Atkin/Hecke series for overconvergent modular forms#
This file contains a function hecke_series()
to compute the
characteristic series \(P(t)\) modulo \(p^m\) of the Atkin/Hecke operator \(U_p\)
upon the space of \(p\)-adic overconvergent modular forms of level \(\Gamma_0(N)\).
The input weight k
can also be a list klist
of weights which must all
be congruent modulo \((p-1)\).
Two optional parameters modformsring
and weightbound
can be specified,
and in most cases for levels \(N > 1\) they can be used to obtain the output more
quickly. When \(m \le k-1\) the output \(P(t)\) is also equal modulo \(p^m\) to the
reverse characteristic polynomial of the Atkin operator \(U_p\) on the space of
classical modular forms of weight \(k\) and level \(\Gamma_0(Np)\). In addition,
provided \(m \le (k-2)/2\) the output \(P(t)\) is equal modulo \(p^m\) to the reverse
characteristic polynomial of the Hecke operator \(T_p\) on the space of classical
modular forms of weight \(k\) and level \(\Gamma_0(N)\). The function is based upon
the main algorithm in [Lau2011], and has linear running time in the logarithm of
the weight \(k\).
AUTHORS:
Alan G.B. Lauder (2011-11-10): original implementation.
David Loeffler (2011-12): minor optimizations in review stage.
EXAMPLES:
The characteristic series of the \(U_{11}\) operator modulo \(11^{10}\) on the space of 11-adic overconvergent modular forms of level 1 and weight 10000:
sage: hecke_series(11, 1, 10000, 10)
10009319650*x^4 + 25618839103*x^3 + 6126165716*x^2 + 10120524732*x + 1
The characteristic series of the U_5 operator modulo 5^5 on the space of 5-adic overconvergent modular forms of level 3 and weight 1000:
sage: hecke_series(5, 3, 1000, 5)
1875*x^6 + 1250*x^5 + 1200*x^4 + 1385*x^3 + 1131*x^2 + 2533*x + 1
The characteristic series of the \(U_7\) operator modulo \(7^5\) on the space of 7-adic overconvergent
modular forms of level 5 and weight 1000. Here the optional parameter modformsring
is set to True
:
sage: hecke_series(7, 5, 1000, 5, modformsring=True) # long time (21s on sage.math, 2012)
12005*x^7 + 10633*x^6 + 6321*x^5 + 6216*x^4 + 5412*x^3 + 4927*x^2 + 4906*x + 1
The characteristic series of the \(U_{13}\) operator modulo \(13^5\) on the space of 13-adic overconvergent
modular forms of level 2 and weight 10000. Here the optional parameter weightbound
is set to 4:
sage: hecke_series(13, 2, 10000, 5, weightbound=4) # long time (17s on sage.math, 2012)
325156*x^5 + 109681*x^4 + 188617*x^3 + 220858*x^2 + 269566*x + 1
A list containing the characteristic series of the \(U_{23}\) operator modulo \(23^{10}\) on the spaces of 23-adic overconvergent modular forms of level 1 and weights 1000 and 1022, respectively.
sage: hecke_series(23, 1, [1000, 1022], 10)
[7204610645852*x^6 + 2117949463923*x^5 + 24152587827773*x^4 + 31270783576528*x^3 + 30336366679797*x^2
+ 29197235447073*x + 1, 32737396672905*x^4 + 36141830902187*x^3 + 16514246534976*x^2 + 38886059530878*x + 1]
- sage.modular.overconvergent.hecke_series.complementary_spaces(N, p, k0, n, mdash, elldashp, elldash, modformsring, bound)#
Returns a list
Ws
, each element in which is a listWi
of q-expansions modulo \((p^\text{mdash},q^\text{elldashp})\). The listWi
is a basis for a choice of complementary space in level \(\Gamma_0(N)\) and weight \(k\) to the image of weight \(k - (p-1)\) forms under multiplication by the Eisenstein series \(E_{p-1}\).The lists
Wi
play the same role as \(W_i\) in Step 2 of Algorithm 2 in [Lau2011]. (The parametersk0, n, mdash, elldash, elldashp = elldash * p
are defined as in Step 1 of that algorithm when this function is used inhecke_series()
.) However, the complementary spaces are computed in a different manner, combining a suggestion of David Loeffler with one of John Voight. That is, one builds these spaces recursively using random products of forms in low weight, first searching for suitable products modulo \((p,q^\text{elldash})\), and then later reconstructing only the required products to the full precision modulo \((p^\text{mdash},q^\text{elldashp})\). The forms in low weight are chosen from either bases of all forms up to weightbound
or from a (tentative) generating set for the ring of all modular forms, according to whethermodformsring
isFalse
orTrue
.INPUT:
N
– positive integer at least 2 and not divisible by p (level).p
– prime at least 5.k0
– integer in range 0 to \(p - 1\).n, mdash, elldashp, elldash
– positive integers.modformsring
–True
orFalse
.bound
– positive (even) integer (ignored ifmodformsring
is True).
