Elements of graded rings of modular forms for Hecke triangle groups#
AUTHORS:
Jonas Jermann (2013): initial version
- class sage.modular.modform_hecketriangle.graded_ring_element.FormsRingElement(parent, rat)#
Bases:
CommutativeAlgebraElement
,UniqueRepresentation
Element of a FormsRing.
- AT = Analytic Type#
- AnalyticType#
alias of
AnalyticType
- analytic_type()#
Return the analytic type of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiMeromorphicModularFormsRing(n=5)(x/z+d).analytic_type() quasi meromorphic modular sage: QuasiMeromorphicModularFormsRing(n=5)((y^3-z^5)/(x^5-y^2)+y-d).analytic_type() quasi weakly holomorphic modular sage: QuasiMeromorphicModularFormsRing(n=5)(x^2+y-d).analytic_type() modular sage: QuasiMeromorphicModularForms(n=18).J_inv().analytic_type() weakly holomorphic modular sage: QuasiMeromorphicModularForms(n=18).f_inf().analytic_type() cuspidal sage: QuasiMeromorphicModularForms(n=infinity).f_inf().analytic_type() modular
- as_ring_element()#
Coerce
self
into the graded ring of its parent.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: Delta = CuspForms(k=12).Delta() sage: Delta.parent() CuspForms(n=3, k=12, ep=1) over Integer Ring sage: Delta.as_ring_element() f_rho^3*d - f_i^2*d sage: Delta.as_ring_element().parent() CuspFormsRing(n=3) over Integer Ring sage: CuspForms(n=infinity, k=12).Delta().as_ring_element() -E4^2*f_i^2*d + E4^3*d
- base_ring()#
Return base ring of
self.parent()
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: ModularForms(n=12, k=4, base_ring=CC).E4().base_ring() Complex Field with 53 bits of precision
- coeff_ring()#
Return coefficient ring of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing sage: ModularFormsRing().E6().coeff_ring() Fraction Field of Univariate Polynomial Ring in d over Integer Ring
- degree()#
Return the degree of
self
in the graded ring. Ifself
is not homogeneous, then(None, None)
is returned.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiModularFormsRing()(x+y).degree() == (None, None) True sage: ModularForms(n=18).f_i().degree() (9/4, -1) sage: ModularForms(n=infinity).f_rho().degree() (0, 1)
- denominator()#
Return the denominator of
self
. I.e. the (properly reduced) new form corresponding to the numerator ofself.rat()
.Note that the parent of
self
might (probably will) change.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiMeromorphicModularFormsRing(n=5).Delta().full_reduce().denominator() 1 + O(q^5) sage: QuasiMeromorphicModularFormsRing(n=5)((y^3-z^5)/(x^5-y^2)+y-d).denominator() f_rho^5 - f_i^2 sage: QuasiMeromorphicModularFormsRing(n=5)((y^3-z^5)/(x^5-y^2)+y-d).denominator().parent() QuasiModularFormsRing(n=5) over Integer Ring sage: QuasiMeromorphicModularForms(n=5, k=-2, ep=-1)(x/y).denominator() 1 - 13/(40*d)*q - 351/(64000*d^2)*q^2 - 13819/(76800000*d^3)*q^3 - 1163669/(491520000000*d^4)*q^4 + O(q^5) sage: QuasiMeromorphicModularForms(n=5, k=-2, ep=-1)(x/y).denominator().parent() QuasiModularForms(n=5, k=10/3, ep=-1) over Integer Ring sage: (QuasiMeromorphicModularForms(n=infinity, k=-6, ep=-1)(y/(x*(x-y^2)))).denominator() -64*q - 512*q^2 - 768*q^3 + 4096*q^4 + O(q^5) sage: (QuasiMeromorphicModularForms(n=infinity, k=-6, ep=-1)(y/(x*(x-y^2)))).denominator().parent() QuasiModularForms(n=+Infinity, k=8, ep=1) over Integer Ring
- derivative()#
Return the derivative
d/dq = lambda/(2*pi*i) d/dtau
ofself
.Note that the parent might (probably will) change. In particular its analytic type will be extended to contain “quasi”.
If
parent.has_reduce_hom() == True
then the result is reduced to be an element of the corresponding forms space if possible.In particular this is the case if
self
is a (homogeneous) element of a forms space.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: MR = QuasiMeromorphicModularFormsRing(n=7, red_hom=True) sage: n = MR.hecke_n() sage: E2 = MR.E2().full_reduce() sage: E6 = MR.E6().full_reduce() sage: f_rho = MR.f_rho().full_reduce() sage: f_i = MR.f_i().full_reduce() sage: f_inf = MR.f_inf().full_reduce() sage: derivative(f_rho) == 1/n * (f_rho*E2 - f_i) True sage: derivative(f_i) == 1/2 * (f_i*E2 - f_rho**(n-1)) True sage: derivative(f_inf) == f_inf * E2 True sage: derivative(f_inf).parent() QuasiCuspForms(n=7, k=38/5, ep=-1) over Integer Ring sage: derivative(E2) == (n-2)/(4*n) * (E2**2 - f_rho**(n-2)) True sage: derivative(E2).parent() QuasiModularForms(n=7, k=4, ep=1) over Integer Ring sage: MR = QuasiMeromorphicModularFormsRing(n=infinity, red_hom=True) sage: E2 = MR.E2().full_reduce() sage: E4 = MR.E4().full_reduce() sage: E6 = MR.E6().full_reduce() sage: f_i = MR.f_i().full_reduce() sage: f_inf = MR.f_inf().full_reduce() sage: derivative(E4) == E4 * (E2 - f_i) True sage: derivative(f_i) == 1/2 * (f_i*E2 - E4) True sage: derivative(f_inf) == f_inf * E2 True sage: derivative(f_inf).parent() QuasiModularForms(n=+Infinity, k=6, ep=-1) over Integer Ring sage: derivative(E2) == 1/4 * (E2**2 - E4) True sage: derivative(E2).parent() QuasiModularForms(n=+Infinity, k=4, ep=1) over Integer Ring
- diff_op(op, new_parent=None)#
Return the differential operator
op
applied toself
. Ifparent.has_reduce_hom() == True
then the result is reduced to be an element of the corresponding forms space if possible.INPUT:
op
– An element ofself.parent().diff_alg()
.I.e. an element of the algebra over
QQ
of differential operators generated byX, Y, Z, dX, dY, DZ
, where e.g.X
corresponds to the multiplication byx
(resp.f_rho
) anddX
corresponds tod/dx
.To expect a homogeneous result after applying the operator to a homogeneous element it should should be homogeneous operator (with respect to the usual, special grading).
