Simplified DES#
A simplified variant of the Data Encryption Standard (DES). Note that Simplified DES or S-DES is for educational purposes only. It is a small-scale version of the DES designed to help beginners understand the basic structure of DES.
AUTHORS:
- Minh Van Nguyen (2009-06): initial version 
- class sage.crypto.block_cipher.sdes.SimplifiedDES#
- Bases: - SageObject- This class implements the Simplified Data Encryption Standard (S-DES) described in [Sch1996]. Schaefer’s S-DES is for educational purposes only and is not secure for practical purposes. S-DES is a version of the DES with all parameters significantly reduced, but at the same time preserving the structure of DES. The goal of S-DES is to allow a beginner to understand the structure of DES, thus laying a foundation for a thorough study of DES. Its goal is as a teaching tool in the same spirit as Phan’s - Mini-AES[Pha2002].- EXAMPLES: - Encrypt a random block of 8-bit plaintext using a random key, decrypt the ciphertext, and compare the result with the original plaintext: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES(); sdes Simplified DES block cipher with 10-bit keys sage: bin = BinaryStrings() sage: P = [bin(str(randint(0, 1))) for i in range(8)] sage: K = sdes.random_key() sage: C = sdes.encrypt(P, K) sage: plaintxt = sdes.decrypt(C, K) sage: plaintxt == P True - We can also encrypt binary strings that are larger than 8 bits in length. However, the number of bits in that binary string must be positive and a multiple of 8: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: bin = BinaryStrings() sage: P = bin.encoding("Encrypt this using S-DES!") sage: Mod(len(P), 8) == 0 True sage: K = sdes.list_to_string(sdes.random_key()) sage: C = sdes(P, K, algorithm="encrypt") sage: plaintxt = sdes(C, K, algorithm="decrypt") sage: plaintxt == P True - block_length()#
- Return the block length of Schaefer’s S-DES block cipher. A key in Schaefer’s S-DES is a block of 10 bits. - OUTPUT: - The block (or key) length in number of bits. 
 - EXAMPLES: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: sdes.block_length() 10 
 - decrypt(C, K)#
- Return an 8-bit plaintext corresponding to the ciphertext - C, using S-DES decryption with key- K. The decryption process of S-DES is as follows. Let- Cfirst goes through- INPUT: - C– an 8-bit ciphertext; a block of 8 bits
- K– a 10-bit key; a block of 10 bits
 - OUTPUT: - The 8-bit plaintext corresponding to - C, obtained using the key- K.- EXAMPLES: - Decrypt an 8-bit ciphertext block: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: C = [0, 1, 0, 1, 0, 1, 0, 1] sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.decrypt(C, K) [0, 0, 0, 1, 0, 1, 0, 1] - We can also work with strings of bits: - sage: C = "01010101" sage: K = "1010000010" sage: sdes.decrypt(sdes.string_to_list(C), sdes.string_to_list(K)) [0, 0, 0, 1, 0, 1, 0, 1] 
 - encrypt(P, K)#
- Return an 8-bit ciphertext corresponding to the plaintext - P, using S-DES encryption with key- K. The encryption process of S-DES is as follows. Let- Pfirst goes through- INPUT: - P– an 8-bit plaintext; a block of 8 bits
- K– a 10-bit key; a block of 10 bits
 - OUTPUT: - The 8-bit ciphertext corresponding to - P, obtained using the key- K.- EXAMPLES: - Encrypt an 8-bit plaintext block: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: P = [0, 1, 0, 1, 0, 1, 0, 1] sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.encrypt(P, K) [1, 1, 0, 0, 0, 0, 0, 1] - We can also work with strings of bits: - sage: P = "01010101" sage: K = "1010000010" sage: sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K)) [1, 1, 0, 0, 0, 0, 0, 1] 
 - initial_permutation(B, inverse=False)#
- Return the initial permutation of - B. Denote the initial permutation function by- The inverse permutation is - INPUT: - B– list; a block of 8 bits
