Free Groups#
Free groups and finitely presented groups are implemented as a wrapper over the corresponding GAP objects.
A free group can be created by giving the number of generators, or their names. It is also possible to create indexed generators:
sage: G.<x,y,z> = FreeGroup(); G
Free Group on generators {x, y, z}
sage: FreeGroup(3)
Free Group on generators {x0, x1, x2}
sage: FreeGroup('a,b,c')
Free Group on generators {a, b, c}
sage: FreeGroup(3,'t')
Free Group on generators {t0, t1, t2}
The elements can be created by operating with the generators, or by passing a list with the indices of the letters to the group:
EXAMPLES:
sage: G.<a,b,c> = FreeGroup()
sage: a*b*c*a
a*b*c*a
sage: G([1,2,3,1])
a*b*c*a
sage: a * b / c * b^2
a*b*c^-1*b^2
sage: G([1,1,2,-1,-3,2])
a^2*b*a^-1*c^-1*b
You can use call syntax to replace the generators with a set of arbitrary ring elements:
sage: g = a * b / c * b^2
sage: g(1,2,3)
8/3
sage: M1 = identity_matrix(2)
sage: M2 = matrix([[1,1],[0,1]])
sage: M3 = matrix([[0,1],[1,0]])
sage: g([M1, M2, M3])
[1 3]
[1 2]
AUTHORS:
Miguel Angel Marco Buzunariz
Volker Braun
- sage.groups.free_group.FreeGroup(n=None, names='x', index_set=None, abelian=False, **kwds)#
Construct a Free Group.
INPUT:
n
– integer orNone
(default). The number of generators. If not specified thenames
are counted.names
– string or list/tuple/iterable of strings (default:'x'
). The generator names or name prefix.index_set
– (optional) an index set for the generators; if specified then the optional keywordabelian
can be usedabelian
– (default:False
) whether to construct a free abelian group or a free group
Note
If you want to create a free group, it is currently preferential to use
Groups().free(...)
as that does not load GAP.EXAMPLES:
sage: G.<a,b> = FreeGroup(); G Free Group on generators {a, b} sage: H = FreeGroup('a, b') sage: G is H True sage: FreeGroup(0) Free Group on generators {}
The entry can be either a string with the names of the generators, or the number of generators and the prefix of the names to be given. The default prefix is
'x'
sage: FreeGroup(3) Free Group on generators {x0, x1, x2} sage: FreeGroup(3, 'g') Free Group on generators {g0, g1, g2} sage: FreeGroup() Free Group on generators {x}
We give two examples using the
index_set
option:sage: FreeGroup(index_set=ZZ) Free group indexed by Integer Ring sage: FreeGroup(index_set=ZZ, abelian=True) Free abelian group indexed by Integer Ring
- class sage.groups.free_group.FreeGroupElement(parent, x)#
Bases:
ElementLibGAP
A wrapper of GAP’s Free Group elements.
INPUT:
x
– something that determines the group element. Either aGapElement
or the Tietze list (seeTietze()
) of the group element.parent
– the parentFreeGroup
.
EXAMPLES:
sage: G = FreeGroup('a, b') sage: x = G([1, 2, -1, -2]) sage: x a*b*a^-1*b^-1 sage: y = G([2, 2, 2, 1, -2, -2, -2]) sage: y b^3*a*b^-3 sage: x*y a*b*a^-1*b^2*a*b^-3 sage: y*x b^3*a*b^-3*a*b*a^-1*b^-1 sage: x^(-1) b*a*b^-1*a^-1 sage: x == x*y*y^(-1) True
- Tietze()#
Return the Tietze list of the element.
The Tietze list of a word is a list of integers that represent the letters in the word. A positive integer \(i\) represents the letter corresponding to the \(i\)-th generator of the group. Negative integers represent the inverses of generators.
OUTPUT:
A tuple of integers.
