Small Scale Variants of the AES (SR) Polynomial System Generator#
Sage supports polynomial system generation for small scale (and full scale) AES variants over \(\GF{2}\) and \(\GF{2^e}\). Also, Sage supports both the specification of SR as given in the papers [CMR2005] and [CMR2006] and a variant of SR* which is equivalent to AES.
SR is a family of parameterizable variants of the AES suitable as a
framework for comparing different cryptanalytic techniques that can be
brought to bear on the AES. It is different from
Mini-AES
, whose
purpose is as a teaching tool to help beginners understand the basic
structure and working of the full AES.
AUTHORS:
Martin Albrecht (2008,2009-01): usability improvements
Martin Albrecht (2007-09): initial version
Niles Johnson (2010-08): (trac ticket #3893)
random_element()
should pass on*args
and**kwds
.
EXAMPLES:
We construct SR(1,1,1,4) and study its properties.
sage: sr = mq.SR(1, 1, 1, 4)
n
is the number of rounds, r
the number of rows in the
state array, c
the number of columns in the state array, and e
the
degree of the underlying field.
sage: sr.n, sr.r, sr.c, sr.e
(1, 1, 1, 4)
By default variables are ordered reverse to as they appear, e.g.:
sage: print(sr.R.repr_long())
Polynomial Ring
Base Ring : Finite Field in a of size 2^4
Size : 20 Variables
Block 0 : Ordering : deglex
Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003, k000, k001, k002, k003
However, this can be prevented by passing in reverse_variables=False
to the constructor.
For SR(1, 1, 1, 4) the ShiftRows
matrix isn’t that interesting.:
sage: sr.ShiftRows
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
Also, the MixColumns
matrix is the identity matrix.:
sage: sr.MixColumns
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
Lin
, however, is not the identity matrix.:
sage: sr.Lin
[ a^2 + 1 1 a^3 + a^2 a^2 + 1]
[ a a 1 a^3 + a^2 + a + 1]
[ a^3 + a a^2 a^2 1]
[ 1 a^3 a + 1 a + 1]
M
and Mstar
are identical for SR(1, 1, 1, 4):
sage: sr.M
[ a^2 + 1 1 a^3 + a^2 a^2 + 1]
[ a a 1 a^3 + a^2 + a + 1]
[ a^3 + a a^2 a^2 1]
[ 1 a^3 a + 1 a + 1]
sage: sr.Mstar
[ a^2 + 1 1 a^3 + a^2 a^2 + 1]
[ a a 1 a^3 + a^2 + a + 1]
[ a^3 + a a^2 a^2 1]
[ 1 a^3 a + 1 a + 1]
However, for larger instances of SR Mstar is not equal to M:
sage: sr = mq.SR(10,4,4,8)
sage: sr.Mstar == ~sr.MixColumns * sr.M
True
We can compute a Groebner basis for the ideals spanned by SR instances to recover all solutions to the system.:
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True)
sage: K = sr.base_ring()
sage: a = K.gen()
sage: K = [a]
sage: P = [1]
sage: F,s = sr.polynomial_system(P=P, K=K)
sage: F.groebner_basis()
[k100, k101 + 1, k102, k103 + k003,
x100 + 1, x101 + k003 + 1, x102 + k003 + 1,
x103 + k003, w100, w101, w102 + 1, w103 + k003 + 1,
s000 + 1, s001 + k003, s002 + k003, s003 + k003 + 1,
k000, k001, k002 + 1]
Note that the order of k000
, k001
, k002
and k003
is
little endian. Thus the result k002 + 1, k001, k000
indicates that
the key is either \(a\) or \(a+1\). We can verify that both keys encrypt P
to the same ciphertext:
sage: sr(P,[a])
[0]
sage: sr(P,[a+1])
[0]
All solutions can easily be recovered using the variety function for ideals.:
sage: I = F.ideal()
sage: for V in I.variety():
....: for k,v in sorted(V.items()):
....: print("{} {}".format(k, v))
....: print("\n")
k003 0
k002 1
k001 0
k000 0
s003 1
s002 0
s001 0
s000 1
w103 1
w102 1
w101 0
w100 0
x103 0
x102 1
x101 1
x100 1
k103 0
k102 0
k101 1
k100 0
k003 1
k002 1
k001 0
k000 0
s003 0
s002 1
s001 1
s000 1
w103 0
w102 1
w101 0
w100 0
x103 1
x102 0
x101 0
x100 1
k103 1
k102 0
k101 1
k100 0
We can also verify the correctness of the variety by evaluating all ideal generators on all points.:
sage: for V in I.variety():
....: for f in I.gens():
....: if f.subs(V) != 0:
....: print("epic fail")
Note that the S-Box object for SR can be constructed with a call to sr.sbox()
:
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True)
sage: S = sr.sbox()
For example, we can now study the difference distribution table of S
:
sage: S.difference_distribution_table()
[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 2 2 2 2 0 0 0 2 0 0 0 2 4 0 0]
[ 0 2 0 4 2 2 2 0 0 2 0 0 0 0 0 2]
[ 0 2 4 0 0 2 0 0 2 2 0 2 0 0 2 0]
[ 0 0 2 0 4 2 0 0 0 0 2 0 2 0 2 2]
[ 0 0 0 2 0 0 0 2 4 2 0 0 2 0 2 2]
[ 0 4 0 0 0 2 0 2 0 2 2 0 2 2 0 0]
[ 0 2 0 0 0 0 2 0 0 0 0 2 4 2 2 2]
[ 0 2 2 0 0 0 2 2 2 0 2 0 0 0 0 4]
[ 0 0 2 2 0 0 0 0 0 2 2 4 0 2 0 2]
[ 0 0 2 0 2 0 2 2 0 4 0 2 2 0 0 0]
[ 0 0 0 0 2 0 2 0 2 2 4 0 0 2 2 0]
[ 0 0 0 2 0 4 2 0 2 0 2 2 2 0 0 0]
[ 0 0 0 0 2 2 0 4 2 0 0 2 0 2 0 2]
[ 0 0 2 2 0 2 4 2 0 0 0 0 0 2 2 0]
[ 0 2 0 2 2 0 0 2 0 0 2 2 0 0 4 0]
or use S
to find alternative polynomial representations for the S-Box.:
sage: S.polynomials(degree=3)
[x0*x1 + x1*x2 + x0*x3 + x0*y2 + x1 + y0 + y1 + 1,
x0*x1 + x0*x2 + x0*y0 + x0*y1 + x0*y2 + x1 + x2 + y0 + y1 + y2,
x0*x1 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x1*y0 + x0*y1 + x0*y3,
x0*x1 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x1*y1 + x0*y3 + x1 + y0 + y1 + 1,
x0*x1 + x0*x2 + x0*y2 + x1*y2 + x0*y3 + x0 + x1,
x0*x3 + x1*x3 + x0*y1 + x0*y2 + x1*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x0*x1 + x1*x3 + x2*x3 + x0*y0 + x0*y2 + x0*y3 + x2 + y0 + y3,
x0*x1 + x0*x2 + x0*x3 + x1*x3 + x2*y0 + x0*y2 + x0 + x2 + x3 + y3,
x0*x3 + x1*x3 + x0*y0 + x2*y1 + x0*y2 + x3 + y3,
x0*x1 + x0*x2 + x0*y0 + x0*y1 + x2*y2 + x0*y3 + x1 + y0 + y1 + 1,
x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y3 + x2*y3 + y0 + y3,
x0*x1 + x0*x2 + x3*y0 + x0*y1 + x0*y3 + y0,
x0*y0 + x0*y1 + x3*y1 + x0 + x2 + y0 + y3,
x0*y0 + x3*y2 + y0,
x0*x1 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y2 + x3*y3 + y0,
x0*x2 + x0*x3 + x0*y1 + y0*y1 + x0*y3 + x2 + x3 + y3,
x0*x2 + x0*y0 + y0*y2 + x0*y3 + x0 + y0,
x0*x1 + x0*x2 + x1*x3 + x0*y2 + y0*y3 + y0,
x0*x1 + x0*y0 + y1*y2 + x0*y3 + x1 + x2 + y0 + 1,
x0*x2 + x1*x3 + x0*y1 + x0*y2 + x0*y3 + y1*y3 + x0 + y0 + y3,
x0*x1 + x0*x2 + x0*x3 + x0*y1 + x0*y2 + x0*y3 + y2*y3 + x0 + x1 + x2 + x3 + y1 + y3 + 1,
x0*x1*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0,
x0*x1*x3 + x0*x2 + x0*x3 + x0*y1 + x0*y3 + x0,
x0*x1*y0 + x0*x1 + x0*y0 + x0,
x0*x1*y1,
x0*x1*y2 + x0*x2 + x0*y2 + x0*y3 + x0,
x0*x1*y3 + x0*x1 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0,
x0*x2*x3 + x0*x1 + x0*x3 + x0*y1 + x0*y2 + x0*y3 + x0,
x0*x2*y0 + x0*x1 + x0*x2 + x0*x3 + x0*y1 + x0*y2,
x0*x2*y1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0,
x0*x2*y2 + x0*x2 + x0*y3 + x0,
x0*x2*y3 + x0*x2 + x0*y3 + x0,
x0*x3*y0 + x0*x1 + x0*x2 + x0*y0 + x0*y1 + x0*y3,
x0*x3*y1 + x0*x2 + x0*y1 + x0*y3 + x0,
x0*x3*y2,
x0*x3*y3 + x0*x1 + x0*y1 + x0*y2 + x0*y3 + x0,
x0*y0*y1 + x0*y1,
x0*y0*y2 + x0*x2 + x0*y3 + x0,
x0*y0*y3 + x0*x1 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0*y3 + x0,
x0*y1*y2 + x0*x2 + x0*y3 + x0,
x0*y1*y3 + x0*x3 + x0*y0 + x0*y2 + x0*y3,
x0*y2*y3 + x0*y2,
x1*x2*x3 + x0*x1 + x1*x3 + x0*y0 + x0*y1 + x2 + x3 + y3,
x1*x2*y0 + x0*x1 + x1*x3 + x0*y0 + x0*y1 + x2 + x3 + y3,
x1*x2*y1 + x0*x1 + x1*x3 + x0*y0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x1*x2*y2 + x0*x1 + x0*y0 + x0*y1 + x0 + x1 + y0 + y1 + 1,
x1*x2*y3 + x0*x1 + x1*x3 + x0*y0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x1*x3*y0 + x0*x1 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y3,
x1*x3*y1 + x0*x2 + x0*x3 + x0*y3 + x2 + x3 + y3,
x1*x3*y2 + x0*x2 + x0*x3 + x1*x3 + x0*y1 + x0*y3 + x0,
x1*x3*y3 + x0*x1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y3,
x1*y0*y1 + x0*x2 + x0*x3 + x0*y3 + x2 + x3 + y3,
x1*y0*y2 + x0*x2 + x0*x3 + x1*x3 + x0*y1 + x0*y3 + x0,
x1*y0*y3,
x1*y1*y2 + x0*x1 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y3 + x1 + y0 + y1 + 1,
x1*y1*y3 + x0*x1 + x1*x3 + x0*y0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x1*y2*y3 + x0*x1 + x0*x2 + x1*x3 + x0*y0 + x0*y2 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x2*x3*y0 + x0*x1 + x0*x3 + x1*x3 + x0*y2 + x0*y3 + x2 + x3 + y3,
x2*x3*y1 + x0*y1 + x0*y2 + x0*y3 + x3 + y0,
x2*x3*y2 + x1*x3 + x0*y1 + x0 + x2 + x3 + y3,
x2*x3*y3,
x2*y0*y1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0,
x2*y0*y2 + x0*x2 + x1*x3 + x0*y1 + x0*y3 + x2 + x3 + y3,
x2*y0*y3 + x0*x2 + x0*y3 + x0,
x2*y1*y2 + x0*x1 + x0*x2 + x1*x3 + x0*y0 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x2*y1*y3 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y3 + y0 + y3,
x2*y2*y3 + x0*x1 + x0*x2 + x1*x3 + x0*y0 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x3*y0*y1 + x0*x3 + x0*y1 + x0 + x2 + x3 + y3,
x3*y0*y2 + x0*y0 + y0,
x3*y0*y3 + x1*x3 + x0*y1 + x0*y2 + x0*y3 + y0,
x3*y1*y2 + x0*x2 + x0*x3 + x0*y3 + x2 + x3 + y3,
x3*y1*y3 + x0*x2 + x0*x3 + x0*y0 + x0*y2 + x0,
x3*y2*y3 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y3 + x0 + y0,
y0*y1*y2 + x0*x3 + x0 + x2 + x3 + y3,
y0*y1*y3 + x0*x3 + x0*y0 + x0*y2 + x0*y3,
y0*y2*y3 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + y0,
y1*y2*y3 + x0*x1 + x0*x2 + x1*x3 + x0*y0 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1]
sage: S.interpolation_polynomial()
(a^2 + 1)*x^14 + a^2*x^13 + x^12 + a^2*x^11 + a*x^10 + (a^3 + a)*x^9 +
(a^3 + 1)*x^7 + (a^3 + a^2 + a)*x^6 + a^2*x^5 + (a + 1)*x^4 + a^2*x^3 +
(a^3 + a^2 + a)*x^2 + (a^3 + 1)*x + a^2 + a
The SR_gf2_2
gives an example how use alternative polynomial
representations of the S-Box for construction of polynomial systems.
REFERENCES:
- class sage.crypto.mq.sr.AllowZeroInversionsContext(sr)#
Bases:
object
Temporarily allow zero inversion.
