
Parents and Elements
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Sage Objects 1

2 Parents 13

3 Elements 49

4 Mathematical Data Structures 91

5 Use of Heuristic and Probabilistic Algorithms 125

6 Utilities 127

7 Internals 169

8 Indices and Tables 173

Python Module Index 175

Index 177

i

ii

CHAPTER

ONE

SAGE OBJECTS

1.1 Abstract base class for Sage objects

class sage.structure.sage_object.SageObject

Bases: object

Base class for all (user-visible) objects in Sage

Every object that can end up being returned to the user should inherit from SageObject.

_ascii_art_()

Return an ASCII art representation.

To implement multi-line ASCII art output in a derived class you must override this method. Unlike
repr(), which is sometimes used for the hash key, the output of _ascii_art_() may depend on set-
tings and is allowed to change during runtime.

OUTPUT:

An AsciiArt object, see sage.typeset.ascii_art for details.

EXAMPLES:

You can use the ascii_art() function to get the ASCII art representation of any object in Sage:

sage: result = ascii_art(integral(exp(x+x^2)/(x+1), x))
...
sage: result
/
|
| 2
| x + x
| e
| ------- dx
| x + 1
|

/

Alternatively, you can use the %display ascii_art/simple magic to switch all output to ASCII art and
back:

sage: from sage.repl.interpreter import get_test_shell
sage: shell = get_test_shell()
sage: shell.run_cell('tab = StandardTableaux(3)[2]; tab')

(continues on next page)

1

../../../../../../html/en/reference/misc/sage/typeset/ascii_art.html#sage.typeset.ascii_art.AsciiArt
../../../../../../html/en/reference/misc/sage/typeset/ascii_art.html#module-sage.typeset.ascii_art
../../../../../../html/en/reference/misc/sage/typeset/ascii_art.html#sage.typeset.ascii_art.ascii_art

Parents and Elements, Release 9.8

(continued from previous page)

[[1, 2], [3]]
sage: shell.run_cell('%display ascii_art')
sage: shell.run_cell('tab')
1 2
3
sage: shell.run_cell('Tableaux.options(ascii_art="table", convention="French")')
sage: shell.run_cell('tab')
+---+
| 3 |
+---+---+
| 1 | 2 |
+---+---+
sage: shell.run_cell('%display plain')
sage: shell.run_cell('Tableaux.options._reset()')
sage: shell.quit()

_cache_key()

Return a hashable key which identifies this objects for caching. The output must be hashable itself, or a
tuple of objects which are hashable or define a _cache_key.

This method will only be called if the object itself is not hashable.

Some immutable objects (such as 𝑝-adic numbers) cannot implement a reasonable hash function because
their == operator has been modified to return True for objects which might behave differently in some
computations:

sage: K.<a> = Qq(9) # optional -␣
→˓sage.rings.padics
sage: b = a + O(3) # optional -␣
→˓sage.rings.padics
sage: c = a + 3 # optional -␣
→˓sage.rings.padics
sage: b # optional -␣
→˓sage.rings.padics
a + O(3)
sage: c # optional -␣
→˓sage.rings.padics
a + 3 + O(3^20)
sage: b == c # optional -␣
→˓sage.rings.padics
True
sage: b == a # optional -␣
→˓sage.rings.padics
True
sage: c == a # optional -␣
→˓sage.rings.padics
False

If such objects defined a non-trivial hash function, this would break caching in many places. However, such
objects should still be usable in caches. This can be achieved by defining an appropriate _cache_key:

sage: hash(b) # optional -␣
→˓sage.rings.padics

(continues on next page)

2 Chapter 1. Sage Objects

Parents and Elements, Release 9.8

(continued from previous page)

Traceback (most recent call last):
...
TypeError: unhashable type: 'sage.rings.padics.qadic_flint_CR.
→˓qAdicCappedRelativeElement'
sage: @cached_method
....: def f(x): return x==a
sage: f(b) # optional -␣
→˓sage.rings.padics
True
sage: f(c) # if b and c were hashable, this would return True # optional -␣
→˓sage.rings.padics
False

sage: b._cache_key() # optional -␣
→˓sage.rings.padics
(..., ((0, 1),), 0, 1)
sage: c._cache_key() # optional -␣
→˓sage.rings.padics
(..., ((0, 1), (1,)), 0, 20)

An implementation must make sure that for elements a and b, if a != b, then also a._cache_key() !=
b._cache_key(). In practice this means that the _cache_key should always include the parent as its first
argument:

sage: S.<a> = Qq(4) # optional -␣
→˓sage.rings.padics
sage: d = a + O(2) # optional -␣
→˓sage.rings.padics
sage: b._cache_key() == d._cache_key() # this would be True if the parents were␣
→˓not included # optional - sage.rings.padics
False

category()

dump(filename, compress=True)
Same as self.save(filename, compress)

dumps(compress=True)
Dump self to a string s, which can later be reconstituted as self using loads(s).

There is an optional boolean argument compress which defaults to True.

EXAMPLES:

sage: from sage.misc.persist import comp
sage: O = SageObject()
sage: p_comp = O.dumps()
sage: p_uncomp = O.dumps(compress=False)
sage: comp.decompress(p_comp) == p_uncomp
True
sage: import pickletools
sage: pickletools.dis(p_uncomp)

0: \x80 PROTO 2
2: c GLOBAL 'sage.structure.sage_object SageObject'

(continues on next page)

1.1. Abstract base class for Sage objects 3

Parents and Elements, Release 9.8

(continued from previous page)

41: q BINPUT ...
43:) EMPTY_TUPLE
44: \x81 NEWOBJ
45: q BINPUT ...
47: . STOP

highest protocol among opcodes = 2

parent()

Return the type of self to support the coercion framework.

EXAMPLES:

sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t # optional - sage.
→˓symbolic
log(sqrt(2) + 1) + log(sqrt(2) - 1)
sage: u = t.maxima_methods() # optional - sage.
→˓symbolic
sage: u.parent() # optional - sage.
→˓symbolic
<class 'sage.symbolic.maxima_wrapper.MaximaWrapper'>

rename(x=None)
Change self so it prints as x, where x is a string.

Note: This is only supported for Python classes that derive from SageObject.

EXAMPLES:

sage: x = PolynomialRing(QQ, 'x', sparse=True).gen()
sage: g = x^3 + x - 5
sage: g
x^3 + x - 5
sage: g.rename('a polynomial')
sage: g
a polynomial
sage: g + x
x^3 + 2*x - 5
sage: h = g^100
sage: str(h)[:20]
'x^300 + 100*x^298 - '
sage: h.rename('x^300 + ...')
sage: h
x^300 + ...

Real numbers are not Python classes, so rename is not supported:

sage: a = 3.14
sage: type(a)
<... 'sage.rings.real_mpfr.RealLiteral'>
sage: a.rename('pi')
Traceback (most recent call last):

(continues on next page)

4 Chapter 1. Sage Objects

Parents and Elements, Release 9.8

(continued from previous page)

...
NotImplementedError: object does not support renaming: 3.14000000000000

Note: The reason C-extension types are not supported by default is if they were then every single one
would have to carry around an extra attribute, which would be slower and waste a lot of memory.

To support them for a specific class, add a cdef public __custom_name attribute.

reset_name()

Remove the custom name of an object.

EXAMPLES:

sage: P.<x> = QQ[]
sage: P
Univariate Polynomial Ring in x over Rational Field
sage: P.rename('A polynomial ring')
sage: P
A polynomial ring
sage: P.reset_name()
sage: P
Univariate Polynomial Ring in x over Rational Field

save(filename=None, compress=True)
Save self to the given filename.

EXAMPLES:

sage: x = SR.var("x") # optional - sage.symbolic
sage: f = x^3 + 5 # optional - sage.symbolic
sage: from tempfile import NamedTemporaryFile # optional - sage.symbolic
sage: with NamedTemporaryFile(suffix=".sobj") as t: # optional - sage.symbolic
....: f.save(t.name)
....: load(t.name)
x^3 + 5

1.2 Base class for objects of a category

CLASS HIERARCHY:

• SageObject

– CategoryObject

∗ Parent

Many category objects in Sage are equipped with generators, which are usually special elements of the object. For
example, the polynomial ring Z[𝑥, 𝑦, 𝑧] is generated by 𝑥, 𝑦, and 𝑧. In Sage the i th generator of an object X is obtained
using the notation X.gen(i). From the Sage interactive prompt, the shorthand notation X.i is also allowed.

The following examples illustrate these functions in the context of multivariate polynomial rings and free modules.

EXAMPLES:

1.2. Base class for objects of a category 5

Parents and Elements, Release 9.8

sage: R = PolynomialRing(ZZ, 3, 'x')
sage: R.ngens()
3
sage: R.gen(0)
x0
sage: R.gens()
(x0, x1, x2)
sage: R.variable_names()
('x0', 'x1', 'x2')

This example illustrates generators for a free module over Z.

sage: M = FreeModule(ZZ, 4)
sage: M
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: M.ngens()
4
sage: M.gen(0)
(1, 0, 0, 0)
sage: M.gens()
((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))

class sage.structure.category_object.CategoryObject

Bases: SageObject

An object in some category.

Hom(codomain, cat=None)
Return the homspace Hom(self, codomain, cat) of all homomorphisms from self to codomain in
the category cat.

The default category is determined by self.category() and codomain.category().

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: R.Hom(QQ)
Set of Homomorphisms from Multivariate Polynomial Ring in x, y over Rational␣
→˓Field to Rational Field

Homspaces are defined for very general Sage objects, even elements of familiar rings.

sage: n = 5; Hom(n,7)
Set of Morphisms from 5 to 7 in Category of elements of Integer Ring
sage: z=(2/3); Hom(z,8/1)
Set of Morphisms from 2/3 to 8 in Category of elements of Rational Field

This example illustrates the optional third argument:

sage: QQ.Hom(ZZ, Sets())
Set of Morphisms from Rational Field to Integer Ring in Category of sets

base()

6 Chapter 1. Sage Objects

Parents and Elements, Release 9.8

base_ring()

Return the base ring of self.

INPUT:

• self – an object over a base ring; typically a module

EXAMPLES:

sage: from sage.modules.module import Module
sage: Module(ZZ).base_ring()
Integer Ring

sage: F = FreeModule(ZZ,3)
sage: F.base_ring()
Integer Ring
sage: F.__class__.base_ring
<method 'base_ring' of 'sage.structure.category_object.CategoryObject' objects>

Note that the coordinates of the elements of a module can lie in a bigger ring, the coordinate_ring:

sage: M = (ZZ^2) * (1/2)
sage: v = M([1/2, 0])
sage: v.base_ring()
Integer Ring
sage: parent(v[0])
Rational Field
sage: v.coordinate_ring()
Rational Field

More examples:

sage: F = FreeAlgebra(QQ, 'x')
sage: F.base_ring()
Rational Field
sage: F.__class__.base_ring
<method 'base_ring' of 'sage.structure.category_object.CategoryObject' objects>

sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: H.base_ring()
Integer Ring
sage: H.__class__.base_ring
<method 'base_ring' of 'sage.structure.category_object.CategoryObject' objects>

Todo: Move this method elsewhere (typically in the Modules category) so as not to pollute the namespace
of all category objects.

categories()

Return the categories of self.

EXAMPLES:

1.2. Base class for objects of a category 7

Parents and Elements, Release 9.8

sage: ZZ.categories()
[Join of Category of euclidean domains

and Category of infinite enumerated sets
and Category of metric spaces,

Category of euclidean domains,
Category of principal ideal domains,
Category of unique factorization domains,
Category of gcd domains,
Category of integral domains,
Category of domains,
Category of commutative rings, ...
Category of monoids, ...,
Category of commutative additive groups, ...,
Category of sets, ...,
Category of objects]

category()

gens_dict(copy=True)
Return a dictionary whose entries are {name:variable,...}, where name stands for the variable names
of this object (as strings) and variable stands for the corresponding defining generators (as elements of
this object).

EXAMPLES:

sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: B.gens_dict()
{'a': a, 'b': b, 'c': c, 'd': d}

gens_dict_recursive()

Return the dictionary of generators of self and its base rings.

OUTPUT:

• a dictionary with string names of generators as keys and generators of self and its base rings as values.

EXAMPLES:

sage: R = QQ['x,y']['z,w']
sage: sorted(R.gens_dict_recursive().items())
[('w', w), ('x', x), ('y', y), ('z', z)]

inject_variables(scope=None, verbose=True)
Inject the generators of self with their names into the namespace of the Python code from which this
function is called.

Thus, e.g., if the generators of self are labeled ‘a’, ‘b’, and ‘c’, then after calling this method the variables
a, b, and c in the current scope will be set equal to the generators of self.

NOTE: If Foo is a constructor for a Sage object with generators, and Foo is defined in Cython, then it would
typically call inject_variables() on the object it creates. E.g., PolynomialRing(QQ, 'y') does this
so that the variable y is the generator of the polynomial ring.

latex_name()

8 Chapter 1. Sage Objects

Parents and Elements, Release 9.8

latex_variable_names()

Returns the list of variable names suitable for latex output.

All _SOMETHING substrings are replaced by _{SOMETHING} recursively so that subscripts of subscripts
work.

EXAMPLES:

sage: R, x = PolynomialRing(QQ, 'x', 12).objgens()
sage: x
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)
sage: R.latex_variable_names ()
['x_{0}', 'x_{1}', 'x_{2}', 'x_{3}', 'x_{4}', 'x_{5}', 'x_{6}', 'x_{7}', 'x_{8}
→˓', 'x_{9}', 'x_{10}', 'x_{11}']
sage: f = x[0]^3 + 15/3 * x[1]^10
sage: print(latex(f))
5 x_{1}^{10} + x_{0}^{3}

objgen()

Return the tuple (self, self.gen()).

EXAMPLES:

sage: R, x = PolynomialRing(QQ,'x').objgen()
sage: R
Univariate Polynomial Ring in x over Rational Field
sage: x
x

objgens()

Return the tuple (self, self.gens()).

EXAMPLES:

sage: R = PolynomialRing(QQ, 3, 'x'); R
Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
sage: R.objgens()
(Multivariate Polynomial Ring in x0, x1, x2 over Rational Field, (x0, x1, x2))

variable_name()

Return the first variable name.

OUTPUT: a string

EXAMPLES:

sage: R.<z,y,a42> = ZZ[]
sage: R.variable_name()
'z'
sage: R.<x> = InfinitePolynomialRing(ZZ)
sage: R.variable_name()
'x'

variable_names()

Return the list of variable names corresponding to the generators.

OUTPUT: a tuple of strings

1.2. Base class for objects of a category 9

Parents and Elements, Release 9.8

EXAMPLES:

sage: R.<z,y,a42> = QQ[]
sage: R.variable_names()
('z', 'y', 'a42')
sage: S = R.quotient_ring(z+y)
sage: S.variable_names()
('zbar', 'ybar', 'a42bar')

sage: T.<x> = InfinitePolynomialRing(ZZ)
sage: T.variable_names()
('x',)

sage.structure.category_object.certify_names(names)
Check that names are valid variable names.

INPUT:

• names – an iterable with strings representing variable names

OUTPUT: True (for efficiency of the Cython call)

EXAMPLES:

sage: from sage.structure.category_object import certify_names as cn
sage: cn(["a", "b", "c"])
1
sage: cn("abc")
1
sage: cn([])
1
sage: cn([""])
Traceback (most recent call last):
...
ValueError: variable name must be nonempty
sage: cn(["_foo"])
Traceback (most recent call last):
...
ValueError: variable name '_foo' does not start with a letter
sage: cn(["x'"])
Traceback (most recent call last):
...
ValueError: variable name "x'" is not alphanumeric
sage: cn(["a", "b", "b"])
Traceback (most recent call last):
...
ValueError: variable name 'b' appears more than once

sage.structure.category_object.check_default_category(default_category, category)

sage.structure.category_object.normalize_names(ngens, names)
Return a tuple of strings of variable names of length ngens given the input names.

INPUT:

• ngens – integer: number of generators. The value ngens=-1 means that the number of generators is
unknown a priori.

10 Chapter 1. Sage Objects

Parents and Elements, Release 9.8

• names – any of the following:

– a tuple or list of strings, such as ('x', 'y')

– a comma-separated string, such as x,y

– a string prefix, such as ‘alpha’

– a string of single character names, such as ‘xyz’

OUTPUT: a tuple of ngens strings to be used as variable names.

EXAMPLES:

sage: from sage.structure.category_object import normalize_names as nn
sage: nn(0, "")
()
sage: nn(0, [])
()
sage: nn(0, None)
()
sage: nn(1, 'a')
('a',)
sage: nn(2, 'z_z')
('z_z0', 'z_z1')
sage: nn(3, 'x, y, z')
('x', 'y', 'z')
sage: nn(2, 'ab')
('a', 'b')
sage: nn(2, 'x0')
('x00', 'x01')
sage: nn(3, (' a ', ' bb ', ' ccc '))
('a', 'bb', 'ccc')
sage: nn(4, ['a1', 'a2', 'b1', 'b11'])
('a1', 'a2', 'b1', 'b11')

Arguments are converted to strings:

sage: nn(1, u'a')
('a',)
sage: var('alpha')
alpha
sage: nn(2, alpha)
('alpha0', 'alpha1')
sage: nn(1, [alpha])
('alpha',)

With an unknown number of generators:

sage: nn(-1, 'a')
('a',)
sage: nn(-1, 'x, y, z')
('x', 'y', 'z')

Test errors:

1.2. Base class for objects of a category 11

Parents and Elements, Release 9.8

sage: nn(3, ["x", "y"])
Traceback (most recent call last):
...
IndexError: the number of names must equal the number of generators
sage: nn(None, "a")
Traceback (most recent call last):
...
TypeError: 'NoneType' object cannot be interpreted as an integer
sage: nn(1, "")
Traceback (most recent call last):
...
ValueError: variable name must be nonempty
sage: nn(1, "foo@")
Traceback (most recent call last):
...
ValueError: variable name 'foo@' is not alphanumeric
sage: nn(2, "_foo")
Traceback (most recent call last):
...
ValueError: variable name '_foo0' does not start with a letter
sage: nn(1, 3/2)
Traceback (most recent call last):
...
ValueError: variable name '3/2' is not alphanumeric

12 Chapter 1. Sage Objects

CHAPTER

TWO

PARENTS

2.1 Parents

2.1.1 Base class for parent objects

CLASS HIERARCHY:

SageObject
CategoryObject

Parent

A simple example of registering coercions:

sage: class A_class(Parent):
....: def __init__(self, name):
....: Parent.__init__(self)
....: self._populate_coercion_lists_()
....: self.rename(name)
....:
....: def category(self):
....: return Sets()
....:
....: def _element_constructor_(self, i):
....: assert(isinstance(i, (int, Integer)))
....: return ElementWrapper(self, i)
sage: A = A_class("A")
sage: B = A_class("B")
sage: C = A_class("C")

sage: def f(a):
....: return B(a.value+1)
sage: class MyMorphism(Morphism):
....: def __init__(self, domain, codomain):
....: Morphism.__init__(self, Hom(domain, codomain))
....:
....: def _call_(self, x):
....: return self.codomain()(x.value)
sage: f = MyMorphism(A,B)
sage: f

Generic morphism:
(continues on next page)

13

Parents and Elements, Release 9.8

(continued from previous page)

From: A
To: B

sage: B.register_coercion(f)
sage: C.register_coercion(MyMorphism(B,C))
sage: A(A(1)) == A(1)
True
sage: B(A(1)) == B(1)
True
sage: C(A(1)) == C(1)
True

sage: A(B(1))
Traceback (most recent call last):
...
AssertionError

When implementing an element of a ring, one would typically provide the element class with _rmul_ and/or _lmul_
methods for the action of a base ring, and with _mul_ for the ring multiplication. However, prior to trac ticket #14249,
it would have been necessary to additionally define a method _an_element_() for the parent. But now, the following
example works:

sage: from sage.structure.element import RingElement
sage: class MyElement(RingElement):
....: def __init__(self, parent, x, y):
....: RingElement.__init__(self, parent)
....: def _mul_(self, other):
....: return self
....: def _rmul_(self, other):
....: return self
....: def _lmul_(self, other):
....: return self
sage: class MyParent(Parent):
....: Element = MyElement

Now, we define

sage: P = MyParent(base=ZZ, category=Rings())
sage: a = P(1,2)
sage: a*a is a
True
sage: a*2 is a
True
sage: 2*a is a
True

class sage.structure.parent.EltPair

Bases: object

short_repr()

class sage.structure.parent.Parent

Bases: CategoryObject

Base class for all parents.

14 Chapter 2. Parents

https://trac.sagemath.org/14249

Parents and Elements, Release 9.8

Parents are the Sage/mathematical analogues of container objects in computer science.

INPUT:

• base – An algebraic structure considered to be the “base” of this parent (e.g. the base field for a vector
space).

• category – a category or list/tuple of categories. The category in which this parent lies (or list or tuple
thereof). Since categories support more general super-categories, this should be the most specific category
possible. If category is a list or tuple, a JoinCategory is created out of them. If category is not specified,
the category will be guessed (see CategoryObject), but will not be used to inherit parent’s or element’s
code from this category.

• names – Names of generators.

• normalize – Whether to standardize the names (remove punctuation, etc)

• facade – a parent, or tuple thereof, or True

If facade is specified, then Sets().Facade() is added to the categories of the parent. Furthermore, if facade
is not True, the internal attribute _facade_for is set accordingly for use by Sets.Facade.ParentMethods.
facade_for().

Internal invariants:

• self._element_init_pass_parent == guess_pass_parent(self, self.
_element_constructor) Ensures that __call__() passes down the parent properly to
_element_constructor(). See trac ticket #5979.

Todo: Eventually, category should be Sets by default.

__call__(x=0, *args, **kwds)
This is the generic call method for all parents.

When called, it will find a map based on the Parent (or type) of x. If a coercion exists, it will always be
chosen. This map will then be called (with the arguments and keywords if any).

By default this will dispatch as quickly as possible to _element_constructor_() though faster pathways
are possible if so desired.

_populate_coercion_lists_(coerce_list=[], action_list=[], convert_list=[], embedding=None,
convert_method_name=None, element_constructor=None,
init_no_parent=None, unpickling=False)

This function allows one to specify coercions, actions, conversions and embeddings involving this parent.

IT SHOULD ONLY BE CALLED DURING THE __INIT__ method, often at the end.

INPUT:

• coerce_list – a list of coercion Morphisms to self and parents with canonical coercions to self

• action_list – a list of actions on and by self

• convert_list – a list of conversion Maps to self and
parents with conversions to self

• embedding – a single Morphism from self

• convert_method_name – a name to look for that other elements can implement to create elements of
self (e.g. _integer_)

2.1. Parents 15

https://trac.sagemath.org/5979
../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.Sets

Parents and Elements, Release 9.8

• init_no_parent – if True omit passing self in as the first argument of element_constructor for con-
version. This is useful if parents are unique, or element_constructor is a bound method (this latter case
can be detected automatically).

__mul__(x)
This is a multiplication method that more or less directly calls another attribute _mul_ (single underscore).
This is because __mul__ cannot be implemented via inheritance from the parent methods of the category,
but _mul_ can be inherited. This is, e.g., used when creating twosided ideals of matrix algebras. See trac
ticket #7797.

EXAMPLES:

sage: MS = MatrixSpace(QQ,2,2)

This matrix space is in fact an algebra, and in particular it is a ring, from the point of view of categories:

sage: MS.category()
Category of infinite finite dimensional algebras with basis
over (number fields and quotient fields and metric spaces)
sage: MS in Rings()
True

However, its class does not inherit from the base class Ring:

sage: isinstance(MS,Ring)
False

Its _mul_ method is inherited from the category, and can be used to create a left or right ideal:

sage: MS._mul_.__module__
'sage.categories.rings'
sage: MS*MS.1 # indirect doctest
Left Ideal
(

[0 1]
[0 0]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS*[MS.1,2]
Left Ideal
(
[0 1]
[0 0],

[2 0]
[0 2]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS.1*MS
Right Ideal
(
[0 1]
[0 0]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

(continues on next page)

16 Chapter 2. Parents

https://trac.sagemath.org/7797
https://trac.sagemath.org/7797

Parents and Elements, Release 9.8

(continued from previous page)

sage: [MS.1,2]*MS
Right Ideal
(
[0 1]
[0 0],

[2 0]
[0 2]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

__contains__(x)
True if there is an element of self that is equal to x under ==, or if x is already an element of self. Also,
True in other cases involving the Symbolic Ring, which is handled specially.

For many structures we test this by using __call__() and then testing equality between x and the result.

The Symbolic Ring is treated differently because it is ultra-permissive about letting other rings coerce in,
but ultra-strict about doing comparisons.

EXAMPLES:

sage: 2 in Integers(7)
True
sage: 2 in ZZ
True
sage: Integers(7)(3) in ZZ
True
sage: 3/1 in ZZ
True
sage: 5 in QQ
True
sage: I in RR
False
sage: SR(2) in ZZ
True
sage: RIF(1, 2) in RIF
True
sage: pi in RIF # there is no element of RIF equal to pi
False
sage: sqrt(2) in CC
True
sage: pi in RR
True
sage: pi in CC
True
sage: pi in RDF
True
sage: pi in CDF
True

Note that we have

2.1. Parents 17

Parents and Elements, Release 9.8

sage: 3/2 in RIF
True

because 3/2 has an exact representation in RIF (i.e. can be represented as an interval that contains exactly
one value):

sage: RIF(3/2).is_exact()
True

On the other hand, we have

sage: 2/3 in RIF
False

because 2/3 has no exact representation in RIF. Since RIF(2/3) is a nontrivial interval, it cannot be equal
to anything (not even itself):

sage: RIF(2/3).is_exact()
False
sage: RIF(2/3).endpoints()
(0.666666666666666, 0.666666666666667)
sage: RIF(2/3) == RIF(2/3)
False

_coerce_map_from_(S)
Override this method to specify coercions beyond those specified in coerce_list.

If no such coercion exists, return None or False. Otherwise, it may return either an actual Map to use for
the coercion, a callable (in which case it will be wrapped in a Map), or True (in which case a generic map
will be provided).

_convert_map_from_(S)
Override this method to provide additional conversions beyond those given in convert_list.

This function is called after coercions are attempted. If there is a coercion morphism in the opposite direc-
tion, one should consider adding a section method to that.

This MUST return a Map from S to self, or None. If None is returned then a generic map will be provided.

_get_action_(S, op, self_on_left)
Override this method to provide an action of self on S or S on self beyond what was specified in action_list.

This must return an action which accepts an element of self and an element of S (in the order specified by
self_on_left).

_an_element_()

Return an element of self.

Want it in sufficient generality that poorly-written functions will not work when they are not supposed to.
This is cached so does not have to be super fast.

EXAMPLES:

sage: QQ._an_element_()
1/2
sage: ZZ['x,y,z']._an_element_()
x

18 Chapter 2. Parents

Parents and Elements, Release 9.8

_repr_option(key)
Metadata about the _repr_() output.

INPUT:

• key – string. A key for different metadata informations that can be inquired about.

Valid key arguments are:

• 'ascii_art': The _repr_() output is multi-line ascii art and each line must be printed starting at
the same column, or the meaning is lost.

• 'element_ascii_art': same but for the output of the elements. Used in sage.repl.display.
formatter.

• 'element_is_atomic': the elements print atomically, that is, parenthesis are not required when
printing out any of 𝑥− 𝑦, 𝑥+ 𝑦, 𝑥𝑦 and 𝑥/𝑦.

OUTPUT:

Boolean.

EXAMPLES:

sage: ZZ._repr_option('ascii_art')
False
sage: MatrixSpace(ZZ, 2)._repr_option('element_ascii_art')
True

_init_category_(category)
Initialize the category framework.

Most parents initialize their category upon construction, and this is the recommended behavior. For exam-
ple, this happens when the constructor calls Parent.__init__() directly or indirectly. However, some
parents defer this for performance reasons. For example, sage.matrix.matrix_space.MatrixSpace
does not.

EXAMPLES:

sage: P = Parent()
sage: P.category()
Category of sets
sage: class MyParent(Parent):
....: def __init__(self):
....: self._init_category_(Groups())
sage: MyParent().category()
Category of groups

_is_coercion_cached(domain)
Test whether the coercion from domain is already cached.

EXAMPLES:

sage: R.<XX> = QQ
sage: R._remove_from_coerce_cache(QQ)
sage: R._is_coercion_cached(QQ)
False
sage: _ = R.coerce_map_from(QQ)
sage: R._is_coercion_cached(QQ)
True

2.1. Parents 19

../../../../../../html/en/reference/repl/sage/repl/display/formatter.html#module-sage.repl.display.formatter
../../../../../../html/en/reference/repl/sage/repl/display/formatter.html#module-sage.repl.display.formatter

Parents and Elements, Release 9.8

_is_conversion_cached(domain)
Test whether the conversion from domain is already set.

EXAMPLES:

sage: P = Parent()
sage: P._is_conversion_cached(P)
False
sage: P.convert_map_from(P)
Identity endomorphism of <sage.structure.parent.Parent object at ...>
sage: P._is_conversion_cached(P)
True

Hom(codomain, category=None)
Return the homspace Hom(self, codomain, category).

INPUT:

• codomain – a parent

• category – a category or None (default: None) If None, the meet of the category of self and
codomain is used.

OUTPUT:

The homspace of all homomorphisms from self to codomain in the category category.

See also:

Hom()

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: R.Hom(QQ)
Set of Homomorphisms from Multivariate Polynomial Ring in x, y over Rational␣
→˓Field to Rational Field

Homspaces are defined for very general Sage objects, even elements of familiar rings:

sage: n = 5; Hom(n,7)
Set of Morphisms from 5 to 7 in Category of elements of Integer Ring
sage: z=(2/3); Hom(z,8/1)
Set of Morphisms from 2/3 to 8 in Category of elements of Rational Field

This example illustrates the optional third argument:

sage: QQ.Hom(ZZ, Sets())
Set of Morphisms from Rational Field to Integer Ring in Category of sets

A parent may specify how to construct certain homsets by implementing a method _Hom_`(codomain,
category). See :func:`~sage.categories.homset.Hom() for details.

an_element()

Returns a (preferably typical) element of this parent.

This is used both for illustration and testing purposes. If the set self is empty, an_element() raises the
exception EmptySetError.

20 Chapter 2. Parents

../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Hom
../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.EmptySetError

Parents and Elements, Release 9.8

This calls _an_element_() (which see), and caches the result. Parent are thus encouraged to override
_an_element_().

EXAMPLES:

sage: CDF.an_element()
1.0*I
sage: ZZ[['t']].an_element()
t

In case the set is empty, an EmptySetError is raised:

sage: Set([]).an_element()
Traceback (most recent call last):
...
EmptySetError

category()

EXAMPLES:

sage: P = Parent()
sage: P.category()
Category of sets
sage: class MyParent(Parent):
....: def __init__(self): pass
sage: MyParent().category()
Category of sets

coerce(x)
Return x as an element of self, if and only if there is a canonical coercion from the parent of x to self.

EXAMPLES:

sage: QQ.coerce(ZZ(2))
2
sage: ZZ.coerce(QQ(2))
Traceback (most recent call last):
...
TypeError: no canonical coercion from Rational Field to Integer Ring

We make an exception for zero:

sage: V = GF(7)^7
sage: V.coerce(0)
(0, 0, 0, 0, 0, 0, 0)

coerce_embedding()

Return the embedding of self into some other parent, if such a parent exists.

This does not mean that there are no coercion maps from self into other fields, this is simply a specific
morphism specified out of self and usually denotes a special relationship (e.g. sub-objects, choice of
completion, etc.)

EXAMPLES:

2.1. Parents 21

../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.EmptySetError

Parents and Elements, Release 9.8

sage: K.<a>=NumberField(x^3+x^2+1,embedding=1)
sage: K.coerce_embedding()
Generic morphism:
From: Number Field in a with defining polynomial x^3 + x^2 + 1 with a = -1.

→˓465571231876768?
To: Real Lazy Field
Defn: a -> -1.465571231876768?

sage: K.<a>=NumberField(x^3+x^2+1,embedding=CC.gen())
sage: K.coerce_embedding()
Generic morphism:
From: Number Field in a with defining polynomial x^3 + x^2 + 1 with a = 0.

→˓2327856159383841? + 0.7925519925154479?*I
To: Complex Lazy Field
Defn: a -> 0.2327856159383841? + 0.7925519925154479?*I

coerce_map_from(S)
Return a Map object to coerce from S to self if one exists, or None if no such coercion exists.

EXAMPLES:

By trac ticket #12313, a special kind of weak key dictionary is used to store coercion and conversion maps,
namely MonoDict. In that way, a memory leak was fixed that would occur in the following test:

sage: import gc
sage: _ = gc.collect()
sage: K = GF(1<<55,'t')
sage: for i in range(50):
....: a = K.random_element()
....: E = EllipticCurve(j=a)
....: b = K.has_coerce_map_from(E)
sage: _ = gc.collect()
sage: len([x for x in gc.get_objects() if isinstance(x,type(E))])
1

convert_map_from(S)
This function returns a Map from 𝑆 to 𝑠𝑒𝑙𝑓 , which may or may not succeed on all inputs. If a coercion map
from S to self exists, then the it will be returned. If a coercion from 𝑠𝑒𝑙𝑓 to 𝑆 exists, then it will attempt to
return a section of that map.

Under the new coercion model, this is the fastest way to convert elements of 𝑆 to elements of 𝑠𝑒𝑙𝑓 (short
of manually constructing the elements) and is used by __call__().

EXAMPLES:

sage: m = ZZ.convert_map_from(QQ)
sage: m
Generic map:
From: Rational Field
To: Integer Ring

sage: m(-35/7)
-5
sage: parent(m(-35/7))
Integer Ring

element_class()

22 Chapter 2. Parents

https://trac.sagemath.org/12313
../../../../../../html/en/reference/coercion/sage/structure/coerce_dict.html#sage.structure.coerce_dict.MonoDict

Parents and Elements, Release 9.8

The (default) class for the elements of this parent

FIXME’s and design issues:

• If self.Element is “trivial enough”, should we optimize it away with: self.element_class
= dynamic_class(“%s.element_class”%self.__class__.__name__, (category.element_class,),
self.Element)

• This should lookup for Element classes in all super classes

get_action(S, op=None, self_on_left=True, self_el=None, S_el=None)
Returns an action of self on S or S on self.

To provide additional actions, override _get_action_().

Warning: This is not the method that you typically want to call. Instead, call coercion_model.
get_action(...) which caches results (this Parent.get_action method does not).

has_coerce_map_from(S)
Return True if there is a natural map from S to self. Otherwise, return False.

EXAMPLES:

sage: RDF.has_coerce_map_from(QQ)
True
sage: RDF.has_coerce_map_from(QQ['x'])
False
sage: RDF['x'].has_coerce_map_from(QQ['x'])
True
sage: RDF['x,y'].has_coerce_map_from(QQ['x'])
True

hom(im_gens, codomain=None, check=None, base_map=None, category=None, **kwds)
Return the unique homomorphism from self to codomain that sends self.gens() to the entries of
im_gens. Raises a TypeError if there is no such homomorphism.

INPUT:

• im_gens – the images in the codomain of the generators of this object under the homomorphism

• codomain – the codomain of the homomorphism

• base_map – a map from the base ring to the codomain. If not given, coercion is used.

• check – whether to verify that the images of generators extend to define a map (using only canonical
coercions).

OUTPUT:

A homomorphism self –> codomain

Note: As a shortcut, one can also give an object X instead of im_gens, in which case return the (if it
exists) natural map to X.

EXAMPLES:

Polynomial Ring: We first illustrate construction of a few homomorphisms involving a polynomial ring:

2.1. Parents 23

Parents and Elements, Release 9.8

sage: R.<x> = PolynomialRing(ZZ)
sage: f = R.hom([5], QQ)
sage: f(x^2 - 19)
6

sage: R.<x> = PolynomialRing(QQ)
sage: f = R.hom([5], GF(7))
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by␣
→˓images of generators

sage: R.<x> = PolynomialRing(GF(7))
sage: f = R.hom([3], GF(49,'a'))
sage: f
Ring morphism:
From: Univariate Polynomial Ring in x over Finite Field of size 7
To: Finite Field in a of size 7^2
Defn: x |--> 3

sage: f(x+6)
2
sage: f(x^2+1)
3

Natural morphism:

sage: f = ZZ.hom(GF(5))
sage: f(7)
2
sage: f
Natural morphism:
From: Integer Ring
To: Finite Field of size 5

There might not be a natural morphism, in which case a TypeError is raised:

sage: QQ.hom(ZZ)
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Rational Field to Integer Ring not␣
→˓defined

is_exact()

Test whether the ring is exact.

Note: This defaults to true, so even if it does return True you have no guarantee (unless the ring has
properly overloaded this).

OUTPUT:

Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing
arithmetic.

EXAMPLES:

24 Chapter 2. Parents

Parents and Elements, Release 9.8

sage: QQ.is_exact()
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False

register_action(action)
Update the coercion model to use action to act on self.

action should be of type sage.categories.action.Action.

EXAMPLES:

sage: import sage.categories.action
sage: import operator

sage: class SymmetricGroupAction(sage.categories.action.Action):
....: "Act on a multivariate polynomial ring by permuting the generators."
....: def __init__(self, G, M, is_left=True):
....: sage.categories.action.Action.__init__(self, G, M, is_left,␣
→˓operator.mul)
....:
....: def _act_(self, g, a):
....: D = {}
....: for k, v in a.dict().items():
....: nk = [0]*len(k)
....: for i in range(len(k)):
....: nk[g(i+1)-1] = k[i]
....: D[tuple(nk)] = v
....: return a.parent()(D)

sage: R.<x, y, z> = QQ['x, y, z']
sage: G = SymmetricGroup(3)
sage: act = SymmetricGroupAction(G, R)
sage: t = x + 2*y + 3*z

sage: act(G((1, 2)), t)
2*x + y + 3*z
sage: act(G((2, 3)), t)
x + 3*y + 2*z
sage: act(G((1, 2, 3)), t)
3*x + y + 2*z

This should fail, since we have not registered the left action:

sage: G((1,2)) * t
Traceback (most recent call last):
...
TypeError: ...