OUTPUT:
list of lists of q-expansions modulo \((p^\text{mdash},q^\text{elldashp})\).
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import complementary_spaces sage: complementary_spaces(2, 5, 0, 3, 2, 5, 4, True, 6) # random [[1], [1 + 23*q + 24*q^2 + 19*q^3 + 7*q^4 + O(q^5)], [1 + 21*q + 2*q^2 + 17*q^3 + 14*q^4 + O(q^5)], [1 + 19*q + 9*q^2 + 11*q^3 + 9*q^4 + O(q^5)]] sage: complementary_spaces(2, 5, 0, 3, 2, 5, 4, False, 6) # random [[1], [3 + 4*q + 2*q^2 + 12*q^3 + 11*q^4 + O(q^5)], [2 + 2*q + 14*q^2 + 19*q^3 + 18*q^4 + O(q^5)], [6 + 8*q + 10*q^2 + 23*q^3 + 4*q^4 + O(q^5)]]
- sage.modular.overconvergent.hecke_series.complementary_spaces_modp(N, p, k0, n, elldash, LWBModp, bound)#
Returns a list of lists of lists of lists
[j, a]
. The pairs[j, a]
encode the choice of the \(a\)-th element in the \(j\)-th list of the inputLWBModp
, i.e., the \(a\)-th element in a particular basis modulo \((p,q^\text{elldash})\) for the space of modular forms of level \(\Gamma_0(N)\) and weight \(2(j+1)\). The list[[j_1, a_1], ...,[j_r, a_r]]
then encodes the product of the r modular forms associated to each[j_i, a_i]
; this has weight \(k + (p-1)i\) for some \(0 \le i \le n\); here the \(i\) is such that this list of lists occurs in the ith list of the output. The ith list of the output thus encodes a choice of basis for the complementary space \(W_i\) which occurs in Step 2 of Algorithm 2 in [Lau2011]. The idea is that one searches for this space \(W_i\) first modulo \((p,q^\text{elldash})\) and then, having found the correct products of generating forms, one can reconstruct these spaces modulo \((p^\text{mdash},q^\text{elldashp})\) using the output of this function. (This idea is based upon a suggestion of John Voight.)INPUT:
N
– positive integer at least 2 and not divisible by \(p\) (level).p
– prime at least 5.k0
– integer in range 0 to \(p-1\).n, elldash
– positive integers.LWBModp
– list of lists of \(q\)-expansions over \(GF(p)\).bound
– positive even integer (twice the length of the listLWBModp
).
OUTPUT:
list of list of list of lists.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases, complementary_spaces_modp sage: LWB = random_low_weight_bases(2, 5, 2, 4, 6) sage: LWBModp = [[f.change_ring(Zmod(5)) for f in x] for x in LWB] sage: complementary_spaces_modp(2, 5, 0, 3, 4, LWBModp, 6) # random, indirect doctest [[[]], [[[0, 0], [0, 0]]], [[[0, 0], [2, 1]]], [[[0, 0], [0, 0], [0, 0], [2, 1]]]]
- sage.modular.overconvergent.hecke_series.compute_G(p, F)#
Given a power series \(F \in R[[q]]^\times\), for some ring \(R\), and an integer \(p\), compute the quotient
\[\frac{F(q)}{F(q^p)}.\]Used by
level1_UpGj()
and byhigher_level_UpGj()
, with \(F\) equal to the Eisenstein series \(E_{p-1}\).INPUT:
p
– integerF
– power series (with invertible constant term)
OUTPUT:
the power series \(F(q) / F(q^p)\), to the same precision as \(F\)
EXAMPLES:
sage: E = sage.modular.overconvergent.hecke_series.eisenstein_series_qexp(2, 12, Zmod(9),normalization="constant") sage: sage.modular.overconvergent.hecke_series.compute_G(3, E) 1 + 3*q + 3*q^4 + 6*q^7 + O(q^12)
- sage.modular.overconvergent.hecke_series.compute_Wi(k, p, h, hj, E4, E6)#
This function computes a list \(W_i\) of q-expansions, together with an auxiliary quantity \(h^j\) (see below) which is to be used on the next call of this function. (The precision is that of input q-expansions.)
