Symbolic matrices#
EXAMPLES:
sage: matrix(SR, 2, 2, range(4))
[0 1]
[2 3]
sage: matrix(SR, 2, 2, var('t'))
[t 0]
[0 t]
Arithmetic:
sage: -matrix(SR, 2, range(4))
[ 0 -1]
[-2 -3]
sage: m = matrix(SR, 2, [1..4]); sqrt(2)*m
[ sqrt(2) 2*sqrt(2)]
[3*sqrt(2) 4*sqrt(2)]
sage: m = matrix(SR, 4, [1..4^2])
sage: m * m
[ 90 100 110 120]
[202 228 254 280]
[314 356 398 440]
[426 484 542 600]
sage: m = matrix(SR, 3, [1, 2, 3]); m
[1]
[2]
[3]
sage: m.transpose() * m
[14]
Computing inverses:
sage: M = matrix(SR, 2, var('a,b,c,d'))
sage: ~M
[1/a - b*c/(a^2*(b*c/a - d)) b/(a*(b*c/a - d))]
[ c/(a*(b*c/a - d)) -1/(b*c/a - d)]
sage: (~M*M).simplify_rational()
[1 0]
[0 1]
sage: M = matrix(SR, 3, 3, range(9)) - var('t')
sage: (~M * M).simplify_rational()
[1 0 0]
[0 1 0]
[0 0 1]
sage: matrix(SR, 1, 1, 1).inverse()
[1]
sage: matrix(SR, 0, 0).inverse()
[]
sage: matrix(SR, 3, 0).inverse()
Traceback (most recent call last):
...
ArithmeticError: self must be a square matrix
Transposition:
sage: m = matrix(SR, 2, [sqrt(2), -1, pi, e^2])
sage: m.transpose()
[sqrt(2) pi]
[ -1 e^2]
.T
is a convenient shortcut for the transpose:
sage: m.T
[sqrt(2) pi]
[ -1 e^2]
Test pickling:
sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e]); m
[sqrt(2) 3]
[ pi e]
sage: TestSuite(m).run()
Comparison:
sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: m == m
True
sage: m != 3
True
sage: m = matrix(SR,2,[1..4]); n = m^2
sage: (exp(m+n) - exp(m)*exp(n)).simplify_rational() == 0 # indirect test
True
Determinant:
sage: M = matrix(SR, 2, 2, [x,2,3,4])
sage: M.determinant()
4*x - 6
sage: M = matrix(SR, 3,3,range(9))
sage: M.det()
0
sage: t = var('t')
sage: M = matrix(SR, 2, 2, [cos(t), sin(t), -sin(t), cos(t)])
sage: M.det()
cos(t)^2 + sin(t)^2
sage: M = matrix([[sqrt(x),0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])
sage: det(M)
sqrt(x)
Permanents:
sage: M = matrix(SR, 2, 2, [x,2,3,4])
sage: M.permanent()
4*x + 6
Rank:
sage: M = matrix(SR, 5, 5, range(25))
sage: M.rank()
2
sage: M = matrix(SR, 5, 5, range(25)) - var('t')
sage: M.rank()
5
.. warning::
:meth:`rank` may return the wrong answer if it cannot determine that a
matrix element that is equivalent to zero is indeed so.