Now let’s make it work:

2.1. Parents 25

Parents and Elements, Release 9.8

sage: R._unset_coercions_used()
sage: R.register_action(act)
sage: G((1, 2)) * t
2*x + y + 3*z

register_coercion(mor)
Update the coercion model to use 𝑚𝑜𝑟 : 𝑃 → self to coerce from a parent P into self.

For safety, an error is raised if another coercion has already been registered or discovered between P and
self.

EXAMPLES:

sage: K.<a> = ZZ['a']
sage: L. = ZZ['b']
sage: L_into_K = L.hom([-a]) # non-trivial automorphism
sage: K.register_coercion(L_into_K)

sage: K(0) + b
-a
sage: a + b
0
sage: K(b) # check that convert calls coerce first; normally this is just a
-a

sage: L(0) + a in K # this goes through the coercion mechanism of K
True
sage: L(a) in L # this still goes through the convert mechanism of L
True

sage: K.register_coercion(L_into_K)
Traceback (most recent call last):
...
AssertionError: coercion from Univariate Polynomial Ring in b over Integer Ring␣
→˓to Univariate Polynomial Ring in a over Integer Ring already registered or␣
→˓discovered

register_conversion(mor)
Update the coercion model to use mor : 𝑃 → self to convert from P into self.

EXAMPLES:

sage: K.<a> = ZZ['a']
sage: M.<c> = ZZ['c']
sage: M_into_K = M.hom([a]) # trivial automorphism
sage: K._unset_coercions_used()
sage: K.register_conversion(M_into_K)

sage: K(c)
a
sage: K(0) + c
Traceback (most recent call last):
...
TypeError: ...

26 Chapter 2. Parents

Parents and Elements, Release 9.8

register_embedding(embedding)
Add embedding to coercion model.

This method updates the coercion model to use embedding : self → 𝑃 to embed self into the parent P.

There can only be one embedding registered; it can only be registered once; and it must be registered before
using this parent in the coercion model.

EXAMPLES:

sage: S3 = AlternatingGroup(3)
sage: G = SL(3, QQ)
sage: p = S3[2]; p.matrix()
[0 0 1]
[1 0 0]
[0 1 0]

In general one cannot mix matrices and permutations:

sage: G(p)
Traceback (most recent call last):
...
TypeError: unable to convert (1,3,2) to a rational
sage: phi = S3.hom(lambda p: G(p.matrix()), codomain = G)
sage: phi(p)
[0 0 1]
[1 0 0]
[0 1 0]
sage: S3._unset_coercions_used()
sage: S3.register_embedding(phi)

By trac ticket #14711, coerce maps should be copied when using outside of the coercion system:

sage: phi = copy(S3.coerce_embedding()); phi
Generic morphism:
From: Alternating group of order 3!/2 as a permutation group
To: Special Linear Group of degree 3 over Rational Field

sage: phi(p)
[0 0 1]
[1 0 0]
[0 1 0]

This does not work since matrix groups are still old-style parents (see trac ticket #14014):

sage: G(p) # todo: not implemented

Though one can have a permutation act on the rows of a matrix:

sage: G(1) * p
[0 0 1]
[1 0 0]
[0 1 0]

Some more advanced examples:

2.1. Parents 27

https://trac.sagemath.org/14711
https://trac.sagemath.org/14014

Parents and Elements, Release 9.8

sage: x = QQ['x'].0
sage: t = abs(ZZ.random_element(10^6))
sage: K = NumberField(x^2 + 2*3*7*11, "a"+str(t))
sage: a = K.gen()
sage: K_into_MS = K.hom([a.matrix()])
sage: K._unset_coercions_used()
sage: K.register_embedding(K_into_MS)

sage: L = NumberField(x^2 + 2*3*7*11*19*31, "b"+str(abs(ZZ.random_element(10^
→˓6))))
sage: b = L.gen()
sage: L_into_MS = L.hom([b.matrix()])
sage: L._unset_coercions_used()
sage: L.register_embedding(L_into_MS)

sage: K.coerce_embedding()(a)
[0 1]
[-462 0]
sage: L.coerce_embedding()(b)
[0 1]
[-272118 0]

sage: a.matrix() * b.matrix()
[-272118 0]
[0 -462]
sage: a.matrix() * b.matrix()
[-272118 0]
[0 -462]

class sage.structure.parent.Set_generic

Bases: Parent

Abstract base class for sets.

object()

Return the underlying object of self.

EXAMPLES:

sage: Set(QQ).object()
Rational Field

sage.structure.parent.is_Parent(x)
Return True if x is a parent object, i.e., derives from sage.structure.parent.Parent and False otherwise.

EXAMPLES:

sage: from sage.structure.parent import is_Parent
sage: is_Parent(2/3)
False
sage: is_Parent(ZZ)
True
sage: is_Parent(Primes())
True

28 Chapter 2. Parents

Parents and Elements, Release 9.8

2.1.2 Indexed Generators

class sage.structure.indexed_generators.IndexedGenerators(indices, prefix='x', **kwds)
Bases: object

Abstract base class for parents whose elements consist of generators indexed by an arbitrary set.

Options controlling the printing of elements:

• prefix – string, prefix used for printing elements of this module (optional, default ‘x’). With the default,
a monomial indexed by ‘a’ would be printed as x['a'].

• latex_prefix – string or None, prefix used in the LATEX representation of elements (optional, default
None). If this is anything except the empty string, it prints the index as a subscript. If this is None, it uses
the setting for prefix, so if prefix is set to “B”, then a monomial indexed by ‘a’ would be printed as
B_{a}. If this is the empty string, then don’t print monomials as subscripts: the monomial indexed by ‘a’
would be printed as a, or as [a] if latex_bracket is True.

• names – dict with strings as values or list of strings (optional): a mapping from the indices of the genera-
tors to strings giving the generators explicit names. This is used instead of the print options prefix and
bracket when names is specified.

• latex_names – dict with strings as values or list of strings (optional): same as names except using the
LATEX representation

• bracket – None, bool, string, or list or tuple of strings (optional, default None): if None, use
the value of the attribute self._repr_option_bracket, which has default value True. (self.
_repr_option_bracket is available for backwards compatibility. Users should set bracket instead.
If bracket is set to anything except None, it overrides the value of self._repr_option_bracket.) If
False, do not include brackets when printing elements: a monomial indexed by ‘a’ would be printed as
B'a', and a monomial indexed by (1,2,3) would be printed as B(1,2,3). If True, use “[” and “]” as brack-
ets. If it is one of “[”, “(”, or “{”, use it and its partner as brackets. If it is any other string, use it as both
brackets. If it is a list or tuple of strings, use the first entry as the left bracket and the second entry as the
right bracket.

• latex_bracket – bool, string, or list or tuple of strings (optional, default False): if False, do not include
brackets in the LaTeX representation of elements. This option is only relevant if latex_prefix is the
empty string; otherwise, brackets are not used regardless. If True, use “left[” and “right]” as brackets. If
this is one of “[”, “(”, “\{”, “|”, or “||”, use it and its partner, prepended with “left” and “right”, as brackets.
If this is any other string, use it as both brackets. If this is a list or tuple of strings, use the first entry as the
left bracket and the second entry as the right bracket.

• scalar_mult – string to use for scalar multiplication in the print representation (optional, default “*”)

• latex_scalar_mult – string or None (default: None), string to use for scalar multiplication in the latex
representation. If None, use the empty string if scalar_mult is set to “*”, otherwise use the value of
scalar_mult.

• tensor_symbol – string or None (default: None), string to use for tensor product in the print representation.
If None, use sage.categories.tensor.symbol and sage.categories.tensor.unicode_symbol.

• sorting_key – a key function (default: lambda x: x), to use for sorting elements in the output of
elements

• sorting_reverse – bool (default: False), if True sort elements in reverse order in the output of elements

• string_quotes – bool (default: True), if True then display string indices with quotes

• iterate_key – bool (default: False) iterate through the elements of the key and print the result as comma
separated objects for string output

2.1. Parents 29

Parents and Elements, Release 9.8

Note: These print options may also be accessed and modified using the print_options() method, after the
parent has been defined.

EXAMPLES:

We demonstrate a variety of the input options:

sage: from sage.structure.indexed_generators import IndexedGenerators
sage: I = IndexedGenerators(ZZ, prefix='A')
sage: I._repr_generator(2)
'A[2]'
sage: I._latex_generator(2)
'A_{2}'

sage: I = IndexedGenerators(ZZ, bracket='(')
sage: I._repr_generator(2)
'x(2)'
sage: I._latex_generator(2)
'x_{2}'

sage: I = IndexedGenerators(ZZ, prefix="", latex_bracket='(')
sage: I._repr_generator(2)
'[2]'
sage: I._latex_generator(2)
\left(2 \right)

sage: I = IndexedGenerators(ZZ, bracket=['|', '>'])
sage: I._repr_generator(2)
'x|2>'

indices()

Return the indices of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.indices()
{'a', 'b', 'c'}

prefix()

Return the prefix used when displaying elements of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.prefix()
'B'

sage: X = SchubertPolynomialRing(QQ)
sage: X.prefix()
'X'

print_options(**kwds)
Return the current print options, or set an option.

30 Chapter 2. Parents

Parents and Elements, Release 9.8

INPUT: all of the input is optional; if present, it should be in the form of keyword pairs, such as
latex_bracket='('. The allowable keywords are:

• prefix

• latex_prefix

• names

• latex_names

• bracket

• latex_bracket

• scalar_mult

• latex_scalar_mult

• tensor_symbol

• string_quotes

• sorting_key

• sorting_reverse

• iterate_key

See the documentation for IndexedGenerators for descriptions of the effects of setting each of these
options.

OUTPUT: if the user provides any input, set the appropriate option(s) and return nothing. Otherwise, return
the dictionary of settings for print and LaTeX representations.

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [1,2,3], prefix='x')
sage: F.print_options()
{...'prefix': 'x'...}
sage: F.print_options(bracket='(')
sage: F.print_options()
{...'bracket': '('...}

sage.structure.indexed_generators.parse_indices_names(names, index_set, prefix, kwds=None)
Parse the names, index set, and prefix input, along with setting default values for keyword arguments kwds.

OUTPUT:

The triple (N, I, p):

• N is the tuple of variable names,

• I is the index set, and

• p is the prefix.

This modifies the dictionary kwds.

Note: When the indices, names, or prefix have not been given, it should be passed to this function as None.

Note: For handling default prefixes, if the result will be None if it is not processed in this function.

2.1. Parents 31

Parents and Elements, Release 9.8

EXAMPLES:

sage: from sage.structure.indexed_generators import parse_indices_names
sage: d = {}
sage: parse_indices_names('x,y,z', ZZ, None, d)
(('x', 'y', 'z'), Integer Ring, None)
sage: d
{}
sage: d = {}
sage: parse_indices_names('x,y,z', None, None, d)
(('x', 'y', 'z'), {'x', 'y', 'z'}, '')
sage: d
{'string_quotes': False}
sage: d = {}
sage: parse_indices_names(None, ZZ, None, d)
(None, Integer Ring, None)
sage: d
{}

sage: d = {'string_quotes':True, 'bracket':'['}
sage: parse_indices_names(['a','b','c'], ZZ, 'x', d)
(('a', 'b', 'c'), Integer Ring, 'x')
sage: d
{'bracket': '[', 'string_quotes': True}
sage: parse_indices_names('x,y,z', None, 'A', d)
(('x', 'y', 'z'), {'x', 'y', 'z'}, 'A')
sage: d
{'bracket': '[', 'string_quotes': True}

sage.structure.indexed_generators.split_index_keywords(kwds)
Split the dictionary kwds into two dictionaries, one containing keywords for IndexedGenerators, and the other
is everything else.

OUTPUT:

The dictionary containing only they keywords for IndexedGenerators. This modifies the dictionary kwds.

Warning: This modifies the input dictionary kwds.

EXAMPLES:

sage: from sage.structure.indexed_generators import split_index_keywords
sage: d = {'string_quotes': False, 'bracket': None, 'base': QQ}
sage: split_index_keywords(d)
{'bracket': None, 'string_quotes': False}
sage: d
{'base': Rational Field}

sage.structure.indexed_generators.standardize_names_index_set(names=None, index_set=None,
ngens=None)

Standardize the names and index_set inputs.

INPUT:

32 Chapter 2. Parents

Parents and Elements, Release 9.8

• names – (optional) the variable names

• index_set – (optional) the index set

• ngens – (optional) the number of generators

If ngens is a negative number, then this does not check that the number of variable names matches the size of
the index set.

OUTPUT:

A pair (names_std, index_set_std), where names_std is either None or a tuple of strings, and where
index_set_std is a finite enumerated set. The purpose of index_set_std is to index the generators of some
object (e.g., the basis of a module); the strings in names_std, when they exist, are used for printing these indices.
The ngens

If names contains exactly one name X and ngens is greater than 1, then names_std are Xi for i in
range(ngens).

2.1.3 Precision management for non-exact objects

Manage the default precision for non-exact objects such as power series rings or Laurent series rings.

EXAMPLES:

sage: R.<x> = PowerSeriesRing(QQ)
sage: R.default_prec()
20
sage: cos(x)
1 - 1/2*x^2 + 1/24*x^4 - 1/720*x^6 + 1/40320*x^8 - 1/3628800*x^10 +
1/479001600*x^12 - 1/87178291200*x^14 + 1/20922789888000*x^16 -
1/6402373705728000*x^18 + O(x^20)

sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)
sage: R.default_prec()
10
sage: cos(x)
1 - 1/2*x^2 + 1/24*x^4 - 1/720*x^6 + 1/40320*x^8 + O(x^10)

Note: Subclasses of Nonexact which require to change the default precision should implement a method
set_default_prec.

class sage.structure.nonexact.Nonexact(prec=20)
Bases: object

A non-exact object with default precision.

INPUT:

• prec – a non-negative integer representing the default precision of self (default: 20)

default_prec()

Return the default precision for self.

EXAMPLES:

2.1. Parents 33

Parents and Elements, Release 9.8

sage: R = QQ[[x]]
sage: R.default_prec()
20

sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)
sage: R.default_prec()
10

2.1.4 Global options

The GlobalOptions class provides a generic mechanism for setting and accessing global options for parents in one
or several related classes, typically for customizing the representation of their elements. This class will eventually also
support setting options on a parent by parent basis.

These options should be “attached” to one or more classes as an options method.

See also:

For good examples of GlobalOptions in action see sage.combinat.partition.Partitions.options and
sage.combinat.tableau.Tableaux.options.

Construction of options classes

The general setup for creating a set of global options is:

sage: from sage.structure.global_options import GlobalOptions
sage: class MyOptions(GlobalOptions):
....: '''
....: Nice options
....:
....: @OPTIONS@
....: '''
....: NAME = 'option name'
....: module = 'sage.some_module.some_file'
....: option_class = 'name_of_class_controlled_by_options'
....: first_option = dict(default='with_bells',
....: description='Changes the functionality of _repr_',
....: values=dict(with_bells='causes _repr_ to print with bells',
....: with_whistles='causes _repr_ to print with␣
→˓whistles'),
....: alias=dict(bells='option1', whistles='option2'))
....: # second_option = dict(...)
....: # third_option = dict(...)

Note the syntax using the class keyword. However, because of some metaclass magic, the resulting MyOptions object
becomes an instance of GlobalOptions instead of a subclass. So, despite the class syntax, MyOptions is not a class.

The options constructed by GlobalOptions have to be explicitly associated to the class that they control using the
following arguments:

• NAME – A descriptive name for the options class. This is optional; the default is the name of the constructed class.

• module – The sage module containing the options class (optional)

• option_class – The name of the options class. This is optional and defaults to NAME if not explicitly set.

34 Chapter 2. Parents

../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partitions.options
../../../../../../html/en/reference/combinat/sage/combinat/tableau.html#sage.combinat.tableau.Tableaux.options

Parents and Elements, Release 9.8

It is only possible to pickle a GlobalOptions class if the corresponding module is specified and if the options are
explicitly attached to the corresponding class as a options method.

Each option is specified as a dictionary which describes the possible values for the option and its documentation. The
possible entries in this dictionary are:

• alias – Allows for several option values to do the same thing.

• alt_name – An alternative name for this option.

• checker – A validation function which returns whether a user supplied value is valid or not. This is typically
useful for large lists of legal values such as NN.

• default – Gives the default value for the option.

• description – A one line description of the option.

• link_to – Links this option to another one in another set of global options. This is used for example to allow
Partitions and Tableaux to share the same convention option.

• setter – A function which is called after the value of the option is changed.

• values – A dictionary assigning each valid value for the option to a short description of what it does.

• case_sensitive – (Default: True) True or False depending on whether the values of the option are case
sensitive.

For each option, either a complete list of possible values, via values, or a validation function, via checker, must be
given. The values can be quite arbitrary, including user-defined functions which customize the default behaviour of the
classes such as the output of _repr_ or latex(). See Dispatchers below, and _dispatcher(), for more information.

The documentation for the options is automatically constructed from the docstring of the class by replacing the magic
word @OPTIONS@ with a description of each option.

The basic structure for defining a GlobalOptions class is best illustrated by an example:

sage: from sage.structure.global_options import GlobalOptions
sage: class Menu():
....: class options(GlobalOptions):
....: '''
....: Fancy documentation
....: -------------------
....:
....: @OPTIONS@
....:
....: The END!
....: '''
....: NAME = 'menu'
....: entree = dict(default='soup',
....: description='The first course of a meal',
....: values=dict(soup='soup of the day', bread='oven baked'),
....: alias=dict(rye='bread'))
....: appetizer = dict(alt_name='entree')
....: main = dict(default='pizza', description='Main meal',
....: values=dict(pizza='thick crust', pasta='penne arrabiata'),
....: case_sensitive=False)
....: dessert = dict(default='espresso', description='Dessert',
....: values=dict(espresso='life begins again',
....: cake='waist begins again',
....: cream='fluffy, white stuff'))

(continues on next page)

2.1. Parents 35

../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partitions
../../../../../../html/en/reference/combinat/sage/combinat/tableau.html#sage.combinat.tableau.Tableaux
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex

Parents and Elements, Release 9.8

(continued from previous page)

....: tip = dict(default=10, description='Reward for good service',

....: checker = lambda tip: tip in range(0,20))
sage: Menu.options
Current options for menu
- dessert: espresso
- entree: soup
- main: pizza
- tip: 10

In the examples above, the options are constructed when the options object is created. However, it is also possible to
construct the options dynamically using the GlobalOptions._add_to_options() methods.

For more details see GlobalOptions.

Accessing and setting option values

All options and their values, when they are strings, are forced to be lower case. The values of an options class can be
set and accessed by calling the class or by treating the class as an array.

Continuing the example from Construction of options classes:

sage: Menu.options
Current options for menu
- dessert: espresso
- entree: soup
- main: pizza
- tip: 10

sage: Menu.options.dessert
espresso
sage: Menu.options.dessert = 'cake'
sage: Menu.options.dessert
cake

Note that, provided there is no ambiguity, options and their values can be abbreviated:

sage: Menu.options('d')
'cake'
sage: Menu.options('m','t',des='esp', ent='sou') # get and set several values at once
['pizza', 10]
sage: Menu.options(t=15)
sage: Menu.options('tip')
15
sage: Menu.options.tip
15
sage: Menu.options(e='s', m='Pi'); Menu.options()
Current options for menu
- dessert: cake
- entree: soup
- main: pizza
- tip: 15

sage: Menu.options(m='P')
Traceback (most recent call last):

(continues on next page)

36 Chapter 2. Parents

Parents and Elements, Release 9.8

(continued from previous page)

...
ValueError: P is not a valid value for main in the options for menu

Setter functions

Each option of a GlobalOptions can be equipped with an optional setter function which is called after the value of
the option is changed. In the following example, setting the option ‘add’ changes the state of the class by setting an
attribute in this class using a classmethod(). Note that the options object is inserted after the creation of the class in
order to access the classmethod() as A.setter:

sage: from sage.structure.global_options import GlobalOptions
sage: class A(SageObject):
....: state = 0
....: @classmethod
....: def setter(cls, option, val):
....: cls.state += int(val)
sage: class options(GlobalOptions):
....: NAME = "A"
....: add = dict(default=1,
....: checker=lambda v: int(v)>0,
....: description='An option with a setter',
....: setter=A.setter)
sage: A.options = options
sage: A.options
Current options for A
- add: 1
sage: a = A(); a.state
1
sage: a.options()
Current options for A
- add: 1
sage: a.options(add=4)
sage: a.state
5
sage: a.options()
Current options for A
- add: 4

Documentation for options

The documentation for a GlobalOptions is automatically generated from the supplied options. For example, the
generated documentation for the options menu defined in Construction of options classes is the following:

Fancy documentation

OPTIONS:

- ``appetizer`` -- alternative name for ``entree``
- ``dessert`` -- (default: ``espresso``)

(continues on next page)

2.1. Parents 37

https://docs.python.org/library/functions.html#classmethod
https://docs.python.org/library/functions.html#classmethod

Parents and Elements, Release 9.8

(continued from previous page)

Dessert

- ``cake`` -- waist begins again
- ``cream`` -- fluffy, white stuff
- ``espresso`` -- life begins again

- ``entree`` -- (default: ``soup``)
The first course of a meal

- ``bread`` -- oven baked
- ``rye`` -- alias for ``bread``
- ``soup`` -- soup of the day

- ``main`` -- (default: ``pizza``)
Main meal

- ``pasta`` -- penne arrabiata
- ``pizza`` -- thick crust

- ``tip`` -- (default: ``10``)
Reward for good service

The END!

See :class:`~sage.structure.global_options.GlobalOptions` for more features of these␣
→˓options.

In addition, help on each option, and its list of possible values, can be obtained by (trying to) set the option equal to
‘?’:

sage: Menu.options.dessert? # not tested
- ``dessert`` -- (default: ``espresso``)
Dessert

- ``cake`` -- waist begins again
- ``cream`` -- fluffy, white stuff
- ``espresso`` -- life begins again

Dispatchers

The whole idea of a GlobalOptions class is that the options change the default behaviour of the associated classes.
This can be done either by simply checking what the current value of the relevant option is. Another possibility is to use
the options class as a dispatcher to associated methods. To use the dispatcher feature of a GlobalOptions class it is
necessary to implement separate methods for each value of the option where the naming convention for these methods
is that they start with a common prefix and finish with the value of the option.

If the value of a dispatchable option is set equal to a (user defined) function then this function is called instead of a
class method.

For example, the options MyOptions can be used to dispatch the _repr_ method of the associated class MyClass as
follows:

38 Chapter 2. Parents

Parents and Elements, Release 9.8

class MyClass(...):
def _repr_(self):

return self.options._dispatch(self,'_repr_','first_option')
def _repr_with_bells(self):

print('Bell!')
def _repr_with_whistles(self):

print('Whistles!')
class MyOptions(GlobalOptions):

...

In this example, first_option is an option of MyOptionswhich takes values bells, whistles, and so on. Note that
it is necessary to make self, which is an instance of MyClass, an argument of the dispatcher because _dispatch()
is a method of GlobalOptions and not a method of MyClass. Apart from MyOptions, as it is a method of this class,
the arguments are the attached class (here MyClass), the prefix of the method of MyClass being dispatched, the option
of MyOptions which controls the dispatching. All other arguments are passed through to the corresponding methods
of MyClass. In general, a dispatcher is invoked as:

self.options._dispatch(self, dispatch_to, option, *args, **kargs)

Usually this will result in the method dispatch_to + '_' + MyOptions(options) of self being called
with arguments *args and **kargs (if dispatch_to[-1] == '_' then the method dispatch_to +
MyOptions(options) is called).

If MyOptions(options) is itself a function then the dispatcher will call this function instead. In this way, it is possible
to allow the user to customise the default behaviour of this method. See _dispatch() for an example of how this can
be achieved.

The dispatching capabilities of GlobalOptions allows options to be applied automatically without needing to parse
different values of the option (the cost is that there must be a method for each value). The dispatching capabilities can
also be used to make one option control several methods:

def __le__(self, other):
return self.options._dispatch(self, '_le_','cmp', other)

def __ge__(self, other):
return self.options._dispatch(self, '_ge_','cmp', other)

def _le_option_a(self, other):
return ...

def _ge_option_a(self, other):
return ...

def _le_option_b(self, other):
return ...

def _ge_option_b(self, other):
return ...

See _dispatch() for more details.

2.1. Parents 39

Parents and Elements, Release 9.8

Doc testing

All of the options and their effects should be doc-tested. However, in order not to break other tests, all options should be
returned to their default state at the end of each test. To make this easier, every GlobalOptions class has a _reset()
method for doing exactly this.

Pickling

Options classes can only be pickled if they are the options for some standard sage class. In this case the class is specified
using the arguments to GlobalOptions. For example options() is defined as:

class Partitions(UniqueRepresentation, Parent):
...
class options(GlobalOptions):

NAME = 'Partitions'
module = 'sage.combinat.partition'
...

Here is an example to test the pickling of a GlobalOptions instance:

sage: TestSuite(Partitions.options).run()

AUTHORS:

• Andrew Mathas (2013): initial version

• Andrew Mathas (2016): overhaul making the options attributes, enabling
pickling and attaching the options to a class.

• Jeroen Demeyer (2017): use subclassing to create instances

class sage.structure.global_options.GlobalOptions(NAME=None, module='', option_class='', doc='',
end_doc='', **options)

Bases: object

The GlobalOptions class is a generic class for setting and accessing global options for Sage objects.

While it is possible to create instances of GlobalOptions the usual way, the recommended syntax is to subclass
from GlobalOptions. Thanks to some metaclass magic, this actually creates an instance of GlobalOptions
instead of a subclass.

INPUT (as “attributes” of the class):

• NAME – specifies a name for the options class (optional; default: class name)

• module – gives the module that contains the associated options class

• option_class – gives the name of the associated module class (default: NAME)

• option = dict(...) – dictionary specifying an option

The options are specified by keyword arguments with their values being a dictionary which describes the option.
The allowed/expected keys in the dictionary are:

• alias – defines alias/synonym for option values

• alt_name – alternative name for an option

• checker – a function for checking whether a particular value for the option is valid

• default – the default value of the option

40 Chapter 2. Parents

Parents and Elements, Release 9.8

• description – documentation string

• link_to – links to an option for this set of options to an option in another GlobalOptions

• setter – a function (class method) which is called whenever this option changes

• values – a dictionary of the legal values for this option (this automatically defines the corresponding
checker); this dictionary gives the possible options, as keys, together with a brief description of them

• case_sensitive – (default: True) True or False depending on whether the values of the option are case
sensitive

Options and their values can be abbreviated provided that this abbreviation is a prefix of a unique option.

EXAMPLES:

sage: from sage.structure.global_options import GlobalOptions
sage: class Menu():
....: class options(GlobalOptions):
....: '''
....: Fancy documentation
....: -------------------
....:
....: @OPTIONS@
....:
....: End of Fancy documentation
....: '''
....: NAME = 'menu'
....: entree = dict(default='soup',
....: description='The first course of a meal',
....: values=dict(soup='soup of the day', bread='oven baked'),
....: alias=dict(rye='bread'))
....: appetizer = dict(alt_name='entree')
....: main = dict(default='pizza', description='Main meal',
....: values=dict(pizza='thick crust', pasta='penne arrabiata'),
....: case_sensitive=False)
....: dessert = dict(default='espresso', description='Dessert',
....: values=dict(espresso='life begins again',
....: cake='waist begins again',
....: cream='fluffy white stuff'))
....: tip = dict(default=10, description='Reward for good service',
....: checker=lambda tip: tip in range(0,20))
sage: Menu.options
Current options for menu
- dessert: espresso
- entree: soup
- main: pizza
- tip: 10

sage: Menu.options(entree='s') # unambiguous abbreviations are allowed
sage: Menu.options(t=15)
sage: (Menu.options['tip'], Menu.options('t'))
(15, 15)
sage: Menu.options()
Current options for menu
- dessert: espresso
- entree: soup

(continues on next page)

2.1. Parents 41

Parents and Elements, Release 9.8

(continued from previous page)

- main: pizza
- tip: 15

sage: Menu.options._reset(); Menu.options()
Current options for menu
- dessert: espresso
- entree: soup
- main: pizza
- tip: 10

sage: Menu.options.tip=40
Traceback (most recent call last):
...
ValueError: 40 is not a valid value for tip in the options for menu
sage: Menu.options(m='p') # ambiguous abbreviations are not allowed
Traceback (most recent call last):
...
ValueError: p is not a valid value for main in the options for menu

The documentation for the options class is automatically generated from the information which specifies the
options:

Fancy documentation

OPTIONS:

- dessert: (default: espresso)
Dessert

- ``cake`` -- waist begins again
- ``cream`` -- fluffy white stuff
- ``espresso`` -- life begins again

- entree: (default: soup)
The first course of a meal

- ``bread`` -- oven baked
- ``rye`` -- alias for bread
- ``soup`` -- soup of the day

- main: (default: pizza)
Main meal

- ``pasta`` -- penne arrabiata
- ``pizza`` -- thick crust

- tip: (default: 10)
Reward for good service

End of Fancy documentation

See :class:`~sage.structure.global_options.GlobalOptions` for more features of␣
→˓these options.

42 Chapter 2. Parents

Parents and Elements, Release 9.8

The possible values for an individual option can be obtained by (trying to) set it equal to ‘?’:

sage: Menu.options(des='?')
- ``dessert`` -- (default: ``espresso``)
Dessert

- ``cake`` -- waist begins again
- ``cream`` -- fluffy white stuff
- ``espresso`` -- life begins again

Current value: espresso

class sage.structure.global_options.GlobalOptionsMeta(name, bases, dict)
Bases: type

Metaclass for GlobalOptions

This class is itself an instance of GlobalOptionsMetaMeta, which implements the subclass magic.

class sage.structure.global_options.GlobalOptionsMetaMeta

Bases: type

class sage.structure.global_options.Option(options, name)
Bases: object

An option.

Each option for an options class is an instance of this class which implements the magic that allows the options
to the attributes of the options class that can be looked up, set and called.

By way of example, this class implements the following functionality.

EXAMPLES:

sage: Partitions.options.display
list
sage: Partitions.options.display='compact'
sage: Partitions.options.display('list')
sage: Partitions.options._reset()

2.2 Old-Style Parents (Deprecated)

2.2.1 Base class for old-style parent objects

CLASS HIERARCHY:

SageObject

Parent

ParentWithBase
ParentWithGens

class sage.structure.parent_old.Parent

Bases: Parent

Parents are the Sage / mathematical analogues of container objects in computer science.

2.2. Old-Style Parents (Deprecated) 43

Parents and Elements, Release 9.8

2.2.2 Base class for old-style parent objects with a base ring

class sage.structure.parent_base.ParentWithBase

Bases: Parent

This class is being deprecated, see parent.Parent for the new model.

base_extend(X)

2.2.3 Base class for old-style parent objects with generators

Note: This class is being deprecated, see sage.structure.parent.Parent and sage.structure.
category_object.CategoryObject for the new model.

Many parent objects in Sage are equipped with generators, which are special elements of the object. For example, the
polynomial ring Z[𝑥, 𝑦, 𝑧] is generated by 𝑥, 𝑦, and 𝑧. In Sage the 𝑖𝑡ℎ generator of an object X is obtained using the
notation X.gen(i). From the Sage interactive prompt, the shorthand notation X.i is also allowed.

REQUIRED: A class that derives from ParentWithGens must define the ngens() and gen(i) methods.

OPTIONAL: It is also good if they define gens() to return all gens, but this is not necessary.

The gens function returns a tuple of all generators, the ngens function returns the number of generators.

The _assign_names functions is for internal use only, and is called when objects are created to set the generator
names. It can only be called once.

The following examples illustrate these functions in the context of multivariate polynomial rings and free modules.

EXAMPLES:

sage: R = PolynomialRing(ZZ, 3, 'x')
sage: R.ngens()
3
sage: R.gen(0)
x0
sage: R.gens()
(x0, x1, x2)
sage: R.variable_names()
('x0', 'x1', 'x2')

This example illustrates generators for a free module over Z.

sage: M = FreeModule(ZZ, 4)
sage: M
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: M.ngens()
4
sage: M.gen(0)
(1, 0, 0, 0)
sage: M.gens()
((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))

44 Chapter 2. Parents

Parents and Elements, Release 9.8

class sage.structure.parent_gens.ParentWithGens

Bases: ParentWithBase

EXAMPLES:

sage: from sage.structure.parent_gens import ParentWithGens
sage: class MyParent(ParentWithGens):
....: def ngens(self): return 3
sage: P = MyParent(base=QQ, names='a,b,c', normalize=True, category=Groups())
sage: P.category()
Category of groups
sage: P._names
('a', 'b', 'c')

gen(i=0)

gens()

Return a tuple whose entries are the generators for this object, in order.

hom(im_gens, codomain=None, base_map=None, category=None, check=True)
Return the unique homomorphism from self to codomain that sends self.gens() to the entries of
im_gens and induces the map base_map on the base ring. Raises a TypeError if there is no such ho-
momorphism.

INPUT:

• im_gens – the images in the codomain of the generators of this object under the homomorphism

• codomain – the codomain of the homomorphism

• base_map – a map from the base ring of the domain into something that coerces into the codomain

• category – the category of the resulting morphism

• check – whether to verify that the images of generators extend to define a map (using only canonical
coercions)

OUTPUT:

• a homomorphism self –> codomain

Note: As a shortcut, one can also give an object X instead of im_gens, in which case return the (if it
exists) natural map to X.

EXAMPLES: Polynomial Ring We first illustrate construction of a few homomorphisms involving a poly-
nomial ring.

sage: R.<x> = PolynomialRing(ZZ)
sage: f = R.hom([5], QQ)
sage: f(x^2 - 19)
6

sage: R.<x> = PolynomialRing(QQ)
sage: f = R.hom([5], GF(7))
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by␣

(continues on next page)

2.2. Old-Style Parents (Deprecated) 45

Parents and Elements, Release 9.8

(continued from previous page)

→˓images of generators

sage: R.<x> = PolynomialRing(GF(7))
sage: f = R.hom([3], GF(49,'a'))
sage: f
Ring morphism:
From: Univariate Polynomial Ring in x over Finite Field of size 7
To: Finite Field in a of size 7^2
Defn: x |--> 3

sage: f(x+6)
2
sage: f(x^2+1)
3

EXAMPLES: Natural morphism

sage: f = ZZ.hom(GF(5))
sage: f(7)
2
sage: f
Natural morphism:
From: Integer Ring
To: Finite Field of size 5

There might not be a natural morphism, in which case a TypeError exception is raised.

sage: QQ.hom(ZZ)
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Rational Field to Integer Ring not␣
→˓defined

You can specify a map on the base ring:

sage: k = GF(2)
sage: R.<a> = k[]
sage: l.<a> = k.extension(a^3 + a^2 + 1)
sage: R. = l[]
sage: m. = l.extension(b^2 + b + a)
sage: n.<z> = GF(2^6)
sage: m.hom([z^4 + z^3 + 1], base_map=l.hom([z^5 + z^4 + z^2]))
Ring morphism:
From: Univariate Quotient Polynomial Ring in b over Finite Field in a of size␣

→˓2^3 with modulus b^2 + b + a
To: Finite Field in z of size 2^6
Defn: b |--> z^4 + z^3 + 1

with map of base ring

ngens()

class sage.structure.parent_gens.localvars

Bases: object

Context manager for safely temporarily changing the variables names of an object with generators.

46 Chapter 2. Parents

Parents and Elements, Release 9.8

Objects with named generators are globally unique in Sage. Sometimes, though, it is very useful to be able to
temporarily display the generators differently. The new Python with statement and the localvars context manager
make this easy and safe (and fun!)

Suppose X is any object with generators. Write

with localvars(X, names[, latex_names] [,normalize=False]):
some code
...

and the indented code will be run as if the names in X are changed to the new names. If you give normalize=True,
then the names are assumed to be a tuple of the correct number of strings.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: with localvars(R, 'z,w'):
....: print(x^3 + y^3 - x*y)
z^3 + w^3 - z*w

Note: I wrote this because it was needed to print elements of the quotient of a ring R by an ideal I using the
print function for elements of R. See the code in quotient_ring_element.pyx.

AUTHOR:

• William Stein (2006-10-31)

2.2.4 Pure python code for abstract base class for objects with generators

sage.structure.gens_py.abelian_iterator(M)

sage.structure.gens_py.multiplicative_iterator(M)

2.2. Old-Style Parents (Deprecated) 47

Parents and Elements, Release 9.8

48 Chapter 2. Parents

CHAPTER

THREE

ELEMENTS

3.1 Elements

AUTHORS:

• David Harvey (2006-10-16): changed CommutativeAlgebraElement to derive from CommutativeRingElement
instead of AlgebraElement

• David Harvey (2006-10-29): implementation and documentation of new arithmetic architecture

• William Stein (2006-11): arithmetic architecture – pushing it through to completion.

• Gonzalo Tornaria (2007-06): recursive base extend for coercion – lots of tests

• Robert Bradshaw (2007-2010): arithmetic operators and coercion

• Maarten Derickx (2010-07): added architecture for is_square and sqrt

• Jeroen Demeyer (2016-08): moved all coercion to the base class Element, see trac ticket #20767

3.1.1 The Abstract Element Class Hierarchy

This is the abstract class hierarchy, i.e., these are all abstract base classes.