The list \(W_i\) is a certain subset of a basis of the modular forms of weight \(k\) and level 1. Suppose \((a, b)\) is the pair of non-negative integers with \(4a + 6b = k\) and \(a\) minimal among such pairs. Then this space has a basis given by
\[\{ \Delta^j E_6^{b - 2j} E_4^a : 0 \le j < d\}\]where \(d\) is the dimension.
What this function returns is the subset of the above basis corresponding to \(e \le j < d\) where \(e\) is the dimension of the space of modular forms of weight \(k - (p-1)\). This set is a basis for the complement of the image of the weight \(k - (p-1)\) forms under multiplication by \(E_{p-1}\).
This function is used repeatedly in the construction of the Katz expansion basis. Hence considerable care is taken to reuse steps in the computation wherever possible: we keep track of powers of the form \(h = \Delta / E_6^2\).
INPUT:
k
– non-negative integer.p
– prime at least 5.h
– q-expansion of \(h\) (to some finite precision).hj
– q-expansion of \(h^j\) where \(j\) is the dimension of the space of modular forms of level 1 and weight \(k - (p-1)\) (to same finite precision).E4
– \(q\)-expansion of \(E_4\) (to same finite precision).E6
– \(q\)-expansion of \(E_6\) (to same finite precision).
The Eisenstein series q-expansions should be normalized to have constant term 1.
OUTPUT:
list of \(q\)-expansions (to same finite precision), and \(q\)-expansion.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import compute_Wi sage: p = 17 sage: prec = 10 sage: k = 24 sage: S = Zmod(17^3) sage: E4 = eisenstein_series_qexp(4, prec, K=S, normalization="constant") sage: E6 = eisenstein_series_qexp(6, prec, K=S, normalization="constant") sage: h = delta_qexp(prec, K=S) / E6^2 sage: from sage.modular.dims import dimension_modular_forms sage: j = dimension_modular_forms(1, k - (p - 1)) sage: hj = h ** j sage: c = compute_Wi(k, p, h, hj, E4, E6); c ([q + 3881*q^2 + 4459*q^3 + 4665*q^4 + 2966*q^5 + 1902*q^6 + 1350*q^7 + 3836*q^8 + 1752*q^9 + O(q^10), q^2 + 4865*q^3 + 1080*q^4 + 4612*q^5 + 1343*q^6 + 1689*q^7 + 3876*q^8 + 1381*q^9 + O(q^10)], q^3 + 2952*q^4 + 1278*q^5 + 3225*q^6 + 1286*q^7 + 589*q^8 + 122*q^9 + O(q^10)) sage: c == ([delta_qexp(10) * E6^2, delta_qexp(10)^2], h**3) True
- sage.modular.overconvergent.hecke_series.compute_elldash(p, N, k0, n)#
Returns the “Sturm bound” for the space of modular forms of level \(\Gamma_0(N)\) and weight \(k_0 + n(p-1)\).
See also
INPUT:
p
– prime.N
– positive integer (level).k0
,n
- non-negative integers not both zero.
