Elements of quasimodular forms rings#
AUTHORS:
DAVID AYOTTE (2021-03-18): initial version
- class sage.modular.quasimodform.element.QuasiModularFormsElement(parent, polynomial)#
Bases:
ModuleElement
A quasimodular forms ring element. Such an element is describbed by SageMath as a polynomial
\[f_0 + f_1 E_2 + f_2 E_2^2 + \cdots + f_m E_2^m\]where each \(f_i\) a graded modular form element (see
GradedModularFormElement
)EXAMPLES:
sage: QM = QuasiModularForms(1) sage: QM.gens() [1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6), 1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q^6), 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + O(q^6)] sage: QM.0 + QM.1 2 + 216*q + 2088*q^2 + 6624*q^3 + 17352*q^4 + 30096*q^5 + O(q^6) sage: QM.0 * QM.1 1 + 216*q - 3672*q^2 - 62496*q^3 - 322488*q^4 - 1121904*q^5 + O(q^6) sage: (QM.0)^2 1 - 48*q + 432*q^2 + 3264*q^3 + 9456*q^4 + 21600*q^5 + O(q^6) sage: QM.0 == QM.1 False
Quasimodular forms ring element can be created via a polynomial in \(E2\) over the ring of modular forms:
sage: E2 = QM.polygen() sage: E2.parent() Univariate Polynomial Ring in E2 over Ring of Modular Forms for Modular Group SL(2,Z) over Rational Field sage: QM(E2) 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6) sage: M = QM.modular_forms_subring() sage: QM(M.0 * E2 + M.1 * E2^2) 2 - 336*q + 4320*q^2 + 398400*q^3 - 3772992*q^4 - 89283168*q^5 + O(q^6)
One may convert a quasimodular form into a multivariate polynomial in the generators of the ring by calling
polynomial()
:sage: QM = QuasiModularForms(1) sage: F = QM.0^2 + QM.1^2 + QM.0*QM.1*QM.2 sage: F.polynomial() E2*E4*E6 + E4^2 + E2^2
If the group is not the full modular group, the default names of the generators are given by
Ek_i
andSk_i
to denote the \(i\)-th basis element of the weight \(k\) Eisenstein subspace and cuspidal subspace respectively (for more details, see the documentation ofpolynomial_ring()
)sage: QM = QuasiModularForms(Gamma1(4)) sage: F = (QM.0^4)*(QM.1^3) + QM.3 sage: F.polynomial() -512*E2^4*E2_1^3 + E2^4*E3_0^2 + 48*E2^4*E3_1^2 + E3_0
- derivative()#
Return the derivative \(q \frac{d}{dq}\) of the given quasimodular form.
If the form is not homogeneous, then this method sums the derivative of each homogeneous component.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: E2, E4, E6 = QM.gens() sage: dE2 = E2.derivative(); dE2 -24*q - 144*q^2 - 288*q^3 - 672*q^4 - 720*q^5 + O(q^6) sage: dE2 == (E2^2 - E4)/12 # Ramanujan identity True sage: dE4 = E4.derivative(); dE4 240*q + 4320*q^2 + 20160*q^3 + 70080*q^4 + 151200*q^5 + O(q^6) sage: dE4 == (E2 * E4 - E6)/3 # Ramanujan identity True sage: dE6 = E6.derivative(); dE6 -504*q - 33264*q^2 - 368928*q^3 - 2130912*q^4 - 7877520*q^5 + O(q^6) sage: dE6 == (E2 * E6 - E4^2)/2 # Ramanujan identity True
Note that the derivative of a modular form is not necessarily a modular form:
sage: dE4.is_modular_form() False sage: dE4.weight() 6
- homogeneous_components()#
Return a dictionary where the values are the homogeneous components of the given graded form and the keys are the weights of those components.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0).homogeneous_components() {2: 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6)} sage: (QM.0 + QM.1 + QM.2).homogeneous_components() {2: 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6), 4: 1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q^6), 6: 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + O(q^6)} sage: (1 + QM.0).homogeneous_components() {0: 1, 2: 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6)} sage: QM = QuasiModularForms(Gamma0(5)) sage: F = QM.0 + QM.1 * QM.0 + QM.3^2*QM.0 sage: F.homogeneous_components() {2: 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6), 4: 1 - 18*q - 198*q^2 - 936*q^3 - 2574*q^4 - 5610*q^5 + O(q^6), 10: q^2 - 24*q^3 - 52*q^4 - 520*q^5 + O(q^6)}