SageObject
Element

ModuleElement
RingElement

CommutativeRingElement
IntegralDomainElement

DedekindDomainElement
PrincipalIdealDomainElement

EuclideanDomainElement
FieldElement
CommutativeAlgebraElement
Expression

AlgebraElement
Matrix

InfinityElement
AdditiveGroupElement
Vector

MonoidElement
(continues on next page)

49

https://trac.sagemath.org/20767

Parents and Elements, Release 9.8

(continued from previous page)

MultiplicativeGroupElement
ElementWithCachedMethod

3.1.2 How to Define a New Element Class

Elements typically define a method _new_c, e.g.,

cdef _new_c(self, defining data):
cdef FreeModuleElement_generic_dense x
x = FreeModuleElement_generic_dense.__new__(FreeModuleElement_generic_dense)
x._parent = self._parent
x._entries = v

that creates a new sibling very quickly from defining data with assumed properties.

Arithmetic for Elements

Sage has a special system for handling arithmetic operations on Sage elements (that is instances of Element), in
particular to manage uniformly mixed arithmetic operations using the coercion model. We describe here the rules
that must be followed by both arithmetic implementers and callers.

A quick summary for the impatient

To implement addition for any Element subclass, override the def _add_(self, other) method instead of the
usual Python __add__ special method. Within _add_(self, other), you may assume that self and other have
the same parent.

If the implementation is generic across all elements in a given category 𝐶, then this method can be put in C.
ElementMethods.

When writing Cython code, _add_ should be a cpdef method: cpdef _add_(self, other).

When doing arithmetic with two elements having different parents, the coercion model is responsible for “coercing”
them to a common parent and performing arithmetic on the coerced elements.

Arithmetic in more detail

The aims of this system are to provide (1) an efficient calling protocol from both Python and Cython, (2) uniform
coercion semantics across Sage, (3) ease of use, (4) readability of code.

We will take addition as an example; all other operators are similar. There are two relevant functions, with differing
names (single vs. double underscores).

• def Element.__add__(left, right)

This function is called by Python or Cython when the binary “+” operator is encountered. It assumes that at least
one of its arguments is an Element.

It has a fast pathway to deal with the most common case where both arguments have the same parent. Otherwise,
it uses the coercion model to work out how to make them have the same parent. The coercion model then adds
the coerced elements (technically, it calls operator.add). Note that the result of coercion is not required to be
a Sage Element, it could be a plain Python type.

50 Chapter 3. Elements

../../../../../../html/en/reference/coercion/sage/structure/coerce.html#module-sage.structure.coerce
https://docs.python.org/release/3.8.10/reference/datamodel.html#special-method-names
../../../../../../html/en/reference/coercion/sage/structure/coerce.html#module-sage.structure.coerce

Parents and Elements, Release 9.8

Note that, although this function is declared as def, it doesn’t have the usual overheads associated with Python
functions (either for the caller or for __add__ itself). This is because Python has optimised calling protocols for
such special functions.

• def Element._add_(self, other)

This is the function that you should override to implement addition in a subclass of Element.

The two arguments to this function are guaranteed to have the same parent, but not necessarily the same Python
type.

When implementing _add_ in a Cython extension type, use cpdef _add_ instead of def _add_.

In Cython code, if you want to add two elements and you know that their parents are identical, you are encouraged
to call this function directly, instead of using x + y. This only works if Cython knows that the left argument is
an Element. You can always cast explicitly: (<Element>x)._add_(y) to force this. In plain Python, x + y is
always the fastest way to add two elements because the special method __add__ is optimized unlike the normal
method _add_.

The difference in the names of the arguments (left, right versus self, other) is intentional: self is guaranteed
to be an instance of the class in which the method is defined. In Cython, we know that at least one of left or right
is an instance of the class but we do not know a priori which one.

Powering is a special case: first of all, the 3-argument version of pow() is not supported. Second, the coercion model
checks whether the exponent looks like an integer. If so, the function _pow_int is called. If the exponent is not an
integer, the arguments are coerced to a common parent and _pow_ is called. So, if your type only supports powering
to an integer exponent, you should implement only _pow_int. If you want to support arbitrary powering, implement
both _pow_ and _pow_int.

For addition, multiplication and powering (not for other operators), there is a fast path for operations with a C long.
For example, implement cdef _add_long(self, long n) with optimized code for self + n. The addition and
multiplication are assumed to be commutative, so they are also called for n + self or n * self. From Cython code,
you can also call _add_long or _mul_long directly. This is strictly an optimization: there is a default implementation
falling back to the generic arithmetic function.

Examples

We need some Parent to work with:

sage: from sage.structure.parent import Parent
sage: class ExampleParent(Parent):
....: def __init__(self, name, **kwds):
....: Parent.__init__(self, **kwds)
....: self.rename(name)

We start with a very basic example of a Python class implementing _add_:

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _add_(self, other):
....: return 42
sage: p = ExampleParent("Some parent")
sage: x = MyElement(p)
sage: x + x
42

When two different parents are involved, this no longer works since there is no coercion:

3.1. Elements 51

Parents and Elements, Release 9.8

sage: q = ExampleParent("Other parent")
sage: y = MyElement(q)
sage: x + y
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Some parent' and 'Other parent'

If _add_ is not defined, an error message is raised, referring to the parents:

sage: x = Element(p)
sage: x._add_(x)
Traceback (most recent call last):
...
AttributeError: 'sage.structure.element.Element' object has no attribute '_add_'
sage: x + x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Some parent' and 'Some parent'
sage: y = Element(q)
sage: x + y
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Some parent' and 'Other parent'

We can also implement arithmetic generically in categories:

sage: class MyCategory(Category):
....: def super_categories(self):
....: return [Sets()]
....: class ElementMethods:
....: def _add_(self, other):
....: return 42
sage: p = ExampleParent("Parent in my category", category=MyCategory())
sage: x = Element(p)
sage: x + x
42

Implementation details

Implementing the above features actually takes a bit of magic. Casual callers and implementers can safely ignore it,
but here are the details for the curious.

To achieve fast arithmetic, it is critical to have a fast path in Cython to call the _add_ method of a Cython object. So
we would like to declare _add_ as a cpdef method of class Element. Remember however that the abstract classes
coming from categories come after Element in the method resolution order (or fake method resolution order in case of a
Cython class). Hence any generic implementation of _add_ in such an abstract class would in principle be shadowed by
Element._add_. This is worked around by defining Element._add_ as a cdef instead of a cpdef method. Concrete
implementations in subclasses should be cpdef or def methods.

Let us now see what happens upon evaluating x + y when x and y are instances of a class that does not implement
add but where _add_ is implemented in the category. First, x.__add__(y) is called, where __add__ is imple-
mented in Element. Assuming that x and y have the same parent, a Cython call to x._add_(y) will be done. The
latter is implemented to trigger a Python level call to x._add_(y) which will succeed as desired.

52 Chapter 3. Elements

Parents and Elements, Release 9.8

In case that Python code calls x._add_(y) directly, Element._add_ will be invisible, and the method lookup will
continue down the MRO and find the _add_ method in the category.

class sage.structure.element.AdditiveGroupElement

Bases: ModuleElement

Generic element of an additive group.

order()

Return additive order of element

class sage.structure.element.AlgebraElement

Bases: RingElement

class sage.structure.element.CommutativeAlgebraElement

Bases: CommutativeRingElement

class sage.structure.element.CommutativeRingElement

Bases: RingElement

Base class for elements of commutative rings.

divides(x)
Return True if self divides x.

EXAMPLES:

sage: P.<x> = PolynomialRing(QQ)
sage: x.divides(x^2)
True
sage: x.divides(x^2+2)
False
sage: (x^2+2).divides(x)
False
sage: P.<x> = PolynomialRing(ZZ)
sage: x.divides(x^2)
True
sage: x.divides(x^2+2)
False
sage: (x^2+2).divides(x)
False

trac ticket #5347 has been fixed:

sage: K = GF(7)
sage: K(3).divides(1)
True
sage: K(3).divides(K(1))
True

sage: R = Integers(128)
sage: R(0).divides(1)
False
sage: R(0).divides(0)
True
sage: R(0).divides(R(0))

(continues on next page)

3.1. Elements 53

https://trac.sagemath.org/5347

Parents and Elements, Release 9.8

(continued from previous page)

True
sage: R(1).divides(0)
True
sage: R(121).divides(R(120))
True
sage: R(120).divides(R(121))
False

If x has different parent than self, they are first coerced to a common parent if possible. If this coercion
fails, it returns a TypeError. This fixes trac ticket #5759.

sage: Zmod(2)(0).divides(Zmod(2)(0))
True
sage: Zmod(2)(0).divides(Zmod(2)(1))
False
sage: Zmod(5)(1).divides(Zmod(2)(1))
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents: 'Ring of␣
→˓integers modulo 5' and 'Ring of integers modulo 2'
sage: Zmod(35)(4).divides(Zmod(7)(1))
True
sage: Zmod(35)(7).divides(Zmod(7)(1))
False

inverse_mod(I)
Return an inverse of self modulo the ideal 𝐼 , if defined, i.e., if 𝐼 and self together generate the unit ideal.

EXAMPLES:

sage: F = GF(25)
sage: x = F.gen()
sage: z = F.zero()
sage: x.inverse_mod(F.ideal(z))
2*z2 + 3
sage: x.inverse_mod(F.ideal(1))
1
sage: z.inverse_mod(F.ideal(1))
1
sage: z.inverse_mod(F.ideal(z))
Traceback (most recent call last):
...
ValueError: an element of a proper ideal does not have an inverse modulo that␣
→˓ideal

is_square(root=False)
Return whether or not the ring element self is a square.

If the optional argument root is True, then also return the square root (or None, if it is not a square).

INPUT:

• root - whether or not to also return a square root (default: False)

OUTPUT:

54 Chapter 3. Elements

https://trac.sagemath.org/5759

Parents and Elements, Release 9.8

• bool – whether or not a square

• object – (optional) an actual square root if found, and None otherwise.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: f = 12*(x+1)^2 * (x+3)^2
sage: f.is_square()
False
sage: f.is_square(root=True)
(False, None)
sage: h = f/3
sage: h.is_square()
True
sage: h.is_square(root=True)
(True, 2*x^2 + 8*x + 6)

Note: This is the is_square implementation for general commutative ring elements. It’s implementation
is to raise a NotImplementedError. The function definition is here to show what functionality is expected
and provide a general framework.

mod(I)
Return a representative for self modulo the ideal I (or the ideal generated by the elements of I if I is not
an ideal.)

EXAMPLES: Integers Reduction of 5 modulo an ideal:

sage: n = 5
sage: n.mod(3*ZZ)
2

Reduction of 5 modulo the ideal generated by 3:

sage: n.mod(3)
2

Reduction of 5 modulo the ideal generated by 15 and 6, which is (3).

sage: n.mod([15,6])
2

EXAMPLES: Univariate polynomials

sage: R.<x> = PolynomialRing(QQ)
sage: f = x^3 + x + 1
sage: f.mod(x + 1)
-1

Reduction for Z[𝑥]:

sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^3 + x + 1
sage: f.mod(x + 1)
-1

3.1. Elements 55

Parents and Elements, Release 9.8

When little is implemented about a given ring, then mod may simply return 𝑓 .

EXAMPLES: Multivariate polynomials We reduce a polynomial in two variables modulo a polynomial and
an ideal:

sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: (x^2 + y^2 + z^2).mod(x+y+z)
2*y^2 + 2*y*z + 2*z^2

Notice above that 𝑥 is eliminated. In the next example, both 𝑦 and 𝑧 are eliminated:

sage: (x^2 + y^2 + z^2).mod((x - y, y - z))
3*z^2
sage: f = (x^2 + y^2 + z^2)^2; f
x^4 + 2*x^2*y^2 + y^4 + 2*x^2*z^2 + 2*y^2*z^2 + z^4
sage: f.mod((x - y, y - z))
9*z^4

In this example 𝑦 is eliminated:

sage: (x^2 + y^2 + z^2).mod((x^3, y - z))
x^2 + 2*z^2

sqrt(extend=True, all=False, name=None)
It computes the square root.

INPUT:

• extend - Whether to make a ring extension containing a square root if self is not a square (default:
True)

• all - Whether to return a list of all square roots or just a square root (default: False)

• name - Required when extend=True and self is not a square. This will be the name of the generator
extension.

OUTPUT:

• if all=False it returns a square root. (throws an error if extend=False and self is not a square)

• if all=True it returns a list of all the square roots (could be empty if extend=False and self is not
a square)

ALGORITHM:

It uses is_square(root=true) for the hard part of the work, the rest is just wrapper code.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: (x^2).sqrt()
x
sage: f=x^2-4*x+4; f.sqrt(all=True)
[x - 2, -x + 2]
sage: sqrtx=x.sqrt(name="y"); sqrtx
y
sage: sqrtx^2
x
sage: x.sqrt(all=true,name="y")

(continues on next page)

56 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

[y, -y]
sage: x.sqrt(extend=False,all=True)
[]
sage: x.sqrt()
Traceback (most recent call last):
...
TypeError: Polynomial is not a square. You must specify the name of the square␣
→˓root when using the default extend = True
sage: x.sqrt(extend=False)
Traceback (most recent call last):
...
ValueError: trying to take square root of non-square x with extend = False

class sage.structure.element.DedekindDomainElement

Bases: IntegralDomainElement

class sage.structure.element.Element

Bases: SageObject

Generic element of a structure. All other types of elements (RingElement, ModuleElement, etc) derive from
this type.

Subtypes must either call __init__() to set _parent, or may set _parent themselves if that would be more
efficient.

richcmp(left, right, op)
Basic default implementation of rich comparisons for elements with equal parents.

It does a comparison by id for == and !=. Calling this default method with <, <=, > or >= will return
NotImplemented.

EXAMPLES:

sage: from sage.structure.parent import Parent
sage: from sage.structure.element import Element
sage: P = Parent()
sage: e1 = Element(P); e2 = Element(P)
sage: e1 == e1 # indirect doctest
True
sage: e1 == e2 # indirect doctest
False
sage: e1 < e2 # indirect doctest
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'sage.structure.element.
→˓Element' and 'sage.structure.element.Element'

We now create an Element class where we define _richcmp_ and check that comparison works:

sage: cython(''' # optional -␣
→˓sage.misc.cython
....: from sage.structure.richcmp cimport rich_to_bool
....: from sage.structure.element cimport Element
....: cdef class FloatCmp(Element):
....: cdef float x

(continues on next page)

3.1. Elements 57

Parents and Elements, Release 9.8

(continued from previous page)

....: def __init__(self, float v):

....: self.x = v

....: cpdef _richcmp_(self, other, int op):

....: cdef float x1 = (<FloatCmp>self).x

....: cdef float x2 = (<FloatCmp>other).x

....: return rich_to_bool(op, (x1 > x2) - (x1 < x2))

....: ''')
sage: a = FloatCmp(1) # optional -␣
→˓sage.misc.cython
sage: b = FloatCmp(2) # optional -␣
→˓sage.misc.cython
sage: a <= b, b <= a # optional -␣
→˓sage.misc.cython
(True, False)

__add__(left, right)
Top-level addition operator for Element invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _add_(self, other):
....: return 42
sage: e = MyElement(Parent())
sage: e + e
42

__sub__(left, right)
Top-level subtraction operator for Element invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _sub_(self, other):
....: return 42
sage: e = MyElement(Parent())
sage: e - e
42

__neg__()

Top-level negation operator for Element.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _neg_(self):
....: return 42

(continues on next page)

58 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

sage: e = MyElement(Parent())
sage: -e
42

__mul__(left, right)
Top-level multiplication operator for Element invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _mul_(self, other):
....: return 42
sage: e = MyElement(Parent())
sage: e * e
42

__truediv__(left, right)
Top-level true division operator for Element invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: operator.truediv(2, 3)
2/3
sage: operator.truediv(pi, 3)
1/3*pi
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: operator.truediv(2, K.ideal(i+1))
Fractional ideal (-i + 1)

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _div_(self, other):
....: return 42
sage: e = MyElement(Parent())
sage: operator.truediv(e, e)
42

__floordiv__(left, right)
Top-level floor division operator for Element invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: 7 // 3
2
sage: 7 // int(3)
2

(continues on next page)

3.1. Elements 59

Parents and Elements, Release 9.8

(continued from previous page)

sage: int(7) // 3
2

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _floordiv_(self, other):
....: return 42
sage: e = MyElement(Parent())
sage: e // e
42

__mod__(left, right)
Top-level modulo operator for Element invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: 7 % 3
1
sage: 7 % int(3)
1
sage: int(7) % 3
1

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def _mod_(self, other):
....: return 42
sage: e = MyElement(Parent())
sage: e % e
42

base_extend(R)

base_ring()

Return the base ring of this element’s parent (if that makes sense).

category()

is_zero()

Return True if self equals self.parent()(0).

The default implementation is to fall back to not self.__bool__.

Warning: Do not re-implement this method in your subclass but implement __bool__ instead.

n(prec=None, digits=None, algorithm=None)
Alias for numerical_approx().

EXAMPLES:

60 Chapter 3. Elements

Parents and Elements, Release 9.8

sage: (2/3).n()
0.666666666666667

numerical_approx(prec=None, digits=None, algorithm=None)
Return a numerical approximation of self with prec bits (or decimal digits) of precision.

No guarantee is made about the accuracy of the result.

INPUT:

• prec – precision in bits

• digits – precision in decimal digits (only used if prec is not given)

• algorithm – which algorithm to use to compute this approximation (the accepted algorithms depend
on the object)

If neither prec nor digits is given, the default precision is 53 bits (roughly 16 digits).

EXAMPLES:

sage: (2/3).numerical_approx()
0.666666666666667
sage: pi.n(digits=10)
3.141592654
sage: pi.n(prec=20)
3.1416

parent(x=None)
Return the parent of this element; or, if the optional argument x is supplied, the result of coercing x into
the parent of this element.

subs(in_dict=None, **kwds)
Substitutes given generators with given values while not touching other generators. This is a generic wrap-
per around __call__. The syntax is meant to be compatible with the corresponding method for symbolic
expressions.

INPUT:

• in_dict - (optional) dictionary of inputs

• **kwds - named parameters

OUTPUT:

• new object if substitution is possible, otherwise self.

EXAMPLES:

sage: x, y = PolynomialRing(ZZ,2,'xy').gens()
sage: f = x^2 + y + x^2*y^2 + 5
sage: f((5,y))
25*y^2 + y + 30
sage: f.subs({x:5})
25*y^2 + y + 30
sage: f.subs(x=5)
25*y^2 + y + 30
sage: (1/f).subs(x=5)
1/(25*y^2 + y + 30)

(continues on next page)

3.1. Elements 61

Parents and Elements, Release 9.8

(continued from previous page)

sage: Integer(5).subs(x=4)
5

substitute(in_dict=None, **kwds)
This is an alias for self.subs().

INPUT:

• in_dict - (optional) dictionary of inputs

• **kwds - named parameters

OUTPUT:

• new object if substitution is possible, otherwise self.

EXAMPLES:

sage: x, y = PolynomialRing(ZZ,2,'xy').gens()
sage: f = x^2 + y + x^2*y^2 + 5
sage: f((5,y))
25*y^2 + y + 30
sage: f.substitute({x:5})
25*y^2 + y + 30
sage: f.substitute(x=5)
25*y^2 + y + 30
sage: (1/f).substitute(x=5)
1/(25*y^2 + y + 30)
sage: Integer(5).substitute(x=4)
5

class sage.structure.element.ElementWithCachedMethod

Bases: Element

An element class that fully supports cached methods.

NOTE:

The cached_method decorator provides a convenient way to automatically cache the result of a computation.
Since trac ticket #11115, the cached method decorator applied to a method without optional arguments is faster
than a hand-written cache in Python, and a cached method without any arguments (except self) is actually faster
than a Python method that does nothing more but to return 1. A cached method can also be inherited from the
parent or element class of a category.

However, this holds true only if attribute assignment is supported. If you write an extension class in Cython
that does not accept attribute assignment then a cached method inherited from the category will be slower (for
Parent) or the cache would even break (for Element).

This class should be used if you write an element class, cannot provide it with attribute assignment, but want
that it inherits a cached method from the category. Under these conditions, your class should inherit from this
class rather than Element. Then, the cache will work, but certainly slower than with attribute assignment. Lazy
attributes work as well.

EXAMPLES:

We define three element extension classes. The first inherits from Element, the second from this class, and the
third simply is a Python class. We also define a parent class and, in Python, a category whose element and parent
classes define cached methods.

62 Chapter 3. Elements

https://trac.sagemath.org/11115

Parents and Elements, Release 9.8

sage: cython_code = ["from sage.structure.element cimport Element,␣
→˓ElementWithCachedMethod",
....: "from sage.structure.richcmp cimport richcmp",
....: "cdef class MyBrokenElement(Element):",
....: " cdef public object x",
....: " def __init__(self, P, x):",
....: " self.x = x",
....: " Element.__init__(self, P)",
....: " def __neg__(self):",
....: " return MyBrokenElement(self.parent(), -self.x)",
....: " def _repr_(self):",
....: " return '<%s>' % self.x",
....: " def __hash__(self):",
....: " return hash(self.x)",
....: " cpdef _richcmp_(left, right, int op):",
....: " return richcmp(left.x, right.x, op)",
....: " def raw_test(self):",
....: " return -self",
....: "cdef class MyElement(ElementWithCachedMethod):",
....: " cdef public object x",
....: " def __init__(self, P, x):",
....: " self.x = x",
....: " Element.__init__(self, P)",
....: " def __neg__(self):",
....: " return MyElement(self.parent(), -self.x)",
....: " def _repr_(self):",
....: " return '<%s>' % self.x",
....: " def __hash__(self):",
....: " return hash(self.x)",
....: " cpdef _richcmp_(left, right, int op):",
....: " return richcmp(left.x, right.x, op)",
....: " def raw_test(self):",
....: " return -self",
....: "class MyPythonElement(MyBrokenElement): pass",
....: "from sage.structure.parent cimport Parent",
....: "cdef class MyParent(Parent):",
....: " Element = MyElement"]
sage: cython('\n'.join(cython_code)) # optional -
→˓ sage.misc.cython
sage: cython_code = ["from sage.all import cached_method, cached_in_parent_method,␣
→˓Category, Objects",
....: "class MyCategory(Category):",
....: " @cached_method",
....: " def super_categories(self):",
....: " return [Objects()]",
....: " class ElementMethods:",
....: " @cached_method",
....: " def element_cache_test(self):",
....: " return -self",
....: " @cached_in_parent_method",
....: " def element_via_parent_test(self):",
....: " return -self",
....: " class ParentMethods:",

(continues on next page)

3.1. Elements 63

Parents and Elements, Release 9.8

(continued from previous page)

....: " @cached_method",

....: " def one(self):",

....: " return self.element_class(self,1)",

....: " @cached_method",

....: " def invert(self, x):",

....: " return -x"]
sage: cython('\n'.join(cython_code)) # optional -
→˓ sage.misc.cython
sage: C = MyCategory() # optional -
→˓ sage.misc.cython
sage: P = MyParent(category=C) # optional -
→˓ sage.misc.cython
sage: ebroken = MyBrokenElement(P, 5) # optional -
→˓ sage.misc.cython
sage: e = MyElement(P, 5) # optional -
→˓ sage.misc.cython

The cached methods inherited by MyElement works:

sage: e.element_cache_test() # optional -
→˓ sage.misc.cython
<-5>
sage: e.element_cache_test() is e.element_cache_test() # optional -
→˓ sage.misc.cython
True
sage: e.element_via_parent_test() # optional -
→˓ sage.misc.cython
<-5>
sage: e.element_via_parent_test() is e.element_via_parent_test() # optional -
→˓ sage.misc.cython
True

The other element class can only inherit a cached_in_parent_method, since the cache is stored in the parent.
In fact, equal elements share the cache, even if they are of different types:

sage: e == ebroken # optional -
→˓ sage.misc.cython
True
sage: type(e) == type(ebroken) # optional -
→˓ sage.misc.cython
False
sage: ebroken.element_via_parent_test() is e.element_via_parent_test() # optional -
→˓ sage.misc.cython
True

However, the cache of the other inherited method breaks, although the method as such works:

sage: ebroken.element_cache_test() # optional -
→˓ sage.misc.cython
<-5>
sage: ebroken.element_cache_test() is ebroken.element_cache_test() # optional -
→˓ sage.misc.cython
False

64 Chapter 3. Elements

Parents and Elements, Release 9.8

Since e and ebroken share the cache, when we empty it for one element it is empty for the other as well:

sage: b = ebroken.element_via_parent_test() # optional -
→˓ sage.misc.cython
sage: e.element_via_parent_test.clear_cache() # optional -
→˓ sage.misc.cython
sage: b is ebroken.element_via_parent_test() # optional -
→˓ sage.misc.cython
False

Note that the cache only breaks for elements that do no allow attribute assignment. A Python version of
MyBrokenElement therefore allows for cached methods:

sage: epython = MyPythonElement(P, 5) # optional -
→˓ sage.misc.cython
sage: epython.element_cache_test() # optional -
→˓ sage.misc.cython
<-5>
sage: epython.element_cache_test() is epython.element_cache_test() # optional -
→˓ sage.misc.cython
True

class sage.structure.element.EuclideanDomainElement

Bases: PrincipalIdealDomainElement

degree()

leading_coefficient()

quo_rem(other)

class sage.structure.element.Expression

Bases: CommutativeRingElement

Abstract base class for Expression.

class sage.structure.element.FieldElement

Bases: CommutativeRingElement

divides(other)
Check whether self divides other, for field elements.

Since this is a field, all values divide all other values, except that zero does not divide any non-zero values.

EXAMPLES:

sage: K.<rt3> = QQ[sqrt(3)]
sage: K(0).divides(rt3)
False
sage: rt3.divides(K(17))
True
sage: K(0).divides(K(0))
True
sage: rt3.divides(K(0))
True

3.1. Elements 65

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression

Parents and Elements, Release 9.8

is_unit()

Return True if self is a unit in its parent ring.

EXAMPLES:

sage: a = 2/3; a.is_unit()
True

On the other hand, 2 is not a unit, since its parent is Z.

sage: a = 2; a.is_unit()
False
sage: parent(a)
Integer Ring

However, a is a unit when viewed as an element of QQ:

sage: a = QQ(2); a.is_unit()
True

quo_rem(right)
Return the quotient and remainder obtained by dividing self by right. Since this element lives in a field,
the remainder is always zero and the quotient is self/right.

class sage.structure.element.InfinityElement

Bases: RingElement

class sage.structure.element.IntegralDomainElement

Bases: CommutativeRingElement

is_nilpotent()

class sage.structure.element.Matrix

Bases: ModuleElement

class sage.structure.element.ModuleElement

Bases: Element

Generic element of a module.

additive_order()

Return the additive order of self.

order()

Return the additive order of self.

class sage.structure.element.ModuleElementWithMutability

Bases: ModuleElement

Generic element of a module with mutability.

is_immutable()

Return True if this vector is immutable, i.e., the entries cannot be changed.

EXAMPLES:

66 Chapter 3. Elements

Parents and Elements, Release 9.8

sage: v = vector(QQ['x,y'], [1..5]); v.is_immutable()
False
sage: v.set_immutable()
sage: v.is_immutable()
True

is_mutable()

Return True if this vector is mutable, i.e., the entries can be changed.

EXAMPLES:

sage: v = vector(QQ['x,y'], [1..5]); v.is_mutable()
True
sage: v.set_immutable()
sage: v.is_mutable()
False

set_immutable()

Make this vector immutable. This operation can’t be undone.

EXAMPLES:

sage: v = vector([1..5]); v
(1, 2, 3, 4, 5)
sage: v[1] = 10
sage: v.set_immutable()
sage: v[1] = 10
Traceback (most recent call last):
...
ValueError: vector is immutable; please change a copy instead (use copy())

class sage.structure.element.MonoidElement

Bases: Element

Generic element of a monoid.

multiplicative_order()

Return the multiplicative order of self.

order()

Return the multiplicative order of self.

powers(n)
Return the list [𝑥0, 𝑥1, . . . , 𝑥𝑛−1].

EXAMPLES:

sage: G = SymmetricGroup(4) # optional - sage.
→˓groups
sage: g = G([2, 3, 4, 1]) # optional - sage.
→˓groups
sage: g.powers(4) # optional - sage.
→˓groups
[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)]

3.1. Elements 67

Parents and Elements, Release 9.8

class sage.structure.element.MultiplicativeGroupElement

Bases: MonoidElement

Generic element of a multiplicative group.

order()

Return the multiplicative order of self.

class sage.structure.element.PrincipalIdealDomainElement

Bases: DedekindDomainElement

gcd(right)
Return the greatest common divisor of self and other.

lcm(right)
Return the least common multiple of self and right.

class sage.structure.element.RingElement

Bases: ModuleElement

abs()

Return the absolute value of self. (This just calls the __abs__ method, so it is equivalent to the abs()
built-in function.)

EXAMPLES:

sage: RR(-1).abs()
1.00000000000000
sage: ZZ(-1).abs()
1
sage: CC(I).abs()
1.00000000000000
sage: Mod(-15, 37).abs()
Traceback (most recent call last):
...
ArithmeticError: absolute value not defined on integers modulo n.

additive_order()

Return the additive order of self.

is_nilpotent()

Return True if self is nilpotent, i.e., some power of self is 0.

is_one()

is_prime()

Is self a prime element?

A prime element is a non-zero, non-unit element 𝑝 such that, whenever 𝑝 divides 𝑎𝑏 for some 𝑎 and 𝑏, then
𝑝 divides 𝑎 or 𝑝 divides 𝑏.

EXAMPLES:

For polynomial rings, prime is the same as irreducible:

sage: R.<x,y> = QQ[]
sage: x.is_prime()
True

(continues on next page)

68 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

sage: (x^2 + y^3).is_prime()
True
sage: (x^2 - y^2).is_prime()
False
sage: R(0).is_prime()
False
sage: R(2).is_prime()
False

For the Gaussian integers:

sage: K.<i> = QuadraticField(-1)
sage: ZI = K.ring_of_integers()
sage: ZI(3).is_prime()
True
sage: ZI(5).is_prime()
False
sage: ZI(2+i).is_prime()
True
sage: ZI(0).is_prime()
False
sage: ZI(1).is_prime()
False

In fields, an element is never prime:

sage: RR(0).is_prime()
False
sage: RR(2).is_prime()
False

For integers, is_prime() redefines prime numbers to be positive:

sage: (-2).is_prime()
False
sage: RingElement.is_prime(-2)
True

Similarly, NumberField redefines is_prime() to determine primality in the ring of integers:

sage: (1+i).is_prime()
True
sage: K(5).is_prime()
False
sage: K(7).is_prime()
True
sage: K(7/13).is_prime()
False

However, for rationals, is_prime() does follow the general definition of prime elements in a ring (i.e.,
always returns False) since the rationals are not a NumberField in Sage:

3.1. Elements 69

../../../../../../html/en/reference/number_fields/sage/rings/number_field/number_field_base.html#sage.rings.number_field.number_field_base.NumberField
../../../../../../html/en/reference/number_fields/sage/rings/number_field/number_field_base.html#sage.rings.number_field.number_field_base.NumberField

Parents and Elements, Release 9.8

sage: QQ(7).is_prime()
False

multiplicative_order()

Return the multiplicative order of self, if self is a unit, or raise ArithmeticError otherwise.

powers(n)
Return the list [𝑥0, 𝑥1, . . . , 𝑥𝑛−1].

EXAMPLES:

sage: 5.powers(3)
[1, 5, 25]

class sage.structure.element.Vector

Bases: ModuleElementWithMutability

sage.structure.element.bin_op(x, y, op)

sage.structure.element.canonical_coercion(x, y)
canonical_coercion(x,y) is what is called before doing an arithmetic operation between x and y. It returns a
pair (z,w) such that z is got from x and w from y via canonical coercion and the parents of z and w are identical.

EXAMPLES:

sage: A = Matrix([[0, 1], [1, 0]])
sage: canonical_coercion(A, 1)
(
[0 1] [1 0]
[1 0], [0 1]
)

sage.structure.element.coerce_binop(method)
Decorator for a binary operator method for applying coercion to the arguments before calling the method.

Consider a parent class in the category framework, 𝑆, whose element class expose a method 𝑏𝑖𝑛𝑜𝑝. If 𝑎 and 𝑏 are
elements of 𝑆, then 𝑎.𝑏𝑖𝑛𝑜𝑝(𝑏) behaves as expected. If 𝑎 and 𝑏 are not elements of 𝑆, but rather have a common
parent 𝑇 whose element class also exposes 𝑏𝑖𝑛𝑜𝑝, we would rather expect 𝑎.𝑏𝑖𝑛𝑜𝑝(𝑏) to compute 𝑎𝑎.𝑏𝑖𝑛𝑜𝑝(𝑏𝑏),
where 𝑎𝑎 = 𝑇 (𝑎) and 𝑏𝑏 = 𝑇 (𝑏). This decorator ensures that behaviour without having to otherwise modify the
implementation of 𝑏𝑖𝑛𝑜𝑝 on the element class of 𝐴.

Since coercion will be attempted on the arguments of the decorated method, a 𝑇𝑦𝑝𝑒𝐸𝑟𝑟𝑜𝑟 will be thrown if
there is no common parent between the elements. An 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 or 𝑁𝑜𝑡𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 or similar
will be thrown if there is a common parent of the arguments, but its element class does not implement a method
of the same name as the decorated method.

EXAMPLES:

Sparse polynomial rings uses @𝑐𝑜𝑒𝑟𝑐𝑒𝑏𝑖𝑛𝑜𝑝 on 𝑔𝑐𝑑:

sage: S.<x> = PolynomialRing(ZZ,sparse=True)
sage: f = x^2
sage: g = x
sage: f.gcd(g) #indirect doctest
x
sage: T = PolynomialRing(QQ, name='x', sparse=True)

(continues on next page)

70 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

sage: h = 1/2*T(x)
sage: u = f.gcd(h); u #indirect doctest
x
sage: u.parent() == T
True

Another real example:

sage: R1=QQ['x,y']
sage: R2=QQ['x,y,z']
sage: f=R1(1)
sage: g=R1(2)
sage: h=R2(1)
sage: f.gcd(g)
1
sage: f.gcd(g,algorithm='modular')
1
sage: f.gcd(h)
1
sage: f.gcd(h,algorithm='modular')
1
sage: h.gcd(f)
1
sage: h.gcd(f,'modular')
1

We demonstrate a small class using @𝑐𝑜𝑒𝑟𝑐𝑒𝑏𝑖𝑛𝑜𝑝 on a method:

sage: from sage.structure.element import coerce_binop
sage: class MyRational(Rational):
....: def __init__(self,value):
....: self.v = value
....: @coerce_binop
....: def test_add(self, other, keyword='z'):
....: return (self.v, other, keyword)

Calls func directly if the two arguments have the same parent:

sage: x = MyRational(1)
sage: x.test_add(1/2)
(1, 1/2, 'z')
sage: x.test_add(1/2, keyword=3)
(1, 1/2, 3)

Passes through coercion and does a method lookup if the left operand is not the same. If the common parent’s
element class does not have a method of the same name, an exception is raised:

sage: x.test_add(2)
(1, 2, 'z')
sage: x.test_add(2, keyword=3)
(1, 2, 3)
sage: x.test_add(CC(2))
Traceback (most recent call last):

(continues on next page)

3.1. Elements 71

Parents and Elements, Release 9.8

(continued from previous page)

...
AttributeError: 'sage.rings.complex_mpfr.ComplexNumber' object has no attribute
→˓'test_add'

sage.structure.element.coercion_traceback(dump=True)
This function is very helpful in debugging coercion errors. It prints the tracebacks of all the errors caught in
the coercion detection. Note that failure is cached, so some errors may be omitted the second time around (as it
remembers not to retry failed paths for speed reasons.

For performance and caching reasons, exception recording must be explicitly enabled before using this function.

EXAMPLES:

sage: cm = sage.structure.element.get_coercion_model()
sage: cm.record_exceptions()
sage: 1 + 1/5
6/5
sage: coercion_traceback() # Should be empty, as all went well.
sage: 1/5 + GF(5).gen()
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Rational Field' and 'Finite Field␣
→˓of size 5'
sage: coercion_traceback()
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents: 'Rational Field'␣
→˓and 'Finite Field of size 5'

sage.structure.element.get_coercion_model()

Return the global coercion model.

EXAMPLES:

sage: import sage.structure.element as e
sage: cm = e.get_coercion_model()
sage: cm
<sage.structure.coerce.CoercionModel object at ...>
sage: cm is coercion_model
True

sage.structure.element.have_same_parent(left, right)
Return True if and only if left and right have the same parent.

Warning: This function assumes that at least one of the arguments is a Sage Element. When in doubt, use
the slower parent(left) is parent(right) instead.

EXAMPLES:

sage: from sage.structure.element import have_same_parent
sage: have_same_parent(1, 3)
True

(continues on next page)

72 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

sage: have_same_parent(1, 1/2)
False
sage: have_same_parent(gap(1), gap(1/2))
True

These have different types but the same parent:

sage: a = RLF(2)
sage: b = exp(a)
sage: type(a)
<... 'sage.rings.real_lazy.LazyWrapper'>
sage: type(b)
<... 'sage.rings.real_lazy.LazyNamedUnop'>
sage: have_same_parent(a, b)
True

sage.structure.element.is_AdditiveGroupElement(x)
Return True if x is of type AdditiveGroupElement.

sage.structure.element.is_AlgebraElement(x)
Return True if x is of type AlgebraElement.

sage.structure.element.is_CommutativeAlgebraElement(x)
Return True if x is of type CommutativeAlgebraElement.

sage.structure.element.is_CommutativeRingElement(x)
Return True if x is of type CommutativeRingElement.

sage.structure.element.is_DedekindDomainElement(x)
Return True if x is of type DedekindDomainElement.

sage.structure.element.is_Element(x)
Return True if x is of type Element.

