
Topology
Release 9.8

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Finite simplicial complexes 3

2 Morphisms of simplicial complexes 43

3 Homsets between simplicial complexes 53

4 Examples of simplicial complexes 57

5 Finite Delta-complexes 73

6 Finite cubical complexes 89

7 Simplicial sets 105

8 Methods of constructing simplicial sets 145

9 Examples of simplicial sets. 171

10 Catalog of simplicial sets 177

11 Morphisms and homsets for simplicial sets 179

12 Generic cell complexes 193

13 Finite filtered complexes 207

14 Indices and Tables 211

Bibliography 213

Python Module Index 215

Index 217

i

ii

Topology, Release 9.8

Sage includes some tools for topology, and in particular cell complexes: (filtered) simplicial complexes, ∆-complexes,
cubical complexes, and simplicial sets. A class of generic cell complexes is also available, mainly for developers who
want to use it as a base for other types of cell complexes.

CONTENTS 1

Topology, Release 9.8

2 CONTENTS

CHAPTER

ONE

FINITE SIMPLICIAL COMPLEXES

AUTHORS:

• John H. Palmieri (2009-04)

• D. Benjamin Antieau (2009-06): added is_connected, generated_subcomplex, remove_facet, and
is_flag_complex methods; cached the output of the graph() method.

• Travis Scrimshaw (2012-08-17): Made SimplicialComplex have an immutable option, and added
__hash__() function which checks to make sure it is immutable. Made SimplicialComplex.
remove_face() into a mutator. Deprecated the vertex_set parameter.

• Christian Stump (2011-06): implementation of is_cohen_macaulay

• Travis Scrimshaw (2013-02-16): Allowed SimplicialComplex to make mutable copies.

• Simon King (2014-05-02): Let simplicial complexes be objects of the category of simplicial complexes.

• Jeremy Martin (2016-06-02): added cone_vertices, decone, is_balanced, is_partitionable, intersection methods

This module implements the basic structure of finite simplicial complexes. Given a set 𝑉 of “vertices”, a simplicial
complex on 𝑉 is a collection 𝐾 of subsets of 𝑉 satisfying the condition that if 𝑆 is one of the subsets in 𝐾, then so is
every subset of 𝑆. The subsets 𝑆 are called the ‘simplices’ of 𝐾.

Note: In Sage, the elements of the vertex set are determined automatically: 𝑉 is defined to be the union of the sets in
𝐾. So in Sage’s implementation of simplicial complexes, every vertex is included in some face.

A simplicial complex 𝐾 can be viewed as a purely combinatorial object, as described above, but it also gives rise to
a topological space |𝐾| (its geometric realization) as follows: first, the points of 𝑉 should be in general position in
euclidean space. Next, if {𝑣} is in 𝐾, then the vertex 𝑣 is in |𝐾|. If {𝑣, 𝑤} is in 𝐾, then the line segment from 𝑣 to 𝑤
is in |𝐾|. If {𝑢, 𝑣, 𝑤} is in 𝐾, then the triangle with vertices 𝑢, 𝑣, and 𝑤 is in |𝐾|. In general, |𝐾| is the union of the
convex hulls of simplices of 𝐾. Frequently, one abuses notation and uses 𝐾 to denote both the simplicial complex and
the associated topological space.

For any simplicial complex 𝐾 and any commutative ring 𝑅 there is an associated chain complex, with differential of
degree −1. The 𝑛𝑡ℎ term is the free 𝑅-module with basis given by the 𝑛-simplices of 𝐾. The differential is determined
by its value on any simplex: on the 𝑛-simplex with vertices (𝑣0, 𝑣1, ..., 𝑣𝑛), the differential is the alternating sum with
𝑖𝑡ℎ summand (−1)𝑖 multiplied by the (𝑛− 1)-simplex obtained by omitting vertex 𝑣𝑖.

3

Topology, Release 9.8

In the implementation here, the vertex set must be finite. To define a simplicial complex, specify its facets: the maximal
subsets (with respect to inclusion) of the vertex set belonging to 𝐾. Each facet can be specified as a list, a tuple, or a
set.

Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods are not
listed here; see the Generic Cell Complex page instead.

EXAMPLES:

sage: SimplicialComplex([[1], [3, 7]])
Simplicial complex with vertex set (1, 3, 7) and facets {(1,), (3, 7)}
sage: SimplicialComplex() # the empty simplicial complex
Simplicial complex with vertex set () and facets {()}
sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [3,0]])
sage: X
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (0, 3), (1, 2), (2,␣
→˓3)}

Sage can perform a number of operations on simplicial complexes, such as the join and the product, and it can also
compute homology:

sage: S = SimplicialComplex([[0,1], [1,2], [0,2]]) # circle
sage: T = S.product(S) # torus
sage: T
Simplicial complex with 9 vertices and 18 facets
sage: T.homology() # this computes reduced homology
{0: 0, 1: Z x Z, 2: Z}
sage: T.euler_characteristic()
0

Sage knows about some basic combinatorial data associated to a simplicial complex:

sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [0,3]])
sage: X.f_vector()
[1, 4, 4]
sage: X.face_poset()
Finite poset containing 8 elements
sage: x0, x1, x2, x3 = X.stanley_reisner_ring().gens()
sage: x0*x2 == x1*x3 == 0
True
sage: X.is_pure()
True

Mutability (see trac ticket #12587):

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.add_face([1,3])
sage: S.remove_face([1,3]); S
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(3,), (1, 4), (2, 4)}
sage: hash(S)
Traceback (most recent call last):
...
ValueError: this simplicial complex must be immutable; call set_immutable()

(continues on next page)

4 Chapter 1. Finite simplicial complexes

https://trac.sagemath.org/12587

Topology, Release 9.8

(continued from previous page)

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.set_immutable()
sage: S.add_face([1,3])
Traceback (most recent call last):
...
ValueError: this simplicial complex is not mutable
sage: S.remove_face([1,3])
Traceback (most recent call last):
...
ValueError: this simplicial complex is not mutable
sage: hash(S) == hash(S)
True

sage: S2 = SimplicialComplex([[1,4], [2,4]], is_mutable=False)
sage: hash(S2) == hash(S)
True

We can also make mutable copies of an immutable simplicial complex (see trac ticket #14142):

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.set_immutable()
sage: T = copy(S)
sage: T.is_mutable()
True
sage: S == T
True

class sage.topology.simplicial_complex.Simplex(X)
Bases: SageObject

Define a simplex.

Topologically, a simplex is the convex hull of a collection of vertices in general position. Combinatorially, it is
defined just by specifying a set of vertices. It is represented in Sage by the tuple of the vertices.

Parameters
X (integer, list, other iterable) – set of vertices

Returns
simplex with those vertices

X may be a non-negative integer 𝑛, in which case the simplicial complex will have 𝑛+ 1 vertices (0, 1, ..., 𝑛), or
it may be anything which may be converted to a tuple, in which case the vertices will be that tuple. In the second
case, each vertex must be hashable, so it should be a number, a string, or a tuple, for instance, but not a list.

Warning: The vertices should be distinct, and no error checking is done to make sure this is the case.

EXAMPLES:

sage: Simplex(4)
(0, 1, 2, 3, 4)
sage: Simplex([3, 4, 1])
(3, 4, 1)

(continues on next page)

5

https://trac.sagemath.org/14142
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Topology, Release 9.8

(continued from previous page)

sage: X = Simplex((3, 'a', 'vertex')); X
(3, 'a', 'vertex')
sage: X == loads(dumps(X))
True

Vertices may be tuples but not lists:

sage: Simplex([(1,2), (3,4)])
((1, 2), (3, 4))
sage: Simplex([[1,2], [3,4]])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

alexander_whitney(dim)

Subdivide this simplex into a pair of simplices.

If this simplex has vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛, then subdivide it into simplices (𝑣0, 𝑣1, ..., 𝑣𝑑𝑖𝑚) and
(𝑣𝑑𝑖𝑚, 𝑣𝑑𝑖𝑚+1, ..., 𝑣𝑛).

INPUT:

• dim – integer between 0 and one more than the dimension of this simplex

OUTPUT:

• a list containing just the triple (1, left, right), where left and right are the two simplices
described above.

This method allows one to construct a coproduct from the 𝑝 + 𝑞-chains to the tensor product of the 𝑝-
chains and the 𝑞-chains. The number 1 (a Sage integer) is the coefficient of left tensor right in this
coproduct. (The corresponding formula is more complicated for the cubes that make up a cubical complex,
and the output format is intended to be consistent for both cubes and simplices.)

Calling this method alexander_whitney is an abuse of notation, since the actual Alexander-Whitney map
goes from 𝐶(𝑋 × 𝑌) → 𝐶(𝑋) ⊗ 𝐶(𝑌), where 𝐶(−) denotes the chain complex of singular chains, but
this subdivision of simplices is at the heart of it.

EXAMPLES:

sage: s = Simplex((0,1,3,4))
sage: s.alexander_whitney(0)
[(1, (0,), (0, 1, 3, 4))]
sage: s.alexander_whitney(2)
[(1, (0, 1, 3), (3, 4))]

dimension()

The dimension of this simplex.

The dimension of a simplex is the number of vertices minus 1.

EXAMPLES:

sage: Simplex(5).dimension() == 5
True
sage: Simplex(5).face(1).dimension()
4

6 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

face(n)
The 𝑛-th face of this simplex.

Parameters
n (integer) – an integer between 0 and the dimension of this simplex

Returns
the simplex obtained by removing the 𝑛-th vertex from this simplex

EXAMPLES:

sage: S = Simplex(4)
sage: S.face(0)
(1, 2, 3, 4)
sage: S.face(3)
(0, 1, 2, 4)

faces()

The list of faces (of codimension 1) of this simplex.

EXAMPLES:

sage: S = Simplex(4)
sage: S.faces()
[(1, 2, 3, 4), (0, 2, 3, 4), (0, 1, 3, 4), (0, 1, 2, 4), (0, 1, 2, 3)]
sage: len(Simplex(10).faces())
11

is_empty()

Return True iff this simplex is the empty simplex.

EXAMPLES:

sage: [Simplex(n).is_empty() for n in range(-1,4)]
[True, False, False, False, False]

is_face(other)
Return True iff this simplex is a face of other.

EXAMPLES:

sage: Simplex(3).is_face(Simplex(5))
True
sage: Simplex(5).is_face(Simplex(2))
False
sage: Simplex(['a', 'b', 'c']).is_face(Simplex(8))
False

join(right, rename_vertices=True)
The join of this simplex with another one.

The join of two simplices [𝑣0, ..., 𝑣𝑘] and [𝑤0, ..., 𝑤𝑛] is the simplex [𝑣0, ..., 𝑣𝑘, 𝑤0, ..., 𝑤𝑛].

Parameters

• right – the other simplex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the vertices in the
join will be renamed by this formula: vertex “v” in the left-hand factor –> vertex “Lv” in

7

Topology, Release 9.8

the join, vertex “w” in the right-hand factor –> vertex “Rw” in the join. If this is false, this
tries to construct the join without renaming the vertices; this may cause problems if the two
factors have any vertices with names in common.

EXAMPLES:

sage: Simplex(2).join(Simplex(3))
('L0', 'L1', 'L2', 'R0', 'R1', 'R2', 'R3')
sage: Simplex(['a', 'b']).join(Simplex(['x', 'y', 'z']))
('La', 'Lb', 'Rx', 'Ry', 'Rz')
sage: Simplex(['a', 'b']).join(Simplex(['x', 'y', 'z']), rename_vertices=False)
('a', 'b', 'x', 'y', 'z')

product(other, rename_vertices=True)
The product of this simplex with another one, as a list of simplices.

Parameters

• other – the other simplex

• rename_vertices (boolean; optional, default True) – If this is False, then the vertices
in the product are the set of ordered pairs (𝑣, 𝑤) where 𝑣 is a vertex in the left-hand factor
(self) and 𝑤 is a vertex in the right-hand factor (other). If this is True, then the vertices
are renamed as “LvRw” (e.g., the vertex (1,2) would become “L1R2”). This is useful if
you want to define the Stanley-Reisner ring of the complex: vertex names like (0,1) are not
suitable for that, while vertex names like “L0R1” are.

Algorithm: see Hatcher, p. 277-278 [Hat2002] (who in turn refers to Eilenberg-Steenrod, p. 68): given S
= Simplex(m) and T = Simplex(n), then 𝑆 × 𝑇 can be triangulated as follows: for each path 𝑓 from
(0, 0) to (𝑚,𝑛) along the integer grid in the plane, going up or right at each lattice point, associate an
(𝑚 + 𝑛)-simplex with vertices 𝑣0, 𝑣1, . . . , where 𝑣𝑘 is the 𝑘𝑡ℎ vertex in the path 𝑓 .

Note that there are 𝑚+𝑛 choose 𝑛 such paths. Note also that each vertex in the product is a pair of vertices
(𝑣, 𝑤) where 𝑣 is a vertex in the left-hand factor and 𝑤 is a vertex in the right-hand factor.

Note: This produces a list of simplices – not a Simplex, not a SimplicialComplex.

EXAMPLES:

sage: len(Simplex(2).product(Simplex(2)))
6
sage: Simplex(1).product(Simplex(1))
[('L0R0', 'L0R1', 'L1R1'), ('L0R0', 'L1R0', 'L1R1')]
sage: Simplex(1).product(Simplex(1), rename_vertices=False)
[((0, 0), (0, 1), (1, 1)), ((0, 0), (1, 0), (1, 1))]

set()

The frozenset attached to this simplex.

EXAMPLES:

sage: Simplex(3).set()
frozenset({0, 1, 2, 3})

tuple()

The tuple attached to this simplex.

8 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

EXAMPLES:

sage: Simplex(3).tuple()
(0, 1, 2, 3)

Although simplices are printed as if they were tuples, they are not the same type:

sage: type(Simplex(3).tuple())
<... 'tuple'>
sage: type(Simplex(3))
<class 'sage.topology.simplicial_complex.Simplex'>

class sage.topology.simplicial_complex.SimplicialComplex(maximal_faces=None,
from_characteristic_function=None,
maximality_check=True,
sort_facets=None, name_check=False,
is_mutable=True, is_immutable=False,
category=None)

Bases: Parent, GenericCellComplex

Define a simplicial complex.

Parameters

• maximal_faces – set of maximal faces

• from_characteristic_function – see below

• maximality_check (boolean; optional, default True) – see below

• sort_facets (dict) – see below

• name_check (boolean; optional, default False) – see below

• is_mutable (boolean; optional, default True) – Set to False to make this immutable

• category (category; optional, default finite simplicial complexes) – the
category of the simplicial complex

Returns
a simplicial complex

maximal_faces should be a list or tuple or set (indeed, anything which may be converted to a set) whose
elements are lists (or tuples, etc.) of vertices. Maximal faces are also known as ‘facets’. maximal_faces can
also be a list containing a single non-negative integer 𝑛, in which case this constructs the simplicial complex
with a single 𝑛-simplex as the only facet.

Alternatively, the maximal faces can be defined from a monotone boolean function on the subsets of a set 𝑋 .
While defining maximal_faces=None, you can thus set from_characteristic_function=(f,X) where X
is the set of points and f a boolean monotone hereditary function that accepts a list of elements from X as input
(see subsets_with_hereditary_property() for more information).

If maximality_check is True, check that each maximal face is, in fact, maximal. In this case, when producing
the internal representation of the simplicial complex, omit those that are not. It is highly recommended that this
be True; various methods for this class may fail if faces which are claimed to be maximal are in fact not.

sort_facets: if not set to None, the default, this should be a dictionary, used for sorting the vertices in each
facet. The keys must be the vertices for the simplicial complex, and the values should be distinct sortable objects,
for example integers. This should not need to be specified except in very special circumstances; currently the
only use in the Sage library is when defining the product of a simplicial complex with itself: in this case, the

9

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/combinat/sage/combinat/subsets_hereditary.html#sage.combinat.subsets_hereditary.subsets_with_hereditary_property

Topology, Release 9.8

vertices in the product must be sorted compatibly with the vertices in each factor so that the diagonal map is
properly defined.

If name_check is True, check the names of the vertices to see if they can be easily converted to generators of a
polynomial ring – use this if you plan to use the Stanley-Reisner ring for the simplicial complex.

EXAMPLES:

sage: SimplicialComplex([[1,2], [1,4]])
Simplicial complex with vertex set (1, 2, 4) and facets {(1, 2), (1, 4)}
sage: SimplicialComplex([[0,2], [0,3], [0]])
Simplicial complex with vertex set (0, 2, 3) and facets {(0, 2), (0, 3)}
sage: SimplicialComplex([[0,2], [0,3], [0]], maximality_check=False)
Simplicial complex with vertex set (0, 2, 3) and facets {(0,), (0, 2), (0, 3)}

Finally, if the first argument is a simplicial complex, return that complex. If it is an object with a built-in conver-
sion to simplicial complexes (via a _simplicial_ method), then the resulting simplicial complex is returned:

sage: S = SimplicialComplex([[0,2], [0,3], [0,6]])
sage: SimplicialComplex(S) == S
True
sage: Tc = cubical_complexes.Torus(); Tc
Cubical complex with 16 vertices and 64 cubes
sage: Ts = SimplicialComplex(Tc); Ts
Simplicial complex with 16 vertices and 32 facets
sage: Ts.homology()
{0: 0, 1: Z x Z, 2: Z}

In the situation where the first argument is a simplicial complex or another object with a built-in conversion,
most of the other arguments are ignored. The only exception is is_mutable:

sage: S.is_mutable()
True
sage: SimplicialComplex(S, is_mutable=False).is_mutable()
False

From a characteristic monotone boolean function, e.g. the simplicial complex of all subsets 𝑆 ⊆ {0, 1, 2, 3, 4}
such that 𝑠𝑢𝑚(𝑆) ≤ 4:

sage: SimplicialComplex(from_characteristic_function=(lambda x:sum(x)<=4, range(5)))
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 4), (0, 1, 2),␣
→˓(0, 1, 3)}

or e.g. the simplicial complex of all 168 hyperovals of the projective plane of order 4:

sage: l = designs.ProjectiveGeometryDesign(2,1,GF(4,name='a'))
sage: f = lambda S: not any(len(set(S).intersection(x))>2 for x in l)
sage: SimplicialComplex(from_characteristic_function=(f, l.ground_set()))
Simplicial complex with 21 vertices and 168 facets

Warning: Simplicial complexes are not proper parents as they do not possess element classes. In particular,
parents are assumed to be hashable (and hence immutable) by the coercion framework. However this is close
enough to being a parent with elements being the faces of self that we currently allow this abuse.

10 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

F_triangle(S)
Return the F-triangle of self with respect to one maximal simplex S.

This is the bivariate generating polynomial of all faces, according to the number of elements in S and outside
S.

OUTPUT:

an F_triangle

See also:

Not to be confused with f_triangle() .

EXAMPLES:

sage: cs = simplicial_complexes.Torus()
sage: cs.F_triangle(cs.facets()[0])
F: x^3 + 9*x^2*y + 3*x*y^2 + y^3 + 6*x^2 + 12*x*y
+ 3*y^2 + 4*x + 3*y + 1

add_face(face)
Add a face to this simplicial complex.

Parameters
face – a subset of the vertex set

This changes the simplicial complex, adding a new face and all of its subfaces.

EXAMPLES:

sage: X = SimplicialComplex([[0,1], [0,2]])
sage: X.add_face([0,1,2,]); X
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}
sage: Y = SimplicialComplex(); Y
Simplicial complex with vertex set () and facets {()}
sage: Y.add_face([0,1])
sage: Y.add_face([1,2,3])
sage: Y
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (1, 2, 3)}

If you add a face which is already present, there is no effect:

sage: Y.add_face([1,3]); Y
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (1, 2, 3)}

alexander_dual(is_mutable=True)
The Alexander dual of this simplicial complex: according to the Macaulay2 documentation, this is the
simplicial complex whose faces are the complements of its nonfaces.

Thus find the minimal nonfaces and take their complements to find the facets in the Alexander dual.

Parameters
is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: Y = SimplicialComplex([[i] for i in range(5)]); Y
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0,), (1,), (2,),

(continues on next page)

11

../../../../../../html/en/reference/combinat/sage/combinat/triangles_FHM.html#sage.combinat.triangles_FHM.F_triangle

Topology, Release 9.8

(continued from previous page)

→˓ (3,), (4,)}
sage: Y.alexander_dual()
Simplicial complex with vertex set (0, 1, 2, 3, 4) and 10 facets
sage: X = SimplicialComplex([[0,1], [1,2], [2,3], [3,0]])
sage: X.alexander_dual()
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2), (1, 3)}

alexander_whitney(simplex, dim_left)
Subdivide this simplex into a pair of simplices.

If this simplex has vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛, then subdivide it into simplices (𝑣0, 𝑣1, ..., 𝑣𝑑𝑖𝑚) and
(𝑣𝑑𝑖𝑚, 𝑣𝑑𝑖𝑚+1, ..., 𝑣𝑛).

See Simplex.alexander_whitney() for more details. This method just calls that one.

INPUT:

• simplex – a simplex in this complex

• dim – integer between 0 and one more than the dimension of this simplex

OUTPUT: a list containing just the triple (1, left, right), where left and right are the two sim-
plices described above.

EXAMPLES:

sage: s = Simplex((0,1,3,4))
sage: X = SimplicialComplex([s])
sage: X.alexander_whitney(s, 0)
[(1, (0,), (0, 1, 3, 4))]
sage: X.alexander_whitney(s, 2)
[(1, (0, 1, 3), (3, 4))]

algebraic_topological_model(base_ring=None)
Algebraic topological model for this simplicial complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

• base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this simplicial complex. The algebraic topological model is a
chain complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀
and 𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

• 𝜑𝜑 = 0,

• 𝜋𝜑 = 0,

• 𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

• chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

• the chain complex 𝑀

12 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.pi().
codomain(), respectively.

EXAMPLES:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = simplicial_complexes.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

automorphism_group()

Return the automorphism group of the simplicial complex.

This is done by creating a bipartite graph, whose vertices are vertices and facets of the simplicial complex,
and computing its automorphism group.

Warning: Since trac ticket #14319 the domain of the automorphism group is equal to the graph’s
vertex set, and the translation argument has become useless.

EXAMPLES:

sage: S = simplicial_complexes.Simplex(3)
sage: S.automorphism_group().is_isomorphic(SymmetricGroup(4))
True

sage: P = simplicial_complexes.RealProjectivePlane()
sage: P.automorphism_group().is_isomorphic(AlternatingGroup(5))
True

sage: Z = SimplicialComplex([['1','2'],['2','3','a']])
sage: Z.automorphism_group().is_isomorphic(CyclicPermutationGroup(2))
True
sage: group = Z.automorphism_group()
sage: sorted(group.domain())
['1', '2', '3', 'a']

Check that trac ticket #17032 is fixed:

sage: s = SimplicialComplex([[(0,1),(2,3)]])
sage: s.automorphism_group().cardinality()
2

barycentric_subdivision()

The barycentric subdivision of this simplicial complex.

13

https://trac.sagemath.org/14319
https://trac.sagemath.org/17032

Topology, Release 9.8

See Wikipedia article Barycentric_subdivision for a definition.

EXAMPLES:

sage: triangle = SimplicialComplex([[0,1], [1,2], [0, 2]])
sage: hexagon = triangle.barycentric_subdivision()
sage: hexagon
Simplicial complex with 6 vertices and 6 facets
sage: hexagon.homology(1) == triangle.homology(1)
True

Barycentric subdivisions can get quite large, since each 𝑛-dimensional facet in the original complex pro-
duces (𝑛 + 1)! facets in the subdivision:

sage: S4 = simplicial_complexes.Sphere(4)
sage: S4
Minimal triangulation of the 4-sphere
sage: S4.barycentric_subdivision()
Simplicial complex with 62 vertices and 720 facets

cells(subcomplex=None)
The faces of this simplicial complex, in the form of a dictionary of sets keyed by dimension. If the optional
argument subcomplex is present, then return only the faces which are not in the subcomplex.

Parameters
subcomplex (optional, default None) – a subcomplex of this simplicial complex. Return
faces which are not in this subcomplex.

EXAMPLES:

sage: Y = SimplicialComplex([[1,2], [1,4]])
sage: Y.faces()
{-1: {()}, 0: {(1,), (2,), (4,)}, 1: {(1, 2), (1, 4)}}
sage: L = SimplicialComplex([[1,2]])
sage: Y.faces(subcomplex=L)
{-1: set(), 0: {(4,)}, 1: {(1, 4)}}

chain_complex(subcomplex=None, augmented=False, verbose=False, check=False, dimensions=None,
base_ring=Integer Ring, cochain=False)

The chain complex associated to this simplicial complex.

Parameters

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of
integers, compute the chain complex in those dimensions, setting the chain groups in all
other dimensions to zero.

• base_ring (optional, default ZZ) – commutative ring

• subcomplex (optional, default empty) – a subcomplex of this simplicial complex.
Compute the chain complex relative to this subcomplex.

• augmented (boolean; optional, default False) – If True, return the augmented chain com-
plex (that is, include a class in dimension −1 corresponding to the empty cell). This is
ignored if dimensions is specified.

• cochain (boolean; optional, default False) – If True, return the cochain complex (that
is, the dual of the chain complex).

14 Chapter 1. Finite simplicial complexes

https://en.wikipedia.org/wiki/Barycentric_subdivision

Topology, Release 9.8

• verbose (boolean; optional, default False) – If True, print some messages as the chain
complex is computed.

• check (boolean; optional, default False) – If True, make sure that the chain complex is
actually a chain complex: the differentials are composable and their product is zero.

Note: If subcomplex is nonempty, then the argument augmented has no effect: the chain complex relative
to a nonempty subcomplex is zero in dimension −1.

The rows and columns of the boundary matrices are indexed by the lists given by the _n_cells_sorted()
method, which by default are sorted.

EXAMPLES:

sage: circle = SimplicialComplex([[0,1], [1,2], [0, 2]])
sage: circle.chain_complex()
Chain complex with at most 2 nonzero terms over Integer Ring
sage: circle.chain_complex()._latex_()
'\Bold{Z}^{3} \xrightarrow{d_{1}} \Bold{Z}^{3}'
sage: circle.chain_complex(base_ring=QQ, augmented=True)
Chain complex with at most 3 nonzero terms over Rational Field

cone(is_mutable=True)
The cone on this simplicial complex.

Parameters
is_mutable (boolean; optional, default True) – Determines if the output is mutable

The cone is the simplicial complex formed by adding a new vertex𝐶 and simplices of the form [𝐶, 𝑣0, ..., 𝑣𝑘]
for every simplex [𝑣0, ..., 𝑣𝑘] in the original simplicial complex. That is, the cone is the join of the original
complex with a one-point simplicial complex.

EXAMPLES:

sage: S = SimplicialComplex([[0], [1]])
sage: CS = S.cone()
sage: sorted(CS.vertices())
['L0', 'L1', 'R0']
sage: len(CS.facets())
2
sage: CS.facets() == set([Simplex(['L0', 'R0']), Simplex(['L1', 'R0'])])
True

cone_vertices()

Return the list of cone vertices of self.

A vertex is a cone vertex if and only if it appears in every facet.

EXAMPLES:

sage: SimplicialComplex([[1,2,3]]).cone_vertices()
[1, 2, 3]
sage: SimplicialComplex([[1,2,3], [1,3,4], [1,5,6]]).cone_vertices()
[1]
sage: SimplicialComplex([[1,2,3], [1,3,4], [2,5,6]]).cone_vertices()
[]

15

Topology, Release 9.8

connected_component(simplex=None)
Return the connected component of this simplicial complex containing simplex. If simplex is omitted,
then return the connected component containing the zeroth vertex in the vertex list. (If the simplicial
complex is empty, raise an error.)

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1 == S1.connected_component()
True
sage: X = S1.disjoint_union(S1)
sage: X == X.connected_component()
False
sage: X.connected_component(Simplex(['L0'])) == X.connected_component(Simplex([
→˓'R0']))
False

sage: S0 = simplicial_complexes.Sphere(0)
sage: S0.vertices()
(0, 1)
sage: S0.connected_component()
Simplicial complex with vertex set (0,) and facets {(0,)}
sage: S0.connected_component(Simplex((1,)))
Simplicial complex with vertex set (1,) and facets {(1,)}

sage: SimplicialComplex([[]]).connected_component()
Traceback (most recent call last):
...
ValueError: the empty simplicial complex has no connected components

connected_sum(other, is_mutable=True)
The connected sum of this simplicial complex with another one.

Parameters

• other – another simplicial complex

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

Returns
the connected sum self # other

Warning: This does not check that self and other are manifolds, only that their facets all have the
same dimension. Since a (more or less) random facet is chosen from each complex and then glued
together, this method may return random results if applied to non-manifolds, depending on which facet
is chosen.

Algorithm: a facet is chosen from each surface, and removed. The vertices of these two facets are rela-
beled to (0,1,...,dim). Of the remaining vertices, the ones from the left-hand factor are renamed by
prepending an “L”, and similarly the remaining vertices in the right-hand factor are renamed by prepending
an “R”.

EXAMPLES:

16 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1.connected_sum(S1.connected_sum(S1)).homology()
{0: 0, 1: Z}
sage: P = simplicial_complexes.RealProjectivePlane(); P
Minimal triangulation of the real projective plane
sage: P.connected_sum(P) # the Klein bottle
Simplicial complex with 9 vertices and 18 facets

The notation ‘+’ may be used for connected sum, also:

sage: P + P # the Klein bottle
Simplicial complex with 9 vertices and 18 facets
sage: (P + P).homology()[1]
Z x C2

decone()

Return the subcomplex of self induced by the non-cone vertices.

EXAMPLES:

sage: SimplicialComplex([[1,2,3]]).decone()
Simplicial complex with vertex set () and facets {()}
sage: SimplicialComplex([[1,2,3], [1,3,4], [1,5,6]]).decone()
Simplicial complex with vertex set (2, 3, 4, 5, 6) and facets {(2, 3), (3, 4),␣
→˓(5, 6)}
sage: X = SimplicialComplex([[1,2,3], [1,3,4], [2,5,6]])
sage: X.decone() == X
True

delta_complex(sort_simplices=False)
Return self as a ∆-complex.

The ∆-complex is essentially identical to the simplicial complex: it has same simplices with the same
boundaries.

Parameters
sort_simplices (boolean; optional, default False) – if True, sort the list of simplices in
each dimension

EXAMPLES:

sage: T = simplicial_complexes.Torus()
sage: Td = T.delta_complex()
sage: Td
Delta complex with 7 vertices and 43 simplices
sage: T.homology() == Td.homology()
True

disjoint_union(right, rename_vertices=True, is_mutable=True)
The disjoint union of this simplicial complex with another one.

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the ver-
tices in the disjoint union will be renamed by the formula: vertex “v” in the left-hand

17

Topology, Release 9.8

factor –> vertex “Lv” in the disjoint union, vertex “w” in the right-hand factor –> vertex
“Rw” in the disjoint union. If this is false, this tries to construct the disjoint union without
renaming the vertices; this will cause problems if the two factors have any vertices with
names in common.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: S1.disjoint_union(S2).homology()
{0: Z, 1: Z, 2: Z}

f_triangle()

Compute the 𝑓 -triangle of self.

The 𝑓 -triangle is given by 𝑓𝑖,𝑗 being the number of faces 𝐹 of size 𝑗 such that 𝑖 = max𝐺⊆𝐹 |𝐺|.

See also:

Not to be confused with F_triangle() .

EXAMPLES:

sage: X = SimplicialComplex([[1,2,3], [3,4,5], [1,4], [1,5], [2,4], [2,5]])
sage: X.f_triangle() # this complex is not pure
[[0],
[0, 0],
[0, 0, 4],
[1, 5, 6, 2]]

A complex is pure if and only if the last row is nonzero:

sage: X = SimplicialComplex([[1,2,3], [3,4,5], [1,4,5]])
sage: X.f_triangle()
[[0], [0, 0], [0, 0, 0], [1, 5, 8, 3]]

face(simplex, i)
The 𝑖-th face of simplex in this simplicial complex

INPUT:

• simplex – a simplex in this simplicial complex

• i – integer

EXAMPLES:

sage: S = SimplicialComplex([[0,1,4], [0,1,2]])
sage: S.face(Simplex((0,2)), 0)
(2,)

sage: S.face(Simplex((0,3)), 0)
Traceback (most recent call last):
...
ValueError: this simplex is not in this simplicial complex

face_iterator(increasing=True)
An iterator for the faces in this simplicial complex.

18 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

INPUT:

• increasing – (optional, default True) if True, return faces in increasing order of dimension, thus
starting with the empty face. Otherwise it returns faces in decreasing order of dimension.

Note: Among the faces of a fixed dimension, there is no sorting.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: sorted(S1.face_iterator())
[(), (0,), (0, 1), (0, 2), (1,), (1, 2), (2,)]

faces(subcomplex=None)
The faces of this simplicial complex, in the form of a dictionary of sets keyed by dimension. If the optional
argument subcomplex is present, then return only the faces which are not in the subcomplex.

Parameters
subcomplex (optional, default None) – a subcomplex of this simplicial complex. Return
faces which are not in this subcomplex.

EXAMPLES:

sage: Y = SimplicialComplex([[1,2], [1,4]])
sage: Y.faces()
{-1: {()}, 0: {(1,), (2,), (4,)}, 1: {(1, 2), (1, 4)}}
sage: L = SimplicialComplex([[1,2]])
sage: Y.faces(subcomplex=L)
{-1: set(), 0: {(4,)}, 1: {(1, 4)}}

facets()

The maximal faces (a.k.a. facets) of this simplicial complex.

This just returns the set of facets used in defining the simplicial complex, so if the simplicial complex was
defined with no maximality checking, none is done here, either.

EXAMPLES:

sage: Y = SimplicialComplex([[0,2], [1,4]])
sage: sorted(Y.maximal_faces())
[(0, 2), (1, 4)]

facets is a synonym for maximal_faces:

sage: S = SimplicialComplex([[0,1], [0,1,2]])
sage: S.facets()
{(0, 1, 2)}

fixed_complex(G)

Return the fixed simplicial complex 𝐹𝑖𝑥(𝐺) for a subgroup 𝐺.

INPUT:

• G – a subgroup of the automorphism group of the simplicial complex or a list of elements of the
automorphism group

OUTPUT:

19

Topology, Release 9.8

• a simplicial complex 𝐹𝑖𝑥(𝐺)

Vertices in 𝐹𝑖𝑥(𝐺) are the orbits of 𝐺 (acting on vertices of self) that form a simplex in self. More
generally, simplices in 𝐹𝑖𝑥(𝐺) correspond to simplices in self that are union of such orbits.

A basic example:

sage: S4 = simplicial_complexes.Sphere(4)
sage: S3 = simplicial_complexes.Sphere(3)
sage: fix = S4.fixed_complex([S4.automorphism_group()([(0,1)])])
sage: fix
Simplicial complex with vertex set (0, 2, 3, 4, 5) and 5 facets
sage: fix.is_isomorphic(S3)
True

Another simple example:

sage: T = SimplicialComplex([[1,2,3],[2,3,4]])
sage: G = T.automorphism_group()
sage: T.fixed_complex([G([(1,4)])])
Simplicial complex with vertex set (2, 3) and facets {(2, 3)}

A more sophisticated example:

sage: RP2 = simplicial_complexes.ProjectivePlane()
sage: CP2 = simplicial_complexes.ComplexProjectivePlane()
sage: G = CP2.automorphism_group()
sage: H = G.subgroup([G([(2,3),(5,6),(8,9)])])
sage: CP2.fixed_complex(H).is_isomorphic(RP2)
True

flip_graph()

If self is pure, then it returns the flip graph of self, otherwise, it returns None.

The flip graph of a pure simplicial complex is the (undirected) graph with vertices being the facets, such
that two facets are joined by an edge if they meet in a codimension 1 face.

The flip graph is used to detect if self is a pseudomanifold.

EXAMPLES:

sage: S0 = simplicial_complexes.Sphere(0)
sage: G = S0.flip_graph()
sage: G.vertices(sort=True); G.edges(sort=True, labels=False)
[(0,), (1,)]
[((0,), (1,))]

sage: G = (S0.wedge(S0)).flip_graph()
sage: G.vertices(sort=True); G.edges(sort=True, labels=False)
[(0,), ('L1',), ('R1',)]
[((0,), ('L1',)), ((0,), ('R1',)), (('L1',), ('R1',))]

sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: G = (S1.wedge(S1)).flip_graph()
sage: len(G.vertices(sort=False))

(continues on next page)

20 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

(continued from previous page)

6
sage: len(G.edges(sort=False))
10

sage: (S1.wedge(S2)).flip_graph() is None
True

sage: G = S2.flip_graph()
sage: G.vertices(sort=True); G.edges(sort=True, labels=False)
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]
[((0, 1, 2), (0, 1, 3)),
((0, 1, 2), (0, 2, 3)),
((0, 1, 2), (1, 2, 3)),
((0, 1, 3), (0, 2, 3)),
((0, 1, 3), (1, 2, 3)),
((0, 2, 3), (1, 2, 3))]

sage: T = simplicial_complexes.Torus()
sage: G = T.suspension(4).flip_graph()
sage: len(G.vertices(sort=False)); len(G.edges(sort=False, labels=False))
46
161

fundamental_group(base_point=None, simplify=True)
Return the fundamental group of this simplicial complex.

INPUT:

• base_point (optional, default None) – if this complex is not path-connected, then specify a vertex; the
fundamental group is computed with that vertex as a base point. If the complex is path-connected, then
you may specify a vertex or leave this as its default setting of None. (If this complex is path-connected,
then this argument is ignored.)

• simplify (bool, optional True) – if False, then return a presentation of the group in terms of generators
and relations. If True, the default, simplify as much as GAP is able to.

Algorithm: we compute the edge-path group – see Wikipedia article Fundamental_group. Choose a span-
ning tree for the 1-skeleton, and then the group’s generators are given by the edges in the 1-skeleton; there
are two types of relations: 𝑒 = 1 if 𝑒 is in the spanning tree, and for every 2-simplex, if its edges are 𝑒0, 𝑒1,
and 𝑒2, then we impose the relation 𝑒0𝑒

−1
1 𝑒2 = 1.

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1.fundamental_group()
Finitely presented group < e | >

If we pass the argument simplify=False, we get generators and relations in a form which is not usually
very helpful. Here is the cyclic group of order 2, for instance:

sage: RP2 = simplicial_complexes.RealProjectiveSpace(2)
sage: C2 = RP2.fundamental_group(simplify=False)
sage: C2
Finitely presented group < e0, e1, e2, e3, e4, e5, e6, e7, e8, e9 | e0, e3, e4,␣
→˓e7, e9, e5*e2^-1*e0, e7*e2^-1*e1, e8*e3^-1*e1, e8*e6^-1*e4, e9*e6^-1*e5 >

(continues on next page)

21

https://en.wikipedia.org/wiki/Fundamental_group

Topology, Release 9.8

(continued from previous page)

sage: C2.simplified()
Finitely presented group < e1 | e1^2 >

This is the same answer given if the argument simplify is True (the default):

sage: RP2.fundamental_group()
Finitely presented group < e1 | e1^2 >

You must specify a base point to compute the fundamental group of a non-connected complex:

sage: K = S1.disjoint_union(RP2)
sage: K.fundamental_group()
Traceback (most recent call last):
...
ValueError: this complex is not connected, so you must specify a base point
sage: K.fundamental_group(base_point='L0')
Finitely presented group < e | >
sage: K.fundamental_group(base_point='R0').order()
2

Some other examples:

sage: S1.wedge(S1).fundamental_group()
Finitely presented group < e0, e1 | >
sage: simplicial_complexes.Torus().fundamental_group()
Finitely presented group < e1, e4 | e4^-1*e1^-1*e4*e1 >

sage: G = simplicial_complexes.MooreSpace(5).fundamental_group()
sage: G.ngens()
1
sage: x = G.gen(0)
sage: [(x**n).is_one() for n in range(1,6)]
[False, False, False, False, True]

g_vector()

The 𝑔-vector of this simplicial complex.

If the ℎ-vector of the complex is (ℎ0, ℎ1, ..., ℎ𝑑, ℎ𝑑+1) – see h_vector() – then its 𝑔-vector
(𝑔0, 𝑔1, ..., 𝑔[(𝑑+1)/2]) is defined by 𝑔0 = 1 and 𝑔𝑖 = ℎ𝑖 − ℎ𝑖−1 for 𝑖 > 0.

EXAMPLES:

sage: S3 = simplicial_complexes.Sphere(3).barycentric_subdivision()
sage: S3.f_vector()
[1, 30, 150, 240, 120]
sage: S3.h_vector()
[1, 26, 66, 26, 1]
sage: S3.g_vector()
[1, 25, 40]

generated_subcomplex(sub_vertex_set, is_mutable=True)
Return the largest sub-simplicial complex of self containing exactly sub_vertex_set as vertices.

Parameters

22 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

• sub_vertex_set – The sub-vertex set.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: S
Minimal triangulation of the 2-sphere
sage: S.generated_subcomplex([0,1,2])
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}

graph()

The 1-skeleton of this simplicial complex, as a graph.

Warning: This may give the wrong answer if the simplicial complex was constructed with
maximality_check set to False.

EXAMPLES:

sage: S = SimplicialComplex([[0,1,2,3]])
sage: G = S.graph(); G
Graph on 4 vertices
sage: G.edges(sort=True)
[(0, 1, None), (0, 2, None), (0, 3, None), (1, 2, None), (1, 3, None), (2, 3,␣
→˓None)]

h_triangle()

Compute the ℎ-triangle of self.

The ℎ-triangle of a simplicial complex ∆ is given by

ℎ𝑖,𝑗 =

𝑗∑︁
𝑘=0

(−1)𝑗−𝑘

(︂
𝑖− 𝑘

𝑗 − 𝑘

)︂
𝑓𝑖,𝑘,

where 𝑓𝑖,𝑘 is the 𝑓 -triangle of ∆.

EXAMPLES:

sage: X = SimplicialComplex([[1,2,3], [3,4,5], [1,4], [1,5], [2,4], [2,5]])
sage: X.h_triangle()
[[0],
[0, 0],
[0, 0, 4],
[1, 2, -1, 0]]

h_vector()

The ℎ-vector of this simplicial complex.

If the complex has dimension 𝑑 and (𝑓−1, 𝑓0, 𝑓1, ..., 𝑓𝑑) is its 𝑓 -vector (with 𝑓−1 = 1, representing the
empty simplex), then the ℎ-vector (ℎ0, ℎ1, ..., ℎ𝑑, ℎ𝑑+1) is defined by

𝑑+1∑︁
𝑖=0

ℎ𝑖𝑥
𝑑+1−𝑖 =

𝑑+1∑︁
𝑖=0

𝑓𝑖−1(𝑥− 1)𝑑+1−𝑖.

23

Topology, Release 9.8

Alternatively,

ℎ𝑗 =

𝑗−1∑︁
𝑖=−1

(−1)𝑗−𝑖−1

(︂
𝑑− 𝑖

𝑗 − 𝑖− 1

)︂
𝑓𝑖.

EXAMPLES:

The 𝑓 - and ℎ-vectors of the boundary of an octahedron are computed in Wikipedia article Simpli-
cial_complex:

sage: square = SimplicialComplex([[0,1], [1,2], [2,3], [0,3]])
sage: S0 = SimplicialComplex([[0], [1]])
sage: octa = square.join(S0) # boundary of an octahedron
sage: octa.f_vector()
[1, 6, 12, 8]
sage: octa.h_vector()
[1, 3, 3, 1]

intersection(other)
Calculate the intersection of two simplicial complexes.

EXAMPLES:

sage: X = SimplicialComplex([[1,2,3],[1,2,4]])
sage: Y = SimplicialComplex([[1,2,3],[1,4,5]])
sage: Z = SimplicialComplex([[1,2,3],[1,4],[2,4]])
sage: sorted(X.intersection(Y).facets())
[(1, 2, 3), (1, 4)]
sage: X.intersection(X) == X
True
sage: X.intersection(Z) == X
False
sage: X.intersection(Z) == Z
True

is_balanced(check_purity=False, certificate=False)
Determine whether self is balanced.

A simplicial complex 𝑋 of dimension 𝑑 − 1 is balanced if and only if its vertices can be colored with 𝑑
colors such that every face contains at most one vertex of each color. An equivalent condition is that the
1-skeleton of 𝑋 is 𝑑-colorable. In some contexts, it is also required that 𝑋 be pure (i.e., that all maximal
faces of 𝑋 have the same dimension).

INPUT:

• check_purity – (default: False) if this is True, require that self be pure as well as balanced

• certificate – (default: False) if this is True and self is balanced, then return a 𝑑-coloring of the
1-skeleton.

EXAMPLES:

A 1-dim simplicial complex is balanced iff it is bipartite:

sage: X = SimplicialComplex([[1,2],[1,4],[3,4],[2,5]])
sage: X.is_balanced()
True

(continues on next page)

24 Chapter 1. Finite simplicial complexes

https://en.wikipedia.org/wiki/Simplicial_complex
https://en.wikipedia.org/wiki/Simplicial_complex

Topology, Release 9.8

(continued from previous page)

sage: sorted(X.is_balanced(certificate=True))
[[1, 3, 5], [2, 4]]
sage: X = SimplicialComplex([[1,2],[1,4],[3,4],[2,4]])
sage: X.is_balanced()
False

Any barycentric division is balanced:

sage: X = SimplicialComplex([[1,2,3],[1,2,4],[2,3,4]])
sage: X.is_balanced()
False
sage: X.barycentric_subdivision().is_balanced()
True

A non-pure balanced complex:

sage: X=SimplicialComplex([[1,2,3],[3,4]])
sage: X.is_balanced(check_purity=True)
False
sage: sorted(X.is_balanced(certificate=True))
[[1, 4], [2], [3]]

is_cohen_macaulay(base_ring=Rational Field, ncpus=0)
Return True if self is Cohen-Macaulay.

A simplicial complex ∆ is Cohen-Macaulay over 𝑅 iff �̃�𝑖(lkΔ(𝐹);𝑅) = 0 for all 𝐹 ∈ ∆ and 𝑖 <
dim lkΔ(𝐹). Here, ∆ is self and 𝑅 is base_ring, and lk denotes the link operator on self.

INPUT:

• base_ring – (default: QQ) the base ring.

• ncpus – (default: 0) number of cpus used for the computation. If this is 0, determine the number of
cpus automatically based on the hardware being used.

For finite simplicial complexes, this is equivalent to the statement that the Stanley-Reisner ring of self is
Cohen-Macaulay.

EXAMPLES:

Spheres are Cohen-Macaulay:

sage: S = SimplicialComplex([[1,2],[2,3],[3,1]])
sage: S.is_cohen_macaulay(ncpus=3)
True

The following example is taken from Bruns, Herzog - Cohen-Macaulay rings, Figure 5.3:

sage: S = SimplicialComplex([[1,2,3],[1,4,5]])
sage: S.is_cohen_macaulay(ncpus=3)
False

The choice of base ring can matter. The real projective plane R𝑃 2 has 𝐻1(R𝑃 2) = Z/2, hence is CM
over Q but not over Z.

25

Topology, Release 9.8

sage: X = simplicial_complexes.RealProjectivePlane()
sage: X.is_cohen_macaulay()
True
sage: X.is_cohen_macaulay(ZZ)
False

is_flag_complex()

Return True if and only if self is a flag complex.

A flag complex is a simplicial complex that is the largest simplicial complex on its 1-skeleton. Thus a flag
complex is the clique complex of its graph.

EXAMPLES:

sage: h = Graph({0:[1,2,3,4],1:[2,3,4],2:[3]})
sage: x = h.clique_complex()
sage: x
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 4), (0, 1,
→˓ 2, 3)}
sage: x.is_flag_complex()
True

sage: X = simplicial_complexes.ChessboardComplex(3,3)
sage: X.is_flag_complex()
True

is_immutable()

Return True if immutable.

EXAMPLES:

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.is_immutable()
False
sage: S.set_immutable()
sage: S.is_immutable()
True

is_isomorphic(other, certificate=False)
Check whether two simplicial complexes are isomorphic.

INPUT:

• certificate – if True, then output is (a, b), where a is a boolean and b is either a map or None

This is done by creating two graphs and checking whether they are isomorphic.

EXAMPLES:

sage: Z1 = SimplicialComplex([[0,1],[1,2],[2,3,4],[4,5]])
sage: Z2 = SimplicialComplex([['a','b'],['b','c'],['c','d','e'],['e','f']])
sage: Z3 = SimplicialComplex([[1,2,3]])
sage: Z1.is_isomorphic(Z2)
True
sage: Z1.is_isomorphic(Z2, certificate=True)
(True, {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f'})

(continues on next page)

26 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

(continued from previous page)

sage: Z3.is_isomorphic(Z2)
False

We check that trac ticket #20751 is fixed:

sage: C1 = SimplicialComplex([[1,2,3], [2,4], [3,5], [5,6]])
sage: C2 = SimplicialComplex([['a','b','c'], ['b','d'], ['c','e'], ['e','f']])
sage: C1.is_isomorphic(C2, certificate=True)
(True, {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f'})

is_mutable()

Return True if mutable.