Copying symbolic matrices:
sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: n = copy(m)
sage: n[0,0] = sin(1)
sage: m
[sqrt(2) 3]
[ pi e]
sage: n
[sin(1) 3]
[ pi e]
Conversion to Maxima:
sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: m._maxima_()
matrix([sqrt(2),3],[%pi,%e])
- class sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense#
Bases:
Matrix_generic_dense
- arguments()#
Return a tuple of the arguments that
self
can take.EXAMPLES:
sage: var('x,y,z') (x, y, z) sage: M = MatrixSpace(SR,2,2) sage: M(x).arguments() (x,) sage: M(x+sin(x)).arguments() (x,)
- canonicalize_radical()#
Choose a canonical branch of each entry of
self
by callingExpression.canonicalize_radical()
componentwise.EXAMPLES:
sage: var('x','y') (x, y) sage: l1 = [sqrt(2)*sqrt(3)*sqrt(6) , log(x*y)] sage: l2 = [sin(x/(x^2 + x)) , 1] sage: m = matrix([l1, l2]) sage: m [sqrt(6)*sqrt(3)*sqrt(2) log(x*y)] [ sin(x/(x^2 + x)) 1] sage: m.canonicalize_radical() [ 6 log(x) + log(y)] [ sin(1/(x + 1)) 1]
- charpoly(var='x', algorithm=None)#
Compute the characteristic polynomial of
self
, using maxima.Note
The characteristic polynomial is defined as \(\det(xI-A)\).
INPUT:
var
– (default: ‘x’) name of variable of charpoly
EXAMPLES:
sage: M = matrix(SR, 2, 2, var('a,b,c,d')) sage: M.charpoly('t') t^2 + (-a - d)*t - b*c + a*d sage: matrix(SR, 5, [1..5^2]).charpoly() x^5 - 65*x^4 - 250*x^3
- echelonize(**kwds)#
Echelonize using the classical algorithm.
- eigenvalues(extend=True)#
Compute the eigenvalues by solving the characteristic polynomial in maxima.
The argument
extend
is ignored but kept for compatibility with other matrix classes.EXAMPLES:
sage: a=matrix(SR,[[1,2],[3,4]]) sage: a.eigenvalues() [-1/2*sqrt(33) + 5/2, 1/2*sqrt(33) + 5/2]
- eigenvectors_left(other=None)#
Compute the left eigenvectors of a matrix.
INPUT:
other
– a square matrix \(B\) (default:None
) in a generalized eigenvalue problem; ifNone
, an ordinary eigenvalue problem is solved (currently supported only if the base ring ofself
isRDF
orCDF
)
OUTPUT:
For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.
EXAMPLES:
sage: A = matrix(SR,3,3,range(9)); A [0 1 2] [3 4 5] [6 7 8] sage: es = A.eigenvectors_left(); es [(-3*sqrt(6) + 6, [(1, -1/5*sqrt(6) + 4/5, -2/5*sqrt(6) + 3/5)], 1), (3*sqrt(6) + 6, [(1, 1/5*sqrt(6) + 4/5, 2/5*sqrt(6) + 3/5)], 1), (0, [(1, -2, 1)], 1)] sage: eval, [evec], mult = es[0] sage: delta = eval*evec - evec*A sage: abs(abs(delta)) < 1e-10 3/5*sqrt(((2*sqrt(6) - 3)*(sqrt(6) - 2) + 7*sqrt(6) - 18)^2 + ((sqrt(6) - 2)*(sqrt(6) - 4) + 6*sqrt(6) - 14)^2) < (1.00000000000000e-10) sage: abs(abs(delta)).n() < 1e-10 True
sage: A = matrix(SR, 2, 2, var('a,b,c,d')) sage: A.eigenvectors_left() [(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)] sage: es = A.eigenvectors_left(); es [(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)] sage: eval, [evec], mult = es[0] sage: delta = eval*evec - evec*A sage: delta.apply_map(lambda x: x.full_simplify()) (0, 0)
This routine calls Maxima and can struggle with even small matrices with a few variables, such as a \(3\times 3\) matrix with three variables. However, if the entries are integers or rationals it can produce exact values in a reasonable time. These examples create 0-1 matrices from the adjacency matrices of graphs and illustrate how the format and type of the results differ when the base ring changes. First for matrices over the rational numbers, then the same matrix but viewed as a symbolic matrix.