EXAMPLES:

sage: from sage.structure.element import is_Element
sage: is_Element(2/3)
True
sage: is_Element(QQ^3)
False

sage.structure.element.is_EuclideanDomainElement(x)
Return True if x is of type EuclideanDomainElement.

sage.structure.element.is_FieldElement(x)
Return True if x is of type FieldElement.

sage.structure.element.is_InfinityElement(x)
Return True if x is of type InfinityElement.

sage.structure.element.is_IntegralDomainElement(x)
Return True if x is of type IntegralDomainElement.

sage.structure.element.is_Matrix(x)

3.1. Elements 73

Parents and Elements, Release 9.8

sage.structure.element.is_ModuleElement(x)
Return True if x is of type ModuleElement.

This is even faster than using isinstance inline.

EXAMPLES:

sage: from sage.structure.element import is_ModuleElement
sage: is_ModuleElement(2/3)
True
sage: is_ModuleElement((QQ^3).0)
True
sage: is_ModuleElement('a')
False

sage.structure.element.is_MonoidElement(x)
Return True if x is of type MonoidElement.

sage.structure.element.is_MultiplicativeGroupElement(x)
Return True if x is of type MultiplicativeGroupElement.

sage.structure.element.is_PrincipalIdealDomainElement(x)
Return True if x is of type PrincipalIdealDomainElement.

sage.structure.element.is_RingElement(x)
Return True if x is of type RingElement.

sage.structure.element.is_Vector(x)

sage.structure.element.make_element(_class, _dict, parent)
This function is only here to support old pickles.

Pickling functionality is moved to Element.{__getstate__,__setstate__} functions.

sage.structure.element.parent(x)
Return the parent of the element x.

Usually, this means the mathematical object of which x is an element.

INPUT:

• x – an element

OUTPUT:

• If x is a Sage Element, return x.parent().

• Otherwise, return type(x).

See also:

Parents, Conversion and Coercion Section in the Sage Tutorial

EXAMPLES:

sage: a = 42
sage: parent(a)
Integer Ring
sage: b = 42/1
sage: parent(b)
Rational Field

(continues on next page)

74 Chapter 3. Elements

http://doc.sagemath.org/html/en/tutorial/tour_coercion.html

Parents and Elements, Release 9.8

(continued from previous page)

sage: c = 42.0
sage: parent(c)
Real Field with 53 bits of precision

Some more complicated examples:

sage: x = Partition([3,2,1,1,1])
sage: parent(x)
Partitions
sage: v = vector(RDF, [1,2,3])
sage: parent(v)
Vector space of dimension 3 over Real Double Field

The following are not considered to be elements, so the type is returned:

sage: d = int(42) # Python int
sage: parent(d)
<... 'int'>
sage: L = list(range(10))
sage: parent(L)
<... 'list'>

3.2 Element Wrapper

Wrapping Sage or Python objects as Sage elements.

AUTHORS:

• Nicolas Thiery (2008-2010): Initial version

• Travis Scrimshaw (2013-05-04): Cythonized version

class sage.structure.element_wrapper.DummyParent(name)
Bases: UniqueRepresentation, Parent

A class for creating dummy parents for testing ElementWrapper

class sage.structure.element_wrapper.ElementWrapper

Bases: Element

A class for wrapping Sage or Python objects as Sage elements.

EXAMPLES:

sage: from sage.structure.element_wrapper import DummyParent
sage: parent = DummyParent("A parent")
sage: o = ElementWrapper(parent, "bla"); o
'bla'
sage: isinstance(o, sage.structure.element.Element)
True
sage: o.parent()
A parent
sage: o.value
'bla'

3.2. Element Wrapper 75

Parents and Elements, Release 9.8

Note that o is not an instance of str, but rather contains a str. Therefore, o does not inherit the string methods.
On the other hand, it is provided with reasonable default implementations for equality testing, hashing, etc.

The typical use case of ElementWrapper is for trivially constructing new element classes from pre-existing
Sage or Python classes, with a containment relation. Here we construct the tropical monoid of integers endowed
with min as multiplication. There, it is desirable not to inherit the factor method from Integer:

sage: class MinMonoid(Parent):
....: def _repr_(self):
....: return "The min monoid"
....:
sage: M = MinMonoid()
sage: class MinMonoidElement(ElementWrapper):
....: wrapped_class = Integer
....:
....: def __mul__(self, other):
....: return MinMonoidElement(self.parent(), min(self.value, other.value))
sage: x = MinMonoidElement(M, 5); x
5
sage: x.parent()
The min monoid
sage: x.value
5
sage: y = MinMonoidElement(M, 3)
sage: x * y
3

This example was voluntarily kept to a bare minimum. See the examples in the categories (e.g. Semigroups().
example()) for several full featured applications.

Warning: Versions before trac ticket #14519 had parent as the second argument and the value as the first.

value

class sage.structure.element_wrapper.ElementWrapperCheckWrappedClass

Bases: ElementWrapper

An element wrapper such that comparison operations are done against subclasses of wrapped_class.

wrapped_class

alias of object

class sage.structure.element_wrapper.ElementWrapperTester

Bases: ElementWrapper

Test class for the default __copy() method of subclasses of ElementWrapper.

append(x)

76 Chapter 3. Elements

https://trac.sagemath.org/14519

Parents and Elements, Release 9.8

3.3 Elements, Array and Lists With Clone Protocol

This module defines several classes which are subclasses of Element and which roughly implement the “prototype”
design pattern (see [Prototype_pattern], [GHJV1994]). Those classes are intended to be used to model mathematical
objects, which are by essence immutable. However, in many occasions, one wants to construct the data-structure
encoding of a new mathematical object by small modifications of the data structure encoding some already built object.
For the resulting data-structure to correctly encode the mathematical object, some structural invariants must hold. One
problem is that, in many cases, during the modification process, there is no possibility but to break the invariants.

For example, in a list modeling a permutation of {1, . . . , 𝑛}, the integers must be distinct. A very common operation is
to take a permutation to make a copy with some small modifications, like exchanging two consecutive values in the list
or cycling some values. Though the result is clearly a permutations there’s no way to avoid breaking the permutations
invariants at some point during the modifications.

The main purpose of this module is to define the class

• ClonableElement as an abstract super class,

and its subclasses:

• ClonableArray for arrays (lists of fixed length) of objects;

• ClonableList for (resizable) lists of objects;

• NormalizedClonableList for lists of objects with a normalization method;

• ClonableIntArray for arrays of int.

See also:

The following parents from sage.structure.list_clone_demo demonstrate how to use them:

• IncreasingArrays() (see IncreasingArray and the parent class IncreasingArrays)

• IncreasingLists() (see IncreasingList and the parent class IncreasingLists)

• SortedLists() (see SortedList and the parent class SortedLists)

• IncreasingIntArrays() (see IncreasingIntArray and the parent class IncreasingIntArrays)

EXAMPLES:

We now demonstrate how IncreasingArray works, creating an instance el through its parent
IncreasingArrays():

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: P = IncreasingArrays()
sage: P([1, 4 ,8])
[1, 4, 8]

If one tries to create this way a list which in not increasing, an error is raised:

sage: IncreasingArrays()([5, 4 ,8])
Traceback (most recent call last):
...
ValueError: array is not increasing

Once created modifying el is forbidden:

3.3. Elements, Array and Lists With Clone Protocol 77

Parents and Elements, Release 9.8

sage: el = P([1, 4 ,8])
sage: el[1] = 3
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

However, you can modify a temporarily mutable clone:

sage: with el.clone() as elc:
....: elc[1] = 3
sage: [el, elc]
[[1, 4, 8], [1, 3, 8]]

We check that the original and the modified copy now are in a proper immutable state:

sage: el.is_immutable(), elc.is_immutable()
(True, True)
sage: elc[1] = 5
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

You can break the property that the list is increasing during the modification:

sage: with el.clone() as elc2:
....: elc2[1] = 12
....: print(elc2)
....: elc2[2] = 25
[1, 12, 8]
sage: elc2
[1, 12, 25]

But this property must be restored at the end of the with block; otherwise an error is raised:

sage: with elc2.clone() as el3:
....: el3[1] = 100
Traceback (most recent call last):
...
ValueError: array is not increasing

Finally, as an alternative to the with syntax one can use:

sage: el4 = copy(elc2)
sage: el4[1] = 10
sage: el4.set_immutable()
sage: el4.check()

REFERENCES:

• [Prototype_pattern]

• [GHJV1994]

AUTHORS:

• Florent Hivert (2010-03): initial revision

78 Chapter 3. Elements

Parents and Elements, Release 9.8

class sage.structure.list_clone.ClonableArray

Bases: ClonableElement

Array with clone protocol

The class of objects which are Element behave as arrays (i.e. lists of fixed length) and implement the clone
protocol. See ClonableElement for details about clone protocol.

INPUT:

• parent – a Parent

• lst – a list

• check – a boolean specifying if the invariant must be checked using method check().

• immutable – a boolean telling whether the created element is immutable (defaults to True)

See also:

IncreasingArray for an example of usage.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: IA = IncreasingArrays()
sage: ia1 = IA([1, 4, 6]); ia1
[1, 4, 6]
sage: with ia1.clone() as ia2:
....: ia2[1] = 5
sage: ia2
[1, 5, 6]
sage: with ia1.clone() as ia2:
....: ia2[1] = 7
Traceback (most recent call last):
...
ValueError: array is not increasing

check()

Check that self fulfill the invariants

This is an abstract method. Subclasses are supposed to overload check.

EXAMPLES:

sage: from sage.structure.list_clone import ClonableArray
sage: ClonableArray(Parent(), [1,2,3]) # indirect doctest
Traceback (most recent call last):
...
NotImplementedError: this should never be called, please overload the check␣
→˓method
sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays()([1,2,4]) # indirect doctest

count(key)
Return number of i’s for which s[i] == key

EXAMPLES:

3.3. Elements, Array and Lists With Clone Protocol 79

Parents and Elements, Release 9.8

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: c = IncreasingArrays()([1,2,2,4])
sage: c.count(1)
1
sage: c.count(2)
2
sage: c.count(3)
0

index(x, start=None, stop=None)
Return the smallest k such that s[k] == x and i <= k < j

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: c = IncreasingArrays()([1,2,4])
sage: c.index(1)
0
sage: c.index(4)
2
sage: c.index(5)
Traceback (most recent call last):
...
ValueError: 5 is not in list

class sage.structure.list_clone.ClonableElement

Bases: Element

Abstract class for elements with clone protocol

This class is a subclass of Element and implements the “prototype” design pattern (see [Prototype_pattern],
[GHJV1994]). The role of this class is:

• to manage copy and mutability and hashing of elements

• to ensure that at the end of a piece of code an object is restored in a meaningful mathematical state.

A class C inheriting from ClonableElement must implement the following two methods

• obj.__copy__() – returns a fresh copy of obj

• obj.check() – returns nothing, raise an exception if obj doesn’t satisfy the data structure invariants

and ensure to call obj._require_mutable() at the beginning of any modifying method.

Additionally, one can also implement

• obj._hash_() – return the hash value of obj.

Then, given an instance obj of C, the following sequences of instructions ensures that the invariants of new_obj
are properly restored at the end:

with obj.clone() as new_obj:
...
lot of invariant breaking modifications on new_obj
...

invariants are ensured to be fulfilled

The following equivalent sequence of instructions can be used if speed is needed, in particular in Cython code:

80 Chapter 3. Elements

Parents and Elements, Release 9.8

new_obj = obj.__copy__()
...
lot of invariant breaking modifications on new_obj
...
new_obj.set_immutable()
new_obj.check()
invariants are ensured to be fulfilled

Finally, if the class implements the _hash_ method, then ClonableElement ensures that the hash value can
only be computed on an immutable object. It furthermore caches it so that it is only computed once.

Warning: for the hash caching mechanism to work correctly, the hash value cannot be 0.

EXAMPLES:

The following code shows a minimal example of usage of ClonableElement. We implement a class or pairs
(𝑥, 𝑦) such that 𝑥 < 𝑦:

sage: from sage.structure.list_clone import ClonableElement
sage: class IntPair(ClonableElement):
....: def __init__(self, parent, x, y):
....: ClonableElement.__init__(self, parent=parent)
....: self._x = x
....: self._y = y
....: self.set_immutable()
....: self.check()
....: def _repr_(self):
....: return "(x=%s, y=%s)"%(self._x, self._y)
....: def check(self):
....: if self._x >= self._y:
....: raise ValueError("Incorrectly ordered pair")
....: def get_x(self): return self._x
....: def get_y(self): return self._y
....: def set_x(self, v): self._require_mutable(); self._x = v
....: def set_y(self, v): self._require_mutable(); self._y = v

Note: we don’t need to define __copy__ since it is properly inherited from Element.

We now demonstrate the behavior. Let’s create an IntPair:

sage: myParent = Parent()
sage: el = IntPair(myParent, 1, 3); el
(x=1, y=3)
sage: el.get_x()
1

Modifying it is forbidden:

sage: el.set_x(4)
Traceback (most recent call last):

(continues on next page)

3.3. Elements, Array and Lists With Clone Protocol 81

Parents and Elements, Release 9.8

(continued from previous page)

...
ValueError: object is immutable; please change a copy instead.

However, you can modify a mutable copy:

sage: with el.clone() as el1:
....: el1.set_x(2)
sage: [el, el1]
[(x=1, y=3), (x=2, y=3)]

We check that the original and the modified copy are in a proper immutable state:

sage: el.is_immutable(), el1.is_immutable()
(True, True)
sage: el1.set_x(4)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

A modification which doesn’t restore the invariant 𝑥 < 𝑦 at the end is illegal and raise an exception:

sage: with el.clone() as elc2:
....: elc2.set_x(5)
Traceback (most recent call last):
...
ValueError: Incorrectly ordered pair

clone(check=True)
Return a clone that is mutable copy of self.

INPUT:

• check – a boolean indicating if self.check() must be called after modifications.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays()([1,2,3])
sage: with el.clone() as el1:
....: el1[2] = 5
sage: el1
[1, 2, 5]

is_immutable()

Return True if self is immutable (cannot be changed) and False if it is not.

To make self immutable use self.set_immutable().

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays()([1,2,3])
sage: el.is_immutable()
True
sage: copy(el).is_immutable()

(continues on next page)

82 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

False
sage: with el.clone() as el1:
....: print([el.is_immutable(), el1.is_immutable()])
[True, False]

is_mutable()

Return True if self is mutable (can be changed) and False if it is not.

To make this object immutable use self.set_immutable().

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays()([1,2,3])
sage: el.is_mutable()
False
sage: copy(el).is_mutable()
True
sage: with el.clone() as el1:
....: print([el.is_mutable(), el1.is_mutable()])
[False, True]

set_immutable()

Makes self immutable, so it can never again be changed.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays()([1,2,3])
sage: el1 = copy(el); el1.is_mutable()
True
sage: el1.set_immutable(); el1.is_mutable()
False
sage: el1[2] = 4
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

class sage.structure.list_clone.ClonableIntArray

Bases: ClonableElement

Array of int with clone protocol

The class of objects which are Element behave as list of int and implement the clone protocol. See
ClonableElement for details about clone protocol.

INPUT:

• parent – a Parent

• lst – a list

• check – a boolean specifying if the invariant must be checked using method check()

• immutable – a boolean telling whether the created element is immutable (defaults to True)

See also:

IncreasingIntArray for an example of usage.

3.3. Elements, Array and Lists With Clone Protocol 83

Parents and Elements, Release 9.8

check()

Check that self fulfill the invariants

This is an abstract method. Subclasses are supposed to overload check.

EXAMPLES:

sage: from sage.structure.list_clone import ClonableArray
sage: ClonableArray(Parent(), [1,2,3]) # indirect doctest
Traceback (most recent call last):
...
NotImplementedError: this should never be called, please overload the check␣
→˓method
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: el = IncreasingIntArrays()([1,2,4]) # indirect doctest

index(item)

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: c = IncreasingIntArrays()([1,2,4])
sage: c.index(1)
0
sage: c.index(4)
2
sage: c.index(5)
Traceback (most recent call last):
...
ValueError: list.index(x): x not in list

list()

Convert self into a Python list.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: I = IncreasingIntArrays()(range(5))
sage: I == list(range(5))
False
sage: I.list() == list(range(5))
True
sage: I = IncreasingIntArrays()(range(1000))
sage: I.list() == list(range(1000))
True

class sage.structure.list_clone.ClonableList

Bases: ClonableArray

List with clone protocol

The class of objects which are Element behave as lists and implement the clone protocol. See
ClonableElement for details about clone protocol.

See also:

IncreasingList for an example of usage.

84 Chapter 3. Elements

Parents and Elements, Release 9.8

append(el)
Appends el to self

INPUT: el – any object

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasingLists()([1])
sage: el.append(3)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
....: elc.append(4)
....: elc.append(6)
sage: elc
[1, 4, 6]
sage: with el.clone() as elc:
....: elc.append(4)
....: elc.append(2)
Traceback (most recent call last):
...
ValueError: array is not increasing

extend(it)
Extends self by the content of the iterable it

INPUT: it – any iterable

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasingLists()([1, 4, 5, 8, 9])
sage: el.extend((10,11))
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

sage: with el.clone() as elc:
....: elc.extend((10,11))
sage: elc
[1, 4, 5, 8, 9, 10, 11]

sage: el2 = IncreasingLists()([15, 16])
sage: with el.clone() as elc:
....: elc.extend(el2)
sage: elc
[1, 4, 5, 8, 9, 15, 16]

sage: with el.clone() as elc:
....: elc.extend((6,7))
Traceback (most recent call last):
...
ValueError: array is not increasing

3.3. Elements, Array and Lists With Clone Protocol 85

Parents and Elements, Release 9.8

insert(index, el)
Inserts el in self at position index

INPUT:

• el – any object

• index – any int

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasingLists()([1, 4, 5, 8, 9])
sage: el.insert(3, 6)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
....: elc.insert(3, 6)
sage: elc
[1, 4, 5, 6, 8, 9]
sage: with el.clone() as elc:
....: elc.insert(2, 6)
Traceback (most recent call last):
...
ValueError: array is not increasing

pop(index=-1)
Remove self[index] from self and returns it

INPUT: index - any int, default to -1

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasingLists()([1, 4, 5, 8, 9])
sage: el.pop()
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
....: print(elc.pop())
9
sage: elc
[1, 4, 5, 8]
sage: with el.clone() as elc:
....: print(elc.pop(2))
5
sage: elc
[1, 4, 8, 9]

remove(el)
Remove the first occurrence of el from self

INPUT: el - any object

EXAMPLES:

86 Chapter 3. Elements

Parents and Elements, Release 9.8

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasingLists()([1, 4, 5, 8, 9])
sage: el.remove(4)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
....: elc.remove(4)
sage: elc
[1, 5, 8, 9]
sage: with el.clone() as elc:
....: elc.remove(10)
Traceback (most recent call last):
...
ValueError: list.remove(x): x not in list

class sage.structure.list_clone.NormalizedClonableList

Bases: ClonableList

List with clone protocol and normal form

This is a subclass of ClonableList which call a method normalize() at creation and after any modification
of its instance.

See also:

SortedList for an example of usage.

EXAMPLES:

We construct a sorted list through its parent:

sage: from sage.structure.list_clone_demo import SortedLists
sage: SL = SortedLists()
sage: sl1 = SL([4,2,6,1]); sl1
[1, 2, 4, 6]

Normalization is also performed atfer modification:

sage: with sl1.clone() as sl2:
....: sl2[1] = 12
sage: sl2
[1, 4, 6, 12]

normalize()

Normalize self

This is an abstract method. Subclasses are supposed to overload normalize(). The call self.
normalize() is supposed to

• call self._require_mutable() to check that self is in a proper mutable state

• modify self to put it in a normal form

EXAMPLES:

sage: from sage.structure.list_clone_demo import SortedList, SortedLists
sage: l = SortedList(SortedLists(), [2,3,2], False, False)

(continues on next page)

3.3. Elements, Array and Lists With Clone Protocol 87

Parents and Elements, Release 9.8

(continued from previous page)

sage: l
[2, 2, 3]
sage: l.check()
Traceback (most recent call last):
...
ValueError: list is not strictly increasing

3.4 Elements, Array and Lists With Clone Protocol, demonstration
classes

This module demonstrate the usage of the various classes defined in list_clone

class sage.structure.list_clone_demo.IncreasingArray

Bases: ClonableArray

A small extension class for testing ClonableArray.

check()

Check that self is increasing.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: IncreasingArrays()([1,2,3]) # indirect doctest
[1, 2, 3]
sage: IncreasingArrays()([3,2,1]) # indirect doctest
Traceback (most recent call last):
...
ValueError: array is not increasing

class sage.structure.list_clone_demo.IncreasingArrays

Bases: UniqueRepresentation, Parent

A small (incomplete) parent for testing ClonableArray

Element

alias of IncreasingArray

class sage.structure.list_clone_demo.IncreasingIntArray

Bases: ClonableIntArray

A small extension class for testing ClonableIntArray.

check()

Check that self is increasing.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IncreasingIntArrays()([1,2,3]) # indirect doctest
[1, 2, 3]
sage: IncreasingIntArrays()([3,2,1]) # indirect doctest
Traceback (most recent call last):

(continues on next page)

88 Chapter 3. Elements

Parents and Elements, Release 9.8

(continued from previous page)

...
ValueError: array is not increasing

class sage.structure.list_clone_demo.IncreasingIntArrays

Bases: IncreasingArrays

A small (incomplete) parent for testing ClonableIntArray

Element

alias of IncreasingIntArray

class sage.structure.list_clone_demo.IncreasingList

Bases: ClonableList

A small extension class for testing ClonableList

check()

Check that self is increasing

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: IncreasingLists()([1,2,3]) # indirect doctest
[1, 2, 3]
sage: IncreasingLists()([3,2,1]) # indirect doctest
Traceback (most recent call last):
...
ValueError: array is not increasing

class sage.structure.list_clone_demo.IncreasingLists

Bases: IncreasingArrays

A small (incomplete) parent for testing ClonableList

Element

alias of IncreasingList

class sage.structure.list_clone_demo.SortedList

Bases: NormalizedClonableList

A small extension class for testing NormalizedClonableList.

check()

Check that self is strictly increasing

EXAMPLES:

sage: from sage.structure.list_clone_demo import SortedList, SortedLists
sage: SortedLists()([1,2,3]) # indirect doctest
[1, 2, 3]
sage: SortedLists()([3,2,2]) # indirect doctest
Traceback (most recent call last):
...
ValueError: list is not strictly increasing

3.4. Elements, Array and Lists With Clone Protocol, demonstration classes 89

Parents and Elements, Release 9.8

normalize()

Normalize self

Sort the list stored in self.

EXAMPLES:

sage: from sage.structure.list_clone_demo import SortedList, SortedLists
sage: l = SortedList(SortedLists(), [3,1,2], False, False)
sage: l # indirect doctest
[1, 2, 3]
sage: l[1] = 5; l
[1, 5, 3]
sage: l.normalize(); l
[1, 3, 5]

class sage.structure.list_clone_demo.SortedLists

Bases: IncreasingLists

A small (incomplete) parent for testing NormalizedClonableList

Element

alias of SortedList

90 Chapter 3. Elements

CHAPTER

FOUR

MATHEMATICAL DATA STRUCTURES

4.1 Formal sums

AUTHORS:

• David Harvey (2006-09-20): changed FormalSum not to derive from “list” anymore, because that breaks new
Element interface

• Nick Alexander (2006-12-06): added test cases.

• William Stein (2006, 2009): wrote the first version in 2006, documented it in 2009.

• Volker Braun (2010-07-19): new-style coercions, documentation added. FormalSums now derives from Uni-
queRepresentation.

FUNCTIONS:

• FormalSums(ring) – create the module of formal finite sums with
coefficients in the given ring.

• FormalSum(list of pairs (coeff, number)) – create a formal sum

EXAMPLES:

sage: A = FormalSum([(1, 2/3)]); A
2/3
sage: B = FormalSum([(3, 1/5)]); B
3*1/5
sage: -B
-3*1/5
sage: A + B
2/3 + 3*1/5
sage: A - B
2/3 - 3*1/5
sage: B*3
9*1/5
sage: 2*A
2*2/3
sage: list(2*A + A)
[(3, 2/3)]

class sage.structure.formal_sum.FormalSum(x, parent=None, check=True, reduce=True)
Bases: ModuleElement

A formal sum over a ring.

91

Parents and Elements, Release 9.8

reduce()

EXAMPLES:

sage: a = FormalSum([(-2,3), (2,3)], reduce=False); a
-2*3 + 2*3
sage: a.reduce()
sage: a
0

class sage.structure.formal_sum.FormalSums

Bases: UniqueRepresentation, Module

The R-module of finite formal sums with coefficients in some ring R.

EXAMPLES:

sage: FormalSums()
Abelian Group of all Formal Finite Sums over Integer Ring
sage: FormalSums(ZZ)
Abelian Group of all Formal Finite Sums over Integer Ring
sage: FormalSums(GF(7))
Abelian Group of all Formal Finite Sums over Finite Field of size 7
sage: FormalSums(ZZ[sqrt(2)])
Abelian Group of all Formal Finite Sums over Order in Number Field in sqrt2 with␣
→˓defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?
sage: FormalSums(GF(9,'a'))
Abelian Group of all Formal Finite Sums over Finite Field in a of size 3^2

Element

alias of FormalSum

base_extend(R)
EXAMPLES:

sage: F7 = FormalSums(ZZ).base_extend(GF(7)); F7
Abelian Group of all Formal Finite Sums over Finite Field of size 7

The following tests against a bug that was fixed at trac ticket #18795:

sage: isinstance(F7, F7.category().parent_class)
True

4.2 Factorizations

The Factorization class provides a structure for holding quite general lists of objects with integer multiplicities.
These may hold the results of an arithmetic or algebraic factorization, where the objects may be primes or irreducible
polynomials and the multiplicities are the (non-zero) exponents in the factorization. For other types of examples, see
below.

Factorization class objects contain a list, so can be printed nicely and be manipulated like a list of prime-exponent
pairs, or easily turned into a plain list. For example, we factor the integer −45:

sage: F = factor(-45)

92 Chapter 4. Mathematical Data Structures

../../../../../../html/en/reference/modules/sage/modules/module.html#sage.modules.module.Module
https://trac.sagemath.org/18795

Parents and Elements, Release 9.8

This returns an object of type Factorization:

sage: type(F)
<class 'sage.structure.factorization_integer.IntegerFactorization'>

It prints in a nice factored form:

sage: F
-1 * 3^2 * 5

There is an underlying list representation, which ignores the unit part:

sage: list(F)
[(3, 2), (5, 1)]

A Factorization is not actually a list:

sage: isinstance(F, list)
False

However, we can access the Factorization F itself as if it were a list:

sage: F[0]
(3, 2)
sage: F[1]
(5, 1)

To get at the unit part, use the Factorization.unit() function:

sage: F.unit()
-1

All factorizations are immutable, up to ordering with sort() and simplifying with simplify(). Thus if you write a
function that returns a cached version of a factorization, you do not have to return a copy.

sage: F = factor(-12); F
-1 * 2^2 * 3
sage: F[0] = (5,4)
Traceback (most recent call last):
...
TypeError: 'Factorization' object does not support item assignment

EXAMPLES:

This more complicated example involving polynomials also illustrates that the unit part is not discarded from factor-
izations:

sage: x = QQ['x'].0
sage: f = -5*(x-2)*(x-3)
sage: f
-5*x^2 + 25*x - 30
sage: F = f.factor(); F
(-5) * (x - 3) * (x - 2)
sage: F.unit()
-5

(continues on next page)

4.2. Factorizations 93

Parents and Elements, Release 9.8

(continued from previous page)

sage: F.value()
-5*x^2 + 25*x - 30

The underlying list is the list of pairs (𝑝𝑖, 𝑒𝑖), where each 𝑝𝑖 is a ‘prime’ and each 𝑒𝑖 is an integer. The unit part is
discarded by the list:

sage: list(F)
[(x - 3, 1), (x - 2, 1)]
sage: len(F)
2
sage: F[1]
(x - 2, 1)

In the ring Z[𝑥], the integer −5 is not a unit, so the factorization has three factors:

sage: x = ZZ['x'].0
sage: f = -5*(x-2)*(x-3)
sage: f
-5*x^2 + 25*x - 30
sage: F = f.factor(); F
(-1) * 5 * (x - 3) * (x - 2)
sage: F.universe()
Univariate Polynomial Ring in x over Integer Ring
sage: F.unit()
-1
sage: list(F)
[(5, 1), (x - 3, 1), (x - 2, 1)]
sage: F.value()
-5*x^2 + 25*x - 30
sage: len(F)
3

On the other hand, -1 is a unit in Z, so it is included in the unit:

sage: x = ZZ['x'].0
sage: f = -1*(x-2)*(x-3)
sage: F = f.factor(); F
(-1) * (x - 3) * (x - 2)
sage: F.unit()
-1
sage: list(F)
[(x - 3, 1), (x - 2, 1)]

Factorizations can involve fairly abstract mathematical objects:

sage: F = ModularSymbols(11,4).factorization()
sage: F
(Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 6 for␣
→˓Gamma_0(11) of weight 4 with sign 0 over Rational Field) *
(Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 6 for␣
→˓Gamma_0(11) of weight 4 with sign 0 over Rational Field) *
(Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 6 for␣
→˓Gamma_0(11) of weight 4 with sign 0 over Rational Field)

(continues on next page)

94 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

(continued from previous page)

sage: type(F)
<class 'sage.structure.factorization.Factorization'>

sage: K.<a> = NumberField(x^2 + 3); K
Number Field in a with defining polynomial x^2 + 3
sage: f = K.factor(15); f
(Fractional ideal (1/2*a + 3/2))^2 * (Fractional ideal (5))
sage: f.universe()
Monoid of ideals of Number Field in a with defining polynomial x^2 + 3
sage: f.unit()
Fractional ideal (1)
sage: g=K.factor(9); g
(Fractional ideal (1/2*a + 3/2))^4
sage: f.lcm(g)
(Fractional ideal (1/2*a + 3/2))^4 * (Fractional ideal (5))
sage: f.gcd(g)
(Fractional ideal (1/2*a + 3/2))^2
sage: f.is_integral()
True

AUTHORS:

• William Stein (2006-01-22): added unit part as suggested by David Kohel.

• William Stein (2008-01-17): wrote much of the documentation and fixed a couple of bugs.

• Nick Alexander (2008-01-19): added support for non-commuting factors.

• John Cremona (2008-08-22): added division, lcm, gcd, is_integral and universe functions

class sage.structure.factorization.Factorization(x, unit=None, cr=False, sort=True, simplify=True)
Bases: SageObject

A formal factorization of an object.

EXAMPLES:

sage: N = 2006
sage: F = N.factor(); F
2 * 17 * 59
sage: F.unit()
1
sage: F = factor(-2006); F
-1 * 2 * 17 * 59
sage: F.unit()
-1
sage: loads(F.dumps()) == F
True
sage: F = Factorization([(x,1/3)])
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

base_change(U)

Return the factorization self, with its factors (including the unit part) coerced into the universe 𝑈 .

4.2. Factorizations 95

Parents and Elements, Release 9.8

EXAMPLES:

sage: F = factor(2006)
sage: F.universe()
Integer Ring
sage: P.<x> = ZZ[]
sage: F.base_change(P).universe()
Univariate Polynomial Ring in x over Integer Ring

This method will return a TypeError if the coercion is not possible:

sage: g = x^2 - 1
sage: F = factor(g); F
(x - 1) * (x + 1)
sage: F.universe()
Univariate Polynomial Ring in x over Integer Ring
sage: F.base_change(ZZ)
Traceback (most recent call last):
...
TypeError: Impossible to coerce the factors of (x - 1) * (x + 1) into Integer␣
→˓Ring

expand()

Return the product of the factors in the factorization, multiplied out.

EXAMPLES:

sage: F = factor(-2006); F
-1 * 2 * 17 * 59
sage: F.value()
-2006

sage: R.<x,y> = FreeAlgebra(ZZ, 2)
sage: F = Factorization([(x,3), (y, 2), (x,1)]); F
x^3 * y^2 * x
sage: F.value()
x^3*y^2*x

gcd(other)
Return the gcd of two factorizations.

If the two factorizations have different universes, this method will attempt to find a common universe for
the gcd. A TypeError is raised if this is impossible.

EXAMPLES:

sage: factor(-30).gcd(factor(-160))
2 * 5
sage: factor(gcd(-30,160))
2 * 5

sage: R.<x> = ZZ[]
sage: (factor(-20).gcd(factor(5*x+10))).universe()
Univariate Polynomial Ring in x over Integer Ring

96 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

is_commutative()

Return True if my factors commute.

EXAMPLES:

sage: F = factor(2006)
sage: F.is_commutative()
True
sage: K = QuadraticField(23, 'a')
sage: F = K.factor(13)
sage: F.is_commutative()
True
sage: R.<x,y,z> = FreeAlgebra(QQ, 3)
sage: F = Factorization([(z, 2)], 3)
sage: F.is_commutative()
False
sage: (F*F^-1).is_commutative()
False

is_integral()

Return True iff all exponents of this Factorization are non-negative.

EXAMPLES:

sage: F = factor(-10); F
-1 * 2 * 5
sage: F.is_integral()
True

sage: F = factor(-10) / factor(16); F
-1 * 2^-3 * 5
sage: F.is_integral()
False

lcm(other)
Return the lcm of two factorizations.

If the two factorizations have different universes, this method will attempt to find a common universe for
the lcm. A TypeError is raised if this is impossible.

EXAMPLES:

sage: factor(-10).lcm(factor(-16))
2^4 * 5
sage: factor(lcm(-10,16))
2^4 * 5

sage: R.<x> = ZZ[]
sage: (factor(-20).lcm(factor(5*x+10))).universe()
Univariate Polynomial Ring in x over Integer Ring

prod()

Return the product of the factors in the factorization, multiplied out.

EXAMPLES:

4.2. Factorizations 97

Parents and Elements, Release 9.8

sage: F = factor(-2006); F
-1 * 2 * 17 * 59
sage: F.value()
-2006

sage: R.<x,y> = FreeAlgebra(ZZ, 2)
sage: F = Factorization([(x,3), (y, 2), (x,1)]); F
x^3 * y^2 * x
sage: F.value()
x^3*y^2*x

radical()

Return the factorization of the radical of the value of self.

First, check that all exponents in the factorization are positive, raise ValueError otherwise. If all exponents
are positive, return self with all exponents set to 1 and with the unit set to 1.

EXAMPLES:

sage: F = factor(-100); F
-1 * 2^2 * 5^2
sage: F.radical()
2 * 5
sage: factor(1/2).radical()
Traceback (most recent call last):
...
ValueError: All exponents in the factorization must be positive.

radical_value()

Return the product of the prime factors in self.

First, check that all exponents in the factorization are positive, raise ValueError otherwise. If all exponents
are positive, return the product of the prime factors in self. This should be functionally equivalent to
self.radical().value()

EXAMPLES:

sage: F = factor(-100); F
-1 * 2^2 * 5^2
sage: F.radical_value()
10
sage: factor(1/2).radical_value()
Traceback (most recent call last):
...
ValueError: All exponents in the factorization must be positive.

simplify()

Combine adjacent products as much as possible.

sort(key=None)
Sort the factors in this factorization.

INPUT:

• key - (default: None) comparison key

OUTPUT:

98 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

• changes this factorization to be sorted (inplace)

If key is None, we determine the comparison key as follows:

If the prime in the first factor has a dimension method, then we sort based first on dimension then on the
exponent.

If there is no dimension method, we next attempt to sort based on a degree method, in which case, we sort
based first on degree, then exponent to break ties when two factors have the same degree, and if those match
break ties based on the actual prime itself.

Otherwise, we sort according to the prime itself.

EXAMPLES:

We create a factored polynomial:

sage: x = polygen(QQ,'x')
sage: F = factor(x^3 + 1); F
(x + 1) * (x^2 - x + 1)

We sort it by decreasing degree:

sage: F.sort(key=lambda x:(-x[0].degree(), x))
sage: F
(x^2 - x + 1) * (x + 1)

unit()

Return the unit part of this factorization.

EXAMPLES:

We create a polynomial over the real double field and factor it:

sage: x = polygen(RDF, 'x')
sage: F = factor(-2*x^2 - 1); F
(-2.0) * (x^2 + 0.5000000000000001)

Note that the unit part of the factorization is −2.0:

sage: F.unit()
-2.0

sage: F = factor(-2006); F
-1 * 2 * 17 * 59
sage: F.unit()
-1

universe()

Return the parent structure of my factors.

Note: This used to be called base_ring, but the universe of a factorization need not be a ring.

EXAMPLES:

4.2. Factorizations 99

Parents and Elements, Release 9.8

sage: F = factor(2006)
sage: F.universe()
Integer Ring

sage: R.<x,y,z> = FreeAlgebra(QQ, 3)
sage: F = Factorization([(z, 2)], 3)
sage: (F*F^-1).universe()
Free Algebra on 3 generators (x, y, z) over Rational Field

sage: F = ModularSymbols(11,4).factorization()
sage: F.universe()

value()

Return the product of the factors in the factorization, multiplied out.

EXAMPLES:

sage: F = factor(-2006); F
-1 * 2 * 17 * 59
sage: F.value()
-2006

sage: R.<x,y> = FreeAlgebra(ZZ, 2)
sage: F = Factorization([(x,3), (y, 2), (x,1)]); F
x^3 * y^2 * x
sage: F.value()
x^3*y^2*x

4.3 IntegerFactorization objects

class sage.structure.factorization_integer.IntegerFactorization(x, unit=None, cr=False,
sort=True, simplify=True,
unsafe=False)

Bases: Factorization

A lightweight class for an IntegerFactorization object, inheriting from the more general Factorization
class.