EXAMPLES:

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.is_mutable()
True
sage: S.set_immutable()
sage: S.is_mutable()
False
sage: S2 = SimplicialComplex([[1,4], [2,4]], is_mutable=False)
sage: S2.is_mutable()
False
sage: S3 = SimplicialComplex([[1,4], [2,4]], is_mutable=False)
sage: S3.is_mutable()
False

is_partitionable(certificate, solver, integrality_tolerance=False)
Determine whether self is partitionable.

A partitioning of a simplicial complex 𝑋 is a decomposition of its face poset into disjoint Boolean intervals
[𝑅,𝐹], where 𝐹 ranges over all facets of 𝑋 .

The method sets up an integer program with:

• a variable 𝑦𝑖 for each pair (𝑅,𝐹), where 𝐹 is a facet of 𝑋 and 𝑅 is a subface of 𝐹

• a constraint 𝑦𝑖 +𝑦𝑗 ≤ 1 for each pair (𝑅𝑖, 𝐹𝑖), (𝑅𝑗 , 𝐹𝑗) whose Boolean intervals intersect nontrivially
(equivalent to (𝑅𝑖 ⊆ 𝐹𝑗𝑎𝑛𝑑𝑅𝑗 ⊆ 𝐹𝑖))

• objective function equal to the sum of all 𝑦𝑖
INPUT:

• certificate – (default: False) If True, and self is partitionable, then return a list of pairs (𝑅,𝐹)
that form a partitioning.

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on MILP solvers and which default solver
is used, see the method solve of the class MixedIntegerLinearProgram.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

EXAMPLES:

Simplices are trivially partitionable:

27

https://trac.sagemath.org/20751
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Topology, Release 9.8

sage: X = SimplicialComplex([[1,2,3,4]])
sage: X.is_partitionable()
True
sage: X.is_partitionable(certificate=True)
[((), (1, 2, 3, 4), 4)]

Shellable complexes are partitionable:

sage: X = SimplicialComplex([[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],
→˓[2,4,5]])
sage: X.is_partitionable()
True
sage: P = X.is_partitionable(certificate=True)
sage: n_intervals_containing = lambda f: len([RF for RF in P if RF[0].is_
→˓face(f) and f.is_face(RF[1])])
sage: all(n_intervals_containing(f)==1 for k in X.faces().keys() for f in X.
→˓faces()[k])
True

A non-shellable, non-Cohen-Macaulay, partitionable example, constructed by Björner:

sage: X = SimplicialComplex([[1,2,3],[1,2,4],[1,3,4],[2,3,4],[1,5,6]])
sage: X.is_partitionable()
True

The bowtie complex is not partitionable:

sage: X = SimplicialComplex([[1,2,3],[1,4,5]])
sage: X.is_partitionable()
False

is_pseudomanifold()

Return True if self is a pseudomanifold.

A pseudomanifold is a simplicial complex with the following properties:

• it is pure of some dimension 𝑑 (all of its facets are 𝑑-dimensional)

• every (𝑑− 1)-dimensional simplex is the face of exactly two facets

• for every two facets 𝑆 and 𝑇 , there is a sequence of facets

𝑆 = 𝑓0, 𝑓1, ..., 𝑓𝑛 = 𝑇

such that for each 𝑖, 𝑓𝑖 and 𝑓𝑖−1 intersect in a (𝑑− 1)-simplex.

By convention, 𝑆0 is the only 0-dimensional pseudomanifold.

EXAMPLES:

sage: S0 = simplicial_complexes.Sphere(0)
sage: S0.is_pseudomanifold()
True
sage: (S0.wedge(S0)).is_pseudomanifold()
False
sage: S1 = simplicial_complexes.Sphere(1)

(continues on next page)

28 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

(continued from previous page)

sage: S2 = simplicial_complexes.Sphere(2)
sage: (S1.wedge(S1)).is_pseudomanifold()
False
sage: (S1.wedge(S2)).is_pseudomanifold()
False
sage: S2.is_pseudomanifold()
True
sage: T = simplicial_complexes.Torus()
sage: T.suspension(4).is_pseudomanifold()
True

is_pure()

Return True iff this simplicial complex is pure.

A simplicial complex is pure if and only if all of its maximal faces have the same dimension.

Warning: This may give the wrong answer if the simplicial complex was constructed with
maximality_check set to False.

EXAMPLES:

sage: U = SimplicialComplex([[1,2], [1, 3, 4]])
sage: U.is_pure()
False
sage: X = SimplicialComplex([[0,1], [0,2], [1,2]])
sage: X.is_pure()
True

Demonstration of the warning:

sage: S = SimplicialComplex([[0,1], [0]], maximality_check=False)
sage: S.is_pure()
False

is_shellable(certificate=False)
Return if self is shellable.

A simplicial complex is shellable if there exists a shelling order.

Note:

1. This method can check all orderings of the facets by brute force, hence can be very slow.

2. This is shellability in the general (nonpure) sense of Bjorner and Wachs [BW1996]. This method does
not check purity.

See also:

is_shelling_order()

INPUT:

• certificate – (default: False) if True then returns the shelling order (if it exists)

29

Topology, Release 9.8

EXAMPLES:

sage: X = SimplicialComplex([[1,2,5], [2,3,5], [3,4,5], [1,4,5]])
sage: X.is_shellable()
True
sage: order = X.is_shellable(True); order
((1, 2, 5), (2, 3, 5), (1, 4, 5), (3, 4, 5))
sage: X.is_shelling_order(order)
True

sage: X = SimplicialComplex([[1,2,3], [3,4,5]])
sage: X.is_shellable()
False

Examples from Figure 1 in [BW1996]:

sage: X = SimplicialComplex([[1,2,3], [3,4], [4,5], [5,6], [4,6]])
sage: X.is_shellable()
True

sage: X = SimplicialComplex([[1,2,3], [3,4], [4,5,6]])
sage: X.is_shellable()
False

REFERENCES:

• Wikipedia article Shelling_(topology)

is_shelling_order(shelling_order, certificate=False)
Return if the order of the facets given by shelling_order is a shelling order for self.

A sequence of facets (𝐹𝑖)
𝑁
𝑖=1 of a simplicial complex of dimension 𝑑 is a shelling order if for all 𝑖 =

2, 3, 4, . . ., the complex

𝑋𝑖 =

⎛⎝𝑖−1⋃︁
𝑗=1

𝐹𝑗

⎞⎠ ∩ 𝐹𝑖

is pure and of dimension dim𝐹𝑖 − 1.

INPUT:

• shelling_order – an ordering of the facets of self

• certificate – (default: False) if True then returns the index of the first facet that violate the
condition

See also:

is_shellable()

EXAMPLES:

sage: facets = [[1,2,5],[2,3,5],[3,4,5],[1,4,5]]
sage: X = SimplicialComplex(facets)
sage: X.is_shelling_order(facets)
True

sage: b = [[1,2,5], [3,4,5], [2,3,5], [1,4,5]]
(continues on next page)

30 Chapter 1. Finite simplicial complexes

https://en.wikipedia.org/wiki/Shelling_(topology)

Topology, Release 9.8

(continued from previous page)

sage: X.is_shelling_order(b)
False
sage: X.is_shelling_order(b, True)
(False, 1)

A non-pure example:

sage: facets = [[1,2,3], [3,4], [4,5], [5,6], [4,6]]
sage: X = SimplicialComplex(facets)
sage: X.is_shelling_order(facets)
True

REFERENCES:

• [BW1996]

is_subcomplex(other)
Return True if this is a subcomplex of other.

Parameters
other – another simplicial complex

EXAMPLES:

sage: S1 = simplicial_complexes.Sphere(1)
sage: S1.is_subcomplex(S1)
True
sage: Empty = SimplicialComplex()
sage: Empty.is_subcomplex(S1)
True
sage: S1.is_subcomplex(Empty)
False

sage: sorted(S1.facets())
[(0, 1), (0, 2), (1, 2)]
sage: T = S1.product(S1)
sage: sorted(T.facets())[0] # typical facet in T
('L0R0', 'L0R1', 'L1R1')
sage: S1.is_subcomplex(T)
False
sage: T._contractible_subcomplex().is_subcomplex(T)
True

join(right, rename_vertices=True, is_mutable=True)
The join of this simplicial complex with another one.

The join of two simplicial complexes 𝑆 and 𝑇 is the simplicial complex 𝑆 * 𝑇 with simplices of the form
[𝑣0, ..., 𝑣𝑘, 𝑤0, ..., 𝑤𝑛] for all simplices [𝑣0, ..., 𝑣𝑘] in 𝑆 and [𝑤0, ..., 𝑤𝑛] in 𝑇 .

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the vertices in the
join will be renamed by the formula: vertex “v” in the left-hand factor –> vertex “Lv” in
the join, vertex “w” in the right-hand factor –> vertex “Rw” in the join. If this is false, this

31

Topology, Release 9.8

tries to construct the join without renaming the vertices; this will cause problems if the two
factors have any vertices with names in common.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: S = SimplicialComplex([[0], [1]])
sage: T = SimplicialComplex([[2], [3]])
sage: S.join(T)
Simplicial complex with vertex set ('L0', 'L1', 'R2', 'R3') and 4 facets
sage: S.join(T, rename_vertices=False)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2), (0, 3), (1,␣
→˓2), (1, 3)}

The notation ‘*’ may be used, as well:

sage: S * S
Simplicial complex with vertex set ('L0', 'L1', 'R0', 'R1') and 4 facets
sage: S * S * S * S * S * S * S * S
Simplicial complex with 16 vertices and 256 facets

link(simplex, is_mutable=True)
The link of a simplex in this simplicial complex.

The link of a simplex 𝐹 is the simplicial complex formed by all simplices 𝐺 which are disjoint from 𝐹 but
for which 𝐹 ∪𝐺 is a simplex.

Parameters

• simplex – a simplex in this simplicial complex.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

EXAMPLES:

sage: X = SimplicialComplex([[0,1,2], [1,2,3]])
sage: X.link(Simplex([0]))
Simplicial complex with vertex set (1, 2) and facets {(1, 2)}
sage: X.link([1,2])
Simplicial complex with vertex set (0, 3) and facets {(0,), (3,)}
sage: Y = SimplicialComplex([[0,1,2,3]])
sage: Y.link([1])
Simplicial complex with vertex set (0, 2, 3) and facets {(0, 2, 3)}

maximal_faces()

The maximal faces (a.k.a. facets) of this simplicial complex.

This just returns the set of facets used in defining the simplicial complex, so if the simplicial complex was
defined with no maximality checking, none is done here, either.

EXAMPLES:

sage: Y = SimplicialComplex([[0,2], [1,4]])
sage: sorted(Y.maximal_faces())
[(0, 2), (1, 4)]

facets is a synonym for maximal_faces:

32 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

sage: S = SimplicialComplex([[0,1], [0,1,2]])
sage: S.facets()
{(0, 1, 2)}

minimal_nonfaces()

Set consisting of the minimal subsets of the vertex set of this simplicial complex which do not form faces.

Algorithm: Proceeds through the faces of the complex increasing the dimension, starting from dimension
0, and add the faces that are not contained in the complex and that are not already contained in a previously
seen minimal non-face.

This is used in computing the Stanley-Reisner ring and the Alexander dual.

EXAMPLES:

sage: X = SimplicialComplex([[1,3],[1,2]])
sage: X.minimal_nonfaces()
{(2, 3)}
sage: Y = SimplicialComplex([[0,1], [1,2], [2,3], [3,0]])
sage: sorted(Y.minimal_nonfaces())
[(0, 2), (1, 3)]

n_faces(n, subcomplex=None)
List of cells of dimension n of this cell complex. If the optional argument subcomplex is present, then
return the n-dimensional cells which are not in the subcomplex.

Parameters

• n (non-negative integer) – the dimension

• subcomplex (optional, default None) – a subcomplex of this cell complex. Return the cells
which are not in this subcomplex.

Note: The resulting list need not be sorted. If you want a sorted list of 𝑛-cells, use _n_cells_sorted().

EXAMPLES:

sage: delta_complexes.Torus().n_cells(1)
[(0, 0), (0, 0), (0, 0)]
sage: cubical_complexes.Cube(1).n_cells(0)
[[1,1], [0,0]]

n_skeleton(n)
The 𝑛-skeleton of this simplicial complex.

The 𝑛-skeleton of a simplicial complex is obtained by discarding all of the simplices in dimensions larger
than 𝑛.

Parameters
n – non-negative integer

EXAMPLES:

sage: X = SimplicialComplex([[0,1], [1,2,3], [0,2,3]])
sage: X.n_skeleton(1)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (0, 2), (0,␣

(continues on next page)

33

Topology, Release 9.8

(continued from previous page)

→˓3), (1, 2), (1, 3), (2, 3)}
sage: X.set_immutable()
sage: X.n_skeleton(2)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (0, 2, 3),␣
→˓(1, 2, 3)}
sage: X.n_skeleton(4)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (0, 2, 3),␣
→˓(1, 2, 3)}

product(right, rename_vertices=True, is_mutable=True)
The product of this simplicial complex with another one.

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is False, then the vertices in
the product are the set of ordered pairs (𝑣, 𝑤) where 𝑣 is a vertex in self and 𝑤 is a vertex
in right. If this is True, then the vertices are renamed as “LvRw” (e.g., the vertex (1,2)
would become “L1R2”). This is useful if you want to define the Stanley-Reisner ring of the
complex: vertex names like (0,1) are not suitable for that, while vertex names like “L0R1”
are.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

The vertices in the product will be the set of ordered pairs (𝑣, 𝑤) where 𝑣 is a vertex in self and 𝑤 is a vertex
in right.

Warning: If X and Y are simplicial complexes, then X*Y returns their join, not their product.

EXAMPLES:

sage: S = SimplicialComplex([[0,1], [1,2], [0,2]]) # circle
sage: K = SimplicialComplex([[0,1]]) # edge
sage: Cyl = S.product(K) # cylinder
sage: sorted(Cyl.vertices())
['L0R0', 'L0R1', 'L1R0', 'L1R1', 'L2R0', 'L2R1']
sage: Cyl2 = S.product(K, rename_vertices=False)
sage: sorted(Cyl2.vertices())
[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)]
sage: T = S.product(S) # torus
sage: T
Simplicial complex with 9 vertices and 18 facets
sage: T.homology()
{0: 0, 1: Z x Z, 2: Z}

These can get large pretty quickly:

sage: T = simplicial_complexes.Torus(); T
Minimal triangulation of the torus
sage: K = simplicial_complexes.KleinBottle(); K
Minimal triangulation of the Klein bottle
sage: T.product(K) # long time: 5 or 6 seconds
Simplicial complex with 56 vertices and 1344 facets

34 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

remove_face(face, check=False)
Remove a face from this simplicial complex.

Parameters

• face – a face of the simplicial complex

• check – boolean; optional, default False. If True, raise an error if face is not a face of
this simplicial complex

This does not return anything; instead, it changes the simplicial complex.

ALGORITHM:

The facets of the new simplicial complex are the facets of the original complex not containing face, together
with those of link(face)*boundary(face).

EXAMPLES:

sage: S = range(1,5)
sage: Z = SimplicialComplex([S]); Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 2, 3, 4)}
sage: Z.remove_face([1,2])
sage: Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 3, 4), (2, 3,␣
→˓4)}

sage: S = SimplicialComplex([[0,1,2],[2,3]])
sage: S
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(2, 3), (0, 1, 2)}
sage: S.remove_face([0,1,2])
sage: S
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1), (0, 2), (1,␣
→˓2), (2, 3)}

remove_faces(faces, check=False)
Remove a collection of faces from this simplicial complex.

Parameters

• faces – a list (or any iterable) of faces of the simplicial complex

• check – boolean; optional, default False. If True, raise an error if any element of faces
is not a face of this simplicial complex

This does not return anything; instead, it changes the simplicial complex.

ALGORITHM:

Run self.remove_face(f) repeatedly, for f in faces.

EXAMPLES:

sage: S = range(1,5)
sage: Z = SimplicialComplex([S]); Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 2, 3, 4)}
sage: Z.remove_faces([[1,2]])
sage: Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 3, 4), (2, 3,␣
→˓4)}

(continues on next page)

35

Topology, Release 9.8

(continued from previous page)

sage: Z = SimplicialComplex([S]); Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(1, 2, 3, 4)}
sage: Z.remove_faces([[1,2], [2,3]])
sage: Z
Simplicial complex with vertex set (1, 2, 3, 4) and facets {(2, 4), (1, 3, 4)}

restriction_sets(order)
Return the restriction sets of the facets according to order.

A restriction set of a shelling order is the sequence of smallest new faces that are created during the shelling
order.

See also:

is_shelling_order()

EXAMPLES:

sage: facets = [[1,2,5], [2,3,5], [3,4,5], [1,4,5]]
sage: X = SimplicialComplex(facets)
sage: X.restriction_sets(facets)
[(), (3,), (4,), (1, 4)]

sage: b = [[1,2,5], [3,4,5], [2,3,5], [1,4,5]]
sage: X.restriction_sets(b)
Traceback (most recent call last):
...
ValueError: not a shelling order

set_immutable()

Make this simplicial complex immutable.

EXAMPLES:

sage: S = SimplicialComplex([[1,4], [2,4]])
sage: S.is_mutable()
True
sage: S.set_immutable()
sage: S.is_mutable()
False

stanley_reisner_ring(base_ring=Integer Ring)
The Stanley-Reisner ring of this simplicial complex.

Parameters
base_ring (optional, default ZZ) – a commutative ring

Returns
a quotient of a polynomial algebra with coefficients in base_ring, with one generator for
each vertex in the simplicial complex, by the ideal generated by the products of those vertices
which do not form faces in it.

Thus the ideal is generated by the products corresponding to the minimal nonfaces of the simplicial complex.

36 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

Warning: This may be quite slow!

Also, this may behave badly if the vertices have the ‘wrong’ names. To avoid this, define the simplicial
complex at the start with the flag name_check set to True.

More precisely, this is a quotient of a polynomial ring with one generator for each vertex. If the name of
a vertex is a non-negative integer, then the corresponding polynomial generator is named 'x' followed
by that integer (e.g., 'x2', 'x3', 'x5', . . .). Otherwise, the polynomial generators are given the same
names as the vertices. Thus if the vertex set is (2, 'x2'), there will be problems.

EXAMPLES:

sage: X = SimplicialComplex([[0,1,2], [0,2,3]])
sage: X.stanley_reisner_ring()
Quotient of Multivariate Polynomial Ring in x0, x1, x2, x3 over Integer Ring by␣
→˓the ideal (x1*x3)
sage: Y = SimplicialComplex([[0,1,2,3,4]]); Y
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 2, 3, 4)}
sage: Y.add_face([0,1,2,3,4])
sage: Y.stanley_reisner_ring(base_ring=QQ)
Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Rational Field

star(simplex, is_mutable=True)
Return the star of a simplex in this simplicial complex.

The star of simplex is the simplicial complex formed by all simplices which contain simplex.

INPUT:

• simplex – a simplex in this simplicial complex

• is_mutable – (default: True) boolean; determines if the output is mutable

EXAMPLES:

sage: X = SimplicialComplex([[0,1,2], [1,2,3]])
sage: X.star(Simplex([0]))
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}
sage: X.star(Simplex([1]))
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (1, 2,␣
→˓3)}
sage: X.star(Simplex([1,2]))
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (1, 2,␣
→˓3)}
sage: X.star(Simplex([]))
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (1, 2,␣
→˓3)}

stellar_subdivision(simplex, inplace=False, is_mutable=True)
Return the stellar subdivision of a simplex in this simplicial complex.

The stellar subdivision of a face is obtained by adding a new vertex to the simplicial complex self joined
to the star of the face and then deleting the face simplex to the result.

INPUT:

• simplex – a simplex face of self

37

Topology, Release 9.8

• inplace – (default: False) boolean; determines if the operation is done on self or on a copy

• is_mutable – (default: True) boolean; determines if the output is mutable

OUTPUT:

• A simplicial complex obtained by the stellar subdivision of the face simplex

EXAMPLES:

sage: SC = SimplicialComplex([[0,1,2],[1,2,3]])
sage: F1 = Simplex([1,2])
sage: F2 = Simplex([1,3])
sage: F3 = Simplex([1,2,3])
sage: SC.stellar_subdivision(F1)
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 4), (0, 2,
→˓ 4), (1, 3, 4), (2, 3, 4)}
sage: SC.stellar_subdivision(F2)
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 2), (1, 2,
→˓ 4), (2, 3, 4)}
sage: SC.stellar_subdivision(F3)
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 2), (1, 2,
→˓ 4), (1, 3, 4), (2, 3, 4)}
sage: SC.stellar_subdivision(F3, inplace=True);SC
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 2), (1, 2,
→˓ 4), (1, 3, 4), (2, 3, 4)}

The simplex to subdivide should be a face of self:

sage: SC = SimplicialComplex([[0,1,2],[1,2,3]])
sage: F4 = Simplex([3,4])
sage: SC.stellar_subdivision(F4)
Traceback (most recent call last):
...
ValueError: the face to subdivide is not a face of self

One can not modify an immutable simplicial complex:

sage: SC = SimplicialComplex([[0,1,2],[1,2,3]], is_mutable=False)
sage: SC.stellar_subdivision(F1, inplace=True)
Traceback (most recent call last):
...
ValueError: this simplicial complex is not mutable

suspension(n=1, is_mutable=True)
The suspension of this simplicial complex.

Parameters

• n (optional, default 1) – positive integer – suspend this many times.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

The suspension is the simplicial complex formed by adding two new vertices 𝑆0 and 𝑆1 and simplices of
the form [𝑆0, 𝑣0, ..., 𝑣𝑘] and [𝑆1, 𝑣0, ..., 𝑣𝑘] for every simplex [𝑣0, ..., 𝑣𝑘] in the original simplicial complex.
That is, the suspension is the join of the original complex with a two-point simplicial complex.

If the simplicial complex 𝑀 happens to be a pseudomanifold (see is_pseudomanifold()), then this
instead constructs Datta’s one-point suspension (see [Dat2007], p. 434): choose a vertex 𝑢 in 𝑀 and

38 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

choose a new vertex 𝑤 to add. Denote the join of simplices by “*”. The facets in the one-point suspension
are of the two forms

• 𝑢 * 𝛼 where 𝛼 is a facet of 𝑀 not containing 𝑢

• 𝑤 * 𝛽 where 𝛽 is any facet of 𝑀 .

EXAMPLES:

sage: S0 = SimplicialComplex([[0], [1]])
sage: S0.suspension() == simplicial_complexes.Sphere(1)
True
sage: S3 = S0.suspension(3) # the 3-sphere
sage: S3.homology()
{0: 0, 1: 0, 2: 0, 3: Z}

For pseudomanifolds, the complex constructed here will be smaller than that obtained by taking the join
with the 0-sphere: the join adds two vertices, while this construction only adds one.

sage: T = simplicial_complexes.Torus()
sage: sorted(T.join(S0).vertices()) # 9 vertices
['L0', 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'R0', 'R1']
sage: T.suspension().vertices() # 8 vertices
(0, 1, 2, 3, 4, 5, 6, 7)

vertices()

The vertex set, as a tuple, of this simplicial complex.

EXAMPLES:

sage: S = SimplicialComplex([[i] for i in range(16)] + [[0,1], [1,2]])
sage: S
Simplicial complex with 16 vertices and 15 facets
sage: sorted(S.vertices())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

wedge(right, rename_vertices=True, is_mutable=True)
The wedge (one-point union) of this simplicial complex with another one.

Parameters

• right – the other simplicial complex (the right-hand factor)

• rename_vertices (boolean; optional, default True) – If this is True, the vertices in the
wedge will be renamed by the formula: first vertex in each are glued together and called
“0”. Otherwise, each vertex “v” in the left-hand factor –> vertex “Lv” in the wedge, vertex
“w” in the right-hand factor –> vertex “Rw” in the wedge. If this is False, this tries to
construct the wedge without renaming the vertices; this will cause problems if the two
factors have any vertices with names in common.

• is_mutable (boolean; optional, default True) – Determines if the output is mutable

Note: This operation is not well-defined if self or other is not path-connected.

EXAMPLES:

39

Topology, Release 9.8

sage: S1 = simplicial_complexes.Sphere(1)
sage: S2 = simplicial_complexes.Sphere(2)
sage: S1.wedge(S2).homology()
{0: 0, 1: Z, 2: Z}

sage.topology.simplicial_complex.facets_for_K3()

Return the facets for a minimal triangulation of the K3 surface.

This is a pure simplicial complex of dimension 4 with 16 vertices and 288 facets. The facets are obtained by
constructing a few facets and a permutation group 𝐺, and then computing the 𝐺-orbit of those facets.

See Casella and Kühnel in [CK2001] and Spreer and Kühnel [SK2011]; the construction here uses the labeling
from Spreer and Kühnel.

EXAMPLES:

sage: from sage.topology.simplicial_complex import facets_for_K3
sage: A = facets_for_K3() # long time (a few seconds)
sage: SimplicialComplex(A) == simplicial_complexes.K3Surface() # long time
True

sage.topology.simplicial_complex.facets_for_RP4()

Return the list of facets for a minimal triangulation of 4-dimensional real projective space.

We use vertices numbered 1 through 16, define two facets, and define a certain subgroup 𝐺 of the symmetric
group 𝑆16. Then the set of all facets is the 𝐺-orbit of the two given facets.

See the description in Example 3.12 in Datta [Dat2007].

EXAMPLES:

sage: from sage.topology.simplicial_complex import facets_for_RP4
sage: A = facets_for_RP4() # long time (1 or 2 seconds)
sage: SimplicialComplex(A) == simplicial_complexes.RealProjectiveSpace(4) # long␣
→˓time
True

sage.topology.simplicial_complex.lattice_paths(t1, t2, length=None)
Given lists (or tuples or . . .) t1 and t2, think of them as labelings for vertices: t1 labeling points on the x-axis,
t2 labeling points on the y-axis, both increasing. Return the list of rectilinear paths along the grid defined by
these points in the plane, starting from (t1[0], t2[0]), ending at (t1[last], t2[last]), and at each grid
point, going either right or up. See the examples.

Parameters

• t1 (list, other iterable) – labeling for vertices

• t2 (list, other iterable) – labeling for vertices

• length (integer or None; optional, default None) – if not None, then an integer, the length
of the desired path.

Returns
list of lists of vertices making up the paths as described above

Return type
list of lists

This is used when triangulating the product of simplices. The optional argument length is used for ∆-
complexes, to specify all simplices in a product: in the triangulation of a product of two simplices, there is

40 Chapter 1. Finite simplicial complexes

Topology, Release 9.8

a 𝑑-simplex for every path of length 𝑑 + 1 in the lattice. The path must start at the bottom left and end at the
upper right, and it must use at least one point in each row and in each column, so if length is too small, there
will be no paths.

EXAMPLES:

sage: from sage.topology.simplicial_complex import lattice_paths
sage: lattice_paths([0,1,2], [0,1,2])
[[(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)],
[(0, 0), (1, 0), (1, 1), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)],
[(0, 0), (1, 0), (1, 1), (2, 1), (2, 2)],
[(0, 0), (1, 0), (2, 0), (2, 1), (2, 2)]]
sage: lattice_paths(('a', 'b', 'c'), (0, 3, 5))
[[('a', 0), ('a', 3), ('a', 5), ('b', 5), ('c', 5)],
[('a', 0), ('a', 3), ('b', 3), ('b', 5), ('c', 5)],
[('a', 0), ('b', 0), ('b', 3), ('b', 5), ('c', 5)],
[('a', 0), ('a', 3), ('b', 3), ('c', 3), ('c', 5)],
[('a', 0), ('b', 0), ('b', 3), ('c', 3), ('c', 5)],
[('a', 0), ('b', 0), ('c', 0), ('c', 3), ('c', 5)]]
sage: lattice_paths(range(3), range(3), length=2)
[]
sage: lattice_paths(range(3), range(3), length=3)
[[(0, 0), (1, 1), (2, 2)]]
sage: lattice_paths(range(3), range(3), length=4)
[[(0, 0), (1, 1), (1, 2), (2, 2)],
[(0, 0), (0, 1), (1, 2), (2, 2)],
[(0, 0), (1, 1), (2, 1), (2, 2)],
[(0, 0), (1, 0), (2, 1), (2, 2)],
[(0, 0), (0, 1), (1, 1), (2, 2)],
[(0, 0), (1, 0), (1, 1), (2, 2)]]

sage.topology.simplicial_complex.rename_vertex(n, keep, left=True)
Rename a vertex: the vertices from the list keep get relabeled 0, 1, 2, . . . , in order. Any other vertex (e.g. 4) gets
renamed to by prepending an ‘L’ or an ‘R’ (thus to either ‘L4’ or ‘R4’), depending on whether the argument left
is True or False.

Parameters

• n – a ‘vertex’: either an integer or a string

• keep – a list of three vertices

• left (boolean; optional, default True) – if True, rename for use in left factor

This is used by the connected_sum() method for simplicial complexes.

EXAMPLES:

sage: from sage.topology.simplicial_complex import rename_vertex
sage: rename_vertex(6, [5, 6, 7])
1
sage: rename_vertex(3, [5, 6, 7, 8, 9])
'L3'
sage: rename_vertex(3, [5, 6, 7], left=False)
'R3'

41

Topology, Release 9.8

42 Chapter 1. Finite simplicial complexes

CHAPTER

TWO

MORPHISMS OF SIMPLICIAL COMPLEXES

AUTHORS:

• Benjamin Antieau <d.ben.antieau@gmail.com> (2009.06)

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

This module implements morphisms of simplicial complexes. The input is given by a dictionary on the vertex set of a
simplicial complex. The initialization checks that faces are sent to faces.

There is also the capability to create the fiber product of two morphisms with the same codomain.

EXAMPLES:

sage: S = SimplicialComplex([[0,2],[1,5],[3,4]], is_mutable=False)
sage: H = Hom(S,S.product(S, is_mutable=False))
sage: H.diagonal_morphism()
Simplicial complex morphism:
From: Simplicial complex with vertex set (0, 1, 2, 3, 4, 5) and facets {(0, 2), (1, 5),

→˓ (3, 4)}
To: Simplicial complex with 36 vertices and 18 facets
Defn: [0, 1, 2, 3, 4, 5] --> ['L0R0', 'L1R1', 'L2R2', 'L3R3', 'L4R4', 'L5R5']

sage: S = SimplicialComplex([[0,2],[1,5],[3,4]], is_mutable=False)
sage: T = SimplicialComplex([[0,2],[1,3]], is_mutable=False)
sage: f = {0:0,1:1,2:2,3:1,4:3,5:3}
sage: H = Hom(S,T)
sage: x = H(f)
sage: x.image()
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 2), (1, 3)}
sage: x.is_surjective()
True
sage: x.is_injective()
False
sage: x.is_identity()
False

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: i.image()
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 2), (0, 1, 3), (0, 2,␣
→˓3), (1, 2, 3)}
sage: i.is_surjective()

(continues on next page)

43

mailto:d.ben.antieau@gmail.com

Topology, Release 9.8

(continued from previous page)

True
sage: i.is_injective()
True
sage: i.is_identity()
True

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: j = i.fiber_product(i)
sage: j
Simplicial complex morphism:
From: Simplicial complex with 4 vertices and 4 facets
To: Minimal triangulation of the 2-sphere
Defn: L0R0 |--> 0

L1R1 |--> 1
L2R2 |--> 2
L3R3 |--> 3

sage: S = simplicial_complexes.Sphere(2)
sage: T = S.product(SimplicialComplex([[0,1]]), rename_vertices = False, is_
→˓mutable=False)
sage: H = Hom(T,S)
sage: T
Simplicial complex with 8 vertices and 12 facets
sage: sorted(T.vertices())
[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
sage: f = {(0, 0): 0, (0, 1): 0, (1, 0): 1, (1, 1): 1, (2, 0): 2, (2, 1): 2, (3, 0): 3,␣
→˓(3, 1): 3}
sage: x = H(f)
sage: U = simplicial_complexes.Sphere(1)
sage: G = Hom(U,S)
sage: U
Minimal triangulation of the 1-sphere
sage: g = {0:0,1:1,2:2}
sage: y = G(g)
sage: z = y.fiber_product(x)
sage: z # this is the mapping path space
Simplicial complex morphism:
From: Simplicial complex with 6 vertices and ... facets
To: Minimal triangulation of the 2-sphere
Defn: ['L0R(0, 0)', 'L0R(0, 1)', 'L1R(1, 0)', 'L1R(1, 1)', 'L2R(2, 0)', 'L2R(2, 1)'] --

→˓> [0, 0, 1, 1, 2, 2]

class sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism(f, X, Y)
Bases: Morphism

An element of this class is a morphism of simplicial complexes.

associated_chain_complex_morphism(base_ring=Integer Ring, augmented=False, cochain=False)
Return the associated chain complex morphism of self.

EXAMPLES:

44 Chapter 2. Morphisms of simplicial complexes

../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Topology, Release 9.8

sage: S = simplicial_complexes.Sphere(1)
sage: T = simplicial_complexes.Sphere(2)
sage: H = Hom(S,T)
sage: f = {0:0,1:1,2:2}
sage: x = H(f)
sage: x
Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Minimal triangulation of the 2-sphere
Defn: 0 |--> 0

1 |--> 1
2 |--> 2

sage: a = x.associated_chain_complex_morphism()
sage: a
Chain complex morphism:
From: Chain complex with at most 2 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: a._matrix_dictionary
{0: [1 0 0]
[0 1 0]
[0 0 1]
[0 0 0], 1: [1 0 0]
[0 1 0]
[0 0 0]
[0 0 1]
[0 0 0]
[0 0 0], 2: []}
sage: x.associated_chain_complex_morphism(augmented=True)
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 4 nonzero terms over Integer Ring

sage: x.associated_chain_complex_morphism(cochain=True)
Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Integer Ring
To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: x.associated_chain_complex_morphism(augmented=True,cochain=True)
Chain complex morphism:
From: Chain complex with at most 4 nonzero terms over Integer Ring
To: Chain complex with at most 3 nonzero terms over Integer Ring

sage: x.associated_chain_complex_morphism(base_ring=GF(11))
Chain complex morphism:
From: Chain complex with at most 2 nonzero terms over Finite Field of size 11
To: Chain complex with at most 3 nonzero terms over Finite Field of size 11

Some simplicial maps which reverse the orientation of a few simplices:

sage: g = {0:1, 1:2, 2:0}
sage: H(g).associated_chain_complex_morphism()._matrix_dictionary
{0: [0 0 1]
[1 0 0]
[0 1 0]
[0 0 0], 1: [0 -1 0]
[0 0 -1]

(continues on next page)

45

Topology, Release 9.8

(continued from previous page)

[0 0 0]
[1 0 0]
[0 0 0]
[0 0 0], 2: []}
sage: X = SimplicialComplex([[0, 1]], is_mutable=False)
sage: Hom(X,X)({0:1, 1:0}).associated_chain_complex_morphism()._matrix_
→˓dictionary
{0: [0 1]
[1 0], 1: [-1]}

fiber_product(other, rename_vertices=True)
Fiber product of self and other. Both morphisms should have the same codomain. The method returns
a morphism of simplicial complexes, which is the morphism from the space of the fiber product to the
codomain.

EXAMPLES:

sage: S = SimplicialComplex([[0,1],[1,2]], is_mutable=False)
sage: T = SimplicialComplex([[0,2],[1]], is_mutable=False)
sage: U = SimplicialComplex([[0,1],[2]], is_mutable=False)
sage: H = Hom(S,U)
sage: G = Hom(T,U)
sage: f = {0:0,1:1,2:0}
sage: g = {0:0,1:1,2:1}
sage: x = H(f)
sage: y = G(g)
sage: z = x.fiber_product(y)
sage: z
Simplicial complex morphism:
From: Simplicial complex with 4 vertices and facets {...}
To: Simplicial complex with vertex set (0, 1, 2) and facets {(2,), (0, 1)}
Defn: L0R0 |--> 0

L1R1 |--> 1
L1R2 |--> 1
L2R0 |--> 0

image()

Computes the image simplicial complex of 𝑓 .

EXAMPLES:

sage: S = SimplicialComplex([[0,1],[2,3]], is_mutable=False)
sage: T = SimplicialComplex([[0,1]], is_mutable=False)
sage: f = {0:0,1:1,2:0,3:1}
sage: H = Hom(S,T)
sage: x = H(f)
sage: x.image()
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}

sage: S = SimplicialComplex(is_mutable=False)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: i.image()

(continues on next page)

46 Chapter 2. Morphisms of simplicial complexes

Topology, Release 9.8

(continued from previous page)

Simplicial complex with vertex set () and facets {()}
sage: i.is_surjective()
True
sage: S = SimplicialComplex([[0,1]], is_mutable=False)
sage: T = SimplicialComplex([[0,1], [0,2]], is_mutable=False)
sage: f = {0:0,1:1}
sage: g = {0:0,1:1}
sage: k = {0:0,1:2}
sage: H = Hom(S,T)
sage: x = H(f)
sage: y = H(g)
sage: z = H(k)
sage: x == y
True
sage: x == z
False
sage: x.image()
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: y.image()
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: z.image()
Simplicial complex with vertex set (0, 2) and facets {(0, 2)}

induced_homology_morphism(base_ring=None, cohomology=False)
The map in (co)homology induced by this map

INPUT:

• base_ring – must be a field (optional, default QQ)

• cohomology – boolean (optional, default False). If True, the map induced in cohomology rather
than homology.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = S.product(S, is_mutable=False)
sage: H = Hom(S,T)
sage: diag = H.diagonal_morphism()
sage: h = diag.induced_homology_morphism(QQ)
sage: h
Graded vector space morphism:
From: Homology module of Minimal triangulation of the 1-sphere over Rational␣

→˓Field
To: Homology module of Simplicial complex with 9 vertices and 18 facets␣

→˓over Rational Field
Defn: induced by:
Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Simplicial complex with 9 vertices and 18 facets
Defn: 0 |--> L0R0

1 |--> L1R1
2 |--> L2R2

We can view the matrix form for the homomorphism:

47

Topology, Release 9.8

sage: h.to_matrix(0) # in degree 0
[1]
sage: h.to_matrix(1) # in degree 1
[1]
[1]
sage: h.to_matrix() # the entire homomorphism
[1|0]
[-+-]
[0|1]
[0|1]
[-+-]
[0|0]

The map on cohomology should be dual to the map on homology:

sage: coh = diag.induced_homology_morphism(QQ, cohomology=True)
sage: coh.to_matrix(1)
[1 1]
sage: h.to_matrix() == coh.to_matrix().transpose()
True

We can evaluate the map on (co)homology classes:

sage: x,y = list(T.cohomology_ring(QQ).basis(1))
sage: coh(x)
h^{1,0}
sage: coh(2*x+3*y)
5*h^{1,0}

Note that the complexes must be immutable for this to work. Many, but not all, complexes are immutable
when constructed:

sage: S.is_immutable()
True
sage: S.barycentric_subdivision().is_immutable()
False
sage: S2 = S.suspension()
sage: S2.is_immutable()
False
sage: h = Hom(S,S2)({0: 0, 1:1, 2:2}).induced_homology_morphism()
Traceback (most recent call last):
...
ValueError: the domain and codomain complexes must be immutable
sage: S2.set_immutable(); S2.is_immutable()
True
sage: h = Hom(S,S2)({0: 0, 1:1, 2:2}).induced_homology_morphism()

is_contiguous_to(other)
Return True if self is contiguous to other.

Two morphisms 𝑓0, 𝑓1 : 𝐾 → 𝐿 are contiguous if for any simplex 𝜎 ∈ 𝐾, the union 𝑓0(𝜎) ∪ 𝑓1(𝜎) is a
simplex in 𝐿. This is not a transitive relation, but it induces an equivalence relation on simplicial maps: 𝑓
is equivalent to 𝑔 if there is a finite sequence 𝑓0 = 𝑓 , 𝑓1, . . . , 𝑓𝑛 = 𝑔 such that 𝑓𝑖 and 𝑓𝑖+1 are contiguous
for each 𝑖.

48 Chapter 2. Morphisms of simplicial complexes

Topology, Release 9.8

This is related to maps being homotopic: if they are contiguous, then they induce homotopic maps on the
geometric realizations. Given two homotopic maps on the geometric realizations, then after barycentrically
subdividing 𝑛 times for some 𝑛, the maps have simplicial approximations which are in the same contiguity
class. (This last fact is only true if the domain is a finite simplicial complex, by the way.)

See Section 3.5 of Spanier [Spa1966] for details.

ALGORITHM:

It is enough to check when 𝜎 ranges over the facets.

INPUT:

• other – a simplicial complex morphism with the same domain and codomain as self

EXAMPLES:

sage: K = simplicial_complexes.Simplex(1)
sage: L = simplicial_complexes.Sphere(1)
sage: H = Hom(K, L)
sage: f = H({0: 0, 1: 1})
sage: g = H({0: 0, 1: 0})
sage: f.is_contiguous_to(f)
True
sage: f.is_contiguous_to(g)
True
sage: h = H({0: 1, 1: 2})
sage: f.is_contiguous_to(h)
False

is_identity()

If self is an identity morphism, returns True. Otherwise, False.

EXAMPLES:

sage: T = simplicial_complexes.Sphere(1)
sage: G = Hom(T,T)
sage: T
Minimal triangulation of the 1-sphere
sage: j = G({0:0,1:1,2:2})
sage: j.is_identity()
True

sage: S = simplicial_complexes.Sphere(2)
sage: T = simplicial_complexes.Sphere(3)
sage: H = Hom(S,T)
sage: f = {0:0,1:1,2:2,3:3}
sage: x = H(f)
sage: x
Simplicial complex morphism:
From: Minimal triangulation of the 2-sphere
To: Minimal triangulation of the 3-sphere
Defn: 0 |--> 0

1 |--> 1
2 |--> 2
3 |--> 3

(continues on next page)

49

Topology, Release 9.8

(continued from previous page)

sage: x.is_identity()
False

is_injective()

Return True if and only if self is injective.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = simplicial_complexes.Sphere(2)
sage: U = simplicial_complexes.Sphere(3)
sage: H = Hom(T,S)
sage: G = Hom(T,U)
sage: f = {0:0,1:1,2:0,3:1}
sage: x = H(f)
sage: g = {0:0,1:1,2:2,3:3}
sage: y = G(g)
sage: x.is_injective()
False
sage: y.is_injective()
True

is_surjective()

Return True if and only if self is surjective.

EXAMPLES:

sage: S = SimplicialComplex([(0,1,2)], is_mutable=False)
sage: S
Simplicial complex with vertex set (0, 1, 2) and facets {(0, 1, 2)}
sage: T = SimplicialComplex([(0,1)], is_mutable=False)
sage: T
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: H = Hom(S,T)
sage: x = H({0:0,1:1,2:1})
sage: x.is_surjective()
True

sage: S = SimplicialComplex([[0,1],[2,3]], is_mutable=False)
sage: T = SimplicialComplex([[0,1]], is_mutable=False)
sage: f = {0:0,1:1,2:0,3:1}
sage: H = Hom(S,T)
sage: x = H(f)
sage: x.is_surjective()
True

mapping_torus()

The mapping torus of a simplicial complex endomorphism

The mapping torus is the simplicial complex formed by taking the product of the domain of self with a 4
point interval [𝐼0, 𝐼1, 𝐼2, 𝐼3] and identifying vertices of the form (𝐼0, 𝑣) with (𝐼3, 𝑤) where 𝑤 is the image
of 𝑣 under the given morphism.

See Wikipedia article Mapping torus

50 Chapter 2. Morphisms of simplicial complexes

https://en.wikipedia.org/wiki/Mapping torus

Topology, Release 9.8

EXAMPLES:

sage: C = simplicial_complexes.Sphere(1) # Circle
sage: T = Hom(C,C).identity().mapping_torus() ; T # Torus
Simplicial complex with 9 vertices and 18 facets
sage: T.homology() == simplicial_complexes.Torus().homology()
True

sage: f = Hom(C,C)({0:0,1:2,2:1})
sage: K = f.mapping_torus() ; K # Klein Bottle
Simplicial complex with 9 vertices and 18 facets
sage: K.homology() == simplicial_complexes.KleinBottle().homology()
True

sage.topology.simplicial_complex_morphism.is_SimplicialComplexMorphism(x)
Return True if and only if x is a morphism of simplicial complexes.

EXAMPLES:

sage: from sage.topology.simplicial_complex_morphism import is_
→˓SimplicialComplexMorphism
sage: S = SimplicialComplex([[0,1],[3,4]], is_mutable=False)
sage: H = Hom(S,S)
sage: f = {0:0,1:1,3:3,4:4}
sage: x = H(f)
sage: is_SimplicialComplexMorphism(x)
True

51

Topology, Release 9.8

52 Chapter 2. Morphisms of simplicial complexes

CHAPTER

THREE

HOMSETS BETWEEN SIMPLICIAL COMPLEXES

AUTHORS:

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(1)
sage: T = simplicial_complexes.Sphere(2)
sage: H = Hom(S,T)
sage: f = {0:0,1:1,2:3}
sage: x = H(f)
sage: x
Simplicial complex morphism:
From: Minimal triangulation of the 1-sphere
To: Minimal triangulation of the 2-sphere
Defn: 0 |--> 0

1 |--> 1
2 |--> 3

sage: x.is_injective()
True
sage: x.is_surjective()
False
sage: x.image()
Simplicial complex with vertex set (0, 1, 3) and facets {(0, 1), (0, 3), (1, 3)}
sage: from sage.topology.simplicial_complex import Simplex
sage: s = Simplex([1,2])
sage: x(s)
(1, 3)

class sage.topology.simplicial_complex_homset.SimplicialComplexHomset(X, Y, category=None,
base=None,
check=True)

Bases: Homset

an_element()

Return a (non-random) element of self.

EXAMPLES:

sage: S = simplicial_complexes.KleinBottle()
sage: T = simplicial_complexes.Sphere(5)
sage: H = Hom(S,T)

(continues on next page)

53

../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Homset

Topology, Release 9.8

(continued from previous page)

sage: x = H.an_element()
sage: x
Simplicial complex morphism:
From: Minimal triangulation of the Klein bottle
To: Minimal triangulation of the 5-sphere
Defn: [0, 1, 2, 3, 4, 5, 6, 7] --> [0, 0, 0, 0, 0, 0, 0, 0]

diagonal_morphism(rename_vertices=True)
Return the diagonal morphism in 𝐻𝑜𝑚(𝑆, 𝑆 × 𝑆).

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S.product(S, is_mutable=False))
sage: d = H.diagonal_morphism()
sage: d
Simplicial complex morphism:
From: Minimal triangulation of the 2-sphere
To: Simplicial complex with 16 vertices and 96 facets
Defn: 0 |--> L0R0

1 |--> L1R1
2 |--> L2R2
3 |--> L3R3

sage: T = SimplicialComplex([[0], [1]], is_mutable=False)
sage: U = T.product(T,rename_vertices = False, is_mutable=False)
sage: G = Hom(T,U)
sage: e = G.diagonal_morphism(rename_vertices = False)
sage: e
Simplicial complex morphism:
From: Simplicial complex with vertex set (0, 1) and facets {(0,), (1,)}
To: Simplicial complex with 4 vertices and facets {((0, 0),), ((0, 1),),␣

→˓((1, 0),), ((1, 1),)}
Defn: 0 |--> (0, 0)

1 |--> (1, 1)

identity()

Return the identity morphism of 𝐻𝑜𝑚(𝑆, 𝑆).

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: i.is_identity()
True

sage: T = SimplicialComplex([[0,1]], is_mutable=False)
sage: G = Hom(T,T)
sage: G.identity()
Simplicial complex endomorphism of Simplicial complex with vertex set (0, 1)␣
→˓and facets {(0, 1)}
Defn: 0 |--> 0

(continues on next page)

54 Chapter 3. Homsets between simplicial complexes

Topology, Release 9.8

(continued from previous page)

1 |--> 1

sage.topology.simplicial_complex_homset.is_SimplicialComplexHomset(x)
Return True if and only if x is a simplicial complex homspace.

EXAMPLES:

sage: S = SimplicialComplex(is_mutable=False)
sage: T = SimplicialComplex(is_mutable=False)
sage: H = Hom(S, T)
sage: H
Set of Morphisms from Simplicial complex with vertex set () and facets {()}
to Simplicial complex with vertex set () and facets {()}
in Category of finite simplicial complexes
sage: from sage.topology.simplicial_complex_homset import is_SimplicialComplexHomset
sage: is_SimplicialComplexHomset(H)
True

55

Topology, Release 9.8

56 Chapter 3. Homsets between simplicial complexes

CHAPTER

FOUR

EXAMPLES OF SIMPLICIAL COMPLEXES

There are two main types: manifolds and examples related to graph theory.

For manifolds, there are functions defining the 𝑛-sphere for any 𝑛, the torus, 𝑛-dimensional real projective space for
any 𝑛, the complex projective plane, surfaces of arbitrary genus, and some other manifolds, all as simplicial complexes.

Aside from surfaces, this file also provides functions for constructing some other simplicial complexes: the sim-
plicial complex of not-𝑖-connected graphs on 𝑛 vertices, the matching complex on n vertices, the chessboard com-
plex for an 𝑛 by 𝑖 chessboard, and others. These provide examples of large simplicial complexes; for example,
simplicial_complexes.NotIConnectedGraphs(7, 2) has over a million simplices.

