Ambient Jacobian abelian variety#
- sage.modular.abvar.abvar_ambient_jacobian.ModAbVar_ambient_jacobian(group)#
Return the ambient Jacobian attached to a given congruence subgroup.
The result is cached using a weakref. This function is called internally by modular abelian variety constructors.
INPUT:
group
- a congruence subgroup.
OUTPUT: a modular abelian variety attached
EXAMPLES:
sage: import sage.modular.abvar.abvar_ambient_jacobian as abvar_ambient_jacobian sage: A = abvar_ambient_jacobian.ModAbVar_ambient_jacobian(Gamma0(11)) sage: A Abelian variety J0(11) of dimension 1 sage: B = abvar_ambient_jacobian.ModAbVar_ambient_jacobian(Gamma0(11)) sage: A is B True
You can get access to and/or clear the cache as follows:
sage: abvar_ambient_jacobian._cache = {} sage: B = abvar_ambient_jacobian.ModAbVar_ambient_jacobian(Gamma0(11)) sage: A is B False
- class sage.modular.abvar.abvar_ambient_jacobian.ModAbVar_ambient_jacobian_class(group)#
Bases:
ModularAbelianVariety_modsym_abstract
An ambient Jacobian modular abelian variety attached to a congruence subgroup.
- ambient_variety()#
Return the ambient modular abelian variety that contains self. Since self is a Jacobian modular abelian variety, this is just self.
OUTPUT: abelian variety
EXAMPLES:
sage: A = J0(17) sage: A.ambient_variety() Abelian variety J0(17) of dimension 1 sage: A is A.ambient_variety() True
- decomposition(simple=True, bound=None)#
Decompose this ambient Jacobian as a product of abelian subvarieties, up to isogeny.
EXAMPLES:
sage: J0(33).decomposition(simple=False) [ Abelian subvariety of dimension 2 of J0(33), Abelian subvariety of dimension 1 of J0(33) ] sage: J0(33).decomposition(simple=False)[1].is_simple() True sage: J0(33).decomposition(simple=False)[0].is_simple() False sage: J0(33).decomposition(simple=False) [ Abelian subvariety of dimension 2 of J0(33), Simple abelian subvariety 33a(None,33) of dimension 1 of J0(33) ] sage: J0(33).decomposition(simple=True) [ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33), Simple abelian subvariety 11a(3,33) of dimension 1 of J0(33), Simple abelian subvariety 33a(1,33) of dimension 1 of J0(33) ]
- degeneracy_map(level, t=1, check=True)#
Return the t-th degeneracy map from self to J(level). Here t must be a divisor of either level/self.level() or self.level()/level.
INPUT:
level
- integer (multiple or divisor of level of self)t
- divisor of quotient of level of self and levelcheck
- bool (default: True); if True do some checks on the input
OUTPUT: a morphism
EXAMPLES:
sage: J0(11).degeneracy_map(33) Degeneracy map from Abelian variety J0(11) of dimension 1 to Abelian variety J0(33) of dimension 3 defined by [1] sage: J0(11).degeneracy_map(33).matrix() [ 0 -3 2 1 -2 0] [ 1 -2 0 1 0 -1] sage: J0(11).degeneracy_map(33,3).matrix() [-1 0 0 0 1 -2] [-1 -1 1 -1 1 0] sage: J0(33).degeneracy_map(11,1).matrix() [ 0 1] [ 0 -1] [ 1 -1] [ 0 1] [-1 1] [ 0 0] sage: J0(11).degeneracy_map(33,1).matrix() * J0(33).degeneracy_map(11,1).matrix() [4 0] [0 4]
- dimension()#
Return the dimension of this modular abelian variety.
EXAMPLES:
sage: J0(2007).dimension() 221 sage: J1(13).dimension() 2 sage: J1(997).dimension() 40920 sage: J0(389).dimension() 32 sage: JH(389,[4]).dimension() 64 sage: J1(389).dimension() 6112
- group()#
Return the group that this Jacobian modular abelian variety is attached to.
EXAMPLES:
sage: J1(37).group() Congruence Subgroup Gamma1(37) sage: J0(5077).group() Congruence Subgroup Gamma0(5077) sage: J = GammaH(11,[3]).modular_abelian_variety(); J Abelian variety JH(11,[3]) of dimension 1 sage: J.group() Congruence Subgroup Gamma_H(11) with H generated by [3]
- groups()#
Return the tuple of congruence subgroups attached to this ambient Jacobian. This is always a tuple of length 1.
OUTPUT: tuple
EXAMPLES:
sage: J0(37).groups() (Congruence Subgroup Gamma0(37),)
- newform_decomposition(names=None)#
Return the newforms of the simple subvarieties in the decomposition of self as a product of simple subvarieties, up to isogeny.
OUTPUT:
an array of newforms
EXAMPLES:
sage: J0(81).newform_decomposition('a') [q - 2*q^4 + O(q^6), q - 2*q^4 + O(q^6), q + a0*q^2 + q^4 - a0*q^5 + O(q^6)] sage: J1(19).newform_decomposition('a') [q - 2*q^3 - 2*q^4 + 3*q^5 + O(q^6), q + a1*q^2 + (-1/9*a1^5 - 1/3*a1^4 - 1/3*a1^3 + 1/3*a1^2 - a1 - 1)*q^3 + (4/9*a1^5 + 2*a1^4 + 14/3*a1^3 + 17/3*a1^2 + 6*a1 + 2)*q^4 + (-2/3*a1^5 - 11/3*a1^4 - 10*a1^3 - 14*a1^2 - 15*a1 - 9)*q^5 + O(q^6)]