- inverse– (default:- False) if- Truethen use the inverse permutation- Falsethen use the initial permutation
 - OUTPUT: - The initial permutation of - Bif- inverse=False, or the inverse permutation of- Bif- inverse=True.- EXAMPLES: - The initial permutation of a list of 8 bits: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 1, 1, 0, 1, 0, 0] sage: P = sdes.initial_permutation(B); P [0, 1, 1, 1, 1, 0, 0, 0] - Recovering the original list of 8 bits from the permutation: - sage: Pinv = sdes.initial_permutation(P, inverse=True) sage: Pinv; B [1, 0, 1, 1, 0, 1, 0, 0] [1, 0, 1, 1, 0, 1, 0, 0] - We can also work with a string of bits: - sage: S = "10110100" sage: L = sdes.string_to_list(S) sage: P = sdes.initial_permutation(L); P [0, 1, 1, 1, 1, 0, 0, 0] sage: sdes.initial_permutation(sdes.string_to_list("01111000"), inverse=True) [1, 0, 1, 1, 0, 1, 0, 0] 
 - left_shift(B, n=1)#
- Return a circular left shift of - Bby- npositions. Let- n=1, then- If the number of shift positions is - n=2, then- INPUT: - B– a list of 10 bits
- n– (default: 1) if- n=1then perform left shift by 1 position; if- n=2then perform left shift by 2 positions. The valid values for- nare 1 and 2, since only up to 2 positions are defined for this circular left shift operation.
 - OUTPUT: - The circular left shift of each half of - B.- EXAMPLES: - Circular left shift by 1 position of a 10-bit string: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 0, 0, 0, 0, 1, 1, 0, 0] sage: sdes.left_shift(B) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift([1, 0, 1, 0, 0, 0, 0, 0, 1, 0]) [0, 1, 0, 0, 1, 0, 0, 1, 0, 0] - Circular left shift by 2 positions of a 10-bit string: - sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift(B, n=2) [0, 0, 1, 0, 0, 0, 0, 0, 1, 1] - Here we work with a string of bits: - sage: S = "1000001100" sage: L = sdes.string_to_list(S) sage: sdes.left_shift(L) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift(sdes.string_to_list("1010000010"), n=2) [1, 0, 0, 1, 0, 0, 1, 0, 0, 0] 
 - list_to_string(B)#
- Return a binary string representation of the list - B.- INPUT: - B– a non-empty list of bits
 - OUTPUT: - The binary string representation of - B.- EXAMPLES: - A binary string representation of a list of bits: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: L = [0, 0, 0, 0, 1, 1, 0, 1, 0, 0] sage: sdes.list_to_string(L) 0000110100 
 - permutation10(B)#
- Return a permutation of a 10-bit string. This permutation is called - INPUT: - B– a block of 10-bit string
 - OUTPUT: - A permutation of - B.- EXAMPLES: - Permute a 10-bit string: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1] sage: sdes.permutation10(B) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] sage: sdes.permutation10([0, 1, 1, 0, 1, 0, 0, 1, 0, 1]) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0] sage: sdes.permutation10([1, 0, 1, 0, 0, 0, 0, 0, 1, 0]) [1, 0, 0, 0, 0, 0, 1, 1, 0, 0] - Here we work with a string of bits: - sage: S = "1100100101" sage: L = sdes.string_to_list(S) sage: sdes.permutation10(L) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] sage: sdes.permutation10(sdes.string_to_list("0110100101")) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0] 
 - permutation4(B)#
- Return a permutation of a 4-bit string. This permutation is called - INPUT: - B– a block of 4-bit string
 - OUTPUT: - A permutation of - B.- EXAMPLES: - Permute a 4-bit string: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0] sage: sdes.permutation4(B) [1, 0, 0, 1] sage: sdes.permutation4([0, 1, 0, 1]) [1, 1, 0, 0] - We can also work with a string of bits: - sage: S = "1100" sage: L = sdes.string_to_list(S) sage: sdes.permutation4(L) [1, 0, 0, 1] sage: sdes.permutation4(sdes.string_to_list("0101")) [1, 1, 0, 0] 
 - permutation8(B)#
- Return a permutation of an 8-bit string. This permutation is called - INPUT: - B– a block of 10-bit string