All of these examples are accessible by typing simplicial_complexes.NAME, where NAME is the name of the exam-
ple.

• BarnetteSphere()

• BrucknerGrunbaumSphere()

• ChessboardComplex()

• ComplexProjectivePlane()

• DunceHat()

• FareyMap()

• GenusSix()

• K3Surface()

• KleinBottle()

• MatchingComplex()

• MooreSpace()

• NotIConnectedGraphs()

• PoincareHomologyThreeSphere()

• QuaternionicProjectivePlane()

• RandomComplex()

• RandomTwoSphere()

• RealProjectivePlane()

• RealProjectiveSpace()

• RudinBall()

• ShiftedComplex()

57

Topology, Release 9.8

• Simplex()

• Sphere()

• SumComplex()

• SurfaceOfGenus()

• Torus()

• ZieglerBall()

You can also get a list by typing simplicial_complexes. and hitting the Tab key.

EXAMPLES:

sage: S = simplicial_complexes.Sphere(2) # the 2-sphere
sage: S.homology()
{0: 0, 1: 0, 2: Z}
sage: simplicial_complexes.SurfaceOfGenus(3)
Triangulation of an orientable surface of genus 3
sage: M4 = simplicial_complexes.MooreSpace(4)
sage: M4.homology()
{0: 0, 1: C4, 2: 0}
sage: simplicial_complexes.MatchingComplex(6).homology()
{0: 0, 1: Z^16, 2: 0}

sage.topology.simplicial_complex_examples.BarnetteSphere()

Return Barnette’s triangulation of the 3-sphere.

This is a pure simplicial complex of dimension 3 with 8 vertices and 19 facets, which is a non-polytopal trian-
gulation of the 3-sphere. It was constructed by Barnette in [Bar1970]. The construction here uses the labeling
from De Loera, Rambau and Santos [DLRS2010]. Another reference is chapter III.4 of Ewald [Ewa1996].

EXAMPLES:

sage: BS = simplicial_complexes.BarnetteSphere() ; BS
Barnette's triangulation of the 3-sphere
sage: BS.f_vector()
[1, 8, 27, 38, 19]

sage.topology.simplicial_complex_examples.BrucknerGrunbaumSphere()

Return Bruckner and Grunbaum’s triangulation of the 3-sphere.

This is a pure simplicial complex of dimension 3 with 8 vertices and 20 facets, which is a non-polytopal trian-
gulation of the 3-sphere. It appeared first in [Br1910] and was studied in [GrS1967].

It is defined here as the link of any vertex in the unique minimal triangulation of the complex projective plane,
see chapter 4 of [Kuh1995].

EXAMPLES:

sage: BGS = simplicial_complexes.BrucknerGrunbaumSphere() ; BGS
Bruckner and Grunbaum's triangulation of the 3-sphere
sage: BGS.f_vector()
[1, 8, 28, 40, 20]

sage.topology.simplicial_complex_examples.ChessboardComplex(n, i)
The chessboard complex for an 𝑛× 𝑖 chessboard.

58 Chapter 4. Examples of simplicial complexes

Topology, Release 9.8

Fix integers 𝑛, 𝑖 > 0 and consider sets 𝑉 of 𝑛 vertices and 𝑊 of 𝑖 vertices. A ‘partial matching’ between 𝑉 and
𝑊 is a graph formed by edges (𝑣, 𝑤) with 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 so that each vertex is in at most one edge. If 𝐺 is a
partial matching, then so is any graph obtained by deleting edges from 𝐺. Thus the set of all partial matchings on
𝑉 and 𝑊 , viewed as a set of subsets of the 𝑛+ 𝑖 choose 2 possible edges, is closed under taking subsets, and thus
forms a simplicial complex called the ‘chessboard complex’. This function produces that simplicial complex.
(It is called the chessboard complex because such graphs also correspond to ways of placing rooks on an 𝑛 by 𝑖
chessboard so that none of them are attacking each other.)

INPUT:

• n, i – positive integers.

See Dumas et al. [DHSW2003] for information on computing its homology by computer, and see Wachs
[Wac2003] for an expository article about the theory.

EXAMPLES:

sage: C = simplicial_complexes.ChessboardComplex(5, 5)
sage: C.f_vector()
[1, 25, 200, 600, 600, 120]
sage: simplicial_complexes.ChessboardComplex(3, 3).homology()
{0: 0, 1: Z x Z x Z x Z, 2: 0}

sage.topology.simplicial_complex_examples.ComplexProjectivePlane()

A minimal triangulation of the complex projective plane.

This was constructed by Kühnel and Banchoff [KB1983].

EXAMPLES:

sage: C = simplicial_complexes.ComplexProjectivePlane()
sage: C.f_vector()
[1, 9, 36, 84, 90, 36]
sage: C.homology(2)
Z
sage: C.homology(4)
Z

sage.topology.simplicial_complex_examples.DunceHat()

Return the minimal triangulation of the dunce hat given by Hachimori [Hac2016].

This is a standard example of a space that is contractible but not collapsible.

EXAMPLES:

sage: D = simplicial_complexes.DunceHat(); D
Minimal triangulation of the dunce hat
sage: D.f_vector()
[1, 8, 24, 17]
sage: D.homology()
{0: 0, 1: 0, 2: 0}
sage: D.is_cohen_macaulay()
True

sage.topology.simplicial_complex_examples.FareyMap(p)
Return a discrete surface associated with 𝑃𝑆𝐿(2,F(𝑝)).

INPUT:

59

Topology, Release 9.8

• 𝑝 – a prime number

The vertices are the non-zero pairs (𝑥, 𝑦) in F(𝑝)2 modulo the identification of (−𝑥,−𝑦) with (𝑥, 𝑦).

The triangles are the images of the base triangle ((1,0),(0,1),(1,1)) under the action of 𝑃𝑆𝐿(2,F(𝑝)).

For 𝑝 = 3, the result is a tetrahedron, for 𝑝 = 5 an icosahedron, and for 𝑝 = 7 a triangulation of the Klein quartic
of genus 3.

As a Riemann surface, this is the quotient of the upper half plane by the principal congruence subgroup Γ(𝑝).

EXAMPLES:

sage: S5 = simplicial_complexes.FareyMap(5); S5
Simplicial complex with 12 vertices and 20 facets
sage: S5.automorphism_group().cardinality()
120

sage: S7 = simplicial_complexes.FareyMap(7); S7
Simplicial complex with 24 vertices and 56 facets
sage: S7.f_vector()
[1, 24, 84, 56]

REFERENCES:

• [ISS2019] Ioannis Ivrissimtzis, David Singerman and James Strudwick, From Farey Fractions to the Klein
Quartic and Beyond. arXiv 1909.08568

sage.topology.simplicial_complex_examples.GenusSix()

Return a triangulated surface of genus 6.

This is triangulated with 12 vertices, 66 edges and 44 faces. Each vertex is neighbour to all other vertices.

It appears as number 58 in the classification of Altshuler, Bokowski and Schuchert in [ABS96], where it is the
unique surface with the largest symmetry group, of order 12. This article refers for this surface to Ringel.

EXAMPLES:

sage: S = simplicial_complexes.GenusSix()
sage: S.automorphism_group().cardinality()
12
sage: S.betti()
{0: 1, 1: 12, 2: 1}
sage: S.f_vector()
[1, 12, 66, 44]

REFERENCES:

sage.topology.simplicial_complex_examples.K3Surface()

Return a minimal triangulation of the K3 surface.

This is a pure simplicial complex of dimension 4 with 16 vertices and 288 facets. It was constructed by Casella
and Kühnel in [CK2001]. The construction here uses the labeling from Spreer and Kühnel [SK2011].

EXAMPLES:

sage: K3=simplicial_complexes.K3Surface() ; K3
Minimal triangulation of the K3 surface
sage: K3.f_vector()
[1, 16, 120, 560, 720, 288]

60 Chapter 4. Examples of simplicial complexes

https://arxiv.org/abs/1909.08568

Topology, Release 9.8

This simplicial complex is implemented just by listing all 288 facets. The list of facets can be computed by the
function facets_for_K3(), but running the function takes a few seconds.

sage.topology.simplicial_complex_examples.KleinBottle()

A minimal triangulation of the Klein bottle, as presented for example in Davide Cervone’s thesis [Cer1994].

EXAMPLES:

sage: simplicial_complexes.KleinBottle()
Minimal triangulation of the Klein bottle

sage.topology.simplicial_complex_examples.MatchingComplex(n)
The matching complex of graphs on 𝑛 vertices.

Fix an integer 𝑛 > 0 and consider a set 𝑉 of 𝑛 vertices. A ‘partial matching’ on 𝑉 is a graph formed by edges so
that each vertex is in at most one edge. If 𝐺 is a partial matching, then so is any graph obtained by deleting edges
from 𝐺. Thus the set of all partial matchings on 𝑛 vertices, viewed as a set of subsets of the 𝑛 choose 2 possible
edges, is closed under taking subsets, and thus forms a simplicial complex called the ‘matching complex’. This
function produces that simplicial complex.

INPUT:

• n – positive integer.

See Dumas et al. [DHSW2003] for information on computing its homology by computer, and see Wachs
[Wac2003] for an expository article about the theory. For example, the homology of these complexes seems
to have only mod 3 torsion, and this has been proved for the bottom non-vanishing homology group for the
matching complex 𝑀𝑛.

EXAMPLES:

sage: M = simplicial_complexes.MatchingComplex(7)
sage: H = M.homology()
sage: H
{0: 0, 1: C3, 2: Z^20}
sage: H[2].ngens()
20
sage: simplicial_complexes.MatchingComplex(8).homology(2) # long time (6s on sage.
→˓math, 2012)
Z^132

sage.topology.simplicial_complex_examples.MooreSpace(q)
Triangulation of the mod 𝑞 Moore space.

INPUT:

• q -0 integer, at least 2

This is a simplicial complex with simplices of dimension 0, 1, and 2, such that its reduced homology is isomorphic
to Z/𝑞Z in dimension 1, zero otherwise.

If 𝑞 = 2, this is the real projective plane. If 𝑞 > 2, then construct it as follows: start with a triangle with
vertices 1, 2, 3. We take a 3𝑞-gon forming a 𝑞-fold cover of the triangle, and we form the resulting complex as
an identification space of the 3𝑞-gon. To triangulate this identification space, put 𝑞 vertices 𝐴0, . . . , 𝐴𝑞−1, in
the interior, each of which is connected to 1, 2, 3 (two facets each: [1, 2, 𝐴𝑖], [2, 3, 𝐴𝑖]). Put 𝑞 more vertices in
the interior: 𝐵0, . . . , 𝐵𝑞−1, with facets [3, 1, 𝐵𝑖], [3, 𝐵𝑖, 𝐴𝑖], [1, 𝐵𝑖, 𝐴𝑖+1], [𝐵𝑖, 𝐴𝑖, 𝐴𝑖+1]. Then triangulate the
interior polygon with vertices 𝐴0, 𝐴1, . . . , 𝐴𝑞−1.

EXAMPLES:

61

Topology, Release 9.8

sage: simplicial_complexes.MooreSpace(2)
Minimal triangulation of the real projective plane
sage: simplicial_complexes.MooreSpace(3).homology()[1]
C3
sage: simplicial_complexes.MooreSpace(4).suspension().homology()[2]
C4
sage: simplicial_complexes.MooreSpace(8)
Triangulation of the mod 8 Moore space

sage.topology.simplicial_complex_examples.NotIConnectedGraphs(n, i)
The simplicial complex of all graphs on 𝑛 vertices which are not 𝑖-connected.

Fix an integer 𝑛 > 0 and consider the set of graphs on 𝑛 vertices. View each graph as its set of edges, so it is a
subset of a set of size 𝑛 choose 2. A graph is 𝑖-connected if, for any 𝑗 < 𝑖, if any 𝑗 vertices are removed along
with the edges emanating from them, then the graph remains connected. Now fix 𝑖: it is clear that if 𝐺 is not
𝑖-connected, then the same is true for any graph obtained from 𝐺 by deleting edges. Thus the set of all graphs
which are not 𝑖-connected, viewed as a set of subsets of the 𝑛 choose 2 possible edges, is closed under taking
subsets, and thus forms a simplicial complex. This function produces that simplicial complex.

INPUT:

• n, i – non-negative integers with 𝑖 at most 𝑛

See Dumas et al. [DHSW2003] for information on computing its homology by computer, and see Babson et
al. [BBLSW1999] for theory. For example, Babson et al. show that when 𝑖 = 2, the reduced homology of this
complex is nonzero only in dimension 2𝑛− 5, where it is free abelian of rank (𝑛− 2)!.

EXAMPLES:

sage: simplicial_complexes.NotIConnectedGraphs(5, 2).f_vector()
[1, 10, 45, 120, 210, 240, 140, 20]
sage: simplicial_complexes.NotIConnectedGraphs(5, 2).homology(5).ngens()
6

sage.topology.simplicial_complex_examples.PoincareHomologyThreeSphere()

A triangulation of the Poincaré homology 3-sphere.

This is a manifold whose integral homology is identical to the ordinary 3-sphere, but it is not simply connected.
In particular, its fundamental group is the binary icosahedral group, which has order 120. The triangulation
given here has 16 vertices and is due to Björner and Lutz [BL2000].

EXAMPLES:

sage: S3 = simplicial_complexes.Sphere(3)
sage: Sigma3 = simplicial_complexes.PoincareHomologyThreeSphere()
sage: S3.homology() == Sigma3.homology()
True
sage: Sigma3.fundamental_group().cardinality() # long time
120

sage.topology.simplicial_complex_examples.ProjectivePlane()

A minimal triangulation of the real projective plane.

EXAMPLES:

62 Chapter 4. Examples of simplicial complexes

Topology, Release 9.8

sage: P = simplicial_complexes.RealProjectivePlane()
sage: Q = simplicial_complexes.ProjectivePlane()
sage: P == Q
True
sage: P.cohomology(1)
0
sage: P.cohomology(2)
C2
sage: P.cohomology(1, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P.cohomology(2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

sage.topology.simplicial_complex_examples.QuaternionicProjectivePlane()

Return a pure simplicial complex of dimension 8 with 490 facets.

Warning: This was proven to be a triangulation of the projective plane 𝐻𝑃 2 over the ring of quaternions
by Gorodkov in 2016 [Gor2016].

This simplicial complex has the same homology as𝐻𝑃 2. Its automorphism group is isomorphic to the alternating
group 𝐴5 and acts transitively on vertices.

This is defined here using the description in [BK1992]. This article deals with three different triangulations.
This procedure returns the only one which has a transitive group of automorphisms.

EXAMPLES:

sage: HP2 = simplicial_complexes.QuaternionicProjectivePlane() ; HP2
Simplicial complex with 15 vertices and 490 facets
sage: HP2.f_vector()
[1, 15, 105, 455, 1365, 3003, 4515, 4230, 2205, 490]

Checking its automorphism group:

sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5))
True

sage.topology.simplicial_complex_examples.RandomComplex(n, d, p=0.5)
A random d-dimensional simplicial complex on n vertices.

INPUT:

• n – number of vertices

• d – dimension of the complex

• p – floating point number between 0 and 1 (optional, default 0.5)

A random 𝑑-dimensional simplicial complex on 𝑛 vertices, as defined for example by Meshulam and Wallach
[MW2009], is constructed as follows: take 𝑛 vertices and include all of the simplices of dimension strictly less
than 𝑑, and then for each possible simplex of dimension 𝑑, include it with probability 𝑝.

EXAMPLES:

63

Topology, Release 9.8

sage: X = simplicial_complexes.RandomComplex(6, 2); X
Random 2-dimensional simplicial complex on 6 vertices
sage: len(list(X.vertices()))
6

If 𝑑 is too large (if 𝑑 + 1 > 𝑛, so that there are no 𝑑-dimensional simplices), then return the simplicial complex
with a single (𝑛 + 1)-dimensional simplex:

sage: simplicial_complexes.RandomComplex(6, 12)
The 5-simplex

sage.topology.simplicial_complex_examples.RandomTwoSphere(n)
Return a random triangulation of the 2-dimensional sphere with 𝑛 vertices.

INPUT:

𝑛 – an integer

OUTPUT:

A random triangulation of the sphere chosen uniformly among the rooted triangulations on 𝑛 vertices. Because
some triangulations have nontrivial automorphism groups, this may not be equal to the uniform distribution
among unrooted triangulations.

ALGORITHM:

The algorithm is taken from [PS2006], section 2.1.

Starting from a planar tree (represented by its contour as a sequence of vertices), one first performs local clo-
sures, until no one is possible. A local closure amounts to replace in the cyclic contour word a sequence in1,
in2, in3, lf, in3 by in1, in3. After all local closures are done, one has reached the partial closure, as in
[PS2006], figure 5 (a).

Then one has to perform complete closure by adding two more vertices, in order to reach the situation of
[PS2006], figure 5 (b). For this, it is necessary to find inside the final contour one of the two subsequences
lf, in, lf.

At every step of the algorithm, newly created triangles are added in a simplicial complex.

This algorithm is implemented in RandomTriangulation(), which creates an embedded graph. The triangles
of the simplicial complex are recovered from this embedded graph.

EXAMPLES:

sage: G = simplicial_complexes.RandomTwoSphere(6); G
Simplicial complex with vertex set (0, 1, 2, 3, 4, 5) and 8 facets
sage: G.homology()
{0: 0, 1: 0, 2: Z}
sage: G.is_pure()
True
sage: fg = G.flip_graph(); fg
Graph on 8 vertices
sage: fg.is_planar() and fg.is_regular(3)
True

sage.topology.simplicial_complex_examples.RealProjectivePlane()

A minimal triangulation of the real projective plane.

EXAMPLES:

64 Chapter 4. Examples of simplicial complexes

Topology, Release 9.8

sage: P = simplicial_complexes.RealProjectivePlane()
sage: Q = simplicial_complexes.ProjectivePlane()
sage: P == Q
True
sage: P.cohomology(1)
0
sage: P.cohomology(2)
C2
sage: P.cohomology(1, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P.cohomology(2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

sage.topology.simplicial_complex_examples.RealProjectiveSpace(n)
A triangulation of R𝑃𝑛 for any 𝑛 ≥ 0.

INPUT:

• n – integer, the dimension of the real projective space to construct

The first few cases are pretty trivial:

• R𝑃 0 is a point.

• R𝑃 1 is a circle, triangulated as the boundary of a single 2-simplex.

• R𝑃 2 is the real projective plane, here given its minimal triangulation with 6 vertices, 15 edges, and 10
triangles.

• R𝑃 3: any triangulation has at least 11 vertices by a result of Walkup [Wal1970]; this function returns a
triangulation with 11 vertices, as given by Lutz [Lut2005].

• R𝑃 4: any triangulation has at least 16 vertices by a result of Walkup; this function returns a triangulation
with 16 vertices as given by Lutz; see also Datta [Dat2007], Example 3.12.

• R𝑃𝑛: Lutz has found a triangulation of R𝑃 5 with 24 vertices, but it does not seem to have been published.
Kühnel [Kuh1987] has described a triangulation of R𝑃𝑛, in general, with 2𝑛+1−1 vertices; see also Datta,
Example 3.21. This triangulation is presumably not minimal, but it seems to be the best in the published
literature as of this writing. So this function returns it when 𝑛 > 4.

ALGORITHM: For 𝑛 < 4, these are constructed explicitly by listing the facets. For 𝑛 = 4, this is constructed
by specifying 16 vertices, two facets, and a certain subgroup 𝐺 of the symmetric group 𝑆16. Then the set of all
facets is the 𝐺-orbit of the two given facets. This is implemented here by explicitly listing all of the facets; the
facets can be computed by the function facets_for_RP4(), but running the function takes a few seconds.

For 𝑛 > 4, the construction is as follows: let 𝑆 denote the simplicial complex structure on the 𝑛-sphere given by
the first barycentric subdivision of the boundary of an (𝑛+1)-simplex. This has a simplicial antipodal action: if𝑉
denotes the vertices in the boundary of the simplex, then the vertices in its barycentric subdivision 𝑆 correspond
to nonempty proper subsets 𝑈 of 𝑉 , and the antipodal action sends any subset 𝑈 to its complement. One can
show that modding out by this action results in a triangulation for R𝑃𝑛. To find the facets in this triangulation,
find the facets in 𝑆. These are identified in pairs to form R𝑃𝑛, so choose a representative from each pair: for
each facet in 𝑆, replace any vertex in 𝑆 containing 0 with its complement.

Of course these complexes increase in size pretty quickly as 𝑛 increases.

EXAMPLES:

sage: P3 = simplicial_complexes.RealProjectiveSpace(3)
sage: P3.f_vector()

(continues on next page)

65

Topology, Release 9.8

(continued from previous page)

[1, 11, 51, 80, 40]
sage: P3.homology()
{0: 0, 1: C2, 2: 0, 3: Z}
sage: P4 = simplicial_complexes.RealProjectiveSpace(4)
sage: P4.f_vector()
[1, 16, 120, 330, 375, 150]
sage: P4.homology() # long time
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0}
sage: P5 = simplicial_complexes.RealProjectiveSpace(5) # long time (44s on sage.
→˓math, 2012)
sage: P5.f_vector() # long time
[1, 63, 903, 4200, 8400, 7560, 2520]

The following computation can take a long time – over half an hour.

sage: P5.homology() # not tested
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: Z}
sage: simplicial_complexes.RealProjectiveSpace(2).dimension()
2
sage: P3.dimension()
3
sage: P4.dimension() # long time
4
sage: P5.dimension() # long time
5

sage.topology.simplicial_complex_examples.RudinBall()

Return the non-shellable ball constructed by Rudin.

This complex is a non-shellable triangulation of the 3-ball with 14 vertices and 41 facets, constructed by Rudin
in [Rud1958].

EXAMPLES:

sage: R = simplicial_complexes.RudinBall(); R
Rudin ball
sage: R.f_vector()
[1, 14, 66, 94, 41]
sage: R.homology()
{0: 0, 1: 0, 2: 0, 3: 0}
sage: R.is_cohen_macaulay()
True

sage.topology.simplicial_complex_examples.ShiftedComplex(generators)
Return the smallest shifted simplicial complex containing generators as faces.

Let 𝑉 be a set of vertices equipped with a total order. The ‘componentwise partial ordering’ on k-subsets of 𝑉
is defined as follows: if 𝐴 = {𝑎1 < · · · < 𝑎𝑘} and 𝐵 = {𝑏1 < · · · < 𝑏𝑘}, then 𝐴 ≤𝐶 𝐵 iff 𝑎𝑖 ≤ 𝑏𝑖 for all
𝑖. A simplicial complex 𝑋 on vertex set [𝑛] is shifted if its faces form an order ideal under the componentwise
partial ordering, i.e., if 𝐵 ∈ 𝑋 and 𝐴 ≤𝐶 𝐵 then 𝐴 ∈ 𝑋 . Shifted complexes of dimension 1 are also known as
threshold graphs.

Note: This method assumes that 𝑉 consists of positive integers with the natural ordering.

66 Chapter 4. Examples of simplicial complexes

Topology, Release 9.8

INPUT:

• generators – a list of generators of the order ideal, which may be lists, tuples or simplices

EXAMPLES:

sage: X = simplicial_complexes.ShiftedComplex([Simplex([1, 6]), (2, 4), [8]])
sage: sorted(X.facets())
[(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (7,), (8,)]
sage: X = simplicial_complexes.ShiftedComplex([[2, 3, 5]])
sage: sorted(X.facets())
[(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)]
sage: X = simplicial_complexes.ShiftedComplex([[1, 3, 5], [2, 6]])
sage: sorted(X.facets())
[(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 6), (2, 6)]

sage.topology.simplicial_complex_examples.Simplex(n)
An 𝑛-dimensional simplex, as a simplicial complex.

INPUT:

• n – a non-negative integer

OUTPUT: the simplicial complex consisting of the 𝑛-simplex on vertices (0, 1, ..., 𝑛) and all of its faces.

EXAMPLES:

sage: simplicial_complexes.Simplex(3)
The 3-simplex
sage: simplicial_complexes.Simplex(5).euler_characteristic()
1

sage.topology.simplicial_complex_examples.Sphere(n)
A minimal triangulation of the 𝑛-dimensional sphere.

INPUT:

• n – positive integer

EXAMPLES:

sage: simplicial_complexes.Sphere(2)
Minimal triangulation of the 2-sphere
sage: simplicial_complexes.Sphere(5).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}
sage: [simplicial_complexes.Sphere(n).euler_characteristic() for n in range(6)]
[2, 0, 2, 0, 2, 0]
sage: [simplicial_complexes.Sphere(n).f_vector() for n in range(6)]
[[1, 2],
[1, 3, 3],
[1, 4, 6, 4],
[1, 5, 10, 10, 5],
[1, 6, 15, 20, 15, 6],
[1, 7, 21, 35, 35, 21, 7]]

sage.topology.simplicial_complex_examples.SumComplex(n, A)
The sum complexes of Linial, Meshulam, and Rosenthal [LMR2010].

67

Topology, Release 9.8

If 𝑘 + 1 is the cardinality of 𝐴, then this returns a 𝑘-dimensional simplicial complex 𝑋𝐴 with vertices Z/(𝑛),
and facets given by all 𝑘 + 1-tuples (𝑥0, 𝑥1, ..., 𝑥𝑘) such that the sum

∑︀
𝑥𝑖 is in 𝐴. See the paper by Linial,

Meshulam, and Rosenthal [LMR2010], in which they prove various results about these complexes; for example,
if 𝑛 is prime, then 𝑋𝐴 is rationally acyclic, and if in addition 𝐴 forms an arithmetic progression in Z/(𝑛), then
𝑋𝐴 is Z-acyclic. Throughout their paper, they assume that 𝑛 and 𝑘 are relatively prime, but the construction
makes sense in general.

In addition to the results from the cited paper, these complexes can have large torsion, given the number of
vertices; for example, if 𝑛 = 10, and 𝐴 = {0, 1, 2, 3, 6}, then 𝐻3(𝑋𝐴) is cyclic of order 2728, and there is a
4-dimensional complex on 13 vertices with 𝐻3 having a cyclic summand of order

706565607945 = 3 · 5 · 53 · 79 · 131 · 157 · 547.

See the examples.

INPUT:

• n – a positive integer

• A – a subset of Z/(𝑛)

EXAMPLES:

sage: S = simplicial_complexes.SumComplex(10, [0, 1, 2, 3, 6]); S
Sum complex on vertices Z/10Z associated to {0, 1, 2, 3, 6}
sage: S.homology()
{0: 0, 1: 0, 2: 0, 3: C2728, 4: 0}
sage: factor(2728)
2^3 * 11 * 31

sage: S = simplicial_complexes.SumComplex(11, [0, 1, 3]); S
Sum complex on vertices Z/11Z associated to {0, 1, 3}
sage: S.homology(1)
C23
sage: S = simplicial_complexes.SumComplex(11, [0, 1, 2, 3, 4, 7]); S
Sum complex on vertices Z/11Z associated to {0, 1, 2, 3, 4, 7}
sage: S.homology() # long time
{0: 0, 1: 0, 2: 0, 3: 0, 4: C645679, 5: 0}
sage: factor(645679)
23 * 67 * 419

sage: S = simplicial_complexes.SumComplex(13, [0, 1, 3]); S
Sum complex on vertices Z/13Z associated to {0, 1, 3}
sage: S.homology(1)
C159
sage: factor(159)
3 * 53
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 2, 5]); S
Sum complex on vertices Z/13Z associated to {0, 1, 2, 5}
sage: S.homology() # long time
{0: 0, 1: 0, 2: C146989209, 3: 0}
sage: factor(1648910295)
3^2 * 5 * 53 * 521 * 1327
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 2, 3, 5]); S
Sum complex on vertices Z/13Z associated to {0, 1, 2, 3, 5}
sage: S.homology() # long time

(continues on next page)

68 Chapter 4. Examples of simplicial complexes

Topology, Release 9.8

(continued from previous page)

{0: 0, 1: 0, 2: 0, 3: C3 x C237 x C706565607945, 4: 0}
sage: factor(706565607945)
3 * 5 * 53 * 79 * 131 * 157 * 547

sage: S = simplicial_complexes.SumComplex(17, [0, 1, 4]); S
Sum complex on vertices Z/17Z associated to {0, 1, 4}
sage: S.homology(1)
C140183
sage: factor(140183)
103 * 1361
sage: S = simplicial_complexes.SumComplex(19, [0, 1, 4]); S
Sum complex on vertices Z/19Z associated to {0, 1, 4}
sage: S.homology(1)
C5670599
sage: factor(5670599)
11 * 191 * 2699
sage: S = simplicial_complexes.SumComplex(31, [0, 1, 4]); S
Sum complex on vertices Z/31Z associated to {0, 1, 4}
sage: S.homology(1) # long time
C5 x C5 x C5 x C5 x C26951480558170926865
sage: factor(26951480558170926865)
5 * 311 * 683 * 1117 * 11657 * 1948909

sage.topology.simplicial_complex_examples.SurfaceOfGenus(g, orientable=True)
A surface of genus 𝑔.

INPUT:

• g – a non-negative integer. The desired genus

• orientable – boolean (optional, default True). If True, return an orientable surface, and if False, return
a non-orientable surface.

In the orientable case, return a sphere if 𝑔 is zero, and otherwise return a 𝑔-fold connected sum of a torus with
itself.

In the non-orientable case, raise an error if 𝑔 is zero. If 𝑔 is positive, return a 𝑔-fold connected sum of a real
projective plane with itself.

EXAMPLES:

sage: simplicial_complexes.SurfaceOfGenus(2)
Triangulation of an orientable surface of genus 2
sage: simplicial_complexes.SurfaceOfGenus(1, orientable=False)
Triangulation of a non-orientable surface of genus 1

sage.topology.simplicial_complex_examples.Torus()

A minimal triangulation of the torus.

This is a simplicial complex with 7 vertices, 21 edges and 14 faces. It is the unique triangulation of the torus
with 7 vertices, and has been found by Möbius in 1861.

This is also the combinatorial structure of the Császár polyhedron (see Wikipedia article Császár_polyhedron).

EXAMPLES:

69

https://en.wikipedia.org/wiki/Cs�sz�r_polyhedron

Topology, Release 9.8

sage: T = simplicial_complexes.Torus(); T.homology(1)
Z x Z
sage: T.f_vector()
[1, 7, 21, 14]

REFERENCES:

• [Lut2002]

class sage.topology.simplicial_complex_examples.UniqueSimplicialComplex(maximal_faces=None,
name=None, **kwds)

Bases: SimplicialComplex, UniqueRepresentation

This combines SimplicialComplex and UniqueRepresentation. It is intended to be used to make standard
examples of simplicial complexes unique. See trac ticket #13566.

INPUT:

• the inputs are the same as for a SimplicialComplex, with one addition and two exceptions. The exceptions
are that is_mutable and is_immutable are ignored: all instances of this class are immutable. The
addition:

• name – string (optional), the string representation for this complex.

EXAMPLES:

sage: from sage.topology.simplicial_complex_examples import UniqueSimplicialComplex
sage: SimplicialComplex([[0, 1]]) is SimplicialComplex([[0, 1]])
False
sage: UniqueSimplicialComplex([[0, 1]]) is UniqueSimplicialComplex([[0, 1]])
True
sage: UniqueSimplicialComplex([[0, 1]])
Simplicial complex with vertex set (0, 1) and facets {(0, 1)}
sage: UniqueSimplicialComplex([[0, 1]], name='The 1-simplex')
The 1-simplex

sage.topology.simplicial_complex_examples.ZieglerBall()

Return the non-shellable ball constructed by Ziegler.

This complex is a non-shellable triangulation of the 3-ball with 10 vertices and 21 facets, constructed by Ziegler
in [Zie1998] and the smallest such complex known.

EXAMPLES:

sage: Z = simplicial_complexes.ZieglerBall(); Z
Ziegler ball
sage: Z.f_vector()
[1, 10, 38, 50, 21]
sage: Z.homology()
{0: 0, 1: 0, 2: 0, 3: 0}
sage: Z.is_cohen_macaulay()
True

sage.topology.simplicial_complex_examples.facets_for_K3()

Return the facets for a minimal triangulation of the K3 surface.

This is a pure simplicial complex of dimension 4 with 16 vertices and 288 facets. The facets are obtained by
constructing a few facets and a permutation group 𝐺, and then computing the 𝐺-orbit of those facets.

70 Chapter 4. Examples of simplicial complexes

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
https://trac.sagemath.org/13566

Topology, Release 9.8

See Casella and Kühnel in [CK2001] and Spreer and Kühnel [SK2011]; the construction here uses the labeling
from Spreer and Kühnel.

EXAMPLES:

sage: from sage.topology.simplicial_complex_examples import facets_for_K3
sage: A = facets_for_K3() # long time (a few seconds)
sage: SimplicialComplex(A) == simplicial_complexes.K3Surface() # long time
True

sage.topology.simplicial_complex_examples.facets_for_RP4()

Return the list of facets for a minimal triangulation of 4-dimensional real projective space.

We use vertices numbered 1 through 16, define two facets, and define a certain subgroup 𝐺 of the symmetric
group 𝑆16. Then the set of all facets is the 𝐺-orbit of the two given facets.

See the description in Example 3.12 in Datta [Dat2007].

EXAMPLES:

sage: from sage.topology.simplicial_complex_examples import facets_for_RP4
sage: A = facets_for_RP4() # long time (1 or 2 seconds)
sage: SimplicialComplex(A) == simplicial_complexes.RealProjectiveSpace(4) # long␣
→˓time
True

sage.topology.simplicial_complex_examples.matching(A, B)
List of maximal matchings between the sets A and B.

A matching is a set of pairs (𝑎, 𝑏) ∈ 𝐴×𝐵 where each 𝑎 and 𝑏 appears in at most one pair. A maximal matching
is one which is maximal with respect to inclusion of subsets of 𝐴×𝐵.

INPUT:

• A, B – list, tuple, or indeed anything which can be converted to a set.

EXAMPLES:

sage: from sage.topology.simplicial_complex_examples import matching
sage: matching([1, 2], [3, 4])
[{(1, 3), (2, 4)}, {(1, 4), (2, 3)}]
sage: matching([0, 2], [0])
[{(0, 0)}, {(2, 0)}]

71

Topology, Release 9.8

72 Chapter 4. Examples of simplicial complexes

CHAPTER

FIVE

FINITE DELTA-COMPLEXES

AUTHORS:

• John H. Palmieri (2009-08)

This module implements the basic structure of finite ∆-complexes. For full mathematical details, see Hatcher
[Hat2002], especially Section 2.1 and the Appendix on “Simplicial CW Structures”. As Hatcher points out, ∆-
complexes were first introduced by Eilenberg and Zilber [EZ1950], although they called them “semi-simplicial com-
plexes”.

A ∆-complex is a generalization of a simplicial complex; a ∆-complex𝑋 consists of sets𝑋𝑛 for each non-negative
integer 𝑛, the elements of which are called n-simplices, along with face maps between these sets of simplices: for each
𝑛 and for all 0 ≤ 𝑖 ≤ 𝑛, there are functions 𝑑𝑖 from 𝑋𝑛 to 𝑋𝑛−1, with 𝑑𝑖(𝑠) equal to the 𝑖-th face of 𝑠 for each simplex
𝑠 ∈ 𝑋𝑛. These maps must satisfy the simplicial identity

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 for all 𝑖 < 𝑗.

Given a ∆-complex, it has a geometric realization: a topological space built by taking one topological 𝑛-simplex for
each element of 𝑋𝑛, and gluing them together as determined by the face maps.

∆-complexes are an alternative to simplicial complexes. Every simplicial complex is automatically a ∆-complex; in
the other direction, though, it seems in practice that one can often construct ∆-complex representations for spaces with
many fewer simplices than in a simplicial complex representation. For example, the minimal triangulation of a torus
as a simplicial complex contains 14 triangles, 21 edges, and 7 vertices, while there is a ∆-complex representation of a
torus using only 2 triangles, 3 edges, and 1 vertex.

Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods are not
listed here; see the Generic Cell Complex page instead.

class sage.topology.delta_complex.DeltaComplex(data=None, check_validity=True)
Bases: GenericCellComplex

Define a ∆-complex.

Parameters

• data – see below for a description of the options

• check_validity (boolean; optional, default True) – If True, check that the sim-
plicial identities hold.

Returns
a ∆-complex

73

Topology, Release 9.8

Use data to define a ∆-complex. It may be in any of three forms:

• data may be a dictionary indexed by simplices. The value associated to a d-simplex 𝑆 can be any of:

– a list or tuple of (d-1)-simplices, where the ith entry is the ith face of S, given as a simplex,

– another d-simplex 𝑇 , in which case the ith face of 𝑆 is declared to be the same as the ith face of 𝑇 : 𝑆
and 𝑇 are glued along their entire boundary,

– None or True or False or anything other than the previous two options, in which case the faces are just
the ordinary faces of 𝑆.

For example, consider the following:

sage: n = 5
sage: S5 = DeltaComplex({Simplex(n):True, Simplex(range(1,n+2)): Simplex(n)})
sage: S5
Delta complex with 6 vertices and 65 simplices

The first entry in dictionary forming the argument to DeltaComplex says that there is an 𝑛-dimensional
simplex with its ordinary boundary. The second entry says that there is another simplex whose boundary
is glued to that of the first one. The resulting ∆-complex is, of course, homeomorphic to an 𝑛-sphere, or
actually a 5-sphere, since we defined 𝑛 to be 5. (Note that the second simplex here can be any 𝑛-dimensional
simplex, as long as it is distinct from Simplex(n).)

Let’s compute its homology, and also compare it to the simplicial version:

sage: S5.homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}
sage: S5.f_vector() # number of simplices in each dimension
[1, 6, 15, 20, 15, 6, 2]
sage: simplicial_complexes.Sphere(5).f_vector()
[1, 7, 21, 35, 35, 21, 7]

Both contain a single (-1)-simplex, the empty simplex; other than that, the ∆-complex version contains
fewer simplices than the simplicial one in each dimension.

To construct a torus, use:

sage: torus_dict = {Simplex([0,1,2]): True,
....: Simplex([3,4,5]): (Simplex([0,1]), Simplex([0,2]), Simplex([1,2])),
....: Simplex([0,1]): (Simplex(0), Simplex(0)),
....: Simplex([0,2]): (Simplex(0), Simplex(0)),
....: Simplex([1,2]): (Simplex(0), Simplex(0)),
....: Simplex(0): ()}
sage: T = DeltaComplex(torus_dict); T
Delta complex with 1 vertex and 7 simplices
sage: T.cohomology(base_ring=QQ)
{0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

This ∆-complex consists of two triangles (given by Simplex([0,1,2]) and Simplex([3,4,5])); the
boundary of the first is just its usual boundary: the 0th face is obtained by omitting the lowest numbered
vertex, etc., and so the boundary consists of the edges [1,2], [0,2], and [0,1], in that order. The
boundary of the second is, on the one hand, computed the same way: the nth face is obtained by omitting
the nth vertex. On the other hand, the boundary is explicitly declared to be edges [0,1], [0,2], and [1,

74 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

2], in that order. This glues the second triangle to the first in the prescribed way. The three edges each start
and end at the single vertex, Simplex(0).

• data may be nested lists or tuples. The nth entry in the list is a list of the n-simplices in the complex, and
each n-simplex is encoded as a list, the ith entry of which is its ith face. Each face is represented by an
integer, giving its index in the list of (n-1)-faces. For example, consider this:

sage: P = DeltaComplex([[(), ()], [(1,0), (1,0), (0,0)],
....: [(1,0,2), (0, 1, 2)]])

The 0th entry in the list is [(), ()]: there are two 0-simplices, and their boundaries are empty.

The 1st entry in the list is [(1,0), (1,0), (0,0)]: there are three 1-simplices. Two of them have
boundary (1,0), which means that their 0th face is vertex 1 (in the list of vertices), and their 1st face is
vertex 0. The other edge has boundary (0,0), so it starts and ends at vertex 0.

The 2nd entry in the list is [(1,0,2), (0,1,2)]: there are two 2-simplices. The first 2-simplex has
boundary (1,0,2), meaning that its 0th face is edge 1 (in the list above), its 1st face is edge 0, and its 2nd
face is edge 2; similarly for the 2nd 2-simplex.

If one draws two triangles and identifies them according to this description, the result is the real projective
plane.

sage: P.homology(1)
C2
sage: P.cohomology(2)
C2

Closely related to this form for data is X.cells() for a ∆-complex X: this is a dictionary, indexed by
dimension d, whose d-th entry is a list of the d-simplices, as a list:

75

Topology, Release 9.8

sage: P.cells()
{-1: ((),),
0: ((), ()),
1: ((1, 0), (1, 0), (0, 0)),
2: ((1, 0, 2), (0, 1, 2))}

• data may be a dictionary indexed by integers. For each integer 𝑛, the entry with key 𝑛 is the list of 𝑛-
simplices: this is the same format as is output by the cells() method.

sage: P = DeltaComplex([[(), ()], [(1,0), (1,0), (0,0)],
....: [(1,0,2), (0, 1, 2)]])
sage: cells_dict = P.cells()
sage: cells_dict
{-1: ((),),
0: ((), ()),
1: ((1, 0), (1, 0), (0, 0)),
2: ((1, 0, 2), (0, 1, 2))}
sage: DeltaComplex(cells_dict)
Delta complex with 2 vertices and 8 simplices
sage: P == DeltaComplex(cells_dict)
True

Since ∆-complexes are generalizations of simplicial complexes, any simplicial complex may be viewed as a
∆-complex:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: RP2_delta = RP2.delta_complex()
sage: RP2.f_vector()
[1, 6, 15, 10]
sage: RP2_delta.f_vector()
[1, 6, 15, 10]

Finally, ∆-complex constructions for several familiar spaces are available as follows:

sage: delta_complexes.Sphere(4) # the 4-sphere
Delta complex with 5 vertices and 33 simplices
sage: delta_complexes.KleinBottle()
Delta complex with 1 vertex and 7 simplices
sage: delta_complexes.RealProjectivePlane()
Delta complex with 2 vertices and 8 simplices

Type delta_complexes. and then hit the Tab key to get the full list.

alexander_whitney(cell, dim_left)
Subdivide cell in this ∆-complex into a pair of simplices.

For an abstract simplex with vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛, then subdivide it into simplices (𝑣0, 𝑣1, ..., 𝑣𝑑𝑖𝑚𝑙𝑒𝑓𝑡)
and (𝑣𝑑𝑖𝑚𝑙𝑒𝑓𝑡, 𝑣𝑑𝑖𝑚𝑙𝑒𝑓𝑡+1, ..., 𝑣𝑛). In a ∆-complex, instead take iterated faces: take top faces to get the left
factor, take bottom faces to get the right factor.

INPUT:

• cell – a simplex in this complex, given as a pair (idx, tuple), where idx is its index in the list of
cells in the given dimension, and tuple is the tuple of its faces

• dim_left – integer between 0 and one more than the dimension of this simplex

76 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

OUTPUT: a list containing just the triple (1, left, right), where left and right are the two cells
described above, each given as pairs (idx, tuple).

EXAMPLES:

sage: X = delta_complexes.Torus()
sage: X.n_cells(2)
[(1, 2, 0), (0, 2, 1)]
sage: X.alexander_whitney((0, (1, 2, 0)), 1)
[(1, (0, (0, 0)), (1, (0, 0)))]
sage: X.alexander_whitney((0, (1, 2, 0)), 0)
[(1, (0, ()), (0, (1, 2, 0)))]
sage: X.alexander_whitney((1, (0, 2, 1)), 2)
[(1, (1, (0, 2, 1)), (0, ()))]

algebraic_topological_model(base_ring=None)
Algebraic topological model for this ∆-complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

• base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this ∆-complex. The algebraic topological model is a chain
complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀 and
𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

• 𝜑𝜑 = 0,

• 𝜋𝜑 = 0,

• 𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

• chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

• the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.pi().
codomain(), respectively.

EXAMPLES:

sage: RP2 = delta_complexes.RealProjectivePlane()
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = delta_complexes.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

77

Topology, Release 9.8

barycentric_subdivision()

Not implemented.

EXAMPLES:

sage: K = delta_complexes.KleinBottle()
sage: K.barycentric_subdivision()
Traceback (most recent call last):
...
NotImplementedError: barycentric subdivisions are not implemented for Delta␣
→˓complexes

cells(subcomplex=None)
The cells of this ∆-complex.

Parameters
subcomplex (optional, default None) – a subcomplex of this complex

The cells of this ∆-complex, in the form of a dictionary: the keys are integers, representing dimension, and
the value associated to an integer d is the list of d-cells. Each d-cell is further represented by a list, the ith
entry of which gives the index of its ith face in the list of (d-1)-cells.

If the optional argument subcomplex is present, then “return only the faces which are not in the subcom-
plex”. To preserve the indexing, which is necessary to compute the relative chain complex, this actually
replaces the faces in subcomplex with None.

EXAMPLES:

sage: S2 = delta_complexes.Sphere(2)
sage: S2.cells()
{-1: ((),),
0: ((), (), ()),
1: ((0, 1), (0, 2), (1, 2)),
2: ((0, 1, 2), (0, 1, 2))}
sage: A = S2.subcomplex({1: [0,2]}) # one edge
sage: S2.cells(subcomplex=A)
{-1: (None,),
0: (None, None, None),
1: (None, (0, 2), None),
2: ((0, 1, 2), (0, 1, 2))}

chain_complex(subcomplex=None, augmented=False, verbose=False, check=False, dimensions=None,
base_ring=Integer Ring, cochain=False)

The chain complex associated to this ∆-complex.

Parameters

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of
integers, compute the chain complex in those dimensions, setting the chain groups in all
other dimensions to zero. NOT IMPLEMENTED YET: this function always returns the
entire chain complex

• base_ring (optional, default ZZ) – commutative ring

• subcomplex (optional, default empty) – a subcomplex of this simplicial complex.
Compute the chain complex relative to this subcomplex.

78 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

• augmented (boolean; optional, default False) – If True, return the augmented
chain complex (that is, include a class in dimension −1 corresponding to the empty cell).
This is ignored if dimensions is specified or if subcomplex is nonempty.

• cochain (boolean; optional, default False) – If True, return the cochain com-
plex (that is, the dual of the chain complex).

• verbose (boolean; optional, default False) – If True, print some messages as
the chain complex is computed.

• check (boolean; optional, default False) – If True, make sure that the chain
complex is actually a chain complex: the differentials are composable and their product
is zero.

Note: If subcomplex is nonempty, then the argument augmented has no effect: the chain complex relative
to a nonempty subcomplex is zero in dimension −1.

EXAMPLES:

sage: circle = delta_complexes.Sphere(1)
sage: circle.chain_complex()
Chain complex with at most 2 nonzero terms over Integer Ring
sage: circle.chain_complex()._latex_()
'\\Bold{Z}^{1} \\xrightarrow{d_{1}} \\Bold{Z}^{1}'
sage: circle.chain_complex(base_ring=QQ, augmented=True)
Chain complex with at most 3 nonzero terms over Rational Field
sage: circle.homology(dim=1)
Z
sage: circle.cohomology(dim=1)
Z
sage: T = delta_complexes.Torus()
sage: T.chain_complex(subcomplex=T)
Trivial chain complex over Integer Ring
sage: T.homology(subcomplex=T)
{0: 0, 1: 0, 2: 0}
sage: A = T.subcomplex({2: [1]}) # one of the two triangles forming T
sage: T.chain_complex(subcomplex=A)
Chain complex with at most 1 nonzero terms over Integer Ring
sage: T.homology(subcomplex=A)
{0: 0, 1: 0, 2: Z}

cone()

The cone on this ∆-complex.

The cone is the complex formed by adding a new vertex 𝐶 and simplices of the form [𝐶, 𝑣0, ..., 𝑣𝑘] for
every simplex [𝑣0, ..., 𝑣𝑘] in the original complex. That is, the cone is the join of the original complex with
a one-point complex.

EXAMPLES:

sage: K = delta_complexes.KleinBottle()
sage: K.cone()
Delta complex with 2 vertices and 14 simplices
sage: K.cone().homology()
{0: 0, 1: 0, 2: 0, 3: 0}

79

Topology, Release 9.8

connected_sum(other)
Return the connected sum of self with other.

Parameters
other – another ∆-complex

Returns
the connected sum self # other

Warning: This does not check that self and other are manifolds. It doesn’t even check that their facets
all have the same dimension. It just chooses top-dimensional simplices from each complex, checks that
they have the same dimension, removes them, and glues the remaining pieces together. Since a (more
or less) random facet is chosen from each complex, this method may return random results if applied
to non-manifolds, depending on which facet is chosen.

ALGORITHM:

Pick a top-dimensional simplex from each complex. Check to see if there are any identifications on either
simplex, using the _is_glued() method. If there are no identifications, remove the simplices and glue the
remaining parts of complexes along their boundary. If there are identifications on a simplex, subdivide it
repeatedly (using elementary_subdivision()) until some piece has no identifications.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: S2 = delta_complexes.Sphere(2)
sage: T.connected_sum(S2).cohomology() == T.cohomology()
True
sage: RP2 = delta_complexes.RealProjectivePlane()
sage: T.connected_sum(RP2).homology(1)
Z x Z x C2
sage: T.connected_sum(RP2).homology(2)
0
sage: RP2.connected_sum(RP2).connected_sum(RP2).homology(1)
Z x Z x C2

disjoint_union(right)
The disjoint union of this ∆-complex with another one.