sage: G=graphs.CycleGraph(5) sage: am = G.adjacency_matrix() sage: spectrum = am.eigenvectors_left() sage: qqbar_evalue = spectrum[2][0] sage: type(qqbar_evalue) <class 'sage.rings.qqbar.AlgebraicNumber'> sage: qqbar_evalue 0.618033988749895? sage: am = G.adjacency_matrix().change_ring(SR) sage: spectrum = am.eigenvectors_left() sage: symbolic_evalue = spectrum[2][0] sage: type(symbolic_evalue) <class 'sage.symbolic.expression.Expression'> sage: symbolic_evalue 1/2*sqrt(5) - 1/2 sage: bool(qqbar_evalue == symbolic_evalue) True
A slightly larger matrix with a “nice” spectrum.
sage: G = graphs.CycleGraph(6) sage: am = G.adjacency_matrix().change_ring(SR) sage: am.eigenvectors_left() [(-1, [(1, 0, -1, 1, 0, -1), (0, 1, -1, 0, 1, -1)], 2), (1, [(1, 0, -1, -1, 0, 1), (0, 1, 1, 0, -1, -1)], 2), (-2, [(1, -1, 1, -1, 1, -1)], 1), (2, [(1, 1, 1, 1, 1, 1)], 1)]
- eigenvectors_right(other=None)#
Compute the right eigenvectors of a matrix.
INPUT:
other
– a square matrix \(B\) (default:None
) in a generalized eigenvalue problem; ifNone
, an ordinary eigenvalue problem is solved (currently supported only if the base ring ofself
isRDF
orCDF
)
OUTPUT:
For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the eigenvalue.
EXAMPLES:
sage: A = matrix(SR,2,2,range(4)); A [0 1] [2 3] sage: right = A.eigenvectors_right(); right [(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2, [(1, 1/2*sqrt(17) + 3/2)], 1)]
The right eigenvectors are nothing but the left eigenvectors of the transpose matrix:
sage: left = A.transpose().eigenvectors_left(); left [(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2, [(1, 1/2*sqrt(17) + 3/2)], 1)] sage: right[0][1] == left[0][1] True
- exp()#
Return the matrix exponential of this matrix \(X\), which is the matrix
\[e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.\]This function depends on maxima’s matrix exponentiation function, which does not deal well with floating point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational numbers during the computation.
EXAMPLES:
sage: m = matrix(SR,2, [0,x,x,0]); m [0 x] [x 0] sage: m.exp() [1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)] [1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)] sage: exp(m) [1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)] [1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
Exp works on 0x0 and 1x1 matrices:
sage: m = matrix(SR,0,[]); m [] sage: m.exp() [] sage: m = matrix(SR,1,[2]); m [2] sage: m.exp() [e^2]
Commuting matrices \(m, n\) have the property that \(e^{m+n} = e^m e^n\) (but non-commuting matrices need not):
sage: m = matrix(SR,2,[1..4]); n = m^2 sage: m*n [ 37 54] [ 81 118] sage: n*m [ 37 54] [ 81 118] sage: a = exp(m+n) - exp(m)*exp(n) sage: a.simplify_rational() == 0 True
The input matrix must be square:
sage: m = matrix(SR,2,3,[1..6]); exp(m) Traceback (most recent call last): ... ValueError: exp only defined on square matrices
In this example we take the symbolic answer and make it numerical at the end:
sage: exp(matrix(SR, [[1.2, 5.6], [3,4]])).change_ring(RDF) # rel tol 1e-15 [ 346.5574872980695 661.7345909344504] [354.50067371488416 677.4247827652946]
Another example involving the reversed identity matrix, which we clumsily create:
sage: m = identity_matrix(SR,4); m = matrix(list(reversed(m.rows()))) * x sage: exp(m) [1/2*(e^(2*x) + 1)*e^(-x) 0 0 1/2*(e^(2*x) - 1)*e^(-x)] [ 0 1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x) 0] [ 0 1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x) 0] [1/2*(e^(2*x) - 1)*e^(-x) 0 0 1/2*(e^(2*x) + 1)*e^(-x)]
- expand()#
Operate point-wise on each element.
