Weighted Integer Vectors#
AUTHORS:
Mike Hansen (2007): initial version, ported from MuPAD-Combinat
Nicolas M. Thiery (2010-10-30): WeightedIntegerVectors(weights) + cleanup
- class sage.combinat.integer_vector_weighted.WeightedIntegerVectors(n, weight)#
Bases:
Parent
,UniqueRepresentation
The class of integer vectors of \(n\) weighted by
weight
, that is, the nonnegative integer vectors \((v_1, \ldots, v_{\ell})\) satisfying \(\sum_{i=1}^{\ell} v_i w_i = n\) where \(\ell\) islength(weight)
and \(w_i\) isweight[i]
.INPUT:
n
– a non negative integer (optional)weight
– a tuple (or list or iterable) of positive integers
EXAMPLES:
sage: WeightedIntegerVectors(8, [1,1,2]) Integer vectors of 8 weighted by [1, 1, 2] sage: WeightedIntegerVectors(8, [1,1,2]).first() [0, 0, 4] sage: WeightedIntegerVectors(8, [1,1,2]).last() [8, 0, 0] sage: WeightedIntegerVectors(8, [1,1,2]).cardinality() 25 sage: w = WeightedIntegerVectors(8, [1,1,2]).random_element() sage: w.parent() is WeightedIntegerVectors(8, [1,1,2]) True sage: WeightedIntegerVectors([1,1,2]) Integer vectors weighted by [1, 1, 2] sage: WeightedIntegerVectors([1,1,2]).cardinality() +Infinity sage: WeightedIntegerVectors([1,1,2]).first() [0, 0, 0]
Todo
Should the order of the arguments
n
andweight
be exchanged to simplify the logic?- Element#
alias of
IntegerVector
- class sage.combinat.integer_vector_weighted.WeightedIntegerVectors_all(weight)#
Bases:
DisjointUnionEnumeratedSets
Set of weighted integer vectors.
EXAMPLES:
sage: W = WeightedIntegerVectors([3,1,1,2,1]); W Integer vectors weighted by [3, 1, 1, 2, 1] sage: W.cardinality() +Infinity sage: W12 = W.graded_component(12) sage: W12.an_element() [4, 0, 0, 0, 0] sage: W12.last() [0, 12, 0, 0, 0] sage: W12.cardinality() 441 sage: for w in W12: print(w) [4, 0, 0, 0, 0] [3, 0, 0, 1, 1] [3, 0, 1, 1, 0] ... [0, 11, 1, 0, 0] [0, 12, 0, 0, 0]
- grading(x)#
EXAMPLES:
sage: C = WeightedIntegerVectors([2,1,3]) sage: C.grading((2,1,1)) 8
- subset(size=None)#
EXAMPLES:
sage: C = WeightedIntegerVectors([2,1,3]) sage: C.subset(4) Integer vectors of 4 weighted by [2, 1, 3]
- sage.combinat.integer_vector_weighted.iterator_fast(n, l)#
Iterate over all
l
weighted integer vectors with total weightn
.INPUT:
n
– an integerl
– the weights in weakly decreasing order
EXAMPLES:
sage: from sage.combinat.integer_vector_weighted import iterator_fast sage: list(iterator_fast(3, [2,1,1])) [[1, 1, 0], [1, 0, 1], [0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]] sage: list(iterator_fast(2, [2])) [[1]]
Test that trac ticket #20491 is fixed:
sage: type(list(iterator_fast(2, [2]))[0][0]) <class 'sage.rings.integer.Integer'>