Parameters
right – the other ∆-complex (the right-hand factor)

EXAMPLES:

sage: S1 = delta_complexes.Sphere(1)
sage: S2 = delta_complexes.Sphere(2)
sage: S1.disjoint_union(S2).homology()
{0: Z, 1: Z, 2: Z}

elementary_subdivision(idx=-1)
Perform an “elementary subdivision” on a top-dimensional simplex in this ∆-complex. If the optional
argument idx is present, it specifies the index (in the list of top-dimensional simplices) of the simplex to
subdivide. If not present, subdivide the last entry in this list.

Parameters
idx (integer; optional, default -1) – index specifying which simplex to subdivide

80 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

Returns
∆-complex with one simplex subdivided.

Elementary subdivision of a simplex means replacing that simplex with the cone on its boundary. That is,
given a ∆-complex containing a 𝑑-simplex 𝑆 with vertices 𝑣0, . . . , 𝑣𝑑, form a new ∆-complex by

• removing 𝑆

• adding a vertex 𝑤 (thought of as being in the interior of 𝑆)

• adding all simplices with vertices 𝑣𝑖0 , . . . , 𝑣𝑖𝑘 , 𝑤, preserving any identifications present along the
boundary of 𝑆

The algorithm for achieving this uses _epi_from_standard_simplex() to keep track of simplices (with
multiplicity) and what their faces are: this method defines a surjection 𝜋 from the standard 𝑑-simplex to 𝑆.
So first remove 𝑆 and add a new vertex 𝑤, say at the end of the old list of vertices. Then for each vertex 𝑣
in the standard 𝑑-simplex, add an edge from 𝜋(𝑣) to 𝑤; for each edge (𝑣0, 𝑣1) in the standard 𝑑-simplex,
add a triangle (𝜋(𝑣0), 𝜋(𝑣1), 𝑤), etc.

Note that given an 𝑛-simplex (𝑣0, 𝑣1, ..., 𝑣𝑛) in the standard 𝑑-simplex, the faces of the new (𝑛+1)-simplex
are given by removing vertices, one at a time, from (𝜋(𝑣0), ..., 𝜋(𝑣𝑛), 𝑤). These are either the image of the
old 𝑛-simplex (if 𝑤 is removed) or the various new 𝑛-simplices added in the previous dimension. So keep
track of what’s added in dimension 𝑛 for use in computing the faces in dimension 𝑛 + 1.

In contrast with barycentric subdivision, note that only the interior of 𝑆 has been changed; this allows for
subdivision of a single top-dimensional simplex without subdividing every simplex in the complex.

The term “elementary subdivision” is taken from p. 112 in John M. Lee’s book [Lee2011].

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.n_cells(2)
[(1, 2, 0), (0, 2, 1)]
sage: T.elementary_subdivision(0) # subdivide first triangle
Delta complex with 2 vertices and 13 simplices
sage: X = T.elementary_subdivision(); X # subdivide last triangle
Delta complex with 2 vertices and 13 simplices
sage: X.elementary_subdivision()
Delta complex with 3 vertices and 19 simplices
sage: X.homology() == T.homology()
True

face_poset()

The face poset of this ∆-complex, the poset of nonempty cells, ordered by inclusion.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.face_poset()
Finite poset containing 6 elements

graph()

The 1-skeleton of this ∆-complex as a graph.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.graph()

(continues on next page)

81

Topology, Release 9.8

(continued from previous page)

Looped multi-graph on 1 vertex
sage: S = delta_complexes.Sphere(2)
sage: S.graph()
Graph on 3 vertices
sage: delta_complexes.Simplex(4).graph() == graphs.CompleteGraph(5)
True

join(other)
The join of this ∆-complex with another one.

Parameters
other – another ∆-complex (the right-hand factor)

Returns
the join self * other

The join of two ∆-complexes 𝑆 and 𝑇 is the ∆-complex 𝑆 * 𝑇 with simplices of the form
[𝑣0, ..., 𝑣𝑘, 𝑤0, ..., 𝑤𝑛] for all simplices [𝑣0, ..., 𝑣𝑘] in 𝑆 and [𝑤0, ..., 𝑤𝑛] in 𝑇 . The faces are computed
accordingly: the ith face of such a simplex is either (𝑑𝑖𝑆) * 𝑇 if 𝑖 ≤ 𝑘, or 𝑆 * (𝑑𝑖−𝑘−1𝑇) if 𝑖 > 𝑘.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: S0 = delta_complexes.Sphere(0)
sage: T.join(S0) # the suspension of T
Delta complex with 3 vertices and 21 simplices

Compare to simplicial complexes:

sage: K = delta_complexes.KleinBottle()
sage: T_simp = simplicial_complexes.Torus()
sage: K_simp = simplicial_complexes.KleinBottle()
sage: T.join(K).homology()[3] == T_simp.join(K_simp).homology()[3] # long time␣
→˓(3 seconds)
True

The notation ‘*’ may be used, as well:

sage: S1 = delta_complexes.Sphere(1)
sage: X = S1 * S1 # X is a 3-sphere
sage: X.homology()
{0: 0, 1: 0, 2: 0, 3: Z}

n_chains(n, base_ring=None, cochains=False)
Return the free module of chains in degree n over base_ring.

INPUT:

• n – integer

• base_ring – ring (optional, default Z)

• cochains – boolean (optional, default False); if True, return cochains instead

Since the list of 𝑛-cells for a ∆-complex may have some ambiguity – for example, the list of edges may
look like [(0, 0), (0, 0), (0, 0)] if each edge starts and ends at vertex 0 – we record the indices

82 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

of the cells along with their tuples. So the basis of chains in such a case would look like [(0, (0, 0)),
(1, (0, 0)), (2, (0, 0))].

The only difference between chains and cochains is notation: the dual cochain to the chain basis element b
is written as \chi_b.

EXAMPLES:

sage: T = delta_complexes.Torus()
sage: T.n_chains(1, QQ)
Free module generated by {(0, (0, 0)), (1, (0, 0)), (2, (0, 0))} over Rational␣
→˓Field
sage: list(T.n_chains(1, QQ, cochains=False).basis())
[(0, (0, 0)), (1, (0, 0)), (2, (0, 0))]
sage: list(T.n_chains(1, QQ, cochains=True).basis())
[\chi_(0, (0, 0)), \chi_(1, (0, 0)), \chi_(2, (0, 0))]

n_skeleton(n)
The n-skeleton of this ∆-complex.

Parameters
n (non-negative integer) – dimension

EXAMPLES:

sage: S3 = delta_complexes.Sphere(3)
sage: S3.n_skeleton(1) # 1-skeleton of a tetrahedron
Delta complex with 4 vertices and 11 simplices
sage: S3.n_skeleton(1).dimension()
1
sage: S3.n_skeleton(1).homology()
{0: 0, 1: Z x Z x Z}

product(other)
The product of this ∆-complex with another one.

Parameters
other – another ∆-complex (the right-hand factor)

Returns
the product self x other

Warning: If X and Y are ∆-complexes, then X*Y returns their join, not their product.

EXAMPLES:

sage: K = delta_complexes.KleinBottle()
sage: X = K.product(K)
sage: X.homology(1)
Z x Z x C2 x C2
sage: X.homology(2)
Z x C2 x C2 x C2
sage: X.homology(3)
C2
sage: X.homology(4)

(continues on next page)

83

Topology, Release 9.8

(continued from previous page)

0
sage: X.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 4 over Finite Field of size 2,
2: Vector space of dimension 6 over Finite Field of size 2,
3: Vector space of dimension 4 over Finite Field of size 2,
4: Vector space of dimension 1 over Finite Field of size 2}
sage: S1 = delta_complexes.Sphere(1)
sage: K.product(S1).homology() == S1.product(K).homology()
True
sage: S1.product(S1) == delta_complexes.Torus()
True

subcomplex(data)
Create a subcomplex.

Parameters
data – a dictionary indexed by dimension or a list (or tuple); in either case, data[n] should
be the list (or tuple or set) of the indices of the simplices to be included in the subcomplex.

This automatically includes all faces of the simplices in data, so you only have to specify the simplices
which are maximal with respect to inclusion.

EXAMPLES:

sage: X = delta_complexes.Torus()
sage: A = X.subcomplex({2: [0]}) # one of the triangles of X
sage: X.homology(subcomplex=A)
{0: 0, 1: 0, 2: Z}

In the following, line is a line segment and ends is the complex consisting of its two endpoints, so the
relative homology of the two is isomorphic to the homology of a circle:

sage: line = delta_complexes.Simplex(1) # an edge
sage: line.cells()
{-1: ((),), 0: ((), ()), 1: ((0, 1),)}
sage: ends = line.subcomplex({0: (0, 1)})
sage: ends.cells()
{-1: ((),), 0: ((), ())}
sage: line.homology(subcomplex=ends)
{0: 0, 1: Z}

suspension(n=1)
The suspension of this ∆-complex.

Parameters
n (positive integer; optional, default 1) – suspend this many times.

The suspension is the complex formed by adding two new vertices 𝑆0 and 𝑆1 and simplices of the form
[𝑆0, 𝑣0, ..., 𝑣𝑘] and [𝑆1, 𝑣0, ..., 𝑣𝑘] for every simplex [𝑣0, ..., 𝑣𝑘] in the original complex. That is, the sus-
pension is the join of the original complex with a two-point complex (the 0-sphere).

EXAMPLES:

84 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

sage: S = delta_complexes.Sphere(0)
sage: S3 = S.suspension(3) # the 3-sphere
sage: S3.homology()
{0: 0, 1: 0, 2: 0, 3: Z}

wedge(right)
The wedge (one-point union) of this ∆-complex with another one.

Parameters
right – the other ∆-complex (the right-hand factor)

Note: This operation is not well-defined if self or other is not path-connected.

EXAMPLES:

sage: S1 = delta_complexes.Sphere(1)
sage: S2 = delta_complexes.Sphere(2)
sage: S1.wedge(S2).homology()
{0: 0, 1: Z, 2: Z}

class sage.topology.delta_complex.DeltaComplexExamples

Bases: object

Some examples of ∆-complexes.

Here are the available examples; you can also type delta_complexes. and hit TAB to get a list:

Sphere
Torus
RealProjectivePlane
KleinBottle
Simplex
SurfaceOfGenus

EXAMPLES:

sage: S = delta_complexes.Sphere(6) # the 6-sphere
sage: S.dimension()
6
sage: S.cohomology(6)
Z
sage: delta_complexes.Torus() == delta_complexes.Sphere(3)
False

KleinBottle()

A ∆-complex representation of the Klein bottle, consisting of one vertex, three edges, and two triangles.

85

Topology, Release 9.8

EXAMPLES:

sage: delta_complexes.KleinBottle()
Delta complex with 1 vertex and 7 simplices

RealProjectivePlane()

A ∆-complex representation of the real projective plane, consisting of two vertices, three edges, and two
triangles.

EXAMPLES:

sage: P = delta_complexes.RealProjectivePlane()
sage: P.cohomology(1)
0
sage: P.cohomology(2)
C2
sage: P.cohomology(dim=1, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P.cohomology(dim=2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

Simplex(n)
A ∆-complex representation of an 𝑛-simplex, consisting of a single 𝑛-simplex and its faces. (This is the
same as the simplicial complex representation available by using simplicial_complexes.Simplex(n).)

EXAMPLES:

sage: delta_complexes.Simplex(3)
Delta complex with 4 vertices and 16 simplices

Sphere(n)
A ∆-complex representation of the 𝑛-dimensional sphere, formed by gluing two 𝑛-simplices along their

86 Chapter 5. Finite Delta-complexes

Topology, Release 9.8

boundary, except in dimension 1, in which case it is a single 1-simplex starting and ending at the same
vertex.

Parameters
n – dimension of the sphere

EXAMPLES:

sage: delta_complexes.Sphere(4).cohomology(4, base_ring=GF(3))
Vector space of dimension 1 over Finite Field of size 3

SurfaceOfGenus(g, orientable=True)
A surface of genus g as a ∆-complex.

Parameters

• g (non-negative integer) – the genus

• orientable (bool, optional, default True) – whether the surface should be orientable

In the orientable case, return a sphere if 𝑔 is zero, and otherwise return a 𝑔-fold connected sum of a torus
with itself.

In the non-orientable case, raise an error if 𝑔 is zero. If 𝑔 is positive, return a 𝑔-fold connected sum of a
real projective plane with itself.

EXAMPLES:

sage: delta_complexes.SurfaceOfGenus(1, orientable=False)
Delta complex with 2 vertices and 8 simplices
sage: delta_complexes.SurfaceOfGenus(3, orientable=False).homology(1)
Z x Z x C2
sage: delta_complexes.SurfaceOfGenus(3, orientable=False).homology(2)
0

Compare to simplicial complexes:

sage: delta_g4 = delta_complexes.SurfaceOfGenus(4)
sage: delta_g4.f_vector()
[1, 3, 27, 18]
sage: simpl_g4 = simplicial_complexes.SurfaceOfGenus(4)
sage: simpl_g4.f_vector()
[1, 19, 75, 50]
sage: delta_g4.homology() == simpl_g4.homology()
True

Torus()

A ∆-complex representation of the torus, consisting of one vertex, three edges, and two triangles.

87

Topology, Release 9.8

EXAMPLES:

sage: delta_complexes.Torus().homology(1)
Z x Z

88 Chapter 5. Finite Delta-complexes

CHAPTER

SIX

FINITE CUBICAL COMPLEXES

AUTHORS:

• John H. Palmieri (2009-08)

This module implements the basic structure of finite cubical complexes. For full mathematical details, see Kaczynski,
Mischaikow, and Mrozek [KMM2004], for example.

Cubical complexes are topological spaces built from gluing together cubes of various dimensions; the collection of
cubes must be closed under taking faces, just as with a simplicial complex. In this context, a “cube” means a product
of intervals of length 1 or length 0 (degenerate intervals), with integer endpoints, and its faces are obtained by using
the nondegenerate intervals: if 𝐶 is a cube – a product of degenerate and nondegenerate intervals – and if [𝑖, 𝑖 + 1] is
the 𝑘-th nondegenerate factor, then 𝐶 has two faces indexed by 𝑘: the cubes obtained by replacing [𝑖, 𝑖 + 1] with [𝑖, 𝑖]
or [𝑖 + 1, 𝑖 + 1].

So to construct a space homeomorphic to a circle as a cubical complex, we could take for example the four line segments
in the plane from (0, 2) to (0, 3) to (1, 3) to (1, 2) to (0, 2). In Sage, this is done with the following command:

sage: S1 = CubicalComplex([([0,0], [2,3]), ([0,1], [3,3]), ([0,1], [2,2]), ([1,1], [2,
→˓3])]); S1
Cubical complex with 4 vertices and 8 cubes

The argument to CubicalComplex is a list of the maximal “cubes” in the complex. Each “cube” can be an instance of
the class Cube or a list (or tuple) of “intervals”, and an “interval” is a pair of integers, of one of the two forms [𝑖, 𝑖] or
[𝑖, 𝑖 + 1]. So the cubical complex S1 above has four maximal cubes:

sage: len(S1.maximal_cells())
4
sage: sorted(S1.maximal_cells())
[[0,0] x [2,3], [0,1] x [2,2], [0,1] x [3,3], [1,1] x [2,3]]

The first of these, for instance, is the product of the degenerate interval [0, 0] with the unit interval [2, 3]: this is the line
segment in the plane from (0, 2) to (0, 3). We could form a topologically equivalent space by inserting some degenerate
simplices:

sage: S1.homology()
{0: 0, 1: Z}
sage: X = CubicalComplex([([0,0], [2,3], [2]), ([0,1], [3,3], [2]), ([0,1], [2,2], [2]),␣
→˓([1,1], [2,3], [2])])
sage: X.homology()
{0: 0, 1: Z}

Topologically, the cubical complex X consists of four edges of a square inR3: the same unit square as S1, but embedded
in R3 with 𝑧-coordinate equal to 2. Thus X is homeomorphic to S1 (in fact, they’re “cubically equivalent”), and this is
reflected in the fact that they have isomorphic homology groups.

89

Topology, Release 9.8

Note: This class derives from GenericCellComplex, and so inherits its methods. Some of those methods are not
listed here; see the Generic Cell Complex page instead.

class sage.topology.cubical_complex.Cube(data)
Bases: SageObject

Define a cube for use in constructing a cubical complex.

“Elementary cubes” are products of intervals with integer endpoints, each of which is either a unit interval or a
degenerate (length 0) interval; for example,

[0, 1] × [3, 4] × [2, 2] × [1, 2]

is a 3-dimensional cube (since one of the intervals is degenerate) embedded in R4.

Parameters
data – list or tuple of terms of the form (i,i+1) or (i,i) or (i,) – the last two are degenerate
intervals.

Returns
an elementary cube

Each cube is stored in a standard form: a tuple of tuples, with a nondegenerate interval [j,j] represented by
(j,j), not (j,). (This is so that for any interval I, I[1] will produce a value, not an IndexError.)

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]]); C
[1,2] x [5,5] x [6,7] x [-1,0]
sage: C.dimension() # number of nondegenerate intervals
3
sage: C.nondegenerate_intervals() # indices of these intervals
[0, 2, 3]
sage: C.face(1, upper=False)
[1,2] x [5,5] x [6,6] x [-1,0]
sage: C.face(1, upper=True)
[1,2] x [5,5] x [7,7] x [-1,0]
sage: Cube(()).dimension() # empty cube has dimension -1
-1

alexander_whitney(dim)

Subdivide this cube into pairs of cubes.

This provides a cubical approximation for the diagonal map 𝐾 → 𝐾 ×𝐾.

INPUT:

• dim – integer between 0 and one more than the dimension of this cube

OUTPUT:

• a list containing triples (coeff, left, right)

This uses the algorithm described by Pilarczyk and Réal [PR2015] on p. 267; the formula is originally due
to Serre. Calling this method alexander_whitney is an abuse of notation, since the actual Alexander-
Whitney map goes from 𝐶(𝐾×𝐿) → 𝐶(𝐾)⊗𝐶(𝐿), where 𝐶(−) denotes the associated chain complex,
but this subdivision of cubes is at the heart of it.

EXAMPLES:

90 Chapter 6. Finite cubical complexes

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Topology, Release 9.8

sage: from sage.topology.cubical_complex import Cube
sage: C1 = Cube([[0,1], [3,4]])
sage: C1.alexander_whitney(0)
[(1, [0,0] x [3,3], [0,1] x [3,4])]
sage: C1.alexander_whitney(1)
[(1, [0,1] x [3,3], [1,1] x [3,4]), (-1, [0,0] x [3,4], [0,1] x [4,4])]
sage: C1.alexander_whitney(2)
[(1, [0,1] x [3,4], [1,1] x [4,4])]

dimension()

The dimension of this cube: the number of its nondegenerate intervals.

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C.dimension()
3
sage: C = Cube([[1,], [5,], [6,], [-1,]])
sage: C.dimension()
0
sage: Cube([]).dimension() # empty cube has dimension -1
-1

face(n, upper=True)
The nth primary face of this cube.

Parameters

• n – an integer between 0 and one less than the dimension of this cube

• upper (boolean; optional, default=True) – if True, return the “upper” nth primary
face; otherwise, return the “lower” nth primary face.

Returns
the cube obtained by replacing the nth non-degenerate interval with either its upper or lower
endpoint.

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]]); C
[1,2] x [5,5] x [6,7] x [-1,0]
sage: C.face(0)
[2,2] x [5,5] x [6,7] x [-1,0]
sage: C.face(0, upper=False)
[1,1] x [5,5] x [6,7] x [-1,0]
sage: C.face(1)
[1,2] x [5,5] x [7,7] x [-1,0]
sage: C.face(2, upper=False)
[1,2] x [5,5] x [6,7] x [-1,-1]
sage: C.face(3)
Traceback (most recent call last):
...
ValueError: can only compute the nth face if 0 <= n < dim

91

Topology, Release 9.8

faces()

The list of faces (of codimension 1) of this cube.

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [3,4]])
sage: C.faces()
[[2,2] x [3,4], [1,2] x [4,4], [1,1] x [3,4], [1,2] x [3,3]]

faces_as_pairs()

The list of faces (of codimension 1) of this cube, as pairs (upper, lower).

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [3,4]])
sage: C.faces_as_pairs()
[([2,2] x [3,4], [1,1] x [3,4]), ([1,2] x [4,4], [1,2] x [3,3])]

is_face(other)
Return True iff this cube is a face of other.

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C1 = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C2 = Cube([[1,2], [5,], [6,], [-1, 0]])
sage: C1.is_face(C2)
False
sage: C1.is_face(C1)
True
sage: C2.is_face(C1)
True

nondegenerate_intervals()

The list of indices of nondegenerate intervals of this cube.

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C.nondegenerate_intervals()
[0, 2, 3]
sage: C = Cube([[1,], [5,], [6,], [-1,]])
sage: C.nondegenerate_intervals()
[]

product(other)
Cube obtained by concatenating the underlying tuples of the two arguments.

Parameters
other – another cube

Returns
the product of self and other, as a Cube

92 Chapter 6. Finite cubical complexes

Topology, Release 9.8

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [3,]])
sage: D = Cube([[4], [0,1]])
sage: C.product(D)
[1,2] x [3,3] x [4,4] x [0,1]

You can also use __add__ or + or __mul__ or *:

sage: D * C
[4,4] x [0,1] x [1,2] x [3,3]
sage: D + C * C
[4,4] x [0,1] x [1,2] x [3,3] x [1,2] x [3,3]

tuple()

The tuple attached to this cube.

EXAMPLES:

sage: from sage.topology.cubical_complex import Cube
sage: C = Cube([[1,2], [5,], [6,7], [-1, 0]])
sage: C.tuple()
((1, 2), (5, 5), (6, 7), (-1, 0))

class sage.topology.cubical_complex.CubicalComplex(maximal_faces=None, maximality_check=True)
Bases: GenericCellComplex

Define a cubical complex.

Parameters

• maximal_faces – set of maximal faces

• maximality_check (boolean; optional, default True) – see below

Returns
a cubical complex

maximal_faces should be a list or tuple or set (or anything which may be converted to a set) of “cubes”:
instances of the class Cube, or lists or tuples suitable for conversion to cubes. These cubes are the maximal
cubes in the complex.

In addition, maximal_faces may be a cubical complex, in which case that complex is returned. Also,
maximal_faces may instead be any object which has a _cubical_ method (e.g., a simplicial complex); then
that method is used to convert the object to a cubical complex.

If maximality_check is True, check that each maximal face is, in fact, maximal. In this case, when producing
the internal representation of the cubical complex, omit those that are not. It is highly recommended that this be
True; various methods for this class may fail if faces which are claimed to be maximal are in fact not.

EXAMPLES:

The empty complex, consisting of one cube, the empty cube:

sage: CubicalComplex()
Cubical complex with 0 vertices and 1 cube

A “circle” (four edges connecting the vertices (0,2), (0,3), (1,2), and (1,3)):

93

Topology, Release 9.8

sage: S1 = CubicalComplex([([0,0], [2,3]), ([0,1], [3,3]), ([0,1], [2,2]), ([1,1],␣
→˓[2,3])])
sage: S1
Cubical complex with 4 vertices and 8 cubes
sage: S1.homology()
{0: 0, 1: Z}

A set of five points and its product with S1:

sage: pts = CubicalComplex([([0],), ([3],), ([6],), ([-12],), ([5],)])
sage: pts
Cubical complex with 5 vertices and 5 cubes
sage: pts.homology()
{0: Z x Z x Z x Z}
sage: X = S1.product(pts); X
Cubical complex with 20 vertices and 40 cubes
sage: X.homology()
{0: Z x Z x Z x Z, 1: Z^5}

Converting a simplicial complex to a cubical complex:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C2 = CubicalComplex(S2)
sage: all(C2.homology(n) == S2.homology(n) for n in range(3))
True

You can get the set of maximal cells or a dictionary of all cells:

sage: X.maximal_cells() # random: order may depend on the version of Python
{[0,0] x [2,3] x [-12,-12], [0,1] x [3,3] x [5,5], [0,1] x [2,2] x [3,3], [0,1] x␣
→˓[2,2] x [0,0], [0,1] x [3,3] x [6,6], [1,1] x [2,3] x [0,0], [0,1] x [2,2] x [-12,
→˓-12], [0,0] x [2,3] x [6,6], [1,1] x [2,3] x [-12,-12], [1,1] x [2,3] x [5,5], [0,
→˓1] x [2,2] x [5,5], [0,1] x [3,3] x [3,3], [1,1] x [2,3] x [3,3], [0,0] x [2,3] x␣
→˓[5,5], [0,1] x [3,3] x [0,0], [1,1] x [2,3] x [6,6], [0,1] x [2,2] x [6,6], [0,0]␣
→˓x [2,3] x [0,0], [0,0] x [2,3] x [3,3], [0,1] x [3,3] x [-12,-12]}
sage: sorted(X.maximal_cells())
[[0,0] x [2,3] x [-12,-12],
[0,0] x [2,3] x [0,0],
[0,0] x [2,3] x [3,3],
[0,0] x [2,3] x [5,5],
[0,0] x [2,3] x [6,6],
[0,1] x [2,2] x [-12,-12],
[0,1] x [2,2] x [0,0],
[0,1] x [2,2] x [3,3],
[0,1] x [2,2] x [5,5],
[0,1] x [2,2] x [6,6],
[0,1] x [3,3] x [-12,-12],
[0,1] x [3,3] x [0,0],
[0,1] x [3,3] x [3,3],
[0,1] x [3,3] x [5,5],
[0,1] x [3,3] x [6,6],
[1,1] x [2,3] x [-12,-12],
[1,1] x [2,3] x [0,0],

(continues on next page)

94 Chapter 6. Finite cubical complexes

Topology, Release 9.8

(continued from previous page)

[1,1] x [2,3] x [3,3],
[1,1] x [2,3] x [5,5],
[1,1] x [2,3] x [6,6]]
sage: S1.cells()
{-1: set(),
0: {[0,0] x [2,2], [0,0] x [3,3], [1,1] x [2,2], [1,1] x [3,3]},
1: {[0,0] x [2,3], [0,1] x [2,2], [0,1] x [3,3], [1,1] x [2,3]}}

Chain complexes, homology, and cohomology:

sage: T = S1.product(S1); T
Cubical complex with 16 vertices and 64 cubes
sage: T.chain_complex()
Chain complex with at most 3 nonzero terms over Integer Ring
sage: T.homology(base_ring=QQ)
{0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}
sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: RP2.cohomology(dim=[1, 2], base_ring=GF(2))
{1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}

Joins are not implemented:

sage: S1.join(S1)
Traceback (most recent call last):
...
NotImplementedError: joins are not implemented for cubical complexes

Therefore, neither are cones or suspensions.

alexander_whitney(cube, dim_left)
Subdivide cube in this cubical complex into pairs of cubes.

See Cube.alexander_whitney() for more details. This method just calls that one.

INPUT:

• cube – a cube in this cubical complex

• dim – integer between 0 and one more than the dimension of this cube

OUTPUT: a list containing triples (coeff, left, right)

EXAMPLES:

sage: C = cubical_complexes.Cube(3)
sage: c = list(C.n_cubes(3))[0]; c
[0,1] x [0,1] x [0,1]
sage: C.alexander_whitney(c, 1)
[(1, [0,1] x [0,0] x [0,0], [1,1] x [0,1] x [0,1]),
(-1, [0,0] x [0,1] x [0,0], [0,1] x [1,1] x [0,1]),
(1, [0,0] x [0,0] x [0,1], [0,1] x [0,1] x [1,1])]

95

Topology, Release 9.8

algebraic_topological_model(base_ring=None)
Algebraic topological model for this cubical complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

• base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this cubical complex. The algebraic topological model is a
chain complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀
and 𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

• 𝜑𝜑 = 0,

• 𝜋𝜑 = 0,

• 𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

• chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

• the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.pi().
codomain(), respectively.

EXAMPLES:

sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = cubical_complexes.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

cells(subcomplex=None)
The cells of this cubical complex, in the form of a dictionary: the keys are integers, representing dimension,
and the value associated to an integer d is the list of d-cells.

If the optional argument subcomplex is present, then return only the faces which are not in the subcomplex.

Parameters
subcomplex (a cubical complex; optional, default None) – a subcomplex of this
cubical complex

Returns
cells of this complex not contained in subcomplex

Return type
dictionary

EXAMPLES:

96 Chapter 6. Finite cubical complexes

Topology, Release 9.8

sage: S2 = cubical_complexes.Sphere(2)
sage: sorted(S2.cells()[2])
[[0,0] x [0,1] x [0,1],
[0,1] x [0,0] x [0,1],
[0,1] x [0,1] x [0,0],
[0,1] x [0,1] x [1,1],
[0,1] x [1,1] x [0,1],
[1,1] x [0,1] x [0,1]]

chain_complex(subcomplex=None, augmented=False, verbose=False, check=False, dimensions=None,
base_ring=Integer Ring, cochain=False)

The chain complex associated to this cubical complex.

Parameters

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of
integers, compute the chain complex in those dimensions, setting the chain groups in all
other dimensions to zero. NOT IMPLEMENTED YET: this function always returns the
entire chain complex

• base_ring (optional, default ZZ) – commutative ring

• subcomplex (optional, default empty) – a subcomplex of this cubical complex.
Compute the chain complex relative to this subcomplex.

• augmented (boolean; optional, default False) – If True, return the augmented
chain complex (that is, include a class in dimension −1 corresponding to the empty cell).
This is ignored if dimensions is specified.

• cochain (boolean; optional, default False) – If True, return the cochain com-
plex (that is, the dual of the chain complex).

• verbose (boolean; optional, default False) – If True, print some messages as
the chain complex is computed.

• check (boolean; optional, default False) – If True, make sure that the chain
complex is actually a chain complex: the differentials are composable and their product
is zero.

Note: If subcomplex is nonempty, then the argument augmented has no effect: the chain complex relative
to a nonempty subcomplex is zero in dimension −1.

EXAMPLES:

sage: S2 = cubical_complexes.Sphere(2)
sage: S2.chain_complex()
Chain complex with at most 3 nonzero terms over Integer Ring
sage: Prod = S2.product(S2); Prod
Cubical complex with 64 vertices and 676 cubes
sage: Prod.chain_complex()
Chain complex with at most 5 nonzero terms over Integer Ring
sage: Prod.chain_complex(base_ring=QQ)
Chain complex with at most 5 nonzero terms over Rational Field
sage: C1 = cubical_complexes.Cube(1)
sage: S0 = cubical_complexes.Sphere(0)

(continues on next page)

97

Topology, Release 9.8

(continued from previous page)

sage: C1.chain_complex(subcomplex=S0)
Chain complex with at most 1 nonzero terms over Integer Ring
sage: C1.homology(subcomplex=S0)
{0: 0, 1: Z}

Check that trac ticket #32203 has been fixed:

sage: Square = CubicalComplex([([0,1],[0,1])])
sage: EdgesLTR = CubicalComplex([([0,0],[0,1]),([0,1],[1,1]),([1,1],[0,1])])
sage: EdgesLBR = CubicalComplex([([0,0],[0,1]),([0,1],[0,0]),([1,1],[0,1])])
sage: Square.homology(subcomplex=EdgesLTR)[2] == Square.
→˓homology(subcomplex=EdgesLBR)[2]
True

cone()

The cone on this cubical complex.

NOT IMPLEMENTED

The cone is the complex formed by taking the join of the original complex with a one-point complex (that
is, a 0-dimensional cube). Since joins are not implemented for cubical complexes, neither are cones.

EXAMPLES:

sage: C1 = cubical_complexes.Cube(1)
sage: C1.cone()
Traceback (most recent call last):
...
NotImplementedError: cones are not implemented for cubical complexes

connected_sum(other)
Return the connected sum of self with other.

Parameters
other – another cubical complex

Returns
the connected sum self # other

Warning: This does not check that self and other are manifolds, only that their facets all have the same
dimension. Since a (more or less) random facet is chosen from each complex and then glued together,
this method may return random results if applied to non-manifolds, depending on which facet is chosen.

EXAMPLES:

sage: T = cubical_complexes.Torus()
sage: S2 = cubical_complexes.Sphere(2)
sage: T.connected_sum(S2).cohomology() == T.cohomology()
True
sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: T.connected_sum(RP2).homology(1)
Z x Z x C2
sage: RP2.connected_sum(RP2).connected_sum(RP2).homology(1)
Z x Z x C2

98 Chapter 6. Finite cubical complexes

https://trac.sagemath.org/32203

Topology, Release 9.8

disjoint_union(other)
The disjoint union of this cubical complex with another one.

Parameters
right – the other cubical complex (the right-hand factor)

Algorithm: first embed both complexes in d-dimensional Euclidean space. Then embed in (1+d)-
dimensional space, calling the new axis 𝑥, and putting the first complex at 𝑥 = 0, the second at 𝑥 = 1.

EXAMPLES:

sage: S1 = cubical_complexes.Sphere(1)
sage: S2 = cubical_complexes.Sphere(2)
sage: S1.disjoint_union(S2).homology()
{0: Z, 1: Z, 2: Z}

graph()

The 1-skeleton of this cubical complex, as a graph.

EXAMPLES:

sage: cubical_complexes.Sphere(2).graph()
Graph on 8 vertices

is_pure()

True iff this cubical complex is pure: that is, all of its maximal faces have the same dimension.

Warning: This may give the wrong answer if the cubical complex was constructed with
maximality_check set to False.

EXAMPLES:

sage: S4 = cubical_complexes.Sphere(4)
sage: S4.is_pure()
True
sage: C = CubicalComplex([([0,0], [3,3]), ([1,2], [4,5])])
sage: C.is_pure()
False

is_subcomplex(other)
Return True if self is a subcomplex of other.

Parameters
other – a cubical complex

Each maximal cube of self must be a face of a maximal cube of other for this to be True.

EXAMPLES:

sage: S1 = cubical_complexes.Sphere(1)
sage: C0 = cubical_complexes.Cube(0)
sage: C1 = cubical_complexes.Cube(1)
sage: cyl = S1.product(C1)
sage: end = S1.product(C0)
sage: end.is_subcomplex(cyl)

(continues on next page)

99

Topology, Release 9.8

(continued from previous page)

True
sage: cyl.is_subcomplex(end)
False

The embedding of the cubical complex is important here:

sage: C2 = cubical_complexes.Cube(2)
sage: C1.is_subcomplex(C2)
False
sage: C1.product(C0).is_subcomplex(C2)
True

C1 is not a subcomplex of C2 because it’s not embedded in R2. On the other hand, C1 x C0 is a face of
C2. Look at their maximal cells:

sage: C1.maximal_cells()
{[0,1]}
sage: C2.maximal_cells()
{[0,1] x [0,1]}
sage: C1.product(C0).maximal_cells()
{[0,1] x [0,0]}

join(other)
The join of this cubical complex with another one.

NOT IMPLEMENTED.

Parameters
other – another cubical complex

EXAMPLES:

sage: C1 = cubical_complexes.Cube(1)
sage: C1.join(C1)
Traceback (most recent call last):
...
NotImplementedError: joins are not implemented for cubical complexes

maximal_cells()

The set of maximal cells (with respect to inclusion) of this cubical complex.

Returns
Set of maximal cells

This just returns the set of cubes used in defining the cubical complex, so if the complex was defined with
no maximality checking, none is done here, either.

EXAMPLES:

sage: interval = cubical_complexes.Cube(1)
sage: interval
Cubical complex with 2 vertices and 3 cubes
sage: interval.maximal_cells()
{[0,1]}
sage: interval.product(interval).maximal_cells()
{[0,1] x [0,1]}

100 Chapter 6. Finite cubical complexes

Topology, Release 9.8

n_cubes(n, subcomplex=None)
The set of cubes of dimension n of this cubical complex. If the optional argument subcomplex is present,
then return the n-dimensional cubes which are not in the subcomplex.

Parameters

• n (integer) – dimension

• subcomplex (a cubical complex; optional, default None) – a subcomplex of
this cubical complex

Returns
cells in dimension n

Return type
set

EXAMPLES:

sage: C = cubical_complexes.Cube(3)
sage: C.n_cubes(3)
{[0,1] x [0,1] x [0,1]}
sage: sorted(C.n_cubes(2))
[[0,0] x [0,1] x [0,1],
[0,1] x [0,0] x [0,1],
[0,1] x [0,1] x [0,0],
[0,1] x [0,1] x [1,1],
[0,1] x [1,1] x [0,1],
[1,1] x [0,1] x [0,1]]

n_skeleton(n)
The n-skeleton of this cubical complex.

Parameters
n (non-negative integer) – dimension

Returns
cubical complex

EXAMPLES:

sage: S2 = cubical_complexes.Sphere(2)
sage: C3 = cubical_complexes.Cube(3)
sage: S2 == C3.n_skeleton(2)
True

product(other)
The product of this cubical complex with another one.

Parameters
other – another cubical complex

EXAMPLES:

sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: S1 = cubical_complexes.Sphere(1)
sage: RP2.product(S1).homology()[1] # long time: 5 seconds
Z x C2

101

Topology, Release 9.8

suspension(n=1)
The suspension of this cubical complex.

NOT IMPLEMENTED

Parameters
n (positive integer; optional, default 1) – suspend this many times

The suspension is the complex formed by taking the join of the original complex with a two-point complex
(the 0-sphere). Since joins are not implemented for cubical complexes, neither are suspensions.

EXAMPLES:

sage: C1 = cubical_complexes.Cube(1)
sage: C1.suspension()
Traceback (most recent call last):
...
NotImplementedError: suspensions are not implemented for cubical complexes

wedge(other)
The wedge (one-point union) of this cubical complex with another one.

Parameters
right – the other cubical complex (the right-hand factor)

Algorithm: if self is embedded in 𝑑 dimensions and other in 𝑛 dimensions, embed them in 𝑑 + 𝑛
dimensions: self using the first 𝑑 coordinates, other using the last 𝑛, translating them so that they have
the origin as a common vertex.

Note: This operation is not well-defined if self or other is not path-connected.

EXAMPLES:

sage: S1 = cubical_complexes.Sphere(1)
sage: S2 = cubical_complexes.Sphere(2)
sage: S1.wedge(S2).homology()
{0: 0, 1: Z, 2: Z}

class sage.topology.cubical_complex.CubicalComplexExamples

Bases: object

Some examples of cubical complexes.

Here are the available examples; you can also type “cubical_complexes.” and hit TAB to get a list:

Sphere
Torus
RealProjectivePlane
KleinBottle
SurfaceOfGenus
Cube

EXAMPLES:

sage: cubical_complexes.Torus() # indirect doctest
Cubical complex with 16 vertices and 64 cubes

(continues on next page)

102 Chapter 6. Finite cubical complexes

Topology, Release 9.8

(continued from previous page)

sage: cubical_complexes.Cube(7)
Cubical complex with 128 vertices and 2187 cubes
sage: cubical_complexes.Sphere(7)
Cubical complex with 256 vertices and 6560 cubes

Cube(n)
A cubical complex representation of an 𝑛-dimensional cube.

Parameters
n (non-negative integer) – the dimension

EXAMPLES:

sage: cubical_complexes.Cube(0)
Cubical complex with 1 vertex and 1 cube
sage: cubical_complexes.Cube(3)
Cubical complex with 8 vertices and 27 cubes

KleinBottle()

A cubical complex representation of the Klein bottle, formed by taking the connected sum of the real
projective plane with itself.

EXAMPLES:

sage: cubical_complexes.KleinBottle()
Cubical complex with 42 vertices and 168 cubes

RealProjectivePlane()

A cubical complex representation of the real projective plane. This is taken from the examples from CHomP,
the Computational Homology Project: http://chomp.rutgers.edu/.

EXAMPLES:

sage: cubical_complexes.RealProjectivePlane()
Cubical complex with 21 vertices and 81 cubes

Sphere(n)
A cubical complex representation of the𝑛-dimensional sphere, formed by taking the boundary of an (𝑛+1)-
dimensional cube.

Parameters
n (non-negative integer) – the dimension of the sphere

EXAMPLES:

sage: cubical_complexes.Sphere(7)
Cubical complex with 256 vertices and 6560 cubes

SurfaceOfGenus(g, orientable=True)
A surface of genus g as a cubical complex.

Parameters

• g (non-negative integer) – the genus

• orientable (bool, optional, default True) – whether the surface should be ori-
entable

103

http://chomp.rutgers.edu/

Topology, Release 9.8

In the orientable case, return a sphere if 𝑔 is zero, and otherwise return a 𝑔-fold connected sum of a torus
with itself.

In the non-orientable case, raise an error if 𝑔 is zero. If 𝑔 is positive, return a 𝑔-fold connected sum of a
real projective plane with itself.

EXAMPLES:

sage: cubical_complexes.SurfaceOfGenus(2)
Cubical complex with 32 vertices and 134 cubes
sage: cubical_complexes.SurfaceOfGenus(1, orientable=False)
Cubical complex with 21 vertices and 81 cubes

Torus()

A cubical complex representation of the torus, obtained by taking the product of the circle with itself.

EXAMPLES:

sage: cubical_complexes.Torus()
Cubical complex with 16 vertices and 64 cubes

104 Chapter 6. Finite cubical complexes

CHAPTER

SEVEN

SIMPLICIAL SETS

AUTHORS:

• John H. Palmieri (2016-07)

This module implements simplicial sets.

A simplicial set 𝑋 is a collection of sets 𝑋𝑛 indexed by the non-negative integers; the set 𝑋𝑛 is called the set of
𝑛-simplices. These sets are connected by maps

𝑑𝑖 : 𝑋𝑛 → 𝑋𝑛−1, 0 ≤ 𝑖 ≤ 𝑛 (face maps)
𝑠𝑗 : 𝑋𝑛 → 𝑋𝑛+1, 0 ≤ 𝑗 ≤ 𝑛 (degeneracy maps)

satisfying the simplicial identities:

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑗𝑠𝑗 = 1 = 𝑑𝑗+1𝑠𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 < 𝑗 + 1

See Wikipedia article Simplicial_set, Peter May’s seminal book [May1967], or Greg Friedman’s “Illustrated introduc-
tion” arXiv 0809.4221 for more information.

Several simplicial sets are predefined, and users can construct others either by hand (using SimplicialSet_finite)
or from existing ones using pushouts, pullbacks, etc.

EXAMPLES:

Some of the predefined simplicial sets:

sage: simplicial_sets.Torus()
Torus
sage: simplicial_sets.RealProjectiveSpace(7)
RP^7
sage: S5 = simplicial_sets.Sphere(5)
sage: S5
S^5
sage: S5.nondegenerate_simplices()
[v_0, sigma_5]

One class of infinite simplicial sets is available: classifying spaces of groups, or more generally, nerves of finite
monoids:

105

https://en.wikipedia.org/wiki/Simplicial_set
https://arxiv.org/abs/0809.4221

Topology, Release 9.8

sage: Sigma4 = groups.permutation.Symmetric(4)
sage: Sigma4.nerve()
Nerve of Symmetric group of order 4! as a permutation group

The same simplicial set (albeit with a different name) can also be constructed as

sage: simplicial_sets.ClassifyingSpace(Sigma4)
Classifying space of Symmetric group of order 4! as a permutation group

Type simplicial_sets. and hit the Tab key to get a full list of the predefined simplicial sets.

You can construct new simplicial sets from old by taking quotients, subsimplicial sets, disjoint unions, wedges (if they
are pointed), smash products (if they are pointed and finite), products, pushouts, pullbacks, cones, and suspensions,
most of which also have maps associated with them. Wedges, for example:

sage: T = simplicial_sets.Torus()
sage: S3 = simplicial_sets.Sphere(3)
sage: T.is_pointed() and S3.is_pointed()
True
sage: T.wedge(S3)
Wedge: (Torus v S^3)
sage: T.disjoint_union(S3) == T.coproduct(S3)
False

sage: W = T.wedge(S3)
sage: W.inclusion_map(0).domain()
Torus
sage: W.projection_map(1).codomain()
Quotient: (Wedge: (Torus v S^3)/Simplicial set with 6 non-degenerate simplices)

If the 1-sphere were not already available via simplicial_sets.Sphere(1), you could construct it as follows:

sage: pt = simplicial_sets.Simplex(0)
sage: edge = pt.cone()
sage: S1 = edge.quotient(edge.n_skeleton(0))
sage: S1
Quotient: (Cone of 0-simplex/Simplicial set with 2 non-degenerate simplices)

At this point, S1 is pointed: every quotient is automatically given a base point, namely the image of the subcomplex.
So its suspension is the reduced suspension, and therefore is small:

sage: S5 = S1.suspension(4)
sage: S5
Sigma^4(Quotient: (Cone of 0-simplex/Simplicial set with 2 non-degenerate simplices))
sage: S5.f_vector()
[1, 0, 0, 0, 0, 1]

If we forget about the base point in S1, we would get the unreduced suspension instead:

sage: Z1 = S1.unset_base_point()
sage: Z1.suspension(4).f_vector()
[2, 2, 2, 2, 1, 1]

The cone on a pointed simplicial set is the reduced cone. The 𝑛-simplex in Sage is not pointed, but the simplicial set
Point is.

106 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: simplicial_sets.Simplex(0).cone().f_vector()
[2, 1]
sage: simplicial_sets.Point().cone().f_vector()
[1]

For most simplicial sets (the Point is the main exception), each time it is constructed, it gives a distinct copy, and two
distinct simplicial sets are never equal:

sage: T = simplicial_sets.Torus()
sage: T == simplicial_sets.Torus()
False
sage: T == T
True
sage: simplicial_sets.Torus() == simplicial_sets.Torus()
False
sage: simplicial_sets.Point() == simplicial_sets.Point()
True

You can construct subsimplicial sets by specifying a list of simplices, and then you can define the quotient simplicial
set:

sage: X = simplicial_sets.Simplex(2)
sage: e,f,g = X.n_cells(1)
sage: Y = X.subsimplicial_set([e,f,g])
sage: Z = X.quotient(Y)

Or equivalently:

sage: Y = X.n_skeleton(1)
sage: Z = X.quotient(Y)
sage: Z
Quotient: (2-simplex/Simplicial set with 6 non-degenerate simplices)

Note that subsimplicial sets and quotients come equipped with inclusion and quotient morphisms:

sage: inc = Y.inclusion_map()
sage: inc.domain() == Y and inc.codomain() == X
True
sage: quo = Z.quotient_map()
sage: quo.domain()
2-simplex
sage: quo.codomain() == Z
True

You can compute homology groups and the fundamental group of any simplicial set:

sage: S1 = simplicial_sets.Sphere(1)
sage: eight = S1.wedge(S1)
sage: eight.fundamental_group()
Finitely presented group < e0, e1 | >

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: pi = BSigma3.fundamental_group(); pi

(continues on next page)

107

Topology, Release 9.8

(continued from previous page)

Finitely presented group < e0, e1 | e0^2, e1^3, (e0*e1^-1)^2 >
sage: pi.order()
6
sage: pi.is_abelian()
False

sage: RP6 = simplicial_sets.RealProjectiveSpace(6)
sage: RP6.homology(reduced=False, base_ring=GF(2))
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2,
4: Vector space of dimension 1 over Finite Field of size 2,
5: Vector space of dimension 1 over Finite Field of size 2,
6: Vector space of dimension 1 over Finite Field of size 2}
sage: RP6.homology(reduced=False, base_ring=QQ)
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 0 over Rational Field,
2: Vector space of dimension 0 over Rational Field,
3: Vector space of dimension 0 over Rational Field,
4: Vector space of dimension 0 over Rational Field,
5: Vector space of dimension 0 over Rational Field,
6: Vector space of dimension 0 over Rational Field}

When infinite simplicial sets are involved, most computations are done by taking an 𝑛-skeleton for an appropriate 𝑛,
either implicitly or explicitly:

sage: B3 = simplicial_sets.ClassifyingSpace(groups.misc.MultiplicativeAbelian([3]))
sage: B3.disjoint_union(B3).n_skeleton(3)
Disjoint union: (Simplicial set with 15 non-degenerate simplices u Simplicial set with␣
→˓15 non-degenerate simplices)
sage: S1 = simplicial_sets.Sphere(1)
sage: B3.product(S1).homology(range(4))
{0: 0, 1: Z x C3, 2: C3, 3: C3}

Without the range argument, this would raise an error, since B3 is infinite:

sage: B3.product(S1).homology()
Traceback (most recent call last):
...
NotImplementedError: this simplicial set may be infinite, so specify dimensions when␣
→˓computing homology

It should be easy to construct many simplicial sets from the predefined ones using pushouts, pullbacks, etc., but they
can also be constructed “by hand”: first define some simplices, then define a simplicial set by specifying their faces:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v,w), f: (w,w)})

108 Chapter 7. Simplicial sets

Topology, Release 9.8

Now 𝑒 is an edge from 𝑣 to 𝑤 and 𝑓 is an edge starting and ending at 𝑤. Therefore the first homology group of 𝑋
should be a copy of the integers:

sage: X.homology(1)
Z

sage.topology.simplicial_set.AbstractSimplex(dim, degeneracies=(), underlying=None, name=None,
latex_name=None)

An abstract simplex, a building block of a simplicial set.

