derivations from Multivariate Polynomial Ring in x, y, z over
Rational Field to Fraction Field of Multivariate Polynomial Ring in x, y, z␣
→˓over Rational Field
sage: M.gen() / x
1/x*d/dx

Here is an example with a non-canonical defining morphism:
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sage: ev = R.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
From: Multivariate Polynomial Ring in x, y, z over Rational Field
To: Rational Field
Defn: x |--> 0

y |--> 1
z |--> 2

sage: M = R.derivation_module(ev)
sage: M
Module of derivations from Multivariate Polynomial Ring in x, y, z over␣
→˓Rational Field to Rational Field

Elements in 𝑀 acts as derivations at (0, 1, 2):

sage: Dx = M.gen(0); Dx
d/dx
sage: Dy = M.gen(1); Dy
d/dy
sage: Dz = M.gen(2); Dz
d/dz
sage: f = x^2 + y^2 + z^2
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4

An example with a twisting homomorphism:

sage: theta = R.hom([x^2, y^2, z^2])
sage: M = R.derivation_module(twist=theta); M
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)

See also:

derivation()

extension(poly, name=None, names=None, **kwds)
Algebraically extends self by taking the quotient self[x] / (f(x)).

INPUT:

• poly – A polynomial whose coefficients are coercible into self

• name – (optional) name for the root of 𝑓

Note: Using this method on an algebraically complete field does not return this field; the construction
self[x] / (f(x)) is done anyway.

EXAMPLES:
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sage: R = QQ['x']
sage: y = polygen(R)
sage: R.extension(y^2 - 5, 'a')
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in x␣
→˓over Rational Field with modulus a^2 - 5

sage: P.<x> = PolynomialRing(GF(5))
sage: F.<a> = GF(5).extension(x^2 - 2)
sage: P.<t> = F[]
sage: R.<b> = F.extension(t^2 - a); R
Univariate Quotient Polynomial Ring in b over Finite Field in a of size 5^2␣
→˓with modulus b^2 + 4*a

fraction_field()

Return the fraction field of self.

EXAMPLES:

sage: R = Integers(389)['x,y']
sage: Frac(R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers␣
→˓modulo 389
sage: R.fraction_field()
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers␣
→˓modulo 389

frobenius_endomorphism(n=1)
INPUT:

• n – a nonnegative integer (default: 1)

OUTPUT:

The 𝑛-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism(); Frob
Frobenius endomorphism x |--> x^5 of Power Series Ring in u over Finite Field␣
→˓of size 5
sage: Frob(u)
u^5

We can specify a power:

sage: f = K.frobenius_endomorphism(2); f
Frobenius endomorphism x |--> x^(5^2) of Power Series Ring in u over Finite␣
→˓Field of size 5
sage: f(1+u)
1 + u^25

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:
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sage: ZZ.ideal_monoid()
Monoid of ideals of Integer Ring
sage: R.<x>=QQ[]; R.ideal_monoid()
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field

is_commutative()

Return True, since this ring is commutative.

EXAMPLES:

sage: QQ.is_commutative()
True
sage: ZpCA(7).is_commutative()
True
sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i','j','k')); A
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: A.is_commutative()
False

krull_dimension()

Return the Krull dimension of this commutative ring.

The Krull dimension is the length of the longest ascending chain of prime ideals.

localization(additional_units, names=None, normalize=True, category=None)
Return the localization of self at the given additional units.

EXAMPLES:

sage: R.<x, y> = GF(3)[]
sage: R.localization((x*y, x**2+y**2))
Multivariate Polynomial Ring in x, y over Finite Field of size 3 localized at␣
→˓(y, x, x^2 + y^2)
sage: ~y in _
True

class sage.rings.ring.DedekindDomain

Bases: IntegralDomain

Generic Dedekind domain class.

A Dedekind domain is a Noetherian integral domain of Krull dimension one that is integrally closed in its field
of fractions.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please
create a category DedekindDomains, move the code of this class there, and use it instead.

integral_closure()

Return self since Dedekind domains are integrally closed.

EXAMPLES:

sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.integral_closure()
Gaussian Integers in Number Field in s with defining polynomial x^2 + 1

(continues on next page)
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(continued from previous page)

sage: OK.integral_closure() == OK
True

sage: QQ.integral_closure() == QQ
True

is_integrally_closed()

Return True since Dedekind domains are integrally closed.

EXAMPLES:

The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one
that are integrally closed over its field of fractions).

sage: ZZ.is_integrally_closed()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_integrally_closed()
True

These, however, are not Dedekind domains:

sage: QQ.is_integrally_closed()
True
sage: S = ZZ[sqrt(5)]; S.is_integrally_closed()
False
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.is_integral_domain()
True

is_noetherian()

Return True since Dedekind domains are Noetherian.

EXAMPLES:

The integers, Z, and rings of integers of number fields are Dedekind domains:

sage: ZZ.is_noetherian()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_noetherian()
True
sage: QQ.is_noetherian()
True

krull_dimension()

Return 1 since Dedekind domains have Krull dimension 1.

EXAMPLES:

The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one
that are integrally closed over its field of fractions):
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sage: ZZ.krull_dimension()
1
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.krull_dimension()
1

The following are not Dedekind domains but have a krull_dimension function:

sage: QQ.krull_dimension()
0
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.krull_dimension()
2
sage: U.<x,y,z> = PolynomialRing(ZZ,3); U
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: U.krull_dimension()
4

sage: K.<i> = QuadraticField(-1)
sage: R = K.order(2*i); R
Order in Number Field in i with defining polynomial x^2 + 1 with i = 1*I
sage: R.is_maximal()
False
sage: R.krull_dimension()
1

class sage.rings.ring.EuclideanDomain

Bases: PrincipalIdealDomain

Generic Euclidean domain class.

This class is deprecated. Please use the EuclideanDomains category instead.

parameter()

Return an element of degree 1.

EXAMPLES:

sage: R.<x>=QQ[]
sage: R.parameter()
x

class sage.rings.ring.Field

Bases: PrincipalIdealDomain

Generic field

algebraic_closure()

Return the algebraic closure of self.

Note: This is only implemented for certain classes of field.

EXAMPLES:

1.1. Rings 9
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sage: K = PolynomialRing(QQ,'x').fraction_field(); K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure()
Traceback (most recent call last):
...
NotImplementedError: Algebraic closures of general fields not implemented.

divides(x, y, coerce=True)
Return True if x divides y in this field (usually True in a field!). If coerce is True (the default), first
coerce x and y into self.

EXAMPLES:

sage: QQ.divides(2, 3/4)
True
sage: QQ.divides(0, 5)
False

fraction_field()

Return the fraction field of self.

EXAMPLES:

Since fields are their own field of fractions, we simply get the original field in return:

sage: QQ.fraction_field()
Rational Field
sage: RR.fraction_field()
Real Field with 53 bits of precision
sage: CC.fraction_field()
Complex Field with 53 bits of precision

sage: F = NumberField(x^2 + 1, 'i')
sage: F.fraction_field()
Number Field in i with defining polynomial x^2 + 1

ideal(*gens, **kwds)
Return the ideal generated by gens.

EXAMPLES:

sage: QQ.ideal(2)
Principal ideal (1) of Rational Field
sage: QQ.ideal(0)
Principal ideal (0) of Rational Field

integral_closure()

Return this field, since fields are integrally closed in their fraction field.

EXAMPLES:

sage: QQ.integral_closure()
Rational Field
sage: Frac(ZZ['x,y']).integral_closure()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring

10 Chapter 1. Base Classes for Rings, Algebras and Fields
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is_field(proof=True)
Return True since this is a field.

EXAMPLES:

sage: Frac(ZZ['x,y']).is_field()
True

is_integrally_closed()

Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction
field).

EXAMPLES:

sage: Frac(ZZ['x,y']).is_integrally_closed()
True

is_noetherian()

Return True since fields are Noetherian rings.

EXAMPLES:

sage: QQ.is_noetherian()
True

krull_dimension()

Return the Krull dimension of this field, which is 0.

EXAMPLES:

sage: QQ.krull_dimension()
0
sage: Frac(QQ['x,y']).krull_dimension()
0

prime_subfield()

Return the prime subfield of self.

EXAMPLES:

sage: k = GF(9, 'a')
sage: k.prime_subfield()
Finite Field of size 3

class sage.rings.ring.IntegralDomain

Bases: CommutativeRing

Generic integral domain class.

This class is deprecated. Please use the sage.categories.integral_domains.IntegralDomains category
instead.

is_field(proof=True)
Return True if this ring is a field.

EXAMPLES:

1.1. Rings 11
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sage: GF(7).is_field()
True

The following examples have their own is_field implementations:

sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False

is_integral_domain(proof=True)
Return True, since this ring is an integral domain.

(This is a naive implementation for objects with type IntegralDomain)

EXAMPLES:

sage: ZZ.is_integral_domain()
True
sage: QQ.is_integral_domain()
True
sage: ZZ['x'].is_integral_domain()
True
sage: R = ZZ.quotient(ZZ.ideal(10)); R.is_integral_domain()
False

is_integrally_closed()

Return True if this ring is integrally closed in its field of fractions; otherwise return False.

When no algorithm is implemented for this, then this function raises a NotImplementedError.

Note that is_integrally_closed has a naive implementation in fields. For every field 𝐹 , 𝐹 is its own
field of fractions, hence every element of 𝐹 is integral over 𝐹 .

EXAMPLES:

sage: ZZ.is_integrally_closed()
True
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: GF(5).is_integrally_closed()
True
sage: Z5 = Integers(5); Z5
Ring of integers modulo 5
sage: Z5.is_integrally_closed()
Traceback (most recent call last):
...
AttributeError: 'IntegerModRing_generic_with_category' object has no attribute
→˓'is_integrally_closed'

class sage.rings.ring.NoetherianRing

Bases: CommutativeRing
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Generic Noetherian ring class.

A Noetherian ring is a commutative ring in which every ideal is finitely generated.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please
create a category NoetherianRings, move the code of this class there, and use it instead.

is_noetherian()

Return True since this ring is Noetherian.

EXAMPLES:

sage: ZZ.is_noetherian()
True
sage: QQ.is_noetherian()
True
sage: R.<x> = PolynomialRing(QQ)
sage: R.is_noetherian()
True

class sage.rings.ring.PrincipalIdealDomain

Bases: IntegralDomain

Generic principal ideal domain.

This class is deprecated. Please use the PrincipalIdealDomains category instead.

class_group()

Return the trivial group, since the class group of a PID is trivial.

EXAMPLES:

sage: QQ.class_group()
Trivial Abelian group

content(x, y, coerce=True)
Return the content of 𝑥 and 𝑦, i.e. the unique element 𝑐 of self such that 𝑥/𝑐 and 𝑦/𝑐 are coprime and
integral.

EXAMPLES:

sage: QQ.content(ZZ(42), ZZ(48)); type(QQ.content(ZZ(42), ZZ(48)))
6
<class 'sage.rings.rational.Rational'>
sage: QQ.content(1/2, 1/3)
1/6
sage: factor(1/2); factor(1/3); factor(1/6)
2^-1
3^-1
2^-1 * 3^-1
sage: a = (2*3)/(7*11); b = (13*17)/(19*23)
sage: factor(a); factor(b); factor(QQ.content(a,b))
2 * 3 * 7^-1 * 11^-1
13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1

Note the changes to the second entry:

1.1. Rings 13
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sage: c = (2*3)/(7*11); d = (13*17)/(7*19*23)
sage: factor(c); factor(d); factor(QQ.content(c,d))
2 * 3 * 7^-1 * 11^-1
7^-1 * 13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
sage: e = (2*3)/(7*11); f = (13*17)/(7^3*19*23)
sage: factor(e); factor(f); factor(QQ.content(e,f))
2 * 3 * 7^-1 * 11^-1
7^-3 * 13 * 17 * 19^-1 * 23^-1
7^-3 * 11^-1 * 19^-1 * 23^-1

gcd(x, y, coerce=True)
Return the greatest common divisor of x and y, as elements of self.

EXAMPLES:

The integers are a principal ideal domain and hence a GCD domain:

sage: ZZ.gcd(42, 48)
6
sage: 42.factor(); 48.factor()
2 * 3 * 7
2^4 * 3
sage: ZZ.gcd(2^4*7^2*11, 2^3*11*13)
88
sage: 88.factor()
2^3 * 11

In a field, any nonzero element is a GCD of any nonempty set of nonzero elements. In previous versions,
Sage used to return 1 in the case of the rational field. However, since trac ticket #10771, the rational field is
considered as the fraction field of the integer ring. For the fraction field of an integral domain that provides
both GCD and LCM, it is possible to pick a GCD that is compatible with the GCD of the base ring:

sage: QQ.gcd(ZZ(42), ZZ(48)); type(QQ.gcd(ZZ(42), ZZ(48)))
6
<class 'sage.rings.rational.Rational'>
sage: QQ.gcd(1/2, 1/3)
1/6

Polynomial rings over fields are GCD domains as well. Here is a simple example over the ring of polyno-
mials over the rationals as well as over an extension ring. Note that gcd requires x and y to be coercible:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = NumberField(x^2 - 2, 'a')
sage: f = (x - a)*(x + a); g = (x - a)*(x^2 - 2)
sage: print(f); print(g)
x^2 - 2
x^3 - a*x^2 - 2*x + 2*a
sage: f in R
True
sage: g in R
False
sage: R.gcd(f,g)
Traceback (most recent call last):

(continues on next page)

14 Chapter 1. Base Classes for Rings, Algebras and Fields

https://trac.sagemath.org/10771


General Rings, Ideals, and Morphisms, Release 9.8

(continued from previous page)

...
TypeError: Unable to coerce 2*a to a rational
sage: R.base_extend(S).gcd(f,g)
x^2 - 2
sage: R.base_extend(S).gcd(f, (x - a)*(x^2 - 3))
x - a

is_noetherian()

Every principal ideal domain is noetherian, so we return True.

EXAMPLES:

sage: Zp(5).is_noetherian()
True

class sage.rings.ring.Ring

Bases: ParentWithGens

Generic ring class.

base_extend(R)
EXAMPLES:

sage: QQ.base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined
sage: ZZ.base_extend(GF(7))
Finite Field of size 7

category()

Return the category to which this ring belongs.

Note: This method exists because sometimes a ring is its own base ring. During initialisation of a ring
𝑅, it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that
R.category() tells that R is a ring, even before its category is properly initialised.

EXAMPLES:

sage: FreeAlgebra(QQ, 3, 'x').category() # todo: use a ring which is not an␣
→˓algebra!
Category of algebras with basis over Rational Field

Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether
the base ring belongs to the category of rings, the following is an indirect test that the category() method
of rings returns the category of rings even before the initialisation was successful:

sage: I = Integers(15)
sage: I.base_ring() is I
True
sage: I.category()
Join of Category of finite commutative rings

(continues on next page)
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(continued from previous page)

and Category of subquotients of monoids
and Category of quotients of semigroups
and Category of finite enumerated sets

epsilon()

Return the precision error of elements in this ring.

EXAMPLES:

sage: RDF.epsilon()
2.220446049250313e-16
sage: ComplexField(53).epsilon()
2.22044604925031e-16
sage: RealField(10).epsilon()
0.0020

For exact rings, zero is returned:

sage: ZZ.epsilon()
0

This also works over derived rings:

sage: RR['x'].epsilon()
2.22044604925031e-16
sage: QQ['x'].epsilon()
0

For the symbolic ring, there is no reasonable answer:

sage: SR.epsilon()
Traceback (most recent call last):
...
NotImplementedError

ideal(*args, **kwds)
Return the ideal defined by x, i.e., generated by x.

INPUT:

• *x – list or tuple of generators (or several input arguments)

• coerce – bool (default: True); this must be a keyword argument. Only set it to False if you are
certain that each generator is already in the ring.

• ideal_class – callable (default: self._ideal_class_()); this must be a keyword argument. A
constructor for ideals, taking the ring as the first argument and then the generators. Usually a subclass
of Ideal_generic or Ideal_nc.

• Further named arguments (such as side in the case of non-commutative rings) are forwarded to the
ideal class.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: R.ideal(x,y)

(continues on next page)
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Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal(x+y^2)
Ideal (y^2 + x) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal( [x^3,y^3+x^3] )
Ideal (x^3, x^3 + y^3) of Multivariate Polynomial Ring in x, y over Rational␣
→˓Field

Here is an example over a non-commutative ring:

sage: A = SteenrodAlgebra(2)
sage: A.ideal(A.1,A.2^2)
Twosided Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
sage: A.ideal(A.1,A.2^2,side='left')
Left Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(ZZ, 3)
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quotient(I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Algebra on 3 generators (x, y, z) over␣
→˓Integer Ring by the ideal (x*y + y*z, x^2 + x*y - y*x - y^2)
sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Associative Unital Algebra on 3 generators␣
→˓(x, y, z) over Integer Ring by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)

is_commutative()

Return True if this ring is commutative.

EXAMPLES:

sage: QQ.is_commutative()
True
sage: QQ['x,y,z'].is_commutative()
True
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: Q.is_commutative()
False

is_exact()

Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing
arithmetic.

Note: This defaults to True, so even if it does return True you have no guarantee (unless the ring has
properly overloaded this).
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EXAMPLES:

sage: QQ.is_exact() # indirect doctest
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False

is_field(proof=True)
Return True if this ring is a field.

INPUT:

• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error.
Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False
otherwise.

EXAMPLES:

sage: QQ.is_field()
True
sage: GF(9,'a').is_field()
True
sage: ZZ.is_field()
False
sage: QQ['x'].is_field()
False
sage: Frac(QQ['x']).is_field()
True

This illustrates the use of the proof parameter:

sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_field(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_field(proof = False)
False

is_integral_domain(proof=True)
Return True if this ring is an integral domain.

INPUT:

• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:
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If the parameter proof is set to True, the returned value is correct but the method might throw an error.
Otherwise, if it is set to False, the method returns True if it can establish that self is an integral domain
and False otherwise.

EXAMPLES:

sage: QQ.is_integral_domain()
True
sage: ZZ.is_integral_domain()
True
sage: ZZ['x,y,z'].is_integral_domain()
True
sage: Integers(8).is_integral_domain()
False
sage: Zp(7).is_integral_domain()
True
sage: Qp(7).is_integral_domain()
True
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain()
False

This illustrates the use of the proof parameter:

sage: R.<a,b> = ZZ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_integral_domain(proof = False)
False

is_noetherian()

Return True if this ring is Noetherian.

EXAMPLES:

sage: QQ.is_noetherian()
True
sage: ZZ.is_noetherian()
True

is_prime_field()

Return True if this ring is one of the prime fields Q or F𝑝.

EXAMPLES:

sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9,'a').is_prime_field()
False

(continues on next page)
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sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field()
False

is_subring(other)
Return True if the canonical map from self to other is injective.

Raises a NotImplementedError if not known.

EXAMPLES:

sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False

one()

Return the one element of this ring (cached), if it exists.

EXAMPLES:

sage: ZZ.one()
1
sage: QQ.one()
1
sage: QQ['x'].one()
1

The result is cached:

sage: ZZ.one() is ZZ.one()
True

order()

The number of elements of self.

EXAMPLES:

sage: GF(19).order()
19
sage: QQ.order()
+Infinity

principal_ideal(gen, coerce=True)
Return the principal ideal generated by gen.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: R.principal_ideal(x+2*y)
Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring
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random_element(bound=2)
Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval
[-bound,bound].

INPUT:

• bound – integer (default: 2)

ALGORITHM:

Uses Python’s randint.

unit_ideal()

Return the unit ideal of this ring.

EXAMPLES:

sage: Zp(7).unit_ideal()
Principal ideal (1 + O(7^20)) of 7-adic Ring with capped relative precision 20

zero()

Return the zero element of this ring (cached).

EXAMPLES:

sage: ZZ.zero()
0
sage: QQ.zero()
0
sage: QQ['x'].zero()
0

The result is cached:

sage: ZZ.zero() is ZZ.zero()
True

zero_ideal()

Return the zero ideal of this ring (cached).

EXAMPLES:

sage: ZZ.zero_ideal()
Principal ideal (0) of Integer Ring
sage: QQ.zero_ideal()
Principal ideal (0) of Rational Field
sage: QQ['x'].zero_ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field

The result is cached:

sage: ZZ.zero_ideal() is ZZ.zero_ideal()
True

zeta(n=2, all=False)
Return a primitive n-th root of unity in self if there is one, or raise a ValueError otherwise.

INPUT:
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• n – positive integer

• all – bool (default: False) - whether to return a list of all primitive 𝑛-th roots of unity. If True, raise
a ValueError if self is not an integral domain.

OUTPUT:

Element of self of finite order

EXAMPLES:

sage: QQ.zeta()
-1
sage: QQ.zeta(1)
1
sage: CyclotomicField(6).zeta(6)
zeta6
sage: CyclotomicField(3).zeta(3)
zeta3
sage: CyclotomicField(3).zeta(3).multiplicative_order()
3
sage: a = GF(7).zeta(); a
3
sage: a.multiplicative_order()
6
sage: a = GF(49,'z').zeta(); a
z
sage: a.multiplicative_order()
48
sage: a = GF(49,'z').zeta(2); a
6
sage: a.multiplicative_order()
2
sage: QQ.zeta(3)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in rational field
sage: Zp(7, prec=8).zeta()
3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + 6*7^6 + 2*7^7 + O(7^8)

zeta_order()

Return the order of the distinguished root of unity in self.

EXAMPLES:

sage: CyclotomicField(19).zeta_order()
38
sage: GF(19).zeta_order()
18
sage: GF(5^3,'a').zeta_order()
124
sage: Zp(7, prec=8).zeta_order()
6

sage.rings.ring.is_Ring(x)
Return True if x is a ring.
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EXAMPLES:

sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZ)
True
sage: MS = MatrixSpace(QQ,2)
sage: is_Ring(MS)
True
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CHAPTER

TWO

IDEALS

2.1 Ideals of commutative rings

Sage provides functionality for computing with ideals. One can create an ideal in any commutative or non-commutative
ring 𝑅 by giving a list of generators, using the notation R.ideal([a,b,...]). The case of non-commutative rings
is implemented in noncommutative_ideals.

A more convenient notation may be R*[a,b,...] or [a,b,...]*R. If 𝑅 is non-commutative, the former creates a
left and the latter a right ideal, and R*[a,b,...]*R creates a two-sided ideal.

sage.rings.ideal.Cyclic(R, n=None, homog=False, singular=None)
Ideal of cyclic n-roots from 1-st n variables of R if R is coercible to Singular.

INPUT:

• R – base ring to construct ideal for

• n – number of cyclic roots (default: None). If None, then n is set to R.ngens().

• homog – (default: False) if True a homogeneous ideal is returned using the last variable in the ideal

• singular – singular instance to use

Note: R will be set as the active ring in Singular

EXAMPLES:

An example from a multivariate polynomial ring over the rationals:

sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial
Ring in x, y, z over Rational Field
sage: I.groebner_basis()
[x + y + z, y^2 + y*z + z^2, z^3 - 1]

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
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sage.rings.ideal.FieldIdeal(R)
Let q = R.base_ring().order() and (𝑥0, ..., 𝑥𝑛) = R.gens() then if 𝑞 is finite this constructor returns

⟨𝑥𝑞
0 − 𝑥0, ..., 𝑥

𝑞
𝑛 − 𝑥𝑛⟩.

We call this ideal the field ideal and the generators the field equations.

EXAMPLES:

The field ideal generated from the polynomial ring over two variables in the finite field of size 2:

sage: P.<x,y> = PolynomialRing(GF(2),2)
sage: I = sage.rings.ideal.FieldIdeal(P); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring in x, y over
Finite Field of size 2

Another, similar example:

sage: Q.<x1,x2,x3,x4> = PolynomialRing(GF(2^4,name='alpha'), 4)
sage: J = sage.rings.ideal.FieldIdeal(Q); J
Ideal (x1^16 + x1, x2^16 + x2, x3^16 + x3, x4^16 + x4) of
Multivariate Polynomial Ring in x1, x2, x3, x4 over Finite
Field in alpha of size 2^4

sage.rings.ideal.Ideal(*args, **kwds)
Create the ideal in ring with given generators.