OUTPUT:
positive integer.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import compute_elldash sage: compute_elldash(11, 5, 4, 10) 53
- sage.modular.overconvergent.hecke_series.ech_form(A, p)#
Return echelon form of matrix
A
over the ring of integers modulo \(p^m\), for some prime \(p\) and \(m \ge 1\).Todo
This should be moved to
sage.matrix.matrix_modn_dense
at some point.INPUT:
A
– matrix overZmod(p^m)
for some mp
– prime p
OUTPUT: matrix over
Zmod(p^m)
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import ech_form sage: A = MatrixSpace(Zmod(5 ** 3), 3)([1, 2, 3, 4, 5, 6, 7, 8, 9]) sage: ech_form(A, 5) [1 2 3] [0 1 2] [0 0 0]
- sage.modular.overconvergent.hecke_series.hecke_series(p, N, klist, m, modformsring=False, weightbound=6)#
Returns the characteristic series modulo \(p^m\) of the Atkin operator \(U_p\) acting upon the space of p-adic overconvergent modular forms of level \(\Gamma_0(N)\) and weight
klist
.The input
klist
may also be a list of weights congruent modulo \((p-1)\), in which case the output is the corresponding list of characteristic series for each \(k\) inklist
; this is faster than performing the computation separately for each \(k\), since intermediate steps in the computation may be reused.If
modformsring
isTrue
, then for \(N > 1\) the algorithm computes at one stepModularFormsRing(N).generators()
. This will often be faster but the algorithm will default tomodformsring=False
if the generators found are not p-adically integral. Note thatmodformsring
is ignored for \(N = 1\) and the ring structure of modular forms is always used in this case.When
modformsring
isFalse
and \(N > 1\),weightbound
is a bound set on the weight of generators for a certain subspace of modular forms. The algorithm will often be faster ifweightbound=4
, but it may fail to terminate for certain exceptional small values of \(N\), when this bound is too small.The algorithm is based upon that described in [Lau2011].
INPUT:
p
– a prime greater than or equal to 5.N
– a positive integer not divisible by \(p\).klist
– either a list of integers congruent modulo \((p-1)\), or a single integer.m
– a positive integer.modformsring
–True
orFalse
(optional, defaultFalse
). Ignored if \(N = 1\).weightbound
– a positive even integer (optional, default 6). Ignored if \(N = 1\) ormodformsring
isTrue
.
OUTPUT:
Either a list of polynomials or a single polynomial over the integers modulo \(p^m\).
EXAMPLES:
sage: hecke_series(5, 7, 10000, 5, modformsring=True) # long time (3.4s) 250*x^6 + 1825*x^5 + 2500*x^4 + 2184*x^3 + 1458*x^2 + 1157*x + 1 sage: hecke_series(7, 3, 10000, 3, weightbound=4) 196*x^4 + 294*x^3 + 197*x^2 + 341*x + 1 sage: hecke_series(19, 1, [10000, 10018], 5) [1694173*x^4 + 2442526*x^3 + 1367943*x^2 + 1923654*x + 1, 130321*x^4 + 958816*x^3 + 2278233*x^2 + 1584827*x + 1]
Check that silly weights are handled correctly:
sage: hecke_series(5, 7, [2, 3], 5) Traceback (most recent call last): ... ValueError: List of weights must be all congruent modulo p-1 = 4, but given list contains 2 and 3 which are not congruent sage: hecke_series(5, 7, [3], 5) [1] sage: hecke_series(5, 7, 3, 5) 1
- sage.modular.overconvergent.hecke_series.hecke_series_degree_bound(p, N, k, m)#
Returns the
Wan bound
on the degree of the characteristic series of the Atkin operator on p-adic overconvergent modular forms of level \(\Gamma_0(N)\) and weight \(k\) when reduced modulo \(p^m\).This bound depends only upon \(p, k \pmod{p-1}\), and \(N\). It uses Lemma 3.1 in [Wan1998].
INPUT:
p
– prime at least 5.N
– positive integer not divisible by \(p\).k
– even integer.m
– positive integer.
OUTPUT:
A non-negative integer.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import hecke_series_degree_bound sage: hecke_series_degree_bound(13,11,100,5) 39
- sage.modular.overconvergent.hecke_series.higher_level_UpGj(p, N, klist, m, modformsring, bound, extra_data=False)#
Return a list
[A_k]
of square matrices overIntegerRing(p^m)
parameterised by the weights \(k\) inklist
.The matrix \(A_k\) is the finite square matrix which occurs on input \(p, k, N\) and \(m\) in Step 6 of Algorithm 2 in [Lau2011].
Notational change from paper: In Step 1 following Wan we defined \(j\) by \(k = k_0 + j(p-1)\) with \(0 \le k_0 < p-1\). Here we replace \(j\) by
kdiv
so that we may use \(j\) as a column index for matrices.)INPUT:
p
– prime at least 5.N
– integer at least 2 and not divisible by \(p\) (level).klist
– list of integers all congruent modulo \((p-1)\) (the weights).m
– positive integer.modformsring
–True
orFalse
.bound
– (even) positive integer.extra_data
– (default:False
) boolean.