- is_graded_modular_form()#
Return whether the given quasimodular form is a graded modular form element (see
GradedModularFormElement
).EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0).is_graded_modular_form() False sage: (QM.1).is_graded_modular_form() True sage: (QM.1 + QM.0^2).is_graded_modular_form() False sage: (QM.1^2 + QM.2).is_graded_modular_form() True sage: QM = QuasiModularForms(Gamma0(6)) sage: (QM.0).is_graded_modular_form() False sage: (QM.1 + QM.2 + QM.1 * QM.3).is_graded_modular_form() True sage: QM.zero().is_graded_modular_form() True sage: QM = QuasiModularForms(Gamma0(6)) sage: (QM.0).is_graded_modular_form() False sage: (QM.0 + QM.1*QM.2 + QM.3).is_graded_modular_form() False sage: (QM.1*QM.2 + QM.3).is_graded_modular_form() True
Note
A graded modular form in SageMath is not necessarily a modular form as it can have mixed weight components. To check for modular forms only, see the method
is_modular_form()
.
- is_homogeneous()#
Return whether the graded quasimodular form is a homogeneous element, that is, it lives in a unique graded components of the parent of
self
.EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0).is_homogeneous() True sage: (QM.0 + QM.1).is_homogeneous() False sage: (QM.0 * QM.1 + QM.2).is_homogeneous() True sage: QM(1).is_homogeneous() True sage: (1 + QM.0).is_homogeneous() False sage: QM = QuasiModularForms(Gamma0(4)) sage: (QM.0).is_homogeneous() True sage: (QM.0 + QM.1).is_homogeneous() True sage: (QM.0 + QM.1 + QM.2).is_homogeneous() True sage: (QM.0 + QM.1^3).is_homogeneous() False
- is_modular_form()#
Return whether the given quasimodular form is a modular form.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0).is_modular_form() False sage: (QM.1).is_modular_form() True sage: (QM.1 + QM.2).is_modular_form() # mixed weight components False sage: QM.zero().is_modular_form() True sage: QM = QuasiModularForms(Gamma0(4)) sage: (QM.0).is_modular_form() False sage: (QM.1).is_modular_form() True
- is_one()#
Return whether the given quasimodular form is 1, i.e. the multiplicative identity.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: QM.one().is_one() True sage: QM(1).is_one() True sage: (QM.0).is_one() False sage: QM = QuasiModularForms(Gamma0(2)) sage: QM(1).is_one() True
- is_zero()#
Return whether the given quasimodular form is zero.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: QM.zero().is_zero() True sage: QM(0).is_zero() True sage: QM(1/2).is_zero() False sage: (QM.0).is_zero() False sage: QM = QuasiModularForms(Gamma0(2)) sage: QM(0).is_zero() True
- polynomial(names=None)#
Return a multivariate polynomial such that every variable corresponds to a generator of the ring, ordered by the method:
gens()
.An alias of this method is
to_polynomial
.INPUT:
names
(str, default:None
) – a list or tuple of names (strings), or a comma separated string. Defines the names for the generators of the multivariate polynomial ring. The default names are of the formABCk
wherek
is a number corresponding to the weight of the formABC
.