There are some shorthand notations for creating an ideal, in addition to using the Ideal() function:

• R.ideal(gens, coerce=True)

• gens*R

• R*gens

INPUT:

• R - A ring (optional; if not given, will try to infer it from gens)

• gens - list of elements generating the ideal

• coerce - bool (optional, default: True); whether gens need to be coerced into the ring.

OUTPUT: The ideal of ring generated by gens.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: I
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
sage: Ideal(R, [4 + 3*x + x^2, 1 + x^2])
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
sage: Ideal((4 + 3*x + x^2, 1 + x^2))
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring

sage: ideal(x^2-2*x+1, x^2-1)
Ideal (x^2 - 2*x + 1, x^2 - 1) of Univariate Polynomial Ring in x over Integer Ring
sage: ideal([x^2-2*x+1, x^2-1])

(continues on next page)
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Ideal (x^2 - 2*x + 1, x^2 - 1) of Univariate Polynomial Ring in x over Integer Ring
sage: l = [x^2-2*x+1, x^2-1]
sage: ideal(f^2 for f in l)
Ideal (x^4 - 4*x^3 + 6*x^2 - 4*x + 1, x^4 - 2*x^2 + 1) of
Univariate Polynomial Ring in x over Integer Ring

This example illustrates how Sage finds a common ambient ring for the ideal, even though 1 is in the integers (in
this case).

sage: R.<t> = ZZ['t']
sage: i = ideal(1,t,t^2)
sage: i
Ideal (1, t, t^2) of Univariate Polynomial Ring in t over Integer Ring
sage: ideal(1/2,t,t^2)
Principal ideal (1) of Univariate Polynomial Ring in t over Rational Field

This shows that the issues at trac ticket #1104 are resolved:

sage: Ideal(3, 5)
Principal ideal (1) of Integer Ring
sage: Ideal(ZZ, 3, 5)
Principal ideal (1) of Integer Ring
sage: Ideal(2, 4, 6)
Principal ideal (2) of Integer Ring

You have to provide enough information that Sage can figure out which ring to put the ideal in.

sage: I = Ideal([])
Traceback (most recent call last):
...
ValueError: unable to determine which ring to embed the ideal in

sage: I = Ideal()
Traceback (most recent call last):
...
ValueError: need at least one argument

Note that some rings use different ideal implementations than the standard, even if they are PIDs.:

sage: R.<x> = GF(5)[]
sage: I = R*(x^2+3)
sage: type(I)
<class 'sage.rings.polynomial.ideal.Ideal_1poly_field'>

You can also pass in a specific ideal type:

sage: from sage.rings.ideal import Ideal_pid
sage: I = Ideal(x^2+3,ideal_class=Ideal_pid)
sage: type(I)
<class 'sage.rings.ideal.Ideal_pid'>

class sage.rings.ideal.Ideal_fractional(ring, gens, coerce=True)
Bases: Ideal_generic
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Fractional ideal of a ring.

See Ideal().

class sage.rings.ideal.Ideal_generic(ring, gens, coerce=True)
Bases: MonoidElement

An ideal.

See Ideal().

absolute_norm()

Returns the absolute norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an
extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

Todo: Implement this method.

EXAMPLES:

sage: R.<t> = GF(9, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.absolute_norm()
Traceback (most recent call last):
...
NotImplementedError

apply_morphism(phi)
Apply the morphism phi to every element of this ideal. Returns an ideal in the domain of phi.

EXAMPLES:

sage: psi = CC['x'].hom([-CC['x'].0])
sage: J = ideal([CC['x'].0 + 1]); J
Principal ideal (x + 1.00000000000000) of Univariate Polynomial Ring in x over␣
→˓Complex Field with 53 bits of precision
sage: psi(J)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x over␣
→˓Complex Field with 53 bits of precision
sage: J.apply_morphism(psi)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x over␣
→˓Complex Field with 53 bits of precision

sage: psi = ZZ['x'].hom([-ZZ['x'].0])
sage: J = ideal([ZZ['x'].0, 2]); J
Ideal (x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: psi(J)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: J.apply_morphism(psi)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring

associated_primes()

Return the list of associated prime ideals of this ideal.
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EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.associated_primes()
Traceback (most recent call last):
...
NotImplementedError

base_ring()

Returns the base ring of this ideal.

EXAMPLES:

sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.base_ring(); J.base_ring()
Integer Ring
Integer Ring

We construct an example of an ideal of a quotient ring:

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field

And 𝑝-adic numbers:

sage: R = Zp(7, prec=10); R
7-adic Ring with capped relative precision 10
sage: I = 7*R; I
Principal ideal (7 + O(7^11)) of 7-adic Ring with capped relative precision 10
sage: I.base_ring()
7-adic Ring with capped relative precision 10

category()

Return the category of this ideal.

Note: category is dependent on the ring of the ideal.

EXAMPLES:

sage: P.<x> = ZZ[]
sage: I = ZZ.ideal(7)
sage: J = P.ideal(7,x)
sage: K = P.ideal(7)
sage: I.category()
Category of ring ideals in Integer Ring
sage: J.category()

(continues on next page)
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Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring
sage: K.category()
Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring

embedded_primes()

Return the list of embedded primes of this ideal.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: I = R.ideal(x^2, x*y)
sage: I.embedded_primes()
[Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]

free_resolution(*args, **kwds)
Return a free resolution of self.

For input options, see FreeResolution.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: I = R.ideal([x^4 + 3*x^2 + 2])
sage: I.free_resolution()
S^1 <-- S^1 <-- 0

gen(i)
Return the i-th generator in the current basis of this ideal.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gen(1)
y + 1

sage: ZZ.ideal(5,10).gen()
5

gens()

Return a set of generators / a basis of self.

This is the set of generators provided during creation of this ideal.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
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sage: ZZ.ideal(5,10).gens()
(5,)

gens_reduced()

Same as gens() for this ideal, since there is currently no special gens_reduced algorithm implemented
for this ring.

This method is provided so that ideals in Z have the method gens_reduced(), just like ideals of number
fields.

EXAMPLES:

sage: ZZ.ideal(5).gens_reduced()
(5,)

graded_free_resolution(*args, **kwds)
Return a graded free resolution of self.

For input options, see GradedFiniteFreeResolution.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: I = R.ideal([x^3])
sage: I.graded_free_resolution()
S(0) <-- S(-3) <-- 0

is_maximal()

Return True if the ideal is maximal in the ring containing the ideal.

Todo: This is not implemented for many rings. Implement it!

EXAMPLES:

sage: R = ZZ
sage: I = R.ideal(7)
sage: I.is_maximal()
True
sage: R.ideal(16).is_maximal()
False
sage: S = Integers(8)
sage: S.ideal(0).is_maximal()
False
sage: S.ideal(2).is_maximal()
True
sage: S.ideal(4).is_maximal()
False

is_primary(P=None)
Returns True if this ideal is primary (or 𝑃 -primary, if a prime ideal 𝑃 is specified).

Recall that an ideal 𝐼 is primary if and only if 𝐼 has a unique associated prime (see page 52 in [AM1969]).
If this prime is 𝑃 , then 𝐼 is said to be 𝑃 -primary.

INPUT:
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• P - (default: None) a prime ideal in the same ring

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: I = R.ideal([x^2, x*y])
sage: I.is_primary()
False
sage: J = I.primary_decomposition()[1]; J
Ideal (y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: J.is_primary()
True
sage: J.is_prime()
False

Some examples from the Macaulay2 documentation:

sage: R.<x, y, z> = GF(101)[]
sage: I = R.ideal([y^6])
sage: I.is_primary()
True
sage: I.is_primary(R.ideal([y]))
True
sage: I = R.ideal([x^4, y^7])
sage: I.is_primary()
True
sage: I = R.ideal([x*y, y^2])
sage: I.is_primary()
False

Note: This uses the list of associated primes.

is_prime()

Return True if this ideal is prime.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: I = R.ideal([x, y])
sage: I.is_prime() # a maximal ideal
True
sage: I = R.ideal([x^2-y])
sage: I.is_prime() # a non-maximal prime ideal
True
sage: I = R.ideal([x^2, y])
sage: I.is_prime() # a non-prime primary ideal
False
sage: I = R.ideal([x^2, x*y])
sage: I.is_prime() # a non-prime non-primary ideal
False

sage: S = Integers(8)
sage: S.ideal(0).is_prime()

(continues on next page)
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False
sage: S.ideal(2).is_prime()
True
sage: S.ideal(4).is_prime()
False

Note that this method is not implemented for all rings where it could be:

sage: R.<x> = ZZ[]
sage: I = R.ideal(7)
sage: I.is_prime() # when implemented, should be True
Traceback (most recent call last):
...
NotImplementedError

Note: For general rings, uses the list of associated primes.

is_principal()

Returns True if the ideal is principal in the ring containing the ideal.

Todo: Code is naive. Only keeps track of ideal generators as set during initialization of the ideal. (Can
the base ring change? See example below.)

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(2,x)
sage: I.is_principal()
Traceback (most recent call last):
...
NotImplementedError
sage: J = R.base_extend(QQ).ideal(2,x)
sage: J.is_principal()
True

is_trivial()

Return True if this ideal is (0) or (1).

minimal_associated_primes()

Return the list of minimal associated prime ideals of this ideal.

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.minimal_associated_primes()
Traceback (most recent call last):
...
NotImplementedError
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ngens()

Return the number of generators in the basis.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.ngens()
2

sage: ZZ.ideal(5,10).ngens()
1

norm()

Returns the norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an
extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

EXAMPLES:

sage: R.<t> = GF(8, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.norm()
Principal ideal (t^4 + t + 1) of Univariate Polynomial Ring in t over Finite␣
→˓Field in a of size 2^3

primary_decomposition()

Return a decomposition of this ideal into primary ideals.

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.primary_decomposition()
Traceback (most recent call last):
...
NotImplementedError

random_element(*args, **kwds)
Return a random element in this ideal.

EXAMPLES:

sage: P.<a,b,c> = GF(5)[[]]
sage: I = P.ideal([a^2, a*b + c, c^3])
sage: I.random_element() # random
2*a^5*c + a^2*b*c^4 + ... + O(a, b, c)^13

reduce(f )
Return the reduction of the element of 𝑓 modulo self.

This is an element of 𝑅 that is equivalent modulo 𝐼 to 𝑓 where 𝐼 is self.

EXAMPLES:
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sage: ZZ.ideal(5).reduce(17)
2
sage: parent(ZZ.ideal(5).reduce(17))
Integer Ring

ring()

Return the ring containing this ideal.

EXAMPLES:

sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.ring(); J.ring()
Integer Ring
Integer Ring

Note that self.ring() is different from self.base_ring()

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field

Another example using polynomial rings:

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 3)
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
sage: Rbar = R.quotient(I, names='a')
sage: S = PolynomialRing(Rbar, 'y'); y = Rbar.gen(); S
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a␣
→˓over Rational Field with modulus x^2 - 3
sage: J = S.ideal(y^2 + 1)
sage: J.ring()
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a␣
→˓over Rational Field with modulus x^2 - 3

class sage.rings.ideal.Ideal_pid(ring, gen)
Bases: Ideal_principal

An ideal of a principal ideal domain.

See Ideal().

gcd(other)
Returns the greatest common divisor of the principal ideal with the ideal other; that is, the largest principal
ideal contained in both the ideal and other
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Todo: This is not implemented in the case when other is neither principal nor when the generator of
self is contained in other. Also, it seems that this class is used only in PIDs–is this redundant?

Note: The second example is broken.

EXAMPLES:

An example in the principal ideal domain Z:

sage: R = ZZ
sage: I = R.ideal(42)
sage: J = R.ideal(70)
sage: I.gcd(J)
Principal ideal (14) of Integer Ring
sage: J.gcd(I)
Principal ideal (14) of Integer Ring

is_maximal()

Returns whether this ideal is maximal.

Principal ideal domains have Krull dimension 1 (or 0), so an ideal is maximal if and only if it’s prime (and
nonzero if the ring is not a field).

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: p = R.ideal(t^2 + 2)
sage: p.is_maximal()
True
sage: p = R.ideal(t^2 + 1)
sage: p.is_maximal()
False
sage: p = R.ideal(0)
sage: p.is_maximal()
False
sage: p = R.ideal(1)
sage: p.is_maximal()
False

is_prime()

Return True if the ideal is prime.

This relies on the ring elements having a method is_irreducible() implemented, since an ideal (𝑎) is
prime iff 𝑎 is irreducible (or 0).

EXAMPLES:

sage: ZZ.ideal(2).is_prime()
True
sage: ZZ.ideal(-2).is_prime()
True
sage: ZZ.ideal(4).is_prime()
False

(continues on next page)
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sage: ZZ.ideal(0).is_prime()
True
sage: R.<x> = QQ[]
sage: P = R.ideal(x^2+1); P
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: P.is_prime()
True

In fields, only the zero ideal is prime:

sage: RR.ideal(0).is_prime()
True
sage: RR.ideal(7).is_prime()
False

reduce(f )
Return the reduction of 𝑓 modulo self.

EXAMPLES:

sage: I = 8*ZZ
sage: I.reduce(10)
2
sage: n = 10; n.mod(I)
2

residue_field()

Return the residue class field of this ideal, which must be prime.

Todo: Implement this for more general rings. Currently only defined for Z and for number field orders.

EXAMPLES:

sage: P = ZZ.ideal(61); P
Principal ideal (61) of Integer Ring
sage: F = P.residue_field(); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
From: Rational Field
To: Residue field of Integers modulo 61

sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):
...
ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative␣
→˓valuation
sage: lift = F.lift_map(); lift
Lifting map:
From: Residue field of Integers modulo 61
To: Integer Ring

(continues on next page)
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sage: lift(F(12345/67890))
33
sage: (12345/67890) % 61
33

class sage.rings.ideal.Ideal_principal(ring, gens, coerce=True)
Bases: Ideal_generic

A principal ideal.

See Ideal().

divides(other)
Return True if self divides other.

EXAMPLES:

sage: P.<x> = PolynomialRing(QQ)
sage: I = P.ideal(x)
sage: J = P.ideal(x^2)
sage: I.divides(J)
True
sage: J.divides(I)
False

gen(i=0)
Return the generator of the principal ideal.

The generator is an element of the ring containing the ideal.

EXAMPLES:

A simple example in the integers:

sage: R = ZZ
sage: I = R.ideal(7)
sage: J = R.ideal(7, 14)
sage: I.gen(); J.gen()
7
7

Note that the generator belongs to the ring from which the ideal was initialized:

sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.base_extend(QQ).ideal(2,x)
sage: a = I.gen(); a
x
sage: b = J.gen(); b
1
sage: a.base_ring()
Integer Ring
sage: b.base_ring()
Rational Field
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is_principal()

Returns True if the ideal is principal in the ring containing the ideal. When the ideal construction is
explicitly principal (i.e. when we define an ideal with one element) this is always the case.

EXAMPLES:

Note that Sage automatically coerces ideals into principal ideals during initialization:

sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.ideal(2,x)
sage: K = R.base_extend(QQ).ideal(2,x)
sage: I
Principal ideal (x) of Univariate Polynomial Ring in x
over Integer Ring
sage: J
Ideal (2, x) of Univariate Polynomial Ring in x over Integer Ring
sage: K
Principal ideal (1) of Univariate Polynomial Ring in x
over Rational Field
sage: I.is_principal()
True
sage: K.is_principal()
True

sage.rings.ideal.Katsura(R, n=None, homog=False, singular=None)
n-th katsura ideal of R if R is coercible to Singular.

INPUT:

• R – base ring to construct ideal for

• n – (default: None) which katsura ideal of R. If None, then n is set to R.ngens().

• homog – if True a homogeneous ideal is returned using the last variable in the ideal (default: False)

• singular – singular instance to use

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P,3); I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)
of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: Q.<x> = PolynomialRing(QQ, implementation="singular")
sage: J = sage.rings.ideal.Katsura(Q,1); J
Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field

sage.rings.ideal.is_Ideal(x)
Return True if object is an ideal of a ring.

EXAMPLES:

A simple example involving the ring of integers. Note that Sage does not interpret rings objects themselves as
ideals. However, one can still explicitly construct these ideals:
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sage: from sage.rings.ideal import is_Ideal
sage: R = ZZ
sage: is_Ideal(R)
False
sage: 1*R; is_Ideal(1*R)
Principal ideal (1) of Integer Ring
True
sage: 0*R; is_Ideal(0*R)
Principal ideal (0) of Integer Ring
True

Sage recognizes ideals of polynomial rings as well:

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 + 1); I
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: is_Ideal(I)
True
sage: is_Ideal((x^2 + 1)*R)
True

2.2 Monoid of ideals in a commutative ring

WARNING: This is used by some rings that are not commutative!

sage: MS = MatrixSpace(QQ,3,3)
sage: type(MS.ideal(MS.one()).parent())
<class 'sage.rings.ideal_monoid.IdealMonoid_c_with_category'>

sage.rings.ideal_monoid.IdealMonoid(R)
Return the monoid of ideals in the ring R.

EXAMPLES:

sage: R = QQ['x']
sage: sage.rings.ideal_monoid.IdealMonoid(R)
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field

class sage.rings.ideal_monoid.IdealMonoid_c(R)
Bases: Parent

The monoid of ideals in a commutative ring.

Element

alias of Ideal_generic

ring()

Return the ring of which this is the ideal monoid.

EXAMPLES:
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sage: R = QuadraticField(-23, 'a')
sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M.ring() is R
True

2.3 Ideals of non-commutative rings

Generic implementation of one- and two-sided ideals of non-commutative rings.

AUTHOR:

• Simon King (2011-03-21), <simon.king@uni-jena.de>, trac ticket #7797.

EXAMPLES:

sage: MS = MatrixSpace(ZZ,2,2)
sage: MS*MS([0,1,-2,3])
Left Ideal
(
[ 0 1]
[-2 3]

)
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS([0,1,-2,3])*MS
Right Ideal
(
[ 0 1]
[-2 3]

)
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS*MS([0,1,-2,3])*MS
Twosided Ideal
(
[ 0 1]
[-2 3]

)
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

See letterplace_ideal for a more elaborate implementation in the special case of ideals in free algebras.

class sage.rings.noncommutative_ideals.IdealMonoid_nc(R)
Bases: IdealMonoid_c

Base class for the monoid of ideals over a non-commutative ring.

Note: This class is essentially the same as IdealMonoid_c, but does not complain about non-commutative
rings.

EXAMPLES:

sage: MS = MatrixSpace(ZZ,2,2)
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
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class sage.rings.noncommutative_ideals.Ideal_nc(ring, gens, coerce=True, side='twosided')
Bases: Ideal_generic

Generic non-commutative ideal.

All fancy stuff such as the computation of Groebner bases must be implemented in sub-classes. See
LetterplaceIdeal for an example.

EXAMPLES:

sage: MS = MatrixSpace(QQ,2,2)
sage: I = MS*[MS.1,MS.2]; I
Left Ideal
(
[0 1]
[0 0],

[0 0]
[1 0]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: [MS.1,MS.2]*MS
Right Ideal
(
[0 1]
[0 0],

[0 0]
[1 0]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS*[MS.1,MS.2]*MS
Twosided Ideal
(
[0 1]
[0 0],

[0 0]
[1 0]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

side()

Return a string that describes the sidedness of this ideal.

EXAMPLES:

sage: A = SteenrodAlgebra(2)
sage: IL = A*[A.1+A.2,A.1^2]
sage: IR = [A.1+A.2,A.1^2]*A
sage: IT = A*[A.1+A.2,A.1^2]*A
sage: IL.side()
'left'
sage: IR.side()
'right'

(continues on next page)
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sage: IT.side()
'twosided'
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CHAPTER

THREE

RING MORPHISMS

3.1 Homomorphisms of rings

We give a large number of examples of ring homomorphisms.

EXAMPLES:

Natural inclusion Z →˓ Q:

sage: H = Hom(ZZ, QQ)
sage: phi = H([1])
sage: phi(10)
10
sage: phi(3/1)
3
sage: phi(2/3)
Traceback (most recent call last):
...
TypeError: 2/3 fails to convert into the map's domain Integer Ring, but a `pushforward`␣
→˓method is not properly implemented

There is no homomorphism in the other direction:

sage: H = Hom(QQ, ZZ)
sage: H([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images␣
→˓of generators

EXAMPLES:

Reduction to finite field:

sage: H = Hom(ZZ, GF(9, 'a'))
sage: phi = H([1])
sage: phi(5)
2
sage: psi = H([4])
sage: psi(5)
2

Map from single variable polynomial ring:
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sage: R.<x> = ZZ[]
sage: phi = R.hom([2], GF(5))
sage: phi
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Finite Field of size 5
Defn: x |--> 2

sage: phi(x + 12)
4

Identity map on the real numbers:

sage: f = RR.hom([RR(1)]); f
Ring endomorphism of Real Field with 53 bits of precision
Defn: 1.00000000000000 |--> 1.00000000000000

sage: f(2.5)
2.50000000000000
sage: f = RR.hom( [2.0] )
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images␣
→˓of generators

Homomorphism from one precision of field to another.