EXAMPLES:
sage: G.<a,b> = FreeGroup() sage: a.Tietze() (1,) sage: x = a^2 * b^(-3) * a^(-2) sage: x.Tietze() (1, 1, -2, -2, -2, -1, -1)
- fox_derivative(gen, im_gens=None, ring=None)#
Return the Fox derivative of
self
with respect to a given generatorgen
of the free group.Let \(F\) be a free group with free generators \(x_1, x_2, \ldots, x_n\). Let \(j \in \left\{ 1, 2, \ldots , n \right\}\). Let \(a_1, a_2, \ldots, a_n\) be \(n\) invertible elements of a ring \(A\). Let \(a : F \to A^\times\) be the (unique) homomorphism from \(F\) to the multiplicative group of invertible elements of \(A\) which sends each \(x_i\) to \(a_i\). Then, we can define a map \(\partial_j : F \to A\) by the requirements that
\[\partial_j (x_i) = \delta_{i, j} \qquad \qquad \text{ for all indices } i \text{ and } j\]and
\[\partial_j (uv) = \partial_j(u) + a(u) \partial_j(v) \qquad \qquad \text{ for all } u, v \in F .\]This map \(\partial_j\) is called the \(j\)-th Fox derivative on \(F\) induced by \((a_1, a_2, \ldots, a_n)\).
The most well-known case is when \(A\) is the group ring \(\ZZ [F]\) of \(F\) over \(\ZZ\), and when \(a_i = x_i \in A\). In this case, \(\partial_j\) is simply called the \(j\)-th Fox derivative on \(F\).
INPUT:
gen
– the generator with respect to which the derivative will be computed. If this is \(x_j\), then the method will return \(\partial_j\).im_gens
(optional) – the images of the generators (given as a list or iterable). This is the list \((a_1, a_2, \ldots, a_n)\). If not provided, it defaults to \((x_1, x_2, \ldots, x_n)\) in the group ring \(\ZZ [F]\).ring
(optional) – the ring in which the elements of the list \((a_1, a_2, \ldots, a_n)\) lie. If not provided, this ring is inferred from these elements.
OUTPUT:
The fox derivative of
self
with respect togen
(induced byim_gens
). By default, it is an element of the group algebra with integer coefficients. Ifim_gens
are provided, the result lives in the algebra whereim_gens
live.EXAMPLES:
sage: G = FreeGroup(5) sage: G.inject_variables() Defining x0, x1, x2, x3, x4 sage: (~x0*x1*x0*x2*~x0).fox_derivative(x0) -x0^-1 + x0^-1*x1 - x0^-1*x1*x0*x2*x0^-1 sage: (~x0*x1*x0*x2*~x0).fox_derivative(x1) x0^-1 sage: (~x0*x1*x0*x2*~x0).fox_derivative(x2) x0^-1*x1*x0 sage: (~x0*x1*x0*x2*~x0).fox_derivative(x3) 0
If
im_gens
is given, the images of the generators are mapped to them:sage: F = FreeGroup(3) sage: a = F([2,1,3,-1,2]) sage: a.fox_derivative(F([1])) x1 - x1*x0*x2*x0^-1 sage: R.<t> = LaurentPolynomialRing(ZZ) sage: a.fox_derivative(F([1]),[t,t,t]) t - t^2 sage: S.<t1,t2,t3> = LaurentPolynomialRing(ZZ) sage: a.fox_derivative(F([1]),[t1,t2,t3]) -t2*t3 + t2 sage: R.<x,y,z> = QQ[] sage: a.fox_derivative(F([1]),[x,y,z]) -y*z + y sage: a.inverse().fox_derivative(F([1]),[x,y,z]) (z - 1)/(y*z)
The optional parameter
ring
determines the ring \(A\):sage: u = a.fox_derivative(F([1]), [1,2,3], ring=QQ) sage: u -4 sage: parent(u) Rational Field sage: u = a.fox_derivative(F([1]), [1,2,3], ring=R) sage: u -4 sage: parent(u) Multivariate Polynomial Ring in x, y, z over Rational Field
- syllables()#
Return the syllables of the word.