In a simplicial set, a simplex either is non-degenerate or is obtained by applying degeneracy maps to a non-
degenerate simplex.

INPUT:

• dim – a non-negative integer, the dimension of the underlying non-degenerate simplex.

• degeneracies (optional, default None) – a list or tuple of non-negative integers, the degeneracies to be
applied.

• underlying (optional) – a non-degenerate simplex to which the degeneracies are being applied.

• name (optional) – string, a name for this simplex.

• latex_name (optional) – string, a name for this simplex to use in the LaTeX representation.

So to define a simplex formed by applying the degeneracy maps 𝑠2𝑠1 to a 1-simplex, call AbstractSimplex(1,
(2, 1)).

Specify underlying if you need to keep explicit track of the underlying non-degenerate simplex, for example
when computing faces of another simplex. This is mainly for use by the method AbstractSimplex_class.
apply_degeneracies().

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (3, 1))
s_3 s_1 Delta^3
sage: AbstractSimplex(3, None)
Delta^3
sage: AbstractSimplex(3)
Delta^3

Simplices may be named (or renamed), affecting how they are printed:

sage: AbstractSimplex(0)
Delta^0
sage: v = AbstractSimplex(0, name='v')
sage: v
v
sage: v.rename('w_0')
sage: v
w_0
sage: latex(v)
w_0
sage: latex(AbstractSimplex(0, latex_name='\\sigma'))
\sigma

The simplicial identities are used to put the degeneracies in standard decreasing form:

109

Topology, Release 9.8

sage: x = AbstractSimplex(0, (0, 0, 0))
sage: x
s_2 s_1 s_0 Delta^0
sage: x.degeneracies()
[2, 1, 0]

Use of the underlying argument:

sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(0, (0,), underlying=v)
sage: e
s_0 v
sage: e.nondegenerate() is v
True

sage: e.dimension()
1
sage: e.is_degenerate()
True

Distinct non-degenerate simplices are never equal:

sage: AbstractSimplex(0, None) == AbstractSimplex(0, None)
False
sage: AbstractSimplex(0, (2,1,0)) == AbstractSimplex(0, (2,1,0))
False

sage: e = AbstractSimplex(0, ((0,)))
sage: f = AbstractSimplex(0, ((0,)))
sage: e == f
False
sage: e.nondegenerate() == f.nondegenerate()
False

This means that if, when defining a simplicial set, you specify the faces of a 2-simplex as:

(e, e, e)

then the faces are the same degenerate vertex, but if you specify the faces as:

(AbstractSimplex(0, ((0,))), AbstractSimplex(0, ((0,))), AbstractSimplex(0, ((0,))))

then the faces are three different degenerate vertices.

View a command like AbstractSimplex(0, (2,1,0)) as first constructing AbstractSimplex(0) and then
applying degeneracies to it, and you always get distinct simplices from different calls to AbstractSimplex(0).
On the other hand, if you apply degeneracies to the same non-degenerate simplex, the resulting simplices are
equal:

sage: v = AbstractSimplex(0)
sage: v.apply_degeneracies(1, 0) == v.apply_degeneracies(1, 0)
True
sage: AbstractSimplex(1, (0,), underlying=v) == AbstractSimplex(1, (0,),␣
→˓underlying=v)
True

110 Chapter 7. Simplicial sets

Topology, Release 9.8

class sage.topology.simplicial_set.AbstractSimplex_class(dim, degeneracies=(), underlying=None,
name=None, latex_name=None)

Bases: SageObject

A simplex of dimension dim.

INPUT:

• dim – integer, the dimension

• degeneracies (optional) – iterable, the indices of the degeneracy maps

• underlying (optional) – a non-degenerate simplex

• name (optional) – string

• latex_name (optional) – string

Users should not call this directly, but instead use AbstractSimplex(). See that function for more documen-
tation.

apply_degeneracies(*args)
Apply the degeneracies given by the arguments args to this simplex.

INPUT:

• args – integers

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: v = AbstractSimplex(0)
sage: e = v.apply_degeneracies(0)
sage: e.nondegenerate() == v
True
sage: f = e.apply_degeneracies(0)
sage: f
s_1 s_0 Delta^0
sage: f.degeneracies()
[1, 0]
sage: f.nondegenerate() == v
True
sage: v.apply_degeneracies(1, 0)
s_1 s_0 Delta^0

degeneracies()

Return the list of indices for the degeneracy maps for this simplex.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(4, (0,0,0)).degeneracies()
[2, 1, 0]
sage: AbstractSimplex(4, None).degeneracies()
[]

dimension()

The dimension of this simplex.

EXAMPLES:

111

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Topology, Release 9.8

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (2,1)).dimension()
5
sage: AbstractSimplex(3, None).dimension()
3
sage: AbstractSimplex(7).dimension()
7

is_degenerate()

True if this simplex is degenerate.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (2,1)).is_degenerate()
True
sage: AbstractSimplex(3, None).is_degenerate()
False

is_nondegenerate()

True if this simplex is non-degenerate.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: AbstractSimplex(3, (2,1)).is_nondegenerate()
False
sage: AbstractSimplex(3, None).is_nondegenerate()
True
sage: AbstractSimplex(5).is_nondegenerate()
True

nondegenerate()

The non-degenerate simplex underlying this one.

Therefore return itself if this simplex is non-degenerate.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: v = AbstractSimplex(0, name='v')
sage: sigma = v.apply_degeneracies(1, 0)
sage: sigma.nondegenerate()
v
sage: tau = AbstractSimplex(1, (3,2,1))
sage: x = tau.nondegenerate(); x
Delta^1
sage: x == tau.nondegenerate()
True

sage: AbstractSimplex(1, None)
Delta^1
sage: AbstractSimplex(1, None) == x
False

(continues on next page)

112 Chapter 7. Simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: AbstractSimplex(1, None) == tau.nondegenerate()
False

class sage.topology.simplicial_set.NonDegenerateSimplex(dim, name=None, latex_name=None)
Bases: AbstractSimplex_class, WithEqualityById

A nondegenerate simplex.

INPUT:

• dim – non-negative integer, the dimension

• name (optional) – string, a name for this simplex.

• latex_name (optional) – string, a name for this simplex to use in the LaTeX representation.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex
sage: v = AbstractSimplex(0, name='v')
sage: v
v
sage: type(v)
<class 'sage.topology.simplicial_set.NonDegenerateSimplex'>

Distinct non-degenerate simplices should never be equal, even if they have the same starting data.

sage: v == AbstractSimplex(0, name='v')
False
sage: AbstractSimplex(3) == AbstractSimplex(3)
False

sage: from sage.topology.simplicial_set import NonDegenerateSimplex
sage: x = NonDegenerateSimplex(0, name='x')
sage: x == NonDegenerateSimplex(0, name='x')
False

sage.topology.simplicial_set.SimplicialSet

alias of SimplicialSet_finite

class sage.topology.simplicial_set.SimplicialSet_arbitrary

Bases: Parent

A simplicial set.

A simplicial set 𝑋 is a collection of sets 𝑋𝑛, the n-simplices, indexed by the non-negative integers, together with
maps

𝑑𝑖 : 𝑋𝑛 → 𝑋𝑛−1, 0 ≤ 𝑖 ≤ 𝑛 (face maps)
𝑠𝑗 : 𝑋𝑛 → 𝑋𝑛+1, 0 ≤ 𝑗 ≤ 𝑛 (degeneracy maps)

satisfying the simplicial identities:

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑗𝑠𝑗 = 1 = 𝑑𝑗+1𝑠𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 < 𝑗 + 1

113

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Topology, Release 9.8

This class is not fully implemented and is not intended to be called directly by users. It is intended instead to be
used by other classes which inherit from this one. See SimplicialSet_finite and Nerve for two examples.
In particular, any such class must implement a method n_skeleton – without this, most computations will be
impossible. It must also implement an __init__ method which should also set the category, so that methods
defined at the category level, like is_pointed and is_finite, work correctly.

Note that the method subsimplicial_set() calls n_skeleton(), so to avoid circularity, the
n_skeleton() method should call simplicial_set_constructions.SubSimplicialSet directly,
not subsimplicial_set().

alexander_whitney(simplex, dim_left)
Return the ‘subdivision’ of simplex in this simplicial set into a pair of simplices.

The left factor should have dimension dim_left, so the right factor should have dimension dim -
dim_left, if dim is the dimension of the starting simplex. The results are obtained by applying iter-
ated face maps to simplex. Writing 𝑑 for dim and 𝑗 for dim_left: apply 𝑑𝑗+1𝑑𝑗+2...𝑑𝑑 to get the left
factor, 𝑑0...𝑑0 to get the right factor.

INPUT:

• dim_left – integer, the dimension of the left-hand factor

OUTPUT: a list containing the triple (c, left, right), where left and right are the two simplices
described above. If either left or right is degenerate, c is 0; otherwise, c is 1. This is so that, when used
to compute cup products, it is easy to ignore terms which have degenerate factors.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: sigma = S2.n_cells(2)[0]
sage: S2.alexander_whitney(sigma, 0)
[(1, v_0, sigma_2)]
sage: S2.alexander_whitney(sigma, 1)
[(0, s_0 v_0, s_0 v_0)]

all_n_simplices(n)
Return a list of all simplices, non-degenerate and degenerate, in dimension n.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: degen = v.apply_degeneracies(0)
sage: tau = AbstractSimplex(2, name='tau')
sage: Y = SimplicialSet({tau: (degen, degen, degen), w: None})

Y is the disjoint union of a 2-sphere, with vertex v and non-degenerate 2-simplex tau, and a point w.

sage: Y.all_n_simplices(0)
[v, w]
sage: Y.all_n_simplices(1)
[s_0 v, s_0 w]
sage: Y.all_n_simplices(2)
[tau, s_1 s_0 v, s_1 s_0 w]

An example involving an infinite simplicial set:

114 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.all_n_simplices(2)
[f * f,
f * f^2,
f^2 * f,
f^2 * f^2, s_0 f, s_0 f^2, s_1 f, s_1 f^2, s_1 s_0 1]

betti(dim=None, subcomplex=None)
The Betti numbers of this simplicial complex as a dictionary (or a single Betti number, if only one dimension
is given): the ith Betti number is the rank of the ith homology group.

INPUT:

• dim (optional, default None – If None, then return the homology in every dimension. If dim is an
integer or list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

• subcomplex (optional, default None) – a subcomplex
of this cell complex. Compute the Betti numbers of the homology relative to this subcomplex.

Note: If this simplicial set is not finite, you must specify dimensions in which to compute Betti numbers
via the argument dim.

EXAMPLES:

Build the two-sphere as a three-fold join of a two-point space with itself:

sage: simplicial_sets.Sphere(5).betti()
{0: 1, 1: 0, 2: 0, 3: 0, 4: 0, 5: 1}

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.betti(range(4))
{0: 1, 1: 0, 2: 0, 3: 0}

cartesian_product(*others)
Return the product of this simplicial set with others.

INPUT:

• others – one or several simplicial sets

If 𝑋 and 𝑌 are simplicial sets, then their product 𝑋×𝑌 is defined to be the simplicial set with 𝑛-simplices
𝑋𝑛 × 𝑌𝑛. See simplicial_set_constructions.ProductOfSimplicialSets for more information.

If a simplicial set is constructed as a product, the factors are recorded and are accessible via the method
simplicial_set_constructions.Factors.factors(). If each factor is finite, then you can also con-
struct the projection maps onto each factor, the wedge as a subcomplex, and the fat wedge as a subcomplex.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')

(continues on next page)

115

Topology, Release 9.8

(continued from previous page)

sage: X = SimplicialSet({e: (v, w)})
sage: square = X.product(X)

square is now the standard triangulation of the square: 4 vertices, 5 edges (the four on the border and the
diagonal), 2 triangles:

sage: square.f_vector()
[4, 5, 2]

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

Since S1 is pointed, so is T:

sage: S1.is_pointed()
True
sage: S1.base_point()
v_0
sage: T.is_pointed()
True
sage: T.base_point()
(v_0, v_0)

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2xS3 = S2.product(S3)
sage: S2xS3.homology(reduced=False)
{0: Z, 1: 0, 2: Z, 3: Z, 4: 0, 5: Z}

sage: S2xS3.factors() == (S2, S3)
True
sage: S2xS3.factors() == (S3, S2)
False

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.rename('RP^oo')
sage: X = B.product(B, S2)
sage: X
RP^oo x RP^oo x S^2
sage: X.factor(1)
RP^oo
sage: X.factors()
(RP^oo, RP^oo, S^2)

Projection maps and wedges:

sage: S2xS3.projection_map(0)
Simplicial set morphism:
From: S^2 x S^3
To: S^2

(continues on next page)

116 Chapter 7. Simplicial sets

Topology, Release 9.8

(continued from previous page)

Defn: ...
sage: S2xS3.wedge_as_subset().homology()
{0: 0, 1: 0, 2: Z, 3: Z}

In the case of pointed simplicial sets, there is an inclusion of each factor into the product. These are not
automatically defined in Sage, but they are easy to construct using identity maps and constant maps and the
universal property of the product:

sage: one = S2.identity()
sage: const = S2.constant_map(codomain=S3)
sage: S2xS3.universal_property(one, const)
Simplicial set morphism:
From: S^2
To: S^2 x S^3
Defn: [v_0, sigma_2] --> [(v_0, v_0), (sigma_2, s_1 s_0 v_0)]

cells(subcomplex=None, max_dim=None)
Return a dictionary of all non-degenerate simplices.

INPUT:

• subcomplex (optional) – a subsimplicial set of this simplicial set. If subcomplex is specified, then
return the simplices in the quotient by the subcomplex.

• max_dim – optional, default None. If specified, return the non-degenerate simplices of this dimension
or smaller. This argument is required if this simplicial set is infinite.

Each key is a dimension, and the corresponding value is the list of simplices in that dimension.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.cells()
{0: [Delta^0, Delta^0]}

sage: v.rename('v')
sage: w.rename('w')
sage: S0.cells()
{0: [v, w]}

sage: e = AbstractSimplex(1, name='e')
sage: S1 = SimplicialSet({e: (v, v)})
sage: S1.cells()
{0: [v], 1: [e]}

sage: S0.cells(S0.subsimplicial_set([v, w]))
{0: [*]}

sage: X = SimplicialSet({e: (v,w)})
sage: X.cells(X.subsimplicial_set([v, w]))
{0: [*], 1: [e]}

117

Topology, Release 9.8

Test an infinite example:

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.cells(max_dim=2)
{0: [1], 1: [f, f^2], 2: [f * f, f * f^2, f^2 * f, f^2 * f^2]}
sage: BC3.cells()
Traceback (most recent call last):
...
NotImplementedError: this simplicial set may be infinite, so specify max_dim

chain_complex(dimensions=None, base_ring=Integer Ring, augmented=False, cochain=False,
verbose=False, subcomplex=None, check=False)

Return the normalized chain complex.

INPUT:

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of integers,
compute the chain complex in those dimensions, setting the chain groups in all other dimensions to
zero.

• base_ring (optional, default ZZ) – commutative ring

• augmented (optional, default False) – if True, return the augmented chain complex (that is, include
a class in dimension −1 corresponding to the empty cell).

• cochain (optional, default False) – if True, return the cochain complex (that is, the dual of the chain
complex).

• verbose (optional, default False) – ignored.

• subcomplex (optional, default None) – if present, compute the chain complex relative to this subcom-
plex.

• check (optional, default False) – If True, make sure that the chain complex is actually a chain com-
plex: the differentials are composable and their product is zero.

Note: If this simplicial set is not finite, you must specify dimensions in which to compute its chain complex
via the argument dimensions.

EXAMPLES:

sage: simplicial_sets.Sphere(5).chain_complex()
Chain complex with at most 3 nonzero terms over Integer Ring

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.chain_complex(range(4), base_ring=GF(3))
Chain complex with at most 4 nonzero terms over Finite Field of size 3

cohomology(dim=None, **kwds)
Return the cohomology of this simplicial set.

INPUT:

• dim (optional, default None – If None, then return the homology in every dimension. If dim is an
integer or list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

118 Chapter 7. Simplicial sets

Topology, Release 9.8

• base_ring (optional, default ZZ) – commutative ring, must be ZZ or a field.

Other arguments are also allowed, the same as for the homology() method – see cell_complex.
GenericCellComplex.homology() for complete documentation – except that homology() accepts a
cohomology key word, while this function does not: cohomology is automatically true here. Indeed, this
function just calls homology() with argument cohomology=True.

Note: If this simplicial set is not finite, you must specify dimensions in which to compute homology via
the argument dim.

EXAMPLES:

sage: simplicial_sets.KleinBottle().homology(1)
Z x C2
sage: simplicial_sets.KleinBottle().cohomology(1)
Z
sage: simplicial_sets.KleinBottle().cohomology(2)
C2

cone()

Return the (reduced) cone on this simplicial set.

If this simplicial set 𝑋 is not pointed, construct the ordinary cone: add a point 𝑣 (which will become the
base point) and for each simplex 𝜎 in 𝑋 , add both 𝜎 and a simplex made up of 𝑣 and 𝜎 (topologically, form
the join of 𝑣 and 𝜎).

If this simplicial set is pointed, then construct the reduced cone: take the quotient of the unreduced cone
by the 1-simplex connecting the old base point to the new one.

In either case, as long as the simplicial set is finite, it comes equipped in Sage with a map from it into the
cone.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: CX = X.cone() # unreduced cone, since X not pointed
sage: CX.nondegenerate_simplices()
[*, v, (v,*), e, (e,*)]
sage: CX.base_point()
*

𝑋 as a subset of the cone, and also the map from 𝑋 , in the unreduced case:

sage: CX.base_as_subset()
Simplicial set with 2 non-degenerate simplices
sage: CX.map_from_base()
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices
To: Cone of Simplicial set with 2 non-degenerate simplices
Defn: [v, e] --> [v, e]

In the reduced case, only the map from 𝑋 is available:

119

Topology, Release 9.8

sage: X = X.set_base_point(v)
sage: CX = X.cone() # reduced cone
sage: CX.nondegenerate_simplices()
[*, e, (e,*)]
sage: CX.map_from_base()
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices
To: Reduced cone of Simplicial set with 2 non-degenerate simplices
Defn: [v, e] --> [*, e]

constant_map(codomain=None, point=None)
Return a constant map with this simplicial set as its domain.

INPUT:

• codomain – optional, default None. If None, the codomain is the standard one-point space constructed
by Point(). Otherwise, either the codomain must be a pointed simplicial set, in which case the map
is constant at the base point, or point must be specified.

• point – optional, default None. If specified, it must be a 0-simplex in the codomain, and it will be the
target of the constant map.

EXAMPLES:

sage: S4 = simplicial_sets.Sphere(4)
sage: S4.constant_map()
Simplicial set morphism:
From: S^4
To: Point
Defn: Constant map at *

sage: S0 = simplicial_sets.Sphere(0)
sage: S4.constant_map(codomain=S0)
Simplicial set morphism:
From: S^4
To: S^0
Defn: Constant map at v_0

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: Sigma3.nerve().constant_map()
Simplicial set morphism:
From: Nerve of Symmetric group of order 3! as a permutation group
To: Point
Defn: Constant map at *

coproduct(*others)
Return the coproduct of this simplicial set with others.

INPUT:

• others – one or several simplicial sets

If these simplicial sets are pointed, return their wedge sum; if they are not, return their disjoint union. If
some are pointed and some are not, raise an error: it is not clear in which category to work.

EXAMPLES:

120 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: S2 = simplicial_sets.Sphere(2)
sage: K = simplicial_sets.KleinBottle()
sage: D3 = simplicial_sets.Simplex(3)
sage: Y = S2.unset_base_point()
sage: Z = K.unset_base_point()

sage: S2.coproduct(K).is_pointed()
True
sage: S2.coproduct(K)
Wedge: (S^2 v Klein bottle)
sage: D3.coproduct(Y, Z).is_pointed()
False
sage: D3.coproduct(Y, Z)
Disjoint union: (3-simplex u Simplicial set with 2 non-degenerate simplices u␣
→˓Simplicial set with 6 non-degenerate simplices)

The coproduct comes equipped with an inclusion map from each summand, as long as the summands are
all finite:

sage: S2.coproduct(K).inclusion_map(0)
Simplicial set morphism:
From: S^2
To: Wedge: (S^2 v Klein bottle)
Defn: [v_0, sigma_2] --> [*, sigma_2]

sage: D3.coproduct(Y, Z).inclusion_map(2)
Simplicial set morphism:
From: Simplicial set with 6 non-degenerate simplices
To: Disjoint union: (3-simplex u Simplicial set with 2 non-degenerate␣

→˓simplices u Simplicial set with 6 non-degenerate simplices)
Defn: [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_

→˓{2,1}] --> [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0},␣
→˓Delta_{2,1}]

disjoint_union(*others)
Return the disjoint union of this simplicial set with others.

INPUT:

• others – one or several simplicial sets

As long as the factors are all finite, the inclusion map from each factor is available. Any factors which are
empty are ignored completely: they do not appear in the list of factors, etc.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, v)})
sage: Y = SimplicialSet({f: (v, w)})
sage: Z = X.disjoint_union(Y)

Since X and Y have simplices in common, Sage uses a copy of Y when constructing the disjoint union. Note
the name conflict in the list of simplices: v appears twice:

121

Topology, Release 9.8

sage: Z = X.disjoint_union(Y)
sage: Z.nondegenerate_simplices()
[v, v, w, e, f]

Factors and inclusion maps:

sage: T = simplicial_sets.Torus()
sage: S2 = simplicial_sets.Sphere(2)
sage: A = T.disjoint_union(S2)
sage: A.factors()
(Torus, S^2)
sage: i = A.inclusion_map(0)
sage: i.domain()
Torus
sage: i.codomain()
Disjoint union: (Torus u S^2)

Empty factors are ignored:

sage: from sage.topology.simplicial_set_examples import Empty
sage: E = Empty()
sage: K = S2.disjoint_union(S2, E, E, S2)
sage: K == S2.disjoint_union(S2, S2)
True
sage: K.factors()
(S^2, S^2, S^2)

face(simplex, i)
Return the 𝑖-th face of simplex in this simplicial set.

INPUT:

• simplex – a simplex in this simplicial set

• i – integer

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: sigma = S2.n_cells(2)[0]
sage: v_0 = S2.n_cells(0)[0]
sage: S2.face(sigma, 0)
s_0 v_0
sage: S2.face(sigma, 0) == v_0.apply_degeneracies(0)
True
sage: S2.face(S2.face(sigma, 0), 0) == v_0
True

faces(simplex)
Return the list of faces of simplex in this simplicial set.

INPUT:

• simplex – a simplex in this simplicial set, either degenerate or not

EXAMPLES:

122 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: S2 = simplicial_sets.Sphere(2)
sage: sigma = S2.n_cells(2)[0]
sage: S2.faces(sigma)
(s_0 v_0, s_0 v_0, s_0 v_0)
sage: S2.faces(sigma.apply_degeneracies(0))
[sigma_2, sigma_2, s_1 s_0 v_0, s_1 s_0 v_0]

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: f2 = BC3.n_cells(1)[1]; f2
f^2
sage: BC3.faces(f2)
(1, 1)

graph()

Return the 1-skeleton of this simplicial set, as a graph.

EXAMPLES:

sage: Delta3 = simplicial_sets.Simplex(3)
sage: G = Delta3.graph()
sage: G.edges(sort=True)
[((0,), (1,), (0, 1)),
((0,), (2,), (0, 2)),
((0,), (3,), (0, 3)),
((1,), (2,), (1, 2)),
((1,), (3,), (1, 3)),
((2,), (3,), (2, 3))]

sage: T = simplicial_sets.Torus()
sage: T.graph()
Looped multi-graph on 1 vertex
sage: len(T.graph().edges(sort=False))
3

sage: CP3 = simplicial_sets.ComplexProjectiveSpace(3)
sage: G = CP3.graph()
sage: len(G.vertices(sort=False))
1
sage: len(G.edges(sort=False))
0

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: Sigma3.nerve().is_connected()
True

homology(dim=None, **kwds)
Return the (reduced) homology of this simplicial set.

INPUT:

• dim (optional, default None – If None, then return the homology in every dimension. If dim is an
integer or list, return the homology in the given dimensions. (Actually, if dim is a list, return the
homology in the range from min(dim) to max(dim).)

123

Topology, Release 9.8

• base_ring (optional, default ZZ) – commutative ring, must be ZZ or a field.

Other arguments are also allowed: see the documentation for cell_complex.GenericCellComplex.
homology().

Note: If this simplicial set is not finite, you must specify dimensions in which to compute homology via
the argument dim.

EXAMPLES:

sage: simplicial_sets.Sphere(5).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: Z}

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.homology(range(4), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
1: Vector space of dimension 1 over Finite Field of size 3,
2: Vector space of dimension 1 over Finite Field of size 3,
3: Vector space of dimension 1 over Finite Field of size 3}

sage: BC2 = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: BK = BC2.product(BC2)
sage: BK.homology(range(4))
{0: 0, 1: C2 x C2, 2: C2, 3: C2 x C2 x C2}

identity()

Return the identity map on this simplicial set.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: S3.identity()
Simplicial set endomorphism of S^3
Defn: Identity map

sage: BC3 = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([3]))
sage: one = BC3.identity()
sage: [(sigma, one(sigma)) for sigma in BC3.n_cells(2)]
[(f * f, f * f),
(f * f^2, f * f^2),
(f^2 * f, f^2 * f),
(f^2 * f^2, f^2 * f^2)]

is_connected()

Return True if this simplicial set is connected.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: X = T.disjoint_union(K)

(continues on next page)

124 Chapter 7. Simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: T.is_connected()
True
sage: K.is_connected()
True
sage: X.is_connected()
False
sage: simplicial_sets.Sphere(0).is_connected()
False

is_reduced()

Return True if this simplicial set has only one vertex.

EXAMPLES:

sage: simplicial_sets.Sphere(0).is_reduced()
False
sage: simplicial_sets.Sphere(3).is_reduced()
True

join(*others)
The join of this simplicial set with others.

Not implemented. See https://ncatlab.org/nlab/show/join+of+simplicial+sets for a few descriptions, for
anyone interested in implementing this. See also P. J. Ehlers and Tim Porter, Joins for (Augmented) Sim-
plicial Sets, Jour. Pure Applied Algebra, 145 (2000) 37-44 arXiv 9904039.

• others – one or several simplicial sets

EXAMPLES:

sage: K = simplicial_sets.Simplex(2)
sage: K.join(K)
Traceback (most recent call last):
...
NotImplementedError: joins are not implemented for simplicial sets

n_cells(n, subcomplex=None)
Return the list of cells of dimension n of this cell complex. If the optional argument subcomplex is present,
then return the n-dimensional faces in the quotient by this subcomplex.

INPUT:

• n – the dimension

• subcomplex (optional, default None) – a subcomplex of this cell complex. Return the cells which are
in the quotient by this subcomplex.

EXAMPLES:

sage: simplicial_sets.Sphere(3).n_cells(3)
[sigma_3]
sage: simplicial_sets.Sphere(3).n_cells(2)
[]
sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = C2.nerve()

(continues on next page)

125

https://ncatlab.org/nlab/show/join+of+simplicial+sets
https://arxiv.org/abs/9904039

Topology, Release 9.8

(continued from previous page)

sage: BC2.n_cells(3)
[f * f * f]

n_chains(n, base_ring=Integer Ring, cochains=False)
Return the free module of (normalized) chains in degree n over base_ring.

This is the free module on the nondegenerate simplices in the given dimension.

INPUT:

• n – integer

• base_ring – ring (optional, default Z)

• cochains – boolean (optional, default False); if True, return cochains instead

The only difference between chains and cochains is notation: the generator corresponding to the dual of a
simplex sigma is written as "\chi_sigma" in the group of cochains.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: C = S3.n_chains(3, cochains=True)
sage: list(C.basis())
[\chi_sigma_3]
sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = simplicial_sets.ClassifyingSpace(Sigma3)
sage: list(BSigma3.n_chains(1).basis())
[(1,2), (1,2,3), (1,3), (1,3,2), (2,3)]
sage: list(BSigma3.n_chains(1, cochains=True).basis())
[\chi_(1,2), \chi_(1,2,3), \chi_(1,3), \chi_(1,3,2), \chi_(2,3)]

nondegenerate_simplices(max_dim=None)
Return the sorted list of non-degenerate simplices in this simplicial set.

INPUT:

• max_dim – optional, default None. If specified, return the non-degenerate simplices of this dimension
or smaller. This argument is required if this simplicial set is infinite.

The sorting is in increasing order of dimension, and within each dimension, by the name (if present) of
each simplex.

Note: The sorting is done when the simplicial set is constructed, so changing the name of a simplex after
construction will not affect the ordering.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.nondegenerate_simplices()
[Delta^0, Delta^0]

Name the vertices and reconstruct the simplicial set: they should be ordered alphabetically:

126 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: v.rename('v')
sage: w.rename('w')
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.nondegenerate_simplices()
[v, w]

Rename but do not reconstruct the set; the ordering does not take the new names into account:

sage: v.rename('z')
sage: S0.nondegenerate_simplices() # old ordering is used
[z, w]

sage: X0 = SimplicialSet({v: None, w: None})
sage: X0.nondegenerate_simplices() # new ordering is used
[w, z]

Test an infinite example:

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.nondegenerate_simplices(2)
[1, f, f^2, f * f, f * f^2, f^2 * f, f^2 * f^2]
sage: BC3.nondegenerate_simplices()
Traceback (most recent call last):
...
NotImplementedError: this simplicial set may be infinite, so specify max_dim

product(*others)
Return the product of this simplicial set with others.

INPUT:

• others – one or several simplicial sets

If 𝑋 and 𝑌 are simplicial sets, then their product 𝑋×𝑌 is defined to be the simplicial set with 𝑛-simplices
𝑋𝑛 × 𝑌𝑛. See simplicial_set_constructions.ProductOfSimplicialSets for more information.

If a simplicial set is constructed as a product, the factors are recorded and are accessible via the method
simplicial_set_constructions.Factors.factors(). If each factor is finite, then you can also con-
struct the projection maps onto each factor, the wedge as a subcomplex, and the fat wedge as a subcomplex.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: square = X.product(X)

square is now the standard triangulation of the square: 4 vertices, 5 edges (the four on the border and the
diagonal), 2 triangles:

sage: square.f_vector()
[4, 5, 2]

(continues on next page)

127

Topology, Release 9.8

(continued from previous page)

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

Since S1 is pointed, so is T:

sage: S1.is_pointed()
True
sage: S1.base_point()
v_0
sage: T.is_pointed()
True
sage: T.base_point()
(v_0, v_0)

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2xS3 = S2.product(S3)
sage: S2xS3.homology(reduced=False)
{0: Z, 1: 0, 2: Z, 3: Z, 4: 0, 5: Z}

sage: S2xS3.factors() == (S2, S3)
True
sage: S2xS3.factors() == (S3, S2)
False

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.rename('RP^oo')
sage: X = B.product(B, S2)
sage: X
RP^oo x RP^oo x S^2
sage: X.factor(1)
RP^oo
sage: X.factors()
(RP^oo, RP^oo, S^2)

Projection maps and wedges:

sage: S2xS3.projection_map(0)
Simplicial set morphism:
From: S^2 x S^3
To: S^2
Defn: ...

sage: S2xS3.wedge_as_subset().homology()
{0: 0, 1: 0, 2: Z, 3: Z}

In the case of pointed simplicial sets, there is an inclusion of each factor into the product. These are not
automatically defined in Sage, but they are easy to construct using identity maps and constant maps and the
universal property of the product:

128 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: one = S2.identity()
sage: const = S2.constant_map(codomain=S3)
sage: S2xS3.universal_property(one, const)
Simplicial set morphism:
From: S^2
To: S^2 x S^3
Defn: [v_0, sigma_2] --> [(v_0, v_0), (sigma_2, s_1 s_0 v_0)]

pullback(*maps)
Return the pullback obtained from given maps.

INPUT:

• maps – several maps of simplicial sets, each of which has this simplicial set as its codomain

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑋 . If more than one map is given, say 𝑓𝑖 : 𝑋𝑖 → 𝑌
for 0 ≤ 𝑖 ≤ 𝑚, then return the pullback defined by those maps. If no maps are given, return the one-point
simplicial set.

In addition to the defining maps 𝑓𝑖 used to construct the pullback 𝑃 , there are also maps 𝑓𝑖 : 𝑃 → 𝑋𝑖,
which we refer to as structure maps or projection maps. The pullback also has a universal property: given
maps 𝑔𝑖 : 𝑍 → 𝑋𝑖 such that 𝑓𝑖𝑔𝑖 = 𝑓𝑗𝑔𝑗 for all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑍 → 𝑃 making
the appropriate diagram commute: that is, 𝑓𝑖𝑔 = 𝑔𝑖 for all 𝑖. For example, given maps 𝑓 : 𝑋 → 𝑌 and
𝑔 : 𝑋 → 𝑍, there is an induced map 𝑔 : 𝑋 → 𝑌 × 𝑍.

In Sage, a pullback is equipped with its defining maps, and as long as the simplicial sets involved are finite,
you can also access the structure maps and the universal property.

EXAMPLES:

Construct a product as a pullback:

sage: S2 = simplicial_sets.Sphere(2)
sage: pt = simplicial_sets.Point()
sage: P = pt.pullback(S2.constant_map(), S2.constant_map())
sage: P.homology(2)
Z x Z

If the pullback is defined via maps 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then there are structure maps 𝑓𝑖 : 𝑌𝑖 → 𝑃 . The structure
maps are only available in Sage when all of the maps involved have finite domains.

sage: S2 = simplicial_sets.Sphere(2)
sage: one = S2.Hom(S2).identity()
sage: P = S2.pullback(one, one)
sage: P.homology()
{0: 0, 1: 0, 2: Z}

sage: P.defining_map(0) == one
True
sage: P.structure_map(1)
Simplicial set morphism:
From: Pullback of maps:
Simplicial set endomorphism of S^2
Defn: Identity map

Simplicial set endomorphism of S^2
Defn: Identity map

(continues on next page)

129

Topology, Release 9.8

(continued from previous page)

To: S^2
Defn: [(v_0, v_0), (sigma_2, sigma_2)] --> [v_0, sigma_2]

sage: P.structure_map(0).domain() == P
True
sage: P.structure_map(0).codomain() == S2
True

The universal property:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})
sage: D = S1.cone() # the cone C(S^1)
sage: g = D.map_from_base() # map from S^1 to C(S^1)
sage: P = T.product(D)
sage: h = P.universal_property(f, g)
sage: h.domain() == S1
True
sage: h.codomain() == P
True

pushout(*maps)
Return the pushout obtained from given maps.

INPUT:

• maps – several maps of simplicial sets, each of which has this simplicial set as its domain

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑌 . If more than one map is given, say 𝑓𝑖 : 𝑋 → 𝑌𝑖

for 0 ≤ 𝑖 ≤ 𝑚, then return the pushout defined by those maps. If no maps are given, return the empty
simplicial set.

In addition to the defining maps 𝑓𝑖 used to construct the pushout 𝑃 , there are also maps 𝑓𝑖 : 𝑌𝑖 → 𝑃 , which
we refer to as structure maps. The pushout also has a universal property: given maps 𝑔𝑖 : 𝑌𝑖 → 𝑍 such that
𝑔𝑖𝑓𝑖 = 𝑔𝑗𝑓𝑗 for all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑃 → 𝑍 making the appropriate diagram commute:
that is, 𝑔𝑓𝑖 = 𝑔𝑖 for all 𝑖.

In Sage, a pushout is equipped with its defining maps, and as long as the simplicial sets involved are finite,
you can also access the structure maps and the universal property.

EXAMPLES:

Construct the 4-sphere as a quotient of a 4-simplex:

sage: K = simplicial_sets.Simplex(4)
sage: L = K.n_skeleton(3)
sage: S4 = L.pushout(L.constant_map(), L.inclusion_map())
sage: S4
Pushout of maps:
Simplicial set morphism:
From: Simplicial set with 30 non-degenerate simplices
To: Point
Defn: Constant map at *

Simplicial set morphism:
(continues on next page)

130 Chapter 7. Simplicial sets

Topology, Release 9.8

(continued from previous page)

From: Simplicial set with 30 non-degenerate simplices
To: 4-simplex
Defn: [(0,), (1,), (2,), (3,), (4,), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2),

→˓ (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0,␣
→˓2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (0,␣
→˓1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4), (0, 2, 3, 4), (1, 2, 3, 4)] --> [(0,),␣
→˓(1,), (2,), (3,), (4,), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1,␣
→˓4), (2, 3), (2, 4), (3, 4), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2,
→˓ 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (0, 1, 2, 3), (0,␣
→˓1, 2, 4), (0, 1, 3, 4), (0, 2, 3, 4), (1, 2, 3, 4)]
sage: len(S4.nondegenerate_simplices())
2
sage: S4.homology(4)
Z

The associated maps:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: W = S1.wedge(T) # wedge, constructed as a pushout
sage: W.defining_map(1)
Simplicial set morphism:
From: Point
To: S^1 x S^1
Defn: Constant map at (v_0, v_0)

sage: W.structure_map(0)
Simplicial set morphism:
From: S^1
To: Wedge: (S^1 v S^1 x S^1)
Defn: [v_0, sigma_1] --> [*, sigma_1]

sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})

The maps 𝑓 : 𝑆1 → 𝑇 and 1 : 𝑇 → 𝑇 induce a map 𝑆1 ∨ 𝑇 → 𝑇 :

sage: g = W.universal_property(f, Hom(T,T).identity())
sage: g.domain() == W
True
sage: g.codomain() == T
True

quotient(subcomplex, vertex_name='*')
Return the quotient of this simplicial set by subcomplex.

That is, subcomplex is replaced by a vertex.

INPUT:

• subcomplex – subsimplicial set of this simplicial set, or a list, tuple, or set of simplices defining a
subsimplicial set.

• vertex_name (optional) – string, name to be given to the new vertex. By default, use '*'.

131

Topology, Release 9.8

In Sage, from a quotient simplicial set, you can recover the ambient space, the subcomplex, and (if the
ambient space is finite) the quotient map.

Base points: if the original simplicial set has a base point not contained in subcomplex and if the original
simplicial set is finite, then use its image as the base point for the quotient. In all other cases, * is the base
point.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, w), f: (v, w)})
sage: Y = X.quotient([f])
sage: Y.nondegenerate_simplices()
[*, e]
sage: Y.homology(1)
Z

sage: E = SimplicialSet({e: (v, w)})
sage: Z = E.quotient([v, w])
sage: Z.nondegenerate_simplices()
[*, e]
sage: Z.homology(1)
Z

sage: F = E.quotient([v])
sage: F.nondegenerate_simplices()
[*, w, e]
sage: F.base_point()
*

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 0 over Finite Field of size 2,
2: Vector space of dimension 0 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2,
4: Vector space of dimension 1 over Finite Field of size 2,
5: Vector space of dimension 1 over Finite Field of size 2}

sage: RP5_2.ambient()
RP^5
sage: RP5_2.subcomplex()
Simplicial set with 3 non-degenerate simplices
sage: RP5_2.quotient_map()
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*, s_0␣

→˓*, s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]

132 Chapter 7. Simplicial sets

Topology, Release 9.8

Behavior of base points:

sage: K = simplicial_sets.Simplex(3)
sage: K.is_pointed()
False
sage: L = K.subsimplicial_set([K.n_cells(1)[-1]])
sage: L.nondegenerate_simplices()
[(2,), (3,), (2, 3)]
sage: K.quotient([K.n_cells(1)[-1]]).base_point()
*

sage: K = K.set_base_point(K.n_cells(0)[0])
sage: K.base_point()
(0,)
sage: L = K.subsimplicial_set([K.n_cells(1)[-1]])
sage: L.nondegenerate_simplices()
[(2,), (3,), (2, 3)]
sage: K.quotient(L).base_point()
(0,)

reduce()

Reduce this simplicial set.

That is, take the quotient by a spanning tree of the 1-skeleton, so that the resulting simplicial set has only
one vertex. This only makes sense if the simplicial set is connected, so raise an error if not. If already
reduced, return itself.

EXAMPLES:

sage: K = simplicial_sets.Simplex(2)
sage: K.is_reduced()
False
sage: X = K.reduce()
sage: X.is_reduced()
True

X is reduced, so calling reduce on it again returns X itself:

sage: X is X.reduce()
True
sage: K is K.reduce()
False

Raise an error for disconnected simplicial sets:

sage: S0 = simplicial_sets.Sphere(0)
sage: S0.reduce()
Traceback (most recent call last):
...
ValueError: this simplicial set is not connected

rename_latex(s)
Rename or set the LaTeX name for this simplicial set.

INPUT:

133

Topology, Release 9.8

• s – string, the LaTeX representation. Or s can be None, in which case the LaTeX name is unset.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: X = SimplicialSet({v: None}, latex_name='*')
sage: latex(X)
*
sage: X.rename_latex('x_0')
sage: latex(X)
x_0

subsimplicial_set(simplices)
Return the sub-simplicial set of this simplicial set determined by simplices, a set of nondegenerate sim-
plices.

INPUT:

• simplices – set, list, or tuple of nondegenerate simplices in this simplicial set, or a simplicial complex
– see below.

Each sub-simplicial set comes equipped with an inclusion map to its ambient space, and you can easily
recover its ambient space.

If simplices is a simplicial complex, then the original simplicial set should itself have been converted
from a simplicial complex, and simplices should be a subcomplex of that.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')

sage: X = SimplicialSet({e: (v, w), f: (w, v)})
sage: Y = X.subsimplicial_set([e])
sage: Y
Simplicial set with 3 non-degenerate simplices
sage: Y.nondegenerate_simplices()
[v, w, e]

sage: S3 = simplicial_complexes.Sphere(3)
sage: K = SimplicialSet(S3)
sage: tau = K.n_cells(3)[0]
sage: tau.dimension()
3
sage: K.subsimplicial_set([tau])
Simplicial set with 15 non-degenerate simplices

A subsimplicial set knows about its ambient space and the inclusion map into it:

sage: RP4 = simplicial_sets.RealProjectiveSpace(4)
sage: M = RP4.n_skeleton(2)
sage: M
Simplicial set with 3 non-degenerate simplices

(continues on next page)

134 Chapter 7. Simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: M.ambient_space()
RP^4
sage: M.inclusion_map()
Simplicial set morphism:
From: Simplicial set with 3 non-degenerate simplices
To: RP^4
Defn: [1, f, f * f] --> [1, f, f * f]

An infinite ambient simplicial set:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: BxB = B.product(B)
sage: BxB.n_cells(2)[5:]
[(s_0 f, s_1 f), (s_1 f, f * f), (s_1 f, s_0 f), (s_1 s_0 1, f * f)]
sage: BxB.subsimplicial_set(BxB.n_cells(2)[5:])
Simplicial set with 8 non-degenerate simplices

suspension(n=1)
Return the (reduced) 𝑛-th suspension of this simplicial set.

INPUT:

• n (optional, default 1) – integer, suspend this many times.

If this simplicial set 𝑋 is not pointed, return the suspension: the quotient 𝐶𝑋/𝑋 , where 𝐶𝑋 is the (ordi-
nary, unreduced) cone on 𝑋 . If 𝑋 is pointed, then use the reduced cone instead, and so return the reduced
suspension.

EXAMPLES:

sage: RP4 = simplicial_sets.RealProjectiveSpace(4)
sage: S1 = simplicial_sets.Sphere(1)
sage: SigmaRP4 = RP4.suspension()
sage: S1_smash_RP4 = S1.smash_product(RP4)
sage: SigmaRP4.homology() == S1_smash_RP4.homology()
True

The version of the suspension obtained by the smash product is typically less efficient than the reduced
suspension produced here:

sage: SigmaRP4.f_vector()
[1, 0, 1, 1, 1, 1]
sage: S1_smash_RP4.f_vector()
[1, 1, 4, 6, 8, 5]

wedge(*others)
Return the wedge sum of this pointed simplicial set with others.

• others – one or several simplicial sets

This constructs the quotient of the disjoint union in which the base points of all of the simplicial sets have
been identified. This is the coproduct in the category of pointed simplicial sets.

This raises an error if any of the factors is not pointed.

135

Topology, Release 9.8

From the wedge, you can access the factors, and if the simplicial sets involved are all finite, you can also
access the inclusion map of each factor into the wedge, as well as the projection map onto each factor.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: w = AbstractSimplex(0, name='w')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, v)}, base_point=v)
sage: Y = SimplicialSet({f: (w, w)}, base_point=w)
sage: W = X.wedge(Y)
sage: W.nondegenerate_simplices()
[*, e, f]
sage: W.homology()
{0: 0, 1: Z x Z}
sage: S2 = simplicial_sets.Sphere(2)
sage: X.wedge(S2).homology(reduced=False)
{0: Z, 1: Z, 2: Z}
sage: X.wedge(X).nondegenerate_simplices()
[*, e, e]

sage: S3 = simplicial_sets.Sphere(3)
sage: W = S2.wedge(S3, S2)
sage: W.inclusion_map(2)
Simplicial set morphism:
From: S^2
To: Wedge: (S^2 v S^3 v S^2)
Defn: [v_0, sigma_2] --> [*, sigma_2]

sage: W.projection_map(1)
Simplicial set morphism:
From: Wedge: (S^2 v S^3 v S^2)
To: Quotient: (Wedge: (S^2 v S^3 v S^2)/Simplicial set with 3 non-

→˓degenerate simplices)
Defn: [*, sigma_2, sigma_2, sigma_3] --> [*, s_1 s_0 *, s_1 s_0 *, sigma_3]

Note that the codomain of the projection map is not identical to the original S2, but is instead a quotient of
the wedge which is isomorphic to S2:

sage: S2.f_vector()
[1, 0, 1]
sage: W.projection_map(2).codomain().f_vector()
[1, 0, 1]
sage: (W.projection_map(2) * W.inclusion_map(2)).is_bijective()
True

class sage.topology.simplicial_set.SimplicialSet_finite(data, base_point=None, name=None,
check=True, category=None,
latex_name=None)

Bases: SimplicialSet_arbitrary, GenericCellComplex

A finite simplicial set.

A simplicial set 𝑋 is a collection of sets 𝑋𝑛, the n-simplices, indexed by the non-negative integers, together with
face maps 𝑑𝑖 and degeneracy maps 𝑠𝑗 . A simplex is degenerate if it is in the image of some 𝑠𝑗 , and a simplicial

136 Chapter 7. Simplicial sets

Topology, Release 9.8

set is finite if there are only finitely many non-degenerate simplices.

INPUT:

• data – the data defining the simplicial set. See below for details.

• base_point (optional, default None) – 0-simplex in this simplicial set, its base point

• name (optional, default None) – string, the name of the simplicial set

• check (optional, default True) – boolean. If True, check the simplicial identity on the face maps when
defining the simplicial set.

• category (optional, default None) – the category in which to define this simplicial set. The default is
either finite simplicial sets or finite pointed simplicial sets, depending on whether a base point is defined.

• latex_name (optional, default None) – string, the LaTeX representation of the simplicial set.

data should have one of the following forms: it could be a simplicial complex or ∆-complex, in case it is
converted to a simplicial set. Alternatively, it could be a dictionary. The keys are the nondegenerate simplices of
the simplicial set, and the value corresponding to a simplex 𝜎 is a tuple listing the faces of 𝜎. The 0-dimensional
simplices may be omitted from data if they (or their degeneracies) are faces of other simplices; otherwise they
must be included with value None.

See simplicial_set and the methods for simplicial sets for more information and examples.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: u = AbstractSimplex(0, name='u')
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')

In the following simplicial set, u is an isolated vertex:

sage: X = SimplicialSet({e: (v,w), f: (w,w), u: None})
sage: X
Simplicial set with 5 non-degenerate simplices
sage: X.rename('X')
sage: X
X
sage: X = SimplicialSet({e: (v,w), f: (w,w), u: None}, name='Y')
sage: X
Y

algebraic_topological_model(base_ring=None)
Return the algebraic topological model for this simplicial set with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

INPUT:

• base_ring - coefficient ring (optional, default QQ). Must be a field.

Denote by 𝐶 the chain complex associated to this simplicial set. The algebraic topological model is a chain
complex 𝑀 with zero differential, with the same homology as 𝐶, along with chain maps 𝜋 : 𝐶 → 𝑀 and
𝜄 : 𝑀 → 𝐶 satisfying 𝜄𝜋 = 1𝑀 and 𝜋𝜄 chain homotopic to 1𝐶 . The chain homotopy 𝜑 must satisfy

• 𝜑𝜑 = 0,

137

Topology, Release 9.8

• 𝜋𝜑 = 0,

• 𝜑𝜄 = 0.

Such a chain homotopy is called a chain contraction.

OUTPUT: a pair consisting of

• chain contraction phi associated to 𝐶, 𝑀 , 𝜋, and 𝜄

• the chain complex 𝑀

Note that from the chain contraction phi, one can recover the chain maps 𝜋 and 𝜄 via phi.pi() and
phi.iota(). Then one can recover 𝐶 and 𝑀 from, for example, phi.pi().domain() and phi.pi().
codomain(), respectively.

