Regular polygons in the upper half model for hyperbolic plane#
AUTHORS:
Javier Honrubia (2016-01)
- class sage.plot.hyperbolic_regular_polygon.HyperbolicRegularPolygon(sides, i_angle, center, options)#
Bases:
HyperbolicPolygon
Primitive class for regular hyperbolic polygon type.
See
hyperbolic_regular_polygon?
for information about plotting a hyperbolic regular polygon in the upper complex halfplane.INPUT:
sides
– number of sides of the polygoni_angle
– interior angle of the polygoncenter
– center point as a complex number of the polygon
EXAMPLES:
Note that constructions should use
hyperbolic_regular_polygon()
:sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon sage: print(HyperbolicRegularPolygon(5,pi/2,I, {})) Hyperbolic regular polygon (sides=5, i_angle=1/2*pi, center=1.00000000000000*I)
The code verifies is there exists a compact hyperbolic regular polygon with the given data, checking
\[A(\mathcal{P}) = \pi(s-2) - s \cdot \alpha > 0,\]where \(s\) is
sides
and \(\alpha\) isi_angle`. This raises an error if the ``i_angle
is less than the minimum to generate a compact polygon:sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon sage: P = HyperbolicRegularPolygon(4, pi/2, I, {}) Traceback (most recent call last): ... ValueError: there exists no hyperbolic regular compact polygon, for sides=4 the interior angle must be less than 1/2*pi
It is an error to give a center outside the upper half plane in this model
sage: from sage.plot.hyperbolic_regular_polygon import HyperbolicRegularPolygon sage: P = HyperbolicRegularPolygon(4, pi/4, 1-I, {}) Traceback (most recent call last): ... ValueError: center: 1.00000000000000 - 1.00000000000000*I is not a valid point in the upper half plane model of the hyperbolic plane
- sage.plot.hyperbolic_regular_polygon.hyperbolic_regular_polygon(sides, i_angle, center=1.00000000000000 * I, alpha=1, fill=False, thickness=1, rgbcolor='blue', zorder=2, linestyle='solid', **options)#
Return a hyperbolic regular polygon in the upper half model of Hyperbolic plane given the number of sides, interior angle and possibly a center.
Type
?hyperbolic_regular_polygon
to see all options.INPUT:
sides
– number of sides of the polygoni_angle
– interior angle of the polygoncenter
– (default: \(i\)) hyperbolic center point (complex number) of the polygon
OPTIONS:
alpha
– default: 1fill
– default:False
thickness
– default: 1rgbcolor
– default:'blue'
linestyle
– (default:'solid'
) the style of the line, which can be one of the following:'dashed'
or'--'
'dotted'
or':'
'solid'
or'-'
'dashdot'
or'-.'
EXAMPLES:
Show a hyperbolic regular polygon with 6 sides and square angles:
sage: g = hyperbolic_regular_polygon(6, pi/2) sage: g.plot() Graphics object consisting of 1 graphics primitive
With more options:
sage: g = hyperbolic_regular_polygon(6, pi/2, center=3+2*I, fill=True, color='red') sage: g.plot() Graphics object consisting of 1 graphics primitive
The code verifies is there exists a hyperbolic regular polygon with the given data, checking
\[A(\mathcal{P}) = \pi(s-2) - s \cdot \alpha > 0,\]where \(s\) is
sides
and \(\alpha\) isi_angle`. This raises an error if the ``i_angle
is less than the minimum to generate a compact polygon:sage: hyperbolic_regular_polygon(4, pi/2) Traceback (most recent call last): ... ValueError: there exists no hyperbolic regular compact polygon, for sides=4 the interior angle must be less than 1/2*pi
It is an error to give a center outside the upper half plane in this model:
sage: from sage.plot.hyperbolic_regular_polygon import hyperbolic_regular_polygon sage: hyperbolic_regular_polygon(4, pi/4, 1-I) Traceback (most recent call last): ... ValueError: center: 1.00000000000000 - 1.00000000000000*I is not a valid point in the upper half plane model of the hyperbolic plane