From smaller to bigger doesn’t make sense:

sage: R200 = RealField(200)
sage: f = RR.hom( R200 )
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Real Field with 53 bits of precision to Real␣
→˓Field with 200 bits of precision not defined

From bigger to small does:

sage: f = RR.hom( RealField(15) )
sage: f(2.5)
2.500
sage: f(RR.pi())
3.142

Inclusion map from the reals to the complexes:

sage: i = RR.hom([CC(1)]); i
Ring morphism:
From: Real Field with 53 bits of precision
To: Complex Field with 53 bits of precision
Defn: 1.00000000000000 |--> 1.00000000000000

sage: i(RR('3.1'))
3.10000000000000

A map from a multivariate polynomial ring to itself:
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sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: phi = R.hom([y,z,x^2]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
Defn: x |--> y

y |--> z
z |--> x^2

sage: phi(x+y+z)
x^2 + y + z

An endomorphism of a quotient of a multi-variate polynomial ring:

sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = quo(R, ideal(1 + y^2))
sage: phi = S.hom([a^2, -b])
sage: phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational␣
→˓Field by the ideal (y^2 + 1)
Defn: a |--> a^2

b |--> -b
sage: phi(b)
-b
sage: phi(a^2 + b^2)
a^4 - 1

The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:

sage: R = ZZ.quo(8*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
From: Integer Ring
To: Ring of integers modulo 8
Defn: Natural quotient map

sage: pi.domain()
Integer Ring
sage: pi.codomain()
Ring of integers modulo 8
sage: pi(10)
2
sage: pi.lift()
Set-theoretic ring morphism:
From: Ring of integers modulo 8
To: Integer Ring
Defn: Choice of lifting map

sage: pi.lift(13)
5

Inclusion of GF(2) into GF(4,'a'):

sage: k = GF(2)
sage: i = k.hom(GF(4, 'a'))
sage: i
Ring morphism:

(continues on next page)
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From: Finite Field of size 2
To: Finite Field in a of size 2^2
Defn: 1 |--> 1

sage: i(0)
0
sage: a = i(1); a.parent()
Finite Field in a of size 2^2

We next compose the inclusion with reduction from the integers to GF(2):

sage: pi = ZZ.hom(k)
sage: pi
Natural morphism:
From: Integer Ring
To: Finite Field of size 2

sage: f = i * pi
sage: f
Composite map:
From: Integer Ring
To: Finite Field in a of size 2^2
Defn: Natural morphism:

From: Integer Ring
To: Finite Field of size 2

then
Ring morphism:
From: Finite Field of size 2
To: Finite Field in a of size 2^2
Defn: 1 |--> 1

sage: a = f(5); a
1
sage: a.parent()
Finite Field in a of size 2^2

Inclusion from Q to the 3-adic field:

sage: phi = QQ.hom(Qp(3, print_mode = 'series'))
sage: phi
Ring morphism:
From: Rational Field
To: 3-adic Field with capped relative precision 20

sage: phi.codomain()
3-adic Field with capped relative precision 20
sage: phi(394)
1 + 2*3 + 3^2 + 2*3^3 + 3^4 + 3^5 + O(3^20)

An automorphism of a quotient of a univariate polynomial ring:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<sqrt2> = R.quo(x^2-2)
sage: sqrt2^2
2
sage: (3+sqrt2)^10
993054*sqrt2 + 1404491

(continues on next page)
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sage: c = S.hom([-sqrt2])
sage: c(1+sqrt2)
-sqrt2 + 1

Note that Sage verifies that the morphism is valid:

sage: (1 - sqrt2)^2
-2*sqrt2 + 3
sage: c = S.hom([1-sqrt2]) # this is not valid
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images␣
→˓of generators

Endomorphism of power series ring:

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10); R
Power Series Ring in t over Rational Field
sage: f = R.hom([t^2]); f
Ring endomorphism of Power Series Ring in t over Rational Field
Defn: t |--> t^2

sage: s = 1/(1 + t); s
1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
1 - t^2 + t^4 - t^6 + t^8 - t^10 + t^12 - t^14 + t^16 - t^18 + O(t^20)

Frobenius on a power series ring over a finite field:

sage: R.<t> = PowerSeriesRing(GF(5))
sage: f = R.hom([t^5]); f
Ring endomorphism of Power Series Ring in t over Finite Field of size 5
Defn: t |--> t^5

sage: a = 2 + t + 3*t^2 + 4*t^3 + O(t^4)
sage: b = 1 + t + 2*t^2 + t^3 + O(t^5)
sage: f(a)
2 + t^5 + 3*t^10 + 4*t^15 + O(t^20)
sage: f(b)
1 + t^5 + 2*t^10 + t^15 + O(t^25)
sage: f(a*b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
sage: f(a)*f(b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)

Homomorphism of Laurent series ring:

sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: f = R.hom([t^3 + t]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
Defn: t |--> t + t^3

sage: s = 2/t^2 + 1/(1 + t); s
2*t^-2 + 1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
2*t^-2 - 3 - t + 7*t^2 - 2*t^3 - 5*t^4 - 4*t^5 + 16*t^6 - 9*t^7 + O(t^8)
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sage: f = R.hom([t^3]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
Defn: t |--> t^3

sage: f(s)
2*t^-6 + 1 - t^3 + t^6 - t^9 + t^12 - t^15 + t^18 - t^21 + t^24 - t^27 + O(t^30)

Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator
must be positive:

sage: R.hom([1/t])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images␣
→˓of generators
sage: R.hom([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images␣
→˓of generators

Complex conjugation on cyclotomic fields:

sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
Defn: zeta7 |--> -zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - zeta7 - 1

sage: a = (1+zeta7)^5; a
zeta7^5 + 5*zeta7^4 + 10*zeta7^3 + 10*zeta7^2 + 5*zeta7 + 1
sage: c(a)
5*zeta7^5 + 5*zeta7^4 - 4*zeta7^2 - 5*zeta7 - 4
sage: c(zeta7 + 1/zeta7) # this element is obviously fixed by inversion
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
sage: zeta7 + 1/zeta7
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1

Embedding a number field into the reals:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<beta> = NumberField(x^3 - 2)
sage: alpha = RR(2)^(1/3); alpha
1.25992104989487
sage: i = K.hom([alpha],check=False); i
Ring morphism:
From: Number Field in beta with defining polynomial x^3 - 2
To: Real Field with 53 bits of precision
Defn: beta |--> 1.25992104989487

sage: i(beta)
1.25992104989487
sage: i(beta^3)
2.00000000000000
sage: i(beta^2 + 1)
2.58740105196820
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An example from Jim Carlson:

sage: K = QQ # by the way :-)
sage: R.<a,b,c,d> = K[]; R
Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field
sage: f = R.hom([0,0,0,u], S); f
Ring morphism:
From: Multivariate Polynomial Ring in a, b, c, d over Rational Field
To: Univariate Polynomial Ring in u over Rational Field
Defn: a |--> 0

b |--> 0
c |--> 0
d |--> u

sage: f(a+b+c+d)
u
sage: f( (a+b+c+d)^2 )
u^2

class sage.rings.morphism.FrobeniusEndomorphism_generic

Bases: RingHomomorphism

A class implementing Frobenius endomorphisms on rings of prime characteristic.

power()

Return an integer 𝑛 such that this endomorphism is the 𝑛-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism()
sage: Frob.power()
1
sage: (Frob^9).power()
9

class sage.rings.morphism.RingHomomorphism

Bases: RingMap

Homomorphism of rings.

inverse()

Return the inverse of this ring homomorphism if it exists.

Raises a ZeroDivisionError if the inverse does not exist.

ALGORITHM:

By default, this computes a Gröbner basis of the ideal corresponding to the graph of the ring homomor-
phism.

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = R.hom([2*t - 1], R)
sage: f.inverse()
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Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> 1/2*t + 1/2

The following non-linear homomorphism is not invertible, but it induces an isomorphism on a quotient
ring:

sage: R.<x,y,z> = QQ[]
sage: f = R.hom([y*z, x*z, x*y], R)
sage: f.inverse()
Traceback (most recent call last):
...
ZeroDivisionError: ring homomorphism not surjective
sage: f.is_injective()
True
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: g = Q.hom([y*z, x*z, x*y], Q)
sage: g.inverse()
Ring endomorphism of Quotient of Multivariate Polynomial Ring
in x, y, z over Rational Field by the ideal (x*y*z - 1)
Defn: x |--> y*z

y |--> x*z
z |--> x*y

Homomorphisms over the integers are supported:

sage: S.<x,y> = ZZ[]
sage: f = S.hom([x + 2*y, x + 3*y], S)
sage: f.inverse()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> 3*x - 2*y

y |--> -x + y
sage: (f.inverse() * f).is_identity()
True

The following homomorphism is invertible over the rationals, but not over the integers:

sage: g = S.hom([x + y, x - y - 2], S)
sage: g.inverse()
Traceback (most recent call last):
...
ZeroDivisionError: ring homomorphism not surjective
sage: R.<x,y> = QQ[x,y]
sage: h = R.hom([x + y, x - y - 2], R)
sage: (h.inverse() * h).is_identity()
True

This example by M. Nagata is a wild automorphism:

sage: R.<x,y,z> = QQ[]
sage: sigma = R.hom([x - 2*y*(z*x+y^2) - z*(z*x+y^2)^2,
....: y + z*(z*x+y^2), z], R)
sage: tau = sigma.inverse(); tau
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over

(continues on next page)

52 Chapter 3. Ring Morphisms



General Rings, Ideals, and Morphisms, Release 9.8

(continued from previous page)

Rational Field
Defn: x |--> -y^4*z - 2*x*y^2*z^2 - x^2*z^3 + 2*y^3 + 2*x*y*z + x

y |--> -y^2*z - x*z^2 + y
z |--> z

sage: (tau * sigma).is_identity()
True

We compute the triangular automorphism that converts moments to cumulants, as well as its inverse, using
the moment generating function. The choice of a term ordering can have a great impact on the computation
time of a Gröbner basis, so here we choose a weighted ordering such that the images of the generators are
homogeneous polynomials.

sage: d = 12
sage: T = TermOrder('wdegrevlex', [1..d])
sage: R = PolynomialRing(QQ, ['x%s' % j for j in (1..d)], order=T)
sage: S.<t> = PowerSeriesRing(R)
sage: egf = S([0] + list(R.gens())).ogf_to_egf().exp(prec=d+1)
sage: phi = R.hom(egf.egf_to_ogf().list()[1:], R)
sage: phi.im_gens()[:5]
[x1,
x1^2 + x2,
x1^3 + 3*x1*x2 + x3,
x1^4 + 6*x1^2*x2 + 3*x2^2 + 4*x1*x3 + x4,
x1^5 + 10*x1^3*x2 + 15*x1*x2^2 + 10*x1^2*x3 + 10*x2*x3 + 5*x1*x4 + x5]
sage: all(p.is_homogeneous() for p in phi.im_gens())
True
sage: phi.inverse().im_gens()[:5]
[x1,
-x1^2 + x2,
2*x1^3 - 3*x1*x2 + x3,
-6*x1^4 + 12*x1^2*x2 - 3*x2^2 - 4*x1*x3 + x4,
24*x1^5 - 60*x1^3*x2 + 30*x1*x2^2 + 20*x1^2*x3 - 10*x2*x3 - 5*x1*x4 + x5]
sage: (phi.inverse() * phi).is_identity()
True

Automorphisms of number fields as well as Galois fields are supported:

sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7])
sage: (c.inverse() * c).is_identity()
True
sage: F.<t> = GF(7^3)
sage: f = F.hom(t^7, F)
sage: (f.inverse() * f).is_identity()
True

An isomorphism between the algebraic torus and the circle over a number field:

sage: K.<i> = QuadraticField(-1)
sage: A.<z,w> = K['z,w'].quotient('z*w - 1')
sage: B.<x,y> = K['x,y'].quotient('x^2 + y^2 - 1')
sage: f = A.hom([x + i*y, x - i*y], B)
sage: g = f.inverse()
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sage: g.morphism_from_cover().im_gens()
[1/2*z + 1/2*w, (-1/2*i)*z + (1/2*i)*w]
sage: all(g(f(z)) == z for z in A.gens())
True

inverse_image(I)
Return the inverse image of an ideal or an element in the codomain of this ring homomorphism.

INPUT:

• I – an ideal or element in the codomain

OUTPUT:

For an ideal 𝐼 in the codomain, this returns the largest ideal in the domain whose image is contained in 𝐼 .

Given an element 𝑏 in the codomain, this returns an arbitrary element 𝑎 in the domain such that self(a)
= b if one such exists. The element 𝑎 is unique if this ring homomorphism is injective.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: S.<u,v> = QQ[]
sage: f = R.hom([u^2, u*v, v^2], S)
sage: I = S.ideal([u^6, u^5*v, u^4*v^2, u^3*v^3])
sage: J = f.inverse_image(I); J
Ideal (y^2 - x*z, x*y*z, x^2*z, x^2*y, x^3)
of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f(J) == I
True

Under the above homomorphism, there exists an inverse image for every element that only involves mono-
mials of even degree:

sage: [f.inverse_image(p) for p in [u^2, u^4, u*v + u^3*v^3]]
[x, x^2, x*y*z + y]
sage: f.inverse_image(u*v^2)
Traceback (most recent call last):
...
ValueError: element u*v^2 does not have preimage

The image of the inverse image ideal can be strictly smaller than the original ideal:

sage: S.<u,v> = QQ['u,v'].quotient('v^2 - 2')
sage: f = QuadraticField(2).hom([v], S)
sage: I = S.ideal(u + v)
sage: J = f.inverse_image(I)
sage: J.is_zero()
True
sage: f(J) < I
True

Fractional ideals are not yet fully supported:
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sage: K.<a> = NumberField(QQ['x']('x^2+2'))
sage: f = K.hom([-a], K)
sage: I = K.ideal([a + 1])
sage: f.inverse_image(I)
Traceback (most recent call last):
...
NotImplementedError: inverse image not implemented...
sage: f.inverse_image(K.ideal(0)).is_zero()
True
sage: f.inverse()(I)
Fractional ideal (-a + 1)

ALGORITHM:

By default, this computes a Gröbner basis of an ideal related to the graph of the ring homomorphism.

REFERENCES:

• Proposition 2.5.12 [DS2009]

is_invertible()

Return whether this ring homomorphism is bijective.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: R.hom([y*z, x*z, x*y], R).is_invertible()
False
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: Q.hom([y*z, x*z, x*y], Q).is_invertible()
True

ALGORITHM:

By default, this requires the computation of a Gröbner basis.

is_surjective()

Return whether this ring homomorphism is surjective.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: R.hom([y*z, x*z, x*y], R).is_surjective()
False
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: R.hom([y*z, x*z, x*y], Q).is_surjective()
True

ALGORITHM:

By default, this requires the computation of a Gröbner basis.

kernel()

Return the kernel ideal of this ring homomorphism.

EXAMPLES:

3.1. Homomorphisms of rings 55



General Rings, Ideals, and Morphisms, Release 9.8

sage: A.<x,y> = QQ[]
sage: B.<t> = QQ[]
sage: f = A.hom([t^4, t^3 - t^2], B)
sage: f.kernel()
Ideal (y^4 - x^3 + 4*x^2*y - 2*x*y^2 + x^2)
of Multivariate Polynomial Ring in x, y over Rational Field

We express a Veronese subring of a polynomial ring as a quotient ring:

sage: A.<a,b,c,d> = QQ[]
sage: B.<u,v> = QQ[]
sage: f = A.hom([u^3, u^2*v, u*v^2, v^3],B)
sage: f.kernel() == A.ideal(matrix.hankel([a, b, c], [d]).minors(2))
True
sage: Q = A.quotient(f.kernel())
sage: Q.hom(f.im_gens(), B).is_injective()
True

The Steiner-Roman surface:

sage: R.<x,y,z> = QQ[]
sage: S = R.quotient(x^2 + y^2 + z^2 - 1)
sage: f = R.hom([x*y, x*z, y*z], S)
sage: f.kernel()
Ideal (x^2*y^2 + x^2*z^2 + y^2*z^2 - x*y*z)
of Multivariate Polynomial Ring in x, y, z over Rational Field

lift(x=None)
Return a lifting map associated to this homomorphism, if it has been defined.

If x is not None, return the value of the lift morphism on x.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x])
sage: f(x+y)
2*x
sage: f.lift()
Traceback (most recent call last):
...
ValueError: no lift map defined
sage: g = R.hom(R)
sage: f._set_lift(g)
sage: f.lift() == g
True
sage: f.lift(x)
x

pushforward(I)
Returns the pushforward of the ideal 𝐼 under this ring homomorphism.

EXAMPLES:
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sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2,y^2]); f = S.cover()
sage: f.pushforward(R.ideal([x,3*x+x*y+y^2]))
Ideal (xx, xx*yy + 3*xx) of Quotient of Multivariate Polynomial Ring in x, y␣
→˓over Rational Field by the ideal (x^2, y^2)

class sage.rings.morphism.RingHomomorphism_coercion

Bases: RingHomomorphism

A ring homomorphism that is a coercion.

Warning: This class is obsolete. Set the category of your morphism to a subcategory of Rings instead.

class sage.rings.morphism.RingHomomorphism_cover

Bases: RingHomomorphism

A homomorphism induced by quotienting a ring out by an ideal.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: phi = S.cover(); phi
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the␣

→˓ideal (x^2 + y^2)
Defn: Natural quotient map

sage: phi(x+y)
a + b

kernel()

Return the kernel of this covering morphism, which is the ideal that was quotiented out by.

EXAMPLES:

sage: f = Zmod(6).cover()
sage: f.kernel()
Principal ideal (6) of Integer Ring

class sage.rings.morphism.RingHomomorphism_from_base

Bases: RingHomomorphism

A ring homomorphism determined by a ring homomorphism of the base ring.

AUTHOR:

• Simon King (initial version, 2010-04-30)

EXAMPLES:

We define two polynomial rings and a ring homomorphism:

sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
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Now we construct polynomial rings based on R and S, and let f act on the coefficients:

sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f,PS)
sage: Pf
Ring morphism:
From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y␣

→˓over Rational Field
To: Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over␣

→˓Rational Field
Defn: Induced from base ring by

Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
Defn: x |--> 2*z

y |--> 3*z
sage: p = (x - 4*y + 1/13)*t^2 + (1/2*x^2 - 1/3*y^2)*t + 2*y^2 + x
sage: Pf(p)
(-10*z + 1/13)*t^2 - z^2*t + 18*z^2 + 2*z

Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:

sage: MR = MatrixSpace(R,2,2)
sage: MS = MatrixSpace(S,2,2)
sage: M = MR([x^2 + 1/7*x*y - y^2, - 1/2*y^2 + 2*y + 1/6, 4*x^2 - 14*x, 1/2*y^2 +␣
→˓13/4*x - 2/11*y])
sage: Mf = MR.hom(f,MS)
sage: Mf
Ring morphism:
From: Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring␣

→˓in x, y over Rational Field
To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring␣

→˓in z over Rational Field
Defn: Induced from base ring by

Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
Defn: x |--> 2*z

y |--> 3*z
sage: Mf(M)
[ -29/7*z^2 -9/2*z^2 + 6*z + 1/6]
[ 16*z^2 - 28*z 9/2*z^2 + 131/22*z]

The construction of induced homomorphisms is recursive, and so we have:

sage: MPR = MatrixSpace(PR, 2)
sage: MPS = MatrixSpace(PS, 2)
sage: M = MPR([(- x + y)*t^2 + 58*t - 3*x^2 + x*y, (- 1/7*x*y - 1/40*x)*t^2 + (5*x^
→˓2 + y^2)*t + 2*y, (- 1/3*y + 1)*t^2 + 1/3*x*y + y^2 + 5/2*y + 1/4, (x + 6*y +␣
→˓1)*t^2])
sage: MPf = MPR.hom(f,MPS); MPf
Ring morphism:
From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring␣
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→˓in t over Multivariate Polynomial Ring in x, y over Rational Field
To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring␣

→˓in t over Univariate Polynomial Ring in z over Rational Field
Defn: Induced from base ring by

Ring morphism:
From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring␣

→˓in x, y over Rational Field
To: Univariate Polynomial Ring in t over Univariate Polynomial Ring in␣

→˓z over Rational Field
Defn: Induced from base ring by

Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
Defn: x |--> 2*z

y |--> 3*z
sage: MPf(M)
[ z*t^2 + 58*t - 6*z^2 (-6/7*z^2 - 1/20*z)*t^2 + 29*z^2*t + 6*z]
[ (-z + 1)*t^2 + 11*z^2 + 15/2*z + 1/4 (20*z + 1)*t^2]

inverse()

Return the inverse of this ring homomorphism if the underlying homomorphism of the base ring is invert-
ible.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: S.<a,b> = QQ[]
sage: f = R.hom([a+b, a-b], S)
sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f, PS)
sage: Pf.inverse()
Ring morphism:
From: Univariate Polynomial Ring in t over Multivariate

Polynomial Ring in a, b over Rational Field
To: Univariate Polynomial Ring in t over Multivariate

Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by

Ring morphism:
From: Multivariate Polynomial Ring in a, b over Rational Field
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: a |--> 1/2*x + 1/2*y

b |--> 1/2*x - 1/2*y
sage: Pf.inverse()(Pf(x*t^2 + y*t))
x*t^2 + y*t

underlying_map()

Return the underlying homomorphism of the base ring.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
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sage: f = R.hom([2*z,3*z],S)
sage: MR = MatrixSpace(R,2)
sage: MS = MatrixSpace(S,2)
sage: g = MR.hom(f,MS)
sage: g.underlying_map() == f
True

class sage.rings.morphism.RingHomomorphism_from_fraction_field

Bases: RingHomomorphism

Morphisms between fraction fields.

inverse()

Return the inverse of this ring homomorphism if it exists.

EXAMPLES:

sage: S.<x> = QQ[]
sage: f = S.hom([2*x - 1])
sage: g = f.extend_to_fraction_field()
sage: g.inverse()
Ring endomorphism of Fraction Field of Univariate Polynomial Ring
in x over Rational Field
Defn: x |--> 1/2*x + 1/2

class sage.rings.morphism.RingHomomorphism_from_quotient

Bases: RingHomomorphism

A ring homomorphism with domain a generic quotient ring.

INPUT:

• parent – a ring homset Hom(R,S)

• phi – a ring homomorphism C --> S, where C is the domain of R.cover()

OUTPUT: a ring homomorphism

The domain 𝑅 is a quotient object 𝐶 → 𝑅, and R.cover() is the ring homomorphism 𝜙 : 𝐶 → 𝑅. The
condition on the elements im_gens of 𝑆 is that they define a homomorphism 𝐶 → 𝑆 such that each generator
of the kernel of 𝜙 maps to 0.

EXAMPLES:

sage: R.<x, y, z> = PolynomialRing(QQ, 3)
sage: S.<a, b, c> = R.quo(x^3 + y^3 + z^3)
sage: phi = S.hom([b, c, a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z over␣
→˓Rational Field by the ideal (x^3 + y^3 + z^3)
Defn: a |--> b

b |--> c
c |--> a

sage: phi(a+b+c)
a + b + c
sage: loads(dumps(phi)) == phi
True
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Validity of the homomorphism is determined, when possible, and a TypeError is raised if there is no homo-
morphism sending the generators to the given images:

sage: S.hom([b^2, c^2, a^2])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by␣
→˓images of generators

morphism_from_cover()

Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2,y^2])
sage: S.hom([yy,xx]).morphism_from_cover()
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by␣

→˓the ideal (x^2, y^2)
Defn: x |--> yy

y |--> xx

class sage.rings.morphism.RingHomomorphism_im_gens

Bases: RingHomomorphism

A ring homomorphism determined by the images of generators.

base_map()

Return the map on the base ring that is part of the defining data for this morphism. May return None if a
coercion is used.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: cc = K.hom([-i])
sage: S.<y> = K[]
sage: phi = S.hom([y^2], base_map=cc)
sage: phi
Ring endomorphism of Univariate Polynomial Ring in y over Number Field in i␣
→˓with defining polynomial x^2 + 1
Defn: y |--> y^2

with map of base ring
sage: phi(y)
y^2
sage: phi(i*y)
-i*y^2
sage: phi.base_map()
Composite map:
From: Number Field in i with defining polynomial x^2 + 1
To: Univariate Polynomial Ring in y over Number Field in i with defining␣

→˓polynomial x^2 + 1
Defn: Ring endomorphism of Number Field in i with defining polynomial x^2 +␣

→˓1
(continues on next page)
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Defn: i |--> -i
then
Polynomial base injection morphism:
From: Number Field in i with defining polynomial x^2 + 1
To: Univariate Polynomial Ring in y over Number Field in i with␣

→˓defining polynomial x^2 + 1

im_gens()

Return the images of the generators of the domain.

OUTPUT:

• list – a copy of the list of gens (it is safe to change this)

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x+y])
sage: f.im_gens()
[x, x + y]

We verify that the returned list of images of gens is a copy, so changing it doesn’t change f:

sage: f.im_gens()[0] = 5
sage: f.im_gens()
[x, x + y]

class sage.rings.morphism.RingMap

Bases: Morphism

Set-theoretic map between rings.

class sage.rings.morphism.RingMap_lift

Bases: RingMap

Given rings 𝑅 and 𝑆 such that for any 𝑥 ∈ 𝑅 the function x.lift() is an element that naturally coerces to 𝑆,
this returns the set-theoretic ring map 𝑅 → 𝑆 sending 𝑥 to x.lift().

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: S.<xbar,ybar> = R.quo( (x^2 + y^2, y) )
sage: S.lift()
Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the␣

→˓ideal (x^2 + y^2, y)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map

sage: S.lift() == 0
False

Since trac ticket #11068, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It
was needed to modify RingMap_lift so that rings can be accepted that are no instances of sage.rings.ring.
Ring, as in the following example:
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sage: MS = MatrixSpace(GF(5),2,2)
sage: I = MS*[MS.0*MS.1,MS.2+MS.3]*MS
sage: Q = MS.quo(I)
sage: Q.0*Q.1 # indirect doctest
[0 1]
[0 0]

sage.rings.morphism.is_RingHomomorphism(phi)
Return True if phi is of type RingHomomorphism .

EXAMPLES:

sage: f = Zmod(8).cover()
sage: sage.rings.morphism.is_RingHomomorphism(f)
doctest:warning
...
DeprecationWarning: is_RingHomomorphism() should not be used anymore. Check whether␣
→˓the category_for() your morphism is a subcategory of Rings() instead.
See http://trac.sagemath.org/23204 for details.
True
sage: sage.rings.morphism.is_RingHomomorphism(2/3)
False

3.2 Space of homomorphisms between two rings

sage.rings.homset.RingHomset(R, S, category=None)
Construct a space of homomorphisms between the rings R and S.

