Laurent Series#
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(GF(7), 't'); R
Laurent Series Ring in t over Finite Field of size 7
sage: f = 1/(1-t+O(t^10)); f
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
Laurent series are immutable:
sage: f[2]
1
sage: f[2] = 5
Traceback (most recent call last):
...
IndexError: Laurent series are immutable
We compute with a Laurent series over the complex mpfr numbers.
sage: K.<q> = Frac(CC[['q']])
sage: K
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: q
1.00000000000000*q
Saving and loading.
sage: loads(q.dumps()) == q
True
sage: loads(K.dumps()) == K
True
IMPLEMENTATION: Laurent series in Sage are represented internally as a power of the variable times the unit part (which need not be a unit - it’s a polynomial with nonzero constant term). The zero Laurent series has unit part 0.
AUTHORS:
William Stein: original version
David Joyner (2006-01-22): added examples
Robert Bradshaw (2007-04): optimizations, shifting
Robert Bradshaw: Cython version
- class sage.rings.laurent_series_ring_element.LaurentSeries#
Bases:
AlgebraElement
A Laurent Series.
We consider a Laurent series of the form \(t^n \cdot f\) where \(f\) is a power series.
INPUT:
parent
– a Laurent series ringf
– a power series (or something can be coerced to one); note thatf
does not have to be a unitn
– (default: 0) integer
- O(prec)#
Return the Laurent series of precision at most
prec
obtained by adding \(O(q^\text{prec})\), where \(q\) is the variable.The precision of
self
and the integerprec
can be arbitrary. The resulting Laurent series will have precision equal to the minimum of the precision ofself
andprec
. The term \(O(q^\text{prec})\) is the zero series with precisionprec
.See also
add_bigoh()
.EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: f = t^-5 + t^-4 + t^3 + O(t^10); f t^-5 + t^-4 + t^3 + O(t^10) sage: f.O(-4) t^-5 + O(t^-4) sage: f.O(15) t^-5 + t^-4 + t^3 + O(t^10)
- V(n)#
Return the
n
-th Verschiebung ofself
.If \(f = \sum a_m x^m\) then this function returns \(\sum a_m x^{mn}\).
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ) sage: f = -1/x + 1 + 2*x^2 + 5*x^5 sage: f.V(2) -x^-2 + 1 + 2*x^4 + 5*x^10 sage: f.V(-1) 5*x^-5 + 2*x^-2 + 1 - x sage: h = f.add_bigoh(7) sage: h.V(2) -x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14) sage: h.V(-2) Traceback (most recent call last): ... ValueError: For finite precision only positive arguments allowed
- add_bigoh(prec)#
Return the truncated series at chosen precision
prec
.See also
O()
.INPUT:
prec
– the precision of the series as an integer
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: f = t^2 + t^3 + O(t^10); f t^2 + t^3 + O(t^10) sage: f.add_bigoh(5) t^2 + t^3 + O(t^5)
- change_ring(R)#
Change the base ring of
self
.EXAMPLES:
sage: R.<q> = LaurentSeriesRing(ZZ) sage: p = R([1,2,3]); p 1 + 2*q + 3*q^2 sage: p.change_ring(GF(2)) 1 + q^2
- coefficients()#
Return the nonzero coefficients of
self
.EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: f = -5/t^(2) + t + t^2 - 10/3*t^3 sage: f.coefficients() [-5, 1, 1, -10/3]
- common_prec(other)#
Return the minimum precision of
self
andother
.EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^(-1) + t + t^2 + O(t^3) sage: g = t + t^3 + t^4 + O(t^4) sage: f.common_prec(g) 3 sage: g.common_prec(f) 3
sage: f = t + t^2 + O(t^3) sage: g = t^(-3) + t^2 sage: f.common_prec(g) 3 sage: g.common_prec(f) 3
sage: f = t + t^2 sage: g = t^2 sage: f.common_prec(g) +Infinity
sage: f = t^(-3) + O(t^(-2)) sage: g = t^(-5) + O(t^(-1)) sage: f.common_prec(g) -2
sage: f = O(t^2) sage: g = O(t^5) sage: f.common_prec(g) 2
- common_valuation(other)#
Return the minimum valuation of
self
andother
.EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^(-1) + t + t^2 + O(t^3) sage: g = t + t^3 + t^4 + O(t^4) sage: f.common_valuation(g) -1 sage: g.common_valuation(f) -1
sage: f = t + t^2 + O(t^3) sage: g = t^(-3) + t^2 sage: f.common_valuation(g) -3 sage: g.common_valuation(f) -3
sage: f = t + t^2 sage: g = t^2 sage: f.common_valuation(g) 1
sage: f = t^(-3) + O(t^(-2)) sage: g = t^(-5) + O(t^(-1)) sage: f.common_valuation(g) -5
sage: f = O(t^2) sage: g = O(t^5) sage: f.common_valuation(g) +Infinity
- degree()#
Return the degree of a polynomial equivalent to this power series modulo big oh of the precision.