new_parent
– Try to convert the result to the specifiednew_parent
. Ifnew_parent == None
(default) then the parent is extended to a “quasi meromorphic” ring.
OUTPUT:
The new element.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: MR = QuasiMeromorphicModularFormsRing(n=8, red_hom=True) sage: (X,Y,Z,dX,dY,dZ) = MR.diff_alg().gens() sage: n = MR.hecke_n() sage: mul_op = 4/(n-2)*X*dX + 2*n/(n-2)*Y*dY + 2*Z*dZ sage: der_op = MR._derivative_op() sage: ser_op = MR._serre_derivative_op() sage: der_op == ser_op + (n-2)/(4*n)*Z*mul_op True sage: Delta = MR.Delta().full_reduce() sage: E2 = MR.E2().full_reduce() sage: Delta.diff_op(mul_op) == 12*Delta True sage: Delta.diff_op(mul_op).parent() QuasiMeromorphicModularForms(n=8, k=12, ep=1) over Integer Ring sage: Delta.diff_op(mul_op, Delta.parent()).parent() CuspForms(n=8, k=12, ep=1) over Integer Ring sage: E2.diff_op(mul_op, E2.parent()) == 2*E2 True sage: Delta.diff_op(Z*mul_op, Delta.parent().extend_type("quasi", ring=True)) == 12*E2*Delta True sage: ran_op = X + Y*X*dY*dX + dZ + dX^2 sage: Delta.diff_op(ran_op) f_rho^19*d + 306*f_rho^16*d - f_rho^11*f_i^2*d - 20*f_rho^10*f_i^2*d - 90*f_rho^8*f_i^2*d sage: E2.diff_op(ran_op) f_rho*E2 + 1 sage: MR = QuasiMeromorphicModularFormsRing(n=infinity, red_hom=True) sage: (X,Y,Z,dX,dY,dZ) = MR.diff_alg().gens() sage: mul_op = 4*X*dX + 2*Y*dY + 2*Z*dZ sage: der_op = MR._derivative_op() sage: ser_op = MR._serre_derivative_op() sage: der_op == ser_op + Z/4*mul_op True sage: Delta = MR.Delta().full_reduce() sage: E2 = MR.E2().full_reduce() sage: Delta.diff_op(mul_op) == 12*Delta True sage: Delta.diff_op(mul_op).parent() QuasiMeromorphicModularForms(n=+Infinity, k=12, ep=1) over Integer Ring sage: Delta.diff_op(mul_op, Delta.parent()).parent() CuspForms(n=+Infinity, k=12, ep=1) over Integer Ring sage: E2.diff_op(mul_op, E2.parent()) == 2*E2 True sage: Delta.diff_op(Z*mul_op, Delta.parent().extend_type("quasi", ring=True)) == 12*E2*Delta True sage: ran_op = X + Y*X*dY*dX + dZ + dX^2 sage: Delta.diff_op(ran_op) -E4^3*f_i^2*d + E4^4*d - 4*E4^2*f_i^2*d - 2*f_i^2*d + 6*E4*d sage: E2.diff_op(ran_op) E4*E2 + 1
- ep()#
Return the multiplier of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiModularFormsRing()(x+y).ep() is None True sage: ModularForms(n=18).f_i().ep() -1 sage: ModularForms(n=infinity).E2().ep() -1
- evaluate(tau, prec=None, num_prec=None, check=False)#
Try to return
self
evaluated at a pointtau
in the upper half plane, whereself
is interpreted as a function intau
, whereq=exp(2*pi*i*tau)
.Note that this interpretation might not make sense (and fail) for certain (many) choices of (
base_ring
,tau.parent()
).It is possible to evaluate at points of
HyperbolicPlane()
. In this case the coordinates of the upper half plane model are used.To obtain a precise and fast result the parameters
prec
andnum_prec
both have to be considered/balanced. A highprec
value is usually quite costly.INPUT:
tau
–infinity
or an element of the upperhalf plane. E.g. with parent
AA
orCC
.
prec
– An integer, namely the precision used for theFourier expansion. If
prec == None
(default) then the default precision ofself.parent()
is used.
num_prec
– An integer, namely the minimal numerical precisionused for
tau
andd
. Ifnum_prec == None
(default) then the default numerical precision ofself.parent()
is used.
check
– IfTrue
then the order oftau
is checked.Otherwise the order is only considered for
tau = infinity, i, rho, -1/rho
. Default:False
.
OUTPUT:
The (numerical) evaluated function value.
ALGORITHM:
If the order of
self
attau
is known and nonzero: Return0
resp.infinity
.Else if
tau==infinity
and the order is zero: Return the constant Fourier coefficient ofself
.Else if
self
is homogeneous and modular:Because of the (modular) transformation property of
self
the evaluation attau
is given by the evaluation atw
multiplied byaut_factor(A,w)
.The evaluation at
w
is calculated by evaluating the truncated Fourier expansion of self atq(w)
.