For more on homsets, see Hom().

EXAMPLES:

sage: Hom(ZZ, QQ) # indirect doctest
Set of Homomorphisms from Integer Ring to Rational Field

class sage.rings.homset.RingHomset_generic(R, S, category=None)
Bases: HomsetWithBase

A generic space of homomorphisms between two rings.

EXAMPLES:

sage: Hom(ZZ, QQ)
Set of Homomorphisms from Integer Ring to Rational Field
sage: QQ.Hom(ZZ)
Set of Homomorphisms from Rational Field to Integer Ring

Element

alias of RingHomomorphism

has_coerce_map_from(x)
The default for coercion maps between ring homomorphism spaces is very restrictive (until more imple-
mentation work is done).
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Currently this checks if the domains and the codomains are equal.

EXAMPLES:

sage: H = Hom(ZZ, QQ)
sage: H2 = Hom(QQ, ZZ)
sage: H.has_coerce_map_from(H2)
False

natural_map()

Returns the natural map from the domain to the codomain.

The natural map is the coercion map from the domain ring to the codomain ring.

EXAMPLES:

sage: H = Hom(ZZ, QQ)
sage: H.natural_map()
Natural morphism:
From: Integer Ring
To: Rational Field

zero()

Return the zero element of this homset.

EXAMPLES:

Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial
ring:

sage: Hom(ZZ, Zmod(1)).zero()
Ring morphism:
From: Integer Ring
To: Ring of integers modulo 1
Defn: 1 |--> 0

sage: Hom(ZZ, Zmod(2)).zero()
Traceback (most recent call last):
...
ValueError: homset has no zero element

class sage.rings.homset.RingHomset_quo_ring(R, S, category=None)
Bases: RingHomset_generic

Space of ring homomorphisms where the domain is a (formal) quotient ring.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: phi = S.hom([b,a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational␣
→˓Field by the ideal (x^2 + y^2)
Defn: a |--> b

b |--> a
sage: phi(a)
b

(continues on next page)
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sage: phi(b)
a

Element

alias of RingHomomorphism_from_quotient

sage.rings.homset.is_RingHomset(H)

Return True if H is a space of homomorphisms between two rings.

EXAMPLES:

sage: from sage.rings.homset import is_RingHomset as is_RH
sage: is_RH(Hom(ZZ, QQ))
True
sage: is_RH(ZZ)
False
sage: is_RH(Hom(RR, CC))
True
sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1)))
False
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CHAPTER

FOUR

QUOTIENT RINGS

4.1 Quotient Rings

AUTHORS:

• William Stein

• Simon King (2011-04): Put it into the category framework, use the new coercion model.

• Simon King (2011-04): Quotients of non-commutative rings by twosided ideals.

Todo: The following skipped tests should be removed once trac ticket #13999 is fixed:

sage: TestSuite(S).run(skip=['_test_nonzero_equal', '_test_elements', '_test_zero'])

In trac ticket #11068, non-commutative quotient rings 𝑅/𝐼 were implemented. The only requirement is that the two-
sided ideal 𝐼 provides a reduce method so that I.reduce(x) is the normal form of an element 𝑥 with respect to 𝐼
(i.e., we have I.reduce(x) == I.reduce(y) if 𝑥− 𝑦 ∈ 𝐼 , and x - I.reduce(x) in I). Here is a toy example:

sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
....: def __init__(self, R, n):
....: self._power = n
....: self._power = n
....: Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(),␣
→˓repeat=n)])
....: def reduce(self,x):
....: R = self.ring()
....: return add([c*R(m) for m,c in x if len(m)<self._power],R(0))
sage: F.<x,y,z> = FreeAlgebra(QQ, 3)
sage: I3 = PowerIdeal(F,3); I3
Twosided Ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y,
x*z^2, y*x^2, y*x*y, y*x*z, y^2*x, y^3, y^2*z, y*z*x, y*z*y, y*z^2,
z*x^2, z*x*y, z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^3) of
Free Algebra on 3 generators (x, y, z) over Rational Field

Free algebras have a custom quotient method that serves at creating finite dimensional quotients defined by multiplica-
tion matrices. We are bypassing it, so that we obtain the default quotient:
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sage: Q3.<a,b,c> = F.quotient(I3)
sage: Q3
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by
the ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y, x*z^2,
y*x^2, y*x*y, y*x*z, y^2*x, y^3, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y,
z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^3)
sage: (a+b+2)^4
16 + 32*a + 32*b + 24*a^2 + 24*a*b + 24*b*a + 24*b^2
sage: Q3.is_commutative()
False

Even though 𝑄3 is not commutative, there is commutativity for products of degree three:

sage: a*(b*c)-(b*c)*a==F.zero()
True

If we quotient out all terms of degree two then of course the resulting quotient ring is commutative:

sage: I2 = PowerIdeal(F,2); I2
Twosided Ideal (x^2, x*y, x*z, y*x, y^2, y*z, z*x, z*y, z^2) of Free Algebra
on 3 generators (x, y, z) over Rational Field
sage: Q2.<a,b,c> = F.quotient(I2)
sage: Q2.is_commutative()
True
sage: (a+b+2)^4
16 + 32*a + 32*b

Since trac ticket #7797, there is an implementation of free algebras based on Singular’s implementation of the Letter-
place Algebra. Our letterplace wrapper allows to provide the above toy example more easily:

sage: from itertools import product
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: Q3 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=3)]*F)
sage: Q3
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational␣
→˓Field by the ideal (x*x*x, x*x*y, x*x*z, x*y*x, x*y*y, x*y*z, x*z*x, x*z*y, x*z*z,␣
→˓y*x*x, y*x*y, y*x*z, y*y*x, y*y*y, y*y*z, y*z*x, y*z*y, y*z*z, z*x*x, z*x*y, z*x*z,␣
→˓z*y*x, z*y*y, z*y*z, z*z*x, z*z*y, z*z*z)
sage: Q3.0*Q3.1-Q3.1*Q3.0
xbar*ybar - ybar*xbar
sage: Q3.0*(Q3.1*Q3.2)-(Q3.1*Q3.2)*Q3.0
0
sage: Q2 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=2)]*F)
sage: Q2.is_commutative()
True

sage.rings.quotient_ring.QuotientRing(R, I, names=None, **kwds)
Creates a quotient ring of the ring 𝑅 by the twosided ideal 𝐼 .

Variables are labeled by names (if the quotient ring is a quotient of a polynomial ring). If names isn’t given,
‘bar’ will be appended to the variable names in 𝑅.

INPUT:

• R – a ring.
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• I – a twosided ideal of 𝑅.

• names – (optional) a list of strings to be used as names for the variables in the quotient ring 𝑅/𝐼 .

• further named arguments that will be passed to the constructor of the quotient ring instance.

OUTPUT: 𝑅/𝐼 - the quotient ring 𝑅 mod the ideal 𝐼

ASSUMPTION:

I has a method I.reduce(x) returning the normal form of elements 𝑥 ∈ 𝑅. In other words, it is required that
I.reduce(x)==I.reduce(y) ⇐⇒ 𝑥− 𝑦 ∈ 𝐼 , and x-I.reduce(x) in I, for all 𝑥, 𝑦 ∈ 𝑅.

EXAMPLES:

Some simple quotient rings with the integers:

sage: R = QuotientRing(ZZ,7*ZZ); R
Quotient of Integer Ring by the ideal (7)
sage: R.gens()
(1,)
sage: 1*R(3); 6*R(3); 7*R(3)
3
4
0

sage: S = QuotientRing(ZZ,ZZ.ideal(8)); S
Quotient of Integer Ring by the ideal (8)
sage: 2*S(4)
0

With polynomial rings (note that the variable name of the quotient ring can be specified as shown below):

sage: P.<x> = QQ[]
sage: R.<xx> = QuotientRing(P, P.ideal(x^2 + 1))
sage: R
Univariate Quotient Polynomial Ring in xx over Rational Field with modulus x^2 + 1
sage: R.gens(); R.gen()
(xx,)
xx
sage: for n in range(4): xx^n
1
xx
-1
-xx

sage: P.<x> = QQ[]
sage: S = QuotientRing(P, P.ideal(x^2 - 2))
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with
modulus x^2 - 2
sage: xbar = S.gen(); S.gen()
xbar
sage: for n in range(3): xbar^n
1
xbar
2
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Sage coerces objects into ideals when possible:

sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2 + 1); R
Univariate Quotient Polynomial Ring in xbar over Rational Field with
modulus x^2 + 1

By Noether’s homomorphism theorems, the quotient of a quotient ring of 𝑅 is just the quotient of 𝑅 by the sum
of the ideals. In this example, we end up modding out the ideal (𝑥) from the ring Q[𝑥, 𝑦]:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal␣
→˓(x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: for n in range(4): d^n
1
d
-1
-d

class sage.rings.quotient_ring.QuotientRingIdeal_generic(ring, gens, coerce=True)
Bases: Ideal_generic

Specialized class for quotient-ring ideals.

EXAMPLES:

sage: Zmod(9).ideal([-6,9])
Ideal (3, 0) of Ring of integers modulo 9

class sage.rings.quotient_ring.QuotientRingIdeal_principal(ring, gens, coerce=True)
Bases: Ideal_principal, QuotientRingIdeal_generic

Specialized class for principal quotient-ring ideals.

EXAMPLES:

sage: Zmod(9).ideal(-33)
Principal ideal (3) of Ring of integers modulo 9

class sage.rings.quotient_ring.QuotientRing_generic(R, I, names, category=None)
Bases: QuotientRing_nc, CommutativeRing

Creates a quotient ring of a commutative ring 𝑅 by the ideal 𝐼 .

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S

(continues on next page)
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Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 +␣
→˓3*x + 4, x^2 + 1)

class sage.rings.quotient_ring.QuotientRing_nc(R, I, names, category=None)
Bases: Ring, ParentWithGens

The quotient ring of 𝑅 by a twosided ideal 𝐼 .

This class is for rings that do not inherit from CommutativeRing.

EXAMPLES:

Here is a quotient of a free algebra by a twosided homogeneous ideal:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q.<a,b,c> = F.quo(I); Q
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational␣
→˓Field by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)
sage: a*b
-b*c
sage: a^3
-b*c*a - b*c*b - b*c*c

A quotient of a quotient is just the quotient of the original top ring by the sum of two ideals:

sage: J = Q*[a^3-b^3]*Q
sage: R.<i,j,k> = Q.quo(J); R
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational␣
→˓Field by the ideal (-y*y*z - y*z*x - 2*y*z*z, x*y + y*z, x*x + x*y - y*x - y*y)
sage: i^3
-j*k*i - j*k*j - j*k*k
sage: j^3
-j*k*i - j*k*j - j*k*k

For rings that do inherit from CommutativeRing, we provide a subclass QuotientRing_generic, for back-
wards compatibility.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 +␣
→˓3*x + 4, x^2 + 1)

sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: S(0) == a^2 + b^2
True

Again, a quotient of a quotient is just the quotient of the original top ring by the sum of two ideals.
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sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo(1 + y^2)
sage: T.<c,d> = S.quo(a)
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal␣
→˓(x, y^2 + 1)
sage: T.gens()
(0, d)

Element

alias of QuotientRingElement

ambient()

Returns the cover ring of the quotient ring: that is, the original ring 𝑅 from which we modded out an ideal,
𝐼 .

EXAMPLES:

sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring

sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field

characteristic()

Return the characteristic of the quotient ring.

Todo: Not yet implemented!

EXAMPLES:

sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.characteristic()
Traceback (most recent call last):
...
NotImplementedError

construction()

Returns the functorial construction of self.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: R.quotient_ring(I).construction()
(QuotientFunctor, Univariate Polynomial Ring in x over Integer Ring)
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)

(continues on next page)
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sage: Q.construction()
(QuotientFunctor, Free Associative Unital Algebra on 3 generators (x, y, z)␣
→˓over Rational Field)

cover()

The covering ring homomorphism 𝑅 → 𝑅/𝐼 , equipped with a section.

EXAMPLES:

sage: R = ZZ.quo(3*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
From: Integer Ring
To: Ring of integers modulo 3
Defn: Natural quotient map

sage: pi(5)
2
sage: l = pi.lift()

sage: R.<x,y> = PolynomialRing(QQ)
sage: Q = R.quo( (x^2,y^2) )
sage: pi = Q.cover()
sage: pi(x^3+y)
ybar
sage: l = pi.lift(x+y^3)
sage: l
x
sage: l = pi.lift(); l
Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by␣

→˓the ideal (x^2, y^2)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map

sage: l(x+y^3)
x

cover_ring()

Returns the cover ring of the quotient ring: that is, the original ring 𝑅 from which we modded out an ideal,
𝐼 .

EXAMPLES:

sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring

sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field

defining_ideal()
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Returns the ideal generating this quotient ring.

EXAMPLES:

In the integers:

sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.defining_ideal()
Principal ideal (7) of Integer Ring

An example involving a quotient of a quotient. By Noether’s homomorphism theorems, this is actually a
quotient by a sum of two ideals:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: S.defining_ideal()
Ideal (y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: T.defining_ideal()
Ideal (x, y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field

gen(i=0)
Returns the 𝑖-th generator for this quotient ring.

EXAMPLES:

sage: R = QuotientRing(ZZ,7*ZZ)
sage: R.gen(0)
1

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the␣
→˓ideal (x, y^2 + 1)
sage: R.gen(0); R.gen(1)
x
y
sage: S.gen(0); S.gen(1)
a
b
sage: T.gen(0); T.gen(1)
0
d

ideal(*gens, **kwds)
Return the ideal of self with the given generators.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ)
sage: S = R.quotient_ring(x^2+y^2)
sage: S.ideal()

(continues on next page)
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Ideal (0) of Quotient of Multivariate Polynomial Ring in x, y over Rational␣
→˓Field by the ideal (x^2 + y^2)
sage: S.ideal(x+y+1)
Ideal (xbar + ybar + 1) of Quotient of Multivariate Polynomial Ring in x, y␣
→˓over Rational Field by the ideal (x^2 + y^2)

is_commutative()

Tell whether this quotient ring is commutative.

Note: This is certainly the case if the cover ring is commutative. Otherwise, if this ring has a fi-
nite number of generators, it is tested whether they commute. If the number of generators is infinite, a
NotImplementedError is raised.

AUTHOR:

• Simon King (2011-03-23): See trac ticket #7797.

EXAMPLES:

Any quotient of a commutative ring is commutative:

sage: P.<a,b,c> = QQ[]
sage: P.quo(P.random_element()).is_commutative()
True

The non-commutative case is more interesting:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.is_commutative()
False
sage: Q.1*Q.2==Q.2*Q.1
False

In the next example, the generators apparently commute:

sage: J = F*[x*y-y*x,x*z-z*x,y*z-z*y,x^3-y^3]*F
sage: R = F.quo(J)
sage: R.is_commutative()
True

is_field(proof=True)
Returns True if the quotient ring is a field. Checks to see if the defining ideal is maximal.

is_integral_domain(proof=True)
With proof equal to True (the default), this function may raise a NotImplementedError.

When proof is False, if True is returned, then self is definitely an integral domain. If the function returns
False, then either self is not an integral domain or it was unable to determine whether or not self is an
integral domain.

EXAMPLES:
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sage: R.<x,y> = QQ[]
sage: R.quo(x^2 - y).is_integral_domain()
True
sage: R.quo(x^2 - y^2).is_integral_domain()
False
sage: R.quo(x^2 - y^2).is_integral_domain(proof=False)
False
sage: R.<a,b,c> = ZZ[]
sage: Q = R.quotient_ring([a, b])
sage: Q.is_integral_domain()
Traceback (most recent call last):
...
NotImplementedError
sage: Q.is_integral_domain(proof=False)
False

is_noetherian()

Return True if this ring is Noetherian.

EXAMPLES:

sage: R = QuotientRing(ZZ, 102*ZZ)
sage: R.is_noetherian()
True

sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2+1)
sage: R.is_noetherian()
True

If the cover ring of self is not Noetherian, we currently have no way of testing whether self is Noetherian,
so we raise an error:

sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
sage: I = R.ideal([x[1]^2, x[2]])
sage: S = R.quotient(I)
sage: S.is_noetherian()
Traceback (most recent call last):
...
NotImplementedError

lift(x=None)
Return the lifting map to the cover, or the image of an element under the lifting map.

Note: The category framework imposes that Q.lift(x) returns the image of an element 𝑥 under the
lifting map. For backwards compatibility, we let Q.lift() return the lifting map.

EXAMPLES:
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sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.lift()
Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by␣

→˓the ideal (x^2 + y^2)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map

sage: S.lift(S.0) == x
True

lifting_map()

Return the lifting map to the cover.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: pi = S.cover(); pi
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by␣

→˓the ideal (x^2 + y^2)
Defn: Natural quotient map

sage: L = S.lifting_map(); L
Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by␣

→˓the ideal (x^2 + y^2)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map

sage: L(S.0)
x
sage: L(S.1)
y

Note that some reduction may be applied so that the lift of a reduction need not equal the original element:

sage: z = pi(x^3 + 2*y^2); z
-xbar*ybar^2 + 2*ybar^2
sage: L(z)
-x*y^2 + 2*y^2
sage: L(z) == x^3 + 2*y^2
False

Test that there also is a lift for rings that are no instances of Ring (see trac ticket #11068):

sage: MS = MatrixSpace(GF(5),2,2)
sage: I = MS*[MS.0*MS.1,MS.2+MS.3]*MS
sage: Q = MS.quo(I)
sage: Q.lift()
Set-theoretic ring morphism:
From: Quotient of Full MatrixSpace of 2 by 2 dense matrices over Finite Field␣

→˓of size 5 by the ideal
(

(continues on next page)
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[0 1]
[0 0],

[0 0]
[1 1]

)

To: Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 5
Defn: Choice of lifting map

ngens()

Returns the number of generators for this quotient ring.

Todo: Note that ngens counts 0 as a generator. Does this make sense? That is, since 0 only generates
itself and the fact that this is true for all rings, is there a way to “knock it off” of the generators list if a
generator of some original ring is modded out?

EXAMPLES:

sage: R = QuotientRing(ZZ,7*ZZ)
sage: R.gens(); R.ngens()
(1,)
1

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the␣
→˓ideal (x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: R.ngens(); S.ngens(); T.ngens()
2
2
2

retract(x)
The image of an element of the cover ring under the quotient map.

INPUT:

• x – An element of the cover ring

OUTPUT:

The image of the given element in self.

EXAMPLES:
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sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.retract((x+y)^2)
2*xbar*ybar

term_order()

Return the term order of this ring.

EXAMPLES:

sage: P.<a,b,c> = PolynomialRing(QQ)
sage: I = Ideal([a^2 - a, b^2 - b, c^2 - c])
sage: Q = P.quotient(I)
sage: Q.term_order()
Degree reverse lexicographic term order

sage.rings.quotient_ring.is_QuotientRing(x)
Tests whether or not x inherits from QuotientRing_nc.

EXAMPLES:

sage: from sage.rings.quotient_ring import is_QuotientRing
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I)
sage: is_QuotientRing(S)
True
sage: is_QuotientRing(R)
False

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: is_QuotientRing(Q)
True
sage: is_QuotientRing(F)
False

4.2 Quotient Ring Elements

AUTHORS:

• William Stein

class sage.rings.quotient_ring_element.QuotientRingElement(parent, rep, reduce=True)
Bases: RingElement

An element of a quotient ring 𝑅/𝐼 .

INPUT:

• parent - the ring 𝑅/𝐼

• rep - a representative of the element in 𝑅; this is used as the internal representation of the element

4.2. Quotient Ring Elements 79

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.RingElement


General Rings, Ideals, and Morphisms, Release 9.8

• reduce - bool (optional, default: True) - if True, then the internal representation of the element is rep
reduced modulo the ideal 𝐼

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quo((4 + 3*x + x^2, 1 + x^2)); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 +␣
→˓3*x + 4, x^2 + 1)
sage: v = S.gens(); v
(xbar,)

sage: loads(v[0].dumps()) == v[0]
True

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quo(x^2 + y^2); S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal␣
→˓(x^2 + y^2)
sage: S.gens()
(xbar, ybar)

We name each of the generators.

sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: a
a
sage: b
b
sage: a^2 + b^2 == 0
True
sage: b.lift()
y
sage: (a^3 + b^2).lift()
-x*y^2 + y^2

is_unit()

Return True if self is a unit in the quotient ring.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(1 - x*y); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
→˓class'>
sage: a*b
1
sage: S(2).is_unit()
True

Check that trac ticket #29469 is fixed:

sage: a.is_unit()
True
sage: (a+b).is_unit()
False
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lc()

Return the leading coefficient of this quotient ring element.

EXAMPLES:

sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo( I )
sage: f = Q( z*y + 2*x )
sage: f.lc()
2

lift()

If self is an element of 𝑅/𝐼 , then return self as an element of 𝑅.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
→˓class'>
sage: a.lift()
x
sage: (3/5*(a + a^2 + b^2)).lift()
3/5*x

lm()

Return the leading monomial of this quotient ring element.

EXAMPLES:

sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo( I )
sage: f = Q( z*y + 2*x )
sage: f.lm()
xbar

lt()

Return the leading term of this quotient ring element.

EXAMPLES:

sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo( I )
sage: f = Q( z*y + 2*x )
sage: f.lt()
2*xbar

monomials()

Return the monomials in self.

OUTPUT:

A list of monomials.

EXAMPLES:
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sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
→˓class'>
sage: a.monomials()
[a]
sage: (a+a*b).monomials()
[a*b, a]
sage: R.zero().monomials()
[]

reduce(G)

Reduce this quotient ring element by a set of quotient ring elements G.

INPUT:

• G - a list of quotient ring elements

Warning: This method is not guaranteed to return unique minimal results. For quotients of polynomial
rings, use reduce() on the ideal generated by G, instead.

EXAMPLES:

sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1])
sage: Q = P.quotient( sage.rings.ideal.FieldIdeal(P) )
sage: I2 = ideal([Q(f) for f in I1.gens()])
sage: f = Q((a*b + c*d + 1)^2 + e)
sage: f.reduce(I2.gens())
ebar

Notice that the result above is not minimal:

sage: I2.reduce(f)
0

variables()

Return all variables occurring in self.

OUTPUT:

A tuple of linear monomials, one for each variable occurring in self.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
→˓class'>
sage: a.variables()
(a,)
sage: b.variables()
(b,)
sage: s = a^2 + b^2 + 1; s
1
sage: s.variables()

(continues on next page)
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()
sage: (a+b).variables()
(a, b)
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FIVE

FRACTION FIELDS

5.1 Fraction Field of Integral Domains

AUTHORS:

• William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)

• Burcin Erocal

• Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I+z)/(z+0.1*I)
(z + 1.00000000000000 + I)/(z + 0.100000000000000*I)
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000)/(z + 1.10000000000000)

sage.rings.fraction_field.FractionField(R, names=None)
Create the fraction field of the integral domain R.

INPUT:

• R – an integral domain

• names – ignored

EXAMPLES:

We create some example fraction fields:

sage: FractionField(IntegerRing())
Rational Field
sage: FractionField(PolynomialRing(RationalField(),'x'))

(continues on next page)
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Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: FractionField(PolynomialRing(IntegerRing(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: FractionField(PolynomialRing(RationalField(),2,'x'))
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field

Dividing elements often implicitly creates elements of the fraction field:

sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = x/(x+1)
sage: g = x**3/(x+1)
sage: f/g
1/x^2
sage: g/f
x^2

The input must be an integral domain:

sage: Frac(Integers(4))
Traceback (most recent call last):
...
TypeError: R must be an integral domain.

class sage.rings.fraction_field.FractionFieldEmbedding

Bases: DefaultConvertMap_unique

The embedding of an integral domain into its field of fractions.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R); f
Coercion map:
From: Univariate Polynomial Ring in x over Rational Field
To: Fraction Field of Univariate Polynomial Ring in x over Rational Field

is_injective()

Return whether this map is injective.