- sage.crypto.mq.sr.SR(n=1, r=1, c=1, e=4, star=False, **kwargs)#
Return a small scale variant of the AES polynomial system constructor subject to the following conditions:
INPUT:
n
- the number of rounds (default: 1)r
- the number of rows in the state array (default: 1)c
- the number of columns in the state array (default: 1)e
- the exponent of the finite extension field (default: 4)star
- determines if SR* or SR should be constructed (default:False
)aes_mode
- as the SR key schedule specification differs slightly from the AES key schedule, this parameter controls which schedule to use (default:True
)gf2
- generate polynomial systems over \(\GF{2}\) rather than over \(\GF{2^e}\) (default:False
)polybori
- use theBooleanPolynomialRing
as polynomial representation (default:True
, \(\GF{2}\) only)order
- a string to specify the term ordering of the variables (default:deglex
)postfix
- a string which is appended after the variable name (default: ‘’)allow_zero_inversions
- a boolean to control whether zero inversions raise an exception (default:False
)correct_only
- only include correct inversion polynomials (default:False
, \(\GF{2}\) only)biaffine_only
- only include bilinear and biaffine inversion polynomials (default:True
, \(\GF{2}\) only)
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4) sage: ShiftRows = sr.shift_rows_matrix() sage: MixColumns = sr.mix_columns_matrix() sage: Lin = sr.lin_matrix() sage: M = MixColumns * ShiftRows * Lin sage: print(sr.hex_str_matrix(M)) 5 1 C 5 2 2 1 F A 4 4 1 1 8 3 3
sage: sr = mq.SR(1, 2, 1, 4) sage: ShiftRows = sr.shift_rows_matrix() sage: MixColumns = sr.mix_columns_matrix() sage: Lin = sr.lin_matrix() sage: M = MixColumns * ShiftRows * Lin sage: print(sr.hex_str_matrix(M)) F 3 7 F A 2 B A A A 5 6 8 8 4 9 7 8 8 2 D C C 3 4 6 C C 5 E F F A 2 B A F 3 7 F 8 8 4 9 A A 5 6 D C C 3 7 8 8 2 5 E F F 4 6 C C
sage: sr = mq.SR(1, 2, 2, 4) sage: ShiftRows = sr.shift_rows_matrix() sage: MixColumns = sr.mix_columns_matrix() sage: Lin = sr.lin_matrix() sage: M = MixColumns * ShiftRows * Lin sage: print(sr.hex_str_matrix(M)) F 3 7 F 0 0 0 0 0 0 0 0 A 2 B A A A 5 6 0 0 0 0 0 0 0 0 8 8 4 9 7 8 8 2 0 0 0 0 0 0 0 0 D C C 3 4 6 C C 0 0 0 0 0 0 0 0 5 E F F A 2 B A 0 0 0 0 0 0 0 0 F 3 7 F 8 8 4 9 0 0 0 0 0 0 0 0 A A 5 6 D C C 3 0 0 0 0 0 0 0 0 7 8 8 2 5 E F F 0 0 0 0 0 0 0 0 4 6 C C 0 0 0 0 A 2 B A F 3 7 F 0 0 0 0 0 0 0 0 8 8 4 9 A A 5 6 0 0 0 0 0 0 0 0 D C C 3 7 8 8 2 0 0 0 0 0 0 0 0 5 E F F 4 6 C C 0 0 0 0 0 0 0 0 F 3 7 F A 2 B A 0 0 0 0 0 0 0 0 A A 5 6 8 8 4 9 0 0 0 0 0 0 0 0 7 8 8 2 D C C 3 0 0 0 0 0 0 0 0 4 6 C C 5 E F F 0 0 0 0
- class sage.crypto.mq.sr.SR_generic(n=1, r=1, c=1, e=4, star=False, **kwargs)#
Bases:
MPolynomialSystemGenerator
Small Scale Variants of the AES.
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4) sage: ShiftRows = sr.shift_rows_matrix() sage: MixColumns = sr.mix_columns_matrix() sage: Lin = sr.lin_matrix() sage: M = MixColumns * ShiftRows * Lin sage: print(sr.hex_str_matrix(M)) 5 1 C 5 2 2 1 F A 4 4 1 1 8 3 3
- add_round_key(d, key)#
Perform the
AddRoundKey
operation ond
usingkey
.INPUT:
d
- state array or something coercible to a state arraykey
- state array or something coercible to a state array
EXAMPLES:
sage: sr = mq.SR(10, 4, 4, 4) sage: D = sr.random_state_array() sage: K = sr.random_state_array() sage: sr.add_round_key(D, K) == K + D True
- base_ring()#
Return the base field of self as determined by
self.e
.EXAMPLES:
sage: sr = mq.SR(10, 2, 2, 4) sage: sr.base_ring().polynomial() a^4 + a + 1
The Rijndael polynomial:
sage: sr = mq.SR(10, 4, 4, 8) sage: sr.base_ring().polynomial() a^8 + a^4 + a^3 + a + 1
- block_order()#
Return a block order for self where each round is a block.
EXAMPLES:
sage: sr = mq.SR(2, 1, 1, 4) sage: sr.block_order() Block term order with blocks: (Degree lexicographic term order of length 16, Degree lexicographic term order of length 16, Degree lexicographic term order of length 4)
sage: P = sr.ring(order='block') sage: print(P.repr_long()) Polynomial Ring Base Ring : Finite Field in a of size 2^4 Size : 36 Variables Block 0 : Ordering : deglex Names : k200, k201, k202, k203, x200, x201, x202, x203, w200, w201, w202, w203, s100, s101, s102, s103 Block 1 : Ordering : deglex Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003 Block 2 : Ordering : deglex Names : k000, k001, k002, k003
- hex_str(M, typ='matrix')#
Return a hex string for the provided AES state array/matrix.
INPUT:
M
- state arraytyp
- controls what to return, either ‘matrix’ or ‘vector’ (default:'matrix'
)
EXAMPLES:
sage: sr = mq.SR(2, 2, 2, 4) sage: k = sr.base_ring() sage: A = matrix(k, 2, 2, [1, k.gen(), 0, k.gen()^2]) sage: sr.hex_str(A) ' 1 2 \n 0 4 \n'
sage: sr.hex_str(A, typ='vector') '1024'
- hex_str_matrix(M)#
Return a two-dimensional AES-like representation of the matrix M.
That is, show the finite field elements as hex strings.
INPUT:
M
- an AES state array
EXAMPLES:
sage: sr = mq.SR(2, 2, 2, 4) sage: k = sr.base_ring() sage: A = matrix(k, 2, 2, [1, k.gen(), 0, k.gen()^2]) sage: sr.hex_str_matrix(A) ' 1 2 \n 0 4 \n'
- hex_str_vector(M)#
Return a one-dimensional AES-like representation of the matrix M.
That is, show the finite field elements as hex strings.