Note that this is much faster and more precise than a direct evaluation at
tau
.Else if
self
is exactlyE2
:The same procedure as before is applied (with the aut_factor from the corresponding modular space).
Except that at the end a correction term for the quasimodular form
E2
of the form4*lambda/(2*pi*i)*n/(n-2) * c*(c*w + d)
(resp.4/(pi*i) * c*(c*w + d)
forn=infinity
) has to be added, wherelambda = 2*cos(pi/n)
(resplambda = 2
forn=infinity
) andc,d
are the lower entries of the matrixA
.
Else:
Evaluate
f_rho, f_i, E2
attau
using the above procedures. Ifn=infinity
useE4
instead off_rho
.Substitute
x=f_rho(tau), y=f_i(tau), z=E2(tau)
and the numerical value ofd
ford
inself.rat()
. Ifn=infinity
then substitutex=E4(tau)
instead.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.hecke_triangle_groups import HeckeTriangleGroup sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: MR = QuasiMeromorphicModularFormsRing(n=5, red_hom=True) sage: f_rho = MR.f_rho().full_reduce() sage: f_i = MR.f_i().full_reduce() sage: f_inf = MR.f_inf().full_reduce() sage: E2 = MR.E2().full_reduce() sage: E4 = MR.E4().full_reduce() sage: rho = MR.group().rho() sage: f_rho(rho) 0 sage: f_rho(rho + 1e-100) # since rho == rho + 1e-100 0 sage: f_rho(rho + 1e-6) 2.525...e-10 - 3.884...e-6*I sage: f_i(i) 0 sage: f_i(i + 1e-1000) # rel tol 5e-2 -6.08402217494586e-14 - 4.10147008296517e-1000*I sage: f_inf(infinity) 0 sage: i = I = QuadraticField(-1, 'I').gen() sage: z = -1/(-1/(2*i+30)-1) sage: z 2/965*I + 934/965 sage: E4(z) 32288.05588811... - 118329.8566016...*I sage: E4(z, prec=30, num_prec=100) # long time 32288.0558872351130041311053... - 118329.856600349999751420381...*I sage: E2(z) 409.3144737105... + 100.6926857489...*I sage: E2(z, prec=30, num_prec=100) # long time 409.314473710489761254584951... + 100.692685748952440684513866...*I sage: (E2^2-E4)(z) 125111.2655383... + 200759.8039479...*I sage: (E2^2-E4)(z, prec=30, num_prec=100) # long time 125111.265538336196262200469... + 200759.803948009905410385699...*I sage: (E2^2-E4)(infinity) 0 sage: (1/(E2^2-E4))(infinity) +Infinity sage: ((E2^2-E4)/f_inf)(infinity) -3/(10*d) sage: G = HeckeTriangleGroup(n=8) sage: MR = QuasiMeromorphicModularFormsRing(group=G, red_hom=True) sage: f_rho = MR.f_rho().full_reduce() sage: f_i = MR.f_i().full_reduce() sage: E2 = MR.E2().full_reduce() sage: z = AlgebraicField()(1/10+13/10*I) sage: A = G.V(4) sage: S = G.S() sage: T = G.T() sage: A == (T*S)**3*T True sage: az = A.acton(z) sage: az == (A[0,0]*z + A[0,1]) / (A[1,0]*z + A[1,1]) True sage: f_rho(z) 1.03740476727... + 0.0131941034523...*I sage: f_rho(az) -2.29216470688... - 1.46235057536...*I sage: k = f_rho.weight() sage: aut_fact = f_rho.ep()^3 * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k * (((T*S)*T).acton(z)/AlgebraicField()(i))**k * (T.acton(z)/AlgebraicField()(i))**k sage: abs(aut_fact - f_rho.parent().aut_factor(A, z)) < 1e-12 True sage: aut_fact * f_rho(z) -2.29216470688... - 1.46235057536...*I sage: f_rho.parent().default_num_prec(1000) sage: f_rho.parent().default_prec(300) sage: (f_rho.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*z/G.lam())) # long time 1.0374047672719462149821251... + 0.013194103452368974597290332...*I sage: (f_rho.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*az/G.lam())) # long time -2.2921647068881834598616367... - 1.4623505753697635207183406...*I sage: f_i(z) 0.667489320423... - 0.118902824870...*I sage: f_i(az) 14.5845388476... - 28.4604652892...*I sage: k = f_i.weight() sage: aut_fact = f_i.ep()^3 * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k * (((T*S)*T).acton(z)/AlgebraicField()(i))**k * (T.acton(z)/AlgebraicField()(i))**k sage: abs(aut_fact - f_i.parent().aut_factor(A, z)) < 1e-12 True sage: aut_fact * f_i(z) 14.5845388476... - 28.4604652892...*I sage: f_i.parent().default_num_prec(1000) sage: f_i.parent().default_prec(300) sage: (f_i.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*z/G.lam())) # long time 0.66748932042300250077433252... - 0.11890282487028677063054267...*I sage: (f_i.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*az/G.lam())) # long time 14.584538847698600875918891... - 28.460465289220303834894855...*I sage: f = f_rho*E2 sage: f(z) 0.966024386418... - 0.0138894699429...*I sage: f(az) -15.9978074989... - 29.2775758341...*I sage: k = f.weight() sage: aut_fact = f.ep()^3 * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k * (((T*S)*T).acton(z)/AlgebraicField()(i))**k * (T.acton(z)/AlgebraicField()(i))**k sage: abs(aut_fact - f.parent().aut_factor(A, z)) < 1e-12 True sage: k2 = f_rho.weight() sage: aut_fact2 = f_rho.ep() * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k2 * (((T*S)*T).acton(z)/AlgebraicField()(i))**k2 * (T.acton(z)/AlgebraicField()(i))**k2 sage: abs(aut_fact2 - f_rho.parent().aut_factor(A, z)) < 1e-12 True sage: cor_term = (4 * G.n() / (G.n()-2) * A.c() * (A.c()*z+A.d())) / (2*pi*i).n(1000) * G.lam() sage: aut_fact*f(z) + cor_term*aut_fact2*f_rho(z) -15.9978074989... - 29.2775758341...