MacMahon’s Partition Analysis Omega Operator#
This module implements MacMahon's Omega Operator
[Mac1915], which takes a quotient of Laurent polynomials and
removes all negative exponents in the corresponding power series.
Examples#
In the following example, all negative exponents of \(\mu\) are removed. The formula
can be calculated and verified by
sage: L.<mu, x, y> = LaurentPolynomialRing(ZZ)
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
Various#
AUTHORS:
Daniel Krenn (2016)
ACKNOWLEDGEMENT:
Daniel Krenn is supported by the Austrian Science Fund (FWF): P 24644-N26.
Functions#
- sage.rings.polynomial.omega.MacMahonOmega(var, expression, denominator=None, op=<built-in function ge>, Factorization_sort=False, Factorization_simplify=True)#
Return \(\Omega_{\mathrm{op}}\) of
expression
with respect tovar
.To be more precise, calculate
\[\Omega_{\mathrm{op}} \frac{n}{d_1 \dots d_n}\]for the numerator \(n\) and the factors \(d_1\), …, \(d_n\) of the denominator, all of which are Laurent polynomials in
var
and return a (partial) factorization of the result.INPUT:
var
– a variable or a representation string of a variableexpression
– aFactorization
of Laurent polynomials or, ifdenominator
is specified, a Laurent polynomial interpreted as the numerator of the expressiondenominator
– a Laurent polynomial or aFactorization
(consisting of Laurent polynomial factors) or a tuple/list of factors (Laurent polynomials)op
– (default:operator.ge
) an operatorAt the moment only
operator.ge
is implemented.Factorization_sort
(default:False
) andFactorization_simplify
(default:True
) – are passed on tosage.structure.factorization.Factorization
when creating the result
OUTPUT:
A (partial)
Factorization
of the result whose factors are Laurent polynomialsNote
The numerator of the result may not be factored.
REFERENCES:
EXAMPLES:
sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(ZZ) sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu]) 1 * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu]) 1 * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu]) (-x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-y*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^2]) 1 * (-x + 1)^-1 * (-x^2*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y/mu]) (x*y + 1) * (-x + 1)^-1 * (-x*y^2 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu^2]) (-x^2*y*z - x*y^2*z + x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x^2*z + 1)^-1 * (-y^2*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^3]) 1 * (-x + 1)^-1 * (-x^3*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^4]) 1 * (-x + 1)^-1 * (-x^4*y + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^3, 1 - y/mu]) (x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^3 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^4, 1 - y/mu]) (x*y^3 + x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^4 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y/mu, 1 - z/mu]) (x*y*z + x*y + x*z + 1) * (-x + 1)^-1 * (-x*y^2 + 1)^-1 * (-x*z^2 + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu^2, 1 - y*mu, 1 - z/mu]) (-x*y*z^2 - x*y*z + x*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z^2 + 1)^-1 * (-y*z + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z*mu, 1 - w/mu]) (x*y*z*w^2 + x*y*z*w - x*y*w - x*z*w - y*z*w + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-z + 1)^-1 * (-x*w + 1)^-1 * (-y*w + 1)^-1 * (-z*w + 1)^-1 sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu, 1 - w/mu]) (x^2*y*z*w + x*y^2*z*w - x*y*z*w - x*y*z - x*y*w + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-x*w + 1)^-1 * (-y*z + 1)^-1 * (-y*w + 1)^-1 sage: MacMahonOmega(mu, mu^-2, [1 - x*mu, 1 - y/mu]) x^2 * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^-1, [1 - x*mu, 1 - y/mu]) x * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu, [1 - x*mu, 1 - y/mu]) (-x*y + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu]) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
We demonstrate the different allowed input variants:
sage: MacMahonOmega(mu, ....: Factorization([(mu, 2), (1 - x*mu, -1), (1 - y/mu, -1)])) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, ....: Factorization([(1 - x*mu, 1), (1 - y/mu, 1)])) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu]) (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2, (1 - x*mu)*(1 - y/mu)) # not tested because not fully implemented (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 sage: MacMahonOmega(mu, mu^2 / ((1 - x*mu)*(1 - y/mu))) # not tested because not fully implemented (-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
- sage.rings.polynomial.omega.Omega_ge(exponents)#
Return \(\Omega_{\ge}\) of the expression specified by the input.