In the Factorization class the user has to create a list containing the factorization data, which is then passed
to the actual Factorization object upon initialization.

However, for the typical use of integer factorization via the Integer.factor() method in sage.rings.
integer this is noticeably too much overhead, slowing down the factorization of integers of up to about 40
bits by a factor of around 10. Moreover, the initialization done in the Factorization class is typically unnec-
essary: the caller can guarantee that the list contains pairs of an Integer and an int, as well as that the list is
sorted.

AUTHOR:

• Sebastian Pancratz (2010-01-10)

100 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

4.4 Finite Homogeneous Sequences

A mutable sequence of elements with a common guaranteed category, which can be set immutable.

Sequence derives from list, so has all the functionality of lists and can be used wherever lists are used. When a sequence
is created without explicitly given the common universe of the elements, the constructor coerces the first and second
element to some canonical common parent, if possible, then the second and third, etc. If this is possible, it then coerces
everything into the canonical parent at the end. (Note that canonical coercion is very restrictive.) The sequence then has
a function universe() which returns either the common canonical parent (if the coercion succeeded), or the category
of all objects (Objects()). So if you have a list 𝑣 and type:

sage: v = [1, 2/3, 5]
sage: w = Sequence(v)
sage: w.universe()
Rational Field

then since w.universe() is Q, you’re guaranteed that all elements of 𝑤 are rationals:

sage: v[0].parent()
Integer Ring
sage: w[0].parent()
Rational Field

If you do assignment to 𝑤 this property of being rationals is guaranteed to be preserved:

sage: w[0] = 2
sage: w[0].parent()
Rational Field
sage: w[0] = 'hi'
Traceback (most recent call last):
...
TypeError: unable to convert 'hi' to a rational

However, if you do w = Sequence(v) and the resulting universe is Objects(), the elements are not guaranteed to
have any special parent. This is what should happen, e.g., with finite field elements of different characteristics:

sage: v = Sequence([GF(3)(1), GF(7)(1)])
sage: v.universe()
Category of objects

You can make a list immutable with v.freeze(). Assignment is never again allowed on an immutable list.

Creation of a sequence involves making a copy of the input list, and substantial coercions. It can be greatly sped up by
explicitly specifying the universe of the sequence:

sage: v = Sequence(range(10000), universe=ZZ)

sage.structure.sequence.Sequence(x, universe=None, check=True, immutable=False, cr=False,
cr_str=None, use_sage_types=False)

A mutable list of elements with a common guaranteed universe, which can be set immutable.

A universe is either an object that supports coercion (e.g., a parent), or a category.

INPUT:

• x - a list or tuple instance

4.4. Finite Homogeneous Sequences 101

Parents and Elements, Release 9.8

• universe - (default: None) the universe of elements; if None determined using canonical coercions and
the entire list of elements. If list is empty, is category Objects() of all objects.

• check – (default: True) whether to coerce the elements of x into the universe

• immutable - (default: True) whether or not this sequence is immutable

• cr - (default: False) if True, then print a carriage return after each comma when printing this sequence.

• cr_str - (default: False) if True, then print a carriage return after each comma when calling str() on this
sequence.

• use_sage_types – (default: False) if True, coerce the
built-in Python numerical types int, float, complex to the corresponding Sage types (this makes func-
tions like vector() more flexible)

OUTPUT:

• a sequence

EXAMPLES:

sage: v = Sequence(range(10))
sage: v.universe()
<class 'int'>
sage: v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We can request that the built-in Python numerical types be coerced to Sage objects:

sage: v = Sequence(range(10), use_sage_types=True)
sage: v.universe()
Integer Ring
sage: v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also use seq for “Sequence”, which is identical to using Sequence:

sage: v = seq([1,2,1/1]); v
[1, 2, 1]
sage: v.universe()
Rational Field

Note that assignment coerces if possible,:

sage: v = Sequence(range(10), ZZ)
sage: a = QQ(5)
sage: v[3] = a
sage: parent(v[3])
Integer Ring
sage: parent(a)
Rational Field
sage: v[3] = 2/3
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

Sequences can be used absolutely anywhere lists or tuples can be used:

102 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

sage: isinstance(v, list)
True

Sequence can be immutable, so entries can’t be changed:

sage: v = Sequence([1,2,3], immutable=True)
sage: v.is_immutable()
True
sage: v[0] = 5
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first
involves conversion of the sequence to a tuple, and returning the hash of that.:

sage: v = Sequence(range(10), ZZ, immutable=True)
sage: hash(v) == hash(tuple(range(10)))
True

If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):

sage: list.__setitem__(v, int(1), 2/3) # bad circumvention
sage: v
[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list.__setitem__(v, int(1), int(2)) # not so bad circumvention

You can make a sequence with a new universe from an old sequence.:

sage: w = Sequence(v, QQ)
sage: w
[0, 2, 2, 3, 4, 5, 6, 7, 8, 9]
sage: w.universe()
Rational Field
sage: w[1] = 2/3
sage: w
[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage
objects.

This example illustrates how every element of a list is taken into account when constructing a sequence.:

sage: v = Sequence([1,7,6,GF(5)(3)]); v
[1, 2, 1, 3]
sage: v.universe()
Finite Field of size 5

class sage.structure.sequence.Sequence_generic(x, universe=None, check=True, immutable=False,
cr=False, cr_str=None, use_sage_types=False)

Bases: SageObject, list

A mutable list of elements with a common guaranteed universe, which can be set immutable.

A universe is either an object that supports coercion (e.g., a parent), or a category.

4.4. Finite Homogeneous Sequences 103

Parents and Elements, Release 9.8

INPUT:

• x - a list or tuple instance

• universe - (default: None) the universe of elements; if None determined using canonical coercions and
the entire list of elements. If list is empty, is category Objects() of all objects.

• check – (default: True) whether to coerce the elements of x into the universe

• immutable - (default: True) whether or not this sequence is immutable

• cr - (default: False) if True, then print a carriage return after each comma when printing this sequence.

• use_sage_types – (default: False) if True, coerce the
built-in Python numerical types int, float, complex to the corresponding Sage types (this makes func-
tions like vector() more flexible)

OUTPUT:

• a sequence

EXAMPLES:

sage: v = Sequence(range(10))
sage: v.universe()
<class 'int'>
sage: v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We can request that the built-in Python numerical types be coerced to Sage objects:

sage: v = Sequence(range(10), use_sage_types=True)
sage: v.universe()
Integer Ring
sage: v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also use seq for “Sequence”, which is identical to using Sequence:

sage: v = seq([1,2,1/1]); v
[1, 2, 1]
sage: v.universe()
Rational Field

Note that assignment coerces if possible,

sage: v = Sequence(range(10), ZZ)
sage: a = QQ(5)
sage: v[3] = a
sage: parent(v[3])
Integer Ring
sage: parent(a)
Rational Field
sage: v[3] = 2/3
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

Sequences can be used absolutely anywhere lists or tuples can be used:

104 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

sage: isinstance(v, list)
True

Sequence can be immutable, so entries can’t be changed:

sage: v = Sequence([1,2,3], immutable=True)
sage: v.is_immutable()
True
sage: v[0] = 5
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first
involves conversion of the sequence to a tuple, and returning the hash of that.

sage: v = Sequence(range(10), ZZ, immutable=True)
sage: hash(v) == hash(tuple(range(10)))
True

If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):

sage: list.__setitem__(v, int(1), 2/3) # bad circumvention
sage: v
[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list.__setitem__(v, int(1), int(2)) # not so bad circumvention

You can make a sequence with a new universe from an old sequence.

sage: w = Sequence(v, QQ)
sage: w
[0, 2, 2, 3, 4, 5, 6, 7, 8, 9]
sage: w.universe()
Rational Field
sage: w[1] = 2/3
sage: w
[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage
objects.

This example illustrates how every element of a list is taken into account when constructing a sequence.

sage: v = Sequence([1,7,6,GF(5)(3)]); v
[1, 2, 1, 3]
sage: v.universe()
Finite Field of size 5

append(x)
EXAMPLES:

sage: v = Sequence([1,2,3,4], immutable=True)
sage: v.append(34)
Traceback (most recent call last):

(continues on next page)

4.4. Finite Homogeneous Sequences 105

Parents and Elements, Release 9.8

(continued from previous page)

...
ValueError: object is immutable; please change a copy instead.
sage: v = Sequence([1/3,2,3,4])
sage: v.append(4)
sage: type(v[4])
<class 'sage.rings.rational.Rational'>

extend(iterable)
Extend list by appending elements from the iterable.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.extend(range(4))
sage: B
[1, 2, 3, 0, 1, 2, 3]

insert(index, object)
Insert object before index.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.insert(10, 5)
sage: B
[1, 2, 3, 5]

is_immutable()

Return True if this object is immutable (can not be changed) and False if it is not.

To make this object immutable use set_immutable().

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5
sage: v
[5, 2, 3, 4/5]
sage: v.is_immutable()
False
sage: v.set_immutable()
sage: v.is_immutable()
True

is_mutable()

EXAMPLES:

sage: a = Sequence([1,2/3,-2/5])
sage: a.is_mutable()
True
sage: a[0] = 100
sage: type(a[0])
<class 'sage.rings.rational.Rational'>
sage: a.set_immutable()

(continues on next page)

106 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

(continued from previous page)

sage: a[0] = 50
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: a.is_mutable()
False

pop(index=-1)
Remove and return item at index (default last)

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.pop(1)
2
sage: B
[1, 3]

remove(value)
Remove first occurrence of value

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.remove(2)
sage: B
[1, 3]

reverse()

Reverse the elements of self, in place.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.reverse(); B
[3, 2, 1]

set_immutable()

Make this object immutable, so it can never again be changed.

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5
sage: v
[5, 2, 3, 4/5]
sage: v.set_immutable()
sage: v[3] = 7
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

sort(key=None, reverse=False)
Sort this list IN PLACE.

4.4. Finite Homogeneous Sequences 107

Parents and Elements, Release 9.8

INPUT:

• key - see Python list sort

• reverse - see Python list sort

EXAMPLES:

sage: B = Sequence([3,2,1/5])
sage: B.sort()
sage: B
[1/5, 2, 3]
sage: B.sort(reverse=True); B
[3, 2, 1/5]

universe()

Return the universe of the sequence.

EXAMPLES:

sage: Sequence([1,2/3,-2/5]).universe()
Rational Field
sage: Sequence([1,2/3,'-2/5']).universe()
Category of objects

sage.structure.sequence.seq(x, universe=None, check=True, immutable=False, cr=False, cr_str=None,
use_sage_types=False)

A mutable list of elements with a common guaranteed universe, which can be set immutable.

A universe is either an object that supports coercion (e.g., a parent), or a category.

INPUT:

• x - a list or tuple instance

• universe - (default: None) the universe of elements; if None determined using canonical coercions and
the entire list of elements. If list is empty, is category Objects() of all objects.

• check – (default: True) whether to coerce the elements of x into the universe

• immutable - (default: True) whether or not this sequence is immutable

• cr - (default: False) if True, then print a carriage return after each comma when printing this sequence.

• cr_str - (default: False) if True, then print a carriage return after each comma when calling str() on this
sequence.

• use_sage_types – (default: False) if True, coerce the
built-in Python numerical types int, float, complex to the corresponding Sage types (this makes func-
tions like vector() more flexible)

OUTPUT:

• a sequence

EXAMPLES:

sage: v = Sequence(range(10))
sage: v.universe()
<class 'int'>
sage: v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

108 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

We can request that the built-in Python numerical types be coerced to Sage objects:

sage: v = Sequence(range(10), use_sage_types=True)
sage: v.universe()
Integer Ring
sage: v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also use seq for “Sequence”, which is identical to using Sequence:

sage: v = seq([1,2,1/1]); v
[1, 2, 1]
sage: v.universe()
Rational Field

Note that assignment coerces if possible,:

sage: v = Sequence(range(10), ZZ)
sage: a = QQ(5)
sage: v[3] = a
sage: parent(v[3])
Integer Ring
sage: parent(a)
Rational Field
sage: v[3] = 2/3
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

Sequences can be used absolutely anywhere lists or tuples can be used:

sage: isinstance(v, list)
True

Sequence can be immutable, so entries can’t be changed:

sage: v = Sequence([1,2,3], immutable=True)
sage: v.is_immutable()
True
sage: v[0] = 5
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first
involves conversion of the sequence to a tuple, and returning the hash of that.:

sage: v = Sequence(range(10), ZZ, immutable=True)
sage: hash(v) == hash(tuple(range(10)))
True

If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):

sage: list.__setitem__(v, int(1), 2/3) # bad circumvention
sage: v

(continues on next page)

4.4. Finite Homogeneous Sequences 109

Parents and Elements, Release 9.8

(continued from previous page)

[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list.__setitem__(v, int(1), int(2)) # not so bad circumvention

You can make a sequence with a new universe from an old sequence.:

sage: w = Sequence(v, QQ)
sage: w
[0, 2, 2, 3, 4, 5, 6, 7, 8, 9]
sage: w.universe()
Rational Field
sage: w[1] = 2/3
sage: w
[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage
objects.

This example illustrates how every element of a list is taken into account when constructing a sequence.:

sage: v = Sequence([1,7,6,GF(5)(3)]); v
[1, 2, 1, 3]
sage: v.universe()
Finite Field of size 5

4.5 Set factories

A set factory 𝐹 is a device for constructing some Parent 𝑃 that models subsets of a big set 𝑆. Typically, each such
parent is constructed as the subset of 𝑆 of all elements satisfying a certain collection of constraints 𝑐𝑜𝑛𝑠. In such a
hierarchy of subsets, one needs an easy and flexible control on how elements are constructed. For example, one may
want to construct the elements of 𝑃 in some subclass of the class of the elements of 𝑆. On other occasions, one also
often needs 𝑃 to be a facade parent, whose elements are represented as elements of 𝑆 (see FacadeSets).

The role of a set factory is twofold:

• Manage a database of constructors for the different parents 𝑃 = 𝐹 (𝑐𝑜𝑛𝑠) depending on the various kinds of
constraints 𝑐𝑜𝑛𝑠. Note: currently there is no real support for that. We are gathering use cases before fixing the
interface.

• Ensure that the elements 𝑒 = 𝑃 (...) created by the different parents follows a consistent policy concerning their
class and parent.

Basic usage: constructing parents through a factory

The file sage.structure.set_factories_example shows an example of a SetFactory together with typical im-
plementation. Note that the written code is intentionally kept minimal, many things and in particular several iterators
could be written in a more efficient way.

Consider the set 𝑆 of couples (𝑥, 𝑦) with 𝑥 and 𝑦 in 𝐼 := {0, 1, 2, 3, 4}. We represent an element of 𝑆 as a 2-elements
tuple, wrapped in a class XYPair deriving from ElementWrapper. You can create a XYPair with any Parent:

110 Chapter 4. Mathematical Data Structures

../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#sage.categories.facade_sets.FacadeSets

Parents and Elements, Release 9.8

sage: from sage.structure.set_factories import *
sage: from sage.structure.set_factories_example import *
sage: p = XYPair(Parent(), (0,1)); p
(0, 1)

Now, given (𝑎, 𝑏) ∈ 𝑆 we want to consider the following subsets of 𝑆

𝑆𝑎 := {(𝑥, 𝑦) ∈ 𝑆 | 𝑥 = 𝑎},
𝑆𝑏 := {(𝑥, 𝑦) ∈ 𝑆 | 𝑦 = 𝑏},

𝑆𝑏
𝑎 := {(𝑥, 𝑦) ∈ 𝑆 | 𝑥 = 𝑎, 𝑦 = 𝑏}.

The constraints considered here are admittedly trivial. In a realistic example, there would be much more of them. And
for some sets of constraints no good enumeration algorithms would be known.

In Sage, those sets are constructed by passing the constraints to the factory. We first create the set with no constraints
at all:

sage: XYPairs
Factory for XY pairs
sage: S = XYPairs(); S.list()
[(0, 0), (1, 0), ..., (4, 0), (0, 1), (1, 1), ..., (3, 4), (4, 4)]
sage: S.cardinality()
25

Let us construct 𝑆2, 𝑆3 and 𝑆3
2 :

sage: Sx2 = XYPairs(x=2); Sx2.list()
[(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)]
sage: Sy3 = XYPairs(y=3); Sy3.list()
[(0, 3), (1, 3), (2, 3), (3, 3), (4, 3)]
sage: S23 = XYPairs(x=2, y=3); S23.list()
[(2, 3)]

Set factories provide an alternative way to build subsets of an already constructed set: each set constructed by a factory
has a method subset() which accept new constraints. Sets constructed by the factory or the subset() methods are
identical:

sage: Sx2s = S.subset(x=2); Sx2 is Sx2s
True
sage: Sx2.subset(y=3) is S23
True

It is not possible to change an already given constraint:

sage: S23.subset(y=5)
Traceback (most recent call last):
...
ValueError: Duplicate value for constraints 'y': was 3 now 5

4.5. Set factories 111

Parents and Elements, Release 9.8

Constructing custom elements: policies

We now come to the point of factories: constructing custom elements. The writer of XYPairs() decided that, by
default, the parents Sx2, Sy3 and S23 are facade for parent S. This means that each element constructed by those
subsets behaves as if they where directly constructed by S itself:

sage: Sx2.an_element().parent()
AllPairs
sage: el = Sx2.an_element()
sage: el.parent() is S
True
sage: type(el) is S.element_class
True

This is not always desirable. The device which decides how to construct an element is called a policy (see
SetFactoryPolicy). Each factory should have a default policy. Here is the policy of XYPairs():

sage: XYPairs._default_policy
Set factory policy for <class 'sage.structure.set_factories_example.XYPair'> with parent␣
→˓AllPairs[=Factory for XY pairs(())]

This means that with the current policy, the parent builds elements with class XYPair and parent AllPairs which is
itself constructed by calling the factory XYPairs() with constraints (). There is a lot of flexibility to change that. We
now illustrate how to make a few different choices.

1 - In a first use case, we want to add some methods to the constructed elements. As illustration, we add here a new
method sum which returns 𝑥+ 𝑦. We therefore create a new class for the elements which inherits from XYPair:

sage: class NewXYPair(XYPair):
....: def sum(self):
....: return sum(self.value)

Here is an instance of this class (with a dummy parent):

sage: el = NewXYPair(Parent(), (2,3))
sage: el.sum()
5

We now want to have subsets generating those new elements while still having a single real parent (the one with no
constraint) for each element. The corresponding policy is called TopMostParentPolicy. It takes three parameters:

• the factory;

• the parameters for void constraint;

• the class used for elements.

Calling the factory with this policy returns a new set which builds its elements with the new policy:

sage: new_policy = TopMostParentPolicy(XYPairs, (), NewXYPair)
sage: NewS = XYPairs(policy=new_policy)
sage: el = NewS.an_element(); el
(0, 0)
sage: el.sum()
0
sage: el.parent() is NewS
True

(continues on next page)

112 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

(continued from previous page)

sage: isinstance(el, NewXYPair)
True

Newly constructed subsets inherit the policy:

sage: NewS2 = NewS.subset(x=2)
sage: el2 = NewS2.an_element(); el2
(2, 0)
sage: el2.sum()
2
sage: el2.parent() is NewS
True

2 - In a second use case, we want the elements to remember which parent created them. The corresponding policy is
called SelfParentPolicy. It takes only two parameters:

• the factory;

• the class used for elements.

Here is an example:

sage: selfpolicy = SelfParentPolicy(XYPairs, NewXYPair)
sage: SelfS = XYPairs(policy=selfpolicy)
sage: el = SelfS.an_element()
sage: el.parent() is SelfS
True

Now all subsets are the parent of the elements that they create:

sage: SelfS2 = SelfS.subset(x=2)
sage: el2 = SelfS2.an_element()
sage: el2.parent() is NewS
False
sage: el2.parent() is SelfS2
True

3 - Finally, a common use case is to construct simple python object which are not Sage sage.structure.Element.
As an example, we show how to build a parent TupleS which construct pairs as tuple. The corresponding policy is
called BareFunctionPolicy. It takes two parameters:

• the factory;

• the function called to construct the elements.

Here is how to do it:

sage: cons = lambda t, check: tuple(t) # ignore the check parameter
sage: tuplepolicy = BareFunctionPolicy(XYPairs, cons)
sage: P = XYPairs(x=2, policy=tuplepolicy)
sage: P.list()
[(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)]
sage: el = P.an_element()
sage: type(el)
<... 'tuple'>

Here are the currently implemented policies:

4.5. Set factories 113

Parents and Elements, Release 9.8

• FacadeParentPolicy: reuse an existing parent together with its element_class

• TopMostParentPolicy: use a parent created by the factory itself and provide a class Element for it. In this
case, we need to specify the set of constraints which build this parent taking the ownership of all elements and
the class which will be used for the Element.

• SelfParentPolicy: provide systematically Element and element_class and ensure that the parent is self.

• BareFunctionPolicy: instead of calling a class constructor element are passed to a function provided to the
policy.

Todo: Generalize TopMostParentPolicy to be able to have several topmost parents.

Technicalities: how policies inform parents

Parents built from factories should inherit from ParentWithSetFactory. This class provide a few methods re-
lated to factories and policies. The __init__ method of ParentWithSetFactory must be provided with the set
of constraints and the policy. A parent built from a factory must create elements through a call to the method
_element_constructor_. The current way in which policies inform parents how to builds their elements is set
by a few attributes. So the class must accept attribute adding. The precise details of which attributes are set may be
subject to change in the future.

How to write a set factory

See also:

set_factories_example for an example of a factory.

Here are the specifications:

A parent built from a factory should

• inherit from ParentWithSetFactory. It should accept a policy argument and pass it verbatim to the
__init__ method of ParentWithSetFactory together with the set of constraints;

• create its elements through calls to the method _element_constructor_;

• define a method ParentWithSetFactory.check_element which checks if a built element indeed belongs to
it. The method should accept an extra keyword parameter called check specifying which level of check should
be performed. It will only be called when bool(check) evaluates to True.

The constructor of the elements of a parent from a factory should:

• receive the parent as first mandatory argument;

• accept an extra optional keyword parameter called check which is meant to tell if the input must be checked or
not. The precise meaning of check is intentionally left vague. The only intent is that if bool(check) evaluates
to False, no check is performed at all.

A factory should

• define a method __call__ which is responsible for calling the appropriate parent constructor given the con-
straints;

• define a method overloading SetFactory.add_constraints() which is responsible of computing the union
of two sets of constraints;

• optionally define a method or an attribute _default_policy passed to the ParentWithSetFactory if no
policy is given to the factory.

114 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

Todo: There is currently no support for dealing with sets of constraints. The set factory and the parents must cooperate
to consistently handle them. More support, together with a generic mechanism to select the appropriate parent class
from the constraints, will be added as soon as we have gathered sufficiently enough use-cases.

AUTHORS:

• Florent Hivert (2011-2012): initial revision

class sage.structure.set_factories.BareFunctionPolicy(factory, constructor)
Bases: SetFactoryPolicy

Policy where element are constructed using a bare function.

INPUT:

• factory – an instance of SetFactory

• constructor – a function

Given a factory F and a function c, returns a policy for parent P creating element using the function f.

EXAMPLES:

sage: from sage.structure.set_factories import BareFunctionPolicy
sage: from sage.structure.set_factories_example import XYPairs
sage: cons = lambda t, check: tuple(t) # ignore the check parameter
sage: tuplepolicy = BareFunctionPolicy(XYPairs, cons)
sage: P = XYPairs(x=2, policy=tuplepolicy)
sage: el = P.an_element()
sage: type(el)
<... 'tuple'>

element_constructor_attributes(constraints)
Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes().

INPUT:

• constraints – a bunch of constraints

class sage.structure.set_factories.FacadeParentPolicy(factory, parent)
Bases: SetFactoryPolicy

Policy for facade parent.

INPUT:

• factory – an instance of SetFactory

• parent – an instance of Parent

Given a factory F and a class E, returns a policy for parent P creating elements as if they were created by parent.

EXAMPLES:

sage: from sage.structure.set_factories import SelfParentPolicy, FacadeParentPolicy
sage: from sage.structure.set_factories_example import XYPairs, XYPair

We create a custom standard parent P:

4.5. Set factories 115

Parents and Elements, Release 9.8

sage: selfpolicy = SelfParentPolicy(XYPairs, XYPair)
sage: P = XYPairs(x=2, policy=selfpolicy)
sage: pol = FacadeParentPolicy(XYPairs, P)
sage: P2 = XYPairs(x=2, y=3, policy=pol)
sage: el = P2.an_element()
sage: el.parent() is P
True
sage: type(el) is P.element_class
True

If parent is itself a facade parent, then transitivity is correctly applied:

sage: P = XYPairs()
sage: P2 = XYPairs(x=2)
sage: P2.category()
Category of facade finite enumerated sets
sage: pol = FacadeParentPolicy(XYPairs, P)
sage: P23 = XYPairs(x=2, y=3, policy=pol)
sage: el = P2.an_element()
sage: el.parent() is P
True
sage: type(el) is P.element_class
True

element_constructor_attributes(constraints)
Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes().

INPUT:

• constraints – a bunch of constraints

class sage.structure.set_factories.ParentWithSetFactory(constraints, policy, category=None)
Bases: Parent

Abstract class for parent belonging to a set factory.

INPUT:

• constraints – a set of constraints

• policy – the policy for element construction

• category – the category of the parent (default to None)

Depending on the constraints and the policy, initialize the parent in a proper category to set up element construc-
tion.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, PairsX_
sage: P = PairsX_(3, XYPairs._default_policy)
sage: P is XYPairs(3)
True
sage: P.category()
Category of facade finite enumerated sets

116 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

check_element(x, check)
Check that x verifies the constraints of self.

INPUT:

• x – an instance of self.element_class.

• check – the level of checking to be performed (usually a boolean).

This method may assume that xwas properly constructed by self or a possible super-set of self for which
self is a facade. It should return nothing if x verifies the constraints and raise a ValueError explaining
which constraints x fails otherwise.

The method should accept an extra parameter check specifying which level of check should be performed.
It will only be called when bool(check) evaluates to True.

Todo: Should we always call check element and let it decide which check has to be performed ?

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: S = XYPairs()
sage: el = S((2,3))
sage: S.check_element(el, True)
sage: XYPairs(x=2).check_element(el, True)
sage: XYPairs(x=3).check_element(el, True)
Traceback (most recent call last):
...
ValueError: Wrong first coordinate
sage: XYPairs(y=4).check_element(el, True)
Traceback (most recent call last):
...
ValueError: Wrong second coordinate

constraints()

Return the constraints defining self.

Note: Currently there is no specification on how constraints are passed as arguments.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs().constraints()
()
sage: XYPairs(x=3).constraints()
(3, None)
sage: XYPairs(y=2).constraints()
(None, 2)

facade_policy()

Return the policy for parent facade for self.

EXAMPLES:

4.5. Set factories 117

Parents and Elements, Release 9.8

sage: from sage.structure.set_factories import SelfParentPolicy
sage: from sage.structure.set_factories_example import XYPairs, XYPair

We create a custom standard parent P:

sage: selfpolicy = SelfParentPolicy(XYPairs, XYPair)
sage: P = XYPairs(x=2, policy=selfpolicy)
sage: P.facade_policy()
Set factory policy for facade parent {(2, b) | b in range(5)}

Now passing P.facade_policy() creates parent which are facade for P:

sage: P3 = XYPairs(x=2, y=3, policy=P.facade_policy())
sage: P3.facade_for() == (P,)
True
sage: el = P3.an_element()
sage: el.parent() is P
True

factory()

Return the factory which built self.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs().factory() is XYPairs
True
sage: XYPairs(x=3).factory() is XYPairs
True

policy()

Return the policy used when self was created.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs().policy()
Set factory policy for <class 'sage.structure.set_factories_example.XYPair'>␣
→˓with parent AllPairs[=Factory for XY pairs(())]
sage: XYPairs(x=3).policy()
Set factory policy for <class 'sage.structure.set_factories_example.XYPair'>␣
→˓with parent AllPairs[=Factory for XY pairs(())]

subset(*args, **options)
Return a subset of self by adding more constraints.

Note: Currently there is no specification on how constraints are passed as arguments.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: S = XYPairs()
sage: S3 = S.subset(x=3)

(continues on next page)

118 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

(continued from previous page)

sage: S3.list()
[(3, 0), (3, 1), (3, 2), (3, 3), (3, 4)]

class sage.structure.set_factories.SelfParentPolicy(factory, Element)
Bases: SetFactoryPolicy

Policy where each parent is a standard parent.

INPUT:

• factory – an instance of SetFactory

• Element – a subclass of Element

Given a factory F and a class E, returns a policy for parent P creating elements in class E and parent P itself.

EXAMPLES:

sage: from sage.structure.set_factories import SelfParentPolicy
sage: from sage.structure.set_factories_example import XYPairs, XYPair, Pairs_Y
sage: pol = SelfParentPolicy(XYPairs, XYPair)
sage: S = Pairs_Y(3, pol)
sage: el = S.an_element()
sage: el.parent() is S
True

sage: class Foo(XYPair): pass
sage: pol = SelfParentPolicy(XYPairs, Foo)
sage: S = Pairs_Y(3, pol)
sage: el = S.an_element()
sage: isinstance(el, Foo)
True

element_constructor_attributes(constraints)
Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes()

INPUT:

• constraints – a bunch of constraints

class sage.structure.set_factories.SetFactory

Bases: UniqueRepresentation, SageObject

This class is currently just a stub that we will be using to add more structures on factories.

add_constraints(cons, *args, **opts)
Add constraints to the set of constraints 𝑐𝑜𝑛𝑠.

Should return a set of constraints.

Note: Currently there is no specification on how constraints are passed as arguments.

EXAMPLES:

4.5. Set factories 119

Parents and Elements, Release 9.8

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs.add_constraints((3,),((None, 2), {}))
(3, 2)

sage: XYPairs.add_constraints((3,),((None, None), {'y': 2}))
(3, 2)

class sage.structure.set_factories.SetFactoryPolicy(factory)
Bases: UniqueRepresentation, SageObject

Abstract base class for policies.

A policy is a device which is passed to a parent inheriting from ParentWithSetFactory in order to set-up the
element construction framework.

INPUT:

• factory – a SetFactory

Warning: This class is a base class for policies, one should not try to create instances.

element_constructor_attributes(constraints)
Element constructor attributes.

INPUT:

• constraints – a bunch of constraints

Should return the attributes that are prerequisite for element construction. This is co-
ordinated with ParentWithSetFactory._element_constructor_(). Currently two
standard attributes are provided in facade_element_constructor_attributes() and
self_element_constructor_attributes(). You should return the one needed depending on
the given constraints.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: pol = XYPairs._default_policy
sage: pol.element_constructor_attributes(())
{'Element': <class 'sage.structure.set_factories_example.XYPair'>,
'_parent_for': 'self'}
sage: pol.element_constructor_attributes((1))
{'_facade_for': AllPairs,
'_parent_for': AllPairs,
'element_class': <class 'sage.structure.set_factories_example.AllPairs_with_
→˓category.element_class'>}

facade_element_constructor_attributes(parent)
Element Constructor Attributes for facade parent.

The list of attributes which must be set during the init of a facade parent with factory.

INPUT:

• parent – the actual parent for the elements

EXAMPLES:

120 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 9.8

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: pol = XYPairs._default_policy
sage: pol.facade_element_constructor_attributes(XYPairs())
{'_facade_for': AllPairs,
'_parent_for': AllPairs,
'element_class': <class 'sage.structure.set_factories_example.AllPairs_with_
→˓category.element_class'>}

factory()

Return the factory for self.

EXAMPLES:

sage: from sage.structure.set_factories import SetFactoryPolicy,␣
→˓SelfParentPolicy
sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: XYPairs._default_policy.factory()
Factory for XY pairs
sage: XYPairs._default_policy.factory() is XYPairs
True

self_element_constructor_attributes(Element)
Element Constructor Attributes for non facade parent.

The list of attributes which must be set during the init of a non facade parent with factory.

INPUT:

• Element – the class used for the elements

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: pol = XYPairs._default_policy
sage: pol.self_element_constructor_attributes(XYPair)
{'Element': <class 'sage.structure.set_factories_example.XYPair'>,
'_parent_for': 'self'}

class sage.structure.set_factories.TopMostParentPolicy(factory, top_constraints, Element)
Bases: SetFactoryPolicy

Policy where the parent of the elements is the topmost parent.

INPUT:

• factory – an instance of SetFactory

• top_constraints – the empty set of constraints.

• Element – a subclass of Element

Given a factory F and a class E, returns a policy for parent P creating element in class E and parent
factory(*top_constraints, policy).

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: P = XYPairs(); P.policy()

(continues on next page)

4.5. Set factories 121

Parents and Elements, Release 9.8

(continued from previous page)

Set factory policy for <class 'sage.structure.set_factories_example.XYPair'> with␣
→˓parent AllPairs[=Factory for XY pairs(())]

element_constructor_attributes(constraints)
Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes().

INPUT:

• constraints – a bunch of constraints

4.6 An example of set factory

The goal of this module is to exemplify the use of set factories. Note that the code is intentionally kept minimal; many
things and in particular several iterators could be written in a more efficient way.

See also:

set_factories for an introduction to set factories, their specifications, and examples of their use and implementation
based on this module.

We describe here a factory used to construct the set 𝑆 of couples (𝑥, 𝑦) with 𝑥 and 𝑦 in 𝐼 := {0, 1, 2, 3, 4}, together
with the following subsets, where (𝑎, 𝑏) ∈ 𝑆

𝑆𝑎 := {(𝑥, 𝑦) ∈ 𝑆 | 𝑥 = 𝑎},
𝑆𝑏 := {(𝑥, 𝑦) ∈ 𝑆 | 𝑦 = 𝑏},

𝑆𝑏
𝑎 := {(𝑥, 𝑦) ∈ 𝑆 | 𝑥 = 𝑎, 𝑦 = 𝑏}.

class sage.structure.set_factories_example.AllPairs(policy)
Bases: ParentWithSetFactory, DisjointUnionEnumeratedSets

This parent shows how one can use set factories together with DisjointUnionEnumeratedSets.

It is constructed as the disjoint union (DisjointUnionEnumeratedSets) of Pairs_Y parents:

𝑆 :=
⋃︁

𝑖=0,1,...,4

𝑆𝑦

Warning: When writing a parent P as a disjoint union of a family of parents P_i, the parents P_i must be
constructed as facade parents for P. As a consequence, it should be passed P.facade_policy() as policy
argument. See the source code of pairs_y() for an example.

check_element(el, check)

pairs_y(letter)
Construct the parent for the disjoint union

Construct a parent in Pairs_Y as a facade parent for self.

This is an internal function which should be hidden from the user (typically under the name _pairs_y.
We put it here for documentation.

122 Chapter 4. Mathematical Data Structures

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Parents and Elements, Release 9.8

class sage.structure.set_factories_example.PairsX_(x, policy)
Bases: ParentWithSetFactory, UniqueRepresentation

The set of pairs (𝑥, 0), (𝑥, 1), ..., (𝑥, 4).

an_element()

check_element(el, check)

class sage.structure.set_factories_example.Pairs_Y(y, policy)
Bases: ParentWithSetFactory, DisjointUnionEnumeratedSets

The set of pairs (0, 𝑦), (1, 𝑦), ..., (4, 𝑦).

It is constructed as the disjoint union (DisjointUnionEnumeratedSets) of SingletonPair parents:

𝑆𝑦 :=
⋃︁

𝑖=0,1,...,4

𝑆𝑦
𝑖

See also:

AllPairs for how to properly construct DisjointUnionEnumeratedSets using ParentWithSetFactory.

an_element()

check_element(el, check)

single_pair(letter)
Construct the singleton pair parent

Construct a singleton pair for (self.y, letter) as a facade parent for self.

See also:

AllPairs for how to properly construct DisjointUnionEnumeratedSets using
ParentWithSetFactory.

class sage.structure.set_factories_example.SingletonPair(x, y, policy)
Bases: ParentWithSetFactory, UniqueRepresentation

check_element(el, check)

class sage.structure.set_factories_example.XYPair(parent, value, check=True)
Bases: ElementWrapper

A class for Elements (𝑥, 𝑦) with 𝑥 and 𝑦 in {0, 1, 2, 3, 4}.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPair
sage: p = XYPair(Parent(), (0,1)); p
(0, 1)
sage: p = XYPair(Parent(), (0,8))
Traceback (most recent call last):
...
ValueError: numbers must be in range(5)

4.6. An example of set factory 123

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Parents and Elements, Release 9.8

sage.structure.set_factories_example.XYPairs(x=None, y=None, policy=None)
Construct the subset from constraints.

Consider the set 𝑆 of couples (𝑥, 𝑦) with 𝑥 and 𝑦 in 𝐼 := {0, 1, 2, 3, 4}. Returns the subsets of element of 𝑆
satisfying some constraints.

INPUT:

• x=a – where a is an integer (default to None).

• y=b – where b is an integer (default to None).

• policy – the policy passed to the created set.

See also:

set_factories.SetFactoryPolicy

EXAMPLES:

Let us first create the set factory:

sage: from sage.structure.set_factories_example import XYPairsFactory
sage: XYPairs = XYPairsFactory()

One can then use the set factory to construct a set:

sage: P = XYPairs(); P.list()
[(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (0,
→˓ 2), (1, 2), (2, 2), (3, 2), (4, 2), (0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (0,␣
→˓4), (1, 4), (2, 4), (3, 4), (4, 4)]

Note: This function is actually the __call__ method of XYPairsFactory.

class sage.structure.set_factories_example.XYPairsFactory

Bases: SetFactory

An example of set factory, for sets of pairs of integers.