*I sage: f.parent().default_num_prec(1000) sage: f.parent().default_prec(300) sage: (f.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*z/G.lam())) # long time 0.96602438641867296777809436... - 0.013889469942995530807311503...*I sage: (f.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*az/G.lam())) # long time -15.997807498958825352887040... - 29.277575834123246063432206...*I sage: MR = QuasiMeromorphicModularFormsRing(n=infinity, red_hom=True) sage: f_i = MR.f_i().full_reduce() sage: f_inf = MR.f_inf().full_reduce() sage: E2 = MR.E2().full_reduce() sage: E4 = MR.E4().full_reduce() sage: f_i(i) 0 sage: f_i(i + 1e-1000) 2.991...e-12 - 3.048...e-1000*I sage: f_inf(infinity) 0 sage: z = -1/(-1/(2*i+30)-1) sage: E4(z, prec=15) 804.0722034... + 211.9278206...*I sage: E4(z, prec=30, num_prec=100) # long time 803.928382417... + 211.889914044...*I sage: E2(z) 2.438455612... - 39.48442265...*I sage: E2(z, prec=30, num_prec=100) # long time 2.43968197227756036957475... - 39.4842637577742677851431...*I sage: (E2^2-E4)(z) -2265.442515... - 380.3197877...*I sage: (E2^2-E4)(z, prec=30, num_prec=100) # long time -2265.44251550679807447320... - 380.319787790548788238792...*I sage: (E2^2-E4)(infinity) 0 sage: (1/(E2^2-E4))(infinity) +Infinity sage: ((E2^2-E4)/f_inf)(infinity) -1/(2*d) sage: G = HeckeTriangleGroup(n=Infinity) sage: z = AlgebraicField()(1/10+13/10*I) sage: A = G.V(4) sage: S = G.S() sage: T = G.T() sage: A == (T*S)**3*T True sage: az = A.acton(z) sage: az == (A[0,0]*z + A[0,1]) / (A[1,0]*z + A[1,1]) True sage: f_i(z) 0.6208853409... - 0.1212525492...*I sage: f_i(az) 6.103314419... + 20.42678597...*I sage: k = f_i.weight() sage: aut_fact = f_i.ep()^3 * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k * (((T*S)*T).acton(z)/AlgebraicField()(i))**k * (T.acton(z)/AlgebraicField()(i))**k sage: abs(aut_fact - f_i.parent().aut_factor(A, z)) < 1e-12 True sage: aut_fact * f_i(z) 6.103314419... + 20.42678597...*I sage: f_i.parent().default_num_prec(1000) sage: f_i.parent().default_prec(300) sage: (f_i.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*z/G.lam())) # long time 0.620885340917559158572271... - 0.121252549240996430425967...*I sage: (f_i.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*az/G.lam())) # long time 6.10331441975198186745017... + 20.4267859728657976382684...*I sage: f = f_i*E2 sage: f(z) 0.5349190275... - 0.1322370856...*I sage: f(az) -140.4711702... + 469.0793692...*I sage: k = f.weight() sage: aut_fact = f.ep()^3 * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k * (((T*S)*T).acton(z)/AlgebraicField()(i))**k * (T.acton(z)/AlgebraicField()(i))**k sage: abs(aut_fact - f.parent().aut_factor(A, z)) < 1e-12 True sage: k2 = f_i.weight() sage: aut_fact2 = f_i.ep() * (((T*S)**2*T).acton(z)/AlgebraicField()(i))**k2 * (((T*S)*T).acton(z)/AlgebraicField()(i))**k2 * (T.acton(z)/AlgebraicField()(i))**k2 sage: abs(aut_fact2 - f_i.parent().aut_factor(A, z)) < 1e-12 True sage: cor_term = (4 * A.c() * (A.c()*z+A.d())) / (2*pi*i).n(1000) * G.lam() sage: aut_fact*f(z) + cor_term*aut_fact2*f_i(z) -140.4711702... + 469.0793692...*I sage: f.parent().default_num_prec(1000) sage: f.parent().default_prec(300) sage: (f.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*z/G.lam())) # long time 0.534919027587592616802582... - 0.132237085641931661668338...*I sage: (f.q_expansion_fixed_d().polynomial())(exp((2*pi*i).n(1000)*az/G.lam())) # long time -140.471170232432551196978... + 469.079369280804086032719...*I
It is possible to evaluate at points of
HyperbolicPlane()
:sage: p = HyperbolicPlane().PD().get_point(-I/2) sage: bool(p.to_model('UHP').coordinates() == I/3) True sage: E4(p) == E4(I/3) True sage: p = HyperbolicPlane().PD().get_point(I) sage: f_inf(p, check=True) == 0 True sage: (1/(E2^2-E4))(p) == infinity True
- full_reduce()#
Convert
self
into its reduced parent.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: Delta = QuasiMeromorphicModularFormsRing().Delta() sage: Delta f_rho^3*d - f_i^2*d sage: Delta.full_reduce() q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5) sage: Delta.full_reduce().parent() == Delta.reduced_parent() True sage: QuasiMeromorphicModularFormsRing().Delta().full_reduce().parent() CuspForms(n=3, k=12, ep=1) over Integer Ring
- group()#
Return the (Hecke triangle) group of
self.parent()
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: ModularForms(n=12, k=4).E4().group() Hecke triangle group for n = 12