INPUT:
M
- an AES state array
EXAMPLES:
sage: sr = mq.SR(2, 2, 2, 4) sage: k = sr.base_ring() sage: A = matrix(k, 2, 2, [1, k.gen(), 0, k.gen()^2]) sage: sr.hex_str_vector(A) '1024'
- is_state_array(d)#
Return
True
ifd
is a state array, i.e. has the correct dimensions and base field.EXAMPLES:
sage: sr = mq.SR(2, 2, 4, 8) sage: k = sr.base_ring() sage: sr.is_state_array( matrix(k, 2, 4) ) True
sage: sr = mq.SR(2, 2, 4, 8) sage: k = sr.base_ring() sage: sr.is_state_array( matrix(k, 4, 4) ) False
- key_schedule(kj, i)#
Return \(k_i\) for a given \(i\) and \(k_j\) with \(j = i-1\).
EXAMPLES:
sage: sr = mq.SR(10, 4, 4, 8, star=True, allow_zero_inversions=True) sage: ki = sr.state_array() sage: for i in range(10): ....: ki = sr.key_schedule(ki, i+1) sage: print(sr.hex_str_matrix(ki)) B4 3E 23 6F EF 92 E9 8F 5B E2 51 18 CB 11 CF 8E
- key_schedule_polynomials(i)#
Return polynomials for the \(i\)-th round of the key schedule.
INPUT:
i
- round (\(0 \leq i \leq n\))
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=False)
The 0-th subkey is the user provided key, so only conjugacy relations or field polynomials are added.:
sage: sr.key_schedule_polynomials(0) (k000^2 + k000, k001^2 + k001, k002^2 + k002, k003^2 + k003)
The 1-th subkey is derived from the user provided key according to the key schedule which is non-linear.:
sage: sr.key_schedule_polynomials(1) (k100 + s000 + s002 + s003, k101 + s000 + s001 + s003 + 1, k102 + s000 + s001 + s002 + 1, k103 + s001 + s002 + s003 + 1, k100^2 + k100, k101^2 + k101, k102^2 + k102, k103^2 + k103, s000^2 + s000, s001^2 + s001, s002^2 + s002, s003^2 + s003, s000*k000 + s000*k003 + s001*k002 + s002*k001 + s003*k000, s000*k000 + s000*k001 + s001*k000 + s001*k003 + s002*k002 + s003*k001, s000*k001 + s000*k002 + s001*k000 + s001*k001 + s002*k000 + s002*k003 + s003*k002, s000*k000 + s000*k001 + s000*k003 + s001*k001 + s002*k000 + s002*k002 + s003*k000 + k000, s000*k002 + s001*k000 + s001*k001 + s001*k003 + s002*k001 + s003*k000 + s003*k002 + k001, s000*k000 + s000*k001 + s000*k002 + s001*k002 + s002*k000 + s002*k001 + s002*k003 + s003*k001 + k002, s000*k001 + s001*k000 + s001*k002 + s002*k000 + s003*k001 + s003*k003 + k003, s000*k000 + s000*k002 + s000*k003 + s001*k000 + s001*k001 + s002*k002 + s003*k000 + s000, s000*k001 + s000*k003 + s001*k001 + s001*k002 + s002*k000 + s002*k003 + s003*k001 + s001, s000*k000 + s000*k002 + s001*k000 + s001*k002 + s001*k003 + s002*k000 + s002*k001 + s003*k002 + s002, s000*k001 + s000*k002 + s001*k000 + s001*k003 + s002*k001 + s003*k003 + s003, s000*k002 + s001*k001 + s002*k000 + s003*k003 + 1)
- mix_columns(d)#
Perform the
MixColumns
operation ond
.INPUT:
d
- state array or something coercible to a state array
EXAMPLES:
sage: sr = mq.SR(10, 4, 4, 4) sage: E = sr.state_array() + 1; E [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]
sage: sr.mix_columns(E) [ a a + 1 1 1] [ 1 a a + 1 1] [ 1 1 a a + 1] [a + 1 1 1 a]
- new_generator(**kwds)#
Return a new
SR
instance equal to this instance except for the parameters passed explicitly to this function.INPUT:
**kwds
- see theSR
constructor for accepted parameters
EXAMPLES:
sage: sr = mq.SR(2,1,1,4); sr SR(2,1,1,4) sage: sr.ring().base_ring() Finite Field in a of size 2^4
sage: sr2 = sr.new_generator(gf2=True); sr2 SR(2,1,1,4) sage: sr2.ring().base_ring() Finite Field of size 2 sage: sr3 = sr2.new_generator(correct_only=True) sage: len(sr2.inversion_polynomials_single_sbox()) 20 sage: len(sr3.inversion_polynomials_single_sbox()) 19
- polynomial_system(P=None, K=None, C=None)#
Return a polynomial system for this small scale AES variant for a given plaintext-key pair.
If neither
P
,K
norC
are provided, a random pair (P
,K
) will be generated. IfP
andC
are provided noK
needs to be provided.INPUT:
P
- vector, list, or tuple (default:None
)K
- vector, list, or tuple (default:None
)C
- vector, list, or tuple (default:None
)
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True) sage: P = sr.vector([0, 0, 1, 0]) sage: K = sr.vector([1, 0, 0, 1]) sage: F, s = sr.polynomial_system(P, K)
This returns a polynomial system:
sage: F Polynomial Sequence with 36 Polynomials in 20 Variables
and a solution:
sage: s # random -- maybe we need a better doctest here? {k000: 1, k001: 0, k003: 1, k002: 0}
This solution is not the only solution that we can learn from the Groebner basis of the system.
sage: F.groebner_basis()[-3:] [k000 + 1, k001, k003 + 1]
In particular we have two solutions:
sage: len(F.ideal().variety()) 2
In the following example we provide
C
explicitly:sage: C = sr(P,K) sage: F,s = sr.polynomial_system(P=P, C=C) sage: F Polynomial Sequence with 36 Polynomials in 20 Variables
Alternatively, we can use symbols for the
P
andC
. First, we have to create a polynomial ring:sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True) sage: R = sr.R sage: vn = sr.varstrs("P",0,1,4) + R.variable_names() + sr.varstrs("C",0,1,4) sage: R = BooleanPolynomialRing(len(vn),vn) sage: sr.R = R
Now, we can construct the purely symbolic equation system:
sage: C = sr.vars("C",0); C (C000, C001, C002, C003) sage: P = sr.vars("P",0) sage: F,s = sr.polynomial_system(P=P,C=C) sage: F Polynomial Sequence with 36 Polynomials in 28 Variables sage: F.part(0) (P000 + w100 + k000, P001 + w101 + k001, P002 + w102 + k002, P003 + w103 + k003) sage: F.part(-2) (k100 + x100 + x102 + x103 + C000, k101 + x100 + x101 + x103 + C001 + 1, ...)
