Finitely generated abelian groups with GAP.#
This module provides a python wrapper for abelian groups in GAP.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: AbelianGroupGap([3,5])
Abelian group with gap, generator orders (3, 5)
For infinite abelian groups we use the GAP package Polycyclic
:
sage: AbelianGroupGap([3,0]) # optional - gap_packages
Abelian group with gap, generator orders (3, 0)
AUTHORS:
Simon Brandhorst (2018-01-17): initial version
- class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap(parent, x, check=True)#
Bases:
ElementLibGAP
An element of an abelian group via libgap.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([3,6]) sage: G.gens() (f1, f2)
- exponents()#
Return the tuple of exponents of this element.
OUTPUT:
a tuple of integers
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([4,7,9]) sage: gens = G.gens() sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8 sage: g.exponents() (2, 4, 8) sage: S = G.subgroup(G.gens()[:1]) sage: s = S.gens()[0] sage: s f1 sage: s.exponents() (1,)
It can handle quite large groups too:
sage: G = AbelianGroupGap([2^10, 5^10]) sage: f1, f2 = G.gens() sage: g = f1^123*f2^789 sage: g.exponents() (123, 789)
Warning
Crashes for very large groups.
Todo
Make exponents work for very large groups. This could be done by using Pcgs in gap.
- order()#
Return the order of this element.
OUTPUT:
an integer or infinity
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([4]) sage: g = G.gens()[0] sage: g.order() 4 sage: G = AbelianGroupGap([0]) # optional - gap_packages sage: g = G.gens()[0] # optional - gap_packages sage: g.order() # optional - gap_packages +Infinity
- class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_polycyclic(parent, x, check=True)#
Bases:
AbelianGroupElement_gap
An element of an abelian group using the GAP package
Polycyclic
.- exponents()#
Return the tuple of exponents of
self
.OUTPUT:
a tuple of integers
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([4,7,0]) # optional - gap_packages sage: gens = G.gens() # optional - gap_packages sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8 # optional - gap_packages sage: g.exponents() # optional - gap_packages (2, 4, 8)
Efficiently handles very large groups:
sage: G = AbelianGroupGap([2^30,5^30,0]) # optional - gap_packages sage: f1, f2, f3 = G.gens() # optional - gap_packages sage: (f1^12345*f2^123456789).exponents() # optional - gap_packages (12345, 123456789, 0)
- class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupGap(generator_orders)#
Bases:
AbelianGroup_gap
Abelian groups implemented using GAP.
INPUT:
generator_orders
– a list of nonnegative integers where \(0\) gives a factor isomorphic to \(\ZZ\)
OUTPUT:
an abelian group
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: AbelianGroupGap([3,6]) Abelian group with gap, generator orders (3, 6) sage: AbelianGroupGap([3,6,5]) Abelian group with gap, generator orders (3, 6, 5) sage: AbelianGroupGap([3,6,0]) # optional - gap_packages Abelian group with gap, generator orders (3, 6, 0)
Warning
Needs the GAP package
Polycyclic
in case the group is infinite.
- class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupQuotient_gap(G, N)#
Bases:
AbelianGroup_gap
Quotients of abelian groups by a subgroup.
Note
Do not call this directly. Instead use
quotient()
.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: A = AbelianGroupGap([4,3]) sage: N = A.subgroup([A.gen(0)^2]) sage: Q1 = A.quotient(N) sage: Q1 Quotient abelian group with generator orders (2, 3) sage: Q2 = Q1.quotient(Q1.subgroup(Q1.gens()[:1])) sage: Q2 Quotient abelian group with generator orders (1, 3)
- cover()#
Return the covering group of this quotient group.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,4,5]) sage: gen = G.gens()[:2] sage: S = G.subgroup(gen) sage: Q = G.quotient(S) sage: Q.cover() is G True
- lift(x)#
Lift an element to the cover.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: A = AbelianGroupGap([4]) sage: N = A.subgroup([A.gen(0)^2]) sage: Q = A.quotient(N) sage: Q.lift(Q.0) f1
- natural_homomorphism()#
Return the defining homomorphism into
self
.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: A = AbelianGroupGap([4]) sage: N = A.subgroup([A.gen(0)^2]) sage: Q = A.quotient(N) sage: Q.natural_homomorphism() Group morphism: From: Abelian group with gap, generator orders (4,) To: Quotient abelian group with generator orders (2,)
- relations()#
Return the relations of this quotient group.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,4,5]) sage: gen = G.gens()[:2] sage: S = G.subgroup(gen) sage: Q = G.quotient(S) sage: Q.relations() is S True
- class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupSubgroup_gap(ambient, gens)#
Bases:
AbelianGroup_gap
Subgroups of abelian groups with GAP.
INPUT:
ambient
– the ambient groupgens
– generators of the subgroup
Note
Do not construct this class directly. Instead use
subgroup()
.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,4,5]) sage: gen = G.gens()[:2] sage: S = G.subgroup(gen)
- lift(x)#
Coerce to the ambient group.
The terminology comes from the category framework and the more general notion of a subquotient.