EXAMPLES:

The map from an integral domain to its fraction field is always injective:

sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_injective()
True

is_surjective()

Return whether this map is surjective.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_surjective()
False
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section()

Return a section of this map.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).section()
Section map:
From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field

class sage.rings.fraction_field.FractionFieldEmbeddingSection

Bases: Section

The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field

class sage.rings.fraction_field.FractionField_1poly_field(R, element_class=<class
'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>)

Bases: FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number()

Here for compatibility with number fields and function fields.

EXAMPLES:

sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number()
1

function_field()

Return the isomorphic function field.

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: K.function_field()
Rational function field in t over Finite Field of size 5

See also:

sage.rings.function_field.RationalFunctionField.field()

maximal_order()

Return the maximal order in this fraction field.

EXAMPLES:
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sage: K = FractionField(GF(5)['t'])
sage: K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5

ring_of_integers()

Return the ring of integers in this fraction field.

EXAMPLES:

sage: K = FractionField(GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5

class sage.rings.fraction_field.FractionField_generic(R, element_class=<class
'sage.rings.fraction_field_element.FractionFieldElement'>,
category=Category of quotient fields)

Bases: Field

The fraction field of an integral domain.

base_ring()

Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:

sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring

characteristic()

Return the characteristic of this fraction field.

EXAMPLES:

sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
sage: R = Frac(ZZ['t']); R.characteristic()
0
sage: R = Frac(GF(5)['w']); R.characteristic()
5

construction()

EXAMPLES:

sage: Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
sage: f(R) == K
True
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gen(i=0)
Return the i-th generator of self.

EXAMPLES:

sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6,␣
→˓z7, z8, z9 over Rational Field
sage: R.0
z0
sage: R.gen(3)
z3
sage: R.3
z3

is_exact()

Return if self is exact which is if the underlying ring is exact.

EXAMPLES:

sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False

is_field(proof=True)
Return True, since the fraction field is a field.

EXAMPLES:

sage: Frac(ZZ).is_field()
True

is_finite()

Tells whether this fraction field is finite.

Note: A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

sage: Frac(QQ['a','b','c']).is_finite()
False

ngens()

This is the same as for the parent object.

EXAMPLES:

sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6,␣
→˓z7, z8, z9 over Rational Field
sage: R.ngens()
10
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random_element(*args, **kwds)
Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

sage: F = ZZ['x'].fraction_field()
sage: F.random_element() # random
(2*x - 8)/(-x^2 + x)

sage: f = F.random_element(degree=5)
sage: f.numerator().degree() == f.denominator().degree()
True
sage: f.denominator().degree() <= 5
True
sage: while f.numerator().degree() != 5:
....: f = F.random_element(degree=5)

ring()

Return the ring that this is the fraction field of.

EXAMPLES:

sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field

some_elements()

Return some elements in this field.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0,
1,
x,
2*x,
x/(x^2 + 2*x + 1),
1/x^2,
...
(2*x^2 + 2)/(x^2 + 2*x + 1),
(2*x^2 + 2)/x^3,
(2*x^2 + 2)/(x^2 - 1),
2]

sage.rings.fraction_field.is_FractionField(x)
Test whether or not x inherits from FractionField_generic.

EXAMPLES:
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sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False

5.2 Fraction Field Elements

AUTHORS:

• William Stein (input from David Joyner, David Kohel, and Joe Wetherell)

• Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms
[Hor1972]

class sage.rings.fraction_field_element.FractionFieldElement

Bases: FieldElement

EXAMPLES:

sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(-x^3 - x)/(x^19 - 17)
sage: loads(f.dumps()) == f
True

denominator()

Return the denominator of self.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.denominator()
y

is_one()

Return True if this element is equal to one.

EXAMPLES:

sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()
True
sage: (x/y).is_one()
False
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is_square(root=False)
Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element
is not square).

INPUT:

• root – whether or not to also return a square root (default: False)

OUTPUT:

• bool - whether or not a square

• object - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

sage: R.<t> = QQ[]
sage: (1/t).is_square()
False
sage: (1/t^6).is_square()
True
sage: ((1+t)^4/t^6).is_square()
True
sage: (4*(1+t)^4/t^6).is_square()
True
sage: (2*(1+t)^4/t^6).is_square()
False
sage: ((1+t)/t^6).is_square()
False

sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)

sage: R.<x> = QQ[]
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(x^2 + 2*x + 1)/(x^2 - 2*x + 1)
sage: a.is_square()
True
sage: (0/x).is_square()
True

is_zero()

Return True if this element is equal to zero.

EXAMPLES:

sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()

(continues on next page)
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True
sage: u.parent() is F
True

nth_root(n)
Return a n-th root of this element.

EXAMPLES:

sage: R = QQ['t'].fraction_field()
sage: t = R.gen()
sage: p = (t+1)^3 / (t^2+t-1)^3
sage: p.nth_root(3)
(t + 1)/(t^2 + t - 1)

sage: p = (t+1) / (t-1)
sage: p.nth_root(2)
Traceback (most recent call last):
...
ValueError: not a 2nd power

numerator()

Return the numerator of self.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.numerator()
x + y

reduce()

Reduce this fraction.

Divides out the gcd of the numerator and denominator. If the denominator becomes a unit, it becomes 1.
Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator
may be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must
be called manually in that case.

EXAMPLES:

sage: R.<x> = RealField(10)[]
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
x + 1.0

specialization(D=None, phi=None)
Returns the specialization of a fraction element of a polynomial ring
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valuation(v=None)
Return the valuation of self, assuming that the numerator and denominator have valuation functions de-
fined on them.

EXAMPLES:

sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
sage: f.valuation()
-1
sage: f.valuation(x^2+1)
1

class sage.rings.fraction_field_element.FractionFieldElement_1poly_field

Bases: FractionFieldElement

A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

is_integral()

Returns whether this element is actually a polynomial.

EXAMPLES:

sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt # == (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
True
sage: elt = (t^2 - t) / (t+2); elt # == t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
sage: elt.is_integral()
False

reduce()

Pick a normalized representation of self.

In particular, for any a == b, after normalization they will have the same numerator and denominator.

EXAMPLES:

For univariate rational functions over a field, we have:

sage: R.<x> = QQ[]
sage: (2 + 2*x) / (4*x) # indirect doctest
(1/2*x + 1/2)/x

Compare with:

sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/(2*x)
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support()

Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5 - 8*t^3 + t^
→˓2 + 2)/(t^6 + 6*t^5 + 9*t^4 - 2*t^2 - 12*t - 18)
sage: h.support()
[t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]

sage.rings.fraction_field_element.is_FractionFieldElement(x)
Return whether or not x is a FractionFieldElement.

EXAMPLES:

sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[]
sage: is_FractionFieldElement(x/2)
False
sage: is_FractionFieldElement(2/x)
True
sage: is_FractionFieldElement(1/3)
False

sage.rings.fraction_field_element.make_element(parent, numerator, denominator)
Used for unpickling FractionFieldElement objects (and subclasses).

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
sage: F = R.fraction_field()
sage: make_element(F, 1+x, 1+y)
(x + 1)/(y + 1)

sage.rings.fraction_field_element.make_element_old(parent, cdict)
Used for unpickling old FractionFieldElement pickles.

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element_old
sage: R.<x,y> = ZZ[]
sage: F = R.fraction_field()
sage: make_element_old(F, {'_FractionFieldElement__numerator':x+y,'_
→˓FractionFieldElement__denominator':x-y})
(x + y)/(x - y)
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CHAPTER

SIX

LOCALIZATION

6.1 Localization

Localization is an important ring construction tool. Whenever you have to extend a given integral domain such that it
contains the inverses of a finite set of elements but should allow non injective homomorphic images this construction
will be needed. See the example on Ariki-Koike algebras below for such an application.

EXAMPLES:

sage: LZ = Localization(ZZ, (5,11))
sage: m = matrix(LZ, [[5, 7], [0,11]])
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: ~m # parent of inverse is different: see documentation of m.__invert__
[ 1/5 -7/55]
[ 0 1/11]
sage: _.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: mi = matrix(LZ, ~m)
sage: mi.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: mi == ~m
True

The next example defines the most general ring containing the coefficients of the irreducible representations of the
Ariki-Koike algebra corresponding to the three colored permutations on three elements:

sage: R.<u0, u1, u2, q> = ZZ[]
sage: u = [u0, u1, u2]
sage: S = Set(u)
sage: I = S.cartesian_product(S)
sage: add_units = u + [q, q + 1] + [ui - uj for ui, uj in I if ui != uj]
sage: add_units += [q*ui - uj for ui, uj in I if ui != uj]
sage: L = R.localization(tuple(add_units)); L
Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)

Define the representation matrices (of one of the three dimensional irreducible representations):
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sage: m1 = matrix(L, [[u1, 0, 0],[0, u0, 0],[0, 0, u0]])
sage: m2 = matrix(L, [[(u0*q - u0)/(u0 - u1), (u0*q - u1)/(u0 - u1), 0],
....: [(-u1*q + u0)/(u0 - u1), (-u1*q + u1)/(u0 - u1), 0],
....: [0, 0, -1]])
sage: m3 = matrix(L, [[-1, 0, 0],
....: [0, u0*(1 - q)/(u1*q - u0), q*(u1 - u0)/(u1*q - u0)],
....: [0, (u1*q^2 - u0)/(u1*q - u0), (u1*q^ 2 - u1*q)/(u1*q - u0)]])
sage: m1.base_ring() == L
True

Check relations of the Ariki-Koike algebra:

sage: m1*m2*m1*m2 == m2*m1*m2*m1
True
sage: m2*m3*m2 == m3*m2*m3
True
sage: m1*m3 == m3*m1
True
sage: m1**3 -(u0+u1+u2)*m1**2 +(u0*u1+u0*u2+u1*u2)*m1 - u0*u1*u2 == 0
True
sage: m2**2 -(q-1)*m2 - q == 0
True
sage: m3**2 -(q-1)*m3 - q == 0
True
sage: ~m1 in m1.parent()
True
sage: ~m2 in m2.parent()
True
sage: ~m3 in m3.parent()
True

Obtain specializations in positive characteristic:

sage: Fp = GF(17)
sage: f = L.hom((3,5,7,11), codomain=Fp); f
Ring morphism:
From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
To: Finite Field of size 17
Defn: u0 |--> 3

u1 |--> 5
u2 |--> 7
q |--> 11

sage: mFp1 = matrix({k:f(v) for k, v in m1.dict().items()}); mFp1
[5 0 0]
[0 3 0]
[0 0 3]
sage: mFp1.base_ring()
Finite Field of size 17
sage: mFp2 = matrix({k:f(v) for k, v in m2.dict().items()}); mFp2
[ 2 3 0]
[ 9 8 0]

(continues on next page)
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[ 0 0 16]
sage: mFp3 = matrix({k:f(v) for k, v in m3.dict().items()}); mFp3
[16 0 0]
[ 0 4 5]
[ 0 7 6]

Obtain specializations in characteristic 0:

sage: fQ = L.hom((3,5,7,11), codomain=QQ); fQ
Ring morphism:
From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at

(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)

To: Rational Field
Defn: u0 |--> 3

u1 |--> 5
u2 |--> 7
q |--> 11

sage: mQ1 = matrix({k:fQ(v) for k, v in m1.dict().items()}); mQ1
[5 0 0]
[0 3 0]
[0 0 3]
sage: mQ1.base_ring()
Rational Field
sage: mQ2 = matrix({k:fQ(v) for k, v in m2.dict().items()}); mQ2
[-15 -14 0]
[ 26 25 0]
[ 0 0 -1]
sage: mQ3 = matrix({k:fQ(v) for k, v in m3.dict().items()}); mQ3
[ -1 0 0]
[ 0 -15/26 11/26]
[ 0 301/26 275/26]

sage: S.<x, y, z, t> = QQ[]
sage: T = S.quo(x+y+z)
sage: F = T.fraction_field()
sage: fF = L.hom((x, y, z, t), codomain=F); fF
Ring morphism:
From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at

(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)

To: Fraction Field of Quotient of Multivariate Polynomial Ring in x, y, z, t over
Rational Field by the ideal (x + y + z)

Defn: u0 |--> -ybar - zbar
u1 |--> ybar
u2 |--> zbar
q |--> tbar

sage: mF1 = matrix({k:fF(v) for k, v in m1.dict().items()}); mF1
[ ybar 0 0]
[ 0 -ybar - zbar 0]
[ 0 0 -ybar - zbar]
sage: mF1.base_ring() == F

(continues on next page)
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True

AUTHORS:

• Sebastian Oehms 2019-12-09: initial version.

• Sebastian Oehms 2022-03-05: fix some corner cases and add factor() (trac ticket #33463)

class sage.rings.localization.Localization(base_ring, extra_units, names=None, normalize=True,
category=None, warning=True)

Bases: IntegralDomain, UniqueRepresentation

The localization generalizes the construction of the field of fractions of an integral domain to an arbitrary ring.
Given a (not necessarily commutative) ring 𝑅 and a subset 𝑆 of 𝑅, there exists a ring 𝑅[𝑆−1] together with the
ring homomorphism 𝑅 −→ 𝑅[𝑆−1] that “inverts” 𝑆; that is, the homomorphism maps elements in 𝑆 to unit
elements in 𝑅[𝑆−1] and, moreover, any ring homomorphism from 𝑅 that “inverts” 𝑆 uniquely factors through
𝑅[𝑆−1].

The ring 𝑅[𝑆−1] is called the localization of 𝑅 with respect to 𝑆. For example, if 𝑅 is a commutative ring and
𝑓 an element in 𝑅, then the localization consists of elements of the form 𝑟/𝑓, 𝑟 ∈ 𝑅,𝑛 ≥ 0 (to be precise,
𝑅[𝑓−1] = 𝑅[𝑡]/(𝑓𝑡− 1).

The above text is taken from 𝑊𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎. The construction here used for this class relies on the construction of
the field of fraction and is therefore restricted to integral domains.

Accordingly, this class is inherited from IntegralDomain and can only be used in that context. Furthermore,
the base ring should support sage.structure.element.CommutativeRingElement.divides() and the
exact division operator // (sage.structure.element.Element.__floordiv__()) in order to guarantee an
successful application.

INPUT:

• base_ring – an instance of Ring allowing the construction of fraction_field() (that is an integral
domain)

• extra_units – tuple of elements of base_ring which should be turned into units

• names – passed to IntegralDomain

• normalize – (optional, default: True) passed to IntegralDomain

• category – (optional, default: None) passed to IntegralDomain

• warning – (optional, default: True) to suppress a warning which is thrown if self cannot be represented
uniquely

REFERENCES:

• Wikipedia article Ring_(mathematics)#Localization

EXAMPLES:

sage: L = Localization(ZZ, (3,5))
sage: 1/45 in L
True
sage: 1/43 in L
False

sage: Localization(L, (7,11))
Integer Ring localized at (3, 5, 7, 11)

(continues on next page)
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sage: _.is_subring(QQ)
True

sage: L(~7)
Traceback (most recent call last):
...
ValueError: factor 7 of denominator is not a unit

sage: Localization(Zp(7), (3, 5))
Traceback (most recent call last):
...
ValueError: all given elements are invertible in 7-adic Ring with capped relative␣
→˓precision 20

sage: R.<x> = ZZ[]
sage: L = R.localization(x**2+1)
sage: s = (x+5)/(x**2+1)
sage: s in L
True
sage: t = (x+5)/(x**2+2)
sage: t in L
False
sage: L(t)
Traceback (most recent call last):
...
TypeError: fraction must have unit denominator
sage: L(s) in R
False
sage: y = L(x)
sage: g = L(s)
sage: g.parent()
Univariate Polynomial Ring in x over Integer Ring localized at (x^2 + 1,)
sage: f = (y+5)/(y**2+1); f
(x + 5)/(x^2 + 1)
sage: f == g
True
sage: (y+5)/(y**2+2)
Traceback (most recent call last):
...
ValueError: factor x^2 + 2 of denominator is not a unit

sage: Lau.<u, v> = LaurentPolynomialRing(ZZ)
sage: LauL = Lau.localization(u+1)
sage: LauL(~u).parent()
Multivariate Polynomial Ring in u, v over Integer Ring localized at (v, u, u + 1)

More examples will be shown typing sage.rings.localization?

Element

alias of LocalizationElement

characteristic()

Return the characteristic of self.

6.1. Localization 101



General Rings, Ideals, and Morphisms, Release 9.8

EXAMPLES:

sage: R.<a> = GF(5)[]
sage: L = R.localization((a**2-3, a))
sage: L.characteristic()
5

fraction_field()

Return the fraction field of self.

EXAMPLES:

sage: R.<a> = GF(5)[]
sage: L = Localization(R, (a**2-3, a))
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in a over Finite Field of size 5
sage: L.is_subring(_)
True

gen(i)
Return the i-th generator of self which is the i-th generator of the base ring.

EXAMPLES:

sage: R.<x, y> = ZZ[]
sage: R.localization((x**2+1, y-1)).gen(0)
x

sage: ZZ.localization(2).gen(0)
1

gens()

Return a tuple whose entries are the generators for this object, in order.

EXAMPLES:

sage: R.<x, y> = ZZ[]
sage: Localization(R, (x**2+1, y-1)).gens()
(x, y)

sage: Localization(ZZ, 2).gens()
(1,)

is_field(proof=True)
Return True if this ring is a field.

INPUT:

• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error.
Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False
otherwise.

EXAMPLES:

102 Chapter 6. Localization



General Rings, Ideals, and Morphisms, Release 9.8

sage: R = ZZ.localization((2,3))
sage: R.is_field()
False

krull_dimension()

Return the Krull dimension of this localization.

Since the current implementation just allows integral domains as base ring and localization at a finite set of
elements the spectrum of self is open in the irreducible spectrum of its base ring. Therefore, by density
we may take the dimension from there.

EXAMPLES:

sage: R = ZZ.localization((2,3))
sage: R.krull_dimension()
1

ngens()

Return the number of generators of self according to the same method for the base ring.

EXAMPLES:

sage: R.<x, y> = ZZ[]
sage: Localization(R, (x**2+1, y-1)).ngens()
2

sage: Localization(ZZ, 2).ngens()
1

class sage.rings.localization.LocalizationElement(parent, x)
Bases: IntegralDomainElement

Element class for localizations of integral domains

INPUT:

• parent – instance of Localization

• x – instance of FractionFieldElement whose parent is the fraction
field of the parent’s base ring

EXAMPLES:

sage: from sage.rings.localization import LocalizationElement
sage: P.<x,y,z> = GF(5)[]
sage: L = P.localization((x, y*z-x))
sage: LocalizationElement(L, 4/(y*z-x)**2)
(-1)/(y^2*z^2 - 2*x*y*z + x^2)
sage: _.parent()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 5 localized at (x,
→˓ y*z - x)

denominator()

Return the denominator of self.

EXAMPLES:
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sage: L = Localization(ZZ, (3,5))
sage: L(7/15).denominator()
15

factor(proof=None)
Return the factorization of this polynomial.

INPUT:

• proof – (optional) if given it is passed to the corresponding method of the numerator of self

EXAMPLES:

sage: P.<X, Y> = QQ['x, y']
sage: L = P.localization(X-Y)
sage: x, y = L.gens()
sage: p = (x^2 - y^2)/(x-y)^2
sage: p.factor()
(1/(x - y)) * (x + y)

inverse_of_unit()

Return the inverse of self.

EXAMPLES:

sage: P.<x,y,z> = ZZ[]
sage: L = Localization(P, x*y*z)
sage: L(x*y*z).inverse_of_unit()
1/(x*y*z)
sage: L(z).inverse_of_unit()
1/z

is_unit()

Return True if self is a unit.

EXAMPLES:

sage: P.<x,y,z> = QQ[]
sage: L = P.localization((x, y*z))
sage: L(y*z).is_unit()
True
sage: L(z).is_unit()
True
sage: L(x*y*z).is_unit()
True

numerator()

Return the numerator of self.

EXAMPLES:

sage: L = ZZ.localization((3,5))
sage: L(7/15).numerator()
7
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sage.rings.localization.normalize_extra_units(base_ring, add_units, warning=True)
Function to normalize input data.

The given list will be replaced by a list of the involved prime factors (if possible).

INPUT:

• base_ring – an instance of IntegralDomain

• add_units – list of elements from base ring

• warning – (optional, default: True) to suppress a warning which is thrown if no normalization was possible

OUTPUT:

List of all prime factors of the elements of the given list.

EXAMPLES:

sage: from sage.rings.localization import normalize_extra_units
sage: normalize_extra_units(ZZ, [3, -15, 45, 9, 2, 50])
[2, 3, 5]
sage: P.<x,y,z> = ZZ[]
sage: normalize_extra_units(P, [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
[2, 3, 5, z, y, x]
sage: P.<x,y,z> = QQ[]
sage: normalize_extra_units(P, [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
[z, y, x]

sage: R.<x, y> = ZZ[]
sage: Q.<a, b> = R.quo(x**2-5)
sage: p = b**2-5
sage: p == (b-a)*(b+a)
True
sage: normalize_extra_units(Q, [p])
doctest:...: UserWarning: Localization may not be represented uniquely
[b^2 - 5]
sage: normalize_extra_units(Q, [p], warning=False)
[b^2 - 5]
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CHAPTER

SEVEN

RING EXTENSIONS

7.1 Extension of rings

Sage offers the possibility to work with ring extensions 𝐿/𝐾 as actual parents and perform meaningful operations on
them and their elements.

The simplest way to build an extension is to use the method sage.categories.commutative_rings.
CommutativeRings.ParentMethods.over() on the top ring, that is 𝐿. For example, the following line constructs
the extension of finite fields F54/F52 :

sage: GF(5^4).over(GF(5^2))
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base

By default, Sage reuses the canonical generator of the top ring (here 𝑧4 ∈ F54 ), together with its name. However, the
user can customize them by passing in appropriate arguments:

sage: F = GF(5^2)
sage: k = GF(5^4)
sage: z4 = k.gen()
sage: K.<a> = k.over(F, gen = 1-z4)
sage: K
Field in a with defining polynomial x^2 + z2*x + 4 over its base

The base of the extension is available via the method base() (or equivalently base_ring()):

sage: K.base()
Finite Field in z2 of size 5^2

It is also possible to build an extension on top of another extension, obtaining this way a tower of extensions:

sage: L.<b> = GF(5^8).over(K)
sage: L
Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base
sage: L.base()
Field in a with defining polynomial x^2 + z2*x + 4 over its base
sage: L.base().base()
Finite Field in z2 of size 5^2

The method bases() gives access to the complete list of rings in a tower:

sage: L.bases()
[Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base,

(continues on next page)

107

../../../../../../html/en/reference/categories/sage/categories/commutative_rings.html#sage.categories.commutative_rings.CommutativeRings.ParentMethods.over
../../../../../../html/en/reference/categories/sage/categories/commutative_rings.html#sage.categories.commutative_rings.CommutativeRings.ParentMethods.over


General Rings, Ideals, and Morphisms, Release 9.8

(continued from previous page)

Field in a with defining polynomial x^2 + z2*x + 4 over its base,
Finite Field in z2 of size 5^2]

Once we have constructed an extension (or a tower of extensions), we have interesting methods attached to it. As a
basic example, one can compute a basis of the top ring over any base in the tower:

sage: L.basis_over(K)
[1, b]
sage: L.basis_over(F)
[1, a, b, a*b]

When the base is omitted, the default is the natural base of the extension:

sage: L.basis_over()
[1, b]

The method sage.rings.ring_extension_element.RingExtensionWithBasis.vector() computes the coor-
dinates of an element according to the above basis:

sage: u = a + 2*b + 3*a*b
sage: u.vector() # over K
(a, 2 + 3*a)
sage: u.vector(F)
(0, 1, 2, 3)

One can also compute traces and norms with respect to any base of the tower:

sage: u.trace() # over K
(2*z2 + 1) + (2*z2 + 1)*a
sage: u.trace(F)
z2 + 1
sage: u.trace().trace() # over K, then over F
z2 + 1

sage: u.norm() # over K
(z2 + 1) + (4*z2 + 2)*a
sage: u.norm(F)
2*z2 + 2

And minimal polynomials:

sage: u.minpoly()
x^2 + ((3*z2 + 4) + (3*z2 + 4)*a)*x + (z2 + 1) + (4*z2 + 2)*a
sage: u.minpoly(F)
x^4 + (4*z2 + 4)*x^3 + x^2 + (z2 + 1)*x + 2*z2 + 2

AUTHOR:

• Xavier Caruso (2019)

class sage.rings.ring_extension.RingExtensionFactory

Bases: UniqueFactory

Factory for ring extensions.
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create_key_and_extra_args(ring, defining_morphism=None, gens=None, names=None,
constructors=None)

Create a key and return it together with a list of constructors of the object.

