Enumeration of rational points on affine schemes#
Naive algorithms for enumerating rational points over \(\QQ\) or finite fields over for general schemes.
Warning
Incorrect results and infinite loops may occur if using a wrong function.
(For instance using an affine function for a projective scheme or a finite field function for a scheme defined over an infinite field.)
EXAMPLES:
Affine, over \(\QQ\):
sage: from sage.schemes.affine.affine_rational_point import enum_affine_rational_field
sage: A.<x,y,z> = AffineSpace(3, QQ)
sage: S = A.subscheme([2*x-3*y])
sage: enum_affine_rational_field(S, 2)
[(0, 0, -2), (0, 0, -1), (0, 0, -1/2), (0, 0, 0),
(0, 0, 1/2), (0, 0, 1), (0, 0, 2)]
Affine over a finite field:
sage: from sage.schemes.affine.affine_rational_point import enum_affine_finite_field
sage: A.<w,x,y,z> = AffineSpace(4, GF(2))
sage: enum_affine_finite_field(A(GF(2)))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),
(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0),
(1, 1, 1, 1)]
AUTHORS:
David R. Kohel <kohel@maths.usyd.edu.au>: original version.
John Cremona and Charlie Turner <charlotteturner@gmail.com> (06-2010): improvements to clarity and documentation.
- sage.schemes.affine.affine_rational_point.enum_affine_finite_field(X)#
Enumerates affine points on scheme
X
defined over a finite field.INPUT:
X
- a scheme defined over a finite field or a set of abstract rational points of such a scheme.
OUTPUT:
a list containing the affine points of
X
over the finite field, sorted.
EXAMPLES:
sage: F = GF(7) sage: A.<w,x,y,z> = AffineSpace(4, F) sage: C = A.subscheme([w^2+x+4, y*z*x-6, z*y+w*x]) sage: from sage.schemes.affine.affine_rational_point import enum_affine_finite_field sage: enum_affine_finite_field(C(F)) [] sage: C = A.subscheme([w^2+x+4, y*z*x-6]) sage: enum_affine_finite_field(C(F)) [(0, 3, 1, 2), (0, 3, 2, 1), (0, 3, 3, 3), (0, 3, 4, 4), (0, 3, 5, 6), (0, 3, 6, 5), (1, 2, 1, 3), (1, 2, 2, 5), (1, 2, 3, 1), (1, 2, 4, 6), (1, 2, 5, 2), (1, 2, 6, 4), (2, 6, 1, 1), (2, 6, 2, 4), (2, 6, 3, 5), (2, 6, 4, 2), (2, 6, 5, 3), (2, 6, 6, 6), (3, 1, 1, 6), (3, 1, 2, 3), (3, 1, 3, 2), (3, 1, 4, 5), (3, 1, 5, 4), (3, 1, 6, 1), (4, 1, 1, 6), (4, 1, 2, 3), (4, 1, 3, 2), (4, 1, 4, 5), (4, 1, 5, 4), (4, 1, 6, 1), (5, 6, 1, 1), (5, 6, 2, 4), (5, 6, 3, 5), (5, 6, 4, 2), (5, 6, 5, 3), (5, 6, 6, 6), (6, 2, 1, 3), (6, 2, 2, 5), (6, 2, 3, 1), (6, 2, 4, 6), (6, 2, 5, 2), (6, 2, 6, 4)]
sage: A.<x,y,z> = AffineSpace(3, GF(3)) sage: S = A.subscheme(x+y) sage: enum_affine_finite_field(S) [(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2)]
ALGORITHM:
Checks all points in affine space to see if they lie on X.
Warning
If
X
is defined over an infinite field, this code will not finish!AUTHORS:
John Cremona and Charlie Turner (06-2010)
- sage.schemes.affine.affine_rational_point.enum_affine_number_field(X, **kwds)#
Enumerates affine points on scheme
X
defined over a number field. Simply checks all of the points of absolute height up toB
and adds those that are on the scheme to the list.This algorithm computes 2 lists: L containing elements x in \(K\) such that H_k(x) <= B, and a list L’ containing elements x in \(K\) that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.