INPUT:
x
– an element of this subgroup
OUTPUT:
The corresponding element of the ambient group
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([4]) sage: g = G.gen(0) sage: H = G.subgroup([g^2]) sage: h = H.gen(0); h f2 sage: h.parent() Subgroup of Abelian group with gap, generator orders (4,) generated by (f2,) sage: H.lift(h) f2 sage: H.lift(h).parent() Abelian group with gap, generator orders (4,)
- retract(x)#
Convert an element of the ambient group into this subgroup.
The terminology comes from the category framework and the more general notion of a subquotient.
INPUT:
x
– an element of the ambient group that actually lies in this subgroup.
OUTPUT:
The corresponding element of this subgroup
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([4]) sage: g = G.gen(0) sage: H = G.subgroup([g^2]) sage: H.retract(g^2) f2 sage: H.retract(g^2).parent() Subgroup of Abelian group with gap, generator orders (4,) generated by (f2,)
- class sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap(G, category, ambient=None)#
Bases:
UniqueRepresentation
,GroupMixinLibGAP
,ParentLibGAP
,AbelianGroup
Finitely generated abelian groups implemented in GAP.
Needs the gap package
Polycyclic
in case the group is infinite.INPUT:
G
– a GAP groupcategory
– a categoryambient
– (optional) anAbelianGroupGap
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([3, 2, 5]) sage: G Abelian group with gap, generator orders (3, 2, 5)
- Element#
alias of
AbelianGroupElement_gap
- all_subgroups()#
Return the list of all subgroups of this group.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2, 3]) sage: G.all_subgroups() [Subgroup of Abelian group with gap, generator orders (2, 3) generated by (), Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1,), Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2,), Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2, f1)]
- aut()#
Return the group of automorphisms of
self
.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2, 3]) sage: G.aut() Full group of automorphisms of Abelian group with gap, generator orders (2, 3)
- automorphism_group()#
Return the group of automorphisms of
self
.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2, 3]) sage: G.aut() Full group of automorphisms of Abelian group with gap, generator orders (2, 3)
- elementary_divisors()#
Return the elementary divisors of this group.
See
sage.groups.abelian_gps.abelian_group_gap.elementary_divisors()
.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,4,5]) sage: G.elementary_divisors() (2, 60)
- exponent()#
Return the exponent of this abelian group.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,7]) sage: G Abelian group with gap, generator orders (2, 3, 7) sage: G = AbelianGroupGap([2,4,6]) sage: G Abelian group with gap, generator orders (2, 4, 6) sage: G.exponent() 12
- gens_orders()#
Return the orders of the generators.
Use
elementary_divisors()
if you are looking for an invariant of the group.OUTPUT:
a tuple of integers
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: Z2xZ3 = AbelianGroupGap([2,3]) sage: Z2xZ3.gens_orders() (2, 3) sage: Z2xZ3.elementary_divisors() (6,) sage: Z6 = AbelianGroupGap([6]) sage: Z6.gens_orders() (6,) sage: Z6.elementary_divisors() (6,) sage: Z2xZ3.is_isomorphic(Z6) True sage: Z2xZ3 is Z6 False
- identity()#
Return the identity element of this group.
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([4,10]) sage: G.identity() 1
- is_subgroup_of(G)#
Return if
self
is a subgroup ofG
considered in the same ambient group.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,4,5]) sage: gen = G.gens()[:2] sage: S1 = G.subgroup(gen) sage: S1.is_subgroup_of(G) True sage: S2 = G.subgroup(G.gens()[1:]) sage: S2.is_subgroup_of(S1) False
- is_trivial()#
Return
True
if this group is the trivial group.EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([]) sage: G Abelian group with gap, generator orders () sage: G.is_trivial() True sage: AbelianGroupGap([1]).is_trivial() True sage: AbelianGroupGap([1,1,1]).is_trivial() True sage: AbelianGroupGap([2]).is_trivial() False sage: AbelianGroupGap([2,1]).is_trivial() False
- quotient(N)#
Return the quotient of this group by the normal subgroup \(N\).
INPUT:
N
– a subgroupcheck
– bool (default:True
) check if \(N\) is normal
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: A = AbelianGroupGap([2,3,4,5]) sage: S = A.subgroup(A.gens()[:1]) sage: A.quotient(S) Quotient abelian group with generator orders (1, 3, 4, 5)
- subgroup(gens)#
Return the subgroup of this group generated by
gens
.INPUT:
gens
– a list of elements coercible into this group
OUTPUT:
a subgroup
EXAMPLES:
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap sage: G = AbelianGroupGap([2,3,4,5]) sage: gen = G.gens()[:2] sage: S = G.subgroup(gen) sage: S Subgroup of Abelian group with gap, generator orders (2, 3, 4, 5) generated by (f1, f2) sage: g = G.an_element() sage: s = S.an_element() sage: g * s f2^2*f3*f5 sage: G = AbelianGroupGap([3,4,0,2]) # optional - gap_packages sage: gen = G.gens()[:2] # optional - gap_packages sage: S = G.subgroup(gen) # optional - gap_packages sage: g = G.an_element() # optional - gap_packages sage: s = S.an_element() # optional - gap_packages sage: g * s # optional - gap_packages g1^2*g2^2*g3*g4