OUTPUT:
list of square matrices. If
extra_data
isTrue
, return also extra intermediate data, namely the matrix \(E\) in [Lau2011] and the integerselldash
andmdash
.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import higher_level_UpGj sage: A = Matrix([ ....: [1, 0, 0, 0, 0, 0], ....: [0, 1, 0, 0, 0, 0], ....: [0, 7, 0, 0, 0, 0], ....: [0, 5, 10, 20, 0, 0], ....: [0, 7, 20, 0, 20, 0], ....: [0, 1, 24, 0, 20, 0]]) sage: B = Matrix([ ....: [1, 0, 0, 0, 0, 0], ....: [0, 1, 0, 0, 0, 0], ....: [0, 7, 0, 0, 0, 0], ....: [0, 19, 0, 20, 0, 0], ....: [0, 7, 20, 0, 20, 0], ....: [0, 1, 24, 0, 20, 0]]) sage: C = higher_level_UpGj(5, 3, [4], 2, True, 6) sage: len(C) 1 sage: C[0] in (A, B) True sage: len(higher_level_UpGj(5, 3, [4], 2, True, 6, extra_data=True)) 4
- sage.modular.overconvergent.hecke_series.higher_level_katz_exp(p, N, k0, m, mdash, elldash, elldashp, modformsring, bound)#
Returns a matrix \(e\) of size
ell x elldashp
over the integers modulo \(p^\text{mdash}\), and the Eisenstein series \(E_{p-1} = 1 + .\dots \bmod (p^\text{mdash},q^\text{elldashp})\). The matrix \(e\) contains the coefficients of the elements \(e_{i,s}\) in the Katz expansions basis in Step 3 of Algorithm 2 in [Lau2011] when one takes as input to that algorithm \(p, N, m\) and \(k\) and definek0
,mdash
,n
,elldash
,elldashp = ell * dashp
as in Step 1.INPUT:
p
– prime at least 5.N
– positive integer at least 2 and not divisible by \(p\) (level).k0
– integer in range 0 to \(p-1\).m, mdash, elldash, elldashp
– positive integers.modformsring
–True
orFalse
.bound
– positive (even) integer.
OUTPUT:
matrix and \(q\)-expansion.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import higher_level_katz_exp sage: e, Ep1 = higher_level_katz_exp(5, 2, 0, 1, 2, 4, 20, True, 6) sage: e [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 1 18 23 19 6 9 9 17 7 3 17 12 8 22 8 11 19 1 5] [ 0 0 1 11 20 16 0 8 4 0 18 15 24 6 15 23 5 18 7 15] [ 0 0 0 1 4 16 23 13 6 5 23 5 2 16 4 18 10 23 5 15] sage: Ep1 1 + 15*q + 10*q^2 + 20*q^3 + 20*q^4 + 15*q^5 + 5*q^6 + 10*q^7 + 5*q^9 + 10*q^10 + 5*q^11 + 10*q^12 + 20*q^13 + 15*q^14 + 20*q^15 + 15*q^16 + 10*q^17 + 20*q^18 + O(q^20)
- sage.modular.overconvergent.hecke_series.is_valid_weight_list(klist, p)#
This function checks that
klist
is a nonempty list of integers all of which are congruent modulo \((p-1)\). Otherwise, it will raise a ValueError.INPUT:
klist
– list of integers.p
– prime.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import is_valid_weight_list sage: is_valid_weight_list([10, 20, 30],11) sage: is_valid_weight_list([-3, 1], 5) sage: is_valid_weight_list([], 3) Traceback (most recent call last): ... ValueError: List of weights must be non-empty sage: is_valid_weight_list([-3, 2], 5) Traceback (most recent call last): ... ValueError: List of weights must be all congruent modulo p-1 = 4, but given list contains -3 and 2 which are not congruent
- sage.modular.overconvergent.hecke_series.katz_expansions(k0, p, ellp, mdash, n)#
Returns a list \(e\) of \(q\)-expansions, and the Eisenstein series \(E_{p-1} = 1 + \dots\), all modulo \((p^\text{mdash},q^\text{ellp})\). The list \(e\) contains the elements \(e_{i,s}\) in the Katz expansions basis in Step 3 of Algorithm 1 in [Lau2011] when one takes as input to that algorithm \(p,m\) and \(k\) and define
k0
,mdash
,n
,ellp = ell * p
as in Step 1.INPUT:
k0
– integer in range 0 to \(p - 1\).p
– prime at least 5.ellp, mdash, n
– positive integers.