INPUT:

• ring – a commutative ring

• defining_morphism – a ring homomorphism or a commutative ring or None (default: None); the
defining morphism of this extension or its base (if it coerces to ring)

• gens – a list of generators of this extension (over its base) or None (default: None);

• names – a list or a tuple of variable names or None (default: None)

• constructors – a list of constructors; each constructor is a pair (𝑐𝑙𝑎𝑠𝑠, 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠) where 𝑐𝑙𝑎𝑠𝑠 is
the class implementing the extension and 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 is the dictionary of arguments to pass in to init
function

create_object(version, key, **extra_args)
Return the object associated to a given key.

class sage.rings.ring_extension.RingExtensionFractionField

Bases: RingExtension_generic

A class for ring extensions of the form ` extrm{Frac}(A)/A`.

Element

alias of RingExtensionFractionFieldElement

ring()

Return the ring whose fraction field is this extension.

EXAMPLES:

sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2␣
→˓over its base

sage: K.ring()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: K.ring() is OK
True

class sage.rings.ring_extension.RingExtensionWithBasis

Bases: RingExtension_generic

A class for finite free ring extensions equipped with a basis.

Element

alias of RingExtensionWithBasisElement

basis_over(base=None)
Return a basis of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension)
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EXAMPLES:

sage: F.<a> = GF(5^2).over() # over GF(5)
sage: K.<b> = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)

sage: L.basis_over(K)
[1, c, c^2]

sage: L.basis_over(F)
[1, b, c, b*c, c^2, b*c^2]

sage: L.basis_over(GF(5))
[1, a, b, a*b, c, a*c, b*c, a*b*c, c^2, a*c^2, b*c^2, a*b*c^2]

If base is omitted, it is set to its default which is the base of the extension:

sage: L.basis_over()
[1, c, c^2]

sage: K.basis_over()
[1, b]

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: L.degree_over(GF(5^6))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z6 of size 5^6

fraction_field(extend_base=False)
Return the fraction field of this extension.

INPUT:

• extend_base – a boolean (default: False);

If extend_base is False, the fraction field of the extension 𝐿/𝐾 is defined as Frac(𝐿)/𝐿/𝐾, except is
𝐿 is already a field in which base the fraction field of 𝐿/𝐾 is 𝐿/𝐾 itself.

If extend_base is True, the fraction field of the extension 𝐿/𝐾 is defined as Frac(𝐿)/Frac(𝐾) (provided
that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base

sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base
sage: K1.bases()

(continues on next page)
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[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base,
Order in Number Field in a with defining polynomial x^2 - 5 over its base,
Integer Ring]

sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base,
Rational Field]

Note that there is no coercion map between 𝐾1 and 𝐾2:

sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False

We check that when the extension is a field, its fraction field does not change:

sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True

free_module(base=None, map=True)
Return a free module V over base which is isomorphic to this ring

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

• map – boolean (default True); whether to return isomorphisms between this ring and V

OUTPUT:

• A finite-rank free module V over base

• The isomorphism from V to this ring corresponding to the basis output by the method basis_over()
(only included if map is True)

• The reverse isomorphism of the isomorphism above (only included if map is True)

EXAMPLES:

sage: F = GF(11)
sage: K.<a> = GF(11^2).over()
sage: L.<b> = GF(11^6).over(K)

Forgetting a part of the multiplicative structure, the field L can be viewed as a vector space of dimension 3
over K, equipped with a distinguished basis, namely (1, 𝑏, 𝑏2):
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sage: V, i, j = L.free_module(K)
sage: V
Vector space of dimension 3 over Field in a with defining polynomial x^2 + 7*x␣
→˓+ 2 over its base
sage: i
Generic map:
From: Vector space of dimension 3 over Field in a with defining polynomial x^

→˓2 + 7*x + 2 over its base
To: Field in b with defining polynomial x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a␣

→˓over its base
sage: j
Generic map:
From: Field in b with defining polynomial x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a␣

→˓over its base
To: Vector space of dimension 3 over Field in a with defining polynomial x^

→˓2 + 7*x + 2 over its base

sage: j(b)
(0, 1, 0)
sage: i((1, a, a+1))
1 + a*b + (1 + a)*b^2

Similarly, one can view L as a F-vector space of dimension 6:

sage: V, i, j, = L.free_module(F)
sage: V
Vector space of dimension 6 over Finite Field of size 11

In this case, the isomorphisms between 𝑉 and 𝐿 are given by the basis (1, 𝑎, 𝑏, 𝑎𝑏, 𝑏2, 𝑎𝑏2):

sage: j(a*b) (0, 0, 0, 1, 0, 0) sage: i((1,2,3,4,5,6)) (1 + 2*a) + (3 + 4*a)*b + (5 + 6*a)*b^2

When base is omitted, the default is the base of this extension:

sage: L.free_module(map=False)
Vector space of dimension 3 over Field in a with defining polynomial x^2 + 7*x␣
→˓+ 2 over its base

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: L.degree(GF(11^3))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z3 of size 11^3

class sage.rings.ring_extension.RingExtensionWithGen

Bases: RingExtensionWithBasis

A class for finite free ring extensions generated by a single element

fraction_field(extend_base=False)
Return the fraction field of this extension.

INPUT:

• extend_base – a boolean (default: False);
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If extend_base is False, the fraction field of the extension 𝐿/𝐾 is defined as Frac(𝐿)/𝐿/𝐾, except is
𝐿 is already a field in which base the fraction field of 𝐿/𝐾 is 𝐿/𝐾 itself.

If extend_base is True, the fraction field of the extension 𝐿/𝐾 is defined as Frac(𝐿)/Frac(𝐾) (provided
that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base

sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base,
Order in Number Field in a with defining polynomial x^2 - 5 over its base,
Integer Ring]

sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base,
Rational Field]

Note that there is no coercion map between 𝐾1 and 𝐾2:

sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False

We check that when the extension is a field, its fraction field does not change:

sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True

gens(base=None)
Return the generators of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:
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sage: K.<a> = GF(5^2).over() # over GF(5)
sage: K.gens()
(a,)

sage: L.<b> = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)

modulus(var='x')
Return the defining polynomial of this extension, that is the minimal polynomial of the given generator of
this extension.

INPUT:

• var – a variable name (default: x)

EXAMPLES:

sage: K.<u> = GF(7^10).over(GF(7^2))
sage: K
Field in u with defining polynomial x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 +␣
→˓(2*z2 + 2)*x^2 + 4*x + 6*z2 over its base

sage: P = K.modulus(); P
x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 + (2*z2 + 2)*x^2 + 4*x + 6*z2
sage: P(u)
0

We can use a different variable name:

sage: K.modulus('y')
y^5 + (6*z2 + 4)*y^4 + (3*z2 + 5)*y^3 + (2*z2 + 2)*y^2 + 4*y + 6*z2

class sage.rings.ring_extension.RingExtension_generic

Bases: CommutativeAlgebra

A generic class for all ring extensions.

Element

alias of RingExtensionElement

absolute_base()

Return the absolute base of this extension.

By definition, the absolute base of an iterated extension 𝐾𝑛/ · · ·𝐾2/𝐾1 is the ring 𝐾1.

EXAMPLES:

sage: F = GF(5^2).over() # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: F.absolute_base()
Finite Field of size 5

(continues on next page)
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sage: K.absolute_base()
Finite Field of size 5
sage: L.absolute_base()
Finite Field of size 5

See also:

base(), bases(), is_defined_over()

absolute_degree()

Return the degree of this extension over its absolute base

EXAMPLES:

sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)

sage: A.absolute_degree()
2
sage: B.absolute_degree()
6

See also:

degree(), relative_degree()

base()

Return the base of this extension.

EXAMPLES:

sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: K.base()
Finite Field in z2 of size 5^2

In case of iterated extensions, the base is itself an extension:

sage: L = GF(5^8).over(K)
sage: L.base()
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
sage: L.base() is K
True

See also:

bases(), absolute_base(), is_defined_over()

bases()

Return the list of successive bases of this extension (including itself).

EXAMPLES:

sage: F = GF(5^2).over() # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

(continues on next page)
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sage: F.bases()
[Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
Finite Field of size 5]

sage: K.bases()
[Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
Finite Field of size 5]

sage: L.bases()
[Field in z12 with defining polynomial x^3 + (1 + (2 - z2)*z4)*x^2 + (2 +␣
→˓2*z4)*x - z4 over its base,
Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
Finite Field of size 5]

See also:

base(), absolute_base(), is_defined_over()

characteristic()

Return the characteristic of the extension as a ring.

OUTPUT:

A prime number or zero.

EXAMPLES:

sage: F = GF(5^2).over() # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: F.characteristic()
5
sage: K.characteristic()
5
sage: L.characteristic()
5

sage: F = RR.over(ZZ)
sage: F.characteristic()
0

sage: F = GF(11)
sage: A.<x> = F[]
sage: K = Frac(F).over(F)
sage: K.characteristic()
11

sage: E = GF(7).over(ZZ)
sage: E.characteristic()
7
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construction()

Return the functorial construction of this extension, if defined.

EXAMPLES:

sage: E = GF(5^3).over()
sage: E.construction()

defining_morphism(base=None)
Return the defining morphism of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: K.defining_morphism()
Ring morphism:
From: Finite Field in z2 of size 5^2
To: Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its␣

→˓base
Defn: z2 |--> z2

sage: L.defining_morphism()
Ring morphism:
From: Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its␣

→˓base
To: Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 +␣

→˓(2 + 2*z4)*x - z4 over its base
Defn: z4 |--> z4

One can also pass in a base over which the extension is explicitly defined (see also is_defined_over()):

sage: L.defining_morphism(F)
Ring morphism:
From: Finite Field in z2 of size 5^2
To: Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 +␣

→˓(2 + 2*z4)*x - z4 over its base
Defn: z2 |--> z2

sage: L.defining_morphism(GF(5))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field of size 5

degree(base)
Return the degree of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension)
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EXAMPLES:

sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)

sage: A.degree(GF(5^2))
2
sage: B.degree(A)
3
sage: B.degree(GF(5^2))
6

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: A.degree(GF(5))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field of size 5

See also:

relative_degree(), absolute_degree()

degree_over(base=None)
Return the degree of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: K.degree_over(F)
2
sage: L.degree_over(K)
3
sage: L.degree_over(F)
6

If base is omitted, the degree is computed over the base of the extension:

sage: K.degree_over()
2
sage: L.degree_over()
3

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: K.degree_over(GF(5))
Traceback (most recent call last):

(continues on next page)
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...
ValueError: not (explicitly) defined over Finite Field of size 5

fraction_field(extend_base=False)
Return the fraction field of this extension.

INPUT:

• extend_base – a boolean (default: False);

If extend_base is False, the fraction field of the extension 𝐿/𝐾 is defined as Frac(𝐿)/𝐿/𝐾, except if
𝐿 is already a field in which base the fraction field of 𝐿/𝐾 is 𝐿/𝐾 itself.

If extend_base is True, the fraction field of the extension 𝐿/𝐾 is defined as Frac(𝐿)/Frac(𝐾) (provided
that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base

sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base,
Order in Number Field in a with defining polynomial x^2 - 5 over its base,
Integer Ring]

sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5␣
→˓over its base,
Rational Field]

Note that there is no coercion between 𝐾1 and 𝐾2:

sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False

We check that when the extension is a field, its fraction field does not change:

sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True
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from_base_ring(r)
Return the canonical embedding of r into this extension.

INPUT:

• r – an element of the base of the ring of this extension

EXAMPLES:

sage: k = GF(5)
sage: K.<u> = GF(5^2).over(k)
sage: L.<v> = GF(5^4).over(K)

sage: x = L.from_base_ring(k(2)); x
2
sage: x.parent()
Field in v with defining polynomial x^2 + (3 - u)*x + u over its base

sage: x = L.from_base_ring(u); x
u
sage: x.parent()
Field in v with defining polynomial x^2 + (3 - u)*x + u over its base

gen()

Return the first generator of this extension.

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: x =K.gen(); x
z2

Observe that the generator lives in the extension:

sage: x.parent()
Field in z2 with defining polynomial x^2 + 4*x + 2 over its base
sage: x.parent() is K
True

gens(base=None)
Return the generators of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None); if omitted,
use the base of this extension

EXAMPLES:

sage: K.<a> = GF(5^2).over() # over GF(5)
sage: K.gens()
(a,)
sage: L.<b> = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)

(continues on next page)
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sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: T.over(S).gens()
(y,)
sage: T.over(QQ).gens()
(y, x)

hom(im_gens, codomain=None, base_map=None, category=None, check=True)
Return the unique homomorphism from this extension to codomain that sends self.gens() to the entries
of im_gens and induces the map base_map on the base ring.

INPUT:

• im_gens – the images of the generators of this extension

• codomain – the codomain of the homomorphism; if omitted, it is set to the smallest parent containing
all the entries of im_gens

• base_map – a map from one of the bases of this extension into something that coerces into the
codomain; if omitted, coercion maps are used

• category – the category of the resulting morphism

• check – a boolean (default: True); whether to verify that the images of generators extend to define a
map (using only canonical coercions)

EXAMPLES:

sage: K.<a> = GF(5^2).over() # over GF(5)
sage: L.<b> = GF(5^6).over(K)

We define (by hand) the relative Frobenius endomorphism of the extension 𝐿/𝐾:

sage: L.hom([b^25])
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a␣
→˓over its base
Defn: b |--> 2 + 2*a*b + (2 - a)*b^2

Defining the absolute Frobenius of 𝐿 is a bit more complicated because it is not a homomorphism of 𝐾-
algebras. For this reason, the construction L.hom([b^5]) fails:

sage: L.hom([b^5])
Traceback (most recent call last):
...
ValueError: images do not define a valid homomorphism

What we need is to specify a base map:

sage: FrobK = K.hom([a^5])
sage: FrobL = L.hom([b^5], base_map=FrobK)
sage: FrobL
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a␣
→˓over its base
Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2

(continues on next page)
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with map on base ring:
a |--> 1 - a

As a shortcut, we may use the following construction:

sage: phi = L.hom([b^5, a^5])
sage: phi
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a␣
→˓over its base
Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2

with map on base ring:
a |--> 1 - a

sage: phi == FrobL
True

is_defined_over(base)
Return whether or not base is one of the bases of this extension.

INPUT:

• base – a commutative ring, which might be itself an extension

EXAMPLES:

sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)

sage: A.is_defined_over(GF(5^2))
True
sage: A.is_defined_over(GF(5))
False

sage: B.is_defined_over(A)
True
sage: B.is_defined_over(GF(5^4))
True
sage: B.is_defined_over(GF(5^2))
True
sage: B.is_defined_over(GF(5))
False

Note that an extension is defined over itself:

sage: A.is_defined_over(A)
True
sage: A.is_defined_over(GF(5^4))
True

See also:

base(), bases(), absolute_base()

is_field(proof=True)
Return whether or not this extension is a field.

INPUT:
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• proof – a boolean (default: False)

EXAMPLES:

sage: K = GF(5^5).over() # over GF(5)
sage: K.is_field()
True

sage: S.<x> = QQ[]
sage: A = S.over(QQ)
sage: A.is_field()
False

sage: B = A.fraction_field()
sage: B.is_field()
True

is_finite_over(base=None)
Return whether or not this extension is finite over base (as a module).

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: L = GF(5^4).over(K)

sage: L.is_finite_over(K)
True
sage: L.is_finite_over(GF(5))
True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_finite_over()
True

is_free_over(base=None)
Return True if this extension is free (as a module) over base

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: L = GF(5^4).over(K)

sage: L.is_free_over(K)
True
sage: L.is_free_over(GF(5))
True

If base is omitted, it is set to its default which is the base of the extension:
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sage: L.is_free_over()
True

ngens(base=None)
Return the number of generators of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: K.gens()
(z2,)
sage: K.ngens()
1

sage: L = GF(5^4).over(K)
sage: L.gens(GF(5))
(z4, z2)
sage: L.ngens(GF(5))
2

print_options(**options)
Update the printing options of this extension.

INPUT:

• over – an integer or Infinity (default: 0); the maximum number of bases included in the printing
of this extension

• base – a base over which this extension is finite free; elements in this extension will be printed as a
linear combinaison of a basis of this extension over the given base

EXAMPLES:

sage: A.<a> = GF(5^2).over() # over GF(5)
sage: B.<b> = GF(5^4).over(A)
sage: C.<c> = GF(5^12).over(B)
sage: D.<d> = GF(5^24).over(C)

Observe what happens when we modify the option over:

sage: D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 +␣
→˓a) + (1 - a)*b)*c^2)*x + c over its base

sage: D.print_options(over=2)
sage: D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 +␣
→˓a) + (1 - a)*b)*c^2)*x + c over
Field in c with defining polynomial x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b␣
→˓over
Field in b with defining polynomial x^2 + (3 - a)*x + a over its base

(continues on next page)
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sage: D.print_options(over=Infinity)
sage: D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 +␣
→˓a) + (1 - a)*b)*c^2)*x + c over
Field in c with defining polynomial x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b␣
→˓over
Field in b with defining polynomial x^2 + (3 - a)*x + a over
Field in a with defining polynomial x^2 + 4*x + 2 over
Finite Field of size 5

Now the option base:

sage: d^2
-c + ((-1 + a) + ((-1 + 3*a) + b)*c + ((3 - a) + (-1 + a)*b)*c^2)*d

sage: D.basis_over(B)
[1, c, c^2, d, c*d, c^2*d]
sage: D.print_options(base=B)
sage: d^2
-c + (-1 + a)*d + ((-1 + 3*a) + b)*c*d + ((3 - a) + (-1 + a)*b)*c^2*d

sage: D.basis_over(A)
[1, b, c, b*c, c^2, b*c^2, d, b*d, c*d, b*c*d, c^2*d, b*c^2*d]
sage: D.print_options(base=A)
sage: d^2
-c + (-1 + a)*d + (-1 + 3*a)*c*d + b*c*d + (3 - a)*c^2*d + (-1 + a)*b*c^2*d

random_element()

Return a random element in this extension.

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: x = K.random_element(); x # random
3 + z2

sage: x.parent()
Field in z2 with defining polynomial x^2 + 4*x + 2 over its base
sage: x.parent() is K
True

relative_degree()

Return the degree of this extension over its base

EXAMPLES:

sage: A = GF(5^4).over(GF(5^2))
sage: A.relative_degree()
2

See also:

degree(), absolute_degree()
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sage.rings.ring_extension.common_base(K, L, degree)
Return a common base on which K and L are defined.

INPUT:

• K – a commutative ring

• L – a commutative ring

• degree – a boolean; if true, return the degree of K and L over their common base

EXAMPLES:

sage: from sage.rings.ring_extension import common_base

sage: common_base(GF(5^3), GF(5^7), False)
Finite Field of size 5
sage: common_base(GF(5^3), GF(5^7), True)
(Finite Field of size 5, 3, 7)

sage: common_base(GF(5^3), GF(7^5), False)
Traceback (most recent call last):
...
NotImplementedError: unable to find a common base

When degree is set to True, we only look up for bases on which both K and L are finite:

sage: S.<x> = QQ[]
sage: common_base(S, QQ, False)
Rational Field
sage: common_base(S, QQ, True)
Traceback (most recent call last):
...
NotImplementedError: unable to find a common base

sage.rings.ring_extension.generators(ring, base)
Return the generators of ring over base.

INPUT:

• ring – a commutative ring

• base – a commutative ring

EXAMPLES:

sage: from sage.rings.ring_extension import generators
sage: S.<x> = QQ[]
sage: T.<y> = S[]

sage: generators(T, S)
(y,)
sage: generators(T, QQ)
(y, x)

sage.rings.ring_extension.tower_bases(ring, degree)
Return the list of bases of ring (including itself); if degree is True, restrict to finite extensions and return in
addition the degree of ring over each base.
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INPUT:

• ring – a commutative ring

• degree – a boolean

EXAMPLES:

sage: from sage.rings.ring_extension import tower_bases
sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: tower_bases(T, False)
([Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over␣
→˓Rational Field,
Univariate Polynomial Ring in x over Rational Field,
Rational Field],
[])
sage: tower_bases(T, True)
([Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over␣
→˓Rational Field],
[1])

sage: K.<a> = Qq(5^2)
sage: L.<w> = K.extension(x^3 - 5)
sage: tower_bases(L, True)
([5-adic Eisenstein Extension Field in w defined by x^3 - 5 over its base field,
5-adic Unramified Extension Field in a defined by x^2 + 4*x + 2,
5-adic Field with capped relative precision 20],
[1, 3, 6])

sage.rings.ring_extension.variable_names(ring, base)
Return the variable names of the generators of ring over base.

INPUT:

• ring – a commutative ring

• base – a commutative ring

EXAMPLES:

sage: from sage.rings.ring_extension import variable_names
sage: S.<x> = QQ[]
sage: T.<y> = S[]

sage: variable_names(T, S)
('y',)
sage: variable_names(T, QQ)
('y', 'x')
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7.2 Elements lying in extension of rings

AUTHOR:

• Xavier Caruso (2019)

class sage.rings.ring_extension_element.RingExtensionElement

Bases: CommutativeAlgebraElement

Generic class for elements lying in ring extensions.

additive_order()

Return the additive order of this element.

EXAMPLES:

sage: K.<a> = GF(5^4).over(GF(5^2))
sage: a.additive_order()
5

is_nilpotent()

Return whether if this element is nilpotent in this ring.

EXAMPLES:

sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(0).is_nilpotent()
True
sage: E(x).is_nilpotent()
False

is_prime()

Return whether this element is a prime element in this ring.

EXAMPLES:

sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(x^2+1).is_prime()
True
sage: E(x^2-1).is_prime()
False

is_square(root=False)
Return whether this element is a square in this ring.

INPUT:

• root – a boolean (default: False); if True, return also a square root

EXAMPLES:

sage: K.<a> = GF(5^3).over()
sage: a.is_square()
False
sage: a.is_square(root=True)

(continues on next page)
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(False, None)

sage: b = a + 1
sage: b.is_square()
True
sage: b.is_square(root=True)
(True, 2 + 3*a + a^2)

is_unit()

Return whether if this element is a unit in this ring.

EXAMPLES:

sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(4).is_unit()
True
sage: E(x).is_unit()
False

multiplicative_order()

Return the multiplicite order of this element.

EXAMPLES:

sage: K.<a> = GF(5^4).over(GF(5^2))
sage: a.multiplicative_order()
624

sqrt(extend=True, all=False, name=None)
Return a square root or all square roots of this element.

INPUT:

• extend – a boolean (default: True); if “True”, return a square root in an extension ring, if necessary.
Otherwise, raise a ValueError if the root is not in the ring

• all – a boolean (default: False); if True, return all square roots of this element, instead of just one.

• name – Required when extend=True and self is not a square. This will be the name of the generator
extension.

Note: The option 𝑒𝑥𝑡𝑒𝑛𝑑 = 𝑇𝑟𝑢𝑒 is often not implemented.

EXAMPLES:

sage: K.<a> = GF(5^3).over()
sage: b = a + 1
sage: b.sqrt()
2 + 3*a + a^2
sage: b.sqrt(all=True)
[2 + 3*a + a^2, 3 + 2*a - a^2]
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class sage.rings.ring_extension_element.RingExtensionFractionFieldElement

Bases: RingExtensionElement

A class for elements lying in fraction fields of ring extensions.

denominator()

Return the denominator of this element.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over() # over ZZ
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2␣
→˓over its base

sage: x = K(1/a); x
a/2
sage: denom = x.denominator(); denom
2

The denominator is an element of the ring which was used to construct the fraction field:

sage: denom.parent()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: denom.parent() is OK
True

numerator()

Return the numerator of this element.