OUTPUT: A multivariate polynomial in the variables
names
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0 + QM.1).polynomial() E4 + E2 sage: (1/2 + QM.0 + 2*QM.1^2 + QM.0*QM.2).polynomial() E2*E6 + 2*E4^2 + E2 + 1/2
Check that trac ticket #34569 is fixed:
sage: QM = QuasiModularForms(Gamma1(3)) sage: QM.ngens() 5 sage: (QM.0 + QM.1 + QM.2*QM.1 + QM.3*QM.4).polynomial() E3_1*E4_0 + E2_0*E3_0 + E2 + E2_0
- q_expansion(prec=6)#
Return the \(q\)-expansion of the given quasimodular form up to precision
prec
(default: 6).An alias of this method is
qexp
.EXAMPLES:
sage: QM = QuasiModularForms() sage: E2 = QM.0 sage: E2.q_expansion() 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6) sage: E2.q_expansion(prec=10) 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 - 288*q^6 - 192*q^7 - 360*q^8 - 312*q^9 + O(q^10)
- qexp(prec=6)#
Return the \(q\)-expansion of the given quasimodular form up to precision
prec
(default: 6).An alias of this method is
qexp
.EXAMPLES:
sage: QM = QuasiModularForms() sage: E2 = QM.0 sage: E2.q_expansion() 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6) sage: E2.q_expansion(prec=10) 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 - 288*q^6 - 192*q^7 - 360*q^8 - 312*q^9 + O(q^10)
- serre_derivative()#
Return the Serre derivative of the given quasimodular form.
If the form is not homogeneous, then this method sums the Serre derivative of each homogeneous component.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: E2, E4, E6 = QM.gens() sage: DE2 = E2.serre_derivative(); DE2 -1/6 - 16*q - 216*q^2 - 832*q^3 - 2248*q^4 - 4320*q^5 + O(q^6) sage: DE2 == (-E2^2 - E4)/12 True sage: DE4 = E4.serre_derivative(); DE4 -1/3 + 168*q + 5544*q^2 + 40992*q^3 + 177576*q^4 + 525168*q^5 + O(q^6) sage: DE4 == (-1/3) * E6 True sage: DE6 = E6.serre_derivative(); DE6 -1/2 - 240*q - 30960*q^2 - 525120*q^3 - 3963120*q^4 - 18750240*q^5 + O(q^6) sage: DE6 == (-1/2) * E4^2 True
The Serre derivative raises the weight of homogeneous elements by 2:
sage: F = E6 + E4 * E2 sage: F.weight() 6 sage: F.serre_derivative().weight() 8
Check that trac ticket #34569 is fixed:
sage: QM = QuasiModularForms(Gamma1(3)) sage: E2 = QM.weight_2_eisenstein_series() sage: E2.serre_derivative() -1/6 - 16*q - 216*q^2 - 832*q^3 - 2248*q^4 - 4320*q^5 + O(q^6) sage: F = QM.0 + QM.1*QM.2
- to_polynomial(names=None)#
Return a multivariate polynomial such that every variable corresponds to a generator of the ring, ordered by the method:
gens()
.An alias of this method is
to_polynomial
.INPUT:
names
(str, default:None
) – a list or tuple of names (strings), or a comma separated string. Defines the names for the generators of the multivariate polynomial ring. The default names are of the formABCk
wherek
is a number corresponding to the weight of the formABC
.
OUTPUT: A multivariate polynomial in the variables
names
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0 + QM.1).polynomial() E4 + E2 sage: (1/2 + QM.0 + 2*QM.1^2 + QM.0*QM.2).polynomial() E2*E6 + 2*E4^2 + E2 + 1/2
Check that trac ticket #34569 is fixed:
sage: QM = QuasiModularForms(Gamma1(3)) sage: QM.ngens() 5 sage: (QM.0 + QM.1 + QM.2*QM.1 + QM.3*QM.4).polynomial() E3_1*E4_0 + E2_0*E3_0 + E2 + E2_0
- weight()#
Return the weight of the given quasimodular form.
Note that the given form must be homogeneous.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0).weight() 2 sage: (QM.0 * QM.1 + QM.2).weight() 6 sage: QM(1/2).weight() 0 sage: (QM.0 + QM.1).weight() Traceback (most recent call last): ... ValueError: the given graded quasiform is not an homogeneous element
- weights_list()#
Return the list of the weights of all the graded components of the given graded quasimodular form.
EXAMPLES:
sage: QM = QuasiModularForms(1) sage: (QM.0).weights_list() [2] sage: (QM.0 + QM.1 + QM.2).weights_list() [2, 4, 6] sage: (QM.0 * QM.1 + QM.2).weights_list() [6] sage: QM(1/2).weights_list() [0] sage: QM = QuasiModularForms(Gamma1(3)) sage: (QM.0 + QM.1 + QM.2*QM.1 + QM.3*QM.4).weights_list() [2, 5, 7]