See also:

set_factories for an introduction to set factories.

add_constraints(cons, args_opts)
Add constraints to the set cons as per SetFactory.add_constraints.

This is a crude implementation for the sake of the demonstration which should not be taken as an example.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs.add_constraints((3,None), ((2,), {}))
Traceback (most recent call last):
...
ValueError: Duplicate value for constraints 'x': was 3 now 2
sage: XYPairs.add_constraints((), ((2,), {}))
(2, None)
sage: XYPairs.add_constraints((), ((2,), {'y':3}))
(2, 3)

124 Chapter 4. Mathematical Data Structures

CHAPTER

FIVE

USE OF HEURISTIC AND PROBABILISTIC ALGORITHMS

5.1 Global proof preferences

class sage.structure.proof.proof.WithProof(subsystem, t)
Bases: object

Use WithProof to temporarily set the value of one of the proof systems for a block of code, with a guarantee that
it will be set back to how it was before after the block is done, even if there is an error.

EXAMPLES:

sage: proof.arithmetic(True)
sage: with proof.WithProof('arithmetic',False): # this would hang "forever" if␣
→˓attempted with proof=True
....: print((10^1000 + 453).is_prime())
....: print(1/0)
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero
sage: proof.arithmetic()
True

sage.structure.proof.proof.get_flag(t=None, subsystem=None)
Used for easily determining the correct proof flag to use.

EXAMPLES:

sage: from sage.structure.proof.proof import get_flag
sage: get_flag(False)
False
sage: get_flag(True)
True
sage: get_flag()
True
sage: proof.all(False)
sage: get_flag()
False

125

Parents and Elements, Release 9.8

5.2 Whether or not computations are provably correct by default

126 Chapter 5. Use of Heuristic and Probabilistic Algorithms

CHAPTER

SIX

UTILITIES

6.1 Cython-like rich comparisons in Python

With “rich comparisons”, we mean the Python 3 comparisons which are usually implemented in Python using methods
like __eq__ and __lt__. Internally in Python, there is only one rich comparison slot tp_richcompare. The actual
operator is passed as an integer constant (defined in this module as op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE).

Cython exposes rich comparisons in cdef classes as the __richcmp__ special method. The Sage coercion model also
supports rich comparisons this way: for two instances x and y of Element, x._richcmp_(y, op) is called when the
user does something like x <= y (possibly after coercion if x and y have different parents).

Various helper functions exist to make it easier to implement rich comparison: the most important one is the richcmp()
function. This is analogous to the Python 2 function cmp() but implements rich comparison, with the comparison
operator (e.g. op_GE) as third argument. There is also richcmp_not_equal() which is like richcmp() but it is
optimized assuming that the compared objects are not equal.

The functions rich_to_bool() and rich_to_bool_sgn() can be used to convert results of cmp() (i.e. -1, 0 or 1)
to a boolean True/False for rich comparisons.

AUTHORS:

• Jeroen Demeyer

sage.structure.richcmp.revop(op)
Return the reverse operation of op.

For example, <= becomes >=, etc.

EXAMPLES:

sage: from sage.structure.richcmp import revop
sage: [revop(i) for i in range(6)]
[4, 5, 2, 3, 0, 1]

sage.structure.richcmp.rich_to_bool(op, c)
Return the corresponding True or False value for a rich comparison, given the result of an old-style comparison.

INPUT:

• op – a rich comparison operation (e.g. Py_EQ)

• c – the result of an old-style comparison: -1, 0 or 1.

OUTPUT: 1 or 0 (corresponding to True and False)

See also:

rich_to_bool_sgn() if c could be outside the [-1, 0, 1] range.

127

Parents and Elements, Release 9.8

EXAMPLES:

sage: from sage.structure.richcmp import (rich_to_bool,
....: op_EQ, op_NE, op_LT, op_LE, op_GT, op_GE)
sage: for op in (op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE):
....: for c in (-1,0,1):
....: print(rich_to_bool(op, c))
True False False
True True False
False True False
True False True
False False True
False True True

Indirect tests using integers:

sage: 0 < 5, 5 < 5, 5 < -8
(True, False, False)
sage: 0 <= 5, 5 <= 5, 5 <= -8
(True, True, False)
sage: 0 >= 5, 5 >= 5, 5 >= -8
(False, True, True)
sage: 0 > 5, 5 > 5, 5 > -8
(False, False, True)
sage: 0 == 5, 5 == 5, 5 == -8
(False, True, False)
sage: 0 != 5, 5 != 5, 5 != -8
(True, False, True)

sage.structure.richcmp.rich_to_bool_sgn(op, c)
Same as rich_to_bool, but allow any 𝑐 < 0 and 𝑐 > 0 instead of only −1 and 1.

Note: This is in particular needed for mpz_cmp().

sage.structure.richcmp.richcmp(x, y, op)
Return the result of the rich comparison of x and y with operator op.

INPUT:

• x, y – arbitrary Python objects

• op – comparison operator (one of op_LT`, ``op_LE, op_EQ, op_NE, op_GT, op_GE).

EXAMPLES:

sage: from sage.structure.richcmp import *
sage: richcmp(3, 4, op_LT)
True
sage: richcmp(x, x^2, op_EQ) # optional - sage.symbolic
x == x^2

The two examples above are completely equivalent to 3 < 4 and x == x^2. For this reason, it only makes sense
in practice to call richcmp with a non-constant value for op.

We can write a custom Element class which shows a more realistic example of how to use this:

128 Chapter 6. Utilities

Parents and Elements, Release 9.8

sage: from sage.structure.element import Element
sage: class MyElement(Element):
....: def __init__(self, parent, value):
....: Element.__init__(self, parent)
....: self.v = value
....: def _richcmp_(self, other, op):
....: return richcmp(self.v, other.v, op)
sage: P = Parent()
sage: x = MyElement(P, 3)
sage: y = MyElement(P, 3)
sage: x < y
False
sage: x == y
True
sage: x > y
False

sage.structure.richcmp.richcmp_by_eq_and_lt(eq_attr, lt_attr)
Create a rich comparison method for a partial order, where the order is specified by methods called eq_attr and
lt_attr.

INPUT when creating the method:

• eq_attr – attribute name for equality comparison

• lt_attr – attribute name for less-than comparison

INPUT when calling the method:

• self – objects having methods eq_attr and lt_attr

• other – arbitrary object. If it does have eq_attr and lt_attrmethods, these are used for the comparison.
Otherwise, the comparison is undefined.

• op – a rich comparison operation (e.g. op_EQ)

Note: For efficiency, identical objects (when self is other) always compare equal.

Note: The order is partial, so x <= y is implemented as x == y or x < y. It is not required that this is the
negation of y < x.

Note: This function is intended to be used as a method _richcmp_ in a class derived from sage.structure.
element.Element or a method __richcmp__ in a class using richcmp_method().

EXAMPLES:

sage: from sage.structure.richcmp import richcmp_by_eq_and_lt
sage: from sage.structure.element import Element

sage: class C(Element):
....: def __init__(self, a, b):
....: super().__init__(ZZ)

(continues on next page)

6.1. Cython-like rich comparisons in Python 129

Parents and Elements, Release 9.8

(continued from previous page)

....: self.a = a

....: self.b = b

....: _richcmp_ = richcmp_by_eq_and_lt("eq", "lt")

....: def eq(self, other):

....: return self.a == other.a and self.b == other.b

....: def lt(self, other):

....: return self.a < other.a and self.b < other.b

sage: x = C(1,2); y = C(2,1); z = C(3,3)

sage: x == x, x <= x, x == C(1,2), x <= C(1,2) # indirect doctest
(True, True, True, True)
sage: y == z, y != z
(False, True)

sage: x < y, y < x, x > y, y > x, x <= y, y <= x, x >= y, y >= x
(False, False, False, False, False, False, False, False)
sage: y < z, z < y, y > z, z > y, y <= z, z <= y, y >= z, z >= y
(True, False, False, True, True, False, False, True)
sage: z < x, x < z, z > x, x > z, z <= x, x <= z, z >= x, x >= z
(False, True, True, False, False, True, True, False)

A simple example using richcmp_method:

sage: from sage.structure.richcmp import richcmp_method, richcmp_by_eq_and_lt
sage: @richcmp_method
....: class C():
....: __richcmp__ = richcmp_by_eq_and_lt("_eq", "_lt")
....: def _eq(self, other):
....: return True
....: def _lt(self, other):
....: return True
sage: a = C(); b = C()
sage: a == b
True
sage: a > b # Calls b._lt(a)
True
sage: class X(): pass
sage: x = X()
sage: a == x # Does not call a._eq(x) because x does not have _eq
False

sage.structure.richcmp.richcmp_item(x, y, op)
This function is meant to implement lexicographic rich comparison of sequences (lists, vectors, polynomials,
. . .). The inputs x and y are corresponding items of such lists which should compared.

INPUT:

• x, y – arbitrary Python objects. Typically, these are X[i] and Y[i] for sequences X and Y.

• op – comparison operator (one of op_LT`, ``op_LE, op_EQ, op_NE, op_GT, op_GE)

OUTPUT:

Assuming that x = X[i] and y = Y[i]:

130 Chapter 6. Utilities

Parents and Elements, Release 9.8

• if the comparison X {op} Y (where op is the given operation) could not be decided yet (i.e. we should
compare the next items in the list): return NotImplemented

• otherwise, if the comparison X {op} Y could be decided: return x {op} y, which should then also be the
result for X {op} Y.

Note: Since x {op} y cannot return NotImplemented, the two cases above are mutually exclusive.

The semantics of the comparison is different from Python lists or tuples in the case that the order is not total.
Assume that A and B are lists whose rich comparison is implemented using richcmp_item (as in EXAMPLES
below). Then

• A == B iff A[i] == B[i] for all indices 𝑖.

• A != B iff A[i] != B[i] for some index 𝑖.

• A < B iff A[i] < B[i] for some index 𝑖 and for all 𝑗 < 𝑖, A[j] <= B[j].

• A <= B iff A < B or A[i] <= B[i] for all 𝑖.

• A > B iff A[i] > B[i] for some index 𝑖 and for all 𝑗 < 𝑖, A[j] >= B[j].

• A >= B iff A > B or A[i] >= B[i] for all 𝑖.

See below for a detailed description of the exact semantics of richcmp_item in general.

EXAMPLES:

sage: from sage.structure.richcmp import *
sage: @richcmp_method
....: class Listcmp(list):
....: def __richcmp__(self, other, op):
....: for i in range(len(self)): # Assume equal lengths
....: res = richcmp_item(self[i], other[i], op)
....: if res is not NotImplemented:
....: return res
....: return rich_to_bool(op, 0) # Consider the lists to be equal
sage: a = Listcmp([0, 1, 3])
sage: b = Listcmp([0, 2, 1])
sage: a == a
True
sage: a != a
False
sage: a < a
False
sage: a <= a
True
sage: a > a
False
sage: a >= a
True
sage: a == b, b == a
(False, False)
sage: a != b, b != a
(True, True)
sage: a < b, b > a
(True, True)

(continues on next page)

6.1. Cython-like rich comparisons in Python 131

Parents and Elements, Release 9.8

(continued from previous page)

sage: a <= b, b >= a
(True, True)
sage: a > b, b < a
(False, False)
sage: a >= b, b <= a
(False, False)

The above tests used a list of integers, where the result of comparisons are the same as for Python lists.

If we want to see the difference, we need more general entries in the list. The comparison rules are made to be
consistent with setwise operations. If 𝐴 and 𝐵 are sets, we define A {op} B to be true if a {op} B is true for
every 𝑎 in 𝐴 and 𝑏 in 𝐵. Interval comparisons are a special case of this. For lists of non-empty(!) sets, we want
that [A1, A2] {op} [B1, B2] is true if and only if [a1, a2] {op} [b1, b2] is true for all elements. We
verify this:

sage: @richcmp_method
....: class Setcmp(tuple):
....: def __richcmp__(self, other, op):
....: return all(richcmp(x, y, op) for x in self for y in other)
sage: sym = {op_EQ: "==", op_NE: "!=", op_LT: "<", op_GT: ">", op_LE: "<=", op_GE:
→˓">="}
sage: for A1 in Set(range(4)).subsets(): # long time
....: if not A1: continue
....: for B1 in Set(range(4)).subsets():
....: if not B1: continue
....: for A2 in Set(range(4)).subsets():
....: if not A2: continue
....: for B2 in Set(range(3)).subsets():
....: if not B2: continue
....: L1 = Listcmp([Setcmp(A1), Setcmp(A2)])
....: L2 = Listcmp([Setcmp(B1), Setcmp(B2)])
....: for op in range(6):
....: reslist = richcmp(L1, L2, op)
....: reselt = all(richcmp([a1, a2], [b1, b2], op) for a1 in A1␣
→˓for a2 in A2 for b1 in B1 for b2 in B2)
....: assert reslist is reselt

EXACT SEMANTICS:

Above, we only described how richcmp_item behaves when it is used to compare sequences. Here, we specify
the exact semantics. First of all, recall that the result of richcmp_item(x, y, op) is either NotImplemented
or x {op} y.

• if op is ==: return NotImplemented if x == y. If x == y is false, then return x == y.

• if op is !=: return NotImplemented if not x != y. If x != y is true, then return x != y.

• if op is <: return NotImplemented if x == y. If x < y or not x <= y, return x < y. Otherwise (if both
x == y and x < y are false but x <= y is true), return NotImplemented.

• if op is <=: return NotImplemented if x == y. If x < y or not x <= y, return x <= y. Otherwise (if
both x == y and x < y are false but x <= y is true), return NotImplemented.

• the > and >= operators are analogous to < and <=.

132 Chapter 6. Utilities

Parents and Elements, Release 9.8

sage.structure.richcmp.richcmp_method(cls)
Class decorator to implement rich comparison using the special method __richcmp__ (analogous to Cython)
instead of the 6 methods __eq__ and friends.

This changes the class in-place and returns the given class.

EXAMPLES:

sage: from sage.structure.richcmp import *
sage: sym = {op_EQ: "==", op_NE: "!=", op_LT: "<", op_GT: ">", op_LE: "<=", op_GE:
→˓">="}
sage: @richcmp_method
....: class A(str):
....: def __richcmp__(self, other, op):
....: print("%s %s %s" % (self, sym[op], other))
sage: A("left") < A("right")
left < right
sage: object() <= A("right")
right >= <object object at ...>

We can call this comparison with the usual Python special methods:

sage: x = A("left"); y = A("right")
sage: x.__eq__(y)
left == right
sage: A.__eq__(x, y)
left == right

Everything still works in subclasses:

sage: class B(A):
....: pass
sage: x = B("left"); y = B("right")
sage: x != y
left != right
sage: x.__ne__(y)
left != right
sage: B.__ne__(x, y)
left != right

We can override __richcmp__ with standard Python rich comparison methods and conversely:

sage: class C(A):
....: def __ne__(self, other):
....: return False
sage: C("left") != C("right")
False
sage: C("left") == C("right") # Calls __eq__ from class A
left == right

sage: class Base():
....: def __eq__(self, other):
....: return False
sage: @richcmp_method
....: class Derived(Base):

(continues on next page)

6.1. Cython-like rich comparisons in Python 133

Parents and Elements, Release 9.8

(continued from previous page)

....: def __richcmp__(self, other, op):

....: return True
sage: Derived() == Derived()
True

sage.structure.richcmp.richcmp_not_equal(x, y, op)
Like richcmp(x, y, op) but assuming that 𝑥 is not equal to 𝑦.

INPUT:

• op – a rich comparison operation (e.g. Py_EQ)

OUTPUT:

If op is not op_EQ or op_NE, the result of richcmp(x, y, op). If op is op_EQ, return False. If op is op_NE,
return True.

This is useful to compare lazily two objects A and B according to 2 (or more) different parameters, say width
and height for example. One could use:

return richcmp((A.width(), A.height()), (B.width(), B.height()), op)

but this will compute both width and height in all cases, even if A.width() and B.width() are enough to decide
the comparison.

Instead one can do:

wA = A.width()
wB = B.width()
if wA != wB:

return richcmp_not_equal(wA, wB, op)
return richcmp(A.height(), B.height(), op)

The difference with richcmp is that richcmp_not_equal assumes that its arguments are not equal, which is
excluding the case where the comparison cannot be decided so far, without knowing the rest of the parameters.

EXAMPLES:

sage: from sage.structure.richcmp import (richcmp_not_equal,
....: op_EQ, op_NE, op_LT, op_LE, op_GT, op_GE)
sage: for op in (op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE):
....: print(richcmp_not_equal(3, 4, op))
True
True
False
True
False
False
sage: for op in (op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE):
....: print(richcmp_not_equal(5, 4, op))
False
False
False
True
True
True

134 Chapter 6. Utilities

Parents and Elements, Release 9.8

6.2 Unique Representation

Abstract classes for cached and unique representation behavior.

See also:

sage.structure.factory.UniqueFactory

AUTHORS:

• Nicolas M. Thiery (2008): Original version.

• Simon A. King (2013-02): Separate cached and unique representation.

• Simon A. King (2013-08): Extended documentation.

6.2.1 What is a cached representation?

Instances of a class have a cached representation behavior when several instances constructed with the same arguments
share the same memory representation. For example, calling twice:

sage: G = SymmetricGroup(6)
sage: H = SymmetricGroup(6)

to create the symmetric group on six elements gives back the same object:

sage: G is H
True

This is a standard design pattern. Besides saving memory, it allows for sharing cached data (say representation theo-
retical information about a group). And of course a look-up in the cache is faster than the creation of a new object.

Implementing a cached representation

Sage provides two standard ways to create a cached representation: CachedRepresentation and UniqueFactory.
Note that, in spite of its name, UniqueFactory does not ensure unique representation behaviour, which will be ex-
plained below.

Using CachedRepresentation

It is often very easy to use CachedRepresentation: One simply writes a Python class and adds
CachedRepresentation to the list of base classes. If one does so, then the arguments used to create an instance
of this class will by default also be used as keys for the cache:

sage: from sage.structure.unique_representation import CachedRepresentation
sage: class C(CachedRepresentation):
....: def __init__(self, a, b=0):
....: self.a = a
....: self.b = b
....: def __repr__(self):
....: return "C(%s, %s)"%(self.a, self.b)
sage: a = C(1)
sage: a is C(1)
True

6.2. Unique Representation 135

Parents and Elements, Release 9.8

In addition, pickling just works, provided that Python is able to look up the class. Hence, in the following two lines,
we explicitly put the class into the __main__ module. This is needed in doctests, but not in an interactive session:

sage: import __main__
sage: __main__.C = C
sage: loads(dumps(a)) is a
True

Often, this very easy approach is sufficient for applications. However, there are some pitfalls. Since the arguments are
used for caching, all arguments must be hashable, i.e., must be valid as dictionary keys:

sage: C((1,2))
C((1, 2), 0)
sage: C([1,2])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

In addition, equivalent ways of providing the arguments are not automatically normalised when forming the cache key,
and hence different but equivalent arguments may yield distinct instances:

sage: C(1) is C(1,0)
False
sage: C(1) is C(a=1)
False
sage: repr(C(1)) == repr(C(a=1))
True

It should also be noted that the arguments are compared by equality, not by identity. This is often desired, but can imply
subtle problems. For example, since C(1) already is in the cache, and since the unit elements in different finite fields
are all equal to the integer one, we find:

sage: GF(5)(1) == 1 == GF(3)(1)
True
sage: C(1) is C(GF(3)(1)) is C(GF(5)(1))
True

But C(2) is not in the cache, and the number two is not equal in different finite fields (i. e., GF(5)(2) == GF(3)(2)
returns as False), even though it is equal to the number two in the ring of integers (GF(5)(2) == 2 == GF(3)(2)
returns as True; equality is not transitive when comparing elements of distinct algebraic structures!!). Hence, we have:

sage: GF(5)(2) == GF(3)(2)
False
sage: C(GF(3)(2)) is C(GF(5)(2))
False

136 Chapter 6. Utilities

Parents and Elements, Release 9.8

Normalising the arguments

CachedRepresentation uses the metaclass ClasscallMetaclass. Its __classcall__ method is a
WeakCachedFunction. This function creates an instance of the given class using the given arguments, unless it finds
the result in the cache. This has the following implications:

• The arguments must be valid dictionary keys (i.e., they must be hashable; see above).

• It is a weak cache, hence, if the user does not keep a reference to the resulting instance, then it may be removed
from the cache during garbage collection.

• It is possible to preprocess the input arguments by implementing a __classcall__ or a
__classcall_private__ method, but in order to benefit from caching, CachedRepresentation.
__classcall__() should at some point be called.

Note: For technical reasons, it is needed that __classcall__ respectively __classcall_private__ are “static
methods”, i.e., they are callable objects that do not bind to an instance or class. For example, a cached_function can
be used here, because it is callable, but does not bind to an instance or class, because it has no __get__() method.
A usual Python function, however, has a __get__() method and would thus under normal circumstances bind to an
instance or class, and thus the instance or class would be passed to the function as the first argument. To prevent
a callable object from being bound to the instance or class, one can prepend the @staticmethod decorator to the
definition; see staticmethod.

For more on Python’s __get__() method, see: https://docs.python.org/2/howto/descriptor.html

Warning: If there is preprocessing, then the preprocessed arguments passed to CachedRepresentation.
__classcall__() must be invariant under the preprocessing. That is to say, preprocessing the input arguments
twice must have the same effect as preprocessing the input arguments only once. That is to say, the preprocessing
must be idempotent.

The reason for this warning lies in the way pickling is implemented. If the preprocessed arguments are passed to
CachedRepresentation.__classcall__(), then the resulting instance will store the preprocessed arguments in
some attribute, and will use them for pickling. If the pickle is unpickled, then preprocessing is applied to the prepro-
cessed arguments—and this second round of preprocessing must not change the arguments further, since otherwise a
different instance would be created.

We illustrate the warning by an example. Imagine that one has instances that are created with an integer-valued ar-
gument, but only depend on the square of the argument. It would be a mistake to square the given argument during
preprocessing:

sage: class WrongUsage(CachedRepresentation):
....: @staticmethod
....: def __classcall__(cls, n):
....: return super().__classcall__(cls, n^2)
....: def __init__(self, n):
....: self.n = n
....: def __repr__(self):
....: return "Something(%d)"%self.n
sage: import __main__
sage: __main__.WrongUsage = WrongUsage # This is only needed in doctests
sage: w = WrongUsage(3); w
Something(9)

(continues on next page)

6.2. Unique Representation 137

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/cachefunc.html#sage.misc.cachefunc.WeakCachedFunction
https://docs.python.org/2/howto/descriptor.html

Parents and Elements, Release 9.8

(continued from previous page)

sage: w._reduction
(<class '__main__.WrongUsage'>, (9,), {})

Indeed, the reduction data are obtained from the preprocessed argument. By consequence, if the resulting instance is
pickled and unpickled, the argument gets squared again:

sage: loads(dumps(w))
Something(81)

Instead, the preprocessing should only take the absolute value of the given argument, while the squaring should happen
inside of the __init__ method, where it won’t mess with the cache:

sage: class BetterUsage(CachedRepresentation):
....: @staticmethod
....: def __classcall__(cls, n):
....: return super().__classcall__(cls, abs(n))
....: def __init__(self, n):
....: self.n = n^2
....: def __repr__(self):
....: return "SomethingElse(%d)"%self.n
sage: __main__.BetterUsage = BetterUsage # This is only needed in doctests
sage: b = BetterUsage(3); b
SomethingElse(9)
sage: loads(dumps(b)) is b
True
sage: b is BetterUsage(-3)
True

In our next example, we create a cached representation class C that returns an instance of a sub-class C1 or C2 depending
on the given arguments. This is implemented in a static __classcall_private__ method of C, letting it choose
the sub-class according to the given arguments. Since a __classcall_private__ method will be ignored on sub-
classes, the caching of CachedRepresentation is available to both C1 and C2. But for illustration, we overload the
static __classcall__ method on C2, doing some argument preprocessing. We also create a sub-class C2b of C2,
demonstrating that the __classcall__ method is used on the sub-class (in contrast to a __classcall_private__
method!).

sage: class C(CachedRepresentation):
....: @staticmethod
....: def __classcall_private__(cls, n, implementation=0):
....: if not implementation:
....: return C.__classcall__(cls, n)
....: if implementation==1:
....: return C1(n)
....: if implementation>1:
....: return C2(n,implementation)
....: def __init__(self, n):
....: self.n = n
....: def __repr__(self):
....: return "C(%d, 0)"%self.n
sage: class C1(C):
....: def __repr__(self):
....: return "C1(%d)"%self.n
sage: class C2(C):

(continues on next page)

138 Chapter 6. Utilities

Parents and Elements, Release 9.8

(continued from previous page)

....: @staticmethod

....: def __classcall__(cls, n, implementation=0):

....: if implementation:

....: return super().__classcall__(cls, (n,)*implementation)

....: return super().__classcall__(cls, n)

....: def __init__(self, t):

....: self.t = t

....: def __repr__(self):

....: return "C2(%s)"%repr(self.t)
sage: class C2b(C2):
....: def __repr__(self):
....: return "C2b(%s)"%repr(self.t)
sage: __main__.C2 = C2 # not needed in an interactive session
sage: __main__.C2b = C2b

In the above example, C drops the argument implementation if it evaluates to False, and since the cached
__classcall__ is called in this case, we have:

sage: C(1)
C(1, 0)
sage: C(1) is C(1,0)
True
sage: C(1) is C(1,0) is C(1,None) is C(1,[])
True

(Note that we were able to bypass the issue of arguments having to be hashable by catching the empty list [] dur-
ing preprocessing in the __classcall_private__ method. Similarly, unhashable arguments can be made hashable
– e. g., lists normalized to tuples – in the __classcall_private__ method before they are further delegated to
__classcall__. See TCrystal for an example.)

If we call C1 directly or if we provide implementation=1 to C, we obtain an instance of C1. Since it uses the
__classcall__ method inherited from CachedRepresentation, the resulting instances are cached:

sage: C1(2)
C1(2)
sage: C(2, implementation=1)
C1(2)
sage: C(2, implementation=1) is C1(2)
True

The class C2 preprocesses the input arguments. Instances can, again, be obtained directly or by calling C:

sage: C(1, implementation=3)
C2((1, 1, 1))
sage: C(1, implementation=3) is C2(1,3)
True

The argument preprocessing of C2 is inherited by C2b, since __classcall__ and not __classcall_private__ is
used. Pickling works, since the preprocessing of arguments is idempotent:

sage: c2b = C2b(2,3); c2b
C2b((2, 2, 2))
sage: loads(dumps(c2b)) is c2b
True

6.2. Unique Representation 139

../../../../../../html/en/reference/combinat/sage/combinat/crystals/elementary_crystals.html#sage.combinat.crystals.elementary_crystals.TCrystal

Parents and Elements, Release 9.8

Using UniqueFactory

For creating a cached representation using a factory, one has to

• create a class separately from the factory. This class must inherit from object. Its instances must allow attribute
assignment.

• write a method create_key (or create_key_and_extra_args) that creates the cache key from the given
arguments.

• write a method create_object that creates an instance of the class from a given cache key.

• create an instance of the factory with a name that allows to conclude where it is defined.

An example:

sage: class C():
....: def __init__(self, t):
....: self.t = t
....: def __repr__(self):
....: return "C%s"%repr(self.t)
sage: from sage.structure.factory import UniqueFactory
sage: class MyFactory(UniqueFactory):
....: def create_key(self, n, m=None):
....: if isinstance(n, (tuple,list)) and m is None:
....: return tuple(n)
....: return (n,)*m
....: def create_object(self, version, key, **extra_args):
....: # We ignore version and extra_args
....: return C(key)

Now, we define an instance of the factory, stating that it can be found under the name "F" in the __main__ module.
By consequence, pickling works:

sage: F = MyFactory("__main__.F")
sage: __main__.F = F # not needed in an interactive session
sage: loads(dumps(F)) is F
True

We can now create cached instances of C by calling the factory. The cache only takes into account the key computed
with the method create_key that we provided. Hence, different given arguments may result in the same instance.
Note that, again, the cache is weak, hence, the instance might be removed from the cache during garbage collection,
unless an external reference is preserved.

sage: a = F(1, 2); a
C(1, 1)
sage: a is F((1,1))
True

If the class of the returned instances is a sub-class of object, and if the resulting instance allows attribute assignment,
then pickling of the resulting instances is automatically provided for, and respects the cache.

sage: loads(dumps(a)) is a
True

This is because an attribute is stored that explains how the instance was created:

140 Chapter 6. Utilities

Parents and Elements, Release 9.8

sage: a._factory_data
(<__main__.MyFactory object at ...>, (...), (1, 1), {})

Note: If a class is used that does not inherit from object then unique pickling is not provided.

Caching is only available if the factory is called. If an instance of the class is directly created, then the cache is not
used:

sage: C((1,1))
C(1, 1)
sage: C((1,1)) is a
False

Comparing the two ways of implementing a cached representation

In this sub-section, we discuss advantages and disadvantages of the two ways of implementing a cached representation,
depending on the type of application.

Simplicity and transparency

In many cases, turning a class into a cached representation requires nothing more than adding CachedRepresentation
to the list of base classes of this class. This is, of course, a very easy and convenient way. Writing a factory would
involve a lot more work.

If preprocessing of the arguments is needed, then we have seen how to do this by a __classcall_private__ or
__classcall__ method. But these are double underscore methods and hence, for example, invisible in the automat-
ically created reference manual. Moreover, preprocessing and caching are implemented in the same method, which
might be confusing. In a unique factory, these two tasks are cleanly implemented in two separate methods. With a fac-
tory, it is possible to create the resulting instance by arguments that are different from the key used for caching. This is
significantly restricted with CachedRepresentation due to the requirement that argument preprocessing be idempotent.

Hence, if advanced preprocessing is needed, then UniqueFactory might be easier and more transparent to use than
CachedRepresentation.

Class inheritance

Using CachedRepresentation has the advantage that one has a class and creates cached instances of this class by
the usual Python syntax:

sage: G = SymmetricGroup(6)
sage: issubclass(SymmetricGroup, sage.structure.unique_representation.
→˓CachedRepresentation)
True
sage: isinstance(G, SymmetricGroup)
True

In contrast, a factory is just a callable object that returns something that has absolutely nothing to do with the factory,
and may in fact return instances of quite different classes:

6.2. Unique Representation 141

Parents and Elements, Release 9.8

sage: isinstance(GF, sage.structure.factory.UniqueFactory)
True
sage: K5 = GF(5)
sage: type(K5)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_
→˓category'>
sage: K25 = GF(25, 'x')
sage: type(K25)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>
sage: Kp = GF(next_prime_power(1000000)^2, 'x')
sage: type(Kp)
<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_
→˓category'>

This can be confusing to the user. Namely, the user might determine the class of an instance and try to create further
instances by calling the class rather than the factory—which is a mistake since it works around the cache (and also
since the class might be more restrictive than the factory – i. e., the type of K5 in the above doctest cannot be called on
a prime power which is not a prime). This mistake can more easily be avoided by using CachedRepresentation.

We have seen above that one can easily create new cached-representation classes by subclassing an existing cached-
representation class, even making use of an existing argument preprocess. This would be much more complicated with
a factory. Namely, one would need to rewrite old factories making them aware of the new classes, and/or write new
factories for the new classes.

Python versus extension classes

CachedRepresentation uses a metaclass, namely ClasscallMetaclass. Hence, it can currently not be a Cython
extension class. Moreover, it is supposed to be used by providing it as a base class. But in typical applications, one
also has another base class, say, Parent. Hence, one would like to create a class with at least two base classes, which
is currently impossible in Cython extension classes.

In other words, when using CachedRepresentation, one must work with Python classes. These can be defined in
Cython code (.pyx files) and can thus benefit from Cython’s speed inside of their methods, but they must not be cdef
class and can thus not use cdef attributes or methods.

Such restrictions do not exist when using a factory. However, if attribute assignment does not work, then the automatic
pickling provided by UniqueFactory will not be available.

6.2.2 What is a unique representation?

Instances of a class have a unique instance behavior when instances of this class evaluate equal if and only if they are
identical. Sage provides the base class WithEqualityById, which provides comparison by identity and a hash that is
determined by the memory address of the instance. Both the equality test and the hash are implemented in Cython and
are very fast, even when one has a Python class inheriting from WithEqualityById.

In many applications, one wants to combine unique instance and cached representation behaviour. This is called unique
representation behaviour. We have seen above that symmetric groups have a cached representation behaviour. However,
they do not show the unique representation behaviour, since they are equal to groups created in a totally different way,
namely to subgroups:

sage: G = SymmetricGroup(6)
sage: G3 = G.subgroup([G((1,2,3,4,5,6)),G((1,2))])
sage: G is G3

(continues on next page)

142 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 9.8

(continued from previous page)

False
sage: type(G) == type(G3)
False
sage: G == G3
True

The unique representation behaviour can conveniently be implemented with a class that inherits from
UniqueRepresentation: By adding UniqueRepresentation to the base classes, the class will simultaneously
inherit from CachedRepresentation and from WithEqualityById.

For example, a symmetric function algebra is uniquely determined by the base ring. Thus, it is reasonable to use
UniqueRepresentation in this case:

sage: isinstance(SymmetricFunctions(CC), SymmetricFunctions)
True
sage: issubclass(SymmetricFunctions, UniqueRepresentation)
True

UniqueRepresentation differs from CachedRepresentation only by adding WithEqualityById as a base class.
Hence, the above examples of argument preprocessing work for UniqueRepresentation as well.

Note that a cached representation created with UniqueFactory does not automatically provide unique representation
behaviour, in spite of its name! Hence, for unique representation behaviour, one has to implement hash and equality
test accordingly, for example by inheriting from WithEqualityById.

class sage.structure.unique_representation.CachedRepresentation

Bases: object

Classes derived from CachedRepresentation inherit a weak cache for their instances.

Note: If this class is used as a base class, then instances are (weakly) cached, according to the arguments used
to create the instance. Pickling is provided, of course by using the cache.

Note: Using this class, one can have arbitrary hash and comparison. Hence, unique representation behaviour is
not provided.

See also:

UniqueRepresentation, unique_representation

EXAMPLES:

Providing a class with a weak cache for the instances is easy: Just inherit from CachedRepresentation:

sage: from sage.structure.unique_representation import CachedRepresentation
sage: class MyClass(CachedRepresentation):
....: # all the rest as usual
....: pass

We start with a simple class whose constructor takes a single value as argument (TODO: find a more meaningful
example):

6.2. Unique Representation 143

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 9.8

sage: class MyClass(CachedRepresentation):
....: def __init__(self, value):
....: self.value = value
....: def __eq__(self, other):
....: if type(self) != type(other):
....: return False
....: return self.value == other.value

Two coexisting instances of MyClass created with the same argument data are guaranteed to share the same
identity. Since trac ticket #12215, this is only the case if there is some strong reference to the returned instance,
since otherwise it may be garbage collected:

sage: x = MyClass(1)
sage: y = MyClass(1)
sage: x is y # There is a strong reference
True
sage: z = MyClass(2)
sage: x is z
False

In particular, modifying any one of them modifies the other (reference effect):

sage: x.value = 3
sage: x.value, y.value
(3, 3)
sage: y.value = 1
sage: x.value, y.value
(1, 1)

The arguments can consist of any combination of positional or keyword arguments, as taken by a usual __init__
function. However, all values passed in should be hashable:

sage: MyClass(value = [1,2,3])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

Argument preprocessing

Sometimes, one wants to do some preprocessing on the arguments, to put them in some canonical form. The
following example illustrates how to achieve this; it takes as argument any iterable, and canonicalizes it into a
tuple (which is hashable!):

sage: class MyClass2(CachedRepresentation):
....: @staticmethod
....: def __classcall__(cls, iterable):
....: t = tuple(iterable)
....: return super().__classcall__(cls, t)
....:
....: def __init__(self, value):
....: self.value = value
sage: x = MyClass2([1,2,3])

(continues on next page)

144 Chapter 6. Utilities

https://trac.sagemath.org/12215
https://docs.python.org/reference/datamodel.html#object.__init__

Parents and Elements, Release 9.8

(continued from previous page)

sage: y = MyClass2(tuple([1,2,3]))
sage: z = MyClass2(i for i in [1,2,3])
sage: x.value
(1, 2, 3)
sage: x is y, y is z
(True, True)

A similar situation arises when the constructor accepts default values for some of its parameters. Alas, the
obvious implementation does not work:

sage: class MyClass3(CachedRepresentation):
....: def __init__(self, value = 3):
....: self.value = value
sage: MyClass3(3) is MyClass3()
False

Instead, one should do:

sage: class MyClass3(UniqueRepresentation):
....: @staticmethod
....: def __classcall__(cls, value = 3):
....: return super().__classcall__(cls, value)
....:
....: def __init__(self, value):
....: self.value = value
sage: MyClass3(3) is MyClass3()
True

A bit of explanation is in order. First, the call MyClass2([1,2,3]) triggers a call to MyClass2.
__classcall__(MyClass2, [1,2,3]). This is an extension of the standard Python behavior, needed
by CachedRepresentation, and implemented by the ClasscallMetaclass. Then, MyClass2.
__classcall__ does the desired transformations on the arguments. Finally, it uses super to call the default
implementation of __classcall__ provided by CachedRepresentation. This one in turn handles the caching
and, if needed, constructs and initializes a new object in the class using __new__ and __init__ as usual.

Constraints:

• __classcall__() is a staticmethod (like, implicitly, __new__)

• the preprocessing on the arguments should be idempotent. That is, if
MyClass2.__classcall__(<arguments>) calls CachedRepresentation.
__classcall__(<preprocessed_arguments>), then MyClass2.__classcall__(<preprocessed_arguments>)
should also result in a call to CachedRepresentation.__classcall__(<preprocessed_arguments>).