To be more precise, calculate
\[\Omega_{\ge} \frac{\mu^a}{ (1 - z_0 \mu^{e_0}) \dots (1 - z_{n-1} \mu^{e_{n-1}})}\]and return its numerator and a factorization of its denominator. Note that \(z_0\), …, \(z_{n-1}\) only appear in the output, but not in the input.
INPUT:
a
– an integerexponents
– a tuple of integers
OUTPUT:
A pair representing a quotient as follows: Its first component is the numerator as a Laurent polynomial, its second component a factorization of the denominator as a tuple of Laurent polynomials, where each Laurent polynomial \(z\) represents a factor \(1 - z\).
The parents of these Laurent polynomials is always a Laurent polynomial ring in \(z_0\), …, \(z_{n-1}\) over \(\ZZ\), where \(n\) is the length of
exponents
.EXAMPLES:
sage: from sage.rings.polynomial.omega import Omega_ge sage: Omega_ge(0, (1, -2)) (1, (z0, z0^2*z1)) sage: Omega_ge(0, (1, -3)) (1, (z0, z0^3*z1)) sage: Omega_ge(0, (1, -4)) (1, (z0, z0^4*z1)) sage: Omega_ge(0, (2, -1)) (z0*z1 + 1, (z0, z0*z1^2)) sage: Omega_ge(0, (3, -1)) (z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3)) sage: Omega_ge(0, (4, -1)) (z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4)) sage: Omega_ge(0, (1, 1, -2)) (-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2)) sage: Omega_ge(0, (2, -1, -1)) (z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2)) sage: Omega_ge(0, (2, 1, -1)) (-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))
sage: Omega_ge(0, (2, -2)) (-z0*z1 + 1, (z0, z0*z1, z0*z1)) sage: Omega_ge(0, (2, -3)) (z0^2*z1 + 1, (z0, z0^3*z1^2)) sage: Omega_ge(0, (3, 1, -3)) (-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2 + z0^2*z2^2 - 2*z0*z2 + 1, (z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))
sage: Omega_ge(0, (3, 6, -1)) (-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 + z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 - z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1, (z0, z1, z0*z2^3, z1*z2^6))
- sage.rings.polynomial.omega.homogeneous_symmetric_function(j, x)#
Return a complete homogeneous symmetric polynomial (Wikipedia article Complete_homogeneous_symmetric_polynomial).
INPUT:
j
– the degree as a nonnegative integerx
– an iterable of variables
OUTPUT:
A polynomial of the common parent of all entries of
x
EXAMPLES:
sage: from sage.rings.polynomial.omega import homogeneous_symmetric_function sage: P = PolynomialRing(ZZ, 'X', 3) sage: homogeneous_symmetric_function(0, P.gens()) 1 sage: homogeneous_symmetric_function(1, P.gens()) X0 + X1 + X2 sage: homogeneous_symmetric_function(2, P.gens()) X0^2 + X0*X1 + X1^2 + X0*X2 + X1*X2 + X2^2 sage: homogeneous_symmetric_function(3, P.gens()) X0^3 + X0^2*X1 + X0*X1^2 + X1^3 + X0^2*X2 + X0*X1*X2 + X1^2*X2 + X0*X2^2 + X1*X2^2 + X2^3
- sage.rings.polynomial.omega.partition(items, predicate=<class 'bool'>)#
Split
items
into two parts by the givenpredicate
.INPUT:
item
– an iteratorpredicate
– a function
OUTPUT:
A pair of iterators; the first contains the elements not satisfying the
predicate
, the second the elements satisfying thepredicate
.ALGORITHM:
Source of the code: http://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html
EXAMPLES:
sage: from sage.rings.polynomial.omega import partition sage: E, O = partition(srange(10), is_odd) sage: tuple(E), tuple(O) ((0, 2, 4, 6, 8), (1, 3, 5, 7, 9))