- hecke_n()#
Return the parameter
n
of the (Hecke triangle) group ofself.parent()
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: ModularForms(n=12, k=6).E6().hecke_n() 12
- is_cuspidal()#
Return whether
self
is cuspidal in the sense thatself
is holomorphic andf_inf
divides the numerator.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiModularFormsRing(n=5)(y^3-z^5).is_cuspidal() False sage: QuasiModularFormsRing(n=5)(z*x^5-z*y^2).is_cuspidal() True sage: QuasiModularForms(n=18).Delta().is_cuspidal() True sage: QuasiModularForms(n=18).f_rho().is_cuspidal() False sage: QuasiModularForms(n=infinity).f_inf().is_cuspidal() False sage: QuasiModularForms(n=infinity).Delta().is_cuspidal() True
- is_holomorphic()#
Return whether
self
is holomorphic in the sense that the denominator ofself
is constant.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiMeromorphicModularFormsRing(n=5)((y^3-z^5)/(x^5-y^2)+y-d).is_holomorphic() False sage: QuasiMeromorphicModularFormsRing(n=5)(x^2+y-d+z).is_holomorphic() True sage: QuasiMeromorphicModularForms(n=18).J_inv().is_holomorphic() False sage: QuasiMeromorphicModularForms(n=18).f_i().is_holomorphic() True sage: QuasiMeromorphicModularForms(n=infinity).f_inf().is_holomorphic() True
- is_homogeneous()#
Return whether
self
is homogeneous.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: QuasiModularFormsRing(n=12).Delta().is_homogeneous() True sage: QuasiModularFormsRing(n=12).Delta().parent().is_homogeneous() False sage: x,y,z,d=var("x,y,z,d") sage: QuasiModularFormsRing(n=12)(x^3+y^2+z+d).is_homogeneous() False sage: QuasiModularFormsRing(n=infinity)(x*(x-y^2)+y^4).is_homogeneous() True
- is_modular()#
Return whether
self
(resp. its homogeneous components) transform like modular forms.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiModularFormsRing(n=5)(x^2+y-d).is_modular() True sage: QuasiModularFormsRing(n=5)(x^2+y-d+z).is_modular() False sage: QuasiModularForms(n=18).f_i().is_modular() True sage: QuasiModularForms(n=18).E2().is_modular() False sage: QuasiModularForms(n=infinity).f_inf().is_modular() True
- is_weakly_holomorphic()#
Return whether
self
is weakly holomorphic in the sense that:self
has at most a power off_inf
in its denominator.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiMeromorphicModularFormsRing(n=5)(x/(x^5-y^2)+z).is_weakly_holomorphic() True sage: QuasiMeromorphicModularFormsRing(n=5)(x^2+y/x-d).is_weakly_holomorphic() False sage: QuasiMeromorphicModularForms(n=18).J_inv().is_weakly_holomorphic() True sage: QuasiMeromorphicModularForms(n=infinity, k=-4)(1/x).is_weakly_holomorphic() True sage: QuasiMeromorphicModularForms(n=infinity, k=-2)(1/y).is_weakly_holomorphic() False
- is_zero()#
Return whether
self
is the zero function.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiModularFormsRing(n=5)(1).is_zero() False sage: QuasiModularFormsRing(n=5)(0).is_zero() True sage: QuasiModularForms(n=18).zero().is_zero() True sage: QuasiModularForms(n=18).Delta().is_zero() False sage: QuasiModularForms(n=infinity).f_rho().is_zero() False
- numerator()#
Return the numerator of
self
.I.e. the (properly reduced) new form corresponding to the numerator of
self.rat()
.Note that the parent of
self
might (probably will) change.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiMeromorphicModularFormsRing(n=5)((y^3-z^5)/(x^5-y^2)+y-d).numerator() f_rho^5*f_i - f_rho^5*d - E2^5 + f_i^2*d sage: QuasiMeromorphicModularFormsRing(n=5)((y^3-z^5)/(x^5-y^2)+y-d).numerator().parent() QuasiModularFormsRing(n=5) over Integer Ring sage: QuasiMeromorphicModularForms(n=5, k=-2, ep=-1)(x/y).numerator() 1 + 7/(100*d)*q + 21/(160000*d^2)*q^2 + 1043/(192000000*d^3)*q^3 + 45479/(1228800000000*d^4)*q^4 + O(q^5) sage: QuasiMeromorphicModularForms(n=5, k=-2, ep=-1)(x/y).numerator().parent() QuasiModularForms(n=5, k=4/3, ep=1) over Integer Ring sage: (QuasiMeromorphicModularForms(n=infinity, k=-2, ep=-1)(y/x)).numerator() 1 - 24*q + 24*q^2 - 96*q^3 + 24*q^4 + O(q^5) sage: (QuasiMeromorphicModularForms(n=infinity, k=-2, ep=-1)(y/x)).numerator().parent() QuasiModularForms(n=+Infinity, k=2, ep=-1) over Integer Ring
- order_at(tau=+Infinity)#
Return the (overall) order of
self
attau
if easily possible: Namely iftau
isinfinity
or congruent toi
resp.rho
.It is possible to determine the order of points from
HyperbolicPlane()
. In this case the coordinates of the upper half plane model are used.If
self
is homogeneous and modular then the rational functionself.rat()
is used. Otherwise onlytau=infinity
is supported by using the Fourier expansion with increasing precision (until the order can be determined).The function is mainly used to be able to work with the correct precision for Laurent series.
