Class Groups of Number Fields#
An element of a class group is stored as a pair consisting of both an explicit
ideal in that ideal class, and a list of exponents giving that ideal class in
terms of the generators of the parent class group. These can be accessed with
the ideal()
and exponents()
methods respectively.
EXAMPLES:
sage: K.<a> = NumberField(x^2 + 23)
sage: I = K.class_group().gen(); I
Fractional ideal class (2, 1/2*a - 1/2)
sage: I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
sage: I.exponents()
(1,)
sage: I.ideal() * I.ideal()
Fractional ideal (4, 1/2*a + 3/2)
sage: (I.ideal() * I.ideal()).reduce_equiv()
Fractional ideal (2, 1/2*a + 1/2)
sage: J = I * I; J # class group multiplication is automatically reduced
Fractional ideal class (2, 1/2*a + 1/2)
sage: J.ideal()
Fractional ideal (2, 1/2*a + 1/2)
sage: J.exponents()
(2,)
sage: I * I.ideal() # ideal classes coerce to their representative ideal
Fractional ideal (4, 1/2*a + 3/2)
sage: O = K.OK(); O
Maximal Order in Number Field in a with defining polynomial x^2 + 23
sage: O*(2, 1/2*a + 1/2)
Fractional ideal (2, 1/2*a + 1/2)
sage: (O*(2, 1/2*a + 1/2)).is_principal()
False
sage: (O*(2, 1/2*a + 1/2))^3
Fractional ideal (1/2*a - 3/2)
- class sage.rings.number_field.class_group.ClassGroup(gens_orders, names, number_field, gens, proof=True)#
Bases:
AbelianGroupWithValues_class
The class group of a number field.
EXAMPLES:
sage: K.<a> = NumberField(x^2 + 23) sage: G = K.class_group(); G Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23 sage: G.category() Category of finite enumerated commutative groups
Note the distinction between abstract generators, their ideal, and exponents:
sage: C = NumberField(x^2 + 120071, 'a').class_group(); C Class group of order 500 with structure C250 x C2 of Number Field in a with defining polynomial x^2 + 120071 sage: c = C.gen(0) sage: c # random Fractional ideal class (5, 1/2*a + 3/2) sage: c.ideal() # random Fractional ideal (5, 1/2*a + 3/2) sage: c.ideal() is c.value() # alias True sage: c.exponents() (1, 0)
- Element#
alias of
FractionalIdealClass
- gens_ideals()#
Return generating ideals for the (S-)class group.
This is an alias for
gens_values()
.OUTPUT:
A tuple of ideals, one for each abstract Abelian group generator.
EXAMPLES:
sage: K.<a> = NumberField(x^4 + 23) sage: K.class_group().gens_ideals() # random gens (platform dependent) (Fractional ideal (2, 1/4*a^3 - 1/4*a^2 + 1/4*a - 1/4),) sage: C = NumberField(x^2 + x + 23899, 'a').class_group(); C Class group of order 68 with structure C34 x C2 of Number Field in a with defining polynomial x^2 + x + 23899 sage: C.gens() (Fractional ideal class (7, a + 5), Fractional ideal class (5, a + 3)) sage: C.gens_ideals() (Fractional ideal (7, a + 5), Fractional ideal (5, a + 3))
- number_field()#
Return the number field that this (S-)class group is attached to.
EXAMPLES:
sage: C = NumberField(x^2 + 23, 'w').class_group(); C Class group of order 3 with structure C3 of Number Field in w with defining polynomial x^2 + 23 sage: C.number_field() Number Field in w with defining polynomial x^2 + 23 sage: K.<a> = QuadraticField(-14) sage: CS = K.S_class_group(K.primes_above(2)) sage: CS.number_field() Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I
- class sage.rings.number_field.class_group.FractionalIdealClass(parent, element, ideal=None)#
Bases:
AbelianGroupWithValuesElement
A fractional ideal class in a number field.
EXAMPLES:
sage: G = NumberField(x^2 + 23,'a').class_group(); G Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23 sage: I = G.0; I Fractional ideal class (2, 1/2*a - 1/2) sage: I.ideal() Fractional ideal (2, 1/2*a - 1/2) EXAMPLES:: sage: K.<w>=QuadraticField(-23) sage: OK=K.ring_of_integers() sage: C=OK.class_group() sage: P2a,P2b=[P for P,e in (2*OK).factor()] sage: c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) sage: c.gens() (2, 1/2*w - 1/2)
- gens()#
Return generators for a representative ideal in this (S-)ideal class.
EXAMPLES:
sage: K.<w>=QuadraticField(-23) sage: OK = K.ring_of_integers() sage: C = OK.class_group() sage: P2a,P2b=[P for P,e in (2*OK).factor()] sage: c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) sage: c.gens() (2, 1/2*w - 1/2)
- ideal()#
Return a representative ideal in this ideal class.