ALGORITHM:
This is an implementation of the revised algorithm (Algorithm 4) in [DK2013]. Algorithm 5 is used for imaginary quadratic fields.
INPUT:
kwds:
bound
- a real numbertolerance
- a rational number in (0,1] used in doyle-krumm algorithm-4precision
- the precision to use for computing the elements of bounded height of number fields.
OUTPUT:
a list containing the affine points of
X
of absolute height up toB
, sorted.
EXAMPLES:
sage: from sage.schemes.affine.affine_rational_point import enum_affine_number_field sage: u = QQ['u'].0 sage: K = NumberField(u^2 + 2, 'v') sage: A.<x,y,z> = AffineSpace(K, 3) sage: X = A.subscheme([y^2 - x]) sage: enum_affine_number_field(X(K), bound=2**0.5) [(0, 0, -1), (0, 0, -v), (0, 0, -1/2*v), (0, 0, 0), (0, 0, 1/2*v), (0, 0, v), (0, 0, 1), (1, -1, -1), (1, -1, -v), (1, -1, -1/2*v), (1, -1, 0), (1, -1, 1/2*v), (1, -1, v), (1, -1, 1), (1, 1, -1), (1, 1, -v), (1, 1, -1/2*v), (1, 1, 0), (1, 1, 1/2*v), (1, 1, v), (1, 1, 1)]
sage: u = QQ['u'].0 sage: K = NumberField(u^2 + 3, 'v') sage: A.<x,y> = AffineSpace(K, 2) sage: X=A.subscheme(x-y) sage: from sage.schemes.affine.affine_rational_point import enum_affine_number_field sage: enum_affine_number_field(X, bound=3**0.25) [(-1, -1), (-1/2*v - 1/2, -1/2*v - 1/2), (1/2*v - 1/2, 1/2*v - 1/2), (0, 0), (-1/2*v + 1/2, -1/2*v + 1/2), (1/2*v + 1/2, 1/2*v + 1/2), (1, 1)]
- sage.schemes.affine.affine_rational_point.enum_affine_rational_field(X, B)#
Enumerates affine rational points on scheme
X
up to boundB
.INPUT:
X
- a scheme or set of abstract rational points of a scheme.B
- a positive integer bound.
OUTPUT:
a list containing the affine points of
X
of height up toB
, sorted.
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(3, QQ) sage: from sage.schemes.affine.affine_rational_point import enum_affine_rational_field sage: enum_affine_rational_field(A(QQ), 1) [(-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, -1), (-1, 0, 0), (-1, 0, 1), (-1, 1, -1), (-1, 1, 0), (-1, 1, 1), (0, -1, -1), (0, -1, 0), (0, -1, 1), (0, 0, -1), (0, 0, 0), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1), (1, -1, -1), (1, -1, 0), (1, -1, 1), (1, 0, -1), (1, 0, 0), (1, 0, 1), (1, 1, -1), (1, 1, 0), (1, 1, 1)]
sage: A.<w,x,y,z> = AffineSpace(4, QQ) sage: S = A.subscheme([x^2-y*z+1, w^3+z+y^2]) sage: enum_affine_rational_field(S(QQ), 1) [(0, 0, -1, -1)] sage: enum_affine_rational_field(S(QQ), 2) [(0, 0, -1, -1), (1, -1, -1, -2), (1, 1, -1, -2)]
sage: A.<x,y> = AffineSpace(2, QQ) sage: C = Curve(x^2+y-x) sage: enum_affine_rational_field(C, 10) # long time (3 s) [(-2, -6), (-1, -2), (-2/3, -10/9), (-1/2, -3/4), (-1/3, -4/9), (0, 0), (1/3, 2/9), (1/2, 1/4), (2/3, 2/9), (1, 0), (4/3, -4/9), (3/2, -3/4), (5/3, -10/9), (2, -2), (3, -6)]
AUTHORS:
David R. Kohel <kohel@maths.usyd.edu.au>: original version.
Charlie Turner (06-2010): small adjustments.
Raman Raghukul 2018: updated.