EXAMPLES:

sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: phi, M = RP2.algebraic_topological_model(GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: T = simplicial_sets.Torus()
sage: phi, M = T.algebraic_topological_model(QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 2 over Rational Field,
2: Vector space of dimension 1 over Rational Field}

chain_complex(dimensions=None, base_ring=Integer Ring, augmented=False, cochain=False,
verbose=False, subcomplex=None, check=False)

Return the normalized chain complex.

INPUT:

• dimensions – if None, compute the chain complex in all dimensions. If a list or tuple of integers,
compute the chain complex in those dimensions, setting the chain groups in all other dimensions to
zero.

• base_ring (optional, default ZZ) – commutative ring

• augmented (optional, default False) – if True, return the augmented chain complex (that is, include
a class in dimension −1 corresponding to the empty cell).

• cochain (optional, default False) – if True, return the cochain complex (that is, the dual of the chain
complex).

• verbose (optional, default False) – ignored.

• subcomplex (optional, default None) – if present, compute the chain complex relative to this subcom-
plex.

• check (optional, default False) – If True, make sure that the chain complex is actually a chain com-
plex: the differentials are composable and their product is zero.

The normalized chain complex of a simplicial set is isomorphic to the chain complex obtained by modding
out by degenerate simplices, and the latter is what is actually constructed here.

EXAMPLES:

138 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: degen = v.apply_degeneracies(1, 0) # s_1 s_0 applied to v
sage: sigma = AbstractSimplex(3)
sage: S3 = SimplicialSet({sigma: (degen, degen, degen, degen)}) # the 3-sphere
sage: S3.chain_complex().homology()
{0: Z, 3: Z}
sage: S3.chain_complex(augmented=True).homology()
{-1: 0, 0: 0, 3: Z}
sage: S3.chain_complex(dimensions=range(3), base_ring=QQ).homology()
{0: Vector space of dimension 1 over Rational Field}

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5.chain_complex(subcomplex=RP2).homology()
{0: Z, 3: C2, 4: 0, 5: Z}

euler_characteristic()

Return the Euler characteristic of this simplicial set: the alternating sum over 𝑛 ≥ 0 of the number of
nondegenerate 𝑛-simplices.

EXAMPLES:

sage: simplicial_sets.RealProjectiveSpace(4).euler_characteristic()
1
sage: simplicial_sets.Sphere(6).euler_characteristic()
2
sage: simplicial_sets.KleinBottle().euler_characteristic()
0

f_vector()

Return the list of the number of non-degenerate simplices in each dimension.

Unlike for some other cell complexes in Sage, this does not include the empty simplex in dimension −1;
thus its 𝑖-th entry is the number of 𝑖-dimensional simplices.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: S0 = SimplicialSet({v: None, w: None})
sage: S0.f_vector()
[2]

sage: e = AbstractSimplex(1)
sage: S1 = SimplicialSet({e: (v, v)})
sage: S1.f_vector()
[1, 1]
sage: simplicial_sets.Sphere(3).f_vector()
[1, 0, 0, 1]

face_data()

Return the face-map data – a dictionary – defining this simplicial set.

139

Topology, Release 9.8

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: X.face_data()[e]
(v, w)

sage: Y = SimplicialSet({v: None, w: None})
sage: v in Y.face_data()
True
sage: Y.face_data()[v] is None
True

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the subsimplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: degen = v.apply_degeneracies(0)
sage: tau = AbstractSimplex(2, name='tau')
sage: Y = SimplicialSet({tau: (degen, degen, degen), w: None})

Y is the disjoint union of a 2-sphere, with vertex v and non-degenerate 2-simplex tau, and a point w.

sage: Y.nondegenerate_simplices()
[v, w, tau]
sage: Y.n_skeleton(1).nondegenerate_simplices()
[v, w]
sage: Y.n_skeleton(2).nondegenerate_simplices()
[v, w, tau]

sage.topology.simplicial_set.all_degeneracies(n, l=1)
Return list of all composites of degeneracies (written in “admissible” form, i.e., as a strictly decreasing sequence)
of length 𝑙 on an 𝑛-simplex.

INPUT:

• n, l – integers

On an 𝑛-simplex, one may apply the degeneracies 𝑠𝑖 for 0 ≤ 𝑖 ≤ 𝑛. Then on the resulting 𝑛 + 1-simplex, one
may apply 𝑠𝑖 for 0 ≤ 𝑖 ≤ 𝑛 + 1, and so on. But one also has to take into account the simplicial identity

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗.

There are
(︀
𝑙+𝑛
𝑛

)︀
such composites: each non-degenerate 𝑛-simplex leads to

(︀
𝑙+𝑛
𝑛

)︀
degenerate 𝑙 + 𝑛 simplices.

EXAMPLES:

140 Chapter 7. Simplicial sets

Topology, Release 9.8

sage: from sage.topology.simplicial_set import all_degeneracies
sage: all_degeneracies(0, 3)
{(2, 1, 0)}
sage: all_degeneracies(1, 1)
{(0,), (1,)}
sage: all_degeneracies(1, 3)
{(2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1)}

sage.topology.simplicial_set.face_degeneracies(m, I)
Return the result of applying the face map 𝑑𝑚 to the iterated degeneracy 𝑠𝐼 = 𝑠𝑖1𝑠𝑖2 ...𝑠𝑖𝑛 .

INPUT:

• m – integer

• I – tuple (i_1, i_2, ..., i_n) of integers. We assume that this sequence is strictly decreasing.

Using the simplicial identities (see simplicial_set), we can rewrite

𝑑𝑚𝑠𝑖1𝑠𝑖2 ...𝑠𝑖𝑛

in one of the forms

𝑠𝑗1𝑠𝑗2 ...𝑠𝑗𝑛𝑑𝑡, 𝑠𝑗1𝑠𝑗2 ...𝑠𝑗𝑛−1 .

OUTPUT: the pair (J, t) or (J, None). J is returned as a list.

EXAMPLES:

sage: from sage.topology.simplicial_set import face_degeneracies
sage: face_degeneracies(0, (1, 0))
([0], None)
sage: face_degeneracies(1, (1, 0))
([0], None)
sage: face_degeneracies(2, (1, 0))
([0], None)
sage: face_degeneracies(3, (1, 0))
([1, 0], 1)
sage: face_degeneracies(3, ())
([], 3)

sage.topology.simplicial_set.shrink_simplicial_complex(K)

Convert the simplicial complex K to a “small” simplicial set.

First convert K naively, then mod out by a large contractible subcomplex, as found by simplicial_complex.
SimplicialComplex._contractible_subcomplex(). This will produce a simplicial set no larger than, and
sometimes much smaller than, the initial simplicial complex.

EXAMPLES:

sage: from sage.topology.simplicial_set import shrink_simplicial_complex
sage: K = simplicial_complexes.Simplex(3)
sage: X = shrink_simplicial_complex(K)
sage: X.f_vector()
[1]

(continues on next page)

141

Topology, Release 9.8

(continued from previous page)

sage: Y = simplicial_complexes.Sphere(2)
sage: S2 = shrink_simplicial_complex(Y)
sage: S2
Quotient: (Simplicial set with 14 non-degenerate simplices/Simplicial set with 13␣
→˓non-degenerate simplices)
sage: S2.f_vector()
[1, 0, 1]
sage: S2.homology()
{0: 0, 1: 0, 2: Z}

sage: Z = simplicial_complexes.SurfaceOfGenus(3)
sage: Z.f_vector()
[1, 15, 57, 38]
sage: Z.homology()
{0: 0, 1: Z^6, 2: Z}
sage: M = shrink_simplicial_complex(Z)
sage: M.f_vector() # random
[1, 32, 27]
sage: M.homology()
{0: 0, 1: Z^6, 2: Z}

sage.topology.simplicial_set.standardize_degeneracies(*L)
Return list of indices of degeneracy maps in standard (decreasing) order.

INPUT:

• L – list of integers, representing a composition of degeneracies in a simplicial set.

OUTPUT:

an equivalent list of degeneracies, standardized to be written in decreasing order, using the simplicial identity

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗.

For example, 𝑠0𝑠2 = 𝑠3𝑠0 and 𝑠0𝑠0 = 𝑠1𝑠0.

EXAMPLES:

sage: from sage.topology.simplicial_set import standardize_degeneracies
sage: standardize_degeneracies(0, 0)
(1, 0)
sage: standardize_degeneracies(0, 0, 0, 0)
(3, 2, 1, 0)
sage: standardize_degeneracies(1, 2)
(3, 1)

sage.topology.simplicial_set.standardize_face_maps(*L)
Return list of indices of face maps in standard (non-increasing) order.

INPUT:

• L – list of integers, representing a composition of face maps in a simplicial set.

OUTPUT:

an equivalent list of face maps, standardized to be written in non-increasing order, using the simplicial identity

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗.

142 Chapter 7. Simplicial sets

Topology, Release 9.8

For example, 𝑑0𝑑2 = 𝑑1𝑑0 and 𝑑0𝑑1 = 𝑑0𝑑0.

EXAMPLES:

sage: from sage.topology.simplicial_set import standardize_face_maps
sage: standardize_face_maps(0, 1)
(0, 0)
sage: standardize_face_maps(0, 2)
(1, 0)
sage: standardize_face_maps(1, 3, 5)
(3, 2, 1)

143

Topology, Release 9.8

144 Chapter 7. Simplicial sets

CHAPTER

EIGHT

METHODS OF CONSTRUCTING SIMPLICIAL SETS

This implements various constructions on simplicial sets: subsimplicial sets, pullbacks, products, pushouts, quotients,
wedges, disjoint unions, smash products, cones, and suspensions. The best way to access these is with methods attached
to simplicial sets themselves, as in the following.

EXAMPLES:

sage: K = simplicial_sets.Simplex(1)
sage: square = K.product(K)

sage: K = simplicial_sets.Simplex(1)
sage: endpoints = K.n_skeleton(0)
sage: circle = K.quotient(endpoints)

The mapping cone of a morphism of simplicial sets is constructed as a pushout:

sage: eta = simplicial_sets.HopfMap()
sage: CP2 = eta.mapping_cone()
sage: type(CP2)
<class 'sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets_finite_with_
→˓category'>

See the main documentation for simplicial sets, as well as for the classes for pushouts, pullbacks, etc., for more details.

Many of the classes defined here inherit from sage.structure.unique_representation.
UniqueRepresentation. This means that they produce identical output if given the same input, so for example, if K
is a simplicial set, calling K.suspension() twice returns the same result both times:

sage: CP2.suspension() is CP2.suspension()
True

So on one hand, a command like simplicial_sets.Sphere(2) constructs a distinct copy of a 2-sphere each time
it is called; on the other, once you have constructed a 2-sphere, then constructing its cone, its suspension, its product
with another simplicial set, etc., will give you the same result each time:

sage: simplicial_sets.Sphere(2) == simplicial_sets.Sphere(2)
False
sage: S2 = simplicial_sets.Sphere(2)
sage: S2.product(S2) == S2.product(S2)
True
sage: S2.disjoint_union(CP2, S2) == S2.disjoint_union(CP2, S2)
True

AUTHORS:

145

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Topology, Release 9.8

• John H. Palmieri (2016-07)

class sage.topology.simplicial_set_constructions.ConeOfSimplicialSet(base)
Bases: SimplicialSet_arbitrary, UniqueRepresentation

Return the unreduced cone on a finite simplicial set.

INPUT:

• base – return the cone on this simplicial set.

Add a point * (which will become the base point) and for each simplex 𝜎 in base, add both 𝜎 and a simplex
made up of * and 𝜎 (topologically, form the join of * and 𝜎).

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, v, (v,*), e, (e,*)]
sage: CX.base_point()
*

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

In the case when the cone is infinite, the 𝑛-skeleton of the cone is computed as the 𝑛-skeleton of the cone
of the 𝑛-skeleton.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.disjoint_union(B)
sage: CX = B.cone()
sage: CX.n_skeleton(3).homology()
{0: 0, 1: 0, 2: 0, 3: Z}

class sage.topology.simplicial_set_constructions.ConeOfSimplicialSet_finite(base)
Bases: ConeOfSimplicialSet, SimplicialSet_finite

Return the unreduced cone on a finite simplicial set.

INPUT:

• base – return the cone on this simplicial set.

Add a point * (which will become the base point) and for each simplex 𝜎 in base, add both 𝜎 and a simplex
made up of * and 𝜎 (topologically, form the join of * and 𝜎).

EXAMPLES:

146 Chapter 8. Methods of constructing simplicial sets

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Topology, Release 9.8

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, v, (v,*), e, (e,*)]
sage: CX.base_point()
*

base_as_subset()

If this is the cone 𝐶𝑋 on 𝑋 , return 𝑋 as a subsimplicial set.

EXAMPLES:

sage: X = simplicial_sets.RealProjectiveSpace(4).unset_base_point()
sage: Y = X.cone()
sage: Y.base_as_subset()
Simplicial set with 5 non-degenerate simplices
sage: Y.base_as_subset() == X
True

map_from_base()

If this is the cone 𝐶𝑋 on 𝑋 , return the inclusion map from 𝑋 .

EXAMPLES:

sage: X = simplicial_sets.Simplex(2).n_skeleton(1)
sage: Y = X.cone()
sage: Y.map_from_base()
Simplicial set morphism:
From: Simplicial set with 6 non-degenerate simplices
To: Cone of Simplicial set with 6 non-degenerate simplices
Defn: [(0,), (1,), (2,), (0, 1), (0, 2), (1, 2)] --> [(0,), (1,), (2,), (0,␣

→˓1), (0, 2), (1, 2)]

class sage.topology.simplicial_set_constructions.DisjointUnionOfSimplicialSets(factors=None)
Bases: PushoutOfSimplicialSets, Factors

Return the disjoint union of simplicial sets.

INPUT:

• factors – a list or tuple of simplicial sets

Discard any factors which are empty and return the disjoint union of the remaining simplicial sets in factors.
The disjoint union comes equipped with a map from each factor, as long as all of the factors are finite.

EXAMPLES:

sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2)
sage: K = simplicial_sets.KleinBottle()
sage: W = CP2.disjoint_union(K)
sage: W.homology()
{0: Z, 1: Z x C2, 2: Z, 3: 0, 4: Z}

(continues on next page)

147

Topology, Release 9.8

(continued from previous page)

sage: W.inclusion_map(1)
Simplicial set morphism:
From: Klein bottle
To: Disjoint union: (CP^2 u Klein bottle)
Defn: [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_{2,

→˓1}] --> [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_
→˓{2,1}]

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

The 𝑛-skeleton of the disjoint union is computed as the disjoint union of the 𝑛-skeleta of the component
simplicial sets.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: T = simplicial_sets.Torus()
sage: X = B.disjoint_union(T)
sage: X.n_skeleton(3).homology()
{0: Z, 1: Z x Z x C2, 2: Z, 3: Z}

summand(i)
Return the 𝑖-th factor of this construction of simplicial sets.

INPUT:

• i – integer, the index of the factor

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.disjoint_union(S3)
sage: K.factor(0)
S^2
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.wedge(S3, B)
sage: X.factor(1)
S^3
sage: X.factor(2)
Classifying space of Multiplicative Abelian group isomorphic to C2

summands()

Return the factors involved in this construction of simplicial sets.

EXAMPLES:

148 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.wedge(S3).factors() == (S2, S3)
True
sage: S2.product(S3).factors()[0]
S^2

class sage.topology.simplicial_set_constructions.DisjointUnionOfSimplicialSets_finite(factors=None)
Bases: DisjointUnionOfSimplicialSets, PushoutOfSimplicialSets_finite

The disjoint union of finite simplicial sets.

inclusion_map(i)
Return the inclusion map of the 𝑖-th factor.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: W = S1.disjoint_union(S2, S1)
sage: W.inclusion_map(1)
Simplicial set morphism:
From: S^2
To: Disjoint union: (S^1 u S^2 u S^1)
Defn: [v_0, sigma_2] --> [v_0, sigma_2]

sage: W.inclusion_map(0).domain()
S^1
sage: W.inclusion_map(2).domain()
S^1

class sage.topology.simplicial_set_constructions.Factors

Bases: object

Classes which inherit from this should define a _factors attribute for their instances, and this class
accesses that attribute. This is used by ProductOfSimplicialSets, WedgeOfSimplicialSets, and
DisjointUnionOfSimplicialSets.

factor(i)
Return the 𝑖-th factor of this construction of simplicial sets.

INPUT:

• i – integer, the index of the factor

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.disjoint_union(S3)
sage: K.factor(0)
S^2
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.wedge(S3, B)
sage: X.factor(1)
S^3

(continues on next page)

149

Topology, Release 9.8

(continued from previous page)

sage: X.factor(2)
Classifying space of Multiplicative Abelian group isomorphic to C2

factors()

Return the factors involved in this construction of simplicial sets.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.wedge(S3).factors() == (S2, S3)
True
sage: S2.product(S3).factors()[0]
S^2

class sage.topology.simplicial_set_constructions.ProductOfSimplicialSets(factors=None)
Bases: PullbackOfSimplicialSets, Factors

Return the product of simplicial sets.

INPUT:

• factors – a list or tuple of simplicial sets

Return the product of the simplicial sets in factors.

If 𝑋 and 𝑌 are simplicial sets, then their product 𝑋 × 𝑌 is defined to be the simplicial set with 𝑛-simplices
𝑋𝑛 × 𝑌𝑛. Therefore the simplices in the product have the form (𝑠𝐼𝜎, 𝑠𝐽𝜏), where 𝑠𝐼 = 𝑠𝑖1 ...𝑠𝑖𝑝 and 𝑠𝐽 =
𝑠𝑗1 ...𝑠𝑗𝑞 are composites of degeneracy maps, written in decreasing order. Such a simplex is nondegenerate if the
indices 𝐼 and 𝐽 are disjoint. Therefore if 𝜎 and 𝜏 are nondegenerate simplices of dimensions 𝑚 and 𝑛, in the
product they will lead to nondegenerate simplices up to dimension 𝑚 + 𝑛, and no further.

This extends in the more or less obvious way to products with more than two factors: with three factors, a simplex
(𝑠𝐼𝜎, 𝑠𝐽𝜏, 𝑠𝐾𝜌) is nondegenerate if 𝐼 ∩ 𝐽 ∩𝐾 is empty, etc.

If a simplicial set is constructed as a product, the factors are recorded and are accessible via the method Factors.
factors(). If it is constructed as a product and then copied, this information is lost.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, w)})
sage: square = X.product(X)

square is now the standard triangulation of the square: 4 vertices, 5 edges (the four on the border plus the
diagonal), 2 triangles:

sage: square.f_vector()
[4, 5, 2]

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

150 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

Since S1 is pointed, so is T:

sage: S1.is_pointed()
True
sage: S1.base_point()
v_0
sage: T.is_pointed()
True
sage: T.base_point()
(v_0, v_0)

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: Z = S2.product(S3)
sage: Z.homology()
{0: 0, 1: 0, 2: Z, 3: Z, 4: 0, 5: Z}

Products involving infinite simplicial sets:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.MultiplicativeAbelian([2]))
sage: B.rename('RP^oo')
sage: X = B.product(B)
sage: X
RP^oo x RP^oo
sage: X.n_cells(1)
[(f, f), (f, s_0 1), (s_0 1, f)]
sage: X.homology(range(3), base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 2 over Finite Field of size 2,
2: Vector space of dimension 3 over Finite Field of size 2}
sage: Y = B.product(S2)
sage: Y.homology(range(5), base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 2 over Finite Field of size 2,
3: Vector space of dimension 2 over Finite Field of size 2,
4: Vector space of dimension 2 over Finite Field of size 2}

factor(i, as_subset=False)
Return the 𝑖-th factor of the product.

INPUT:

• i – integer, the index of the factor

• as_subset – boolean, optional (default False)

If as_subset is True, return the 𝑖-th factor as a subsimplicial set of the product, identifying it with its
product with the base point in each other factor. As a subsimplicial set, it comes equipped with an inclusion
map. This option will raise an error if any factor does not have a base point.

If as_subset is False, return the 𝑖-th factor in its original form as a simplicial set.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)

(continues on next page)

151

Topology, Release 9.8

(continued from previous page)

sage: K = S2.product(S3)
sage: K.factor(0)
S^2

sage: K.factor(0, as_subset=True)
Simplicial set with 2 non-degenerate simplices
sage: K.factor(0, as_subset=True).homology()
{0: 0, 1: 0, 2: Z}

sage: K.factor(0) is S2
True
sage: K.factor(0, as_subset=True) is S2
False

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

In the finite case, this returns the ordinary 𝑛-skeleton. In the infinite case, it computes the 𝑛-skeleton of the
product of the 𝑛-skeleta of the factors.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.product(S3).n_skeleton(2)
Simplicial set with 2 non-degenerate simplices
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.product(B)
sage: X.n_skeleton(2)
Simplicial set with 13 non-degenerate simplices

class sage.topology.simplicial_set_constructions.ProductOfSimplicialSets_finite(factors=None)
Bases: ProductOfSimplicialSets, PullbackOfSimplicialSets_finite

The product of finite simplicial sets.

When the factors are all finite, there are more methods available for the resulting product, as compared to products
with infinite factors: projection maps, the wedge as a subcomplex, and the fat wedge as a subcomplex. See
projection_map(), wedge_as_subset(), and fat_wedge_as_subset()

fat_wedge_as_subset()

Return the fat wedge as a subsimplicial set of this product of pointed simplicial sets.

The fat wedge consists of those terms where at least one factor is the base point. Thus with two factors this
is the ordinary wedge, but with more factors, it is larger.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: X = S1.product(S1, S1)

(continues on next page)

152 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: W = X.fat_wedge_as_subset()
sage: W.homology()
{0: 0, 1: Z x Z x Z, 2: Z x Z x Z}

projection_map(i)
Return the map projecting onto the 𝑖-th factor.

INPUT:

• i – integer, the index of the projection map

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: f_0 = T.projection_map(0)
sage: f_1 = T.projection_map(1)
sage: m_0 = f_0.induced_homology_morphism().to_matrix(1) # matrix in dim 1
sage: m_1 = f_1.induced_homology_morphism().to_matrix(1)
sage: m_0.rank()
1
sage: m_0 == m_1
False

wedge_as_subset()

Return the wedge as a subsimplicial set of this product of pointed simplicial sets.

This will raise an error if any factor is not pointed.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: w = AbstractSimplex(0, name='w')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, v)}, base_point=v)
sage: Y = SimplicialSet({f: (w, w)}, base_point=w)
sage: P = X.product(Y)
sage: W = P.wedge_as_subset()
sage: W.nondegenerate_simplices()
[(v, w), (e, s_0 w), (s_0 v, f)]
sage: W.homology()
{0: 0, 1: Z x Z}

class sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets(maps=None)
Bases: SimplicialSet_arbitrary, UniqueRepresentation

Return the pullback obtained from the morphisms maps.

INPUT:

• maps – a list or tuple of morphisms of simplicial sets

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑋 . If no maps are given, return the one-point simplicial
set. Otherwise, given a simplicial set 𝑌 and maps 𝑓𝑖 : 𝑋𝑖 → 𝑌 for 0 ≤ 𝑖 ≤ 𝑚, construct the pullback 𝑃 : see
Wikipedia article Pullback_(category_theory). This is constructed as pullbacks of sets for each set of𝑛-simplices,

153

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
https://en.wikipedia.org/wiki/Pullback_(category_theory)

Topology, Release 9.8

so 𝑃𝑛 is the subset of the product
∏︀

(𝑋𝑖)𝑛 consisting of those elements (𝑥𝑖) for which 𝑓𝑖(𝑥𝑖) = 𝑓𝑗(𝑥𝑗) for all 𝑖,
𝑗.

This is pointed if the maps 𝑓𝑖 are.

EXAMPLES:

The pullback of a quotient map by a subsimplicial set and the base point map gives a simplicial set isomorphic
to the original subcomplex:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: X = K.pullback(K.quotient_map(), K.base_point_map())
sage: X.homology() == RP5.n_skeleton(2).homology()
True

Pullbacks of identity maps:

sage: S2 = simplicial_sets.Sphere(2)
sage: one = S2.Hom(S2).identity()
sage: P = S2.pullback(one, one)
sage: P.homology()
{0: 0, 1: 0, 2: Z}

The pullback is constructed in terms of the product – of course, the product is a special case of the pullback –
and the simplices are named appropriately:

sage: P.nondegenerate_simplices()
[(v_0, v_0), (sigma_2, sigma_2)]

defining_map(i)
Return the 𝑖-th map defining the pullback.

INPUT:

• i – integer

If this pullback was constructed as Y.pullback(f_0, f_1, ...), this returns 𝑓𝑖.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: Y = K.pullback(K.quotient_map(), K.base_point_map())
sage: Y.defining_map(1)
Simplicial set morphism:
From: Point
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: Constant map at *

sage: Y.defining_map(0).domain()
RP^5

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

154 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

• n – the dimension

The 𝑛-skeleton of the pullback is computed as the pullback of the 𝑛-skeleta of the component simplicial
sets.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: one = Hom(B,B).identity()
sage: c = Hom(B,B).constant_map()
sage: P = B.pullback(one, c)
sage: P.n_skeleton(2)
Pullback of maps:
Simplicial set endomorphism of Simplicial set with 3 non-degenerate simplices
Defn: Identity map

Simplicial set endomorphism of Simplicial set with 3 non-degenerate simplices
Defn: Constant map at 1

sage: P.n_skeleton(3).homology()
{0: 0, 1: C2, 2: 0, 3: Z}

class sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets_finite(maps=None)
Bases: PullbackOfSimplicialSets, SimplicialSet_finite

The pullback of finite simplicial sets obtained from maps.

When the simplicial sets involved are all finite, there are more methods available to the resulting pullback, as
compared to case when some of the components are infinite: the structure maps from the pullback and the
pullback’s universal property: see structure_map() and universal_property().

projection_map(i)
Return the 𝑖-th projection map of the pullback.

INPUT:

• i – integer

If this pullback 𝑃 was constructed as Y.pullback(f_0, f_1, ...), where 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then there are
structure maps 𝑓𝑖 : 𝑃 → 𝑋𝑖. This method constructs 𝑓𝑖.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: Y = K.pullback(K.quotient_map(), K.base_point_map())
sage: Y.structure_map(0)
Simplicial set morphism:
From: Pullback of maps:
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*, s_

→˓0 *, s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]
Simplicial set morphism:
From: Point
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: Constant map at *

To: RP^5
(continues on next page)

155

Topology, Release 9.8

(continued from previous page)

Defn: [(1, *), (f, s_0 *), (f * f, s_1 s_0 *)] --> [1, f, f * f]
sage: Y.structure_map(1).codomain()
Point

These maps are also accessible via projection_map:

sage: Y.projection_map(1).codomain()
Point

structure_map(i)
Return the 𝑖-th projection map of the pullback.

INPUT:

• i – integer

If this pullback 𝑃 was constructed as Y.pullback(f_0, f_1, ...), where 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then there are
structure maps 𝑓𝑖 : 𝑃 → 𝑋𝑖. This method constructs 𝑓𝑖.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: K = RP5.quotient(RP5.n_skeleton(2))
sage: Y = K.pullback(K.quotient_map(), K.base_point_map())
sage: Y.structure_map(0)
Simplicial set morphism:
From: Pullback of maps:
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*, s_

→˓0 *, s_1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]
Simplicial set morphism:
From: Point
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: Constant map at *

To: RP^5
Defn: [(1, *), (f, s_0 *), (f * f, s_1 s_0 *)] --> [1, f, f * f]

sage: Y.structure_map(1).codomain()
Point

These maps are also accessible via projection_map:

sage: Y.projection_map(1).codomain()
Point

universal_property(*maps)
Return the map induced by maps.

INPUT:

• maps – maps from a simplicial set 𝑍 to the “factors” 𝑋𝑖 forming the pullback.

If the pullback 𝑃 is formed by maps 𝑓𝑖 : 𝑋𝑖 → 𝑌 , then given maps 𝑔𝑖 : 𝑍 → 𝑋𝑖 such that 𝑓𝑖𝑔𝑖 = 𝑓𝑗𝑔𝑗 for
all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑍 → 𝑃 making the appropriate diagram commute. This constructs
that map.

156 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})
sage: P = S1.product(T)
sage: P.universal_property(S1.Hom(S1).identity(), f)
Simplicial set morphism:
From: S^1
To: S^1 x S^1 x S^1
Defn: [v_0, sigma_1] --> [(v_0, (v_0, v_0)), (sigma_1, (sigma_1, s_0 v_0))]

class sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets(maps=None,
vertex_name=None)

Bases: SimplicialSet_arbitrary, UniqueRepresentation

Return the pushout obtained from the morphisms maps.

INPUT:

• maps – a list or tuple of morphisms of simplicial sets

• vertex_name – optional, default None

If only a single map 𝑓 : 𝑋 → 𝑌 is given, then return 𝑌 . If no maps are given, return the empty simplicial
set. Otherwise, given a simplicial set 𝑋 and maps 𝑓𝑖 : 𝑋 → 𝑌𝑖 for 0 ≤ 𝑖 ≤ 𝑚, construct the pushout 𝑃 : see
Wikipedia article Pushout_(category_theory). This is constructed as pushouts of sets for each set of 𝑛-simplices,
so 𝑃𝑛 is the disjoint union of the sets (𝑌𝑖)𝑛, with elements 𝑓𝑖(𝑥) identified for 𝑛-simplex 𝑥 in 𝑋 .

Simplices in the pushout are given names as follows: if a simplex comes from a single 𝑌𝑖, it inherits its name.
Otherwise it must come from a simplex (or several) in 𝑋 , and then it inherits one of those names, and it should
be the first alphabetically. For example, if vertices 𝑣, 𝑤, and 𝑧 in 𝑋 are glued together, then the resulting vertex
in the pushout will be called 𝑣.

Base points are taken care of automatically: if each of the maps 𝑓𝑖 is pointed, so is the pushout. If 𝑋 is a point
or if 𝑋 is nonempty and any of the spaces 𝑌𝑖 is a point, use those for the base point. In all of these cases, if
vertex_name is None, generate the name of the base point automatically; otherwise, use vertex_name for its
name.

In all other cases, the pushout is not pointed.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: a = AbstractSimplex(0, name='a')
sage: b = AbstractSimplex(0, name='b')
sage: c = AbstractSimplex(0, name='c')
sage: e0 = AbstractSimplex(1, name='e_0')
sage: e1 = AbstractSimplex(1, name='e_1')
sage: e2 = AbstractSimplex(1, name='e_2')
sage: X = SimplicialSet({e2: (b, a)})
sage: Y0 = SimplicialSet({e2: (b,a), e0: (c,b), e1: (c,a)})
sage: Y1 = simplicial_sets.Simplex(0)
sage: f0_data = {a:a, b:b, e2: e2}
sage: v = Y1.n_cells(0)[0]

(continues on next page)

157

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
https://en.wikipedia.org/wiki/Pushout_(category_theory)

Topology, Release 9.8

(continued from previous page)

sage: f1_data = {a:v, b:v, e2:v.apply_degeneracies(0)}
sage: f0 = X.Hom(Y0)(f0_data)
sage: f1 = X.Hom(Y1)(f1_data)
sage: P = X.pushout(f0, f1)
sage: P.nondegenerate_simplices()
[a, c, e_0, e_1]

There are defining maps 𝑓𝑖 : 𝑋 → 𝑌𝑖 and structure maps 𝑓𝑖 : 𝑌𝑖 → 𝑃 ; the latter are only implemented in Sage
when each 𝑌𝑖 is finite.

sage: P.defining_map(0) == f0
True
sage: P.structure_map(1)
Simplicial set morphism:
From: 0-simplex
To: Pushout of maps:
Simplicial set morphism:
From: Simplicial set with 3 non-degenerate simplices
To: Simplicial set with 6 non-degenerate simplices
Defn: [a, b, e_2] --> [a, b, e_2]

Simplicial set morphism:
From: Simplicial set with 3 non-degenerate simplices
To: 0-simplex
Defn: Constant map at (0,)

Defn: Constant map at a
sage: P.structure_map(0).domain() == Y0
True
sage: P.structure_map(0).codomain() == P
True

An inefficient way of constructing a suspension for an unpointed set: take the pushout of two copies of the
inclusion map 𝑋 → 𝐶𝑋:

sage: T = simplicial_sets.Torus()
sage: T = T.unset_base_point()
sage: CT = T.cone()
sage: inc = CT.base_as_subset().inclusion_map()
sage: P = T.pushout(inc, inc)
sage: P.homology()
{0: 0, 1: 0, 2: Z x Z, 3: Z}
sage: len(P.nondegenerate_simplices())
20

It is more efficient to construct the suspension as the quotient 𝐶𝑋/𝑋:

sage: len(CT.quotient(CT.base_as_subset()).nondegenerate_simplices())
8

It is more efficient still if the original simplicial set has a base point:

sage: T = simplicial_sets.Torus()
sage: len(T.suspension().nondegenerate_simplices())
6

(continues on next page)

158 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: S1 = simplicial_sets.Sphere(1)
sage: pt = simplicial_sets.Point()
sage: bouquet = pt.pushout(S1.base_point_map(), S1.base_point_map(), S1.base_point_
→˓map())
sage: bouquet.homology(1)
Z x Z x Z

defining_map(i)
Return the 𝑖-th map defining the pushout.

INPUT:

• i – integer

If this pushout was constructed as X.pushout(f_0, f_1, ...), this returns 𝑓𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = simplicial_sets.Torus()
sage: X = S1.wedge(T) # a pushout
sage: X.defining_map(0)
Simplicial set morphism:
From: Point
To: S^1
Defn: Constant map at v_0

sage: X.defining_map(1).domain()
Point
sage: X.defining_map(1).codomain()
Torus

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

The 𝑛-skeleton of the pushout is computed as the pushout of the 𝑛-skeleta of the component simplicial sets.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = K.pushout(K.inclusion_map(), K.constant_map())
sage: Q.n_skeleton(5).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: Z, 5: Z}

Of course, computing the 𝑛-skeleton and then taking homology need not yield the same answer as asking
for homology through dimension 𝑛, since the latter computation will use the (𝑛 + 1)-skeleton:

sage: Q.homology(range(6))
{0: 0, 1: 0, 2: 0, 3: 0, 4: Z, 5: C2}

159

Topology, Release 9.8

class sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets_finite(maps=None,
ver-
tex_name=None)

Bases: PushoutOfSimplicialSets, SimplicialSet_finite

The pushout of finite simplicial sets obtained from maps.

When the simplicial sets involved are all finite, there are more methods available to the resulting pushout, as
compared to case when some of the components are infinite: the structure maps to the pushout and the pushout’s
universal property: see structure_map() and universal_property().

structure_map(i)
Return the 𝑖-th structure map of the pushout.

INPUT:

• i – integer

If this pushout 𝑍 was constructed as X.pushout(f_0, f_1, ...), where 𝑓𝑖 : 𝑋 → 𝑌𝑖, then there are
structure maps 𝑓𝑖 : 𝑌𝑖 → 𝑍. This method constructs 𝑓𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = simplicial_sets.Torus()
sage: X = S1.disjoint_union(T) # a pushout
sage: X.structure_map(0)
Simplicial set morphism:
From: S^1
To: Disjoint union: (S^1 u Torus)
Defn: [v_0, sigma_1] --> [v_0, sigma_1]

sage: X.structure_map(1).domain()
Torus
sage: X.structure_map(1).codomain()
Disjoint union: (S^1 u Torus)

universal_property(*maps)
Return the map induced by maps

INPUT:

• maps – maps “factors” 𝑌𝑖 forming the pushout to a fixed simplicial set 𝑍.

If the pushout 𝑃 is formed by maps 𝑓𝑖 : 𝑋 → 𝑌𝑖, then given maps 𝑔𝑖 : 𝑌𝑖 → 𝑍 such that 𝑔𝑖𝑓𝑖 = 𝑔𝑗𝑓𝑗 for
all 𝑖, 𝑗, then there is a unique map 𝑔 : 𝑃 → 𝑍 making the appropriate diagram commute. This constructs
that map.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: x = AbstractSimplex(0, name='x')
sage: evw = AbstractSimplex(1, name='vw')
sage: evx = AbstractSimplex(1, name='vx')
sage: ewx = AbstractSimplex(1, name='wx')
sage: X = SimplicialSet({evw: (w, v), evx: (x, v)})
sage: Y_0 = SimplicialSet({evw: (w, v), evx: (x, v), ewx: (x, w)})

(continues on next page)

160 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: Y_1 = SimplicialSet({evx: (x, v)})

sage: f_0 = Hom(X, Y_0)({v:v, w:w, x:x, evw:evw, evx:evx})
sage: f_1 = Hom(X, Y_1)({v:v, w:v, x:x, evw:v.apply_degeneracies(0), evx:evx})
sage: P = X.pushout(f_0, f_1)

sage: one = Hom(Y_1, Y_1).identity()
sage: g = Hom(Y_0, Y_1)({v:v, w:v, x:x, evw:v.apply_degeneracies(0), evx:evx,␣
→˓ewx:evx})
sage: P.universal_property(g, one)
Simplicial set morphism:
From: Pushout of maps:
Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 6 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [v, w, x, vw, vx]

Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 3 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [v, v, x, s_0 v, vx]

To: Simplicial set with 3 non-degenerate simplices
Defn: [v, x, vx, wx] --> [v, x, vx, vx]

class sage.topology.simplicial_set_constructions.QuotientOfSimplicialSet(inclusion,
vertex_name='*')

Bases: PushoutOfSimplicialSets

Return the quotient of a simplicial set by a subsimplicial set.

INPUT:

• inclusion – inclusion map of a subcomplex (= subsimplicial set) of a simplicial set

• vertex_name – optional, default '*'

A subcomplex 𝐴 comes equipped with the inclusion map 𝐴 → 𝑋 to its ambient complex 𝑋 , and this constructs
the quotient 𝑋/𝐴, collapsing 𝐴 to a point. The resulting point is called vertex_name, which is '*' by default.

When the simplicial sets involved are finite, there is a QuotientOfSimplicialSet_finite.quotient_map()
method available.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2
Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
sage: RP5_2.quotient_map()
Simplicial set morphism:
From: RP^5
To: Quotient: (RP^5/Simplicial set with 3 non-degenerate simplices)
Defn: [1, f, f * f, f * f * f, f * f * f * f, f * f * f * f * f] --> [*, s_0 *, s_

→˓1 s_0 *, f * f * f, f * f * f * f, f * f * f * f * f]

161

Topology, Release 9.8

ambient()

Return the ambient space.

That is, if this quotient is 𝐾/𝐿, return 𝐾.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.ambient()
RP^5

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = B.quotient(K)
sage: Q.ambient()
Classifying space of Multiplicative Abelian group isomorphic to C2

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

The 𝑛-skeleton of the quotient is computed as the quotient of the 𝑛-skeleta.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: K = B.n_skeleton(3)
sage: Q = B.quotient(K)
sage: Q.n_skeleton(6)
Quotient: (Simplicial set with 7 non-degenerate simplices/Simplicial set with 4␣
→˓non-degenerate simplices)
sage: Q.n_skeleton(6).homology()
{0: 0, 1: 0, 2: 0, 3: 0, 4: Z, 5: C2, 6: 0}

subcomplex()

Return the subcomplex space associated to this quotient.

That is, if this quotient is 𝐾/𝐿, return 𝐿.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.subcomplex()
Simplicial set with 3 non-degenerate simplices

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))

(continues on next page)

162 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

(continued from previous page)

sage: K = B.n_skeleton(3)
sage: Q = B.quotient(K)
sage: Q.subcomplex()
Simplicial set with 4 non-degenerate simplices

class sage.topology.simplicial_set_constructions.QuotientOfSimplicialSet_finite(inclusion,
ver-
tex_name='*')

Bases: QuotientOfSimplicialSet, PushoutOfSimplicialSets_finite

The quotient of finite simplicial sets.

When the simplicial sets involved are finite, there is a quotient_map() method available.

quotient_map()

Return the quotient map from the original simplicial set to the quotient.

EXAMPLES:

sage: K = simplicial_sets.Simplex(1)
sage: S1 = K.quotient(K.n_skeleton(0))
sage: q = S1.quotient_map()
sage: q
Simplicial set morphism:
From: 1-simplex
To: Quotient: (1-simplex/Simplicial set with 2 non-degenerate simplices)
Defn: [(0,), (1,), (0, 1)] --> [*, *, (0, 1)]

sage: q.domain() == K
True
sage: q.codomain() == S1
True

class sage.topology.simplicial_set_constructions.ReducedConeOfSimplicialSet(base)
Bases: QuotientOfSimplicialSet

Return the reduced cone on a simplicial set.

INPUT:

• base – return the cone on this simplicial set.

Start with the unreduced cone: take base and add a point * (which will become the base point) and for each
simplex 𝜎 in base, add both 𝜎 and a simplex made up of * and 𝜎 (topologically, form the join of * and 𝜎).

Now reduce: take the quotient by the 1-simplex connecting the old base point to the new one.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: X = X.set_base_point(v)
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, e, (e,*)]

163

Topology, Release 9.8

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

In the case when the cone is infinite, the 𝑛-skeleton of the cone is computed as the 𝑛-skeleton of the cone
of the 𝑛-skeleton.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.cone().n_skeleton(3).homology()
{0: 0, 1: 0, 2: 0, 3: Z}

class sage.topology.simplicial_set_constructions.ReducedConeOfSimplicialSet_finite(base)
Bases: ReducedConeOfSimplicialSet, QuotientOfSimplicialSet_finite

Return the reduced cone on a simplicial set.

INPUT:

• base – return the cone on this simplicial set.

Start with the unreduced cone: take base and add a point * (which will become the base point) and for each
simplex 𝜎 in base, add both 𝜎 and a simplex made up of * and 𝜎 (topologically, form the join of * and 𝜎).

Now reduce: take the quotient by the 1-simplex connecting the old base point to the new one.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1, name='e')
sage: X = SimplicialSet({e: (v, v)})
sage: X = X.set_base_point(v)
sage: CX = X.cone() # indirect doctest
sage: CX.nondegenerate_simplices()
[*, e, (e,*)]

map_from_base()

If this is the cone 𝐶𝑋 on 𝑋 , return the map from 𝑋 .

The map is defined to be the composite 𝑋 → 𝐶𝑋 → 𝐶𝑋 . This is used by the
SuspensionOfSimplicialSet_finite class to construct the reduced suspension: take the quotient of
the reduced cone by the image of 𝑋 therein.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: CS3 = S3.cone()
sage: CS3.map_from_base()
Simplicial set morphism:
From: S^3
To: Reduced cone of S^3
Defn: [v_0, sigma_3] --> [*, sigma_3]

164 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

class sage.topology.simplicial_set_constructions.SmashProductOfSimplicialSets_finite(factors=None)
Bases: QuotientOfSimplicialSet_finite, Factors

Return the smash product of finite pointed simplicial sets.

INPUT:

• factors – a list or tuple of simplicial sets

Return the smash product of the simplicial sets in factors: the smash product𝑋∧𝑌 is defined to be the quotient
(𝑋 × 𝑌)/(𝑋 ∨ 𝑌), where 𝑋 ∨ 𝑌 is the wedge sum.

Each element of factors must be finite and pointed. (As of July 2016, constructing the wedge as a subcomplex
of the product is only possible in Sage for finite simplicial sets.)

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: S2 = simplicial_sets.Sphere(2)
sage: T.smash_product(S2).homology() == T.suspension(2).homology()
True

class sage.topology.simplicial_set_constructions.SubSimplicialSet(data, ambient=None)
Bases: SimplicialSet_finite, UniqueRepresentation

Return a finite simplicial set as a subsimplicial set of another simplicial set.

This keeps track of the ambient simplicial set and the inclusion map from the subcomplex into it.

INPUT:

• data – the data defining the subset: a dictionary where the keys are simplices from the ambient simplicial
set and the values are their faces.

• ambient – the ambient simplicial set. If omitted, use the same simplicial set as the subset and the ambient
complex.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: K = simplicial_sets.KleinBottle()
sage: X = S3.disjoint_union(K)
sage: Y = X.structure_map(0).image() # the S3 summand
sage: Y.inclusion_map()
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices
To: Disjoint union: (S^3 u Klein bottle)
Defn: [v_0, sigma_3] --> [v_0, sigma_3]

sage: Y.ambient_space()
Disjoint union: (S^3 u Klein bottle)

ambient_space()

Return the simplicial set of which this is a subsimplicial set.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: eight = T.wedge_as_subset()
sage: eight

(continues on next page)

165

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Topology, Release 9.8

(continued from previous page)

Simplicial set with 3 non-degenerate simplices
sage: eight.fundamental_group()
Finitely presented group < e0, e1 | >
sage: eight.ambient_space()
Torus

inclusion_map()

Return the inclusion map from this subsimplicial set into its ambient space.

EXAMPLES:

sage: RP6 = simplicial_sets.RealProjectiveSpace(6)
sage: K = RP6.n_skeleton(2)
sage: K.inclusion_map()
Simplicial set morphism:
From: Simplicial set with 3 non-degenerate simplices
To: RP^6
Defn: [1, f, f * f] --> [1, f, f * f]

𝑅𝑃 6 itself is constructed as a subsimplicial set of 𝑅𝑃∞:

sage: latex(RP6.inclusion_map())
RP^{6} \to RP^{\infty}

class sage.topology.simplicial_set_constructions.SuspensionOfSimplicialSet(base)
Bases: SimplicialSet_arbitrary, UniqueRepresentation

Return the (reduced) suspension of a simplicial set.

INPUT:

• base – return the suspension of this simplicial set.

If this simplicial set X=base is not pointed, or if it is itself an unreduced suspension, return the unreduced
suspension: the quotient 𝐶𝑋/𝑋 , where 𝐶𝑋 is the (ordinary, unreduced) cone on 𝑋 . If 𝑋 is pointed, then use
the reduced cone instead, and so return the reduced suspension.

We use 𝑆 to denote unreduced suspension, Σ for reduced suspension.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.MultiplicativeAbelian([2]))
sage: B.suspension()
Sigma(Classifying space of Multiplicative Abelian group isomorphic to C2)
sage: B.suspension().n_skeleton(3).homology()
{0: 0, 1: 0, 2: C2, 3: 0}

If X is finite, the suspension comes with a quotient map from the cone:

sage: S3 = simplicial_sets.Sphere(3)
sage: S4 = S3.suspension()
sage: S4.quotient_map()
Simplicial set morphism:
From: Reduced cone of S^3
To: Sigma(S^3)
Defn: [*, sigma_3, (sigma_3,*)] --> [*, s_2 s_1 s_0 *, (sigma_3,*)]

166 Chapter 8. Methods of constructing simplicial sets

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Topology, Release 9.8

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

In the case when the suspension is infinite, the 𝑛-skeleton of the suspension is computed as the 𝑛-skeleton
of the suspension of the 𝑛-skeleton.

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: SigmaB = B.suspension()
sage: SigmaB.n_skeleton(4).homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 0 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2,
4: Vector space of dimension 1 over Finite Field of size 2}

class sage.topology.simplicial_set_constructions.SuspensionOfSimplicialSet_finite(base)
Bases: SuspensionOfSimplicialSet, QuotientOfSimplicialSet_finite

The (reduced) suspension of a finite simplicial set.

See SuspensionOfSimplicialSet for more information.

class sage.topology.simplicial_set_constructions.WedgeOfSimplicialSets(factors=None)
Bases: PushoutOfSimplicialSets, Factors

Return the wedge sum of pointed simplicial sets.

INPUT:

• factors – a list or tuple of simplicial sets

Return the wedge of the simplicial sets in factors: the wedge sum 𝑋 ∨𝑌 is formed by taking the disjoint union
of 𝑋 and 𝑌 and identifying their base points. In this construction, the new base point is renamed ‘*’.

The wedge comes equipped with maps to and from each factor, or actually, maps from each factor, and maps
to simplicial sets isomorphic to each factor. The codomains of the latter maps are quotients of the wedge, not
identical to the original factors.

EXAMPLES:

sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2)
sage: K = simplicial_sets.KleinBottle()
sage: W = CP2.wedge(K)
sage: W.homology()
{0: 0, 1: Z x C2, 2: Z, 3: 0, 4: Z}

sage: W.inclusion_map(1)
Simplicial set morphism:
From: Klein bottle
To: Wedge: (CP^2 v Klein bottle)
Defn: [Delta_{0,0}, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_{2,

(continues on next page)

167

Topology, Release 9.8

(continued from previous page)

→˓1}] --> [*, Delta_{1,0}, Delta_{1,1}, Delta_{1,2}, Delta_{2,0}, Delta_{2,1}]

sage: W.projection_map(0).domain()
Wedge: (CP^2 v Klein bottle)
sage: W.projection_map(0).codomain() # copy of CP^2
Quotient: (Wedge: (CP^2 v Klein bottle)/Simplicial set with 6 non-degenerate␣
→˓simplices)
sage: W.projection_map(0).codomain().homology()
{0: 0, 1: 0, 2: Z, 3: 0, 4: Z}

An error occurs if any of the factors is not pointed:

sage: CP2.wedge(simplicial_sets.Simplex(1))
Traceback (most recent call last):
...
ValueError: the simplicial sets must be pointed

summand(i)
Return the 𝑖-th factor of this construction of simplicial sets.