• MyClass2.__classcall__ should return the result of CachedRepresentation.__classcall__()
without modifying it.

Other than that MyClass2.__classcall__ may play any tricks, like acting as a factory and returning objects
from other classes.

Warning: It is possible, but strongly discouraged, to let the __classcall__ method of a class C return
objects that are not instances of C. Of course, instances of a subclass of C are fine. Compare the examples in
unique_representation.

6.2. Unique Representation 145

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__new__

Parents and Elements, Release 9.8

We illustrate what is meant by an “idempotent” preprocessing. Imagine that one has instances that are created
with an integer-valued argument, but only depend on the square of the argument. It would be a mistake to square
the given argument during preprocessing:

sage: class WrongUsage(CachedRepresentation):
....: @staticmethod
....: def __classcall__(cls, n):
....: return super().__classcall__(cls, n^2)
....: def __init__(self, n):
....: self.n = n
....: def __repr__(self):
....: return "Something(%d)"%self.n
sage: import __main__
sage: __main__.WrongUsage = WrongUsage # This is only needed in doctests
sage: w = WrongUsage(3); w
Something(9)
sage: w._reduction
(<class '__main__.WrongUsage'>, (9,), {})

Indeed, the reduction data are obtained from the preprocessed arguments. By consequence, if the resulting
instance is pickled and unpickled, the argument gets squared again:

sage: loads(dumps(w))
Something(81)

Instead, the preprocessing should only take the absolute value of the given argument, while the squaring should
happen inside of the __init__ method, where it won’t mess with the cache:

sage: class BetterUsage(CachedRepresentation):
....: @staticmethod
....: def __classcall__(cls, n):
....: return super().__classcall__(cls, abs(n))
....: def __init__(self, n):
....: self.n = n^2
....: def __repr__(self):
....: return "SomethingElse(%d)"%self.n
sage: __main__.BetterUsage = BetterUsage # This is only needed in doctests
sage: b = BetterUsage(3); b
SomethingElse(9)
sage: loads(dumps(b)) is b
True
sage: b is BetterUsage(-3)
True

146 Chapter 6. Utilities

Parents and Elements, Release 9.8

Cached representation and mutability

CachedRepresentation is primarily intended for implementing objects which are (at least semantically) im-
mutable. This is in particular assumed by the default implementations of copy and deepcopy:

sage: copy(x) is x
True
sage: from copy import deepcopy
sage: deepcopy(x) is x
True

However, in contrast to UniqueRepresentation, using CachedRepresentation allows for a comparison that
is not by identity:

sage: t = MyClass(3)
sage: z = MyClass(2)
sage: t.value = 2

Now t and z are non-identical, but equal:

sage: t.value == z.value
True
sage: t == z
True
sage: t is z
False

More on cached representation and identity

CachedRepresentation is implemented by means of a cache. This cache uses weak references in general, but
strong references to the most recently created objects. Hence, when all other references to, say, MyClass(1) have
been deleted, the instance is eventually deleted from memory (after enough other objects have been created to
remove the strong reference to MyClass(1)). A later call to MyClass(1) reconstructs the instance from scratch:

sage: class SomeClass(UniqueRepresentation):
....: def __init__(self, i):
....: print("creating new instance for argument %s" % i)
....: self.i = i
....: def __del__(self):
....: print("deleting instance for argument %s" % self.i)
sage: class OtherClass(UniqueRepresentation):
....: def __init__(self, i):
....: pass
sage: O = SomeClass(1)
creating new instance for argument 1
sage: O is SomeClass(1)
True
sage: O is SomeClass(2)
creating new instance for argument 2
False
sage: L = [OtherClass(i) for i in range(200)]
deleting instance for argument 2
sage: del O

(continues on next page)

6.2. Unique Representation 147

Parents and Elements, Release 9.8

(continued from previous page)

deleting instance for argument 1
sage: O = SomeClass(1)
creating new instance for argument 1
sage: del O
sage: del L
sage: L = [OtherClass(i) for i in range(200)]
deleting instance for argument 1

Cached representation and pickling

The default Python pickling implementation (by reconstructing an object from its class and dictionary, see “The
pickle protocol” in the Python Library Reference) does not preserve cached representation, as Python has no
chance to know whether and where the same object already exists.

CachedRepresentation tries to ensure appropriate pickling by implementing a __reduce__method returning
the arguments passed to the constructor:

sage: import __main__ # Fake MyClass being defined in a python module
sage: __main__.MyClass = MyClass
sage: x = MyClass(1)
sage: loads(dumps(x)) is x
True

CachedRepresentation uses the __reduce__ pickle protocol rather than __getnewargs__ because the latter
does not handle keyword arguments:

sage: x = MyClass(value = 1)
sage: x.__reduce__()
(<function unreduce at ...>, (<class '__main__.MyClass'>, (), {'value': 1}))
sage: x is loads(dumps(x))
True

Note: The default implementation of __reduce__ in CachedRepresentation requires to store the construc-
tor’s arguments in the instance dictionary upon construction:

sage: x.__dict__
{'_reduction': (<class '__main__.MyClass'>, (), {'value': 1}), 'value': 1}

It is often easy in a derived subclass to reconstruct the constructor’s arguments from the instance data structure.
When this is the case, __reduce__ should be overridden; automagically the arguments won’t be stored anymore:

sage: class MyClass3(UniqueRepresentation):
....: def __init__(self, value):
....: self.value = value
....:
....: def __reduce__(self):
....: return (MyClass3, (self.value,))
sage: import __main__; __main__.MyClass3 = MyClass3 # Fake MyClass3 being defined␣
→˓in a python module
sage: x = MyClass3(1)
sage: loads(dumps(x)) is x

(continues on next page)

148 Chapter 6. Utilities

https://docs.python.org/library/pickle.html#object.__reduce__
https://docs.python.org/library/pickle.html#object.__reduce__
https://docs.python.org/library/pickle.html#object.__getnewargs__
https://docs.python.org/library/pickle.html#object.__reduce__
https://docs.python.org/library/pickle.html#object.__reduce__

Parents and Elements, Release 9.8

(continued from previous page)

True
sage: x.__dict__
{'value': 1}

Migrating classes to CachedRepresentation and unpickling

We check that, when migrating a class to CachedRepresentation, older pickles can still be reasonably un-
pickled. Let us create a (new style) class, and pickle one of its instances:

sage: class MyClass4():
....: def __init__(self, value):
....: self.value = value
sage: import __main__; __main__.MyClass4 = MyClass4 # Fake MyClass4 being defined␣
→˓in a python module
sage: pickle = dumps(MyClass4(1))

It can be unpickled:

sage: y = loads(pickle)
sage: y.value
1

Now, we upgrade the class to derive from UniqueRepresentation, which inherits from
CachedRepresentation:

sage: class MyClass4(UniqueRepresentation, object):
....: def __init__(self, value):
....: self.value = value
sage: import __main__; __main__.MyClass4 = MyClass4 # Fake MyClass4 being defined␣
→˓in a python module
sage: __main__.MyClass4 = MyClass4

The pickle can still be unpickled:

sage: y = loads(pickle)
sage: y.value
1

Note however that, for the reasons explained above, unique representation is not guaranteed in this case:

sage: y is MyClass4(1)
False

Todo: Illustrate how this can be fixed on a case by case basis.

Now, we redo the same test for a class deriving from SageObject:

sage: class MyClass4(SageObject):
....: def __init__(self, value):

(continues on next page)

6.2. Unique Representation 149

Parents and Elements, Release 9.8

(continued from previous page)

....: self.value = value
sage: import __main__; __main__.MyClass4 = MyClass4 # Fake MyClass4 being defined␣
→˓in a python module
sage: pickle = dumps(MyClass4(1))

sage: class MyClass4(UniqueRepresentation, SageObject):
....: def __init__(self, value):
....: self.value = value
sage: __main__.MyClass4 = MyClass4
sage: y = loads(pickle)
sage: y.value
1

Caveat: unpickling instances of a formerly old-style class is not supported yet by default:

sage: class MyClass4:
....: def __init__(self, value):
....: self.value = value
sage: import __main__; __main__.MyClass4 = MyClass4 # Fake MyClass4 being defined␣
→˓in a python module
sage: pickle = dumps(MyClass4(1))

sage: class MyClass4(UniqueRepresentation, SageObject):
....: def __init__(self, value):
....: self.value = value
sage: __main__.MyClass4 = MyClass4
sage: y = loads(pickle) # todo: not implemented
sage: y.value # todo: not implemented
1

Rationale for the current implementation

CachedRepresentation and derived classes use the ClasscallMetaclass of the standard Python type. The
following example explains why.

We define a variant of MyClass where the calls to __init__ are traced:

sage: class MyClass(CachedRepresentation):
....: def __init__(self, value):
....: print("initializing object")
....: self.value = value

Let us create an object twice:

sage: x = MyClass(1)
initializing object
sage: z = MyClass(1)

As desired the __init__ method was only called the first time, which is an important feature.

As far as we can tell, this is not achievable while just using __new__ and __init__ (as defined by type; see
Section Basic Customization in the Python Reference Manual). Indeed, __init__ is called systematically on
the result of __new__ whenever the result is an instance of the class.

150 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/release/3.8.10/reference/datamodel.html#basic-customization
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__new__

Parents and Elements, Release 9.8

Another difficulty is that argument preprocessing (as in the example above) cannot be handled by __new__, since
the unprocessed arguments will be passed down to __init__.

class sage.structure.unique_representation.UniqueRepresentation

Bases: CachedRepresentation, WithEqualityById

Classes derived from UniqueRepresentation inherit a unique representation behavior for their instances.

See also:

unique_representation

EXAMPLES:

The short story: to construct a class whose instances have a unique representation behavior one just has to do:

sage: class MyClass(UniqueRepresentation):
....: # all the rest as usual
....: pass

Everything below is for the curious or for advanced usage.

What is unique representation?

Instances of a class have a unique representation behavior when instances evaluate equal if and only if they are
identical (i.e., share the same memory representation), if and only if they were created using equal arguments.
For example, calling twice:

sage: f = SymmetricFunctions(QQ)
sage: g = SymmetricFunctions(QQ)

to create the symmetric function algebra over Q actually gives back the same object:

sage: f == g
True
sage: f is g
True

This is a standard design pattern. It allows for sharing cached data (say representation theoretical information
about a group) as well as for very fast hashing and equality testing. This behaviour is typically desirable for par-
ents and categories. It can also be useful for intensive computations where one wants to cache all the operations
on a small set of elements (say the multiplication table of a small group), and access this cache as quickly as
possible.

UniqueRepresentation is very easy to use: a class just needs to derive from it, or make sure some of its super
classes does. Also, it groups together the class and the factory in a single gadget:

sage: isinstance(SymmetricFunctions(CC), SymmetricFunctions)
True
sage: issubclass(SymmetricFunctions, UniqueRepresentation)
True

This nice behaviour is not available when one just uses a factory:

sage: isinstance(GF(7), GF)
Traceback (most recent call last):
...

(continues on next page)

6.2. Unique Representation 151

https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__init__
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 9.8

(continued from previous page)

TypeError: isinstance() arg 2 must be a type...

sage: isinstance(GF, sage.structure.factory.UniqueFactory)
True

In addition, UniqueFactory only provides the cached representation behaviour, but not the unique representa-
tion behaviour—the examples in unique_representation explain this difference.

On the other hand, the UniqueRepresentation class is more intrusive, as it imposes a behavior (and a meta-
class) on all the subclasses. In particular, the unique representation behaviour is imposed on all subclasses
(unless the __classcall__ method is overloaded and not called in the subclass, which is not recommended).
Its implementation is also more technical, which leads to some subtleties.

EXAMPLES:

We start with a simple class whose constructor takes a single value as argument. This pattern is similar to what
is done in sage.combinat.sf.sf.SymmetricFunctions:

sage: class MyClass(UniqueRepresentation):
....: def __init__(self, value):
....: self.value = value

Two coexisting instances of MyClass created with the same argument data are guaranteed to share the same
identity. Since trac ticket #12215, this is only the case if there is some strong reference to the returned instance,
since otherwise it may be garbage collected:

sage: x = MyClass(1)
sage: y = MyClass(1)
sage: x is y # There is a strong reference
True
sage: z = MyClass(2)
sage: x is z
False

In particular, modifying any one of them modifies the other (reference effect):

sage: x.value = 3
sage: x.value, y.value
(3, 3)
sage: y.value = 1
sage: x.value, y.value
(1, 1)

When comparing two instances of a unique representation with == or != comparison by identity is used:

sage: x == y
True
sage: x is y
True
sage: z = MyClass(2)
sage: x == z
False
sage: x is z
False

(continues on next page)

152 Chapter 6. Utilities

../../../../../../html/en/reference/combinat/sage/combinat/sf/sf.html#sage.combinat.sf.sf.SymmetricFunctions
https://trac.sagemath.org/12215

Parents and Elements, Release 9.8

(continued from previous page)

sage: x != y
False
sage: x != z
True

A hash function equivalent to object.__hash__() is used, which is compatible with comparison by identity.
However this means that the hash function may change in between Sage sessions, or even within the same Sage
session.

sage: hash(x) == object.__hash__(x)
True

Warning: It is possible to inherit from UniqueRepresentation and then overload comparison in a
way that destroys the unique representation property. We strongly recommend against it! You should use
CachedRepresentation instead.

Mixing super types and super classes

sage.structure.unique_representation.unreduce(cls, args, keywords)
Calls a class on the given arguments:

sage: sage.structure.unique_representation.unreduce(Integer, (1,), {})
1

Todo: should reuse something preexisting . . .

6.3 Factory for cached representations

See also:

sage.structure.unique_representation

Using a UniqueFactory is one way of implementing a cached representation behaviour. In spite of its name, using a
UniqueFactory is not enough to ensure the unique representation behaviour. See unique_representation for a
detailed explanation.

With a UniqueFactory, one can preprocess the given arguments. There is special support for specifying a subset
of the arguments that serve as the unique key, so that still all given arguments are used to create a new instance,
but only the specified subset is used to look up in the cache. Typically, this is used to construct objects that accept
an optional check=[True|False] argument, but whose result should be unique regardless of said optional argu-
ment. (This use case should be handled with care, though: Any checking which isn’t done in the create_key or
create_key_and_extra_args method will be done only when a new object is generated, but not when a cached
object is retrieved from cache. Consequently, if the factory is once called with check=False, a subsequent call
with check=True cannot be expected to perform all checks unless these checks are all in the create_key or
create_key_and_extra_args method.)

For a class derived from CachedRepresentation, argument preprocessing can be obtained by providing a custom
static __classcall__ or __classcall_private__ method, but this seems less transparent. When argument pre-

6.3. Factory for cached representations 153

https://docs.python.org/reference/datamodel.html#object.__hash__

Parents and Elements, Release 9.8

processing is not needed or the preprocess is not very sophisticated, then generally CachedRepresentation is much
easier to use than a factory.

AUTHORS:

• Robert Bradshaw (2008): initial version.

• Simon King (2013): extended documentation.

• Julian Rueth (2014-05-09): use _cache_key if parameters are unhashable

class sage.structure.factory.UniqueFactory

Bases: SageObject

This class is intended to make it easy to cache objects.

It is based on the idea that the object is uniquely defined by a set of defining data (the key). There is also the
possibility of some non-defining data (extra args) which will be used in initial creation, but not affect the caching.

Warning: This class only provides cached representation behaviour. Hence, using UniqueFactory, it is
still possible to create distinct objects that evaluate equal. Unique representation behaviour can be added, for
example, by additionally inheriting from sage.misc.fast_methods.WithEqualityById.

The objects created are cached (using weakrefs) based on their key and returned directly rather than re-created
if requested again. Pickling is taken care of by the factory, and will return the same object for the same version
of Sage, and distinct (but hopefully equal) objects for different versions of Sage.

Warning: The objects returned by a UniqueFactory must be instances of new style classes (hence, they
must be instances of object) that must not only allow a weak reference, but must accept general attribute
assignment. Otherwise, pickling won’t work.

USAGE:

A unique factory provides a way to create objects from parameters (the type of these objects can depend on
the parameters, and is often determined only at runtime) and to cache them by a certain key derived from these
parameters, so that when the factory is being called again with the same parameters (or just with parameters
which yield the same key), the object is being returned from cache rather than constructed anew.

An implementation of a unique factory consists of a factory class and an instance of this factory class.

The factory class has to be a class inheriting from UniqueFactory. Typically it only needs to implement
create_key() (a method that creates a key from the given parameters, under which key the object will be
stored in the cache) and create_object() (a method that returns the actual object from the key). Some-
times, one would also implement create_key_and_extra_args() (this differs from create_key() in al-
lowing to also create some additional arguments from the given parameters, which arguments then get passed to
create_object() and thus can have an effect on the initial creation of the object, but do not affect the key) or
other_keys(). Other methods are not supposed to be overloaded.

The factory class itself cannot be called to create objects. Instead, an instance of the factory class has to be
created first. For technical reasons, this instance has to be provided with a name that allows Sage to find its
definition. Specifically, the name of the factory instance (or the full path to it, if it is not in the global namespace)
has to be passed to the factory class as a string variable. So, if our factory class has been called A and is located
in sage/spam/battletoads.py, then we need to define an instance (say, B) of A by writing B = A("sage.
spam.battletoads.B") (or B = A("B") if this B will be imported into global namespace). This instance can
then be used to create objects (by calling B(*parameters)).

154 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 9.8

Notice that the objects created by the factory don’t inherit from the factory class. They do know about the factory
that created them (this information, along with the keys under which this factory caches them, is stored in the
_factory_data attributes of the objects), but not via inheritance.

EXAMPLES:

The below examples are rather artificial and illustrate particular aspects. For a “real-life” usage case of
UniqueFactory, see the finite field factory in sage.rings.finite_rings.finite_field_constructor.

In many cases, a factory class is implemented by providing the two methods create_key() and
create_object(). In our example, we want to demonstrate how to use “extra arguments” to choose a specific
implementation, with preference given to an instance found in the cache, even if its implementation is different.
Hence, we implement create_key_and_extra_args() rather than create_key(), putting the chosen imple-
mentation into the extra arguments. Then, in the create_object() method, we create and return instances of
the specified implementation.

sage: from sage.structure.factory import UniqueFactory
sage: class MyFactory(UniqueFactory):
....: def create_key_and_extra_args(self, *args, **kwds):
....: return args, {'impl':kwds.get('impl', None)}
....: def create_object(self, version, key, **extra_args):
....: impl = extra_args['impl']
....: if impl=='C':
....: return C(*key)
....: if impl=='D':
....: return D(*key)
....: return E(*key)
....:

Now we can create a factory instance. It is supposed to be found under the name "F" in the "__main__"module.
Note that in an interactive session, F would automatically be in the __main__ module. Hence, the second and
third of the following four lines are only needed in doctests.

sage: F = MyFactory("__main__.F")
sage: import __main__
sage: __main__.F = F
sage: loads(dumps(F)) is F
True

Now we create three classes C, D and E. The first is a Cython extension-type class that does not allow weak
references nor attribute assignment. The second is a Python class that is not derived from object. The third
allows attribute assignment and is derived from object.

sage: cython("cdef class C: pass") # optional -
→˓ sage.misc.cython
sage: class D:
....: def __init__(self, *args):
....: self.t = args
....: def __repr__(self):
....: return "D%s"%repr(self.t)
....:
sage: class E(D, object): pass

Again, being in a doctest, we need to put the class D into the __main__ module, so that Python can find it:

6.3. Factory for cached representations 155

../../../../../../html/en/reference/finite_rings/sage/rings/finite_rings/finite_field_constructor.html#module-sage.rings.finite_rings.finite_field_constructor

Parents and Elements, Release 9.8

sage: import __main__
sage: __main__.D = D

It is impossible to create an instance of C with our factory, since it does not allow weak references:

sage: F(1, impl='C') # optional -
→˓ sage.misc.cython
Traceback (most recent call last):
...
TypeError: cannot create weak reference to '....C' object

Let us try again, with a Cython class that does allow weak references. Now, creation of an instance using the
factory works:

sage: cython('''cdef class C: # optional -
→˓ sage.misc.cython
....: cdef __weakref__
....: ''')
....:
sage: c = F(1, impl='C') # optional -
→˓ sage.misc.cython
sage: isinstance(c, C) # optional -
→˓ sage.misc.cython
True

The cache is used when calling the factory again—even if it is suggested to use a different implementation. This
is because the implementation is only considered an “extra argument” that does not count for the key.

sage: c is F(1, impl='C') is F(1, impl="D") is F(1) # optional -
→˓ sage.misc.cython
True

However, pickling and unpickling does not use the cache. This is because the factory has tried to assign an
attribute to the instance that provides information on the key used to create the instance, but failed:

sage: loads(dumps(c)) is c # optional -
→˓ sage.misc.cython
False
sage: hasattr(c, '_factory_data') # optional -
→˓ sage.misc.cython
False

We have already seen that our factory will only take the requested implementation into account if the arguments
used as key have not been used yet. So, we use other arguments to create an instance of class D:

sage: d = F(2, impl='D')
sage: isinstance(d, D)
True

The factory only knows about the pickling protocol used by new style classes. Hence, again, pickling and un-
pickling fails to use the cache, even though the “factory data” are now available (this is not the case on Python 3
which only has new style classes):

156 Chapter 6. Utilities

Parents and Elements, Release 9.8

sage: loads(dumps(d)) is d
True
sage: d._factory_data
(<__main__.MyFactory object at ...>,
(...),
(2,),
{'impl': 'D'})

Only when we have a new style class that can be weak referenced and allows for attribute assignment, everything
works:

sage: e = F(3)
sage: isinstance(e, E)
True
sage: loads(dumps(e)) is e
True
sage: e._factory_data
(<__main__.MyFactory object at ...>,
(...),
(3,),
{'impl': None})

create_key(*args, **kwds)
Given the parameters (arguments and keywords), create a key that uniquely determines this object.

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.create_key(1, 2, key=5)
(1, 2)

create_key_and_extra_args(*args, **kwds)
Return a tuple containing the key (uniquely defining data) and any extra arguments (empty by default).

Defaults to create_key().

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.create_key_and_extra_args(1, 2, key=5)
((1, 2), {})
sage: GF.create_key_and_extra_args(3)
((3, ('x',), None, 'modn', 3, 1, True, None, None, None, True, False), {})

create_object(version, key, **extra_args)
Create the object from the key and extra arguments. This is only called if the object was not found in the
cache.

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.create_object(0, (1,2,3))
Making object (1, 2, 3)
<sage.structure.test_factory.A object at ...>
sage: test_factory('a')

(continues on next page)

6.3. Factory for cached representations 157

Parents and Elements, Release 9.8

(continued from previous page)

Making object ('a',)
<sage.structure.test_factory.A object at ...>
sage: test_factory('a') # NOT called again
<sage.structure.test_factory.A object at ...>

get_object(version, key, extra_args)
Returns the object corresponding to key, creating it with extra_args if necessary (for example, it isn’t in
the cache or it is unpickling from an older version of Sage).

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: a = test_factory.get_object(3.0, 'a', {}); a
Making object a
<sage.structure.test_factory.A object at ...>
sage: test_factory.get_object(3.0, 'a', {}) is test_factory.get_object(3.0, 'a',
→˓ {})
True
sage: test_factory.get_object(3.0, 'a', {}) is test_factory.get_object(3.1, 'a',
→˓ {})
Making object a
False
sage: test_factory.get_object(3.0, 'a', {}) is test_factory.get_object(3.0, 'b',
→˓ {})
Making object b
False

get_version(sage_version)
This is provided to allow more or less granular control over pickle versioning. Objects pickled in the same
version of Sage will unpickle to the same rather than simply equal objects. This can provide significant
gains as arithmetic must be performed on objects with identical parents. However, if there has been an
incompatible change (e.g. in element representation) we want the version number to change so coercion is
forced between the two parents.

Defaults to the Sage version that is passed in, but coarser granularity can be provided.

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.get_version((3,1,0))
(3, 1, 0)

other_keys(key, obj)
Sometimes during object creation, certain defaults are chosen which may result in a new (more specific) key.
This allows the more specific key to be regarded as equivalent to the original key returned by create_key()
for the purpose of lookup in the cache, and is used for pickling.

EXAMPLES:

The GF factory used to have a custom other_keys() method, but this was removed in trac ticket #16934:

sage: key, _ = GF.create_key_and_extra_args(27, 'k'); key
(27, ('k',), x^3 + 2*x + 1, 'givaro', 3, 3, True, None, 'poly', True, True,␣
→˓True)

(continues on next page)

158 Chapter 6. Utilities

https://trac.sagemath.org/16934

Parents and Elements, Release 9.8

(continued from previous page)

sage: K = GF.create_object(0, key); K
Finite Field in k of size 3^3
sage: GF.other_keys(key, K)
[]

sage: K = GF(7^40, 'a')
sage: loads(dumps(K)) is K
True

reduce_data(obj)
The results of this function can be returned from __reduce__(). This is here so the factory internals can
change without having to re-write __reduce__() methods that use it.

EXAMPLES:

sage: from sage.modules.free_module import FreeModuleFactory_with_standard_
→˓basis as F
sage: V = F(ZZ, 5)
sage: factory, data = F.reduce_data(V)
sage: factory(*data)
Ambient free module of rank 5 over the principal ideal domain Integer Ring
sage: factory(*data) is V
True

sage: from sage.structure.test_factory import test_factory
sage: a = test_factory(1, 2)
Making object (1, 2)
sage: test_factory.reduce_data(a)
(<built-in function generic_factory_unpickle>,
(<sage.structure.test_factory.UniqueFactoryTester object at ...>,
(...),
(1, 2),
{}))

Note that the ellipsis (...) here stands for the Sage version.

sage.structure.factory.generic_factory_reduce(self, proto)
Used to provide a __reduce__ method if one does not already exist.

EXAMPLES:

sage: V = QQ^6
sage: sage.structure.factory.generic_factory_reduce(V, 1) == V.__reduce_ex__(1)
True

sage.structure.factory.generic_factory_unpickle(factory, *args)
Method used for unpickling the object.

The unpickling mechanism needs a plain Python function to call. It takes a factory as the first argument, passes
the rest of the arguments onto the factory’s UniqueFactory.get_object() method.

EXAMPLES:

6.3. Factory for cached representations 159

Parents and Elements, Release 9.8

sage: from sage.modules.free_module import FreeModuleFactory_with_standard_basis as␣
→˓F
sage: V = F(ZZ, 5)
sage: func, data = F.reduce_data(V)
sage: func is sage.structure.factory.generic_factory_unpickle
True
sage: sage.structure.factory.generic_factory_unpickle(*data) is V
True

sage.structure.factory.lookup_global(name)
Used in unpickling the factory itself.

EXAMPLES:

sage: from sage.structure.factory import lookup_global
sage: lookup_global('ZZ')
Integer Ring
sage: lookup_global('sage.rings.all.ZZ')
Integer Ring

sage.structure.factory.register_factory_unpickle(name, callable)
Register a callable to handle the unpickling from an old UniqueFactory object.

UniqueFactory pickles use a global name through generic_factory_unpickle(), so the usual
register_unpickle_override() cannot be used here.

See also:

generic_factory_unpickle()

6.4 Dynamic classes

Why dynamic classes?

The short answer:

• Multiple inheritance is a powerful tool for constructing new classes by combining preexisting building blocks.

• There is a combinatorial explosion in the number of potentially useful classes that can be produced this way.

• The implementation of standard mathematical constructions calls for producing such combinations automatically.

• Dynamic classes, i.e. classes created on the fly by the Python interpreter, are a natural mean to achieve this.

The long answer:

Say we want to construct a new class MyPermutation for permutations in a given set 𝑆 (in Sage, 𝑆 will be modelled by
a parent, but we won’t discuss this point here). First, we have to choose a data structure for the permutations, typically
among the following:

• Stored by cycle type

• Stored by code

• Stored in list notation - C arrays of short ints (for small permutations) - python lists of ints (for huge permutations)
- . . .

• Stored by reduced word

160 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/persist.html#sage.misc.persist.register_unpickle_override

Parents and Elements, Release 9.8

• Stored as a function

• . . .

Luckily, the Sage library provides (or will provide) classes implementing each of those data structures. Those classes
all share a common interface (or possibly a common abstract base class). So we can just derive our class from the
chosen one:

class MyPermutation(PermutationCycleType):
...

Then we may want to further choose a specific memory behavior (unique representation, copy-on-write) which (hope-
fully) can again be achieved by inheritance:

class MyPermutation(UniqueRepresentation, PermutationCycleType):
...

Finally, we may want to endow the permutations in 𝑆 with further operations coming from the (algebraic) structure of
𝑆:

• group operations

• or just monoid operations (for a subset of permutations not stable by inverse)

• poset operations (for left/right/Bruhat order)

• word operations (searching for substrings, patterns, . . .)

Or any combination thereof. Now, our class typically looks like:

class MyPermutation(UniqueRepresentation, PermutationCycleType, PosetElement,␣
→˓GroupElement):

...

Note the combinatorial explosion in the potential number of classes which can be created this way.

In practice, such classes will be used in mathematical constructions like:

SymmetricGroup(5).subset(... TODO: find a good example in the context above ...)

In such a construction, the structure of the result, and therefore the operations on its elements can only be determined
at execution time. Let us take another standard construction:

A = cartesian_product(B, C)

Depending on the structure of 𝐵 and 𝐶, and possibly on further options passed down by the user, 𝐴 may be:

• an enumerated set

• a group

• an algebra

• a poset

• . . .

Or any combination thereof.

Hardcoding classes for all potential combinations would be at best tedious. Furthermore, this would require a cumber-
some mechanism to lookup the appropriate class depending on the desired combination.

Instead, one may use the ability of Python to create new classes dynamically:

6.4. Dynamic classes 161

Parents and Elements, Release 9.8

type("class name", tuple of base classes, dictionary of methods)

This paradigm is powerful, but there are some technicalities to address. The purpose of this library is to standardize
its use within Sage, and in particular to ensure that the constructed classes are reused whenever possible (unique
representation), and can be pickled.

Combining dynamic classes and Cython classes

Cython classes cannot inherit from a dynamic class (there might be some partial support for this in the future). On the
other hand, such an inheritance can be partially emulated using __getattr__(). See sage.categories.examples.
semigroups_cython for an example.

class sage.structure.dynamic_class.DynamicClasscallMetaclass

Bases: DynamicMetaclass, ClasscallMetaclass

class sage.structure.dynamic_class.DynamicInheritComparisonClasscallMetaclass

Bases: DynamicMetaclass, InheritComparisonClasscallMetaclass

class sage.structure.dynamic_class.DynamicInheritComparisonMetaclass

Bases: DynamicMetaclass, InheritComparisonMetaclass

class sage.structure.dynamic_class.DynamicMetaclass

Bases: type

A metaclass implementing an appropriate reduce-by-construction method

sage.structure.dynamic_class.M

alias of DynamicInheritComparisonClasscallMetaclass

class sage.structure.dynamic_class.TestClass

Bases: object

A class used for checking that introspection works

bla()

bla . . .

sage.structure.dynamic_class.dynamic_class(name, bases, cls=None, reduction=None, doccls=None,
prepend_cls_bases=True, cache=True)

INPUT:

• name – a string

• bases – a tuple of classes

• cls – a class or None

• reduction – a tuple or None

• doccls – a class or None

• prepend_cls_bases – a boolean (default: True)

• cache – a boolean or "ignore_reduction" (default: True)

Constructs dynamically a new class C with name name, and bases bases. If cls is provided, then its methods
will be inserted into C, and its bases will be prepended to bases (unless prepend_cls_bases is False).

The module, documentation and source instrospection is taken from doccls, or cls if doccls is None, or
bases[0] if both are None (therefore bases should be non empty if cls` is ``None).

162 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/inherit_comparison.html#sage.misc.inherit_comparison.InheritComparisonClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/inherit_comparison.html#sage.misc.inherit_comparison.InheritComparisonMetaclass

Parents and Elements, Release 9.8

The constructed class can safely be pickled (assuming the arguments themselves can).

Unless cache is False, the result is cached, ensuring unique representation of dynamic classes.

See sage.structure.dynamic_class for a discussion of the dynamic classes paradigm, and its relevance to
Sage.

EXAMPLES:

To setup the stage, we create a class Foo with some methods, cached methods, and lazy attributes, and a class
Bar:

sage: from sage.misc.lazy_attribute import lazy_attribute
sage: from sage.misc.cachefunc import cached_function
sage: from sage.structure.dynamic_class import dynamic_class
sage: class Foo():
....: "The Foo class"
....: def __init__(self, x):
....: self._x = x
....: @cached_method
....: def f(self):
....: return self._x^2
....: def g(self):
....: return self._x^2
....: @lazy_attribute
....: def x(self):
....: return self._x
sage: class Bar:
....: def bar(self):
....: return self._x^2

We now create a class FooBar which is a copy of Foo, except that it also inherits from Bar:

sage: FooBar = dynamic_class("FooBar", (Bar,), Foo)
sage: x = FooBar(3)
sage: x.f()
9
sage: x.f() is x.f()
True
sage: x.x
3
sage: x.bar()
9
sage: FooBar.__name__
'FooBar'
sage: FooBar.__module__
'__main__'

sage: Foo.__bases__
(<class 'object'>,)
sage: FooBar.__bases__
(<class '__main__.Bar'>,)
sage: Foo.mro()
[<class '__main__.Foo'>, <class 'object'>]
sage: FooBar.mro()
[<class '__main__.FooBar'>, <class '__main__.Bar'>, <class 'object'>]

6.4. Dynamic classes 163

Parents and Elements, Release 9.8

If all the base classes have a zero __dictoffset__, the dynamic class also has a zero __dictoffset__. This
means that the instances of the class don’t have a __dict__ (see trac ticket #23435):

sage: dyn = dynamic_class("dyn", (Integer,))
sage: dyn.__dictoffset__
0

Pickling

Dynamic classes are pickled by construction. Namely, upon unpickling, the class will be reconstructed by recall-
ing dynamic_class with the same arguments:

sage: type(FooBar).__reduce__(FooBar)
(<function dynamic_class at ...>, ('FooBar', (<class '__main__.Bar'>,), <class '__
→˓main__.Foo'>, None, None))

Technically, this is achieved by using a metaclass, since the Python pickling protocol for classes is to pickle by
name:

sage: type(FooBar)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>

The following (meaningless) example illustrates how to customize the result of the reduction:

sage: BarFoo = dynamic_class("BarFoo", (Foo,), Bar, reduction = (str, (3,)))
sage: type(BarFoo).__reduce__(BarFoo)
(<class 'str'>, (3,))
sage: loads(dumps(BarFoo))
'3'

Caching

By default, the built class is cached:

sage: dynamic_class("FooBar", (Bar,), Foo) is FooBar
True
sage: dynamic_class("FooBar", (Bar,), Foo, cache=True) is FooBar
True

and the result depends on the reduction:

sage: dynamic_class("BarFoo", (Foo,), Bar, reduction = (str, (3,))) is BarFoo
True
sage: dynamic_class("BarFoo", (Foo,), Bar, reduction = (str, (2,))) is BarFoo
False

With cache=False, a new class is created each time:

sage: FooBar1 = dynamic_class("FooBar", (Bar,), Foo, cache=False); FooBar1
<class '__main__.FooBar'>
sage: FooBar2 = dynamic_class("FooBar", (Bar,), Foo, cache=False); FooBar2
<class '__main__.FooBar'>

(continues on next page)

164 Chapter 6. Utilities

https://trac.sagemath.org/23435

Parents and Elements, Release 9.8

(continued from previous page)

sage: FooBar1 is FooBar
False
sage: FooBar2 is FooBar1
False

With cache="ignore_reduction", the class does not depend on the reduction:

sage: BarFoo = dynamic_class("BarFoo", (Foo,), Bar, reduction = (str, (3,)), cache=
→˓"ignore_reduction")
sage: dynamic_class("BarFoo", (Foo,), Bar, reduction = (str, (2,)), cache="ignore_
→˓reduction") is BarFoo
True

In particular, the reduction used is that provided upon creating the first class:

sage: dynamic_class("BarFoo", (Foo,), Bar, reduction = (str, (2,)), cache="ignore_
→˓reduction")._reduction
(<class 'str'>, (3,))

Warning: The behaviour upon creating several dynamic classes from the same data but with different values
for cache option is currently left unspecified. In other words, for a given application, it is recommended to
consistently use the same value for that option.

sage.structure.dynamic_class.dynamic_class_internal(bases, cls=None, reduction=None,
doccls=None, prepend_cls_bases=True)

See sage.structure.dynamic_class.dynamic_class? for indirect doctests.

6.5 Mutability Cython Implementation

class sage.structure.mutability.Mutability

Bases: object

Class to mix in mutability feature.

EXAMPLES:

sage: class A(SageObject, Mutability):
....: def __init__(self, val):
....: self._val = val
....: def change(self, val):
....: self._require_mutable()
....: self._val = val
....: def __hash__(self):
....: self._require_immutable()
....: return hash(self._val)
sage: a = A(4)
sage: a._val
4
sage: a.change(6); a._val

(continues on next page)

6.5. Mutability Cython Implementation 165

Parents and Elements, Release 9.8

(continued from previous page)

6
sage: hash(a)
Traceback (most recent call last):
...
ValueError: object is mutable; please make it immutable first
sage: a.set_immutable()
sage: a.change(4)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead
sage: hash(a)
6

is_immutable()

Return True if this object is immutable (cannot be changed) and False if it is not.

To make this object immutable use self.set_immutable().

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5
sage: v
[5, 2, 3, 4/5]
sage: v.is_immutable()
False
sage: v.set_immutable()
sage: v.is_immutable()
True

is_mutable()

Return True if this object is mutable (can be changed) and False if it is not.

