\(q\)-expansions of theta series#
AUTHOR:
William Stein
- sage.modular.modform.theta.theta2_qexp(prec=10, var='q', K=Integer Ring, sparse=False)#
Return the \(q\)-expansion of the series \(\theta_2 = \sum_{n \text{ odd}} q^{n^2}\).
INPUT:
prec – integer; the absolute precision of the output
var – (default: ‘q’) variable name
K – (default: ZZ) base ring of answer
OUTPUT:
a power series over K
EXAMPLES:
sage: theta2_qexp(18) q + q^9 + O(q^18) sage: theta2_qexp(49) q + q^9 + q^25 + O(q^49) sage: theta2_qexp(100, 'q', QQ) q + q^9 + q^25 + q^49 + q^81 + O(q^100) sage: f = theta2_qexp(100, 't', GF(3)); f t + t^9 + t^25 + t^49 + t^81 + O(t^100) sage: parent(f) Power Series Ring in t over Finite Field of size 3 sage: theta2_qexp(200) q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + O(q^200) sage: f = theta2_qexp(20,sparse=True); f q + q^9 + O(q^20) sage: parent(f) Sparse Power Series Ring in q over Integer Ring
- sage.modular.modform.theta.theta_qexp(prec=10, var='q', K=Integer Ring, sparse=False)#
Return the \(q\)-expansion of the standard \(\theta\) series \(\theta = 1 + 2\sum_{n=1}^{\infty} q^{n^2}\).
INPUT:
prec – integer; the absolute precision of the output
var – (default: ‘q’) variable name
K – (default: ZZ) base ring of answer
OUTPUT:
a power series over K
EXAMPLES:
sage: theta_qexp(25) 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + O(q^25) sage: theta_qexp(10) 1 + 2*q + 2*q^4 + 2*q^9 + O(q^10) sage: theta_qexp(100) 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + 2*q^25 + 2*q^36 + 2*q^49 + 2*q^64 + 2*q^81 + O(q^100) sage: theta_qexp(100, 't') 1 + 2*t + 2*t^4 + 2*t^9 + 2*t^16 + 2*t^25 + 2*t^36 + 2*t^49 + 2*t^64 + 2*t^81 + O(t^100) sage: theta_qexp(100, 't', GF(2)) 1 + O(t^100) sage: f = theta_qexp(20,sparse=True); f 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + O(q^20) sage: parent(f) Sparse Power Series Ring in q over Integer Ring