INPUT:

• i – integer, the index of the factor

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: K = S2.disjoint_union(S3)
sage: K.factor(0)
S^2
sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: X = B.wedge(S3, B)
sage: X.factor(1)
S^3
sage: X.factor(2)
Classifying space of Multiplicative Abelian group isomorphic to C2

summands()

Return the factors involved in this construction of simplicial sets.

EXAMPLES:

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: S2.wedge(S3).factors() == (S2, S3)
True
sage: S2.product(S3).factors()[0]
S^2

class sage.topology.simplicial_set_constructions.WedgeOfSimplicialSets_finite(factors=None)
Bases: WedgeOfSimplicialSets, PushoutOfSimplicialSets_finite

The wedge sum of finite pointed simplicial sets.

168 Chapter 8. Methods of constructing simplicial sets

Topology, Release 9.8

inclusion_map(i)
Return the inclusion map of the 𝑖-th factor.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: W = S1.wedge(S2, S1)
sage: W.inclusion_map(1)
Simplicial set morphism:
From: S^2
To: Wedge: (S^1 v S^2 v S^1)
Defn: [v_0, sigma_2] --> [*, sigma_2]

sage: W.inclusion_map(0).domain()
S^1
sage: W.inclusion_map(2).domain()
S^1

projection_map(i)
Return the projection map onto the 𝑖-th factor.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: W = S1.wedge(S2, S1)
sage: W.projection_map(1)
Simplicial set morphism:
From: Wedge: (S^1 v S^2 v S^1)
To: Quotient: (Wedge: (S^1 v S^2 v S^1)/Simplicial set with 3 non-

→˓degenerate simplices)
Defn: [*, sigma_1, sigma_1, sigma_2] --> [*, s_0 *, s_0 *, sigma_2]

sage: W.projection_map(1).image().homology(1)
0
sage: W.projection_map(1).image().homology(2)
Z

169

Topology, Release 9.8

170 Chapter 8. Methods of constructing simplicial sets

CHAPTER

NINE

EXAMPLES OF SIMPLICIAL SETS.

These are accessible via simplicial_sets.Sphere(3), simplicial_sets.Torus(), etc. Type
simplicial_sets.[TAB] to see a complete list.

AUTHORS:

• John H. Palmieri (2016-07)

sage.topology.simplicial_set_examples.ClassifyingSpace(group)
Return the classifying space of group, as a simplicial set.

INPUT:

• group – a finite group or finite monoid

See sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve() for more details and
more examples.

EXAMPLES:

sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = simplicial_sets.ClassifyingSpace(C2)
sage: H = BC2.homology(range(9), base_ring=GF(2))
sage: [H[i].dimension() for i in range(9)]
[0, 1, 1, 1, 1, 1, 1, 1, 1]

sage: Klein4 = groups.misc.MultiplicativeAbelian([2, 2])
sage: BK = simplicial_sets.ClassifyingSpace(Klein4)
sage: BK
Classifying space of Multiplicative Abelian group isomorphic to C2 x C2
sage: BK.homology(range(5), base_ring=GF(2)) # long time (1 second)
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 2 over Finite Field of size 2,
2: Vector space of dimension 3 over Finite Field of size 2,
3: Vector space of dimension 4 over Finite Field of size 2,
4: Vector space of dimension 5 over Finite Field of size 2}

sage.topology.simplicial_set_examples.ComplexProjectiveSpace(n)
Return complex 𝑛-dimensional projective space, as a simplicial set.

This is only defined when 𝑛 is at most 4. It is constructed using the simplicial set decomposition provided by
Kenzo, as described by Sergeraert [Ser2010]

EXAMPLES:

171

../../../../../../html/en/reference/categories/sage/categories/finite_monoids.html#sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve

Topology, Release 9.8

sage: simplicial_sets.ComplexProjectiveSpace(2).homology(reduced=False)
{0: Z, 1: 0, 2: Z, 3: 0, 4: Z}
sage: CP3 = simplicial_sets.ComplexProjectiveSpace(3)
sage: CP3
CP^3
sage: latex(CP3)
CP^{3}
sage: CP3.f_vector()
[1, 0, 3, 10, 25, 30, 15]

sage: K = CP3.suspension() # long time (1 second)
sage: R = K.cohomology_ring(GF(2)) # long time
sage: R.gens() # long time
(h^{0,0}, h^{3,0}, h^{5,0}, h^{7,0})
sage: x = R.gens()[1] # long time
sage: x.Sq(2) # long time
h^{5,0}

sage: simplicial_sets.ComplexProjectiveSpace(4).f_vector()
[1, 0, 4, 22, 97, 255, 390, 315, 105]

sage: simplicial_sets.ComplexProjectiveSpace(5)
Traceback (most recent call last):
...
ValueError: complex projective spaces are only available in dimensions between 0␣
→˓and 4

sage.topology.simplicial_set_examples.Empty()

Return the empty simplicial set.

This should return the same simplicial set each time it is called.

EXAMPLES:

sage: from sage.topology.simplicial_set_examples import Empty
sage: E = Empty()
sage: E
Empty simplicial set
sage: E.nondegenerate_simplices()
[]
sage: E is Empty()
True

sage.topology.simplicial_set_examples.HopfMap()

Return a simplicial model of the Hopf map 𝑆3 → 𝑆2

This is taken from Exemple II.1.19 in the thesis of Clemens Berger [Ber1991].

The Hopf map is a fibration 𝑆3 → 𝑆2. If it is viewed as attaching a 4-cell to the 2-sphere, the resulting adjunction
space is 2-dimensional complex projective space. The resulting model is a bit larger than the one obtained from
simplicial_sets.ComplexProjectiveSpace(2).

EXAMPLES:

172 Chapter 9. Examples of simplicial sets.

Topology, Release 9.8

sage: g = simplicial_sets.HopfMap()
sage: g.domain()
Simplicial set with 20 non-degenerate simplices
sage: g.codomain()
S^2

Using the Hopf map to attach a cell:

sage: X = g.mapping_cone()
sage: CP2 = simplicial_sets.ComplexProjectiveSpace(2)
sage: X.homology() == CP2.homology()
True

sage: X.f_vector()
[1, 0, 5, 9, 6]
sage: CP2.f_vector()
[1, 0, 2, 3, 3]

sage.topology.simplicial_set_examples.Horn(n, k)
Return the horn Λ𝑛

𝑘 .

This is the subsimplicial set of the 𝑛-simplex obtained by removing its 𝑘-th face.

EXAMPLES:

sage: L = simplicial_sets.Horn(3, 0)
sage: L
(3, 0)-Horn
sage: L.n_cells(3)
[]
sage: L.n_cells(2)
[(0, 1, 2), (0, 1, 3), (0, 2, 3)]

sage: L20 = simplicial_sets.Horn(2, 0)
sage: latex(L20)
\Lambda^{2}_{0}
sage: L20.inclusion_map()
Simplicial set morphism:
From: (2, 0)-Horn
To: 2-simplex
Defn: [(0,), (1,), (2,), (0, 1), (0, 2)] --> [(0,), (1,), (2,), (0, 1), (0, 2)]

sage.topology.simplicial_set_examples.KleinBottle()

Return the Klein bottle as a simplicial set.

This converts the ∆-complex version to a simplicial set. It has one 0-simplex, three 1-simplices, and two 2-
simplices.

EXAMPLES:

sage: K = simplicial_sets.KleinBottle()
sage: K.f_vector()
[1, 3, 2]
sage: K.homology(reduced=False)
{0: Z, 1: Z x C2, 2: 0}

(continues on next page)

173

Topology, Release 9.8

(continued from previous page)

sage: K
Klein bottle

class sage.topology.simplicial_set_examples.Nerve(monoid)
Bases: SimplicialSet_arbitrary

The nerve of a multiplicative monoid.

INPUT:

• monoid – a multiplicative monoid

See sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve() for full documenta-
tion.

EXAMPLES:

sage: M = FiniteMonoids().example()
sage: M
An example of a finite multiplicative monoid: the integers modulo 12
sage: X = M.nerve()
sage: list(M)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
sage: X.n_cells(0)
[1]
sage: X.n_cells(1)
[0, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9]

n_skeleton(n)
Return the 𝑛-skeleton of this simplicial set.

That is, the simplicial set generated by all nondegenerate simplices of dimension at most 𝑛.

INPUT:

• n – the dimension

EXAMPLES:

sage: K4 = groups.misc.MultiplicativeAbelian([2,2])
sage: BK4 = simplicial_sets.ClassifyingSpace(K4)
sage: BK4.n_skeleton(3)
Simplicial set with 40 non-degenerate simplices
sage: BK4.n_cells(1) == BK4.n_skeleton(3).n_cells(1)
True
sage: BK4.n_cells(3) == BK4.n_skeleton(1).n_cells(3)
False

sage.topology.simplicial_set_examples.Point()

Return a single point called “*” as a simplicial set.

This should return the same simplicial set each time it is called.

EXAMPLES:

sage: P = simplicial_sets.Point()
sage: P.is_pointed()

(continues on next page)

174 Chapter 9. Examples of simplicial sets.

../../../../../../html/en/reference/categories/sage/categories/finite_monoids.html#sage.categories.finite_monoids.FiniteMonoids.ParentMethods.nerve

Topology, Release 9.8

(continued from previous page)

True
sage: P.nondegenerate_simplices()
[*]

sage: Q = simplicial_sets.Point()
sage: P is Q
True
sage: P == Q
True

sage.topology.simplicial_set_examples.RealProjectiveSpace(n)
Return real 𝑛-dimensional projective space, as a simplicial set.

This is constructed as the𝑛-skeleton of the nerve of the group of order 2, and therefore has a single non-degenerate
simplex in each dimension up to 𝑛.

EXAMPLES:

sage: simplicial_sets.RealProjectiveSpace(7)
RP^7
sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP5.homology()
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: Z}
sage: RP5
RP^5
sage: latex(RP5)
RP^{5}

sage: BC2 = simplicial_sets.RealProjectiveSpace(Infinity)
sage: latex(BC2)
RP^{\infty}

sage.topology.simplicial_set_examples.Simplex(n)
Return the 𝑛-simplex as a simplicial set.

EXAMPLES:

sage: K = simplicial_sets.Simplex(2)
sage: K
2-simplex
sage: latex(K)
\Delta^{2}
sage: K.n_cells(0)
[(0,), (1,), (2,)]
sage: K.n_cells(1)
[(0, 1), (0, 2), (1, 2)]
sage: K.n_cells(2)
[(0, 1, 2)]

sage.topology.simplicial_set_examples.Sphere(n)
Return the 𝑛-sphere as a simplicial set.

It is constructed with two non-degenerate simplices: a vertex 𝑣0 (which is the base point) and an 𝑛-simplex 𝜎𝑛.

INPUT:

175

Topology, Release 9.8

• n – integer

EXAMPLES:

sage: S0 = simplicial_sets.Sphere(0)
sage: S0
S^0
sage: S0.nondegenerate_simplices()
[v_0, w_0]
sage: S0.is_pointed()
True
sage: simplicial_sets.Sphere(4)
S^4
sage: latex(simplicial_sets.Sphere(4))
S^{4}
sage: simplicial_sets.Sphere(4).nondegenerate_simplices()
[v_0, sigma_4]

sage.topology.simplicial_set_examples.Torus()

Return the torus as a simplicial set.

This computes the product of the circle with itself, where the circle is represented using a single 0-simplex and
a single 1-simplex. Thus it has one 0-simplex, three 1-simplices, and two 2-simplices.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: T.f_vector()
[1, 3, 2]
sage: T.homology(reduced=False)
{0: Z, 1: Z x Z, 2: Z}

sage.topology.simplicial_set_examples.simplicial_data_from_kenzo_output(filename)
Return data to construct a simplicial set, given Kenzo output.

INPUT:

• filename – name of file containing the output from Kenzo’s show-structure() function

OUTPUT: data to construct a simplicial set from the Kenzo output

Several files with Kenzo output are in the directory SAGE_EXTCODE/kenzo/.

EXAMPLES:

sage: from sage.topology.simplicial_set_examples import simplicial_data_from_kenzo_
→˓output
sage: from sage.topology.simplicial_set import SimplicialSet
sage: sphere = os.path.join(SAGE_ENV['SAGE_EXTCODE'], 'kenzo', 'S4.txt')
sage: S4 = SimplicialSet(simplicial_data_from_kenzo_output(sphere))
sage: S4.homology(reduced=False)
{0: Z, 1: 0, 2: 0, 3: 0, 4: Z}

176 Chapter 9. Examples of simplicial sets.

CHAPTER

TEN

CATALOG OF SIMPLICIAL SETS

This provides pre-built simplicial sets:

• the 𝑛-sphere and 𝑛-dimensional real projective space, both (in theory) for any positive integer 𝑛. In practice, as
𝑛 increases, it takes longer to construct these simplicial sets.

• the 𝑛-simplex and the horns obtained from it. As 𝑛 increases, it takes much longer to construct these simplicial
sets, because the number of nondegenerate simplices increases exponentially in 𝑛. For example, it is feasible
to do simplicial_sets.RealProjectiveSpace(100) since it only has 101 nondegenerate simplices, but
simplicial_sets.Simplex(20) is probably a bad idea.

• 𝑛-dimensional complex projective space for 𝑛 ≤ 4

• the classifying space of a finite multiplicative group or monoid

• the torus and the Klein bottle

• the point

• the Hopf map: this is a pre-built morphism, from which one can extract its domain, codomain, mapping cone,
etc.

All of these examples are accessible by typing simplicial_sets.NAME, where NAME is the name of the example.
Type simplicial_sets.[TAB] for a complete list.

EXAMPLES:

sage: RP10 = simplicial_sets.RealProjectiveSpace(8)
sage: RP10.homology()
{0: 0, 1: C2, 2: 0, 3: C2, 4: 0, 5: C2, 6: 0, 7: C2, 8: 0}

sage: eta = simplicial_sets.HopfMap()
sage: S3 = eta.domain()
sage: S2 = eta.codomain()
sage: S3.wedge(S2).homology()
{0: 0, 1: 0, 2: Z, 3: Z}

177

Topology, Release 9.8

178 Chapter 10. Catalog of simplicial sets

CHAPTER

ELEVEN

MORPHISMS AND HOMSETS FOR SIMPLICIAL SETS

Note: Morphisms with infinite domain are not implemented in general: only constant maps and identity maps are
currently implemented.

AUTHORS:

• John H. Palmieri (2016-07)

This module implements morphisms and homsets of simplicial sets.

class sage.topology.simplicial_set_morphism.SimplicialSetHomset(X, Y, category=None,
base=None, check=True)

Bases: Homset

A set of morphisms between simplicial sets.

Once a homset has been constructed in Sage, typically via Hom(X,Y) or X.Hom(Y), one can use it to construct
a morphism 𝑓 by specifying a dictionary, the keys of which are the nondegenerate simplices in the domain, and
the value corresponding to 𝜎 is the simplex 𝑓(𝜎) in the codomain.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, w), f: (w, v)})
sage: Y = SimplicialSet({e: (v, v)})

Define the homset:

sage: H = Hom(X, Y)

Now define a morphism by specifying a dictionary:

sage: H({v: v, w: v, e: e, f: e})
Simplicial set morphism:
From: Simplicial set with 4 non-degenerate simplices
To: Simplicial set with 2 non-degenerate simplices
Defn: [v, w, e, f] --> [v, v, e, e]

179

../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Homset

Topology, Release 9.8

an_element()

Return an element of this homset: a constant map.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S2 = simplicial_sets.Sphere(2)
sage: Hom(S2, S1).an_element()
Simplicial set morphism:
From: S^2
To: S^1
Defn: Constant map at v_0

sage: K = simplicial_sets.Simplex(3)
sage: L = simplicial_sets.Simplex(4)
sage: d = {K.n_cells(3)[0]: L.n_cells(0)[0].apply_degeneracies(2, 1, 0)}
sage: Hom(K,L)(d) == Hom(K,L).an_element()
True

constant_map(point=None)
Return the constant map in this homset.

INPUT:

• point – optional, default None. If specified, it must be a 0-simplex in the codomain, and it will be the
target of the constant map.

If point is specified, it is the target of the constant map. Otherwise, if the codomain is pointed, the target
is its base point. If the codomain is not pointed and point is not specified, raise an error.

EXAMPLES:

sage: S3 = simplicial_sets.Sphere(3)
sage: T = simplicial_sets.Torus()
sage: T.n_cells(0)[0].rename('w')
sage: Hom(S3,T).constant_map()
Simplicial set morphism:
From: S^3
To: Torus
Defn: Constant map at w

sage: S0 = simplicial_sets.Sphere(0)
sage: v, w = S0.n_cells(0)
sage: Hom(S3, S0).constant_map(v)
Simplicial set morphism:
From: S^3
To: S^0
Defn: Constant map at v_0

sage: Hom(S3, S0).constant_map(w)
Simplicial set morphism:
From: S^3
To: S^0
Defn: Constant map at w_0

This constant map is not pointed, since it doesn’t send the base point of 𝑆3 to the base point of 𝑆0:

180 Chapter 11. Morphisms and homsets for simplicial sets

Topology, Release 9.8

sage: Hom(S3, S0).constant_map(w).is_pointed()
False

diagonal_morphism()

Return the diagonal morphism in Hom(𝑆, 𝑆 × 𝑆).

EXAMPLES:

sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: Hom(RP2, RP2.product(RP2)).diagonal_morphism()
Simplicial set morphism:
From: RP^2
To: RP^2 x RP^2
Defn: [1, f, f * f] --> [(1, 1), (f, f), (f * f, f * f)]

identity()

Return the identity morphism in Hom(𝑆, 𝑆).

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: Hom(S1, S1).identity()
Simplicial set endomorphism of S^1
Defn: Identity map

sage: T = simplicial_sets.Torus()
sage: Hom(S1, T).identity()
Traceback (most recent call last):
...
TypeError: identity map is only defined for endomorphism sets

class sage.topology.simplicial_set_morphism.SimplicialSetMorphism(data=None, domain=None,
codomain=None,
constant=None,
identity=False, check=True)

Bases: Morphism

Return a morphism of simplicial sets.

INPUT:

• data – optional. Dictionary defining the map.

• domain – simplicial set

• codomain – simplicial set

• constant – optional: if not None, then this should be a vertex in the codomain, in which case return the
constant map with this vertex as the target.

• identity – optional: if True, return the identity morphism.

• check – optional, default True. If True, check that this is actually a morphism: it commutes with the face
maps.

So to define a map, you must specify domain and codomain. If the map is constant, specify the target (a vertex
in the codomain) as constant. If the map is the identity map, specify identity=True. Otherwise, pass a
dictionary, data. The keys of the dictionary are the nondegenerate simplices of the domain, the corresponding
values are simplices in the codomain.

181

../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Topology, Release 9.8

In fact, the keys in data do not need to include all of the nondegenerate simplices, only those which are not faces
of other nondegenerate simplices: if 𝜎 is a face of 𝜏 , then the image of 𝜎 need not be specified.

EXAMPLES:

sage: from sage.topology.simplicial_set_morphism import SimplicialSetMorphism
sage: K = simplicial_sets.Simplex(1)
sage: S1 = simplicial_sets.Sphere(1)
sage: v0 = K.n_cells(0)[0]
sage: v1 = K.n_cells(0)[1]
sage: e01 = K.n_cells(1)[0]
sage: w = S1.n_cells(0)[0]
sage: sigma = S1.n_cells(1)[0]

sage: f = {v0: w, v1: w, e01: sigma}
sage: SimplicialSetMorphism(f, K, S1)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: [(0,), (1,), (0, 1)] --> [v_0, v_0, sigma_1]

The same map can be defined as follows:

sage: H = Hom(K, S1)
sage: H(f)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: [(0,), (1,), (0, 1)] --> [v_0, v_0, sigma_1]

Also, this map can be defined by specifying where the 1-simplex goes; the vertices then go where they have to,
to satisfy the condition 𝑑𝑖 ∘ 𝑓 = 𝑓 ∘ 𝑑𝑖:

sage: H = Hom(K, S1)
sage: H({e01: sigma})
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: [(0,), (1,), (0, 1)] --> [v_0, v_0, sigma_1]

A constant map:

sage: g = {e01: w.apply_degeneracies(0)}
sage: SimplicialSetMorphism(g, K, S1)
Simplicial set morphism:
From: 1-simplex
To: S^1
Defn: Constant map at v_0

The same constant map:

sage: SimplicialSetMorphism(domain=K, codomain=S1, constant=w)
Simplicial set morphism:
From: 1-simplex

(continues on next page)

182 Chapter 11. Morphisms and homsets for simplicial sets

Topology, Release 9.8

(continued from previous page)

To: S^1
Defn: Constant map at v_0

An identity map:

sage: SimplicialSetMorphism(domain=K, codomain=K, identity=True)
Simplicial set endomorphism of 1-simplex
Defn: Identity map

Defining a map by specifying it on only some of the simplices in the domain:

sage: S5 = simplicial_sets.Sphere(5)
sage: s = S5.n_cells(5)[0]
sage: one = S5.Hom(S5)({s: s})
sage: one
Simplicial set endomorphism of S^5
Defn: Identity map

associated_chain_complex_morphism(base_ring=Integer Ring, augmented=False, cochain=False)
Return the associated chain complex morphism of self.

INPUT:

• base_ring – default ZZ

• augmented – boolean, default False. If True, return the augmented complex.

• cochain – boolean, default False. If True, return the cochain complex.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: v0 = S1.n_cells(0)[0]
sage: e = S1.n_cells(1)[0]
sage: f = {v0: v0, e: v0.apply_degeneracies(0)} # constant map
sage: g = Hom(S1, S1)(f)
sage: g.associated_chain_complex_morphism().to_matrix()
[1|0]
[-+-]
[0|0]

coequalizer(other)
Return the coequalizer of this map with other.

INPUT:

• other – a morphism with the same domain and codomain as this map

If the two maps are 𝑓, 𝑔 : 𝑋 → 𝑌 , then the coequalizer 𝑃 is constructed as the pushout

X v Y --> Y
| |
V V
Y ----> P

where the upper left corner is the coproduct of 𝑋 and 𝑌 (the wedge if they are pointed, the disjoint union
otherwise), and the two maps 𝑋 ⨿ 𝑌 → 𝑌 are 𝑓 ⨿ 1 and 𝑔 ⨿ 1.

183

Topology, Release 9.8

EXAMPLES:

sage: L = simplicial_sets.Simplex(2)
sage: pt = L.n_cells(0)[0]
sage: e = L.n_cells(1)[0]
sage: K = L.subsimplicial_set([e])
sage: f = K.inclusion_map()
sage: v,w = K.n_cells(0)
sage: g = Hom(K,L)({v:pt, w:pt, e:pt.apply_degeneracies(0)})
sage: P = f.coequalizer(g)
sage: P
Pushout of maps:
Simplicial set morphism:
From: Disjoint union: (Simplicial set with 3 non-degenerate simplices u 2-

→˓simplex)
To: 2-simplex
Defn: ...

Simplicial set morphism:
From: Disjoint union: (Simplicial set with 3 non-degenerate simplices u 2-

→˓simplex)
To: 2-simplex
Defn: ...

coproduct(*others)
Return the coproduct of this map with others.

• others – morphisms of simplicial sets.

If the relevant maps are 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖, this returns the natural map ⨿𝑋𝑖 → ⨿𝑌𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: f = Hom(S1,S1).identity()
sage: f.coproduct(f).is_bijective()
True
sage: g = S1.constant_map(S1)
sage: g.coproduct(g).is_bijective()
False

equalizer(other)
Return the equalizer of this map with other.

INPUT:

• other – a morphism with the same domain and codomain as this map

If the two maps are 𝑓, 𝑔 : 𝑋 → 𝑌 , then the equalizer 𝑃 is constructed as the pullback

P ----> X
| |
V V
X --> X x Y

where the two maps 𝑋 → 𝑋 × 𝑌 are (1, 𝑓) and (1, 𝑔).

EXAMPLES:

184 Chapter 11. Morphisms and homsets for simplicial sets

Topology, Release 9.8

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: x = AbstractSimplex(0, name='x')
sage: evw = AbstractSimplex(1, name='vw')
sage: evx = AbstractSimplex(1, name='vx')
sage: ewx = AbstractSimplex(1, name='wx')
sage: X = SimplicialSet({evw: (w, v), evx: (x, v)})
sage: Y = SimplicialSet({evw: (w, v), evx: (x, v), ewx: (x, w)})

Here 𝑋 is a wedge of two 1-simplices (a horn, that is), and 𝑌 is the boundary of a 2-simplex. The map 𝑓
includes the two 1-simplices into 𝑌 , while the map 𝑔 maps both 1-simplices to the same edge in 𝑌 .

sage: f = Hom(X, Y)({v:v, w:w, x:x, evw:evw, evx:evx})
sage: g = Hom(X, Y)({v:v, w:x, x:x, evw:evx, evx:evx})
sage: P = f.equalizer(g)
sage: P
Pullback of maps:
Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 5 non-degenerate simplices x Simplicial set with␣

→˓6 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [(v, v), (w, w), (x, x), (vw, vw), (vx, vx)]

Simplicial set morphism:
From: Simplicial set with 5 non-degenerate simplices
To: Simplicial set with 5 non-degenerate simplices x Simplicial set with␣

→˓6 non-degenerate simplices
Defn: [v, w, x, vw, vx] --> [(v, v), (w, x), (x, x), (vw, vx), (vx, vx)]

image()

Return the image of this morphism as a subsimplicial set of the codomain.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: T = S1.product(S1)
sage: K = T.factor(0, as_subset=True)
sage: f = S1.Hom(T)({S1.n_cells(0)[0]:K.n_cells(0)[0], S1.n_cells(1)[0]:K.n_
→˓cells(1)[0]})
sage: f
Simplicial set morphism:
From: S^1
To: S^1 x S^1
Defn: [v_0, sigma_1] --> [(v_0, v_0), (sigma_1, s_0 v_0)]

sage: f.image()
Simplicial set with 2 non-degenerate simplices
sage: f.image().homology()
{0: 0, 1: Z}

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: B.constant_map().image()
Point

(continues on next page)

185

Topology, Release 9.8

(continued from previous page)

sage: Hom(B,B).identity().image() == B
True

induced_homology_morphism(base_ring=None, cohomology=False)
Return the map in (co)homology induced by this map

INPUT:

• base_ring – must be a field (optional, default QQ)

• cohomology – boolean (optional, default False). If True, the map induced in cohomology rather
than homology.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: w = AbstractSimplex(0, name='w')
sage: e = AbstractSimplex(1, name='e')
sage: f = AbstractSimplex(1, name='f')
sage: X = SimplicialSet({e: (v, w), f: (w, v)})
sage: Y = SimplicialSet({e: (v, v)})
sage: H = Hom(X, Y)
sage: f = H({v: v, w: v, e: e, f: e})
sage: g = f.induced_homology_morphism()
sage: g.to_matrix()
[1|0]
[-+-]
[0|2]
sage: g3 = f.induced_homology_morphism(base_ring=GF(3), cohomology=True)
sage: g3.to_matrix()
[1|0]
[-+-]
[0|2]

is_bijective()

Return True if this map is bijective.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP2.inclusion_map().is_bijective()
False

sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.quotient_map().is_bijective()
False

sage: K = RP5_2.pullback(RP5_2.quotient_map(), RP5_2.base_point_map())
sage: f = K.universal_property(RP2.inclusion_map(), RP2.constant_map())
sage: f.is_bijective()
True

186 Chapter 11. Morphisms and homsets for simplicial sets

Topology, Release 9.8

is_constant()

Return True if this morphism is a constant map.

EXAMPLES:

sage: K = simplicial_sets.KleinBottle()
sage: S4 = simplicial_sets.Sphere(4)
sage: c = Hom(K, S4).constant_map()
sage: c.is_constant()
True
sage: X = S4.n_skeleton(3) # a point
sage: X.inclusion_map().is_constant()
True
sage: eta = simplicial_sets.HopfMap()
sage: eta.is_constant()
False

is_identity()

Return True if this morphism is an identity map.

EXAMPLES:

sage: K = simplicial_sets.Simplex(1)
sage: v0 = K.n_cells(0)[0]
sage: v1 = K.n_cells(0)[1]
sage: e01 = K.n_cells(1)[0]
sage: L = simplicial_sets.Simplex(2).n_skeleton(1)
sage: w0 = L.n_cells(0)[0]
sage: w1 = L.n_cells(0)[1]
sage: w2 = L.n_cells(0)[2]
sage: f01 = L.n_cells(1)[0]
sage: f02 = L.n_cells(1)[1]
sage: f12 = L.n_cells(1)[2]

sage: d = {v0:w0, v1:w1, e01:f01}
sage: f = K.Hom(L)(d)
sage: f.is_identity()
False
sage: d = {w0:v0, w1:v1, w2:v1, f01:e01, f02:e01, f12: v1.apply_degeneracies(0,
→˓)}
sage: g = L.Hom(K)(d)
sage: (g*f).is_identity()
True
sage: (f*g).is_identity()
False
sage: (f*g).induced_homology_morphism().to_matrix(1)
[0]

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP5.n_skeleton(2).inclusion_map().is_identity()
False
sage: RP5.n_skeleton(5).inclusion_map().is_identity()
True

(continues on next page)

187

Topology, Release 9.8

(continued from previous page)

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: Hom(B,B).identity().is_identity()
True
sage: Hom(B,B).constant_map().is_identity()
False

is_injective()

Return True if this map is injective.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP2.inclusion_map().is_injective()
True

sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.quotient_map().is_injective()
False

sage: K = RP5_2.pullback(RP5_2.quotient_map(), RP5_2.base_point_map())
sage: f = K.universal_property(RP2.inclusion_map(), RP2.constant_map())
sage: f.is_injective()
True

is_pointed()

Return True if this is a pointed map.

That is, return True if the domain and codomain are pointed and this morphism preserves the base point.

EXAMPLES:

sage: S0 = simplicial_sets.Sphere(0)
sage: f = Hom(S0,S0).identity()
sage: f.is_pointed()
True
sage: v = S0.n_cells(0)[0]
sage: w = S0.n_cells(0)[1]
sage: g = Hom(S0,S0)({v:v, w:v})
sage: g.is_pointed()
True
sage: t = Hom(S0,S0)({v:w, w:v})
sage: t.is_pointed()
False

is_surjective()

Return True if this map is surjective.

EXAMPLES:

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: RP2 = RP5.n_skeleton(2)
sage: RP2.inclusion_map().is_surjective()

(continues on next page)

188 Chapter 11. Morphisms and homsets for simplicial sets

Topology, Release 9.8

(continued from previous page)

False

sage: RP5_2 = RP5.quotient(RP2)
sage: RP5_2.quotient_map().is_surjective()
True

sage: K = RP5_2.pullback(RP5_2.quotient_map(), RP5_2.base_point_map())
sage: f = K.universal_property(RP2.inclusion_map(), RP2.constant_map())
sage: f.is_surjective()
True

mapping_cone()

Return the mapping cone defined by this map.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: v_0, sigma_1 = S1.nondegenerate_simplices()
sage: K = simplicial_sets.Simplex(2).n_skeleton(1)

The mapping cone will be a little smaller if we use only pointed simplicial sets. 𝑆1 is already pointed, but
not 𝐾.

sage: L = K.set_base_point(K.n_cells(0)[0])
sage: u,v,w = L.n_cells(0)
sage: e,f,g = L.n_cells(1)
sage: h = L.Hom(S1)({u:v_0, v:v_0, w:v_0, e:sigma_1, f:v_0.apply_
→˓degeneracies(0), g:sigma_1})
sage: h
Simplicial set morphism:
From: Simplicial set with 6 non-degenerate simplices
To: S^1
Defn: [(0,), (1,), (2,), (0, 1), (0, 2), (1, 2)] --> [v_0, v_0, v_0, sigma_1,␣

→˓s_0 v_0, sigma_1]
sage: h.induced_homology_morphism().to_matrix()
[1|0]
[-+-]
[0|2]
sage: X = h.mapping_cone()
sage: X.homology() == simplicial_sets.RealProjectiveSpace(2).homology()
True

n_skeleton(n, domain=None, codomain=None)
Return the restriction of this morphism to the n-skeleta of the domain and codomain

INPUT:

• n – the dimension

• domain – optional, the domain. Specify this to explicitly specify the domain; otherwise, Sage will
attempt to compute it. Specifying this can be useful if the domain is built as a pushout or pullback,
so trying to compute it may lead to computing the 𝑛-skeleton of a map, causing an infinite recursion.
(Users should not have to specify this, but it may be useful for developers.)

• codomain – optional, the codomain.

189

Topology, Release 9.8

EXAMPLES:

sage: B = simplicial_sets.ClassifyingSpace(groups.misc.
→˓MultiplicativeAbelian([2]))
sage: one = Hom(B,B).identity()
sage: one.n_skeleton(3)
Simplicial set endomorphism of Simplicial set with 4 non-degenerate simplices
Defn: Identity map

sage: c = Hom(B,B).constant_map()
sage: c.n_skeleton(3)
Simplicial set endomorphism of Simplicial set with 4 non-degenerate simplices
Defn: Constant map at 1

sage: K = simplicial_sets.Simplex(2)
sage: L = K.subsimplicial_set(K.n_cells(0)[:2])
sage: L.nondegenerate_simplices()
[(0,), (1,)]
sage: L.inclusion_map()
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices
To: 2-simplex
Defn: [(0,), (1,)] --> [(0,), (1,)]

sage: L.inclusion_map().n_skeleton(1)
Simplicial set morphism:
From: Simplicial set with 2 non-degenerate simplices
To: Simplicial set with 6 non-degenerate simplices
Defn: [(0,), (1,)] --> [(0,), (1,)]

product(*others)
Return the product of this map with others.

• others – morphisms of simplicial sets.

If the relevant maps are 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖, this returns the natural map
∏︀

𝑋𝑖 →
∏︀

𝑌𝑖.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: f = Hom(S1,S1).identity()
sage: f.product(f).is_bijective()
True
sage: g = S1.constant_map(S1)
sage: g.product(g).is_bijective()
False

pullback(*others)
Return the pullback of this morphism along with others.

INPUT:

• others – morphisms of simplicial sets, the codomains of which must all equal that of self.

This returns the pullback as a simplicial set. See sage.topology.simplicial_set_constructions.
PullbackOfSimplicialSets for more documentation and examples.

EXAMPLES:

190 Chapter 11. Morphisms and homsets for simplicial sets

Topology, Release 9.8

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: term_T = T.constant_map()
sage: term_K = K.constant_map()
sage: P = term_T.pullback(term_K) # the product as a pullback
sage: P
Pullback of maps:
Simplicial set morphism:
From: Torus
To: Point
Defn: Constant map at *

Simplicial set morphism:
From: Klein bottle
To: Point
Defn: Constant map at *

pushout(*others)
Return the pushout of this morphism along with others.

INPUT:

• others – morphisms of simplicial sets, the domains of which must all equal that of self.

This returns the pushout as a simplicial set. See sage.topology.simplicial_set_constructions.
PushoutOfSimplicialSets for more documentation and examples.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: init_T = T._map_from_empty_set()
sage: init_K = K._map_from_empty_set()
sage: D = init_T.pushout(init_K) # the disjoint union as a pushout
sage: D
Pushout of maps:
Simplicial set morphism:
From: Empty simplicial set
To: Torus
Defn: [] --> []

Simplicial set morphism:
From: Empty simplicial set
To: Klein bottle
Defn: [] --> []

suspension(n=1)
Return the 𝑛-th suspension of this morphism of simplicial sets.

INPUT:

• n (optional) – non-negative integer, default 1

EXAMPLES:

sage: eta = simplicial_sets.HopfMap()
sage: susp_eta = eta.suspension()
sage: susp_eta.mapping_cone().homology() == eta.mapping_cone().suspension().

(continues on next page)

191

Topology, Release 9.8

(continued from previous page)

→˓homology()
True

This uses reduced suspensions if the original morphism is pointed, unreduced otherwise. So for example,
if a constant map is not pointed, its suspension is not a constant map:

sage: L = simplicial_sets.Simplex(1)
sage: L.constant_map().is_pointed()
False
sage: f = L.constant_map().suspension()
sage: f.is_constant()
False

sage: K = simplicial_sets.Sphere(3)
sage: K.constant_map().is_pointed()
True
sage: g = K.constant_map().suspension()
sage: g.is_constant()
True

sage: h = K.identity().suspension()
sage: h.is_identity()
True

192 Chapter 11. Morphisms and homsets for simplicial sets

CHAPTER

TWELVE

GENERIC CELL COMPLEXES

AUTHORS:

• John H. Palmieri (2009-08)

This module defines a class of abstract finite cell complexes. This is meant as a base class from which other classes
(like SimplicialComplex, CubicalComplex, and DeltaComplex) should derive. As such, most of its properties
are not implemented. It is meant for use by developers producing new classes, not casual users.

Note: Keywords for chain_complex(), homology(), etc.: any keywords given to the homology() method get
passed on to the chain_complex() method and also to the constructor for chain complexes in sage.homology.
chain_complex.ChainComplex_class, as well as its associated homology() method. This means that those key-
words should have consistent meaning in all of those situations. It also means that it is easy to implement new keywords:
for example, if you implement a new keyword for the sage.homology.chain_complex.ChainComplex_class.
homology() method, then it will be automatically accessible through the homology() method for cell complexes –
just make sure it gets documented.

class sage.topology.cell_complex.GenericCellComplex

Bases: SageObject

Class of abstract cell complexes.

This is meant to be used by developers to produce new classes, not by casual users. Classes which derive from
this are SimplicialComplex, DeltaComplex, and CubicalComplex.

Most of the methods here are not implemented, but probably should be implemented in a derived class. Most
of the other methods call a non-implemented one; their docstrings contain examples from derived classes in
which the various methods have been defined. For example, homology() calls chain_complex(); the class
DeltaComplex implements chain_complex(), and so the homology() method here is illustrated with exam-
ples involving ∆-complexes.

EXAMPLES:

It’s hard to give informative examples of the base class, since essentially nothing is implemented.

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()

alexander_whitney(cell, dim_left)
The decomposition of cell in this complex into left and right factors, suitable for computing cup products.
This should provide a cellular approximation for the diagonal map 𝐾 → 𝐾 ×𝐾.

This method is not implemented for generic cell complexes, but must be implemented for any derived class
to make cup products work in self.cohomology_ring().

193

../../../../../../html/en/reference/homology/sage/homology/chain_complex.html#sage.homology.chain_complex.ChainComplex_class.homology
../../../../../../html/en/reference/homology/sage/homology/chain_complex.html#sage.homology.chain_complex.ChainComplex_class.homology
../../../../../../html/en/reference/homology/sage/homology/chain_complex.html#sage.homology.chain_complex.ChainComplex_class.homology
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Topology, Release 9.8

INPUT:

• cell – a cell in this complex

• dim_left – the dimension of the left-hand factors in the decomposition

OUTPUT: a list containing triples (c, left, right). left and right should be cells in this complex,
and c an integer. In the cellular approximation of the diagonal map, the chain represented by cell should
get sent to the sum of terms 𝑐(𝑙𝑒𝑓𝑡⊗ 𝑟𝑖𝑔ℎ𝑡) in the tensor product 𝐶(𝐾)⊗𝐶(𝐾) of the chain complex for
this complex with itself.

This gets used in the method product_on_basis() for the class of cohomology rings.

For simplicial and cubical complexes, the decomposition can be done at the level of individual cells: see
alexander_whitney() and alexander_whitney(). Then the method for simplicial complexes just
calls the method for individual simplices, and similarly for cubical complexes. For ∆-complexes and sim-
plicial sets, the method is instead defined at the level of the cell complex.

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.alexander_whitney(None, 2)
Traceback (most recent call last):
...
NotImplementedError: <abstract method alexander_whitney at ...>

algebraic_topological_model(base_ring=Rational Field)
Algebraic topological model for this cell complex with coefficients in base_ring.

The term “algebraic topological model” is defined by Pilarczyk and Réal [PR2015].

This is not implemented for generic cell complexes. For any classes deriving from this one, when this
method is implemented, it should essentially just call either algebraic_topological_model() or
algebraic_topological_model_delta_complex().

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.algebraic_topological_model(QQ)
Traceback (most recent call last):
...
NotImplementedError

betti(dim=None, subcomplex=None)
The Betti numbers of this simplicial complex as a dictionary (or a single Betti number, if only one dimension
is given): the ith Betti number is the rank of the ith homology group.

Parameters

• dim (integer or list of integers or None; optional, default None) – If None, then return every
Betti number, as a dictionary with keys the non-negative integers. If dim is an integer or
list, return the Betti number for each given dimension. (Actually, if dim is a list, return
the Betti numbers, as a dictionary, in the range from min(dim) to max(dim). If dim is a
number, return the Betti number in that dimension.)

• subcomplex (optional, default None) – a subcomplex of this cell complex. Compute the
Betti numbers of the homology relative to this subcomplex.

194 Chapter 12. Generic cell complexes

../../../../../../html/en/reference/homology/sage/homology/homology_vector_space_with_basis.html#sage.homology.homology_vector_space_with_basis.CohomologyRing.product_on_basis
../../../../../../html/en/reference/homology/sage/homology/algebraic_topological_model.html#sage.homology.algebraic_topological_model.algebraic_topological_model
../../../../../../html/en/reference/homology/sage/homology/algebraic_topological_model.html#sage.homology.algebraic_topological_model.algebraic_topological_model_delta_complex

Topology, Release 9.8

EXAMPLES:

Build the two-sphere as a three-fold join of a two-point space with itself:

sage: S = SimplicialComplex([[0], [1]])
sage: (S*S*S).betti()
{0: 1, 1: 0, 2: 1}
sage: (S*S*S).betti([1,2])
{1: 0, 2: 1}
sage: (S*S*S).betti(2)
1

Or build the two-sphere as a ∆-complex:

sage: S2 = delta_complexes.Sphere(2)
sage: S2.betti([1,2])
{1: 0, 2: 1}

Or as a cubical complex:

sage: S2c = cubical_complexes.Sphere(2)
sage: S2c.betti(2)
1

cells(subcomplex=None)
The cells of this cell complex, in the form of a dictionary: the keys are integers, representing dimension, and
the value associated to an integer 𝑑 is the set of 𝑑-cells. If the optional argument subcomplex is present,
then return only the cells which are not in the subcomplex.

Parameters
subcomplex (optional, default None) – a subcomplex of this cell complex. Return the
cells which are not in this subcomplex.

This is not implemented in general; it should be implemented in any derived class. When implementing,
see the warning in the dimension() method.

This method is used by various other methods, such as n_cells() and f_vector().

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.cells()
Traceback (most recent call last):
...
NotImplementedError: <abstract method cells at ...>

chain_complex(subcomplex=None, augmented=False, verbose=False, check=True, dimensions=None,
base_ring='ZZ', cochain=False)

This is not implemented for general cell complexes.

Some keywords to possibly implement in a derived class:

• subcomplex – a subcomplex: compute the relative chain complex

• augmented – a bool: whether to return the augmented complex

• verbose – a bool: whether to print informational messages as the chain complex is being computed

195

Topology, Release 9.8

• check – a bool: whether to check that the each composite of two consecutive differentials is zero

• dimensions – if None, compute the chain complex in all
dimensions. If a list or tuple of integers, compute the chain complex in those dimensions, setting
the chain groups in all other dimensions to zero.

Definitely implement the following:

• base_ring – commutative ring (optional, default ZZ)

• cochain – a bool: whether to return the cochain complex

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.chain_complex()
Traceback (most recent call last):
...
NotImplementedError: <abstract method chain_complex at ...>

cohomology(dim=None, base_ring=Integer Ring, subcomplex=None, generators=False, algorithm='pari',
verbose=False, reduced=True)

The reduced cohomology of this cell complex.

The arguments are the same as for the homology() method, except that homology() accepts a
cohomology key word, while this function does not: cohomology is automatically true here. Indeed,
this function just calls homology() with cohomology set to True.

Parameters

• dim –

• base_ring –

• subcomplex –

• algorithm –

• verbose –

• reduced –

EXAMPLES:

sage: circle = SimplicialComplex([[0,1], [1,2], [0, 2]])
sage: circle.cohomology(0)
0
sage: circle.cohomology(1)
Z
sage: P2 = SimplicialComplex([[0,1,2], [0,2,3], [0,1,5], [0,4,5], [0,3,4], [1,2,
→˓4], [1,3,4], [1,3,5], [2,3,5], [2,4,5]]) # projective plane
sage: P2.cohomology(2)
C2
sage: P2.cohomology(2, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
sage: P2.cohomology(2, base_ring=GF(3))
Vector space of dimension 0 over Finite Field of size 3

sage: cubical_complexes.KleinBottle().cohomology(2)
C2

196 Chapter 12. Generic cell complexes

Topology, Release 9.8

Relative cohomology:

sage: T = SimplicialComplex([[0,1]])
sage: U = SimplicialComplex([[0], [1]])
sage: T.cohomology(1, subcomplex=U)
Z

A ∆-complex example:

sage: s5 = delta_complexes.Sphere(5)
sage: s5.cohomology(base_ring=GF(7))[5]
Vector space of dimension 1 over Finite Field of size 7

cohomology_ring(base_ring=Rational Field)
Return the unreduced cohomology with coefficients in base_ring with a chosen basis.

This is implemented for simplicial, cubical, and ∆-complexes, not for arbitrary generic cell complexes.
The resulting elements are suitable for computing cup products. For simplicial complexes, they should
be suitable for computing cohomology operations; so far, only mod 2 cohomology operations have been
implemented.

INPUT:

• base_ring – coefficient ring (optional, default QQ); must be a field

The basis elements in dimension dim are named ‘h^{dim,i}’ where 𝑖 ranges between 0 and 𝑟 − 1, if 𝑟 is
the rank of the cohomology group.

Note: For all but the smallest complexes, this is likely to be slower than cohomology() (with field
coefficients), possibly by several orders of magnitude. This and its companion homology_with_basis()
carry extra information which allows computation of cup products, for example, but because of speed issues,
you may only wish to use these if you need that extra information.

EXAMPLES:

sage: K = simplicial_complexes.KleinBottle()
sage: H = K.cohomology_ring(QQ); H
Cohomology ring of Minimal triangulation of the Klein bottle
over Rational Field
sage: sorted(H.basis(), key=str)
[h^{0,0}, h^{1,0}]
sage: H = K.cohomology_ring(GF(2)); H
Cohomology ring of Minimal triangulation of the Klein bottle
over Finite Field of size 2
sage: sorted(H.basis(), key=str)
[h^{0,0}, h^{1,0}, h^{1,1}, h^{2,0}]

sage: X = delta_complexes.SurfaceOfGenus(2)
sage: H = X.cohomology_ring(QQ); H
Cohomology ring of Delta complex with 3 vertices and 29 simplices
over Rational Field
sage: sorted(H.basis(1), key=str)
[h^{1,0}, h^{1,1}, h^{1,2}, h^{1,3}]

sage: H = simplicial_complexes.Torus().cohomology_ring(QQ); H
(continues on next page)

197

Topology, Release 9.8

(continued from previous page)

Cohomology ring of Minimal triangulation of the torus
over Rational Field
sage: x = H.basis()[1,0]; x
h^{1,0}
sage: y = H.basis()[1,1]; y
h^{1,1}

You can compute cup products of cohomology classes:

sage: x.cup_product(y)
-h^{2,0}
sage: x * y # alternate notation
-h^{2,0}
sage: y.cup_product(x)
h^{2,0}
sage: x.cup_product(x)
0

Cohomology operations:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: K = RP2.suspension()
sage: K.set_immutable()
sage: y = K.cohomology_ring(GF(2)).basis()[2,0]; y
h^{2,0}
sage: y.Sq(1)
h^{3,0}

To compute the cohomology ring, the complex must be “immutable”. This is only relevant for simplicial
complexes, and most simplicial complexes are immutable, but certain constructions make them mutable.
The suspension is one example, and this is the reason for calling K.set_immutable() above. Another
example:

sage: S1 = simplicial_complexes.Sphere(1)
sage: T = S1.product(S1)
sage: T.is_immutable()
False
sage: T.cohomology_ring()
Traceback (most recent call last):
...
ValueError: this simplicial complex must be immutable; call set_immutable()
sage: T.set_immutable()
sage: T.cohomology_ring()
Cohomology ring of Simplicial complex with 9 vertices and
18 facets over Rational Field

dimension()

The dimension of this cell complex: the maximum dimension of its cells.

Warning: If the cells()method calls dimension(), then you’ll get an infinite loop. So either don’t
use dimension() or override dimension().

198 Chapter 12. Generic cell complexes

Topology, Release 9.8

EXAMPLES:

sage: simplicial_complexes.RandomComplex(d=5, n=8).dimension()
5
sage: delta_complexes.Sphere(3).dimension()
3
sage: T = cubical_complexes.Torus()
sage: T.product(T).dimension()
4

disjoint_union(right)
The disjoint union of this cell complex with another one.

Parameters
right – the other cell complex (the right-hand factor)

Disjoint unions are not implemented for general cell complexes.