We show that the (returned) key is a solution to the returned system:
sage: sr = mq.SR(3,4,4,8, star=True, gf2=True, polybori=True) sage: while True: # workaround (see :trac:`31891`) ....: try: ....: F, s = sr.polynomial_system() ....: break ....: except ZeroDivisionError: ....: pass sage: F.subs(s).groebner_basis() # long time Polynomial Sequence with 1248 Polynomials in 1248 Variables
- random_element(elem_type='vector', *args, **kwds)#
Return a random element for self. Other arguments and keywords are passed to random_* methods.
INPUT:
elem_type
- either ‘vector’ or ‘state array’ (default:'vector'
)
EXAMPLES:
sage: sr = mq.SR() sage: sr.random_element().parent() Full MatrixSpace of 4 by 1 dense matrices over Finite Field in a of size 2^4 sage: sr.random_element('state_array').parent() Full MatrixSpace of 1 by 1 dense matrices over Finite Field in a of size 2^4
Passes extra positional or keyword arguments through:
sage: sr.random_element(density=0) [0] [0] [0] [0]
- random_state_array(*args, **kwds)#
Return a random element in
MatrixSpace(self.base_ring(), self.r, self.c)
.EXAMPLES:
sage: sr = mq.SR(2, 2, 2, 4) sage: sr.random_state_array().parent() Full MatrixSpace of 2 by 2 dense matrices over Finite Field in a of size 2^4
- random_vector(*args, **kwds)#
Return a random vector as it might appear in the algebraic expression of self.
EXAMPLES:
sage: mq.SR(2, 2, 2, 4).random_vector().parent() Full MatrixSpace of 16 by 1 dense matrices over Finite Field in a of size 2^4
Note
\(\phi\) was already applied to the result.
- ring(order=None, reverse_variables=None)#
Construct a ring as a base ring for the polynomial system.
By default, variables are ordered in the reverse of their natural ordering, i.e. the reverse of as they appear.
INPUT:
order
- a monomial ordering (default:None
)reverse_variables
- reverse rounds of variables (default:True
)
The variable assignment is as follows:
\(k_{i,j,l}\) - subkey round \(i\) word \(j\) conjugate/bit \(l\)
\(s_{i,j,l}\) - subkey inverse round \(i\) word \(j\) conjugate/bit \(l\)
\(w_{i,j,l}\) - inversion input round \(i\) word \(j\) conjugate/bit \(l\)
\(x_{i,j,l}\) - inversion output round \(i\) word \(j\) conjugate/bit \(l\)
Note that the variables are ordered in column major ordering in the state array and that the bits are ordered in little endian ordering.
For example, if \(x_{0,1,0}\) is a variable over \(\GF{2}\) for \(r=2\) and \(c=2\) then refers to the most significant bit of the entry in the position (1,0) in the state array matrix.
EXAMPLES:
sage: sr = mq.SR(2, 1, 1, 4) sage: P = sr.ring(order='block') sage: print(P.repr_long()) Polynomial Ring Base Ring : Finite Field in a of size 2^4 Size : 36 Variables Block 0 : Ordering : deglex Names : k200, k201, k202, k203, x200, x201, x202, x203, w200, w201, w202, w203, s100, s101, s102, s103 Block 1 : Ordering : deglex Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003 Block 2 : Ordering : deglex Names : k000, k001, k002, k003
- round_polynomials(i, plaintext=None, ciphertext=None)#
Return list of polynomials for a given round \(i\).
If
i == 0
a plaintext must be provided, ifi == n
a ciphertext must be provided.INPUT:
i
- round numberplaintext
- optional plaintext (mandatory in first round)ciphertext
- optional ciphertext (mandatory in last round)
OUTPUT: tuple
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4) sage: k = sr.base_ring() sage: p = [k.random_element() for _ in range(sr.r*sr.c)] sage: sr.round_polynomials(0, plaintext=p) (w100 + k000..., w101 + k001..., w102 + k002..., w103 + k003...)
- sbox(inversion_only=False)#
Return an S-Box object for this SR instance.
INPUT:
inversion_only
- do not include the \(\GF{2}\) affine map when computing the S-Box (default:False
)
EXAMPLES:
sage: sr = mq.SR(1,2,2,4, allow_zero_inversions=True) sage: S = sr.sbox(); S (6, 11, 5, 4, 2, 14, 7, 10, 9, 13, 15, 12, 3, 1, 0, 8) sage: sr.sub_byte(0) a^2 + a sage: sage_eval(str(sr.sub_byte(0)), {'a':2}) 6 sage: S(0) 6 sage: sr.sub_byte(1) a^3 + a + 1 sage: sage_eval(str(sr.sub_byte(1)), {'a':2}) 11 sage: S(1) 11 sage: sr = mq.SR(1,2,2,8, allow_zero_inversions=True) sage: S = sr.sbox(); S (99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22) sage: sr.sub_byte(0) a^6 + a^5 + a + 1 sage: sage_eval(str(sr.sub_byte(0)), {'a':2}) 99 sage: S(0) 99 sage: sr.sub_byte(1) a^6 + a^5 + a^4 + a^3 + a^2 sage: sage_eval(str(sr.sub_byte(1)), {'a':2}) 124 sage: S(1) 124 sage: sr = mq.SR(1,2,2,4, allow_zero_inversions=True) sage: S = sr.sbox(inversion_only=True); S (0, 1, 9, 14, 13, 11, 7, 6, 15, 2, 12, 5, 10, 4, 3, 8) sage: S(0) 0 sage: S(1) 1 sage: S(sr.k.gen()) a^3 + a + 1
- sbox_constant()#
Return the S-Box constant which is added after \(L(x^{-1})\) was performed. That is
0x63
ife == 8
or0x6
ife == 4
.EXAMPLES:
sage: sr = mq.SR(10, 1, 1, 8) sage: sr.sbox_constant() a^6 + a^5 + a + 1
- shift_rows(d)#
Perform the
ShiftRows
operation ond
.INPUT:
d
- state array or something coercible to a state array
EXAMPLES:
sage: sr = mq.SR(10, 4, 4, 4) sage: E = sr.state_array() + 1; E [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]
sage: sr.shift_rows(E) [1 0 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0]
- state_array(d=None)#
Convert the parameter to a state array.
