Arcs of circles and ellipses#
- class sage.plot.arc.Arc(x, y, r1, r2, angle, s1, s2, options)#
Bases:
GraphicPrimitive
Primitive class for the Arc graphics type. See
arc?
for information about actually plotting an arc of a circle or an ellipse.INPUT:
x,y
- coordinates of the center of the arcr1
,r2
- lengths of the two radiiangle
- angle of the horizontal with widthsector
- sector of angleoptions
- dict of valid plot options to pass to constructor
EXAMPLES:
Note that the construction should be done using
arc
:sage: from sage.plot.arc import Arc sage: print(Arc(0,0,1,1,pi/4,pi/4,pi/2,{})) Arc with center (0.0,0.0) radii (1.0,1.0) angle 0.78539816339... inside the sector (0.78539816339...,1.5707963267...)
- bezier_path()#
Return
self
as a Bezier path.This is needed to concatenate arcs, in order to create hyperbolic polygons.
EXAMPLES:
sage: from sage.plot.arc import Arc sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0, ....: 'linestyle':'--'} sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path() Graphics object consisting of 1 graphics primitive sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle="--", color="red") sage: b = a[0].bezier_path() sage: b[0] Bezier path from (1.133..., 0.8237...) to (-0.2655..., 0.9911...)
- get_minmax_data()#
Return a dictionary with the bounding box data.
The bounding box is computed as minimal as possible.
EXAMPLES:
An example without angle:
sage: p = arc((-2, 3), 1, 2) sage: d = p.get_minmax_data() sage: d['xmin'] -3.0 sage: d['xmax'] -1.0 sage: d['ymin'] 1.0 sage: d['ymax'] 5.0
The same example with a rotation of angle \(\pi/2\):
sage: p = arc((-2, 3), 1, 2, pi/2) sage: d = p.get_minmax_data() sage: d['xmin'] -4.0 sage: d['xmax'] 0.0 sage: d['ymin'] 2.0 sage: d['ymax'] 4.0
- plot3d()#
- sage.plot.arc.arc(center, r1, r2=None, angle=0.0, sector=(0.0, 6.283185307179586), alpha=1, thickness=1, linestyle='solid', zorder=5, rgbcolor='blue', aspect_ratio=1.0, **options)#
An arc (that is a portion of a circle or an ellipse)
Type
arc.options
to see all options.INPUT:
center
- 2-tuple of real numbers - position of the center.r1
,r2
- positive real numbers - radii of the ellipse. If onlyr1
is set, then the two radii are supposed to be equal and this function returns an arc of circle.angle
- real number - angle between the horizontal and the axis that corresponds tor1
.sector
- 2-tuple (default: (0,2*pi))- angles sector in which the arc will be drawn.
OPTIONS:
alpha
- float (default: 1) - transparencythickness
- float (default: 1) - thickness of the arccolor
,rgbcolor
- string or 2-tuple (default: ‘blue’) - the color of the arclinestyle
- string (default:'solid'
) - The style of the line, which is one of'dashed'
,'dotted'
,'solid'
,'dashdot'
, or'--'
,':'
,'-'
,'-.'
, respectively.
EXAMPLES:
Plot an arc of circle centered at (0,0) with radius 1 in the sector \((\pi/4,3*\pi/4)\):
sage: arc((0,0), 1, sector=(pi/4,3*pi/4)) Graphics object consisting of 1 graphics primitive
Plot an arc of an ellipse between the angles 0 and \(\pi/2\):
sage: arc((2,3), 2, 1, sector=(0,pi/2)) Graphics object consisting of 1 graphics primitive
Plot an arc of a rotated ellipse between the angles 0 and \(\pi/2\):
sage: arc((2,3), 2, 1, angle=pi/5, sector=(0,pi/2)) Graphics object consisting of 1 graphics primitive
Plot an arc of an ellipse in red with a dashed linestyle:
sage: arc((0,0), 2, 1, 0, (0,pi/2), linestyle="dashed", color="red") Graphics object consisting of 1 graphics primitive sage: arc((0,0), 2, 1, 0, (0,pi/2), linestyle="--", color="red") Graphics object consisting of 1 graphics primitive
The default aspect ratio for arcs is 1.0:
sage: arc((0,0), 1, sector=(pi/4,3*pi/4)).aspect_ratio() 1.0
It is not possible to draw arcs in 3D:
sage: A = arc((0,0,0), 1) Traceback (most recent call last): ... NotImplementedError