Note
For quasi forms one cannot deduce the analytic type from this order at
infinity
since the analytic order is defined by the behavior on each quasi part and not by their linear combination.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: MR = QuasiMeromorphicModularFormsRing(red_hom=True) sage: (MR.Delta()^3).order_at(infinity) 3 sage: MR.E2().order_at(infinity) 0 sage: (MR.J_inv()^2).order_at(infinity) -2 sage: x,y,z,d = MR.pol_ring().gens() sage: el = MR((z^3-y)^2/(x^3-y^2)).full_reduce() sage: el 108*q + 11664*q^2 + 502848*q^3 + 12010464*q^4 + O(q^5) sage: el.order_at(infinity) 1 sage: el.parent() QuasiWeakModularForms(n=3, k=0, ep=1) over Integer Ring sage: el.is_holomorphic() False sage: MR((z-y)^2+(x-y)^3).order_at(infinity) 2 sage: MR((x-y)^10).order_at(infinity) 10 sage: MR.zero().order_at(infinity) +Infinity sage: (MR(x*y^2)/MR.J_inv()).order_at(i) 2 sage: (MR(x*y^2)/MR.J_inv()).order_at(MR.group().rho()) -2 sage: MR = QuasiMeromorphicModularFormsRing(n=infinity, red_hom=True) sage: (MR.Delta()^3*MR.E4()).order_at(infinity) 3 sage: MR.E2().order_at(infinity) 0 sage: (MR.J_inv()^2/MR.E4()).order_at(infinity) -2 sage: el = MR((z^3-x*y)^2/(x^2*(x-y^2))).full_reduce() sage: el 4*q - 304*q^2 + 8128*q^3 - 106144*q^4 + O(q^5) sage: el.order_at(infinity) 1 sage: el.parent() QuasiWeakModularForms(n=+Infinity, k=0, ep=1) over Integer Ring sage: el.is_holomorphic() False sage: MR((z-x)^2+(x-y)^3).order_at(infinity) 2 sage: MR((x-y)^10).order_at(infinity) 10 sage: MR.zero().order_at(infinity) +Infinity sage: (MR.j_inv()*MR.f_i()^3).order_at(-1) 1 sage: (MR.j_inv()*MR.f_i()^3).order_at(i) 3 sage: (1/MR.f_inf()^2).order_at(-1) 0 sage: p = HyperbolicPlane().PD().get_point(I) sage: MR((x-y)^10).order_at(p) 10 sage: MR.zero().order_at(p) +Infinity
- q_expansion(prec=None, fix_d=False, d_num_prec=None, fix_prec=False)#
Returns the Fourier expansion of self.
INPUT:
prec
– An integer, the desired output precision O(q^prec).Default:
None
in which case the default precision ofself.parent()
is used.
fix_d
– IfFalse
(default) a formal parameter is used ford
.If
True
then the numerical value ofd
is used (resp. an exact value if the group is arithmetic). Otherwise the given value is used ford
.
d_num_prec
– The precision to be used if a numerical value ford
is substituted.Default:
None
in which case the default numerical precision ofself.parent()
is used.
fix_prec
– Iffix_prec
is notFalse
(default)then the precision of the
MFSeriesConstructor
is increased such that the output has exactly the specified precision O(q^prec).
OUTPUT:
The Fourier expansion of self as a
FormalPowerSeries
orFormalLaurentSeries
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import WeakModularFormsRing, QuasiModularFormsRing sage: j_inv = WeakModularFormsRing(red_hom=True).j_inv() sage: j_inv.q_expansion(prec=3) q^-1 + 31/(72*d) + 1823/(27648*d^2)*q + 10495/(2519424*d^3)*q^2 + O(q^3) sage: E2 = QuasiModularFormsRing(n=5, red_hom=True).E2() sage: E2.q_expansion(prec=3) 1 - 9/(200*d)*q - 369/(320000*d^2)*q^2 + O(q^3) sage: E2.q_expansion(prec=3, fix_d=1) 1 - 9/200*q - 369/320000*q^2 + O(q^3) sage: E6 = WeakModularFormsRing(n=5, red_hom=True).E6().full_reduce() sage: Delta = WeakModularFormsRing(n=5, red_hom=True).Delta().full_reduce() sage: E6.q_expansion(prec=3).prec() == 3 True sage: (Delta/(E2^3-E6)).q_expansion(prec=3).prec() == 3 True sage: (Delta/(E2^3-E6)^3).q_expansion(prec=3).prec() == 3 True sage: ((E2^3-E6)/Delta^2).q_expansion(prec=3).prec() == 3 True sage: ((E2^3-E6)^3/Delta).q_expansion(prec=3).prec() == 3 True sage: x,y = var("x,y") sage: el = WeakModularFormsRing()((x+1)/(x^3-y^2)) sage: el.q_expansion(prec=2, fix_prec = True) 2*d*q^-1 + O(1) sage: el.q_expansion(prec=2) 2*d*q^-1 + 1/6 + 119/(41472*d)*q + O(q^2) sage: j_inv = WeakModularFormsRing(n=infinity, red_hom=True).j_inv() sage: j_inv.q_expansion(prec=3) q^-1 + 3/(8*d) + 69/(1024*d^2)*q + 1/(128*d^3)*q^2 + O(q^3) sage: E2 = QuasiModularFormsRing(n=infinity, red_hom=True).E2() sage: E2.q_expansion(prec=3) 1 - 1/(8*d)*q - 1/(512*d^2)*q^2 + O(q^3) sage: E2.q_expansion(prec=3, fix_d=1) 1 - 1/8*q - 1/512*q^2 + O(q^3) sage: E4 = WeakModularFormsRing(n=infinity, red_hom=True).E4().full_reduce() sage: Delta = WeakModularFormsRing(n=infinity, red_hom=True).Delta().full_reduce() sage: E4.q_expansion(prec=3).prec() == 3 True sage: (Delta/(E2^2-E4)).q_expansion(prec=3).prec() == 3 True sage: (Delta/(E2^2-E4)^3).q_expansion(prec=3).prec() == 3 True sage: ((E2^2-E4)/Delta^2).q_expansion(prec=3).prec() == 3 True sage: ((E2^2-E4)^3/Delta).q_expansion(prec=3).prec() == 3 True sage: x,y = var("x,y") sage: el = WeakModularFormsRing(n=infinity)((x+1)/(x-y^2)) sage: el.q_expansion(prec=2, fix_prec = True) 2*d*q^-1 + O(1) sage: el.q_expansion(prec=2) 2*d*q^-1 + 1/2 + 39/(512*d)*q + O(q^2)
- q_expansion_fixed_d(prec=None, d_num_prec=None, fix_prec=False)#
Returns the Fourier expansion of self. The numerical (or exact) value for
d
is substituted.INPUT:
prec
– An integer, the desired output precision O(q^prec).Default:
None
in which case the default precision ofself.parent()
is used.