 - OUTPUT: - Pick out 8 of the 10 bits of - Band permute those 8 bits.- EXAMPLES: - Permute a 10-bit string: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1] sage: sdes.permutation8(B) [0, 0, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8([0, 1, 1, 0, 1, 0, 0, 1, 0, 1]) [0, 1, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8([0, 0, 0, 0, 1, 1, 1, 0, 0, 0]) [1, 0, 1, 0, 0, 1, 0, 0] - We can also work with a string of bits: - sage: S = "1100100101" sage: L = sdes.string_to_list(S) sage: sdes.permutation8(L) [0, 0, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8(sdes.string_to_list("0110100101")) [0, 1, 0, 0, 1, 1, 1, 0] 
 - permute_substitute(B, key)#
- Apply the function - Busing subkey- key. Let- Brespectively, and let- where - The function - Let - Now read the first row as the 4-bit string - Next read the second row as the 4-bit string - Denote the 4 bits produced by - The output of - INPUT: - B– a list of 8 bits
- key– an 8-bit subkey
 - OUTPUT: - The result of applying the function - B.- EXAMPLES: - Applying the function - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 1, 1, 1, 1, 0, 1] sage: K = [1, 1, 0, 1, 0, 1, 0, 1] sage: sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1] - We can also work with strings of bits: - sage: B = "10111101" sage: K = "11010101" sage: B = sdes.string_to_list(B); K = sdes.string_to_list(K) sage: sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1] 
 - random_key()#
- Return a random 10-bit key. - EXAMPLES: - The size of each key is the same as the block size: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: key = sdes.random_key() sage: len(key) == sdes.block_length() True 
 - sbox()#
- Return the S-boxes of simplified DES. - EXAMPLES: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: sbox = sdes.sbox() sage: sbox[0]; sbox[1] (1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2) (0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3) 
 - string_to_list(S)#
- Return a list representation of the binary string - S.- INPUT: - S– a string of bits
 - OUTPUT: - A list representation of the string - S.- EXAMPLES: - A list representation of a string of bits: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: S = "0101010110" sage: sdes.string_to_list(S) [0, 1, 0, 1, 0, 1, 0, 1, 1, 0] 
 - subkey(K, n=1)#
- Return the - n-th subkey based on the key- K.- INPUT: - K– a 10-bit secret key of this Simplified DES
- n– (default: 1) if- n=1then return the first subkey based on- K; if- n=2then return the second subkey. The valid values for- nare 1 and 2, since only two subkeys are defined for each secret key in Schaefer’s S-DES.
 - OUTPUT: - The - n-th subkey based on the secret key- K.- EXAMPLES: - Obtain the first subkey from a secret key: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.subkey(key, n=1) [1, 0, 1, 0, 0, 1, 0, 0] - Obtain the second subkey from a secret key: - sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.subkey(key, n=2) [0, 1, 0, 0, 0, 0, 1, 1] - We can also work with strings of bits: - sage: K = "1010010010" sage: L = sdes.string_to_list(K) sage: sdes.subkey(L, n=1) [1, 0, 1, 0, 0, 1, 0, 1] sage: sdes.subkey(sdes.string_to_list("0010010011"), n=2) [0, 1, 1, 0, 1, 0, 1, 0] 
 - switch(B)#
- Interchange the first 4 bits with the last 4 bits in the list - Bof 8 bits. Let- INPUT: - B– list; a block of 8 bits
 - OUTPUT: - A block of the same dimension, but in which the first 4 bits from - Bhas been switched for the last 4 bits in- B.- EXAMPLES: - Interchange the first 4 bits with the last 4 bits: - sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 1, 0, 1, 0, 0, 0] sage: sdes.switch(B) [1, 0, 0, 0, 1, 1, 1, 0] sage: sdes.switch([1, 1, 1, 1, 0, 0, 0, 0]) [0, 0, 0, 0, 1, 1, 1, 1] - We can also work with a string of bits: - sage: S = "11101000" sage: L = sdes.string_to_list(S) sage: sdes.switch(L) [1, 0, 0, 0, 1, 1, 1, 0] sage: sdes.switch(sdes.string_to_list("11110000")) [0, 0, 0, 0, 1, 1, 1, 1]