EXAMPLES:
sage: M = matrix(2, 2, range(4)) - var('x') sage: M*M [ x^2 + 2 -2*x + 3] [ -4*x + 6 (x - 3)^2 + 2] sage: (M*M).expand() [ x^2 + 2 -2*x + 3] [ -4*x + 6 x^2 - 6*x + 11]
- factor()#
Operate point-wise on each element.
EXAMPLES:
sage: M = matrix(SR, 2, 2, x^2 - 2*x + 1); M [x^2 - 2*x + 1 0] [ 0 x^2 - 2*x + 1] sage: M.factor() [(x - 1)^2 0] [ 0 (x - 1)^2]
- fcp(var='x')#
Return the factorization of the characteristic polynomial of
self
.INPUT:
var
– (default: ‘x’) name of variable of charpoly
EXAMPLES:
sage: a = matrix(SR,[[1,2],[3,4]]) sage: a.fcp() x^2 - 5*x - 2 sage: [i for i in a.fcp()] [(x^2 - 5*x - 2, 1)] sage: a = matrix(SR,[[1,0],[0,2]]) sage: a.fcp() (x - 2) * (x - 1) sage: [i for i in a.fcp()] [(x - 2, 1), (x - 1, 1)] sage: a = matrix(SR, 5, [1..5^2]) sage: a.fcp() (x^2 - 65*x - 250) * x^3 sage: list(a.fcp()) [(x^2 - 65*x - 250, 1), (x, 3)]
- function(*args)#
Return a matrix over a callable symbolic expression ring.
EXAMPLES:
sage: x, y = var('x,y') sage: v = matrix([[x,y],[x*sin(y), 0]]) sage: w = v.function([x,y]); w [ (x, y) |--> x (x, y) |--> y] [(x, y) |--> x*sin(y) (x, y) |--> 0] sage: w.parent() Full MatrixSpace of 2 by 2 dense matrices over Callable function ring with arguments (x, y)
- jordan_form(subdivide=True, transformation=False)#
Return a Jordan normal form of
self
.INPUT:
self
– a square matrixsubdivide
– boolean (default:True
)transformation
– boolean (default:False
)
OUTPUT:
If
transformation
isFalse
, only a Jordan normal form (unique up to the ordering of the Jordan blocks) is returned. Otherwise, a pair(J, P)
is returned, whereJ
is a Jordan normal form andP
is an invertible matrix such thatself
equalsP * J * P^(-1)
.If
subdivide
isTrue
, the Jordan blocks in the returned matrixJ
are indicated by a subdivision in the sense ofsubdivide()
.EXAMPLES:
We start with some examples of diagonalisable matrices:
sage: a,b,c,d = var('a,b,c,d') sage: matrix([a]).jordan_form() [a] sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=True) [d|0] [-+-] [0|a] sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=False) [d 0] [0 a] sage: matrix([[a, x, x], [0, b, x], [0, 0, c]]).jordan_form() [c|0|0] [-+-+-] [0|b|0] [-+-+-] [0|0|a]
In the following examples, we compute Jordan forms of some non-diagonalisable matrices:
sage: matrix([[a, a], [0, a]]).jordan_form() [a 1] [0 a] sage: matrix([[a, 0, b], [0, c, 0], [0, 0, a]]).jordan_form() [c|0 0] [-+---] [0|a 1] [0|0 a]
The following examples illustrate the
transformation
flag. Note that symbolic expressions may need to be simplified to make consistency checks succeed:sage: A = matrix([[x - a*c, a^2], [-c^2, x + a*c]]) sage: J, P = A.jordan_form(transformation=True) sage: J, P ( [x 1] [-a*c 1] [0 x], [-c^2 0] ) sage: A1 = P * J * ~P; A1 [ -a*c + x (a*c - x)*a/c + a*x/c] [ -c^2 a*c + x] sage: A1.simplify_rational() == A True sage: B = matrix([[a, b, c], [0, a, d], [0, 0, a]]) sage: J, T = B.jordan_form(transformation=True) sage: J, T ( [a 1 0] [b*d c 0] [0 a 1] [ 0 d 0] [0 0 a], [ 0 0 1] ) sage: (B * T).simplify_rational() == T * J True