To make this object immutable use self.set_immutable().

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5
sage: v
[5, 2, 3, 4/5]
sage: v.is_mutable()
True
sage: v.set_immutable()
sage: v.is_mutable()
False

set_immutable()

Make this object immutable, so it can never again be changed.

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5

(continues on next page)

166 Chapter 6. Utilities

Parents and Elements, Release 9.8

(continued from previous page)

sage: v
[5, 2, 3, 4/5]
sage: v.set_immutable()
sage: v[3] = 7
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.

sage.structure.mutability.require_immutable(f)
A decorator that requires immutability for a method to be called.

Note: Objects whose methods use this decorator should have an attribute _is_immutable. Otherwise, the
object is assumed to be mutable.

EXAMPLES:

sage: from sage.structure.mutability import require_mutable, require_immutable
sage: class A():
....: def __init__(self, val):
....: self._m = val
....: @require_mutable
....: def change(self, new_val):
....: 'change self'
....: self._m = new_val
....: @require_immutable
....: def __hash__(self):
....: 'implement hash'
....: return hash(self._m)
sage: a = A(5)
sage: a.change(6)
sage: hash(a) # indirect doctest
Traceback (most recent call last):
...
ValueError: <class '__main__.A'> instance is mutable, <function ...__hash__ at ...>␣
→˓must not be called
sage: a._is_immutable = True
sage: hash(a)
6
sage: a.change(7)
Traceback (most recent call last):
...
ValueError: <class '__main__.A'> instance is immutable, <function ...change at ...>␣
→˓must not be called
sage: from sage.misc.sageinspect import sage_getdoc
sage: print(sage_getdoc(a.__hash__))
implement hash

AUTHORS:

• Simon King <simon.king@uni-jena.de>

sage.structure.mutability.require_mutable(f)
A decorator that requires mutability for a method to be called.

6.5. Mutability Cython Implementation 167

mailto:simon.king@uni-jena.de

Parents and Elements, Release 9.8

Note: Objects whose methods use this decorator should have an attribute _is_immutable. Otherwise, the
object is assumed to be mutable.

EXAMPLES:

sage: from sage.structure.mutability import require_mutable, require_immutable
sage: class A():
....: def __init__(self, val):
....: self._m = val
....: @require_mutable
....: def change(self, new_val):
....: 'change self'
....: self._m = new_val
....: @require_immutable
....: def __hash__(self):
....: 'implement hash'
....: return hash(self._m)
sage: a = A(5)
sage: a.change(6)
sage: hash(a)
Traceback (most recent call last):
...
ValueError: <class '__main__.A'> instance is mutable, <function ...__hash__ at ...>␣
→˓must not be called
sage: a._is_immutable = True
sage: hash(a)
6
sage: a.change(7) # indirect doctest
Traceback (most recent call last):
...
ValueError: <class '__main__.A'> instance is immutable, <function ...change at ...>␣
→˓must not be called
sage: from sage.misc.sageinspect import sage_getdoc
sage: print(sage_getdoc(a.change))
change self

AUTHORS:

• Simon King <simon.king@uni-jena.de>

168 Chapter 6. Utilities

mailto:simon.king@uni-jena.de

CHAPTER

SEVEN

INTERNALS

7.1 Debug options for the sage.structure modules

EXAMPLES:

sage: from sage.structure.debug_options import debug
sage: debug.unique_parent_warnings
False
sage: debug.refine_category_hash_check
True

class sage.structure.debug_options.DebugOptions_class

Bases: object

refine_category_hash_check

unique_parent_warnings

7.2 Performance Test for Clone Protocol

see sage.structure.list_clone.ClonableArray

EXAMPLES:

sage: from sage.structure.list_clone_timings import *
sage: cmd =["",
....: "e.__copy__()",
....: "copy(e)",
....: "e.clone()",
....: "e.__class__(e.parent(), e._get_list())",
....: "e.__class__(e.parent(), e[:])",
....: "e.check()",
....: "",
....: "add1_internal(e)",
....: "add1_immutable(e)",
....: "add1_mutable(e)",
....: "add1_with(e)",
....: "",
....: "cy_add1_internal(e)",
....: "cy_add1_immutable(e)",

(continues on next page)

169

Parents and Elements, Release 9.8

(continued from previous page)

....: "cy_add1_mutable(e)",

....: "cy_add1_with(e)"]

Various timings using a Cython class:

sage: size = 5
sage: e = IncreasingArrays()(range(size))
sage: # random
....: for p in cmd:
....: print("{0:36} : ".format(p), end=""); timeit(p)

:
e.__copy__() : 625 loops, best of 3: 446 ns per loop
copy(e) : 625 loops, best of 3: 1.94 𝜇s per loop
e.clone() : 625 loops, best of 3: 736 ns per loop
e.__class__(e.parent(), e._get_list()) : 625 loops, best of 3: 1.34 𝜇s per loop
e.__class__(e.parent(), e[:]) : 625 loops, best of 3: 1.35 𝜇s per loop
e.check() : 625 loops, best of 3: 342 ns per loop

:
add1_internal(e) : 625 loops, best of 3: 3.53 𝜇s per loop
add1_immutable(e) : 625 loops, best of 3: 3.72 𝜇s per loop
add1_mutable(e) : 625 loops, best of 3: 3.42 𝜇s per loop
add1_with(e) : 625 loops, best of 3: 4.05 𝜇s per loop

:
cy_add1_internal(e) : 625 loops, best of 3: 752 ns per loop
cy_add1_immutable(e) : 625 loops, best of 3: 1.28 𝜇s per loop
cy_add1_mutable(e) : 625 loops, best of 3: 861 ns per loop
cy_add1_with(e) : 625 loops, best of 3: 1.51 𝜇s per loop

Various timings using a Python class:

sage: e = IncreasingArraysPy()(range(size))
sage: # random
....: for p in cmd: print("{0:36} : ".format(p), end=""); timeit(p)

:
e.__copy__() : 625 loops, best of 3: 869 ns per loop
copy(e) : 625 loops, best of 3: 2.13 𝜇s per loop
e.clone() : 625 loops, best of 3: 1.86 𝜇s per loop
e.__class__(e.parent(), e._get_list()) : 625 loops, best of 3: 7.52 𝜇s per loop
e.__class__(e.parent(), e[:]) : 625 loops, best of 3: 7.27 𝜇s per loop
e.check() : 625 loops, best of 3: 4.02 𝜇s per loop

:
add1_internal(e) : 625 loops, best of 3: 9.34 𝜇s per loop
add1_immutable(e) : 625 loops, best of 3: 9.91 𝜇s per loop
add1_mutable(e) : 625 loops, best of 3: 12.6 𝜇s per loop
add1_with(e) : 625 loops, best of 3: 15.9 𝜇s per loop

:
cy_add1_internal(e) : 625 loops, best of 3: 7.13 𝜇s per loop
cy_add1_immutable(e) : 625 loops, best of 3: 6.95 𝜇s per loop
cy_add1_mutable(e) : 625 loops, best of 3: 14.1 𝜇s per loop
cy_add1_with(e) : 625 loops, best of 3: 17.5 𝜇s per loop

class sage.structure.list_clone_timings.IncreasingArraysPy

Bases: IncreasingArrays

170 Chapter 7. Internals

Parents and Elements, Release 9.8

class Element

Bases: ClonableArray

A small class for testing ClonableArray: Increasing Lists

check()

Check that self is increasing.

EXAMPLES:

sage: from sage.structure.list_clone_timings import IncreasingArraysPy
sage: IncreasingArraysPy()([1,2,3]) # indirect doctest
[1, 2, 3]
sage: IncreasingArraysPy()([3,2,1]) # indirect doctest
Traceback (most recent call last):
...
ValueError: Lists is not increasing

sage.structure.list_clone_timings.add1_immutable(bla)

sage.structure.list_clone_timings.add1_internal(bla)

sage.structure.list_clone_timings.add1_mutable(bla)

sage.structure.list_clone_timings.add1_with(bla)

7.3 Cython Functions for Timing Clone Protocol

sage.structure.list_clone_timings_cy.cy_add1_immutable(bla)

sage.structure.list_clone_timings_cy.cy_add1_internal(bla)

sage.structure.list_clone_timings_cy.cy_add1_mutable(bla)

sage.structure.list_clone_timings_cy.cy_add1_with(bla)

7.4 Test of the factory module

class sage.structure.test_factory.A

Bases: object

class sage.structure.test_factory.UniqueFactoryTester

Bases: UniqueFactory

create_key(*args, **kwds)
EXAMPLES:

sage: from sage.structure.test_factory import UniqueFactoryTester
sage: test_factory = UniqueFactoryTester('foo')
sage: test_factory.create_key(1, 2, 3)
(1, 2, 3)

7.3. Cython Functions for Timing Clone Protocol 171

Parents and Elements, Release 9.8

create_object(version, key, **extra_args)
EXAMPLES:

sage: from sage.structure.test_factory import UniqueFactoryTester
sage: test_factory = UniqueFactoryTester('foo')
sage: test_factory.create_object('version', key=(1, 2, 4))
Making object (1, 2, 4)
<sage.structure.test_factory.A object at ...>

172 Chapter 7. Internals

CHAPTER

EIGHT

INDICES AND TABLES

• Index

• Module Index

• Search Page

173

../genindex.html
../py-modindex.html
../search.html

Parents and Elements, Release 9.8

174 Chapter 8. Indices and Tables

PYTHON MODULE INDEX

m
sage.misc.proof, 126

s
sage.structure.category_object, 5
sage.structure.debug_options, 169
sage.structure.dynamic_class, 160
sage.structure.element, 49
sage.structure.element_wrapper, 75
sage.structure.factorization, 92
sage.structure.factorization_integer, 100
sage.structure.factory, 153
sage.structure.formal_sum, 91
sage.structure.gens_py, 47
sage.structure.global_options, 34
sage.structure.indexed_generators, 29
sage.structure.list_clone, 77
sage.structure.list_clone_demo, 88
sage.structure.list_clone_timings, 169
sage.structure.list_clone_timings_cy, 171
sage.structure.mutability, 165
sage.structure.nonexact, 33
sage.structure.parent, 13
sage.structure.parent_base, 44
sage.structure.parent_gens, 44
sage.structure.parent_old, 43
sage.structure.proof.proof, 125
sage.structure.richcmp, 127
sage.structure.sage_object, 1
sage.structure.sequence, 101
sage.structure.set_factories, 110
sage.structure.set_factories_example, 122
sage.structure.test_factory, 171
sage.structure.unique_representation, 135

175

Parents and Elements, Release 9.8

176 Python Module Index

INDEX

Symbols
__add__() (sage.structure.element.Element method), 58
__call__() (sage.structure.parent.Parent method), 15
__contains__() (sage.structure.parent.Parent method),

17
__floordiv__() (sage.structure.element.Element

method), 59
__mod__() (sage.structure.element.Element method), 60
__mul__() (sage.structure.element.Element method), 59
__mul__() (sage.structure.parent.Parent method), 16
__neg__() (sage.structure.element.Element method), 58
__sub__() (sage.structure.element.Element method), 58
__truediv__() (sage.structure.element.Element

method), 59
_an_element_() (sage.structure.parent.Parent method),

18
_ascii_art_() (sage.structure.sage_object.SageObject

method), 1
_cache_key() (sage.structure.sage_object.SageObject

method), 2
_coerce_map_from_() (sage.structure.parent.Parent

method), 18
_convert_map_from_() (sage.structure.parent.Parent

method), 18
_get_action_() (sage.structure.parent.Parent method),

18
_init_category_() (sage.structure.parent.Parent

method), 19
_is_coercion_cached() (sage.structure.parent.Parent

method), 19
_is_conversion_cached()

(sage.structure.parent.Parent method), 19
_populate_coercion_lists_()

(sage.structure.parent.Parent method), 15
_repr_option() (sage.structure.parent.Parent method),

18
richcmp() (sage.structure.element.Element method),

57

A
A (class in sage.structure.test_factory), 171

abelian_iterator() (in module
sage.structure.gens_py), 47

abs() (sage.structure.element.RingElement method), 68
add1_immutable() (in module

sage.structure.list_clone_timings), 171
add1_internal() (in module

sage.structure.list_clone_timings), 171
add1_mutable() (in module

sage.structure.list_clone_timings), 171
add1_with() (in module

sage.structure.list_clone_timings), 171
add_constraints() (sage.structure.set_factories.SetFactory

method), 119
add_constraints() (sage.structure.set_factories_example.XYPairsFactory

method), 124
additive_order() (sage.structure.element.ModuleElement

method), 66
additive_order() (sage.structure.element.RingElement

method), 68
AdditiveGroupElement (class in

sage.structure.element), 53
AlgebraElement (class in sage.structure.element), 53
AllPairs (class in sage.structure.set_factories_example),

122
an_element() (sage.structure.parent.Parent method),

20
an_element() (sage.structure.set_factories_example.Pairs_Y

method), 123
an_element() (sage.structure.set_factories_example.PairsX_

method), 123
append() (sage.structure.element_wrapper.ElementWrapperTester

method), 76
append() (sage.structure.list_clone.ClonableList

method), 84
append() (sage.structure.sequence.Sequence_generic

method), 105

B
BareFunctionPolicy (class in

sage.structure.set_factories), 115
base() (sage.structure.category_object.CategoryObject

method), 6

177

Parents and Elements, Release 9.8

base_change() (sage.structure.factorization.Factorization
method), 95

base_extend() (sage.structure.element.Element
method), 60

base_extend() (sage.structure.formal_sum.FormalSums
method), 92

base_extend() (sage.structure.parent_base.ParentWithBase
method), 44

base_ring() (sage.structure.category_object.CategoryObject
method), 6

base_ring() (sage.structure.element.Element method),
60

bin_op() (in module sage.structure.element), 70
bla() (sage.structure.dynamic_class.TestClass method),

162

C
CachedRepresentation (class in

sage.structure.unique_representation), 143
canonical_coercion() (in module

sage.structure.element), 70
categories() (sage.structure.category_object.CategoryObject

method), 7
category() (sage.structure.category_object.CategoryObject

method), 8
category() (sage.structure.element.Element method),

60
category() (sage.structure.parent.Parent method), 21
category() (sage.structure.sage_object.SageObject

method), 3
CategoryObject (class in

sage.structure.category_object), 6
certify_names() (in module

sage.structure.category_object), 10
check() (sage.structure.list_clone.ClonableArray

method), 79
check() (sage.structure.list_clone.ClonableIntArray

method), 83
check() (sage.structure.list_clone_demo.IncreasingArray

method), 88
check() (sage.structure.list_clone_demo.IncreasingIntArray

method), 88
check() (sage.structure.list_clone_demo.IncreasingList

method), 89
check() (sage.structure.list_clone_demo.SortedList

method), 89
check() (sage.structure.list_clone_timings.IncreasingArraysPy.Element

method), 171
check_default_category() (in module

sage.structure.category_object), 10
check_element() (sage.structure.set_factories.ParentWithSetFactory

method), 116
check_element() (sage.structure.set_factories_example.AllPairs

method), 122

check_element() (sage.structure.set_factories_example.Pairs_Y
method), 123

check_element() (sage.structure.set_factories_example.PairsX_
method), 123

check_element() (sage.structure.set_factories_example.SingletonPair
method), 123

ClonableArray (class in sage.structure.list_clone), 78
ClonableElement (class in sage.structure.list_clone),

80
ClonableIntArray (class in sage.structure.list_clone),

83
ClonableList (class in sage.structure.list_clone), 84
clone() (sage.structure.list_clone.ClonableElement

method), 82
coerce() (sage.structure.parent.Parent method), 21
coerce_binop() (in module sage.structure.element), 70
coerce_embedding() (sage.structure.parent.Parent

method), 21
coerce_map_from() (sage.structure.parent.Parent

method), 22
coercion_traceback() (in module

sage.structure.element), 72
CommutativeAlgebraElement (class in

sage.structure.element), 53
CommutativeRingElement (class in

sage.structure.element), 53
constraints() (sage.structure.set_factories.ParentWithSetFactory

method), 117
convert_map_from() (sage.structure.parent.Parent

method), 22
count() (sage.structure.list_clone.ClonableArray

method), 79
create_key() (sage.structure.factory.UniqueFactory

method), 157
create_key() (sage.structure.test_factory.UniqueFactoryTester

method), 171
create_key_and_extra_args()

(sage.structure.factory.UniqueFactory
method), 157

create_object() (sage.structure.factory.UniqueFactory
method), 157

create_object() (sage.structure.test_factory.UniqueFactoryTester
method), 171

cy_add1_immutable() (in module
sage.structure.list_clone_timings_cy), 171

cy_add1_internal() (in module
sage.structure.list_clone_timings_cy), 171

cy_add1_mutable() (in module
sage.structure.list_clone_timings_cy), 171

cy_add1_with() (in module
sage.structure.list_clone_timings_cy), 171

D
DebugOptions_class (class in

178 Index

Parents and Elements, Release 9.8

sage.structure.debug_options), 169
DedekindDomainElement (class in

sage.structure.element), 57
default_prec() (sage.structure.nonexact.Nonexact

method), 33
degree() (sage.structure.element.EuclideanDomainElement

method), 65
divides() (sage.structure.element.CommutativeRingElement

method), 53
divides() (sage.structure.element.FieldElement

method), 65
DummyParent (class in sage.structure.element_wrapper),

75
dump() (sage.structure.sage_object.SageObject method),

3
dumps() (sage.structure.sage_object.SageObject

method), 3
dynamic_class() (in module

sage.structure.dynamic_class), 162
dynamic_class_internal() (in module

sage.structure.dynamic_class), 165
DynamicClasscallMetaclass (class in

sage.structure.dynamic_class), 162
DynamicInheritComparisonClasscallMetaclass

(class in sage.structure.dynamic_class), 162
DynamicInheritComparisonMetaclass (class in

sage.structure.dynamic_class), 162
DynamicMetaclass (class in

sage.structure.dynamic_class), 162

E
Element (class in sage.structure.element), 57
Element (sage.structure.formal_sum.FormalSums

attribute), 92
Element (sage.structure.list_clone_demo.IncreasingArrays

attribute), 88
Element (sage.structure.list_clone_demo.IncreasingIntArrays

attribute), 89
Element (sage.structure.list_clone_demo.IncreasingLists

attribute), 89
Element (sage.structure.list_clone_demo.SortedLists at-

tribute), 90
element_class() (sage.structure.parent.Parent

method), 22
element_constructor_attributes()

(sage.structure.set_factories.BareFunctionPolicy
method), 115

element_constructor_attributes()
(sage.structure.set_factories.FacadeParentPolicy
method), 116

element_constructor_attributes()
(sage.structure.set_factories.SelfParentPolicy
method), 119

element_constructor_attributes()
(sage.structure.set_factories.SetFactoryPolicy
method), 120

element_constructor_attributes()
(sage.structure.set_factories.TopMostParentPolicy
method), 122

ElementWithCachedMethod (class in
sage.structure.element), 62

ElementWrapper (class in
sage.structure.element_wrapper), 75

ElementWrapperCheckWrappedClass (class in
sage.structure.element_wrapper), 76

ElementWrapperTester (class in
sage.structure.element_wrapper), 76

EltPair (class in sage.structure.parent), 14
EuclideanDomainElement (class in

sage.structure.element), 65
expand() (sage.structure.factorization.Factorization

method), 96
Expression (class in sage.structure.element), 65
extend() (sage.structure.list_clone.ClonableList

method), 85
extend() (sage.structure.sequence.Sequence_generic

method), 106

F
facade_element_constructor_attributes()

(sage.structure.set_factories.SetFactoryPolicy
method), 120

facade_policy() (sage.structure.set_factories.ParentWithSetFactory
method), 117

FacadeParentPolicy (class in
sage.structure.set_factories), 115

Factorization (class in sage.structure.factorization),
95

factory() (sage.structure.set_factories.ParentWithSetFactory
method), 118

factory() (sage.structure.set_factories.SetFactoryPolicy
method), 121

FieldElement (class in sage.structure.element), 65
FormalSum (class in sage.structure.formal_sum), 91
FormalSums (class in sage.structure.formal_sum), 92

G
gcd() (sage.structure.element.PrincipalIdealDomainElement

method), 68
gcd() (sage.structure.factorization.Factorization

method), 96
gen() (sage.structure.parent_gens.ParentWithGens

method), 45
generic_factory_reduce() (in module

sage.structure.factory), 159
generic_factory_unpickle() (in module

sage.structure.factory), 159

Index 179

Parents and Elements, Release 9.8

gens() (sage.structure.parent_gens.ParentWithGens
method), 45

gens_dict() (sage.structure.category_object.CategoryObject
method), 8

gens_dict_recursive()
(sage.structure.category_object.CategoryObject
method), 8

get_action() (sage.structure.parent.Parent method),
23

get_coercion_model() (in module
sage.structure.element), 72

get_flag() (in module sage.structure.proof.proof), 125
get_object() (sage.structure.factory.UniqueFactory

method), 158
get_version() (sage.structure.factory.UniqueFactory

method), 158
GlobalOptions (class in sage.structure.global_options),

40
GlobalOptionsMeta (class in

sage.structure.global_options), 43
GlobalOptionsMetaMeta (class in

sage.structure.global_options), 43

H
has_coerce_map_from() (sage.structure.parent.Parent

method), 23
have_same_parent() (in module

sage.structure.element), 72
Hom() (sage.structure.category_object.CategoryObject

method), 6
Hom() (sage.structure.parent.Parent method), 20
hom() (sage.structure.parent.Parent method), 23
hom() (sage.structure.parent_gens.ParentWithGens

method), 45

I
IncreasingArray (class in

sage.structure.list_clone_demo), 88
IncreasingArrays (class in

sage.structure.list_clone_demo), 88
IncreasingArraysPy (class in

sage.structure.list_clone_timings), 170
IncreasingArraysPy.Element (class in

sage.structure.list_clone_timings), 170
IncreasingIntArray (class in

sage.structure.list_clone_demo), 88
IncreasingIntArrays (class in

sage.structure.list_clone_demo), 89
IncreasingList (class in

sage.structure.list_clone_demo), 89
IncreasingLists (class in

sage.structure.list_clone_demo), 89
index() (sage.structure.list_clone.ClonableArray

method), 80

index() (sage.structure.list_clone.ClonableIntArray
method), 84

IndexedGenerators (class in
sage.structure.indexed_generators), 29

indices() (sage.structure.indexed_generators.IndexedGenerators
method), 30

InfinityElement (class in sage.structure.element), 66
inject_variables() (sage.structure.category_object.CategoryObject

method), 8
insert() (sage.structure.list_clone.ClonableList

method), 85
insert() (sage.structure.sequence.Sequence_generic

method), 106
IntegerFactorization (class in

sage.structure.factorization_integer), 100
IntegralDomainElement (class in

sage.structure.element), 66
inverse_mod() (sage.structure.element.CommutativeRingElement

method), 54
is_AdditiveGroupElement() (in module

sage.structure.element), 73
is_AlgebraElement() (in module

sage.structure.element), 73
is_commutative() (sage.structure.factorization.Factorization

method), 96
is_CommutativeAlgebraElement() (in module

sage.structure.element), 73
is_CommutativeRingElement() (in module

sage.structure.element), 73
is_DedekindDomainElement() (in module

sage.structure.element), 73
is_Element() (in module sage.structure.element), 73
is_EuclideanDomainElement() (in module

sage.structure.element), 73
is_exact() (sage.structure.parent.Parent method), 24
is_FieldElement() (in module

sage.structure.element), 73
is_immutable() (sage.structure.element.ModuleElementWithMutability

method), 66
is_immutable() (sage.structure.list_clone.ClonableElement

method), 82
is_immutable() (sage.structure.mutability.Mutability

method), 166
is_immutable() (sage.structure.sequence.Sequence_generic

method), 106
is_InfinityElement() (in module

sage.structure.element), 73
is_integral() (sage.structure.factorization.Factorization

method), 97
is_IntegralDomainElement() (in module

sage.structure.element), 73
is_Matrix() (in module sage.structure.element), 73
is_ModuleElement() (in module

sage.structure.element), 73

180 Index

Parents and Elements, Release 9.8

is_MonoidElement() (in module
sage.structure.element), 74

is_MultiplicativeGroupElement() (in module
sage.structure.element), 74

is_mutable() (sage.structure.element.ModuleElementWithMutability
method), 67

is_mutable() (sage.structure.list_clone.ClonableElement
method), 83

is_mutable() (sage.structure.mutability.Mutability
method), 166

is_mutable() (sage.structure.sequence.Sequence_generic
method), 106

is_nilpotent() (sage.structure.element.IntegralDomainElement
method), 66

is_nilpotent() (sage.structure.element.RingElement
method), 68

is_one() (sage.structure.element.RingElement method),
68

is_Parent() (in module sage.structure.parent), 28
is_prime() (sage.structure.element.RingElement

method), 68
is_PrincipalIdealDomainElement() (in module

sage.structure.element), 74
is_RingElement() (in module sage.structure.element),

74
is_square() (sage.structure.element.CommutativeRingElement

method), 54
is_unit() (sage.structure.element.FieldElement

method), 65
is_Vector() (in module sage.structure.element), 74
is_zero() (sage.structure.element.Element method), 60

L
latex_name() (sage.structure.category_object.CategoryObject

method), 8
latex_variable_names()

(sage.structure.category_object.CategoryObject
method), 8

lcm() (sage.structure.element.PrincipalIdealDomainElement
method), 68

lcm() (sage.structure.factorization.Factorization
method), 97

leading_coefficient()
(sage.structure.element.EuclideanDomainElement
method), 65

list() (sage.structure.list_clone.ClonableIntArray
method), 84

localvars (class in sage.structure.parent_gens), 46
lookup_global() (in module sage.structure.factory),

160

M
M (in module sage.structure.dynamic_class), 162
make_element() (in module sage.structure.element), 74

Matrix (class in sage.structure.element), 66
mod() (sage.structure.element.CommutativeRingElement

method), 55
module

sage.misc.proof, 126
sage.structure.category_object, 5
sage.structure.debug_options, 169
sage.structure.dynamic_class, 160
sage.structure.element, 49
sage.structure.element_wrapper, 75
sage.structure.factorization, 92
sage.structure.factorization_integer, 100
sage.structure.factory, 153
sage.structure.formal_sum, 91
sage.structure.gens_py, 47
sage.structure.global_options, 34
sage.structure.indexed_generators, 29
sage.structure.list_clone, 77
sage.structure.list_clone_demo, 88
sage.structure.list_clone_timings, 169
sage.structure.list_clone_timings_cy, 171
sage.structure.mutability, 165
sage.structure.nonexact, 33
sage.structure.parent, 13
sage.structure.parent_base, 44
sage.structure.parent_gens, 44
sage.structure.parent_old, 43
sage.structure.proof.proof, 125
sage.structure.richcmp, 127
sage.structure.sage_object, 1
sage.structure.sequence, 101
sage.structure.set_factories, 110
sage.structure.set_factories_example, 122
sage.structure.test_factory, 171
sage.structure.unique_representation, 135

ModuleElement (class in sage.structure.element), 66
ModuleElementWithMutability (class in

sage.structure.element), 66
MonoidElement (class in sage.structure.element), 67
multiplicative_iterator() (in module

sage.structure.gens_py), 47
multiplicative_order()

(sage.structure.element.MonoidElement
method), 67

multiplicative_order()
(sage.structure.element.RingElement method),
70

MultiplicativeGroupElement (class in
sage.structure.element), 67

Mutability (class in sage.structure.mutability), 165

N
n() (sage.structure.element.Element method), 60

Index 181

Parents and Elements, Release 9.8

ngens() (sage.structure.parent_gens.ParentWithGens
method), 46

Nonexact (class in sage.structure.nonexact), 33
normalize() (sage.structure.list_clone.NormalizedClonableList

method), 87
normalize() (sage.structure.list_clone_demo.SortedList

method), 89
normalize_names() (in module

sage.structure.category_object), 10
NormalizedClonableList (class in

sage.structure.list_clone), 87
numerical_approx() (sage.structure.element.Element

method), 61

O
object() (sage.structure.parent.Set_generic method), 28
objgen() (sage.structure.category_object.CategoryObject

method), 9
objgens() (sage.structure.category_object.CategoryObject

method), 9
Option (class in sage.structure.global_options), 43
order() (sage.structure.element.AdditiveGroupElement

method), 53
order() (sage.structure.element.ModuleElement

method), 66
order() (sage.structure.element.MonoidElement

method), 67
order() (sage.structure.element.MultiplicativeGroupElement

method), 68
other_keys() (sage.structure.factory.UniqueFactory

method), 158

P
Pairs_Y (class in sage.structure.set_factories_example),

123
pairs_y() (sage.structure.set_factories_example.AllPairs

method), 122
PairsX_ (class in sage.structure.set_factories_example),

122
Parent (class in sage.structure.parent), 14
Parent (class in sage.structure.parent_old), 43
parent() (in module sage.structure.element), 74
parent() (sage.structure.element.Element method), 61
parent() (sage.structure.sage_object.SageObject

method), 4
ParentWithBase (class in sage.structure.parent_base),

44
ParentWithGens (class in sage.structure.parent_gens),

44
ParentWithSetFactory (class in

sage.structure.set_factories), 116
parse_indices_names() (in module

sage.structure.indexed_generators), 31

policy() (sage.structure.set_factories.ParentWithSetFactory
method), 118

pop() (sage.structure.list_clone.ClonableList method),
86

pop() (sage.structure.sequence.Sequence_generic
method), 107

powers() (sage.structure.element.MonoidElement
method), 67

powers() (sage.structure.element.RingElement method),
70

prefix() (sage.structure.indexed_generators.IndexedGenerators
method), 30

PrincipalIdealDomainElement (class in
sage.structure.element), 68

print_options() (sage.structure.indexed_generators.IndexedGenerators
method), 30

prod() (sage.structure.factorization.Factorization
method), 97

Q
quo_rem() (sage.structure.element.EuclideanDomainElement

method), 65
quo_rem() (sage.structure.element.FieldElement

method), 66

R
radical() (sage.structure.factorization.Factorization

method), 98
radical_value() (sage.structure.factorization.Factorization

method), 98
reduce() (sage.structure.formal_sum.FormalSum

method), 91
reduce_data() (sage.structure.factory.UniqueFactory

method), 159
refine_category_hash_check

(sage.structure.debug_options.DebugOptions_class
attribute), 169

register_action() (sage.structure.parent.Parent
method), 25

register_coercion() (sage.structure.parent.Parent
method), 26

register_conversion() (sage.structure.parent.Parent
method), 26

register_embedding() (sage.structure.parent.Parent
method), 26

register_factory_unpickle() (in module
sage.structure.factory), 160

remove() (sage.structure.list_clone.ClonableList
method), 86

remove() (sage.structure.sequence.Sequence_generic
method), 107

rename() (sage.structure.sage_object.SageObject
method), 4

182 Index

Parents and Elements, Release 9.8

require_immutable() (in module
sage.structure.mutability), 167

require_mutable() (in module
sage.structure.mutability), 167

reset_name() (sage.structure.sage_object.SageObject
method), 5

reverse() (sage.structure.sequence.Sequence_generic
method), 107

revop() (in module sage.structure.richcmp), 127
rich_to_bool() (in module sage.structure.richcmp),

127
rich_to_bool_sgn() (in module

sage.structure.richcmp), 128
richcmp() (in module sage.structure.richcmp), 128
richcmp_by_eq_and_lt() (in module

sage.structure.richcmp), 129
richcmp_item() (in module sage.structure.richcmp),

130
richcmp_method() (in module sage.structure.richcmp),

132
richcmp_not_equal() (in module

sage.structure.richcmp), 134
RingElement (class in sage.structure.element), 68

S
sage.misc.proof

module, 126
sage.structure.category_object

module, 5
sage.structure.debug_options

module, 169
sage.structure.dynamic_class

module, 160
sage.structure.element

module, 49
sage.structure.element_wrapper

module, 75
sage.structure.factorization

module, 92
sage.structure.factorization_integer

module, 100
sage.structure.factory

module, 153
sage.structure.formal_sum

module, 91
sage.structure.gens_py

module, 47
sage.structure.global_options

module, 34
sage.structure.indexed_generators

module, 29
sage.structure.list_clone

module, 77
sage.structure.list_clone_demo

module, 88
sage.structure.list_clone_timings

module, 169
sage.structure.list_clone_timings_cy

module, 171
sage.structure.mutability

module, 165
sage.structure.nonexact

module, 33
sage.structure.parent

module, 13
sage.structure.parent_base

module, 44
sage.structure.parent_gens

module, 44
sage.structure.parent_old

module, 43
sage.structure.proof.proof

module, 125
sage.structure.richcmp

module, 127
sage.structure.sage_object

module, 1
sage.structure.sequence

module, 101
sage.structure.set_factories

module, 110
sage.structure.set_factories_example

module, 122
sage.structure.test_factory

module, 171
sage.structure.unique_representation

module, 135
SageObject (class in sage.structure.sage_object), 1
save() (sage.structure.sage_object.SageObject method),

5
self_element_constructor_attributes()

(sage.structure.set_factories.SetFactoryPolicy
method), 121

SelfParentPolicy (class in
sage.structure.set_factories), 119

seq() (in module sage.structure.sequence), 108
Sequence() (in module sage.structure.sequence), 101
Sequence_generic (class in sage.structure.sequence),

103
Set_generic (class in sage.structure.parent), 28
set_immutable() (sage.structure.element.ModuleElementWithMutability

method), 67
set_immutable() (sage.structure.list_clone.ClonableElement

method), 83
set_immutable() (sage.structure.mutability.Mutability

method), 166
set_immutable() (sage.structure.sequence.Sequence_generic

method), 107

Index 183

Parents and Elements, Release 9.8

SetFactory (class in sage.structure.set_factories), 119
SetFactoryPolicy (class in

sage.structure.set_factories), 120
short_repr() (sage.structure.parent.EltPair method),

14
simplify() (sage.structure.factorization.Factorization

method), 98
single_pair() (sage.structure.set_factories_example.Pairs_Y

method), 123
SingletonPair (class in

sage.structure.set_factories_example), 123
sort() (sage.structure.factorization.Factorization

method), 98
sort() (sage.structure.sequence.Sequence_generic

method), 107
SortedList (class in sage.structure.list_clone_demo),

89
SortedLists (class in sage.structure.list_clone_demo),

90
split_index_keywords() (in module

sage.structure.indexed_generators), 32
sqrt() (sage.structure.element.CommutativeRingElement

method), 56
standardize_names_index_set() (in module

sage.structure.indexed_generators), 32
subs() (sage.structure.element.Element method), 61
subset() (sage.structure.set_factories.ParentWithSetFactory

method), 118
substitute() (sage.structure.element.Element

method), 62

T
TestClass (class in sage.structure.dynamic_class), 162
TopMostParentPolicy (class in

sage.structure.set_factories), 121

U
unique_parent_warnings

(sage.structure.debug_options.DebugOptions_class
attribute), 169

UniqueFactory (class in sage.structure.factory), 154
UniqueFactoryTester (class in

sage.structure.test_factory), 171
UniqueRepresentation (class in

sage.structure.unique_representation), 151
unit() (sage.structure.factorization.Factorization

method), 99
universe() (sage.structure.factorization.Factorization

method), 99
universe() (sage.structure.sequence.Sequence_generic

method), 108
unreduce() (in module

sage.structure.unique_representation), 153

V
value (sage.structure.element_wrapper.ElementWrapper

attribute), 76
value() (sage.structure.factorization.Factorization

method), 100
variable_name() (sage.structure.category_object.CategoryObject

method), 9
variable_names() (sage.structure.category_object.CategoryObject

method), 9
Vector (class in sage.structure.element), 70

W
WithProof (class in sage.structure.proof.proof), 125
wrapped_class (sage.structure.element_wrapper.ElementWrapperCheckWrappedClass

attribute), 76

X
XYPair (class in sage.structure.set_factories_example),

123
XYPairs() (in module

sage.structure.set_factories_example), 123
XYPairsFactory (class in

sage.structure.set_factories_example), 124

184 Index

	Sage Objects
	Abstract base class for Sage objects
	Base class for objects of a category

	Parents
	Parents
	Base class for parent objects
	Indexed Generators
	Precision management for non-exact objects
	Global options
	Construction of options classes
	Accessing and setting option values
	Setter functions
	Documentation for options
	Dispatchers
	Doc testing
	Pickling

	Old-Style Parents (Deprecated)
	Base class for old-style parent objects
	Base class for old-style parent objects with a base ring
	Base class for old-style parent objects with generators
	Pure python code for abstract base class for objects with generators

	Elements
	Elements
	The Abstract Element Class Hierarchy
	How to Define a New Element Class
	Arithmetic for Elements
	A quick summary for the impatient
	Arithmetic in more detail
	Examples
	Implementation details

	Element Wrapper
	Elements, Array and Lists With Clone Protocol
	Elements, Array and Lists With Clone Protocol, demonstration classes

	Mathematical Data Structures
	Formal sums
	Factorizations
	IntegerFactorization objects
	Finite Homogeneous Sequences
	Set factories
	An example of set factory

	Use of Heuristic and Probabilistic Algorithms
	Global proof preferences
	Whether or not computations are provably correct by default

	Utilities
	Cython-like rich comparisons in Python
	Unique Representation
	What is a cached representation?
	Implementing a cached representation
	Using CachedRepresentation
	Normalising the arguments

	Using UniqueFactory

	Comparing the two ways of implementing a cached representation
	Simplicity and transparency
	Class inheritance
	Python versus extension classes

	What is a unique representation?

	Factory for cached representations
	Dynamic classes
	Mutability Cython Implementation

	Internals
	Debug options for the sage.structure modules
	Performance Test for Clone Protocol
	Cython Functions for Timing Clone Protocol
	Test of the factory module

	Indices and Tables
	Python Module Index
	Index