INPUT:
d
- a matrix, a list, or a tuple (default:None
)
EXAMPLES:
sage: sr = mq.SR(2, 2, 2, 4) sage: k = sr.base_ring() sage: e1 = [k.from_integer(e) for e in range(2*2)]; e1 [0, 1, a, a + 1] sage: e2 = sr.phi( Matrix(k, 2*2, 1, e1) ) sage: sr.state_array(e1) # note the column major ordering [ 0 a] [ 1 a + 1] sage: sr.state_array(e2) [ 0 a] [ 1 a + 1]
sage: sr.state_array() [0 0] [0 0]
- sub_byte(b)#
Perform
SubByte
on a single byte/halfbyteb
.A
ZeroDivision
exception is raised if an attempt is made to perform an inversion on the zero element. This can be disabled by passingallow_zero_inversion=True
to the constructor. A zero inversion can result in an inconsistent equation system.INPUT:
b
- an element inself.base_ring()
EXAMPLES:
The S-Box table for \(\GF{2^4}\):
sage: sr = mq.SR(1, 1, 1, 4, allow_zero_inversions=True) sage: for e in sr.base_ring(): ....: print('% 20s % 20s'%(e, sr.sub_byte(e))) 0 a^2 + a a a^2 + 1 a^2 a a^3 a^3 + 1 a + 1 a^2 a^2 + a a^2 + a + 1 a^3 + a^2 a + 1 a^3 + a + 1 a^3 + a^2 a^2 + 1 a^3 + a^2 + a a^3 + a a^3 + a^2 + a + 1 a^2 + a + 1 a^3 + a a^3 + a^2 + a 0 a^3 + a^2 + a + 1 a^3 a^3 + a^2 + 1 1 a^3 + 1 a^3 + a^2 + 1 1 a^3 + a + 1
- sub_bytes(d)#
Perform the non-linear transform on
d
.INPUT:
d
- state array or something coercible to a state array
EXAMPLES:
sage: sr = mq.SR(2, 1, 2, 8, gf2=True) sage: k = sr.base_ring() sage: A = Matrix(k, 1, 2 , [k(1), k.gen()]) sage: sr.sub_bytes(A) [ a^6 + a^5 + a^4 + a^3 + a^2 a^6 + a^5 + a^4 + a^2 + a + 1]
- varformatstr(name, n=None, rc=None, e=None)#
Return a format string which is understood by print et al.
If a numerical value is omitted, the default value of
self
is used. The numerical values (n
,rc
,e
) are used to determine the width of the respective fields in the format string.INPUT:
name
- name of the variablen
- number of rounds (default:None
)rc
- number of rows * number of cols (default:None
)e
- exponent of base field (default:None
)
EXAMPLES:
sage: sr = mq.SR(1, 2, 2, 4) sage: sr.varformatstr('x') 'x%01d%01d%01d' sage: sr.varformatstr('x', n=1000) 'x%03d%03d%03d'
- variable_dict()#
Return a dictionary to access variables in
self.R
by their names.EXAMPLES:
sage: sr = mq.SR(1,1,1,4) sage: sr.variable_dict() {'k000': k000, 'k001': k001, 'k002': k002, 'k003': k003, 'k100': k100, 'k101': k101, 'k102': k102, 'k103': k103, 's000': s000, 's001': s001, 's002': s002, 's003': s003, 'w100': w100, 'w101': w101, 'w102': w102, 'w103': w103, 'x100': x100, 'x101': x101, 'x102': x102, 'x103': x103} sage: sr = mq.SR(1,1,1,4,gf2=True) sage: sr.variable_dict() {'k000': k000, 'k001': k001, 'k002': k002, 'k003': k003, 'k100': k100, 'k101': k101, 'k102': k102, 'k103': k103, 's000': s000, 's001': s001, 's002': s002, 's003': s003, 'w100': w100, 'w101': w101, 'w102': w102, 'w103': w103, 'x100': x100, 'x101': x101, 'x102': x102, 'x103': x103}
- vars(name, nr, rc=None, e=None)#
Return a list of variables in
self
.INPUT:
name
- variable namenr
- number of round to create variable strings forrc
- number of rounds * number of columns in the state array (default:None
)e
- exponent of base field (default:None
)
EXAMPLES:
sage: sr = mq.SR(10, 1, 2, 4) sage: sr.vars('x', 2) (x200, x201, x202, x203, x210, x211, x212, x213)
- varstr(name, nr, rc, e)#
Return a string representing a variable for the small scale AES subject to the given constraints.
INPUT:
name
- variable namenr
- number of round to create variable strings forrc
- row*column index in state arraye
- exponent of base field
EXAMPLES:
sage: sr = mq.SR(10, 1, 2, 4) sage: sr.varstr('x', 2, 1, 1) 'x211'
- varstrs(name, nr, rc=None, e=None)#
Return a list of strings representing variables in
self
.INPUT:
name
- variable namenr
- number of round to create variable strings forrc
- number of rows * number of columns in the state array (default:None
)e
- exponent of base field (default:None
)
EXAMPLES:
sage: sr = mq.SR(10, 1, 2, 4) sage: sr.varstrs('x', 2) ('x200', 'x201', 'x202', 'x203', 'x210', 'x211', 'x212', 'x213')
- class sage.crypto.mq.sr.SR_gf2(n=1, r=1, c=1, e=4, star=False, **kwargs)#
Bases:
SR_generic
Small Scale Variants of the AES polynomial system constructor over \(\GF{2}\). See help for SR.
EXAMPLES:
sage: sr = mq.SR(gf2=True) sage: sr SR(1,1,1,4)
- antiphi(l)#
The operation \(\phi^{-1}\) from [MR2002] or the inverse of
self.phi
.INPUT:
l
- a vector in the sense ofself.is_vector
EXAMPLES:
sage: sr = mq.SR(gf2=True) sage: A = sr.random_state_array() sage: sr.antiphi(sr.phi(A)) == A True
- field_polynomials(name, i, l=None)#
Return list of field polynomials for a given round
i
and namename
.INPUT:
name
- variable namei
- round numberl
- length of variable list (default:None
= r*c)
EXAMPLES:
sage: sr = mq.SR(3, 1, 1, 8, gf2=True, polybori=False) sage: sr.field_polynomials('x', 2) [x200^2 + x200, x201^2 + x201, x202^2 + x202, x203^2 + x203, x204^2 + x204, x205^2 + x205, x206^2 + x206, x207^2 + x207]
sage: sr = mq.SR(3, 1, 1, 8, gf2=True, polybori=True) sage: sr.field_polynomials('x', 2) []
- inversion_polynomials(xi, wi, length)#
Return polynomials to represent the inversion in the AES S-Box.
INPUT:
xi
- output variableswi
- input variableslength
- length of both lists
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 8, gf2=True) sage: xi = sr.vars('x', 1) sage: wi = sr.vars('w', 1) sage: sr.inversion_polynomials(xi, wi, len(xi))[:3] [x100*w100 + x100*w102 + x100*w103 + x100*w107 + x101*w101 + x101*w102 + x101*w106 + x102*w100 + x102*w101 + x102*w105 + x103*w100 + x103*w104 + x104*w103 + x105*w102 + x106*w101 + x107*w100, x100*w101 + x100*w103 + x100*w104 + x101*w100 + x101*w102 + x101*w103 + x101*w107 + x102*w101 + x102*w102 + x102*w106 + x103*w100 + x103*w101 + x103*w105 + x104*w100 + x104*w104 + x105*w103 + x106*w102 + x107*w101, x100*w102 + x100*w104 + x100*w105 + x101*w101 + x101*w103 + x101*w104 + x102*w100 + x102*w102 + x102*w103 + x102*w107 + x103*w101 + x103*w102 + x103*w106 + x104*w100 + x104*w101 + x104*w105 + x105*w100 + x105*w104 + x106*w103 + x107*w102]
- inversion_polynomials_single_sbox(x=None, w=None, biaffine_only=None, correct_only=None)#
Return inversion polynomials of a single S-Box.