d_num_prec
– The precision to be used if a numerical value ford
is substituted.Default:
None
in which case the default numerical precision ofself.parent()
is used.
fix_prec
– Iffix_prec
is notFalse
(default)then the precision of the
MFSeriesConstructor
is increased such that the output has exactly the specified precision O(q^prec).
OUTPUT:
The Fourier expansion of self as a
FormalPowerSeries
orFormalLaurentSeries
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import WeakModularFormsRing, QuasiModularFormsRing sage: j_inv = WeakModularFormsRing(red_hom=True).j_inv() sage: j_inv.q_expansion_fixed_d(prec=3) q^-1 + 744 + 196884*q + 21493760*q^2 + O(q^3) sage: E2 = QuasiModularFormsRing(n=5, red_hom=True).E2() sage: E2.q_expansion_fixed_d(prec=3) 1.000000000000... - 6.380956565426...*q - 23.18584547617...*q^2 + O(q^3) sage: x,y = var("x,y") sage: WeakModularFormsRing()((x+1)/(x^3-y^2)).q_expansion_fixed_d(prec=2, fix_prec = True) 1/864*q^-1 + O(1) sage: WeakModularFormsRing()((x+1)/(x^3-y^2)).q_expansion_fixed_d(prec=2) 1/864*q^-1 + 1/6 + 119/24*q + O(q^2) sage: j_inv = WeakModularFormsRing(n=infinity, red_hom=True).j_inv() sage: j_inv.q_expansion_fixed_d(prec=3) q^-1 + 24 + 276*q + 2048*q^2 + O(q^3) sage: E2 = QuasiModularFormsRing(n=infinity, red_hom=True).E2() sage: E2.q_expansion_fixed_d(prec=3) 1 - 8*q - 8*q^2 + O(q^3) sage: x,y = var("x,y") sage: WeakModularFormsRing(n=infinity)((x+1)/(x-y^2)).q_expansion_fixed_d(prec=2, fix_prec = True) 1/32*q^-1 + O(1) sage: WeakModularFormsRing(n=infinity)((x+1)/(x-y^2)).q_expansion_fixed_d(prec=2) 1/32*q^-1 + 1/2 + 39/8*q + O(q^2) sage: (WeakModularFormsRing(n=14).J_inv()^3).q_expansion_fixed_d(prec=2) 2.933373093...e-6*q^-3 + 0.0002320999814...*q^-2 + 0.009013529265...*q^-1 + 0.2292916854... + 4.303583833...*q + O(q^2)
- q_expansion_vector(min_exp=None, max_exp=None, prec=None, **kwargs)#
Return (part of) the Laurent series expansion of
self
as a vector.INPUT:
min_exp
– An integer, specifying the first coefficient to beused for the vector. Default:
None
, meaning that the first non-trivial coefficient is used.
max_exp
– An integer, specifying the last coefficient to beused for the vector. Default:
None
, meaning that the default precision + 1 is used.
prec
– An integer, specifying the precision of the underlyingLaurent series. Default:
None
, meaning thatmax_exp + 1
is used.
