Power Series Methods#
The class PowerSeries_poly
provides additional methods for univariate power series.
- class sage.rings.power_series_poly.BaseRingFloorDivAction#
Bases:
Action
The floor division action of the base ring on a formal power series.
- class sage.rings.power_series_poly.PowerSeries_poly#
Bases:
PowerSeries
EXAMPLES:
sage: R.<q> = PowerSeriesRing(CC) sage: R Power Series Ring in q over Complex Field with 53 bits of precision sage: loads(q.dumps()) == q True sage: R.<t> = QQ[[]] sage: f = 3 - t^3 + O(t^5) sage: a = f^3; a 27 - 27*t^3 + O(t^5) sage: b = f^-3; b 1/27 + 1/27*t^3 + O(t^5) sage: a*b 1 + O(t^5)
Check that trac ticket #22216 is fixed:
sage: R.<T> = PowerSeriesRing(QQ) sage: R(pari('1 + O(T)')) 1 + O(T) sage: R(pari('1/T + O(T)')) Traceback (most recent call last): ... ValueError: series has negative valuation
- degree()#
Return the degree of the underlying polynomial of
self
.That is, if
self
is of the form \(f(x) + O(x^n)\), we return the degree of \(f(x)\). Note that if \(f(x)\) is \(0\), we return \(-1\), just as with polynomials.EXAMPLES:
sage: R.<t> = ZZ[[]] sage: (5 + t^3 + O(t^4)).degree() 3 sage: (5 + O(t^4)).degree() 0 sage: O(t^4).degree() -1
- dict()#
Return a dictionary of coefficients for
self
.This is simply a dict for the underlying polynomial, so need not have keys corresponding to every number smaller than
self.prec()
.EXAMPLES:
sage: R.<t> = ZZ[[]] sage: f = 1 + t^10 + O(t^12) sage: f.dict() {0: 1, 10: 1}
- integral(var=None)#
Return the integral of this power series.
By default, the integration variable is the variable of the power series.
Otherwise, the integration variable is the optional parameter
var
Note
The integral is always chosen so the constant term is 0.
EXAMPLES:
sage: k.<w> = QQ[[]] sage: (1+17*w+15*w^3+O(w^5)).integral() w + 17/2*w^2 + 15/4*w^4 + O(w^6) sage: (w^3 + 4*w^4 + O(w^7)).integral() 1/4*w^4 + 4/5*w^5 + O(w^8) sage: (3*w^2).integral() w^3
- list()#
Return the list of known coefficients for
self
.This is just the list of coefficients of the underlying polynomial, so in particular, need not have length equal to
self.prec()
.EXAMPLES:
sage: R.<t> = ZZ[[]] sage: f = 1 - 5*t^3 + t^5 + O(t^7) sage: f.list() [1, 0, 0, -5, 0, 1]
- pade(m, n)#
Return the Padé approximant of
self
of index \((m, n)\).The Padé approximant of index \((m, n)\) of a formal power series \(f\) is the quotient \(Q/P\) of two polynomials \(Q\) and \(P\) such that \(\deg(Q)\leq m\), \(\deg(P)\leq n\) and
\[f(z) - Q(z)/P(z) = O(z^{m+n+1}).\]The formal power series \(f\) must be known up to order \(n + m\).
See Wikipedia article Padé_approximant
INPUT:
m
,n
– integers, describing the degrees of the polynomials
OUTPUT:
a ratio of two polynomials
Warning
The current implementation uses a very slow algorithm and is not suitable for high orders.
ALGORITHM:
This method uses the formula as a quotient of two determinants.
See also
EXAMPLES:
sage: z = PowerSeriesRing(QQ, 'z').gen() sage: exp(z).pade(4, 0) 1/24*z^4 + 1/6*z^3 + 1/2*z^2 + z + 1 sage: exp(z).pade(1, 1) (-z - 2)/(z - 2) sage: exp(z).pade(3, 3) (-z^3 - 12*z^2 - 60*z - 120)/(z^3 - 12*z^2 + 60*z - 120) sage: log(1-z).pade(4, 4) (25/6*z^4 - 130/3*z^3 + 105*z^2 - 70*z)/(z^4 - 20*z^3 + 90*z^2 - 140*z + 70) sage: sqrt(1+z).pade(3, 2) (1/6*z^3 + 3*z^2 + 8*z + 16/3)/(z^2 + 16/3*z + 16/3) sage: exp(2*z).pade(3, 3) (-z^3 - 6*z^2 - 15*z - 15)/(z^3 - 6*z^2 + 15*z - 15)
- polynomial()#
Return the underlying polynomial of
self
.EXAMPLES:
sage: R.<t> = GF(7)[[]] sage: f = 3 - t^3 + O(t^5) sage: f.polynomial() 6*t^3 + 3
- reverse(precision=None)#
Return the reverse of f, i.e., the series g such that g(f(x)) = x.