INPUT:
xi
- output variableswi
- input variableslength
- length of both lists
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 8, gf2=True) sage: len(sr.inversion_polynomials_single_sbox()) 24 sage: len(sr.inversion_polynomials_single_sbox(correct_only=True)) 23 sage: len(sr.inversion_polynomials_single_sbox(biaffine_only=False)) 40 sage: len(sr.inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True)) 39 sage: sr = mq.SR(1, 1, 1, 8, gf2=True) sage: l0 = sr.inversion_polynomials_single_sbox(); len(l0) 24 sage: l1 = sr.inversion_polynomials_single_sbox(correct_only=True); len(l1) 23 sage: l2 = sr.inversion_polynomials_single_sbox(biaffine_only=False); len(l2) 40 sage: l3 = sr.inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True); len(l3) 39 sage: set(l0) == set(sr._inversion_polynomials_single_sbox()) True sage: set(l1) == set(sr._inversion_polynomials_single_sbox(correct_only=True)) True sage: set(l2) == set(sr._inversion_polynomials_single_sbox(biaffine_only=False)) True sage: set(l3) == set(sr._inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True)) True sage: sr = mq.SR(1, 1, 1, 4, gf2=True) sage: l0 = sr.inversion_polynomials_single_sbox(); len(l0) 12 sage: l1 = sr.inversion_polynomials_single_sbox(correct_only=True); len(l1) 11 sage: l2 = sr.inversion_polynomials_single_sbox(biaffine_only=False); len(l2) 20 sage: l3 = sr.inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True); len(l3) 19 sage: set(l0) == set(sr._inversion_polynomials_single_sbox()) True sage: set(l1) == set(sr._inversion_polynomials_single_sbox(correct_only=True)) True sage: set(l2) == set(sr._inversion_polynomials_single_sbox(biaffine_only=False)) True sage: set(l3) == set(sr._inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True)) True
- is_vector(d)#
Return
True
if the given matrix satisfies the conditions for a vector as it appears in the algebraic expression ofself
.INPUT:
d
- matrix
EXAMPLES:
sage: sr = mq.SR(gf2=True) sage: sr SR(1,1,1,4) sage: k = sr.base_ring() sage: A = Matrix(k, 1, 1, [k.gen()]) sage: B = sr.vector(A) sage: sr.is_vector(A) False sage: sr.is_vector(B) True
- lin_matrix(length=None)#
Return the
Lin
matrix.If no
length
is provided, the standard state space size is used. The key schedule calls this method with an explicit length argument because onlyself.r
S-Box applications are performed in the key schedule.INPUT:
length
- length of state space (default:None
)
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4, gf2=True) sage: sr.lin_matrix() [1 0 1 1] [1 1 0 1] [1 1 1 0] [0 1 1 1]
- mix_columns_matrix()#
Return the
MixColumns
matrix.EXAMPLES:
sage: sr = mq.SR(1, 2, 2, 4, gf2=True) sage: s = sr.random_state_array() sage: r1 = sr.mix_columns(s) sage: r2 = sr.state_array(sr.mix_columns_matrix() * sr.vector(s)) sage: r1 == r2 True
- phi(l, diffusion_matrix=False)#
The operation \(\phi\) from [MR2002]
Given a list/matrix of elements in \(\GF{2^e}\), return a matching list/matrix of elements in \(\GF{2}\).
INPUT:
l
- element to perform \(\phi\) on.diffusion_matrix
- ifTrue
, the given matrixl
is transformed to a matrix which performs the same operation over \(\GF{2}\) asl
over \(\GF{2^n}\) (default:False
).
EXAMPLES:
sage: sr = mq.SR(2, 1, 2, 4, gf2=True) sage: k = sr.base_ring() sage: A = matrix(k, 1, 2, [k.gen(), 0] ) sage: sr.phi(A) [0 0] [0 0] [1 0] [0 0]
- shift_rows_matrix()#
Return the
ShiftRows
matrix.EXAMPLES:
sage: sr = mq.SR(1, 2, 2, 4, gf2=True) sage: s = sr.random_state_array() sage: r1 = sr.shift_rows(s) sage: r2 = sr.state_array( sr.shift_rows_matrix() * sr.vector(s) ) sage: r1 == r2 True
- vector(d=None)#
Constructs a vector suitable for the algebraic representation of SR.
INPUT:
d
- values for vector (default:None
)
EXAMPLES:
sage: sr = mq.SR(gf2=True) sage: sr SR(1,1,1,4) sage: k = sr.base_ring() sage: A = Matrix(k, 1, 1, [k.gen()]) sage: sr.vector(A) [0] [0] [1] [0]
- class sage.crypto.mq.sr.SR_gf2_2(n=1, r=1, c=1, e=4, star=False, **kwargs)#
Bases:
SR_gf2
This is an example how to customize the SR constructor.
In this example, we replace the S-Box inversion polynomials by the polynomials generated by the S-Box class.
- inversion_polynomials_single_sbox(x=None, w=None, biaffine_only=None, correct_only=None, groebner=False)#
Return inversion polynomials of a single S-Box.
INPUT:
x
- output variables (default:None
)w
- input variables (default:None
)biaffine_only
- ignored (alwaysFalse
)correct_only
- ignored (alwaysTrue
)groebner
- precompute the Groebner basis for this S-Box (default:False
).