OUTPUT:
A vector of size
max_exp - min_exp
over the coefficient ring of self, determined by the corresponding Laurent series coefficients.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import WeakModularFormsRing sage: f = WeakModularFormsRing(red_hom=True).j_inv()^3 sage: f.q_expansion(prec=3) q^-3 + 31/(24*d)*q^-2 + 20845/(27648*d^2)*q^-1 + 7058345/(26873856*d^3) + 30098784355/(495338913792*d^4)*q + 175372747465/(17832200896512*d^5)*q^2 + O(q^3) sage: v = f.q_expansion_vector(max_exp=1, prec=3) sage: v (1, 31/(24*d), 20845/(27648*d^2), 7058345/(26873856*d^3), 30098784355/(495338913792*d^4)) sage: v.parent() Vector space of dimension 5 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: f.q_expansion_vector(min_exp=1, max_exp=2) (30098784355/(495338913792*d^4), 175372747465/(17832200896512*d^5)) sage: f.q_expansion_vector(min_exp=1, max_exp=2, fix_d=True) (541778118390, 151522053809760) sage: f = WeakModularFormsRing(n=infinity, red_hom=True).j_inv()^3 sage: f.q_expansion_fixed_d(prec=3) q^-3 + 72*q^-2 + 2556*q^-1 + 59712 + 1033974*q + 14175648*q^2 + O(q^3) sage: v = f.q_expansion_vector(max_exp=1, prec=3, fix_d=True) sage: v (1, 72, 2556, 59712, 1033974) sage: v.parent() Vector space of dimension 5 over Rational Field sage: f.q_expansion_vector(min_exp=1, max_exp=2) (516987/(8388608*d^4), 442989/(33554432*d^5))
- rat()#
Return the rational function representing
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing sage: ModularFormsRing(n=12).Delta().rat() x^30*d - x^18*y^2*d
- reduce(force=False)#
In case
self.parent().has_reduce_hom() == True
(orforce==True
) andself
is homogeneous the converted element lying in the corresponding homogeneous_part is returned.Otherwise
self
is returned.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import ModularFormsRing sage: E2 = ModularFormsRing(n=7).E2().reduce() sage: E2.parent() QuasiModularFormsRing(n=7) over Integer Ring sage: E2 = ModularFormsRing(n=7, red_hom=True).E2().reduce() sage: E2.parent() QuasiModularForms(n=7, k=2, ep=-1) over Integer Ring sage: ModularFormsRing(n=7)(x+1).reduce().parent() ModularFormsRing(n=7) over Integer Ring sage: E2 = ModularFormsRing(n=7).E2().reduce(force=True) sage: E2.parent() QuasiModularForms(n=7, k=2, ep=-1) over Integer Ring sage: ModularFormsRing(n=7)(x+1).reduce(force=True).parent() ModularFormsRing(n=7) over Integer Ring sage: y = var("y") sage: ModularFormsRing(n=infinity)(x-y^2).reduce(force=True) 64*q - 512*q^2 + 1792*q^3 - 4096*q^4 + O(q^5)
- reduced_parent()#
Return the space with the analytic type of
self
. Ifself
is homogeneous the correspondingFormsSpace
is returned.I.e. return the smallest known ambient space of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: Delta = QuasiMeromorphicModularFormsRing(n=7).Delta() sage: Delta.parent() QuasiMeromorphicModularFormsRing(n=7) over Integer Ring sage: Delta.reduced_parent() CuspForms(n=7, k=12, ep=1) over Integer Ring sage: el = QuasiMeromorphicModularFormsRing()(x+1) sage: el.parent() QuasiMeromorphicModularFormsRing(n=3) over Integer Ring sage: el.reduced_parent() ModularFormsRing(n=3) over Integer Ring sage: y = var("y") sage: QuasiMeromorphicModularFormsRing(n=infinity)(x-y^2).reduced_parent() ModularForms(n=+Infinity, k=4, ep=1) over Integer Ring sage: QuasiMeromorphicModularFormsRing(n=infinity)(x*(x-y^2)).reduced_parent() CuspForms(n=+Infinity, k=8, ep=1) over Integer Ring
- serre_derivative()#
Return the Serre derivative of
self
.Note that the parent might (probably will) change. However a modular element is returned if
self
was already modular.If
parent.has_reduce_hom() == True
then the result is reduced to be an element of the corresponding forms space if possible.In particular this is the case if
self
is a (homogeneous) element of a forms space.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiMeromorphicModularFormsRing sage: MR = QuasiMeromorphicModularFormsRing(n=7, red_hom=True) sage: n = MR.hecke_n() sage: Delta = MR.Delta().full_reduce() sage: E2 = MR.E2().full_reduce() sage: E4 = MR.E4().full_reduce() sage: E6 = MR.E6().full_reduce() sage: f_rho = MR.f_rho().full_reduce() sage: f_i = MR.f_i().full_reduce() sage: f_inf = MR.f_inf().full_reduce() sage: f_rho.serre_derivative() == -1/n * f_i True sage: f_i.serre_derivative() == -1/2 * E4 * f_rho True sage: f_inf.serre_derivative() == 0 True sage: E2.serre_derivative() == -(n-2)/(4*n) * (E2^2 + E4) True sage: E4.serre_derivative() == -(n-2)/n * E6 True sage: E6.serre_derivative() == -1/2 * E4^2 - (n-3)/n * E6^2 / E4 True sage: E6.serre_derivative().parent() ModularForms(n=7, k=8, ep=1) over Integer Ring sage: MR = QuasiMeromorphicModularFormsRing(n=infinity, red_hom=True) sage: Delta = MR.Delta().full_reduce() sage: E2 = MR.E2().full_reduce() sage: E4 = MR.E4().full_reduce() sage: E6 = MR.E6().full_reduce() sage: f_i = MR.f_i().full_reduce() sage: f_inf = MR.f_inf().full_reduce() sage: E4.serre_derivative() == -E4 * f_i True sage: f_i.serre_derivative() == -1/2 * E4 True sage: f_inf.serre_derivative() == 0 True sage: E2.serre_derivative() == -1/4 * (E2^2 + E4) True sage: E4.serre_derivative() == -E6 True sage: E6.serre_derivative() == -1/2 * E4^2 - E6^2 / E4 True sage: E6.serre_derivative().parent() ModularForms(n=+Infinity, k=8, ep=1) over Integer Ring
- sqrt()#
Return the square root of
self
if it exists.I.e. the element corresponding to
sqrt(self.rat())
.Whether this works or not depends on whether
sqrt(self.rat())
works and coerces intoself.parent().rat_field()
.Note that the parent might (probably will) change.
If
parent.has_reduce_hom() == True
then the result is reduced to be an element of the corresponding forms space if possible.In particular this is the case if
self
is a (homogeneous) element of a forms space.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: E2 = QuasiModularForms(k=2, ep=-1).E2() sage: (E2^2).sqrt() 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 + O(q^5) sage: (E2^2).sqrt() == E2 True
- weight()#
Return the weight of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import QuasiModularFormsRing sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: x,y,z,d = var("x,y,z,d") sage: QuasiModularFormsRing()(x+y).weight() is None True sage: ModularForms(n=18).f_i().weight() 9/4 sage: ModularForms(n=infinity).f_inf().weight() 4