EXAMPLES:
sage: x = Frac(QQ[['x']]).0 sage: g = x^2 - x^4 + O(x^8) sage: g.degree() 4 sage: g = -10/x^5 + x^2 - x^4 + O(x^8) sage: g.degree() 4 sage: (x^-2 + O(x^0)).degree() -2
- derivative(*args)#
The formal derivative of this Laurent series, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.
See also
_derivative()
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ) sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8) sage: g.derivative() -10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7) sage: g.derivative(x) -10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: R.<t> = PolynomialRing(ZZ) sage: S.<x> = LaurentSeriesRing(R) sage: f = 2*t/x + (3*t^2 + 6*t)*x + O(x^2) sage: f.derivative() -2*t*x^-2 + (3*t^2 + 6*t) + O(x) sage: f.derivative(x) -2*t*x^-2 + (3*t^2 + 6*t) + O(x) sage: f.derivative(t) 2*x^-1 + (6*t + 6)*x + O(x^2)
- exponents()#
Return the exponents appearing in self with nonzero coefficients.
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: f = -5/t^(2) + t + t^2 - 10/3*t^3 sage: f.exponents() [-2, 1, 2, 3]
- integral()#
The formal integral of this Laurent series with 0 constant term.
EXAMPLES: The integral may or may not be defined if the base ring is not a field.
sage: t = LaurentSeriesRing(ZZ, 't').0 sage: f = 2*t^-3 + 3*t^2 + O(t^4) sage: f.integral() -t^-2 + t^3 + O(t^5)
sage: f = t^3 sage: f.integral() Traceback (most recent call last): ... ArithmeticError: Coefficients of integral cannot be coerced into the base ring
The integral of 1/t is \(\log(t)\), which is not given by a Laurent series:
sage: t = Frac(QQ[['t']]).0 sage: f = -1/t^3 - 31/t + O(t^3) sage: f.integral() Traceback (most recent call last): ... ArithmeticError: The integral of is not a Laurent series, since t^-1 has nonzero coefficient.
Another example with just one negative coefficient:
sage: A.<t> = QQ[[]] sage: f = -2*t^(-4) + O(t^8) sage: f.integral() 2/3*t^-3 + O(t^9) sage: f.integral().derivative() == f True
- inverse()#
Return the inverse of self, i.e., self^(-1).
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(ZZ) sage: t.inverse() t^-1 sage: (1-t).inverse() 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + ...
- is_monomial()#
Return True if this element is a monomial. That is, if self is \(x^n\) for some integer \(n\).
EXAMPLES:
sage: k.<z> = LaurentSeriesRing(QQ, 'z') sage: (30*z).is_monomial() False sage: k(1).is_monomial() True sage: (z+1).is_monomial() False sage: (z^-2909).is_monomial() True sage: (3*z^-2909).is_monomial() False
- is_unit()#
Return
True
if this is Laurent series is a unit in this ring.EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: (2+t).is_unit() True sage: f = 2+t^2+O(t^10); f.is_unit() True sage: 1/f 1/2 - 1/4*t^2 + 1/8*t^4 - 1/16*t^6 + 1/32*t^8 + O(t^10) sage: R(0).is_unit() False sage: R.<s> = LaurentSeriesRing(ZZ) sage: f = 2 + s^2 + O(s^10) sage: f.is_unit() False sage: 1/f Traceback (most recent call last): ... ValueError: constant term 2 is not a unit
ALGORITHM: A Laurent series is a unit if and only if its “unit part” is a unit.
- is_zero()#
EXAMPLES:
sage: x = Frac(QQ[['x']]).0 sage: f = 1/x + x + x^2 + 3*x^4 + O(x^7) sage: f.is_zero() 0 sage: z = 0*f sage: z.is_zero() 1
- laurent_polynomial()#
Return the corresponding Laurent polynomial.
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: f = t^-3 + t + 7*t^2 + O(t^5) sage: g = f.laurent_polynomial(); g t^-3 + t + 7*t^2 sage: g.parent() Univariate Laurent Polynomial Ring in t over Rational Field
- lift_to_precision(absprec=None)#
Return a congruent Laurent series with absolute precision at least
absprec
.INPUT:
absprec
– an integer orNone
(default:None
), the absolute precision of the result. IfNone
, lifts to an exact element.
