Hecke operators on \(q\)-expansions#
- sage.modular.modform.hecke_operator_on_qexp.hecke_operator_on_basis(B, n, k, eps=None, already_echelonized=False)#
Given a basis \(B\) of \(q\)-expansions for a space of modular forms with character \(\varepsilon\) to precision at least \(\#B\cdot n+1\), this function computes the matrix of \(T_n\) relative to \(B\).
Note
If the elements of B are not known to sufficient precision, this function will report that the vectors are linearly dependent (since they are to the specified precision).
INPUT:
B
- list of q-expansionsn
- an integer >= 1k
- an integereps
- Dirichlet characteralready_echelonized
– bool (default: False); if True, use that the basis is already in Echelon form, which saves a lot of time.
EXAMPLES:
sage: sage.modular.modform.constructor.ModularForms_clear_cache() sage: ModularForms(1,12).q_expansion_basis() [ q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6), 1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + 3199218815520/691*q^5 + O(q^6) ] sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(), 3, 12) Traceback (most recent call last): ... ValueError: The given basis vectors must be linearly independent. sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(30), 3, 12) [ 252 0] [ 0 177148]
- sage.modular.modform.hecke_operator_on_qexp.hecke_operator_on_qexp(f, n, k, eps=None, prec=None, check=True, _return_list=False)#
Given the \(q\)-expansion \(f\) of a modular form with character \(\varepsilon\), this function computes the image of \(f\) under the Hecke operator \(T_{n,k}\) of weight \(k\).
EXAMPLES:
sage: M = ModularForms(1,12) sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + O(q^5) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12, prec=7) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + O(q^14) sage: M.prec(20) 20 sage: hecke_operator_on_qexp(M.basis()[0], 3, 12) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 1, 12) q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + 401856*q^14 + 1217160*q^15 + 987136*q^16 - 6905934*q^17 + 2727432*q^18 + 10661420*q^19 - 7109760*q^20 + O(q^21) sage: (hecke_operator_on_qexp(M.basis()[0], 1, 12)*252).add_bigoh(7) 252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7) sage: hecke_operator_on_qexp(M.basis()[0], 6, 12) -6048*q + 145152*q^2 - 1524096*q^3 + O(q^4)
An example on a formal power series:
sage: R.<q> = QQ[[]] sage: f = q + q^2 + q^3 + q^7 + O(q^8) sage: hecke_operator_on_qexp(f, 3, 12) q + O(q^3) sage: hecke_operator_on_qexp(delta_qexp(24), 3, 12).prec() 8 sage: hecke_operator_on_qexp(delta_qexp(25), 3, 12).prec() 9
An example of computing \(T_{p,k}\) in characteristic \(p\):
sage: p = 199 sage: fp = delta_qexp(prec=p^2+1, K=GF(p)) sage: tfp = hecke_operator_on_qexp(fp, p, 12) sage: tfp == fp[p] * fp True sage: tf = hecke_operator_on_qexp(delta_qexp(prec=p^2+1), p, 12).change_ring(GF(p)) sage: tfp == tf True