Consider a free group element \(g = x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}\). The uniquely-determined subwords \(x_i^{e_i}\) consisting only of powers of a single generator are called the syllables of \(g\).
OUTPUT:
The tuple of syllables. Each syllable is given as a pair \((x_i, e_i)\) consisting of a generator and a non-zero integer.
EXAMPLES:
sage: G.<a,b> = FreeGroup() sage: w = a^2 * b^-1 * a^3 sage: w.syllables() ((a, 2), (b, -1), (a, 3))
- class sage.groups.free_group.FreeGroup_class(generator_names, libgap_free_group=None)#
Bases:
UniqueRepresentation
,Group
,ParentLibGAP
A class that wraps GAP’s FreeGroup
See
FreeGroup()
for details.- Element#
alias of
FreeGroupElement
- abelian_invariants()#
Return the Abelian invariants of
self
.The Abelian invariants are given by a list of integers \(i_1 \dots i_j\), such that the abelianization of the group is isomorphic to
\[\ZZ / (i_1) \times \dots \times \ZZ / (i_j)\]EXAMPLES:
sage: F.<a,b> = FreeGroup() sage: F.abelian_invariants() (0, 0)
- quotient(relations, **kwds)#
Return the quotient of
self
by the normal subgroup generated by the given elements.This quotient is a finitely presented groups with the same generators as
self
, and relations given by the elements ofrelations
.INPUT:
relations
– A list/tuple/iterable with the elements of the free group.further named arguments, that are passed to the constructor of a finitely presented group.
OUTPUT:
A finitely presented group, with generators corresponding to the generators of the free group, and relations corresponding to the elements in
relations
.EXAMPLES:
sage: F.<a,b> = FreeGroup() sage: F.quotient([a*b^2*a, b^3]) Finitely presented group < a, b | a*b^2*a, b^3 >
Division is shorthand for
quotient()
sage: F / [a*b^2*a, b^3] Finitely presented group < a, b | a*b^2*a, b^3 >
Relations are converted to the free group, even if they are not elements of it (if possible)
sage: F1.<a,b,c,d> = FreeGroup() sage: F2.<a,b> = FreeGroup() sage: r = a*b/a sage: r.parent() Free Group on generators {a, b} sage: F1/[r] Finitely presented group < a, b, c, d | a*b*a^-1 >
- rank()#
Return the number of generators of self.
Alias for
ngens()
.OUTPUT:
Integer.
EXAMPLES:
sage: G = FreeGroup('a, b'); G Free Group on generators {a, b} sage: G.rank() 2 sage: H = FreeGroup(3, 'x') sage: H Free Group on generators {x0, x1, x2} sage: H.rank() 3
- sage.groups.free_group.is_FreeGroup(x)#
Test whether
x
is aFreeGroup_class
.INPUT:
x
– anything.
OUTPUT:
Boolean.
EXAMPLES:
sage: from sage.groups.free_group import is_FreeGroup sage: is_FreeGroup('a string') False sage: is_FreeGroup(FreeGroup(0)) True sage: is_FreeGroup(FreeGroup(index_set=ZZ)) True
- sage.groups.free_group.wrap_FreeGroup(libgap_free_group)#
Wrap a LibGAP free group.
This function changes the comparison method of
libgap_free_group
to comparison by Pythonid
. If you want to put the LibGAP free group into a container (set, dict) then you should understand the implications of_set_compare_by_id()
. To be safe, it is recommended that you just work with the resulting SageFreeGroup_class
.INPUT:
libgap_free_group
– a LibGAP free group.
OUTPUT:
A Sage
FreeGroup_class
.EXAMPLES:
First construct a LibGAP free group:
sage: F = libgap.FreeGroup(['a', 'b']) sage: type(F) <class 'sage.libs.gap.element.GapElement'>
Now wrap it:
sage: from sage.groups.free_group import wrap_FreeGroup sage: wrap_FreeGroup(F) Free Group on generators {a, b}