EXAMPLES:
sage: A.<t> = LaurentSeriesRing(GF(5)) sage: x = t^(-1) + t^2 + O(t^5) sage: x.lift_to_precision(10) t^-1 + t^2 + O(t^10) sage: x.lift_to_precision() t^-1 + t^2
- list()#
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ) sage: f = -5/t^(2) + t + t^2 - 10/3*t^3 sage: f.list() [-5, 0, 0, 1, 1, -10/3]
- nth_root(n, prec=None)#
Return the
n
-th root of this Laurent power series.INPUT:
n
– integerprec
– integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ) sage: (x^-2 + 1 + x).nth_root(2) x^-1 + 1/2*x + 1/2*x^2 - ... - 19437/65536*x^18 + O(x^19) sage: (x^-2 + 1 + x).nth_root(2)**2 x^-2 + 1 + x + O(x^18) sage: j = j_invariant_qexp() sage: q = j.parent().gen() sage: j(q^3).nth_root(3) q^-1 + 248*q^2 + 4124*q^5 + ... + O(q^29) sage: (j(q^2) - 1728).nth_root(2) q^-1 - 492*q - 22590*q^3 - ... + O(q^19)
- power_series()#
Convert this Laurent series to a power series.
An error is raised if the Laurent series has a term (or an error term \(O(x^k)\)) whose exponent is negative.
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(ZZ) sage: f = 1/(1-t+O(t^10)); f.parent() Laurent Series Ring in t over Integer Ring sage: g = f.power_series(); g 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10) sage: parent(g) Power Series Ring in t over Integer Ring sage: f = 3/t^2 + t^2 + t^3 + O(t^10) sage: f.power_series() Traceback (most recent call last): ... TypeError: self is not a power series
- prec()#
This function returns the n so that the Laurent series is of the form (stuff) + \(O(t^n)\). It doesn’t matter how many negative powers appear in the expansion. In particular, prec could be negative.
EXAMPLES:
sage: x = Frac(QQ[['x']]).0 sage: f = x^2 + 3*x^4 + O(x^7) sage: f.prec() 7 sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8) sage: g.prec() 8
- precision_absolute()#
Return the absolute precision of this series.
By definition, the absolute precision of \(...+O(x^r)\) is \(r\).
EXAMPLES:
sage: R.<t> = ZZ[[]] sage: (t^2 + O(t^3)).precision_absolute() 3 sage: (1 - t^2 + O(t^100)).precision_absolute() 100
- precision_relative()#
Return the relative precision of this series, that is the difference between its absolute precision and its valuation.
By convention, the relative precision of \(0\) (or \(O(x^r)\) for any \(r\)) is \(0\).
EXAMPLES:
sage: R.<t> = ZZ[[]] sage: (t^2 + O(t^3)).precision_relative() 1 sage: (1 - t^2 + O(t^100)).precision_relative() 100 sage: O(t^4).precision_relative() 0
- residue()#
Return the residue of
self
.Consider the Laurent series
\[f = \sum_{n \in \ZZ} a_n t^n = \cdots + \frac{a_{-2}}{t^2} + \frac{a_{-1}}{t} + a_0 + a_1 t + a_2 t^2 + \cdots,\]then the residue of \(f\) is \(a_{-1}\). Alternatively this is the coefficient of \(1/t\).
EXAMPLES:
sage: t = LaurentSeriesRing(ZZ,'t').gen() sage: f = 1/t**2+2/t+3+4*t sage: f.residue() 2 sage: f = t+t**2 sage: f.residue() 0 sage: f.residue().parent() Integer Ring
- reverse(precision=None)#
Return the reverse of f, i.e., the series g such that g(f(x)) = x. Given an optional argument
precision
, return the reverse with given precision (note that the reverse can have precision at mostf.prec()
). Iff
has infinite precision, and the argumentprecision
is not given, then the precision of the reverse defaults to the default precision off.parent()
.Note that this is only possible if the valuation of self is exactly 1.
The implementation depends on the underlying power series element implementing a reverse method.
