Benkart-Kang-Kashiwara crystals for the general-linear Lie superalgebra#
- class sage.combinat.crystals.bkk_crystals.CrystalOfBKKTableaux(ct, shape)#
Bases:
CrystalOfWords
Crystal of tableaux for type
.This is an implementation of the tableaux model of the Benkart-Kang-Kashiwara crystal [BKK2000] for the Lie superalgebra
.INPUT:
ct
– a super Lie Cartan type of typeshape
– shape specifying the highest weight; this should be a partition contained in a hook of height and width
EXAMPLES:
sage: T = crystals.Tableaux(['A', [1,1]], shape = [2,1]) sage: T.cardinality() 20
- class Element#
Bases:
CrystalOfBKKTableauxElement
- genuine_highest_weight_vectors(index_set=None)#
Return a tuple of genuine highest weight elements.
A fake highest weight vector is one which is annihilated by
for all in the index set, but whose weight is not bigger in dominance order than all other elements in the crystal. A genuine highest weight vector is a highest weight element that is not fake.EXAMPLES:
sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1]) sage: B.genuine_highest_weight_vectors() ([[-2, -2, -2], [-1, -1], [1]],) sage: B.highest_weight_vectors() ([[-2, -2, -2], [-1, -1], [1]], [[-2, -2, -2], [-1, 2], [1]], [[-2, -2, 2], [-1, -1], [1]])
- shape()#
Return the shape of
self
.EXAMPLES:
sage: T = crystals.Tableaux(['A', [1, 2]], shape=[2,1]) sage: T.shape() [2, 1]