Morphisms between number fields#
This module provides classes to represent ring homomorphisms between number fields (i.e. field embeddings).
- class sage.rings.number_field.morphism.CyclotomicFieldHomomorphism_im_gens#
- class sage.rings.number_field.morphism.NumberFieldHomomorphism_im_gens#
Bases:
RingHomomorphism_im_gens
- preimage(y)#
Computes a preimage of \(y\) in the domain, provided one exists. Raises a ValueError if \(y\) has no preimage.
INPUT:
\(y\) – an element of the codomain of self.
OUTPUT:
Returns the preimage of \(y\) in the domain, if one exists. Raises a ValueError if \(y\) has no preimage.
EXAMPLES:
sage: K.<a> = NumberField(x^2 - 7) sage: L.<b> = NumberField(x^4 - 7) sage: f = K.embeddings(L)[0] sage: f.preimage(3*b^2 - 12/7) 3*a - 12/7 sage: f.preimage(b) Traceback (most recent call last): ... ValueError: Element 'b' is not in the image of this homomorphism.
sage: F.<b> = QuadraticField(23) sage: G.<a> = F.extension(x^3+5) sage: f = F.embeddings(G)[0] sage: f.preimage(a^3+2*b+3) 2*b - 2
- class sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs(parent, abs_hom)#
Bases:
RingHomomorphism
A homomorphism from a relative number field to some other ring, stored as a homomorphism from the corresponding absolute field.
- abs_hom()#
Return the corresponding homomorphism from the absolute number field.
EXAMPLES:
sage: K.<a, b> = NumberField( [x^3 + 2, x^2 + x + 1] ) sage: K.hom(a, K).abs_hom() Ring morphism: From: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 3*x^3 - 9*x + 9 To: Number Field in a with defining polynomial x^3 + 2 over its base field Defn: a |--> a - b
- im_gens()#
Return the images of the generators under this map.
EXAMPLES:
sage: K.<a, b> = NumberField( [x^3 + 2, x^2 + x + 1] ) sage: K.hom(a, K).im_gens() [a, b]