EXAMPLES:
sage: R.<x> = Frac(QQ[['x']]) sage: f = 2*x + 3*x^2 - x^4 + O(x^5) sage: g = f.reverse() sage: g 1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5) sage: f(g) x + O(x^5) sage: g(f) x + O(x^5) sage: A.<t> = LaurentSeriesRing(ZZ) sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6) sage: b = a.reverse(); b t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6) sage: a(b) t + O(t^6) sage: b(a) t + O(t^6) sage: B.<b,c> = ZZ[ ] sage: A.<t> = LaurentSeriesRing(B) sage: f = t + b*t^2 + c*t^3 + O(t^4) sage: g = f.reverse(); g t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4) sage: f(g) t + O(t^4) sage: g(f) t + O(t^4) sage: A.<t> = PowerSeriesRing(ZZ) sage: B.<s> = LaurentSeriesRing(A) sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3) sage: set_verbose(1) sage: g = f.reverse(); g verbose 1 (<module>) passing to pari failed; trying Lagrange inversion (1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 + O(s^3) sage: set_verbose(0) sage: f(g) == g(f) == s True
If the leading coefficient is not a unit, we pass to its fraction field if possible:
sage: A.<t> = LaurentSeriesRing(ZZ) sage: a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6) sage: a.reverse() 1/2*t + 1/2*t^2 + t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6) sage: B.<b> = PolynomialRing(ZZ) sage: A.<t> = LaurentSeriesRing(B) sage: f = 2*b*t + b*t^2 + 3*b^2*t^3 + O(t^4) sage: g = f.reverse(); g 1/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4) sage: f(g) t + O(t^4) sage: g(f) t + O(t^4)
We can handle some base rings of positive characteristic:
sage: A8.<t> = LaurentSeriesRing(Zmod(8)) sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6) sage: b = a.reverse(); b t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6) sage: a(b) t + O(t^6) sage: b(a) t + O(t^6)
The optional argument
precision
sets the precision of the output:sage: R.<x> = LaurentSeriesRing(QQ) sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5) sage: g = f.reverse(precision=3); g 1/2*x - 3/8*x^2 + O(x^3) sage: f(g) x + O(x^3) sage: g(f) x + O(x^3)
If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:
sage: R.<x> = LaurentSeriesRing(QQ, default_prec=20) sage: (x - x^2).reverse() # get some Catalan numbers x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20) sage: (x - x^2).reverse(precision=3) x + x^2 + O(x^3)
- shift(k)#
Returns this Laurent series multiplied by the power \(t^n\). Does not change this series.
Note
Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of \(t\), while left shifting increases them. This is to be consistent with polynomials, integers, etc.
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ['y']) sage: f = (t+t^-1)^4; f t^-4 + 4*t^-2 + 6 + 4*t^2 + t^4 sage: f.shift(10) t^6 + 4*t^8 + 6*t^10 + 4*t^12 + t^14 sage: f >> 10 t^-14 + 4*t^-12 + 6*t^-10 + 4*t^-8 + t^-6 sage: t << 4 t^5 sage: t + O(t^3) >> 4 t^-3 + O(t^-1)
AUTHORS:
Robert Bradshaw (2007-04-18)
- truncate(n)#
Return the Laurent series of degree ` < n` which is equivalent to self modulo \(x^n\).
EXAMPLES:
sage: A.<x> = LaurentSeriesRing(ZZ) sage: f = 1/(1-x) sage: f 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20) sage: f.truncate(10) 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9
- truncate_laurentseries(n)#
Replace any terms of degree >= n by big oh.
EXAMPLES:
sage: A.<x> = LaurentSeriesRing(ZZ) sage: f = 1/(1-x) sage: f 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20) sage: f.truncate_laurentseries(10) 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)
- truncate_neg(n)#
Return the Laurent series equivalent to
self
except without any degreen
terms.This is equivalent to:
self - self.truncate(n)
EXAMPLES:
sage: A.<t> = LaurentSeriesRing(ZZ) sage: f = 1/(1-t) sage: f.truncate_neg(15) t^15 + t^16 + t^17 + t^18 + t^19 + O(t^20)
- valuation()#
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ) sage: f = 1/x + x^2 + 3*x^4 + O(x^7) sage: g = 1 - x + x^2 - x^4 + O(x^8) sage: f.valuation() -1 sage: g.valuation() 0
Note that the valuation of an element undistinguishable from zero is infinite:
sage: h = f - f; h O(x^7) sage: h.valuation() +Infinity
- valuation_zero_part()#
EXAMPLES:
sage: x = Frac(QQ[['x']]).0 sage: f = x + x^2 + 3*x^4 + O(x^7) sage: f/x 1 + x + 3*x^3 + O(x^6) sage: f.valuation_zero_part() 1 + x + 3*x^3 + O(x^6) sage: g = 1/x^7 - x + x^2 - x^4 + O(x^8) sage: g.valuation_zero_part() 1 - x^8 + x^9 - x^11 + O(x^15)
- variable()#
EXAMPLES:
sage: x = Frac(QQ[['x']]).0 sage: f = 1/x + x^2 + 3*x^4 + O(x^7) sage: f.variable() 'x'
- verschiebung(n)#
Return the
n
-th Verschiebung ofself
.If \(f = \sum a_m x^m\) then this function returns \(\sum a_m x^{mn}\).
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ) sage: f = -1/x + 1 + 2*x^2 + 5*x^5 sage: f.V(2) -x^-2 + 1 + 2*x^4 + 5*x^10 sage: f.V(-1) 5*x^-5 + 2*x^-2 + 1 - x sage: h = f.add_bigoh(7) sage: h.V(2) -x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14) sage: h.V(-2) Traceback (most recent call last): ... ValueError: For finite precision only positive arguments allowed
- sage.rings.laurent_series_ring_element.is_LaurentSeries(x)#