OUTPUT:
list of \(q\)-expansions and the Eisenstein series \(E_{p-1}\) modulo \((p^\text{mdash},q^\text{ellp})\).
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import katz_expansions sage: katz_expansions(0, 5, 10, 3, 4) ([1 + O(q^10), q + 6*q^2 + 27*q^3 + 98*q^4 + 65*q^5 + 37*q^6 + 81*q^7 + 85*q^8 + 62*q^9 + O(q^10)], 1 + 115*q + 35*q^2 + 95*q^3 + 20*q^4 + 115*q^5 + 105*q^6 + 60*q^7 + 25*q^8 + 55*q^9 + O(q^10))
- sage.modular.overconvergent.hecke_series.level1_UpGj(p, klist, m, extra_data=False)#
Return a list \([A_k]\) of square matrices over
IntegerRing(p^m)
parameterised by the weights \(k\) inklist
.The matrix \(A_k\) is the finite square matrix which occurs on input \(p, k\) and \(m\) in Step 6 of Algorithm 1 in [Lau2011].
Notational change from paper: In Step 1 following Wan we defined \(j\) by \(k = k_0 + j(p-1)\) with \(0 \le k_0 < p-1\). Here we replace \(j\) by
kdiv
so that we may use \(j\) as a column index for matrices.INPUT:
p
– prime at least 5.klist
– list of integers congruent modulo \((p-1)\) (the weights).m
– positive integer.extra_data
– (default:False
) boolean
OUTPUT:
list of square matrices. If
extra_data
isTrue
, return also extra intermediate data, namely the matrix \(E\) in [Lau2011] and the integerselldash
andmdash
.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import level1_UpGj sage: level1_UpGj(7, [100], 5) [ [ 1 980 4802 0 0] [ 0 13727 14406 0 0] [ 0 13440 7203 0 0] [ 0 1995 4802 0 0] [ 0 9212 14406 0 0] ] sage: len(level1_UpGj(7, [100], 5, extra_data=True)) 4
- sage.modular.overconvergent.hecke_series.low_weight_bases(N, p, m, NN, weightbound)#
Return a list of integral bases of modular forms of level \(N\) and (even) weight at most
weightbound
, as \(q\)-expansions modulo \((p^m,q^{NN})\).These forms are obtained by reduction mod \(p^m\) from an integral basis in Hermite normal form (so they are not necessarily in reduced row echelon form mod \(p^m\), but they are not far off).
INPUT:
N
– positive integer (level).p
– prime.m
,NN
– positive integers.weightbound
– (even) positive integer.
OUTPUT:
list of lists of \(q\)-expansions modulo \((p^m,q^{NN})\).
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import low_weight_bases sage: low_weight_bases(2, 5, 3, 5, 6) [[1 + 24*q + 24*q^2 + 96*q^3 + 24*q^4 + O(q^5)], [1 + 115*q^2 + 35*q^4 + O(q^5), q + 8*q^2 + 28*q^3 + 64*q^4 + O(q^5)], [1 + 121*q^2 + 118*q^4 + O(q^5), q + 32*q^2 + 119*q^3 + 24*q^4 + O(q^5)]]
- sage.modular.overconvergent.hecke_series.low_weight_generators(N, p, m, NN)#
Returns a list of lists of modular forms, and an even natural number.
The first output is a list of lists of modular forms reduced modulo \((p^m,q^{NN})\) which generate the \((\ZZ / p^m \ZZ)\)-algebra of mod \(p^m\) modular forms of weight at most 8, and the second output is the largest weight among the forms in the generating set.
We (Alan Lauder and David Loeffler, the author and reviewer of this patch) conjecture that forms of weight at most 8 are always sufficient to generate the algebra of mod \(p^m\) modular forms of all weights. (We believe 6 to be sufficient, and we can prove that 4 is sufficient when there are no elliptic points, but using weights up to 8 acts as a consistency check.)
INPUT:
N
– positive integer (level).p
– prime.m
,NN
– positive integers.