EXAMPLES:

sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over() # over ZZ
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2␣
→˓over its base

sage: x = K(1/a); x
a/2
sage: num = x.numerator(); num
a

The numerator is an element of the ring which was used to construct the fraction field:

sage: num.parent()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: num.parent() is OK
True

class sage.rings.ring_extension_element.RingExtensionWithBasisElement

Bases: RingExtensionElement
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A class for elements lying in finite free extensions.

charpoly(base=None, var='x')
Return the characteristic polynomial of this element over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)

sage: chi = u.charpoly(K); chi
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

We check that the charpoly has coefficients in the base ring:

sage: chi.base_ring()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K
True

and that it annihilates u:

sage: chi(u)
0

Similarly, one can compute the characteristic polynomial over F:

sage: u.charpoly(F)
x^6 + x^4 + 2*x^3 + 3*x + 4

A different variable name can be specified:

sage: u.charpoly(F, var='t')
t^6 + t^4 + 2*t^3 + 3*t + 4

If base is omitted, it is set to its default which is the base of the extension:

sage: u.charpoly()
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: u.charpoly(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

matrix(base=None)
Return the matrix of the multiplication by this element (in the basis output by basis_over()).

INPUT:
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• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: K.<a> = GF(5^3).over() # over GF(5)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)

sage: u
(2 + a + 3*a^2) + (3 + 3*a + a^2)*b
sage: b*u
(3 + 2*a^2) + (2 + 2*a - a^2)*b
sage: u.matrix(K)
[2 + a + 3*a^2 3 + 3*a + a^2]
[ 3 + 2*a^2 2 + 2*a - a^2]

sage: u.matrix(GF(5))
[2 1 3 3 3 1]
[1 3 1 2 0 3]
[2 3 3 1 3 0]
[3 0 2 2 2 4]
[4 2 0 3 0 2]
[0 4 2 4 2 0]

If base is omitted, it is set to its default which is the base of the extension:

sage: u.matrix()
[2 + a + 3*a^2 3 + 3*a + a^2]
[ 3 + 2*a^2 2 + 2*a - a^2]

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: u.matrix(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

minpoly(base=None, var='x')
Return the minimal polynomial of this element over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = 1 / (a+b)

sage: chi = u.minpoly(K); chi
x^2 + (2*a + a^2)*x - 1 + a

We check that the minimal polynomial has coefficients in the base ring:
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sage: chi.base_ring()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K
True

and that it annihilates u:

sage: chi(u)
0

Similarly, one can compute the minimal polynomial over F:

sage: u.minpoly(F)
x^6 + 4*x^5 + x^4 + 2*x^2 + 3

A different variable name can be specified:

sage: u.minpoly(F, var='t')
t^6 + 4*t^5 + t^4 + 2*t^2 + 3

If base is omitted, it is set to its default which is the base of the extension:

sage: u.minpoly()
x^2 + (2*a + a^2)*x - 1 + a

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: u.minpoly(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

norm(base=None)
Return the norm of this element over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)

sage: nr = u.norm(K); nr
3 + 2*a^2

We check that the norm lives in the base ring:

sage: nr.parent()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: nr.parent() is K
True
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Similarly, one can compute the norm over F:

sage: u.norm(F)
4

We check the transitivity of the norm:

sage: u.norm(F) == nr.norm(F)
True

If base is omitted, it is set to its default which is the base of the extension:

sage: u.norm()
3 + 2*a^2

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: u.norm(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

polynomial(base=None, var='x')
Return a polynomial (in one or more variables) over base whose evaluation at the generators of the parent
equals this element.

INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F.<a> = GF(5^2).over() # over GF(5)
sage: K.<b> = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)
sage: u = 1/(a + b + c); u
(2 + (-1 - a)*b) + ((2 + 3*a) + (1 - a)*b)*c + ((-1 - a) - a*b)*c^2

sage: P = u.polynomial(K); P
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b
sage: P.base_ring() is K
True
sage: P(c) == u
True

When the base is 𝐹 , we obtain a bivariate polynomial:

sage: P = u.polynomial(F); P
(-a)*x0^2*x1 + (-1 - a)*x0^2 + (1 - a)*x0*x1 + (2 + 3*a)*x0 + (-1 - a)*x1 + 2

We check that its value at the generators is the element we started with:

sage: L.gens(F)
(c, b)

(continues on next page)
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sage: P(c, b) == u
True

Similarly, when the base is GF(5), we get a trivariate polynomial:

sage: P = u.polynomial(GF(5)); P -x0^2*x1*x2 - x0^2*x2 - x0*x1*x2 - x0^2 + x0*x1 - 2*x0*x2
- x1*x2 + 2*x0 - x1 + 2 sage: P(c, b, a) == u True

Different variable names can be specified:

sage: u.polynomial(GF(5), var='y')
-y0^2*y1*y2 - y0^2*y2 - y0*y1*y2 - y0^2 + y0*y1 - 2*y0*y2 - y1*y2 + 2*y0 - y1 +␣
→˓2
sage: u.polynomial(GF(5), var=['x','y','z'])
-x^2*y*z - x^2*z - x*y*z - x^2 + x*y - 2*x*z - y*z + 2*x - y + 2

If base is omitted, it is set to its default which is the base of the extension:

sage: u.polynomial()
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: u.polynomial(GF(5^3))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3

trace(base=None)
Return the trace of this element over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)

sage: tr = u.trace(K); tr
-1 + 3*a + 2*a^2

We check that the trace lives in the base ring:

sage: tr.parent()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: tr.parent() is K
True

Similarly, one can compute the trace over F:
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sage: u.trace(F)
0

We check the transitivity of the trace:

sage: u.trace(F) == tr.trace(F)
True

If base is omitted, it is set to its default which is the base of the extension:

sage: u.trace()
-1 + 3*a + 2*a^2

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: u.trace(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

vector(base=None)
Return the vector of coordinates of this element over base (in the basis output by the method
basis_over()).

INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^2).over() # over F
sage: L.<b> = GF(5^6).over(K)
sage: x = (a+b)^4; x
(-1 + a) + (3 + a)*b + (1 - a)*b^2

sage: x.vector(K) # basis is (1, b, b^2)
(-1 + a, 3 + a, 1 - a)

sage: x.vector(F) # basis is (1, a, b, a*b, b^2, a*b^2)
(4, 1, 3, 1, 1, 4)

If base is omitted, it is set to its default which is the base of the extension:

sage: x.vector()
(-1 + a, 3 + a, 1 - a)

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases()):

sage: x.vector(GF(5^3))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
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7.3 Morphisms between extension of rings

AUTHOR:

• Xavier Caruso (2019)

class sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing

Bases: Map

Base class of the module isomorphism between a ring extension and a free module over one of its bases.

is_injective()

Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: i.is_injective()
True

is_surjective()

Return whether this morphism is surjective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: i.is_surjective()
True

class sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule

Bases: Map

Base class of the module isomorphism between a ring extension and a free module over one of its bases.

is_injective()

Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_injective()
True

is_surjective()

Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_surjective()
True
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class sage.rings.ring_extension_morphism.RingExtensionBackendIsomorphism

Bases: RingExtensionHomomorphism

A class for implementating isomorphisms taking an element of the backend to its ring extension.

class sage.rings.ring_extension_morphism.RingExtensionBackendReverseIsomorphism

Bases: RingExtensionHomomorphism

A class for implementating isomorphisms from a ring extension to its backend.

class sage.rings.ring_extension_morphism.RingExtensionHomomorphism

Bases: RingMap

A class for ring homomorphisms between extensions.

base_map()

Return the base map of this morphism or just None if the base map is a coercion map.

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^2).over(F)
sage: L.<b> = GF(5^6).over(K)

We define the absolute Frobenius of L:

sage: FrobL = L.hom([b^5, a^5])
sage: FrobL
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a␣
→˓over its base
Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2

with map on base ring:
a |--> 1 - a

sage: FrobL.base_map()
Ring morphism:
From: Field in a with defining polynomial x^2 + 4*x + 2 over its base
To: Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
Defn: a |--> 1 - a

The square of FrobL acts trivially on K; in other words, it has a trivial base map:

sage: phi = FrobL^2
sage: phi
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a␣
→˓over its base
Defn: b |--> 2 + 2*a*b + (2 - a)*b^2

sage: phi.base_map()

is_identity()

Return whether this morphism is the identity.

EXAMPLES:

sage: K.<a> = GF(5^2).over() # over GF(5)
sage: FrobK = K.hom([a^5])
sage: FrobK.is_identity()
False

(continues on next page)
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sage: (FrobK^2).is_identity()
True

Coercion maps are not considered as identity morphisms:

sage: L.<b> = GF(5^6).over(K)
sage: iota = L.defining_morphism()
sage: iota
Ring morphism:
From: Field in a with defining polynomial x^2 + 4*x + 2 over its base
To: Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
Defn: a |--> a

sage: iota.is_identity()
False

is_injective()

Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
From: Finite Field in z5 of size 5^5
To: Field in z10 with defining polynomial x^2 + (2*z5^3 + 2*z5^2 + 4*z5 +␣

→˓4)*x + z5 over its base
Defn: z5 |--> z5

sage: iota.is_injective()
True

sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
From: Integer Ring
To: Finite Field of size 7 over its base
Defn: 1 |--> 1

sage: iota.is_injective()
False

is_surjective()

Return whether this morphism is surjective.

EXAMPLES:

sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
From: Finite Field in z5 of size 5^5
To: Field in z10 with defining polynomial x^2 + (2*z5^3 + 2*z5^2 + 4*z5 +␣

→˓4)*x + z5 over its base
(continues on next page)
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Defn: z5 |--> z5
sage: iota.is_surjective()
False

sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
From: Integer Ring
To: Finite Field of size 7 over its base
Defn: 1 |--> 1

sage: iota.is_surjective()
True
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GENERIC DATA STRUCTURES AND ALGORITHMS FOR RINGS

8.1 Generic data structures and algorithms for rings

AUTHORS:

• Lorenz Panny (2022): ProductTree, prod_with_derivative()

class sage.rings.generic.ProductTree(leaves)
Bases: object

A simple binary product tree, i.e., a tree of ring elements in which every node equals the product of its children.
(In particular, the root equals the product of all leaves.)

Product trees are a very useful building block for fast computer algebra. For example, a quasilinear-time Discrete
Fourier Transform (the famous Fast Fourier Transform) can be implemented as follows using the remainders()
method of this class:

sage: from sage.rings.generic import ProductTree
sage: F = GF(65537)
sage: a = F(1111)
sage: assert a.multiplicative_order() == 1024
sage: R.<x> = F[]
sage: ms = [x - a^i for i in range(1024)] # roots of unity
sage: ys = [F.random_element() for _ in range(1024)] # input vector
sage: zs = ProductTree(ms).remainders(R(ys)) # compute FFT!
sage: zs == [R(ys) % m for m in ms]
True

This class encodes the tree as layers: Layer 0 is just a tuple of the leaves. Layer 𝑖 + 1 is obtained from layer 𝑖
by replacing each pair of two adjacent elements by their product, starting from the left. (If the length is odd, the
unpaired element at the end is simply copied as is.) This iteration stops as soon as it yields a layer containing
only a single element (the root).

Note: Use this class if you need the remainders() method. To compute just the product, prod() is likely
faster.

INPUT:

• leaves – an iterable of elements in a common ring

EXAMPLES:
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sage: from sage.rings.generic import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.root()
x^9 + 56*x^8 + 62*x^7 + 44*x^6 + 47*x^5 + 42*x^4 + 15*x^3 + 11*x^2 + 12*x + 13
sage: tree.remainders(x^7 + x + 1)
[3, 30, 70, 27, 58, 72, 98, 98, 23]
sage: tree.remainders(x^100)
[1, 1, 1, 1, 1, 1, 1, 1, 1]

sage: vs = prime_range(100)
sage: tree = ProductTree(vs)
sage: tree.root().factor()
2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 * 53 * 59 * 61␣
→˓* 67 * 71 * 73 * 79 * 83 * 89 * 97
sage: tree.remainders(3599)
[1, 2, 4, 1, 2, 11, 12, 8, 11, 3, 3, 10, 32, 30, 27, 48, 0, 0, 48, 49, 22, 44, 30,␣
→˓39, 10]

We can access the individual layers of the tree:

sage: tree.layers
[(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,␣
→˓79, 83, 89, 97),
(6, 35, 143, 323, 667, 1147, 1763, 2491, 3599, 4757, 5767, 7387, 97),
(210, 46189, 765049, 4391633, 17120443, 42600829, 97),
(9699690, 3359814435017, 729345064647247, 97),
(32589158477190044730, 70746471270782959),
(2305567963945518424753102147331756070,)]

leaves()

Return a tuple containing the leaves of this product tree.

EXAMPLES:

sage: from sage.rings.generic import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.leaves()
(x + 100, x + 99, x + 98, ..., x + 93, x + 92)
sage: tree.leaves() == tuple(vs)
True

remainders(x)
Given a value 𝑥, return a list of all remainders of 𝑥 modulo the leaves of this product tree.

The base ring must support the % operator for this method to work.

INPUT:

• x – an element of the base ring of this product tree

EXAMPLES:
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sage: from sage.rings.generic import ProductTree
sage: vs = prime_range(100)
sage: tree = ProductTree(vs)
sage: n = 1085749272377676749812331719267
sage: tree.remainders(n)
[1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6, 0, 25, 49, 5, 51, 4, 19,␣
→˓74, 13]
sage: [n % v for v in vs]
[1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6, 0, 25, 49, 5, 51, 4, 19,␣
→˓74, 13]

root()

Return the value at the root of this product tree (i.e., the product of all leaves).

EXAMPLES:

sage: from sage.rings.generic import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.root()
x^9 + 56*x^8 + 62*x^7 + 44*x^6 + 47*x^5 + 42*x^4 + 15*x^3 + 11*x^2 + 12*x + 13
sage: tree.root() == prod(vs)
True

sage.rings.generic.prod_with_derivative(pairs)
Given an iterable of pairs (𝑓, 𝜕𝑓) of ring elements, return the pair (

∏︀
𝑓, 𝜕

∏︀
𝑓), assuming 𝜕 is an operator

obeying the standard product rule.

This function is entirely algebraic, hence still works when the elements 𝑓 and 𝜕𝑓 are all passed through some
ring homomorphism first. One particularly useful instance of this is evaluating the derivative of a product of
polynomials at a point without fully expanding the product; see the second example below.

INPUT:

• pairs – an iterable of tuples (𝑓, 𝜕𝑓) of elements of a common ring

ALGORITHM: Repeated application of the product rule.

EXAMPLES:

sage: from sage.rings.generic import prod_with_derivative
sage: R.<x> = ZZ[]
sage: fs = [x^2 + 2*x + 3, 4*x + 5, 6*x^7 + 8*x + 9]
sage: prod(fs)
24*x^10 + 78*x^9 + 132*x^8 + 90*x^7 + 32*x^4 + 140*x^3 + 293*x^2 + 318*x + 135
sage: prod(fs).derivative()
240*x^9 + 702*x^8 + 1056*x^7 + 630*x^6 + 128*x^3 + 420*x^2 + 586*x + 318
sage: F, dF = prod_with_derivative((f, f.derivative()) for f in fs)
sage: F
24*x^10 + 78*x^9 + 132*x^8 + 90*x^7 + 32*x^4 + 140*x^3 + 293*x^2 + 318*x + 135
sage: dF
240*x^9 + 702*x^8 + 1056*x^7 + 630*x^6 + 128*x^3 + 420*x^2 + 586*x + 318

The main reason for this function to exist is that it allows us to evaluate the derivative of a product of polynomials
at a point 𝛼 without ever fully expanding the product as a polynomial:
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sage: alpha = 42
sage: F(alpha)
442943981574522759
sage: dF(alpha)
104645261461514994
sage: us = [f(alpha) for f in fs]
sage: vs = [f.derivative()(alpha) for f in fs]
sage: prod_with_derivative(zip(us, vs))
(442943981574522759, 104645261461514994)
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UTILITIES

9.1 Big O for various types (power series, p-adics, etc.)

See also:

• asymptotic expansions

• p-adic numbers

• power series

• polynomials

sage.rings.big_oh.O(*x, **kwds)
Big O constructor for various types.

EXAMPLES:

This is useful for writing power series elements:

sage: R.<t> = ZZ[['t']]
sage: (1+t)^10 + O(t^5)
1 + 10*t + 45*t^2 + 120*t^3 + 210*t^4 + O(t^5)

A power series ring is created implicitly if a polynomial element is passed:

sage: R.<x> = QQ['x']
sage: O(x^100)
O(x^100)
sage: 1/(1+x+O(x^5))
1 - x + x^2 - x^3 + x^4 + O(x^5)
sage: R.<u,v> = QQ[[]]
sage: 1 + u + v^2 + O(u, v)^5
1 + u + v^2 + O(u, v)^5

This is also useful to create 𝑝-adic numbers:

sage: O(7^6)
O(7^6)
sage: 1/3 + O(7^6)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)

It behaves well with respect to adding negative powers of 𝑝:
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sage: a = O(11^-32); a
O(11^-32)
sage: a.parent()
11-adic Field with capped relative precision 20

There are problems if you add a rational with very negative valuation to an 𝑂-Term:

sage: 11^-12 + O(11^15)
11^-12 + O(11^8)

The reason that this fails is that the constructor doesn’t know the right precision cap to use. If you cast explicitly
or use other means of element creation, you can get around this issue:

sage: K = Qp(11, 30)
sage: K(11^-12) + O(11^15)
11^-12 + O(11^15)
sage: 11^-12 + K(O(11^15))
11^-12 + O(11^15)
sage: K(11^-12, absprec = 15)
11^-12 + O(11^15)
sage: K(11^-12, 15)
11^-12 + O(11^15)

We can also work with asymptotic expansions:

sage: A.<n> = AsymptoticRing(growth_group='QQ^n * n^QQ * log(n)^QQ', coefficient_
→˓ring=QQ); A
Asymptotic Ring <QQ^n * n^QQ * log(n)^QQ * Signs^n> over Rational Field
sage: O(n)
O(n)

Application with Puiseux series:

sage: P.<y> = PuiseuxSeriesRing(ZZ)
sage: y^(1/5) + O(y^(1/3))
y^(1/5) + O(y^(1/3))
sage: y^(1/3) + O(y^(1/5))
O(y^(1/5))

9.2 Signed and Unsigned Infinities

The unsigned infinity “ring” is the set of two elements

1. infinity

2. A number less than infinity

The rules for arithmetic are that the unsigned infinity ring does not canonically coerce to any other ring, and all other
rings canonically coerce to the unsigned infinity ring, sending all elements to the single element “a number less than
infinity” of the unsigned infinity ring. Arithmetic and comparisons then take place in the unsigned infinity ring, where
all arithmetic operations that are well-defined are defined.

The infinity “ring” is the set of five elements

1. plus infinity
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2. a positive finite element

3. zero

4. a negative finite element

5. negative infinity

The infinity ring coerces to the unsigned infinity ring, sending the infinite elements to infinity and the non-infinite
elements to “a number less than infinity.” Any ordered ring coerces to the infinity ring in the obvious way.

Note: The shorthand oo is predefined in Sage to be the same as +Infinity in the infinity ring. It is considered equal
to, but not the same as Infinity in the UnsignedInfinityRing.

EXAMPLES:

We fetch the unsigned infinity ring and create some elements:

sage: P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
sage: P(5)
A number less than infinity
sage: P.ngens()
1
sage: unsigned_oo = P.0; unsigned_oo
Infinity

We compare finite numbers with infinity:

sage: 5 < unsigned_oo
True
sage: 5 > unsigned_oo
False
sage: unsigned_oo < 5
False
sage: unsigned_oo > 5
True

Demonstrating the shorthand oo versus Infinity:

sage: oo
+Infinity
sage: oo is InfinityRing.0
True
sage: oo is UnsignedInfinityRing.0
False
sage: oo == UnsignedInfinityRing.0
True

We do arithmetic:

sage: unsigned_oo + 5
Infinity

We make 1 / unsigned_oo return the integer 0 so that arithmetic of the following type works:
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sage: (1/unsigned_oo) + 2
2
sage: 32/5 - (2.439/unsigned_oo)
32/5

Note that many operations are not defined, since the result is not well-defined:

sage: unsigned_oo/0
Traceback (most recent call last):
...
ValueError: quotient of number < oo by number < oo not defined

What happened above is that 0 is canonically coerced to “A number less than infinity” in the unsigned infinity ring.
Next, Sage tries to divide by multiplying with its inverse. Finally, this inverse is not well-defined.

sage: 0/unsigned_oo
0
sage: unsigned_oo * 0
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
sage: unsigned_oo/unsigned_oo
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined

In the infinity ring, we can negate infinity, multiply positive numbers by infinity, etc.

sage: P = InfinityRing; P
The Infinity Ring
sage: P(5)
A positive finite number

The symbol oo is predefined as a shorthand for +Infinity:

sage: oo
+Infinity

We compare finite and infinite elements:

sage: 5 < oo
True
sage: P(-5) < P(5)
True
sage: P(2) < P(3)
False
sage: -oo < oo
True

We can do more arithmetic than in the unsigned infinity ring:

sage: 2 * oo
+Infinity
sage: -2 * oo

(continues on next page)
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-Infinity
sage: 1 - oo
-Infinity
sage: 1 / oo
0
sage: -1 / oo
0

We make 1 / oo and 1 / -oo return the integer 0 instead of the infinity ring Zero so that arithmetic of the following
type works:

sage: (1/oo) + 2
2
sage: 32/5 - (2.439/-oo)
32/5

If we try to subtract infinities or multiply infinity by zero we still get an error:

sage: oo - oo
Traceback (most recent call last):
...
SignError: cannot add infinity to minus infinity
sage: 0 * oo
Traceback (most recent call last):
...
SignError: cannot multiply infinity by zero
sage: P(2) + P(-3)
Traceback (most recent call last):
...
SignError: cannot add positive finite value to negative finite value

Signed infinity can also be represented by RR / RDF elements. But unsigned infinity cannot:

sage: oo in RR, oo in RDF
(True, True)
sage: unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)

class sage.rings.infinity.AnInfinity

Bases: object

lcm(x)
Return the least common multiple of oo and x, which is by definition oo unless x is 0.

EXAMPLES:

sage: oo.lcm(0)
0
sage: oo.lcm(oo)
+Infinity
sage: oo.lcm(-oo)
+Infinity
sage: oo.lcm(10)

(continues on next page)
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+Infinity
sage: (-oo).lcm(10)
+Infinity

class sage.rings.infinity.FiniteNumber(parent, x)
Bases: RingElement

Initialize self.

sign()

Return the sign of self.

EXAMPLES:

sage: sign(InfinityRing(2))
1
sage: sign(InfinityRing(0))
0
sage: sign(InfinityRing(-2))
-1

sqrt()

EXAMPLES:

sage: InfinityRing(7).sqrt()
A positive finite number
sage: InfinityRing(0).sqrt()
Zero
sage: InfinityRing(-.001).sqrt()
Traceback (most recent call last):
...
SignError: cannot take square root of a negative number

class sage.rings.infinity.InfinityRing_class

Bases: Singleton, Ring

Initialize self.

fraction_field()

This isn’t really a ring, let alone an integral domain.

gen(n=0)
The two generators are plus and minus infinity.

EXAMPLES:

sage: InfinityRing.gen(0)
+Infinity
sage: InfinityRing.gen(1)
-Infinity
sage: InfinityRing.gen(2)
Traceback (most recent call last):
...
IndexError: n must be 0 or 1
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gens()

The two generators are plus and minus infinity.

EXAMPLES:

sage: InfinityRing.gens()
[+Infinity, -Infinity]

is_commutative()

The Infinity Ring is commutative

EXAMPLES:

sage: InfinityRing.is_commutative()
True

is_zero()

The Infinity Ring is not zero

EXAMPLES:

sage: InfinityRing.is_zero()
False

ngens()

The two generators are plus and minus infinity.