Given an optional argument
precision
, return the reverse with given precision (note that the reverse can have precision at mostf.prec()
). Iff
has infinite precision, and the argumentprecision
is not given, then the precision of the reverse defaults to the default precision off.parent()
.Note that this is only possible if the valuation of self is exactly 1.
ALGORITHM:
We first attempt to pass the computation to pari; if this fails, we use Lagrange inversion. Using
sage: set_verbose(1)
will print a message if passing to pari fails.If the base ring has positive characteristic, then we attempt to lift to a characteristic zero ring and perform the reverse there. If this fails, an error is raised.
EXAMPLES:
sage: R.<x> = PowerSeriesRing(QQ) sage: f = 2*x + 3*x^2 - x^4 + O(x^5) sage: g = f.reverse() sage: g 1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5) sage: f(g) x + O(x^5) sage: g(f) x + O(x^5) sage: A.<t> = PowerSeriesRing(ZZ) sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6) sage: b = a.reverse(); b t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6) sage: a(b) t + O(t^6) sage: b(a) t + O(t^6) sage: B.<b,c> = PolynomialRing(ZZ) sage: A.<t> = PowerSeriesRing(B) sage: f = t + b*t^2 + c*t^3 + O(t^4) sage: g = f.reverse(); g t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4) sage: f(g) t + O(t^4) sage: g(f) t + O(t^4) sage: A.<t> = PowerSeriesRing(ZZ) sage: B.<s> = A[[]] sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3) sage: from sage.misc.verbose import set_verbose sage: set_verbose(1) sage: g = f.reverse(); g verbose 1 (<module>) passing to pari failed; trying Lagrange inversion (1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 + O(s^3) sage: set_verbose(0) sage: f(g) == g(f) == s True
If the leading coefficient is not a unit, we pass to its fraction field if possible:
sage: A.<t> = PowerSeriesRing(ZZ) sage: a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6) sage: a.reverse() 1/2*t + 1/2*t^2 + t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6) sage: B.<b> = PolynomialRing(ZZ) sage: A.<t> = PowerSeriesRing(B) sage: f = 2*b*t + b*t^2 + 3*b^2*t^3 + O(t^4) sage: g = f.reverse(); g 1/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4) sage: f(g) t + O(t^4) sage: g(f) t + O(t^4)
We can handle some base rings of positive characteristic:
sage: A8.<t> = PowerSeriesRing(Zmod(8)) sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6) sage: b = a.reverse(); b t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6) sage: a(b) t + O(t^6) sage: b(a) t + O(t^6)
The optional argument
precision
sets the precision of the output:sage: R.<x> = PowerSeriesRing(QQ) sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5) sage: g = f.reverse(precision=3); g 1/2*x - 3/8*x^2 + O(x^3) sage: f(g) x + O(x^3) sage: g(f) x + O(x^3)
If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:
sage: R.<x> = PowerSeriesRing(QQ, default_prec=20) sage: (x - x^2).reverse() # get some Catalan numbers x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20) sage: (x - x^2).reverse(precision=3) x + x^2 + O(x^3)
- truncate(prec='infinity')#
The polynomial obtained from power series by truncation at precision
prec
.EXAMPLES:
sage: R.<I> = GF(2)[[]] sage: f = 1/(1+I+O(I^8)); f 1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8) sage: f.truncate(5) I^4 + I^3 + I^2 + I + 1
- truncate_powerseries(prec)#
Given input
prec
= \(n\), returns the power series of degree \(< n\) which is equivalent to self modulo \(x^n\).EXAMPLES:
sage: R.<I> = GF(2)[[]] sage: f = 1/(1+I+O(I^8)); f 1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8) sage: f.truncate_powerseries(5) 1 + I + I^2 + I^3 + I^4 + O(I^5)
- valuation()#
Return the valuation of
self
.EXAMPLES:
sage: R.<t> = QQ[[]] sage: (5 - t^8 + O(t^11)).valuation() 0 sage: (-t^8 + O(t^11)).valuation() 8 sage: O(t^7).valuation() 7 sage: R(0).valuation() +Infinity
- sage.rings.power_series_poly.make_powerseries_poly_v0(parent, f, prec, is_gen)#
Return the power series specified by
f
,prec
, andis_gen
.This function exists for the purposes of pickling. Do not delete this function – if you change the internal representation, instead make a new function and make sure that both kinds of objects correctly unpickle as the new type.
EXAMPLES:
sage: R.<t> = QQ[[]] sage: sage.rings.power_series_poly.make_powerseries_poly_v0(R, t, infinity, True) t