EXAMPLES:
sage: from sage.crypto.mq.sr import SR_gf2_2 sage: e = 4 sage: sr = SR_gf2_2(1, 1, 1, e) sage: P = PolynomialRing(GF(2),['x%d'%i for i in range(e)] + ['w%d'%i for i in range(e)],order='lex') sage: X,W = P.gens()[:e],P.gens()[e:] sage: sr.inversion_polynomials_single_sbox(X, W, groebner=True) [x0 + w0*w1*w2 + w0*w1 + w0*w2 + w0*w3 + w0 + w1 + w2, x1 + w0*w1*w3 + w0*w3 + w0 + w1*w3 + w1 + w2*w3, x2 + w0*w2*w3 + w0*w2 + w0 + w1*w2 + w1*w3 + w2*w3, x3 + w0*w1*w2 + w0 + w1*w2*w3 + w1*w2 + w1*w3 + w1 + w2 + w3] sage: from sage.crypto.mq.sr import SR_gf2_2 sage: e = 4 sage: sr = SR_gf2_2(1, 1, 1, e) sage: sr.inversion_polynomials_single_sbox() [w3*w1 + w3*w0 + w3*x2 + w3*x1 + w3 + w2*w1 + w1 + x3 + x2 + x1, w3*w2 + w3*w1 + w3*x3 + w2 + w1 + x3, w3*w2 + w3*w1 + w3*x2 + w3 + w2*x3 + x2 + x1, w3*w2 + w3*w1 + w3*x3 + w3*x2 + w3*x1 + w3 + w2*x2 + w0 + x3 + x2 + x1 + x0, w3*w2 + w3*w1 + w3*x1 + w3*x0 + w2*x1 + w0 + x3 + x0, w3*w2 + w3*w1 + w3*w0 + w3*x2 + w3*x1 + w2*w0 + w2*x0 + w0 + x3 + x2 + x1 + x0, w3*w2 + w3*x1 + w3 + w2*w0 + w1*w0 + w1 + x3 + x2, w3*w2 + w3*w1 + w3*x1 + w1*x3 + x3 + x2 + x1, w3*x3 + w3*x2 + w3*x0 + w3 + w1*x2 + w1 + w0 + x2 + x0, w3*w2 + w3*w1 + w3*x2 + w3*x1 + w1*x1 + w1 + w0 + x2 + x0, w3*w2 + w3*w1 + w3*w0 + w3*x3 + w3*x1 + w2*w0 + w1*x0 + x3 + x2, w3*w2 + w3*w1 + w3*x2 + w3*x1 + w3*x0 + w3 + w1 + w0*x3 + x3 + x2, w3*w2 + w3*w1 + w3*w0 + w3*x3 + w3 + w2*w0 + w1 + w0*x2 + x3 + x2, w3*w0 + w3*x2 + w2*w0 + w0*x1 + w0 + x3 + x1 + x0, w3*w0 + w3*x3 + w3*x0 + w2*w0 + w1 + w0*x0 + w0 + x3 + x2, w3*w2 + w3 + w1 + x3*x2 + x3 + x1, w3*w2 + w3*x3 + w1 + x3*x1 + x3 + x2, w3*w2 + w3*w0 + w3*x3 + w3*x2 + w3*x1 + w0 + x3*x0 + x1 + x0, w3*w2 + w3*w1 + w3*w0 + w3*x3 + w1 + w0 + x2*x1 + x2 + x0, w3*w2 + w2*w0 + w1 + x3 + x2*x0, w3*x3 + w3*x1 + w2*w0 + w1 + x3 + x2 + x1*x0 + x1]
- class sage.crypto.mq.sr.SR_gf2n(n=1, r=1, c=1, e=4, star=False, **kwargs)#
Bases:
SR_generic
Small Scale Variants of the AES polynomial system constructor over \(\GF{2^n}\).
- antiphi(l)#
The operation \(\phi^{-1}\) from [MR2002] or the inverse of
self.phi
.INPUT:
l
– a vector in the sense ofis_vector()
EXAMPLES:
sage: sr = mq.SR() sage: A = sr.random_state_array() sage: sr.antiphi(sr.phi(A)) == A True
- field_polynomials(name, i, l=None)#
Return list of conjugacy polynomials for a given round
i
and namename
.INPUT:
name
- variable namei
- round numberl
- r*c (default:None
)
EXAMPLES:
sage: sr = mq.SR(3, 1, 1, 8) sage: sr.field_polynomials('x', 2) [x200^2 + x201, x201^2 + x202, x202^2 + x203, x203^2 + x204, x204^2 + x205, x205^2 + x206, x206^2 + x207, x207^2 + x200]
- inversion_polynomials(xi, wi, length)#
Return polynomials to represent the inversion in the AES S-Box.
INPUT:
xi
- output variableswi
- input variableslength
- length of both lists
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 8) sage: R = sr.ring() sage: xi = Matrix(R, 8, 1, sr.vars('x', 1)) sage: wi = Matrix(R, 8, 1, sr.vars('w', 1)) sage: sr.inversion_polynomials(xi, wi, 8) [x100*w100 + 1, x101*w101 + 1, x102*w102 + 1, x103*w103 + 1, x104*w104 + 1, x105*w105 + 1, x106*w106 + 1, x107*w107 + 1]
- is_vector(d)#
Return
True
ifd
can be used as a vector forself
.EXAMPLES:
sage: sr = mq.SR() sage: sr SR(1,1,1,4) sage: k = sr.base_ring() sage: A = Matrix(k, 1, 1, [k.gen()]) sage: B = sr.vector(A) sage: sr.is_vector(A) False sage: sr.is_vector(B) True
- lin_matrix(length=None)#
Return the
Lin
matrix.If no
length
is provided, the standard state space size is used. The key schedule calls this method with an explicit length argument because onlyself.r
S-Box applications are performed in the key schedule.INPUT:
length
- length of state space (default:None
)
EXAMPLES:
sage: sr = mq.SR(1, 1, 1, 4) sage: sr.lin_matrix() [ a^2 + 1 1 a^3 + a^2 a^2 + 1] [ a a 1 a^3 + a^2 + a + 1] [ a^3 + a a^2 a^2 1] [ 1 a^3 a + 1 a + 1]
- mix_columns_matrix()#
Return the
MixColumns
matrix.EXAMPLES:
sage: sr = mq.SR(1, 2, 2, 4) sage: s = sr.random_state_array() sage: r1 = sr.mix_columns(s) sage: r2 = sr.state_array(sr.mix_columns_matrix() * sr.vector(s)) sage: r1 == r2 True
- phi(l)#
The operation \(\phi\) from [MR2002]
Projects state arrays to their algebraic representation.
INPUT:
l
- element to perform \(\phi\) on.
EXAMPLES:
sage: sr = mq.SR(2, 1, 2, 4) sage: k = sr.base_ring() sage: A = matrix(k, 1, 2, [k.gen(), 0] ) sage: sr.phi(A) [ a 0] [ a^2 0] [ a + 1 0] [a^2 + 1 0]
- shift_rows_matrix()#
Return the
ShiftRows
matrix.EXAMPLES:
sage: sr = mq.SR(1, 2, 2, 4) sage: s = sr.random_state_array() sage: r1 = sr.shift_rows(s) sage: r2 = sr.state_array( sr.shift_rows_matrix() * sr.vector(s) ) sage: r1 == r2 True
- vector(d=None)#
Constructs a vector suitable for the algebraic representation of SR, i.e. BES.
INPUT:
d
- values for vector, must be understood byself.phi
(default:None
)
EXAMPLES:
sage: sr = mq.SR() sage: sr SR(1,1,1,4) sage: k = sr.base_ring() sage: A = Matrix(k, 1, 1, [k.gen()]) sage: sr.vector(A) [ a] [ a^2] [ a + 1] [a^2 + 1]
- sage.crypto.mq.sr.test_consistency(max_n=2, **kwargs)#
Test all combinations of
r
,c
,e
andn
in(1, 2)
for consistency of random encryptions and their polynomial systems. \(\GF{2}\) and \(\GF{2^e}\) systems are tested. This test takes a while.INPUT:
max_n
– maximal number of rounds to consider (default: 2)kwargs
– are passed to the SR constructor