OUTPUT:
a tuple consisting of:
a list of lists of \(q\)-expansions modulo \((p^m,q^{NN})\),
an even natural number (twice the length of the list).
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import low_weight_generators sage: low_weight_generators(3, 7, 3, 10) ([[1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + 180*q^8 + 12*q^9 + O(q^10)], [1 + 240*q^3 + 102*q^6 + 203*q^9 + O(q^10)], [1 + 182*q^3 + 175*q^6 + 161*q^9 + O(q^10)]], 6) sage: low_weight_generators(11, 5, 3, 10) ([[1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + O(q^10), q + 123*q^2 + 124*q^3 + 2*q^4 + q^5 + 2*q^6 + 123*q^7 + 123*q^9 + O(q^10)], [q + 116*q^4 + 115*q^5 + 102*q^6 + 121*q^7 + 96*q^8 + 106*q^9 + O(q^10)]], 4)
- sage.modular.overconvergent.hecke_series.random_low_weight_bases(N, p, m, NN, weightbound)#
Returns list of random integral bases of modular forms of level \(N\) and (even) weight at most weightbound with coefficients reduced modulo \((p^m,q^{NN})\).
INPUT:
N
– positive integer (level).p
– prime.m
,NN
– positive integers.weightbound
– (even) positive integer.
OUTPUT:
list of lists of \(q\)-expansions modulo \((p^m,q^{NN})\).
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases sage: S = random_low_weight_bases(3, 7, 2, 5, 6); S # random [[4 + 48*q + 46*q^2 + 48*q^3 + 42*q^4 + O(q^5)], [3 + 5*q + 45*q^2 + 22*q^3 + 22*q^4 + O(q^5), 1 + 3*q + 27*q^2 + 27*q^3 + 23*q^4 + O(q^5)], [2*q + 4*q^2 + 16*q^3 + 48*q^4 + O(q^5), 2 + 6*q + q^2 + 3*q^3 + 43*q^4 + O(q^5), 1 + 2*q + 6*q^2 + 14*q^3 + 4*q^4 + O(q^5)]] sage: S[0][0].parent() Power Series Ring in q over Ring of integers modulo 49 sage: S[0][0].prec() 5
- sage.modular.overconvergent.hecke_series.random_new_basis_modp(N, p, k, LWBModp, TotalBasisModp, elldash, bound)#
Returns a list of lists of lists
[j, a]
encoding a choice of basis for the ith complementary space \(W_i\), as explained in the documentation for the functioncomplementary_spaces_modp()
.INPUT:
N
– positive integer at least 2 and not divisible by \(p\) (level).p
– prime at least 5.k
– non-negative integer.LWBModp
– list of list of \(q\)-expansions modulo \((p,q^\text{elldash})\).TotalBasisModp
– matrix over \(\mathrm{GF}(p)\).elldash
- positive integer.bound
– positive even integer (twice the length of the listLWBModp
).
OUTPUT:
A list of lists of lists
[j, a]
.
Note
As well as having a non-trivial return value, this function also modifies the input matrix
TotalBasisModp
.EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import random_low_weight_bases, complementary_spaces_modp sage: LWB = random_low_weight_bases(2, 5, 2, 4, 6) sage: LWBModp = [ [f.change_ring(GF(5)) for f in x] for x in LWB] sage: complementary_spaces_modp(2, 5, 2, 3, 4, LWBModp, 4) # random, indirect doctest [[[[0, 0]]], [[[0, 0], [1, 1]]], [[[0, 0], [1, 0], [1, 1]]], [[[0, 0], [1, 0], [1, 1], [1, 1]]]]
- sage.modular.overconvergent.hecke_series.random_solution(B, K)#
Returns a random solution in non-negative integers to the equation \(a_1 + 2 a_2 + 3 a_3 + ... + B a_B = K\), using a greedy algorithm.
Note that this is much faster than using
WeightedIntegerVectors.random_element()
.INPUT:
B
,K
– non-negative integers.
OUTPUT:
list.
EXAMPLES:
sage: from sage.modular.overconvergent.hecke_series import random_solution sage: s = random_solution(5, 10) sage: sum(s[i] * (i + 1) for i in range(5)) 10 sage: S = set() sage: while len(S) != 30: ....: s = random_solution(5, 10) ....: assert sum(s[i] * (i + 1) for i in range(5)) == 10 ....: S.add(tuple(s))