Regions in fundamental domains of period lattices#
This module is used to represent sub-regions of a fundamental parallelogram of the period lattice of an elliptic curve, used in computing minimum height bounds.
In particular, these are the approximating sets S^{(v)}
in section 3.2 of
Thotsaphon Thongjunthug’s Ph.D. Thesis and paper [Tho2010].
AUTHORS:
Robert Bradshaw (2010): initial version
John Cremona (2014): added some docstrings and doctests
- class sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion#
Bases:
object
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: S = PeriodicRegion(CDF(2), CDF(2*I), np.zeros((4, 4))) sage: S.plot() Graphics object consisting of 1 graphics primitive sage: data = np.zeros((4, 4)) sage: data[1,1] = True sage: S = PeriodicRegion(CDF(2), CDF(2*I+1), data) sage: S.plot() Graphics object consisting of 5 graphics primitives
- border(raw=True)#
Returns the boundary of this region as set of tile boundaries.
If raw is true, returns a list with respect to the internal bitmap, otherwise returns complex intervals covering the border.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((4, 4)) sage: data[1, 1] = True sage: PeriodicRegion(CDF(1), CDF(I), data).border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)] sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)] sage: PeriodicRegion(CDF(1), CDF(I), data).border(raw=False) [0.25000000000000000? + 1.?*I, 0.50000000000000000? + 1.?*I, 1.? + 0.25000000000000000?*I, 1.? + 0.50000000000000000?*I] sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border(raw=False) [0.3? + 1.?*I, 0.8? + 1.?*I, 1.? + 0.25000000000000000?*I, 1.? + 0.50000000000000000?*I] sage: data[1:3, 2] = True sage: PeriodicRegion(CDF(1), CDF(I), data).border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 0), (1, 3, 1), (3, 2, 0), (2, 2, 1), (2, 3, 1)]
- contract(corners=True)#
Opposite (but not inverse) of expand; removes neighbors of complement.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((10, 10)) sage: data[1:4,1:4] = True sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data) sage: S.plot() Graphics object consisting of 13 graphics primitives sage: S.contract().plot() Graphics object consisting of 5 graphics primitives sage: S.contract().data.sum() 1 sage: S.contract().contract().is_empty() True
- data#
- ds()#
Returns the sides of each parallelogram tile.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((4, 4)) sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False) sage: S.ds() (0.5, 0.25*I) sage: _ = S._ensure_full() sage: S.ds() (0.5, 0.25*I) sage: data = np.zeros((8, 8)) sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data) sage: S.ds() (0.125, 0.0625 + 0.125*I)
- expand(corners=True)#
Returns a region containing this region by adding all neighbors of internal tiles.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((4, 4)) sage: data[1,1] = True sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data) sage: S.plot() Graphics object consisting of 5 graphics primitives sage: S.expand().plot() Graphics object consisting of 13 graphics primitives sage: S.expand().data array([[1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0], [0, 0, 0, 0]], dtype=int8) sage: S.expand(corners=False).plot() Graphics object consisting of 13 graphics primitives sage: S.expand(corners=False).data array([[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]], dtype=int8)
- full#
- innermost_point()#
Returns a point well inside the region, specifically the center of (one of) the last tile(s) to be removed on contraction.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((10, 10)) sage: data[1:4, 1:4] = True sage: data[1, 0:8] = True sage: S = PeriodicRegion(CDF(1), CDF(I+1/2), data) sage: S.innermost_point() 0.375 + 0.25*I sage: S.plot() + point(S.innermost_point()) Graphics object consisting of 24 graphics primitives
- is_empty()#
Returns whether this region is empty.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((4, 4)) sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty() True sage: data[1,1] = True sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty() False
- plot(**kwds)#
Plots this region in the fundamental lattice. If full is False plots only the lower half. Note that the true nature of this region is periodic.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((10, 10)) sage: data[2, 2:8] = True sage: data[2:5, 2] = True sage: data[3, 3] = True sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data) sage: plot(S) + plot(S.expand(), rgbcolor=(1, 0, 1), thickness=2) Graphics object consisting of 46 graphics primitives
- refine(condition=None, times=1)#
Recursive function to refine the current tiling.
INPUT:
condition
(function, default None) – if not None, only keep tiles in the refinement which satisfy the condition.times
(int, default 1) – the number of times to refine; each refinement step halves the mesh size.
OUTPUT:
The refined PeriodicRegion.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((4, 4)) sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False) sage: S.ds() (0.5, 0.25*I) sage: S = S.refine() sage: S.ds() (0.25, 0.125*I) sage: S = S.refine(2) sage: S.ds() (0.125, 0.0625*I)
- verify(condition)#
Given a condition that should hold for every line segment on the boundary, verify that it actually does so.
INPUT:
condition
(function) – a boolean-valued function on \(\CC\).
OUTPUT:
True or False according to whether the condition holds for all lines on the boundary.
EXAMPLES:
sage: import numpy as np sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion sage: data = np.zeros((4, 4)) sage: data[1, 1] = True sage: S = PeriodicRegion(CDF(1), CDF(I), data) sage: S.border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)] sage: condition = lambda z: z.real().abs()<1/2 sage: S.verify(condition) False sage: condition = lambda z: z.real().abs()<1 sage: S.verify(condition) True
- w1#
- w2#