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.disjoint_union(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method disjoint_union at ...>

euler_characteristic()

The Euler characteristic of this cell complex: the alternating sum over 𝑛 ≥ 0 of the number of 𝑛-cells.

EXAMPLES:

sage: simplicial_complexes.Simplex(5).euler_characteristic()
1
sage: delta_complexes.Sphere(6).euler_characteristic()
2
sage: cubical_complexes.KleinBottle().euler_characteristic()
0

f_vector()

The 𝑓 -vector of this cell complex: a list whose 𝑛𝑡ℎ item is the number of (𝑛− 1)-cells. Note that, like all
lists in Sage, this is indexed starting at 0: the 0th element in this list is the number of (−1)-cells (which is
1: the empty cell is the only (−1)-cell).

EXAMPLES:

sage: simplicial_complexes.KleinBottle().f_vector()
[1, 8, 24, 16]
sage: delta_complexes.KleinBottle().f_vector()
[1, 1, 3, 2]
sage: cubical_complexes.KleinBottle().f_vector()
[1, 42, 84, 42]

face_poset()

The face poset of this cell complex, the poset of nonempty cells, ordered by inclusion.

199

Topology, Release 9.8

This uses the cells() method, and also assumes that for each cell f, all of f.faces(), tuple(f), and
f.dimension() make sense. (If this is not the case in some derived class, as happens with ∆-complexes,
then override this method.)

EXAMPLES:

sage: P = SimplicialComplex([[0, 1], [1,2], [2,3]]).face_poset(); P
Finite poset containing 7 elements
sage: sorted(P.list())
[(0,), (0, 1), (1,), (1, 2), (2,), (2, 3), (3,)]

sage: S2 = cubical_complexes.Sphere(2)
sage: S2.face_poset()
Finite poset containing 26 elements

graph()

The 1-skeleton of this cell complex, as a graph.

This is not implemented for general cell complexes.

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.graph()
Traceback (most recent call last):
...
NotImplementedError

homology(dim=None, base_ring=Integer Ring, subcomplex=None, generators=False, cohomology=False,
algorithm='pari', verbose=False, reduced=True, **kwds)

The (reduced) homology of this cell complex.

Parameters

• dim (integer or list of integers or None; optional, default None) – If
None, then return the homology in every dimension. If dim is an integer or list, return the
homology in the given dimensions. (Actually, if dim is a list, return the homology in the
range from min(dim) to max(dim).)

• base_ring (optional, default ZZ) – commutative ring, must be ZZ or a field.

• subcomplex (optional, default empty) – a subcomplex of this simplicial complex.
Compute homology relative to this subcomplex.

• generators (boolean; optional, default False) – If True, return generators for
the homology groups along with the groups.

• cohomology (boolean; optional, default False) – If True, compute cohomology
rather than homology.

• algorithm (string; optional, default 'pari') – The options are ‘auto’, ‘dhsw’, or
‘pari’. See below for a description of what they mean.

• verbose (boolean; optional, default False) – If True, print some messages as
the homology is computed.

• reduced (boolean; optional, default True) – If True, return the reduced homology.

200 Chapter 12. Generic cell complexes

Topology, Release 9.8

ALGORITHM:

Compute the chain complex of self and compute its homology groups. To do this: over a field, just
compute ranks and nullities, thus obtaining dimensions of the homology groups as vector spaces. Over the
integers, compute Smith normal form of the boundary matrices defining the chain complex according to
the value of algorithm. If algorithm is 'auto', then for each relatively small matrix, use the standard
Sage method, which calls the Pari package. For any large matrix, reduce it using the Dumas, Heckenbach,
Saunders, and Welker elimination algorithm [DHSW2003]: see dhsw_snf() for details.

'no_chomp' is a synonym for 'auto', maintained for backward-compatibility.

algorithm may also be 'pari' or 'dhsw', which forces the named algorithm to be used regardless of
the size of the matrices.

As of this writing, 'pari' is the fastest standard option.

EXAMPLES:

sage: P = delta_complexes.RealProjectivePlane()
sage: P.homology()
{0: 0, 1: C2, 2: 0}
sage: P.homology(reduced=False)
{0: Z, 1: C2, 2: 0}
sage: P.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 1 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2}
sage: S7 = delta_complexes.Sphere(7)
sage: S7.homology(7)
Z
sage: cubical_complexes.KleinBottle().homology(1, base_ring=GF(2))
Vector space of dimension 2 over Finite Field of size 2

Sage can compute generators of homology groups:

sage: S2 = simplicial_complexes.Sphere(2)
sage: S2.homology(dim=2, generators=True, base_ring=GF(2))
[(Vector space of dimension 1 over Finite Field of size 2, (0, 1, 2) + (0, 1,␣
→˓3) + (0, 2, 3) + (1, 2, 3))]

When generators are computed, Sage returns a pair for each dimension: the group and the list of generators.
For simplicial complexes, each generator is represented as a linear combination of simplices, as above, and
for cubical complexes, each generator is a linear combination of cubes:

sage: S2_cub = cubical_complexes.Sphere(2)
sage: S2_cub.homology(dim=2, generators=True)
[(Z,
[0,0] x [0,1] x [0,1] - [0,1] x [0,0] x [0,1] + [0,1] x [0,1] x [0,0] - [0,1]␣
→˓x [0,1] x [1,1] + [0,1] x [1,1] x [0,1] - [1,1] x [0,1] x [0,1])]

Similarly for simpicial sets:

sage: S = simplicial_sets.Sphere(2)
sage: S.homology(generators=True)
{0: [], 1: 0, 2: [(Z, sigma_2)]}

201

../../../../../../html/en/reference/homology/sage/homology/matrix_utils.html#sage.homology.matrix_utils.dhsw_snf

Topology, Release 9.8

homology_with_basis(base_ring=Rational Field, cohomology=False)
Return the unreduced homology of this complex with coefficients in base_ring with a chosen basis.

This is implemented for simplicial, cubical, and ∆-complexes, not for arbitrary generic cell complexes.

INPUT:

• base_ring – coefficient ring (optional, default QQ); must be a field

• cohomology – boolean (optional, default False); if True, return cohomology instead of homology

Homology basis elements are named ‘h_{dim,i}’ where i ranges between 0 and 𝑟 − 1, if 𝑟 is the rank of
the homology group. Cohomology basis elements are denoted ℎ𝑑𝑖𝑚,𝑖 instead.

See also:

If cohomology is True, this returns the cohomology as a graded module. For the ring structure, use
cohomology_ring().

EXAMPLES:

sage: K = simplicial_complexes.KleinBottle()
sage: H = K.homology_with_basis(QQ); H
Homology module of Minimal triangulation of the Klein bottle
over Rational Field
sage: sorted(H.basis(), key=str)
[h_{0,0}, h_{1,0}]
sage: H = K.homology_with_basis(GF(2)); H
Homology module of Minimal triangulation of the Klein bottle
over Finite Field of size 2
sage: sorted(H.basis(), key=str)
[h_{0,0}, h_{1,0}, h_{1,1}, h_{2,0}]

The homology is constructed as a graded object, so for example, you can ask for the basis in a single degree:

sage: H.basis(1)
Finite family {(1, 0): h_{1,0}, (1, 1): h_{1,1}}
sage: S3 = delta_complexes.Sphere(3)
sage: H = S3.homology_with_basis(QQ, cohomology=True)
sage: list(H.basis(3))
[h^{3,0}]

is_acyclic(base_ring=Integer Ring)
True if the reduced homology with coefficients in base_ring of this cell complex is zero.

INPUT:

• base_ring – optional, default ZZ. Compute homology with coefficients in this ring.

EXAMPLES:

sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: RP2.is_acyclic()
False
sage: RP2.is_acyclic(QQ)
True

This first computes the Euler characteristic: if it is not 1, the complex cannot be acyclic. So this should
return False reasonably quickly on complexes with Euler characteristic not equal to 1:

202 Chapter 12. Generic cell complexes

Topology, Release 9.8

sage: K = cubical_complexes.KleinBottle()
sage: C = cubical_complexes.Cube(2)
sage: P = K.product(C)
sage: P
Cubical complex with 168 vertices and 1512 cubes
sage: P.euler_characteristic()
0
sage: P.is_acyclic()
False

is_connected()

True if this cell complex is connected.

EXAMPLES:

sage: V = SimplicialComplex([[0,1,2],[3]])
sage: V
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(3,), (0, 1, 2)}
sage: V.is_connected()
False
sage: X = SimplicialComplex([[0,1,2]])
sage: X.is_connected()
True
sage: U = simplicial_complexes.ChessboardComplex(3,3)
sage: U.is_connected()
True
sage: W = simplicial_complexes.Sphere(3)
sage: W.is_connected()
True
sage: S = SimplicialComplex([[0,1],[2,3]])
sage: S.is_connected()
False

sage: cubical_complexes.Sphere(0).is_connected()
False
sage: cubical_complexes.Sphere(2).is_connected()
True

join(right)
The join of this cell complex with another one.

Parameters
right – the other cell complex (the right-hand factor)

Joins are not implemented for general cell complexes. They may be implemented in some derived classes
(like simplicial complexes).

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.join(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method join at ...>

203

Topology, Release 9.8

n_cells(n, subcomplex=None)
List of cells of dimension n of this cell complex. If the optional argument subcomplex is present, then
return the n-dimensional cells which are not in the subcomplex.

Parameters

• n (non-negative integer) – the dimension

• subcomplex (optional, default None) – a subcomplex of this cell complex. Return the cells
which are not in this subcomplex.

Note: The resulting list need not be sorted. If you want a sorted list of 𝑛-cells, use _n_cells_sorted().

EXAMPLES:

sage: delta_complexes.Torus().n_cells(1)
[(0, 0), (0, 0), (0, 0)]
sage: cubical_complexes.Cube(1).n_cells(0)
[[1,1], [0,0]]

n_chains(n, base_ring=Integer Ring, cochains=False)
Return the free module of chains in degree n over base_ring.

INPUT:

• n – integer

• base_ring – ring (optional, default Z)

• cochains – boolean (optional, default False); if True, return cochains instead

The only difference between chains and cochains is notation. In a simplicial complex, for example, a
simplex (0,1,2) is written as “(0,1,2)” in the group of chains but as “chi_(0,1,2)” in the group of cochains.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: S2.n_chains(1, QQ)
Free module generated by {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} over␣
→˓Rational Field
sage: list(simplicial_complexes.Sphere(2).n_chains(1, QQ, cochains=False).
→˓basis())
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: list(simplicial_complexes.Sphere(2).n_chains(1, QQ, cochains=True).
→˓basis())
[\chi_(0, 1), \chi_(0, 2), \chi_(0, 3), \chi_(1, 2), \chi_(1, 3), \chi_(2, 3)]

n_skeleton(n)
The 𝑛-skeleton of this cell complex: the cell complex obtained by discarding all of the simplices in dimen-
sions larger than 𝑛.

Parameters
n – non-negative integer

This is not implemented for general cell complexes.

EXAMPLES:

204 Chapter 12. Generic cell complexes

Topology, Release 9.8

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex()
sage: A.n_skeleton(3)
Traceback (most recent call last):
...
NotImplementedError: <abstract method n_skeleton at ...>

product(right, rename_vertices=True)
The (Cartesian) product of this cell complex with another one.

Products are not implemented for general cell complexes. They may be implemented in some derived
classes (like simplicial complexes).

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.product(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method product at ...>

wedge(right)
The wedge (one-point union) of this cell complex with another one.

Parameters
right – the other cell complex (the right-hand factor)

Wedges are not implemented for general cell complexes.

EXAMPLES:

sage: from sage.topology.cell_complex import GenericCellComplex
sage: A = GenericCellComplex(); B = GenericCellComplex()
sage: A.wedge(B)
Traceback (most recent call last):
...
NotImplementedError: <abstract method wedge at ...>

205

Topology, Release 9.8

206 Chapter 12. Generic cell complexes

CHAPTER

THIRTEEN

FINITE FILTERED COMPLEXES

AUTHORS:

• Guillaume Rousseau (2021-05)

This module implements the basic structures of finite filtered complexes. A filtered complex is a simplicial complex,
where each simplex is given a weight, or “filtration value”, such that the weight of a simplex is greater than the weight
of each of its faces.

The algorithm used in this module comes from [ZC2005].

EXAMPLES:

sage: FilteredSimplicialComplex([([0], 0), ([1], 0), ([0, 1], 1)])
Filtered complex on vertex set (0, 1) and with simplices ((0,) : 0), ((1,) : 0), ((0, 1)␣
→˓: 1)

Sage can compute persistent homology of simplicial complexes:

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 0), ([0, 1], 1)])
sage: X.persistence_intervals(0)
[(0, 1), (0, +Infinity)]

FilteredSimplicialComplex objects are mutable. Filtration values can be set with the filtration method as follows:

sage: X = FilteredSimplicialComplex() # returns an empty complex
sage: X.persistence_intervals(1)
[]
sage: X.filtration(Simplex([0, 2]), 0) # recursively adds faces
sage: X.filtration(Simplex([0, 1]), 0)
sage: X.filtration(Simplex([1, 2]), 0)
sage: X.filtration(Simplex([0, 1, 2]), 1) # closes the circle
sage: X.persistence_intervals(1)
[(0, 1)]

The filtration value of a simplex can be accessed as well with the filtration method, by not specifying a filtration
value in the arguments. If the simplex is not in the complex, this returns None:

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 0), ([0,1], 1)])
sage: X.filtration(Simplex([0]))
0
sage: X.filtration(Simplex([1,2])) is None
True

Filtration values can be accessed with function call and list syntax as follows:

207

Topology, Release 9.8

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 0), ([0,1], 1)])
sage: s_1 = Simplex([0])
sage: X[s_1]
0
sage: X(Simplex([0,1]))
1
sage: X(Simplex(['baba']))

It is also possible to set the filtration value of a simplex with the insert method, which takes as argument a list of
vertices rather than a Simplex. This can make code more readable / clear:

sage: X = FilteredSimplicialComplex()
sage: X.insert(['a'], 0)
sage: X.insert(['b', 'c'], 1)
sage: X
Filtered complex on vertex set ('a', 'b', 'c') and with simplices
(('a',) : 0), (('c',) : 1), (('b',) : 1), (('b', 'c') : 1)

class sage.topology.filtered_simplicial_complex.FilteredSimplicialComplex(simplices=[],
verbose=False)

Bases: SageObject

Define a filtered complex.

INPUT:

• simplices – list of simplices and filtration values

• verbose – (default: False) if True, any change to the filtration value of a simplex will be printed

simplices should be a list of tuples (l, v), where l is a list of vertices and v is the corresponding filtration
value.

EXAMPLES:

sage: FilteredSimplicialComplex([([0], 0), ([1], 0), ([2], 1), ([0,1], 2.27)])
Filtered complex on vertex set (0, 1, 2) and with simplices
((0,) : 0), ((1,) : 0), ((2,) : 1), ((0, 1) : 2.27000000000000)

betti_number(k, a, b, field=2, strict=True, verbose=None)
Return the k-dimensional Betti number from a to a + b.

INPUT:

• k – the dimension for the Betti number

• a – the lower filtration value

• b – the size of the interval

• field – prime number (default: 2); modulo which persistent homology is computed

• strict – (default: True) if False, takes into account intervals of persistence 0

• verbose – (optional) if True, print the steps of the persistent homology computation; the default is
the verbosity of self

The Betti number 𝛽𝑎,𝑎+𝑏
𝑘 counts the number of homology elements which are alive throughout the whole

duration [a, a+b].

EXAMPLES:

208 Chapter 13. Finite filtered complexes

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Topology, Release 9.8

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 0), ([0,1], 2)])
sage: X.betti_number(0, 0.5, 1)
2
sage: X.betti_number(0, 1.5, 1)
1

If an element vanishes at time a + b exactly, it does not count towards the Betti number:

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 0), ([0,1], 2)])
sage: X.betti_number(0, 1.5, 0.5)
1

filtration(s, filtration_value=None)
Set filtration value of a simplex, or return value of existing simplex.

INPUT:

• s – Simplex for which to set or obtain the value of

• filtration_value – (optional) filtration value for the simplex

If no filtration value is specified, this returns the value of the simplex in the complex. If the simplex is not
in the complex, this returns None.

If filtration_value is set, this function inserts the simplex into the complex with the specified value.
See documentation of insert() for more details.

EXAMPLES:

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 1)])
sage: X.filtration(Simplex([0, 1])) is None
True
sage: X.filtration(Simplex([0, 1]), 2)
sage: X.filtration([0, 1])
2

insert(vertex_list, filtration_value)
Add a simplex to the complex.

All faces of the simplex are added recursively if they are not already present, with the same value. If the
simplex is already present, and the new value is lower than its current value in the complex, the value gets
updated, otherwise it does not change. This propagates recursively to faces.

If verbose has been enabled, this method will describe what it is doing during an insertion.

INPUT:

• vertex_list – list of vertices

• filtration_value – desired value of the simplex to be added

EXAMPLES:

sage: X = FilteredSimplicialComplex()
sage: X.insert(Simplex([0]),3)
sage: X
Filtered complex on vertex set (0,) and with simplices ((0,) : 3)

If the verbose parameter was set to true, this method will print some info:

209

Topology, Release 9.8

sage: X = FilteredSimplicialComplex(verbose=True)
sage: X.insert(Simplex([0, 1]), 2)
Also inserting face (1,) with value 2
Also inserting face (0,) with value 2
sage: X.insert(Simplex([0]),1)
Face (0,) is already in the complex.
However its value is 2: updating it to 1
sage: X.insert(Simplex([0]), 77)
Face (0,) is already in the complex.
Its value is 1: keeping it that way

persistence_intervals(dimension, field=2, strict=True, verbose=None)
Return the list of 𝑑-dimensional homology elements.

INPUT:

• dimension – integer; dimension 𝑑 for which to return intervals

• field – prime number (default: 2); modulo which persistent homology is computed

• strict – (default: True) if False, takes into account intervals of persistence 0

• verbose – (optional) if True, print the steps of the persistent homology computation; the default is
the verbosity of self

EXAMPLES:

sage: X = FilteredSimplicialComplex([([0], 0), ([1], 1), ([0,1], 2)])
sage: X.persistence_intervals(0)
[(1, 2), (0, +Infinity)]

prune(threshold)
Return a copy of the filtered complex, where simplices above the threshold value have been removed.

INPUT:

• threshold – a real value, above which simplices are discarded

Simplices with filtration value exactly equal to threshold are kept in the result.

EXAMPLES:

sage: a = FilteredSimplicialComplex()
sage: a.insert([0], 0)
sage: a.insert([0, 1], 1)
sage: a.insert([0, 2], 2)
sage: b = a.prune(1)
sage: b
Filtered complex on vertex set (0, 1) and with simplices ((0,) : 0), ((1,) : 1),
→˓ ((0, 1) : 1)

210 Chapter 13. Finite filtered complexes

CHAPTER

FOURTEEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

211

../genindex.html
../py-modindex.html
../search.html

Topology, Release 9.8

212 Chapter 14. Indices and Tables

BIBLIOGRAPHY

[ABS96] Amos Altshule, Jürgen Bokowski and Peter Schuchert, Neighborly 2-Manifolds with 12 Vertices, Journal of
Combinatorial Theory, Series A, 75, 148-162 (1996), doi:10.1006/jcta.1996.0069

213

https://doi.org/10.1006/jcta.1996.0069

Topology, Release 9.8

214 Bibliography

PYTHON MODULE INDEX

t
sage.topology.cell_complex, 193
sage.topology.cubical_complex, 89
sage.topology.delta_complex, 73
sage.topology.filtered_simplicial_complex,

207
sage.topology.simplicial_complex, 3
sage.topology.simplicial_complex_examples, 57
sage.topology.simplicial_complex_homset, 53
sage.topology.simplicial_complex_morphism, 43
sage.topology.simplicial_set, 105
sage.topology.simplicial_set_catalog, 177
sage.topology.simplicial_set_constructions,

145
sage.topology.simplicial_set_examples, 171
sage.topology.simplicial_set_morphism, 179

215

Topology, Release 9.8

216 Python Module Index

INDEX

A
AbstractSimplex() (in module

sage.topology.simplicial_set), 109
AbstractSimplex_class (class in

sage.topology.simplicial_set), 110
add_face() (sage.topology.simplicial_complex.SimplicialComplex

method), 11
alexander_dual() (sage.topology.simplicial_complex.SimplicialComplex

method), 11
alexander_whitney()

(sage.topology.cell_complex.GenericCellComplex
method), 193

alexander_whitney()
(sage.topology.cubical_complex.Cube method),
90

alexander_whitney()
(sage.topology.cubical_complex.CubicalComplex
method), 95

alexander_whitney()
(sage.topology.delta_complex.DeltaComplex
method), 76

alexander_whitney()
(sage.topology.simplicial_complex.Simplex
method), 6

alexander_whitney()
(sage.topology.simplicial_complex.SimplicialComplex
method), 12

alexander_whitney()
(sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 114

algebraic_topological_model()
(sage.topology.cell_complex.GenericCellComplex
method), 194

algebraic_topological_model()
(sage.topology.cubical_complex.CubicalComplex
method), 95

algebraic_topological_model()
(sage.topology.delta_complex.DeltaComplex
method), 77

algebraic_topological_model()
(sage.topology.simplicial_complex.SimplicialComplex
method), 12

algebraic_topological_model()
(sage.topology.simplicial_set.SimplicialSet_finite
method), 137

all_degeneracies() (in module
sage.topology.simplicial_set), 140

all_n_simplices() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 114

ambient() (sage.topology.simplicial_set_constructions.QuotientOfSimplicialSet
method), 161

ambient_space() (sage.topology.simplicial_set_constructions.SubSimplicialSet
method), 165

an_element() (sage.topology.simplicial_complex_homset.SimplicialComplexHomset
method), 53

an_element() (sage.topology.simplicial_set_morphism.SimplicialSetHomset
method), 179

apply_degeneracies()
(sage.topology.simplicial_set.AbstractSimplex_class
method), 111

associated_chain_complex_morphism()
(sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 44

associated_chain_complex_morphism()
(sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 183

automorphism_group()
(sage.topology.simplicial_complex.SimplicialComplex
method), 13

B
BarnetteSphere() (in module

sage.topology.simplicial_complex_examples),
58

barycentric_subdivision()
(sage.topology.delta_complex.DeltaComplex
method), 77

barycentric_subdivision()
(sage.topology.simplicial_complex.SimplicialComplex
method), 13

base_as_subset() (sage.topology.simplicial_set_constructions.ConeOfSimplicialSet_finite
method), 147

betti() (sage.topology.cell_complex.GenericCellComplex
method), 194

217

Topology, Release 9.8

betti() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 115

betti_number() (sage.topology.filtered_simplicial_complex.FilteredSimplicialComplex
method), 208

BrucknerGrunbaumSphere() (in module
sage.topology.simplicial_complex_examples),
58

C
cartesian_product()

(sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 115

cells() (sage.topology.cell_complex.GenericCellComplex
method), 195

cells() (sage.topology.cubical_complex.CubicalComplex
method), 96

cells() (sage.topology.delta_complex.DeltaComplex
method), 78

cells() (sage.topology.simplicial_complex.SimplicialComplex
method), 14

cells() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 117

chain_complex() (sage.topology.cell_complex.GenericCellComplex
method), 195

chain_complex() (sage.topology.cubical_complex.CubicalComplex
method), 97

chain_complex() (sage.topology.delta_complex.DeltaComplex
method), 78

chain_complex() (sage.topology.simplicial_complex.SimplicialComplex
method), 14

chain_complex() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 118

chain_complex() (sage.topology.simplicial_set.SimplicialSet_finite
method), 138

ChessboardComplex() (in module
sage.topology.simplicial_complex_examples),
58

ClassifyingSpace() (in module
sage.topology.simplicial_set_examples),
171

coequalizer() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 183

cohomology() (sage.topology.cell_complex.GenericCellComplex
method), 196

cohomology() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 118

cohomology_ring() (sage.topology.cell_complex.GenericCellComplex
method), 197

ComplexProjectivePlane() (in module
sage.topology.simplicial_complex_examples),
59

ComplexProjectiveSpace() (in module
sage.topology.simplicial_set_examples),
171

cone() (sage.topology.cubical_complex.CubicalComplex
method), 98

cone() (sage.topology.delta_complex.DeltaComplex
method), 79

cone() (sage.topology.simplicial_complex.SimplicialComplex
method), 15

cone() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 119

cone_vertices() (sage.topology.simplicial_complex.SimplicialComplex
method), 15

ConeOfSimplicialSet (class in
sage.topology.simplicial_set_constructions),
146

ConeOfSimplicialSet_finite (class in
sage.topology.simplicial_set_constructions),
146

connected_component()
(sage.topology.simplicial_complex.SimplicialComplex
method), 15

connected_sum() (sage.topology.cubical_complex.CubicalComplex
method), 98

connected_sum() (sage.topology.delta_complex.DeltaComplex
method), 79

connected_sum() (sage.topology.simplicial_complex.SimplicialComplex
method), 16

constant_map() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 120

constant_map() (sage.topology.simplicial_set_morphism.SimplicialSetHomset
method), 180

coproduct() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 120

coproduct() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 184

Cube (class in sage.topology.cubical_complex), 90
Cube() (sage.topology.cubical_complex.CubicalComplexExamples

method), 103
CubicalComplex (class in

sage.topology.cubical_complex), 93
CubicalComplexExamples (class in

sage.topology.cubical_complex), 102

D
decone() (sage.topology.simplicial_complex.SimplicialComplex

method), 17
defining_map() (sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets

method), 154
defining_map() (sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets

method), 159
degeneracies() (sage.topology.simplicial_set.AbstractSimplex_class

method), 111
delta_complex() (sage.topology.simplicial_complex.SimplicialComplex

method), 17
DeltaComplex (class in sage.topology.delta_complex),

73

218 Index

Topology, Release 9.8

DeltaComplexExamples (class in
sage.topology.delta_complex), 85

diagonal_morphism()
(sage.topology.simplicial_complex_homset.SimplicialComplexHomset
method), 54

diagonal_morphism()
(sage.topology.simplicial_set_morphism.SimplicialSetHomset
method), 181

dimension() (sage.topology.cell_complex.GenericCellComplex
method), 198

dimension() (sage.topology.cubical_complex.Cube
method), 91

dimension() (sage.topology.simplicial_complex.Simplex
method), 6

dimension() (sage.topology.simplicial_set.AbstractSimplex_class
method), 111

disjoint_union() (sage.topology.cell_complex.GenericCellComplex
method), 199

disjoint_union() (sage.topology.cubical_complex.CubicalComplex
method), 98

disjoint_union() (sage.topology.delta_complex.DeltaComplex
method), 80

disjoint_union() (sage.topology.simplicial_complex.SimplicialComplex
method), 17

disjoint_union() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 121

DisjointUnionOfSimplicialSets (class in
sage.topology.simplicial_set_constructions),
147

DisjointUnionOfSimplicialSets_finite (class in
sage.topology.simplicial_set_constructions),
149

DunceHat() (in module
sage.topology.simplicial_complex_examples),
59

E
elementary_subdivision()

(sage.topology.delta_complex.DeltaComplex
method), 80

Empty() (in module sage.topology.simplicial_set_examples),
172

equalizer() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 184

euler_characteristic()
(sage.topology.cell_complex.GenericCellComplex
method), 199

euler_characteristic()
(sage.topology.simplicial_set.SimplicialSet_finite
method), 139

F
F_triangle() (sage.topology.simplicial_complex.SimplicialComplex

method), 10

f_triangle() (sage.topology.simplicial_complex.SimplicialComplex
method), 18

f_vector() (sage.topology.cell_complex.GenericCellComplex
method), 199

f_vector() (sage.topology.simplicial_set.SimplicialSet_finite
method), 139

face() (sage.topology.cubical_complex.Cube method),
91

face() (sage.topology.simplicial_complex.Simplex
method), 6

face() (sage.topology.simplicial_complex.SimplicialComplex
method), 18

face() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 122

face_data() (sage.topology.simplicial_set.SimplicialSet_finite
method), 139

face_degeneracies() (in module
sage.topology.simplicial_set), 141

face_iterator() (sage.topology.simplicial_complex.SimplicialComplex
method), 18

face_poset() (sage.topology.cell_complex.GenericCellComplex
method), 199

face_poset() (sage.topology.delta_complex.DeltaComplex
method), 81

faces() (sage.topology.cubical_complex.Cube method),
91

faces() (sage.topology.simplicial_complex.Simplex
method), 7

faces() (sage.topology.simplicial_complex.SimplicialComplex
method), 19

faces() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 122

faces_as_pairs() (sage.topology.cubical_complex.Cube
method), 92

facets() (sage.topology.simplicial_complex.SimplicialComplex
method), 19

facets_for_K3() (in module
sage.topology.simplicial_complex), 40

facets_for_K3() (in module
sage.topology.simplicial_complex_examples),
70

facets_for_RP4() (in module
sage.topology.simplicial_complex), 40

facets_for_RP4() (in module
sage.topology.simplicial_complex_examples),
71

factor() (sage.topology.simplicial_set_constructions.Factors
method), 149

factor() (sage.topology.simplicial_set_constructions.ProductOfSimplicialSets
method), 151

Factors (class in sage.topology.simplicial_set_constructions),
149

factors() (sage.topology.simplicial_set_constructions.Factors
method), 150

Index 219

Topology, Release 9.8

FareyMap() (in module
sage.topology.simplicial_complex_examples),
59

fat_wedge_as_subset()
(sage.topology.simplicial_set_constructions.ProductOfSimplicialSets_finite
method), 152

fiber_product() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 46

FilteredSimplicialComplex (class in
sage.topology.filtered_simplicial_complex),
208

filtration() (sage.topology.filtered_simplicial_complex.FilteredSimplicialComplex
method), 209

fixed_complex() (sage.topology.simplicial_complex.SimplicialComplex
method), 19

flip_graph() (sage.topology.simplicial_complex.SimplicialComplex
method), 20

fundamental_group()
(sage.topology.simplicial_complex.SimplicialComplex
method), 21

G
g_vector() (sage.topology.simplicial_complex.SimplicialComplex

method), 22
generated_subcomplex()

(sage.topology.simplicial_complex.SimplicialComplex
method), 22

GenericCellComplex (class in
sage.topology.cell_complex), 193

GenusSix() (in module
sage.topology.simplicial_complex_examples),
60

graph() (sage.topology.cell_complex.GenericCellComplex
method), 200

graph() (sage.topology.cubical_complex.CubicalComplex
method), 99

graph() (sage.topology.delta_complex.DeltaComplex
method), 81

graph() (sage.topology.simplicial_complex.SimplicialComplex
method), 23

graph() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 123

H
h_triangle() (sage.topology.simplicial_complex.SimplicialComplex

method), 23
h_vector() (sage.topology.simplicial_complex.SimplicialComplex

method), 23
homology() (sage.topology.cell_complex.GenericCellComplex

method), 200
homology() (sage.topology.simplicial_set.SimplicialSet_arbitrary

method), 123
homology_with_basis()

(sage.topology.cell_complex.GenericCellComplex

method), 201
HopfMap() (in module

sage.topology.simplicial_set_examples),
172

Horn() (in module sage.topology.simplicial_set_examples),
173

I
identity() (sage.topology.simplicial_complex_homset.SimplicialComplexHomset

method), 54
identity() (sage.topology.simplicial_set.SimplicialSet_arbitrary

method), 124
identity() (sage.topology.simplicial_set_morphism.SimplicialSetHomset

method), 181
image() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism

method), 46
image() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism

method), 185
inclusion_map() (sage.topology.simplicial_set_constructions.DisjointUnionOfSimplicialSets_finite

method), 149
inclusion_map() (sage.topology.simplicial_set_constructions.SubSimplicialSet

method), 166
inclusion_map() (sage.topology.simplicial_set_constructions.WedgeOfSimplicialSets_finite

method), 168
induced_homology_morphism()

(sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 47

induced_homology_morphism()
(sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 186

insert() (sage.topology.filtered_simplicial_complex.FilteredSimplicialComplex
method), 209

intersection() (sage.topology.simplicial_complex.SimplicialComplex
method), 24

is_acyclic() (sage.topology.cell_complex.GenericCellComplex
method), 202

is_balanced() (sage.topology.simplicial_complex.SimplicialComplex
method), 24

is_bijective() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 186

is_cohen_macaulay()
(sage.topology.simplicial_complex.SimplicialComplex
method), 25

is_connected() (sage.topology.cell_complex.GenericCellComplex
method), 203

is_connected() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 124

is_constant() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 186

is_contiguous_to() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 48

is_degenerate() (sage.topology.simplicial_set.AbstractSimplex_class
method), 112

220 Index

Topology, Release 9.8

is_empty() (sage.topology.simplicial_complex.Simplex
method), 7

is_face() (sage.topology.cubical_complex.Cube
method), 92

is_face() (sage.topology.simplicial_complex.Simplex
method), 7

is_flag_complex() (sage.topology.simplicial_complex.SimplicialComplex
method), 26

is_identity() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 49

is_identity() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 187

is_immutable() (sage.topology.simplicial_complex.SimplicialComplex
method), 26

is_injective() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 50

is_injective() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 188

is_isomorphic() (sage.topology.simplicial_complex.SimplicialComplex
method), 26

is_mutable() (sage.topology.simplicial_complex.SimplicialComplex
method), 27

is_nondegenerate() (sage.topology.simplicial_set.AbstractSimplex_class
method), 112

is_partitionable() (sage.topology.simplicial_complex.SimplicialComplex
method), 27

is_pointed() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 188

is_pseudomanifold()
(sage.topology.simplicial_complex.SimplicialComplex
method), 28

is_pure() (sage.topology.cubical_complex.CubicalComplex
method), 99

is_pure() (sage.topology.simplicial_complex.SimplicialComplex
method), 29

is_reduced() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 125

is_shellable() (sage.topology.simplicial_complex.SimplicialComplex
method), 29

is_shelling_order()
(sage.topology.simplicial_complex.SimplicialComplex
method), 30

is_SimplicialComplexHomset() (in module
sage.topology.simplicial_complex_homset),
55

is_SimplicialComplexMorphism() (in module
sage.topology.simplicial_complex_morphism),
51

is_subcomplex() (sage.topology.cubical_complex.CubicalComplex
method), 99

is_subcomplex() (sage.topology.simplicial_complex.SimplicialComplex
method), 31

is_surjective() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism
method), 50

is_surjective() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 188

J
join() (sage.topology.cell_complex.GenericCellComplex

method), 203
join() (sage.topology.cubical_complex.CubicalComplex

method), 100
join() (sage.topology.delta_complex.DeltaComplex

method), 82
join() (sage.topology.simplicial_complex.Simplex

method), 7
join() (sage.topology.simplicial_complex.SimplicialComplex

method), 31
join() (sage.topology.simplicial_set.SimplicialSet_arbitrary

method), 125

K
K3Surface() (in module

sage.topology.simplicial_complex_examples),
60

KleinBottle() (in module
sage.topology.simplicial_complex_examples),
61

KleinBottle() (in module
sage.topology.simplicial_set_examples),
173

KleinBottle() (sage.topology.cubical_complex.CubicalComplexExamples
method), 103

KleinBottle() (sage.topology.delta_complex.DeltaComplexExamples
method), 85

L
lattice_paths() (in module

sage.topology.simplicial_complex), 40
link() (sage.topology.simplicial_complex.SimplicialComplex

method), 32

M
map_from_base() (sage.topology.simplicial_set_constructions.ConeOfSimplicialSet_finite

method), 147
map_from_base() (sage.topology.simplicial_set_constructions.ReducedConeOfSimplicialSet_finite

method), 164
mapping_cone() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism

method), 189
mapping_torus() (sage.topology.simplicial_complex_morphism.SimplicialComplexMorphism

method), 50
matching() (in module

sage.topology.simplicial_complex_examples),
71

MatchingComplex() (in module
sage.topology.simplicial_complex_examples),
61

Index 221

Topology, Release 9.8

maximal_cells() (sage.topology.cubical_complex.CubicalComplex
method), 100

maximal_faces() (sage.topology.simplicial_complex.SimplicialComplex
method), 32

minimal_nonfaces() (sage.topology.simplicial_complex.SimplicialComplex
method), 33

module
sage.topology.cell_complex, 193
sage.topology.cubical_complex, 89
sage.topology.delta_complex, 73
sage.topology.filtered_simplicial_complex,

207
sage.topology.simplicial_complex, 3
sage.topology.simplicial_complex_examples,

57
sage.topology.simplicial_complex_homset,

53
sage.topology.simplicial_complex_morphism,

43
sage.topology.simplicial_set, 105
sage.topology.simplicial_set_catalog, 177
sage.topology.simplicial_set_constructions,

145
sage.topology.simplicial_set_examples,

171
sage.topology.simplicial_set_morphism,

179
MooreSpace() (in module

sage.topology.simplicial_complex_examples),
61

N
n_cells() (sage.topology.cell_complex.GenericCellComplex

method), 203
n_cells() (sage.topology.simplicial_set.SimplicialSet_arbitrary

method), 125
n_chains() (sage.topology.cell_complex.GenericCellComplex

method), 204
n_chains() (sage.topology.delta_complex.DeltaComplex

method), 82
n_chains() (sage.topology.simplicial_set.SimplicialSet_arbitrary

method), 126
n_cubes() (sage.topology.cubical_complex.CubicalComplex

method), 100
n_faces() (sage.topology.simplicial_complex.SimplicialComplex

method), 33
n_skeleton() (sage.topology.cell_complex.GenericCellComplex

method), 204
n_skeleton() (sage.topology.cubical_complex.CubicalComplex

method), 101
n_skeleton() (sage.topology.delta_complex.DeltaComplex

method), 83
n_skeleton() (sage.topology.simplicial_complex.SimplicialComplex

method), 33

n_skeleton() (sage.topology.simplicial_set.SimplicialSet_finite
method), 140

n_skeleton() (sage.topology.simplicial_set_constructions.ConeOfSimplicialSet
method), 146

n_skeleton() (sage.topology.simplicial_set_constructions.DisjointUnionOfSimplicialSets
method), 148

n_skeleton() (sage.topology.simplicial_set_constructions.ProductOfSimplicialSets
method), 152

n_skeleton() (sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets
method), 154

n_skeleton() (sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets
method), 159

n_skeleton() (sage.topology.simplicial_set_constructions.QuotientOfSimplicialSet
method), 162

n_skeleton() (sage.topology.simplicial_set_constructions.ReducedConeOfSimplicialSet
method), 163

n_skeleton() (sage.topology.simplicial_set_constructions.SuspensionOfSimplicialSet
method), 166

n_skeleton() (sage.topology.simplicial_set_examples.Nerve
method), 174

n_skeleton() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 189

Nerve (class in sage.topology.simplicial_set_examples),
174

nondegenerate() (sage.topology.simplicial_set.AbstractSimplex_class
method), 112

nondegenerate_intervals()
(sage.topology.cubical_complex.Cube method),
92

nondegenerate_simplices()
(sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 126

NonDegenerateSimplex (class in
sage.topology.simplicial_set), 113

NotIConnectedGraphs() (in module
sage.topology.simplicial_complex_examples),
62

P
persistence_intervals()

(sage.topology.filtered_simplicial_complex.FilteredSimplicialComplex
method), 210

PoincareHomologyThreeSphere() (in module
sage.topology.simplicial_complex_examples),
62

Point() (in module sage.topology.simplicial_set_examples),
174

product() (sage.topology.cell_complex.GenericCellComplex
method), 205

product() (sage.topology.cubical_complex.Cube
method), 92

product() (sage.topology.cubical_complex.CubicalComplex
method), 101

222 Index

Topology, Release 9.8

product() (sage.topology.delta_complex.DeltaComplex
method), 83

product() (sage.topology.simplicial_complex.Simplex
method), 8

product() (sage.topology.simplicial_complex.SimplicialComplex
method), 34

product() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 127

product() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 190

ProductOfSimplicialSets (class in
sage.topology.simplicial_set_constructions),
150

ProductOfSimplicialSets_finite (class in
sage.topology.simplicial_set_constructions),
152

projection_map() (sage.topology.simplicial_set_constructions.ProductOfSimplicialSets_finite
method), 153

projection_map() (sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets_finite
method), 155

projection_map() (sage.topology.simplicial_set_constructions.WedgeOfSimplicialSets_finite
method), 169

ProjectivePlane() (in module
sage.topology.simplicial_complex_examples),
62

prune() (sage.topology.filtered_simplicial_complex.FilteredSimplicialComplex
method), 210

pullback() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 129

pullback() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 190

PullbackOfSimplicialSets (class in
sage.topology.simplicial_set_constructions),
153

PullbackOfSimplicialSets_finite (class in
sage.topology.simplicial_set_constructions),
155

pushout() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 130

pushout() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 191

PushoutOfSimplicialSets (class in
sage.topology.simplicial_set_constructions),
157

PushoutOfSimplicialSets_finite (class in
sage.topology.simplicial_set_constructions),
159

Q
QuaternionicProjectivePlane() (in module

sage.topology.simplicial_complex_examples),
63

quotient() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 131

quotient_map() (sage.topology.simplicial_set_constructions.QuotientOfSimplicialSet_finite
method), 163

QuotientOfSimplicialSet (class in
sage.topology.simplicial_set_constructions),
161

QuotientOfSimplicialSet_finite (class in
sage.topology.simplicial_set_constructions),
163

R
RandomComplex() (in module

sage.topology.simplicial_complex_examples),
63

RandomTwoSphere() (in module
sage.topology.simplicial_complex_examples),
64

RealProjectivePlane() (in module
sage.topology.simplicial_complex_examples),
64

RealProjectivePlane()
(sage.topology.cubical_complex.CubicalComplexExamples
method), 103

RealProjectivePlane()
(sage.topology.delta_complex.DeltaComplexExamples
method), 86

RealProjectiveSpace() (in module
sage.topology.simplicial_complex_examples),
65

RealProjectiveSpace() (in module
sage.topology.simplicial_set_examples),
175

reduce() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 133

ReducedConeOfSimplicialSet (class in
sage.topology.simplicial_set_constructions),
163

ReducedConeOfSimplicialSet_finite (class in
sage.topology.simplicial_set_constructions),
164

remove_face() (sage.topology.simplicial_complex.SimplicialComplex
method), 34

remove_faces() (sage.topology.simplicial_complex.SimplicialComplex
method), 35

rename_latex() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 133

rename_vertex() (in module
sage.topology.simplicial_complex), 41

restriction_sets() (sage.topology.simplicial_complex.SimplicialComplex
method), 36

RudinBall() (in module
sage.topology.simplicial_complex_examples),
66

Index 223

Topology, Release 9.8

S
sage.topology.cell_complex

module, 193
sage.topology.cubical_complex

module, 89
sage.topology.delta_complex

module, 73
sage.topology.filtered_simplicial_complex

module, 207
sage.topology.simplicial_complex

module, 3
sage.topology.simplicial_complex_examples

module, 57
sage.topology.simplicial_complex_homset

module, 53
sage.topology.simplicial_complex_morphism

module, 43
sage.topology.simplicial_set

module, 105
sage.topology.simplicial_set_catalog

module, 177
sage.topology.simplicial_set_constructions

module, 145
sage.topology.simplicial_set_examples

module, 171
sage.topology.simplicial_set_morphism

module, 179
set() (sage.topology.simplicial_complex.Simplex

method), 8
set_immutable() (sage.topology.simplicial_complex.SimplicialComplex

method), 36
ShiftedComplex() (in module

sage.topology.simplicial_complex_examples),
66

shrink_simplicial_complex() (in module
sage.topology.simplicial_set), 141

Simplex (class in sage.topology.simplicial_complex), 5
Simplex() (in module

sage.topology.simplicial_complex_examples),
67

Simplex() (in module
sage.topology.simplicial_set_examples),
175

Simplex() (sage.topology.delta_complex.DeltaComplexExamples
method), 86

simplicial_data_from_kenzo_output() (in module
sage.topology.simplicial_set_examples), 176

SimplicialComplex (class in
sage.topology.simplicial_complex), 9

SimplicialComplexHomset (class in
sage.topology.simplicial_complex_homset),
53

SimplicialComplexMorphism (class in
sage.topology.simplicial_complex_morphism),

44
SimplicialSet (in module

sage.topology.simplicial_set), 113
SimplicialSet_arbitrary (class in

sage.topology.simplicial_set), 113
SimplicialSet_finite (class in

sage.topology.simplicial_set), 136
SimplicialSetHomset (class in

sage.topology.simplicial_set_morphism),
179

SimplicialSetMorphism (class in
sage.topology.simplicial_set_morphism),
181

SmashProductOfSimplicialSets_finite (class in
sage.topology.simplicial_set_constructions),
164

Sphere() (in module sage.topology.simplicial_complex_examples),
67

Sphere() (in module sage.topology.simplicial_set_examples),
175

Sphere() (sage.topology.cubical_complex.CubicalComplexExamples
method), 103

Sphere() (sage.topology.delta_complex.DeltaComplexExamples
method), 86

standardize_degeneracies() (in module
sage.topology.simplicial_set), 142

standardize_face_maps() (in module
sage.topology.simplicial_set), 142

stanley_reisner_ring()
(sage.topology.simplicial_complex.SimplicialComplex
method), 36

star() (sage.topology.simplicial_complex.SimplicialComplex
method), 37

stellar_subdivision()
(sage.topology.simplicial_complex.SimplicialComplex
method), 37

structure_map() (sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets_finite
method), 156

structure_map() (sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets_finite
method), 160

subcomplex() (sage.topology.delta_complex.DeltaComplex
method), 84

subcomplex() (sage.topology.simplicial_set_constructions.QuotientOfSimplicialSet
method), 162

subsimplicial_set()
(sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 134

SubSimplicialSet (class in
sage.topology.simplicial_set_constructions),
165

SumComplex() (in module
sage.topology.simplicial_complex_examples),
67

summand() (sage.topology.simplicial_set_constructions.DisjointUnionOfSimplicialSets

224 Index

Topology, Release 9.8

method), 148
summand() (sage.topology.simplicial_set_constructions.WedgeOfSimplicialSets

method), 168
summands() (sage.topology.simplicial_set_constructions.DisjointUnionOfSimplicialSets

method), 148
summands() (sage.topology.simplicial_set_constructions.WedgeOfSimplicialSets

method), 168
SurfaceOfGenus() (in module

sage.topology.simplicial_complex_examples),
69

SurfaceOfGenus() (sage.topology.cubical_complex.CubicalComplexExamples
method), 103

SurfaceOfGenus() (sage.topology.delta_complex.DeltaComplexExamples
method), 87

suspension() (sage.topology.cubical_complex.CubicalComplex
method), 101

suspension() (sage.topology.delta_complex.DeltaComplex
method), 84

suspension() (sage.topology.simplicial_complex.SimplicialComplex
method), 38

suspension() (sage.topology.simplicial_set.SimplicialSet_arbitrary
method), 135

suspension() (sage.topology.simplicial_set_morphism.SimplicialSetMorphism
method), 191

SuspensionOfSimplicialSet (class in
sage.topology.simplicial_set_constructions),
166

SuspensionOfSimplicialSet_finite (class in
sage.topology.simplicial_set_constructions),
167

T
Torus() (in module sage.topology.simplicial_complex_examples),

69
Torus() (in module sage.topology.simplicial_set_examples),

176
Torus() (sage.topology.cubical_complex.CubicalComplexExamples

method), 104
Torus() (sage.topology.delta_complex.DeltaComplexExamples

method), 87
tuple() (sage.topology.cubical_complex.Cube method),

93
tuple() (sage.topology.simplicial_complex.Simplex

method), 8

U
UniqueSimplicialComplex (class in

sage.topology.simplicial_complex_examples),
70

universal_property()
(sage.topology.simplicial_set_constructions.PullbackOfSimplicialSets_finite
method), 156

universal_property()
(sage.topology.simplicial_set_constructions.PushoutOfSimplicialSets_finite

method), 160

V
vertices() (sage.topology.simplicial_complex.SimplicialComplex

method), 39

W
wedge() (sage.topology.cell_complex.GenericCellComplex

method), 205
wedge() (sage.topology.cubical_complex.CubicalComplex

method), 102
wedge() (sage.topology.delta_complex.DeltaComplex

method), 85
wedge() (sage.topology.simplicial_complex.SimplicialComplex

method), 39
wedge() (sage.topology.simplicial_set.SimplicialSet_arbitrary

method), 135
wedge_as_subset() (sage.topology.simplicial_set_constructions.ProductOfSimplicialSets_finite

method), 153
WedgeOfSimplicialSets (class in

sage.topology.simplicial_set_constructions),
167

WedgeOfSimplicialSets_finite (class in
sage.topology.simplicial_set_constructions),
168

Z
ZieglerBall() (in module

sage.topology.simplicial_complex_examples),
70

Index 225

	Finite simplicial complexes
	Morphisms of simplicial complexes
	Homsets between simplicial complexes
	Examples of simplicial complexes
	Finite Delta-complexes
	Finite cubical complexes
	Simplicial sets
	Methods of constructing simplicial sets
	Examples of simplicial sets.
	Catalog of simplicial sets
	Morphisms and homsets for simplicial sets
	Generic cell complexes
	Finite filtered complexes
	Indices and Tables
	Bibliography
	Python Module Index
	Index