EXAMPLES:

sage: InfinityRing.ngens()
2
sage: len(InfinityRing.gens())
2

class sage.rings.infinity.LessThanInfinity(*args)
Bases: _uniq, RingElement

Initialize self.

EXAMPLES:

sage: sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(5)
True

sign()

Raise an error because the sign of self is not well defined.

EXAMPLES:

sage: sign(UnsignedInfinityRing(2))
Traceback (most recent call last):
...
NotImplementedError: sign of number < oo is not well defined
sage: sign(UnsignedInfinityRing(0))
Traceback (most recent call last):
...

(continues on next page)
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NotImplementedError: sign of number < oo is not well defined
sage: sign(UnsignedInfinityRing(-2))
Traceback (most recent call last):
...
NotImplementedError: sign of number < oo is not well defined

class sage.rings.infinity.MinusInfinity(*args)
Bases: _uniq, AnInfinity, InfinityElement

Initialize self.

sqrt()

EXAMPLES:

sage: (-oo).sqrt()
Traceback (most recent call last):
...
SignError: cannot take square root of negative infinity

class sage.rings.infinity.PlusInfinity(*args)
Bases: _uniq, AnInfinity, InfinityElement

Initialize self.

sqrt()

The square root of self.

The square root of infinity is infinity.

EXAMPLES:

sage: oo.sqrt()
+Infinity

exception sage.rings.infinity.SignError

Bases: ArithmeticError

Sign error exception.

class sage.rings.infinity.UnsignedInfinity(*args)
Bases: _uniq, AnInfinity, InfinityElement

Initialize self.

class sage.rings.infinity.UnsignedInfinityRing_class

Bases: Singleton, Ring

Initialize self.

fraction_field()

The unsigned infinity ring isn’t an integral domain.

EXAMPLES:

sage: UnsignedInfinityRing.fraction_field()
Traceback (most recent call last):
...
TypeError: infinity 'ring' has no fraction field
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gen(n=0)
The “generator” of self is the infinity object.

EXAMPLES:

sage: UnsignedInfinityRing.gen()
Infinity
sage: UnsignedInfinityRing.gen(1)
Traceback (most recent call last):
...
IndexError: UnsignedInfinityRing only has one generator

gens()

The “generator” of self is the infinity object.

EXAMPLES:

sage: UnsignedInfinityRing.gens()
[Infinity]

less_than_infinity()

This is the element that represents a finite value.

EXAMPLES:

sage: UnsignedInfinityRing.less_than_infinity()
A number less than infinity
sage: UnsignedInfinityRing(5) is UnsignedInfinityRing.less_than_infinity()
True

ngens()

The unsigned infinity ring has one “generator.”

EXAMPLES:

sage: UnsignedInfinityRing.ngens()
1
sage: len(UnsignedInfinityRing.gens())
1

sage.rings.infinity.is_Infinite(x)
This is a type check for infinity elements.

EXAMPLES:

sage: sage.rings.infinity.is_Infinite(oo)
True
sage: sage.rings.infinity.is_Infinite(-oo)
True
sage: sage.rings.infinity.is_Infinite(unsigned_infinity)
True
sage: sage.rings.infinity.is_Infinite(3)
False
sage: sage.rings.infinity.is_Infinite(RR(infinity))
False

(continues on next page)
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sage: sage.rings.infinity.is_Infinite(ZZ)
False

sage.rings.infinity.test_comparison(ring)
Check comparison with infinity

INPUT:

• ring – a sub-ring of the real numbers

OUTPUT:

Various attempts are made to generate elements of ring. An assertion is triggered if one of these elements does
not compare correctly with plus/minus infinity.

EXAMPLES:

sage: from sage.rings.infinity import test_comparison
sage: rings = [ZZ, QQ, RR, RealField(200), RDF, RLF, AA, RIF]
sage: for R in rings:
....: print('testing {}'.format(R))
....: test_comparison(R)
testing Integer Ring
testing Rational Field
testing Real Field with 53 bits of precision
testing Real Field with 200 bits of precision
testing Real Double Field
testing Real Lazy Field
testing Algebraic Real Field
testing Real Interval Field with 53 bits of precision

Comparison with number fields does not work:

sage: K.<sqrt3> = NumberField(x^2-3)
sage: (-oo < 1+sqrt3) and (1+sqrt3 < oo) # known bug
False

The symbolic ring handles its own infinities, but answers False (meaning: cannot decide) already for some very
elementary comparisons:

sage: test_comparison(SR) # known bug
Traceback (most recent call last):
...
AssertionError: testing -1000.0 in Symbolic Ring: id = ...

sage.rings.infinity.test_signed_infinity(pos_inf )
Test consistency of infinity representations.

There are different possible representations of infinity in Sage. These are all consistent with the infinity ring,
that is, compare with infinity in the expected way. See also trac ticket #14045

INPUT:

• pos_inf – a representation of positive infinity.

OUTPUT:

An assertion error is raised if the representation is not consistent with the infinity ring.
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Check that trac ticket #14045 is fixed:

sage: InfinityRing(float('+inf'))
+Infinity
sage: InfinityRing(float('-inf'))
-Infinity
sage: oo > float('+inf')
False
sage: oo == float('+inf')
True

EXAMPLES:

sage: from sage.rings.infinity import test_signed_infinity
sage: for pos_inf in [oo, float('+inf'), RLF(oo), RIF(oo), SR(oo)]:
....: test_signed_infinity(pos_inf)

9.3 Support Python’s numbers abstract base class

See also:

PEP 3141 for more information about numbers.

sage.rings.numbers_abc.register_sage_classes()

Register all relevant Sage classes in the numbers hierarchy.

EXAMPLES:

sage: import numbers
sage: isinstance(5, numbers.Integral)
True
sage: isinstance(5, numbers.Number)
True
sage: isinstance(5/1, numbers.Integral)
False
sage: isinstance(22/7, numbers.Rational)
True
sage: isinstance(1.3, numbers.Real)
True
sage: isinstance(CC(1.3), numbers.Real)
False
sage: isinstance(CC(1.3 + I), numbers.Complex)
True
sage: isinstance(RDF(1.3), numbers.Real)
True
sage: isinstance(CDF(1.3, 4), numbers.Complex)
True
sage: isinstance(AA(sqrt(2)), numbers.Real)
True
sage: isinstance(QQbar(I), numbers.Complex)
True

This doesn’t work with symbolic expressions at all:
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sage: isinstance(pi, numbers.Real)
False
sage: isinstance(I, numbers.Complex)
False
sage: isinstance(sqrt(2), numbers.Real)
False

Because we do this, NumPy’s isscalar() recognizes Sage types:

sage: from numpy import isscalar
sage: isscalar(3.141)
True
sage: isscalar(4/17)
True
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CHAPTER

TEN

DERIVATION

10.1 Derivations

Let 𝐴 be a ring and 𝐵 be an bimodule over 𝐴. A derivation 𝑑 : 𝐴 → 𝐵 is an additive map that satisfies the Leibniz
rule

𝑑(𝑥𝑦) = 𝑥𝑑(𝑦) + 𝑑(𝑥)𝑦.

If 𝐵 is an algebra over 𝐴 and if we are given in addition a ring homomorphism 𝜃 : 𝐴 → 𝐵, a twisted derivation with
respect to 𝜃 (or a 𝜃-derivation) is an additive map 𝑑 : 𝐴 → 𝐵 such that

𝑑(𝑥𝑦) = 𝜃(𝑥)𝑑(𝑦) + 𝑑(𝑥)𝑦.

When 𝜃 is the morphism defining the structure of 𝐴-algebra on 𝐵, a 𝜃-derivation is nothing but a derivation. In general,
if 𝜄 : 𝐴 → 𝐵 denotes the defining morphism above, one easily checks that 𝜃 − 𝜄 is a 𝜃-derivation.

This file provides support for derivations and twisted derivations over commutative rings with values in algebras (i.e.
we require that 𝐵 is a commutative 𝐴-algebra). In this case, the set of derivations (resp. 𝜃-derivations) is a module
over 𝐵.

Given a ring 𝐴, the module of derivations over 𝐴 can be created as follows:

sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M
Module of derivations over Multivariate Polynomial Ring in x, y, z over Rational Field

The method gens() returns the generators of this module:

sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M.gens()
(d/dx, d/dy, d/dz)

We can combine them in order to create all derivations:

sage: d = 2*M.gen(0) + z*M.gen(1) + (x^2 + y^2)*M.gen(2)
sage: d
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz

and now play with them:
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sage: d(x + y + z)
x^2 + y^2 + z + 2
sage: P = A.random_element()
sage: Q = A.random_element()
sage: d(P*Q) == P*d(Q) + d(P)*Q
True

Alternatively we can use the method derivation() of the ring 𝐴 to create derivations:

sage: Dx = A.derivation(x); Dx
d/dx
sage: Dy = A.derivation(y); Dy
d/dy
sage: Dz = A.derivation(z); Dz
d/dz
sage: A.derivation([2, z, x^2+y^2])
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz

Sage knows moreover that 𝑀 is a Lie algebra:

sage: M.category()
Join of Category of lie algebras with basis over Rational Field
and Category of modules with basis over Multivariate Polynomial Ring in x, y, z over␣
→˓Rational Field

Computations of Lie brackets are implemented as well:

sage: Dx.bracket(Dy)
0
sage: d.bracket(Dx)
-2*x*d/dz

At the creation of a module of derivations, a codomain can be specified:

sage: B = A.fraction_field()
sage: A.derivation_module(B)
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
to Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field

Alternatively, one can specify a morphism 𝑓 with domain 𝐴. In this case, the codomain of the derivations is the
codomain of 𝑓 but the latter is viewed as an algebra over 𝐴 through the homomorphism 𝑓 . This construction is useful,
for example, if we want to work with derivations on 𝐴 at a certain point, e.g. (0, 1, 2). Indeed, in order to achieve this,
we first define the evaluation map at this point:

sage: ev = A.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
From: Multivariate Polynomial Ring in x, y, z over Rational Field
To: Rational Field
Defn: x |--> 0

y |--> 1
z |--> 2

Now we use this ring homomorphism to define a structure of 𝐴-algebra on Q and then build the following module of
derivations:

158 Chapter 10. Derivation



General Rings, Ideals, and Morphisms, Release 9.8

sage: M = A.derivation_module(ev)
sage: M
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field␣
→˓to Rational Field
sage: M.gens()
(d/dx, d/dy, d/dz)

Elements in 𝑀 then acts as derivations at (0, 1, 2):

sage: Dx = M.gen(0)
sage: Dy = M.gen(1)
sage: Dz = M.gen(2)
sage: f = x^2 + y^2 + z^2
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4

Twisted derivations are handled similarly:

sage: theta = B.hom([B(y),B(z),B(x)])
sage: theta
Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y, z over␣
→˓Rational Field
Defn: x |--> y

y |--> z
z |--> x

sage: M = B.derivation_module(twist=theta)
sage: M
Module of twisted derivations over Fraction Field of Multivariate Polynomial Ring
in x, y, z over Rational Field (twisting morphism: x |--> y, y |--> z, z |--> x)

Over a field, one proves that every 𝜃-derivation is a multiple of 𝜃 − 𝑖𝑑, so that:

sage: d = M.gen(); d
[x |--> y, y |--> z, z |--> x] - id

and then:

sage: d(x)
-x + y
sage: d(y)
-y + z
sage: d(z)
x - z
sage: d(x + y + z)
0

AUTHOR:

• Xavier Caruso (2018-09)
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class sage.rings.derivation.RingDerivation

Bases: ModuleElement

An abstract class for twisted and untwisted derivations over commutative rings.

codomain()

Return the codomain of this derivation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = R.derivation(); f
d/dx
sage: f.codomain()
Univariate Polynomial Ring in x over Rational Field
sage: f.codomain() is R
True

sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.random_element().codomain()
Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over␣
→˓Rational Field
sage: M.random_element().codomain() is S
True

domain()

Return the domain of this derivation.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = R.derivation(y); f
d/dy
sage: f.domain()
Multivariate Polynomial Ring in x, y over Rational Field
sage: f.domain() is R
True

class sage.rings.derivation.RingDerivationModule(domain, codomain, twist=None)
Bases: Module, UniqueRepresentation

A class for modules of derivations over a commutative ring.

basis()

Return a basis of this module of derivations.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

codomain()

Return the codomain of the derivations in this module.
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EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer␣
→˓Ring
sage: M.codomain()
Multivariate Polynomial Ring in x, y over Integer Ring

defining_morphism()

Return the morphism defining the structure of algebra of the codomain over the domain.

EXAMPLES:

sage: R.<x> = QQ[]
sage: M = R.derivation_module()
sage: M.defining_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field

sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.defining_morphism()
Polynomial base injection morphism:
From: Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in y over Univariate Polynomial Ring in x␣

→˓over Rational Field

sage: ev = R.hom([QQ(0)])
sage: M = R.derivation_module(ev)
sage: M.defining_morphism()
Ring morphism:
From: Univariate Polynomial Ring in x over Rational Field
To: Rational Field
Defn: x |--> 0

domain()

Return the domain of the derivations in this module.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer␣
→˓Ring
sage: M.domain()
Multivariate Polynomial Ring in x, y over Integer Ring

dual_basis()

Return the dual basis of the canonical basis of this module of derivations (which is that returned by the
method basis()).

Note: The dual basis of (𝑑1, . . . , 𝑑𝑛) is a family (𝑥1, . . . , 𝑥𝑛) of elements in the domain such that 𝑑𝑖(𝑥𝑖) =
1 and 𝑑𝑖(𝑥𝑗) = 0 if 𝑖 ̸= 𝑗.
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EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.dual_basis()
Family (x, y)

gen(n=0)
Return the n-th generator of this module of derivations.

INPUT:

• n – an integer (default: 0)

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer␣
→˓Ring
sage: M.gen()
d/dx
sage: M.gen(1)
d/dy

gens()

Return the generators of this module of derivations.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer␣
→˓Ring
sage: M.gens()
(d/dx, d/dy)

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of
dimension 1 generated by twist - id:

sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.gens()
([x |--> y, y |--> x] - id,)

ngens()

Return the number of generators of this module of derivations.

EXAMPLES:
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sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer␣
→˓Ring
sage: M.ngens()
2

Indeed, generators are:

sage: M.gens()
(d/dx, d/dy)

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of
dimension 1 generated by twist - id:

sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.ngens()
1
sage: M.gen()
[x |--> y, y |--> x] - id

random_element(*args, **kwds)
Return a random derivation in this module.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.random_element() # random
(x^2 + x*y - 3*y^2 + x + 1)*d/dx + (-2*x^2 + 3*x*y + 10*y^2 + 2*x + 8)*d/dy

ring_of_constants()

Return the subring of the domain consisting of elements 𝑥 such that 𝑑(𝑥) = 0 for all derivation 𝑑 in this
module.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.ring_of_constants()
Rational Field

some_elements()

Return a list of elements of this module.

EXAMPLES:
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sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.some_elements()
[d/dx, d/dy, x*d/dx, x*d/dy, y*d/dx, y*d/dy]

twisting_morphism()

Return the twisting homomorphism of the derivations in this module.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: M = R.derivation_module(twist=theta); M
Module of twisted derivations over Multivariate Polynomial Ring in x, y
over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y

y |--> x

When the derivations are untwisted, this method returns nothing:

sage: M = R.derivation_module()
sage: M.twisting_morphism()

class sage.rings.derivation.RingDerivationWithTwist_generic(parent, scalar=0)
Bases: RingDerivation

The class handles 𝜃-derivations of the form 𝜆(𝜃− 𝜄) (where 𝜄 is the defining morphism of the codomain over the
domain) for a scalar 𝜆 varying in the codomain.

extend_to_fraction_field()

Return the extension of this derivation to fraction fields of the domain and the codomain.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: d = R.derivation(x, twist=theta)
sage: d
x*([x |--> y, y |--> x] - id)

sage: D = d.extend_to_fraction_field()
sage: D
x*([x |--> y, y |--> x] - id)
sage: D.domain()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring

sage: D(1/x)
(x - y)/y

list()

Return the list of coefficient of this twisted derivation on the canonical basis.

EXAMPLES:
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sage: R.<x,y> = QQ[]
sage: K = R.fraction_field()
sage: theta = K.hom([y,x])
sage: M = K.derivation_module(twist=theta)
sage: M.basis()
Family (twisting_morphism - id,)
sage: f = (x+y) * M.gen()
sage: f
(x + y)*(twisting_morphism - id)
sage: f.list()
[x + y]

postcompose(morphism)

Return the twisted derivation obtained by applying first this twisted derivation and then morphism.

INPUT:

• morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into
which the codomain of this derivation

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*([x |--> y, y |--> x] - id)

sage: f = R.hom([x^2, y^3])
sage: g = D.precompose(f); g
x*([x |--> y^2, y |--> x^3] - [x |--> x^2, y |--> y^3])

Observe that the 𝑔 is no longer a 𝜃-derivation but a (𝜃 ∘ 𝑓)-derivation:

sage: g.parent().twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y^2

y |--> x^3

precompose(morphism)

Return the twisted derivation obtained by applying first morphism and then this twisted derivation.

INPUT:

• morphism – a homomorphism of rings whose codomain is the domain of this derivation or a ring that
coerces to the domain of this derivation

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*([x |--> y, y |--> x] - id)

sage: f = R.hom([x^2, y^3])
sage: g = D.postcompose(f); g
x^2*([x |--> y^3, y |--> x^2] - [x |--> x^2, y |--> y^3])
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Observe that the 𝑔 is no longer a 𝜃-derivation but a (𝑓 ∘ 𝜃)-derivation:

sage: g.parent().twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y^3

y |--> x^2

class sage.rings.derivation.RingDerivationWithoutTwist

Bases: RingDerivation

An abstract class for untwisted derivations.

extend_to_fraction_field()

Return the extension of this derivation to fraction fields of the domain and the codomain.

EXAMPLES:

sage: S.<x> = QQ[]
sage: d = S.derivation()
sage: d
d/dx

sage: D = d.extend_to_fraction_field()
sage: D
d/dx
sage: D.domain()
Fraction Field of Univariate Polynomial Ring in x over Rational Field

sage: D(1/x)
-1/x^2

is_zero()

Return True if this derivation is zero.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False

sage: (f-f).is_zero()
True

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).list()
(continues on next page)
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[1, 0]
sage: R.derivation(y).list()
[0, 1]

sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]

monomial_coefficients()

Return dictionary of nonzero coordinates (on the canonical basis) of this derivation.

More precisely, this returns a dictionary whose keys are indices of basis elements and whose values are the
corresponding coefficients.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).monomial_coefficients()
{0: 1}
sage: R.derivation(y).monomial_coefficients()
{1: 1}

sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.monomial_coefficients()
{0: x, 1: y}

postcompose(morphism)

Return the derivation obtained by applying first this derivation and then morphism.

INPUT:

• morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into
which the codomain of this derivation coerces

EXAMPLES:

sage: A.<x,y>= QQ[]
sage: ev = A.hom([QQ(0), QQ(1)])
sage: Dx = A.derivation(x)
sage: Dy = A.derivation(y)

We can define the derivation at (0, 1) just by postcomposing with ev:

sage: dx = Dx.postcompose(ev)
sage: dy = Dy.postcompose(ev)
sage: f = x^2 + y^2
sage: dx(f)
0

(continues on next page)
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sage: dy(f)
2

Note that we cannot avoid the creation of the evaluation morphism: if we pass in QQ instead, an error is
raised since there is no coercion morphism from A to QQ:

sage: Dx.postcompose(QQ)
Traceback (most recent call last):
...
TypeError: the codomain of the derivation does not coerce to the given ring

Note that this method cannot be used to compose derivations:

sage: Dx.precompose(Dy)
Traceback (most recent call last):
...
TypeError: you must give an homomorphism of rings

precompose(morphism)

Return the derivation obtained by applying first morphism and then this derivation.

INPUT:

• morphism – a homomorphism of rings whose codomain is the domain of this derivation or a ring that
coerces to the domain of this derivation

EXAMPLES:

sage: A.<x> = QQ[]
sage: B.<x,y> = QQ[]
sage: D = B.derivation(x) - 2*x*B.derivation(y); D
d/dx - 2*x*d/dy

When restricting to A, the term d/dy disappears (since it vanishes on A):

sage: D.precompose(A)
d/dx

If we restrict to another well chosen subring, the derivation vanishes:

sage: C.<t> = QQ[]
sage: f = C.hom([x^2 + y]); f
Ring morphism:
From: Univariate Polynomial Ring in t over Rational Field
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: t |--> x^2 + y

sage: D.precompose(f)
0

Note that this method cannot be used to compose derivations:

sage: D.precompose(D)
Traceback (most recent call last):
...
TypeError: you must give an homomorphism of rings
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pth_power()

Return the 𝑝-th power of this derivation where 𝑝 is the characteristic of the domain.

Note: Leibniz rule implies that this is again a derivation.

EXAMPLES:

sage: R.<x,y> = GF(5)[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
0
sage: (x*Dx).pth_power()
x*d/dx
sage: (x^6*Dx).pth_power()
x^26*d/dx

sage: Dy = R.derivation(y)
sage: (x*Dx + y*Dy).pth_power()
x*d/dx + y*d/dy

An error is raised if the domain has characteristic zero:

sage: R.<x,y> = QQ[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
...
TypeError: the domain of the derivation must have positive and prime␣
→˓characteristic

or if the characteristic is not a prime number:

sage: R.<x,y> = Integers(10)[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
...
TypeError: the domain of the derivation must have positive and prime␣
→˓characteristic

class sage.rings.derivation.RingDerivationWithoutTwist_fraction_field(parent, arg=None)
Bases: RingDerivationWithoutTwist_wrapper

This class handles derivations over fraction fields.

class sage.rings.derivation.RingDerivationWithoutTwist_function(parent, arg=None)
Bases: RingDerivationWithoutTwist

A class for untwisted derivations over rings whose elements are either polynomials, rational fractions, power
series or Laurent series.

is_zero()

Return True if this derivation is zero.

EXAMPLES:
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sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False

sage: (f-f).is_zero()
True

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

sage: R.<x,y> = GF(5)[[]]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]

sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]

class sage.rings.derivation.RingDerivationWithoutTwist_quotient(parent, arg=None)
Bases: RingDerivationWithoutTwist_wrapper

This class handles derivations over quotient rings.

class sage.rings.derivation.RingDerivationWithoutTwist_wrapper(parent, arg=None)
Bases: RingDerivationWithoutTwist

This class is a wrapper for derivation.

It is useful for changing the parent without changing the computation rules for derivations. It is used for deriva-
tions over fraction fields and quotient rings.

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

sage: R.<X,Y> = GF(5)[]
sage: S.<x,y> = R.quo([X^5, Y^5])
sage: M = S.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: S.derivation(x).list()
[1, 0]
sage: S.derivation(y).list()

(continues on next page)
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[0, 1]

sage: f = x*S.derivation(x) + y*S.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]

class sage.rings.derivation.RingDerivationWithoutTwist_zero(parent, arg=None)
Bases: RingDerivationWithoutTwist

This class can only represent the zero derivation.

It is used when the parent is the zero derivation module (e.g., when its domain is ZZ, QQ, a finite field, etc.)

is_zero()

Return True if this derivation vanishes.

EXAMPLES:

sage: M = QQ.derivation_module()
sage: M().is_zero()
True

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

sage: M = QQ.derivation_module()
sage: M().list()
[]
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method), 7
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method), 51
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method), 59
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method), 60
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is_exact() (sage.rings.ring.Ring method), 17
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method), 89
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is_finite_over() (sage.rings.ring_extension.RingExtension_generic

method), 123
is_FractionField() (in module

sage.rings.fraction_field), 90
is_FractionFieldElement() (in module

sage.rings.fraction_field_element), 95
is_free_over() (sage.rings.ring_extension.RingExtension_generic

method), 123
is_Ideal() (in module sage.rings.ideal), 39
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