EXAMPLES:
sage: K.<w>=QuadraticField(-23) sage: OK=K.ring_of_integers() sage: C=OK.class_group() sage: P2a,P2b=[P for P,e in (2*OK).factor()] sage: c=C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) sage: c.ideal() Fractional ideal (2, 1/2*w - 1/2)
- inverse()#
Return the multiplicative inverse of this ideal class.
EXAMPLES:
sage: K.<a> = NumberField(x^3 - 3*x + 8); G = K.class_group() sage: G(2, a).inverse() Fractional ideal class (2, a^2 + 2*a - 1) sage: ~G(2, a) Fractional ideal class (2, a^2 + 2*a - 1)
- is_principal()#
Returns True iff this ideal class is the trivial (principal) class
EXAMPLES:
sage: K.<w>=QuadraticField(-23) sage: OK=K.ring_of_integers() sage: C=OK.class_group() sage: P2a,P2b=[P for P,e in (2*OK).factor()] sage: c=C(P2a) sage: c.is_principal() False sage: (c^2).is_principal() False sage: (c^3).is_principal() True
- reduce()#
Return representative for this ideal class that has been reduced using PARI’s pari:idealred.
EXAMPLES:
sage: k.<a> = NumberField(x^2 + 20072); G = k.class_group(); G Class group of order 76 with structure C38 x C2 of Number Field in a with defining polynomial x^2 + 20072 sage: I = (G.0)^11; I Fractional ideal class (33, 1/2*a + 8) sage: J = G(I.ideal()^5); J Fractional ideal class (39135393, 1/2*a + 13654253) sage: J.reduce() Fractional ideal class (73, 1/2*a + 47) sage: J == I^5 True
- representative_prime(norm_bound=1000)#
Return a prime ideal in this ideal class.
INPUT:
norm_bound
(positive integer) – upper bound on the norm of primes tested.EXAMPLES:
sage: K.<a> = NumberField(x^2+31) sage: K.class_number() 3 sage: Cl = K.class_group() sage: [c.representative_prime() for c in Cl] [Fractional ideal (3), Fractional ideal (2, 1/2*a + 1/2), Fractional ideal (2, 1/2*a - 1/2)] sage: K.<a> = NumberField(x^2+223) sage: K.class_number() 7 sage: Cl = K.class_group() sage: [c.representative_prime() for c in Cl] [Fractional ideal (3), Fractional ideal (2, 1/2*a + 1/2), Fractional ideal (17, 1/2*a + 7/2), Fractional ideal (7, 1/2*a - 1/2), Fractional ideal (7, 1/2*a + 1/2), Fractional ideal (17, 1/2*a + 27/2), Fractional ideal (2, 1/2*a - 1/2)]
- class sage.rings.number_field.class_group.SClassGroup(gens_orders, names, number_field, gens, S, proof=True)#
Bases:
ClassGroup
The S-class group of a number field.
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: S = K.primes_above(2) sage: K.S_class_group(S).gens() # random gens (platform dependent) (Fractional S-ideal class (3, a + 2),) sage: K.<a> = QuadraticField(-974) sage: CS = K.S_class_group(K.primes_above(2)); CS S-class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^2 + 974 with a = 31.20897306865447?*I sage: CS.gen(0) # random Fractional S-ideal class (3, a + 2) sage: CS.gen(1) # random Fractional S-ideal class (31, a + 24)
- Element#
alias of
SFractionalIdealClass
- S()#
Return the set (or rather tuple) of primes used to define this class group.
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2,a) sage: S = (I,) sage: CS = K.S_class_group(S);CS S-class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I sage: T = tuple() sage: CT = K.S_class_group(T);CT S-class group of order 4 with structure C4 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I sage: CS.S() (Fractional ideal (2, a),) sage: CT.S() ()
- class sage.rings.number_field.class_group.SFractionalIdealClass(parent, element, ideal=None)#
Bases:
FractionalIdealClass
An S-fractional ideal class in a number field for a tuple of primes S.
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2,a) sage: S = (I,) sage: CS = K.S_class_group(S) sage: J = K.ideal(7,a) sage: G = K.ideal(3,a+1) sage: CS(I) Trivial S-ideal class sage: CS(J) Trivial S-ideal class sage: CS(G) Fractional S-ideal class (3, a + 1)
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2,a) sage: S = (I,) sage: CS = K.S_class_group(S) sage: J = K.ideal(7,a) sage: G = K.ideal(3,a+1) sage: CS(I).ideal() Fractional ideal (2, a) sage: CS(J).ideal() Fractional ideal (7, a) sage: CS(G).ideal() Fractional ideal (3, a + 1)
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2,a) sage: S = (I,) sage: CS = K.S_class_group(S) sage: G = K.ideal(3,a+1) sage: CS(G).inverse() Fractional S-ideal class (3, a + 2)