Finally, some examples involving square roots:
sage: matrix([[a, -b], [b, a]]).jordan_form() [a - I*b| 0] [-------+-------] [ 0|a + I*b] sage: matrix([[a, b], [c, d]]).jordan_form(subdivide=False) [1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2) 0] [ 0 1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2)]
- minpoly(var='x')#
Return the minimal polynomial of
self
.EXAMPLES:
sage: M = Matrix.identity(SR, 2) sage: M.minpoly() x - 1 sage: t = var('t') sage: m = matrix(2, [1, 2, 4, t]) sage: m.minimal_polynomial() x^2 + (-t - 1)*x + t - 8
- number_of_arguments()#
Return the number of arguments that
self
can take.EXAMPLES:
sage: var('a,b,c,x,y') (a, b, c, x, y) sage: m = matrix([[a, (x+y)/(x+y)], [x^2, y^2+2]]); m [ a 1] [ x^2 y^2 + 2] sage: m.number_of_arguments() 3
- simplify()#
Simplify
self
.EXAMPLES:
sage: var('x,y,z') (x, y, z) sage: m = matrix([[z, (x+y)/(x+y)], [x^2, y^2+2]]); m [ z 1] [ x^2 y^2 + 2] sage: m.simplify() [ z 1] [ x^2 y^2 + 2]
- simplify_full()#
Simplify a symbolic matrix by calling
Expression.simplify_full()
componentwise.INPUT:
self
– the matrix whose entries we should simplify.
OUTPUT:
A copy of
self
with all of its entries simplified.EXAMPLES:
Symbolic matrices will have their entries simplified:
sage: a,n,k = SR.var('a,n,k') sage: f1 = sin(x)^2 + cos(x)^2 sage: f2 = sin(x/(x^2 + x)) sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k) sage: f4 = x*sin(2)/(x^a) sage: A = matrix(SR, [[f1,f2],[f3,f4]]) sage: A.simplify_full() [ 1 sin(1/(x + 1))] [ factorial(n) x^(-a + 1)*sin(2)]
- simplify_rational()#
EXAMPLES:
sage: M = matrix(SR, 3, 3, range(9)) - var('t') sage: (~M*M)[0,0] t*(3*(2/t + (6/t + 7)/((t - 3/t - 4)*t))*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) + 1/t + 3/((t - 3/t - 4)*t^2)) - 6*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) - 3*(6/t + 7)*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/((t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8)*(t - 3/t - 4)) - 3/((t - 3/t - 4)*t) sage: expand((~M*M)[0,0]) 1 sage: (~M * M).simplify_rational() [1 0 0] [0 1 0] [0 0 1]
- simplify_trig()#
EXAMPLES:
sage: theta = var('theta') sage: M = matrix(SR, 2, 2, [cos(theta), sin(theta), -sin(theta), cos(theta)]) sage: ~M [1/cos(theta) - sin(theta)^2/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta)^2) -sin(theta)/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta))] [ sin(theta)/((sin(theta)^2/cos(theta) + cos(theta))*cos(theta)) 1/(sin(theta)^2/cos(theta) + cos(theta))] sage: (~M).simplify_trig() [ cos(theta) -sin(theta)] [ sin(theta) cos(theta)]
- variables()#
Return the variables of
self
.EXAMPLES:
sage: var('a,b,c,x,y') (a, b, c, x, y) sage: m = matrix([[x, x+2], [x^2, x^2+2]]); m [ x x + 2] [ x^2 x^2 + 2] sage: m.variables() (x,) sage: m = matrix([[a, b+c], [x^2, y^2+2]]); m [ a b + c] [ x^2 y^2 + 2] sage: m.variables() (a, b, c, x, y)