Álgebra Elementar e Cálculo#
O Sage pode realizar diversos cálculos em álgebra elementar e cálculo diferencial e integral: por exemplo, encontrar soluções de equações, diferenciar, integrar, e calcular a transformada de Laplace. Veja a documentação em Sage Constructions para mais exemplos.
Resolvendo equações#
Resolvendo equações exatamente#
A função solve
resolve equações. Para usá-la, primeiro especifique
algumas variáveis; então os argumentos de solve
são uma equação
(ou um sistema de equações), juntamente com as variáveis para as
quais resolver:
sage: x = var('x')
sage: solve(x^2 + 3*x + 2, x)
[x == -2, x == -1]
Você pode resolver equações para uma variável em termos das outras:
sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
Você pode resolver para diversas variáveis:
sage: x, y = var('x, y')
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]
O seguinte exemplo, que mostra como usar o Sage para resolver um sistema de equações não-lineares, foi sugerido por Jason Grout: primeiro, resolvemos o sistemas simbolicamente:
sage: var('x y p q')
(x, y, p, q)
sage: eq1 = p+q==9
sage: eq2 = q*y+p*x==-6
sage: eq3 = q*y^2+p*x^2==24
sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
Para obter soluções numéricas aproximadas, podemos usar:
sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True)
sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]
(A função n
imprime uma aproximação numérica, e o argumento é o
número de bits de precisão.)
Resolvendo Equações Numericamente#
Frequentemente, solve
não será capaz de encontrar uma solução
exata para uma equação ou sistema de equações. Nesse caso, você pode
usar find_root
para encontrar uma solução numérica. Por exemplo,
solve
não encontra uma solução para a equação abaixo:
sage: theta = var('theta')
sage: solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]
Por outro lado, podemos usar find_root
para encontrar uma solução
para a equação acima no intervalo \(0 < \phi < \pi/2\):
sage: phi = var('phi')
sage: find_root(cos(phi)==sin(phi),0,pi/2)
0.785398163397448...
Diferenciação, Integração, etc.#
O Sage é capaz de diferenciar e integrar diversas funções. Por exemplo, para diferenciar \(\sin(u)\) com respeito a \(u\), faça o seguinte:
sage: u = var('u')
sage: diff(sin(u), u)
cos(u)
Para calcular a quarta derivada de \(\sin(x^2)\):
sage: diff(sin(x^2), x, 4)
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)
Para calcular as derivadas parciais de \(x^2+17y^2\) com respeito a x e y, respectivamente:
sage: x, y = var('x,y')
sage: f = x^2 + 17*y^2
sage: f.diff(x)
2*x
sage: f.diff(y)
34*y
Passamos agora para integrais, tanto indefinidas como definidas. Para calcular \(\int x\sin(x^2)\, dx\) e \(\int_0^1 \frac{x}{x^2+1}\, dx\):
sage: integral(x*sin(x^2), x)
-1/2*cos(x^2)
sage: integral(x/(x^2+1), x, 0, 1)
1/2*log(2)
Para calcular a decomposição em frações parciais de \(\frac{1}{x^2-1}\):
sage: f = 1/((1+x)*(x-1))
sage: f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)
Resolvendo Equações Diferenciais#
Você pode usar o Sage para investigar equações diferenciais ordinárias. Para resolver a equação \(x'+x-1=0\):
sage: t = var('t') # define a variable t
sage: x = function('x')(t) # define x to be a function of that variable
sage: DE = diff(x, t) + x - 1
sage: desolve(DE, [x,t])
(_C + e^t)*e^(-t)
Esse método usa a interface do Sage para o Maxima [Max]. Logo, o formato dos resultados é um pouco diferente de outros cálculos realizados no Sage. Nesse caso, o resultado diz que a solução geral da equação diferencial é \(x(t) = e^{-t}(e^{t}+c)\).
Você pode calcular a transformada de Laplace também; a transformada de Laplace de \(t^2e^t -\sin(t)\) é calculada da seguinte forma:
sage: s = var("s")
sage: t = var("t")
sage: f = t^2*exp(t) - sin(t)
sage: f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3
A seguir, um exemplo mais complicado. O deslocamento, com respeito à posição de equilíbrio, de duas massas presas a uma parede através de molas, conforme a figura abaixo,
|------\/\/\/\/\---|massa1|----\/\/\/\/\/----|massa2|
mola1 mola2
é modelado pelo sistema de equações diferenciais de segunda ordem
onde, para \(i=1,2\), \(m_{i}\) é a massa do objeto i, \(x_{i}\) é o deslocamento com respeito à posição de equilíbrio da massa i, e \(k_{i}\) é a constante de mola para a mola i.
Exemplo: Use o Sage para resolver o problema acima com \(m_{1}=2\), \(m_{2}=1\), \(k_{1}=4\), \(k_{2}=2\), \(x_{1}(0)=3\), \(x_{1}'(0)=0\), \(x_{2}(0)=3\), \(x_{2}'(0)=0\).
Solução: Primeiramente, calcule a transformada de Laplace da primeira equação (usando a notação \(x=x_{1}\), \(y=x_{2}\)):
sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)")
sage: lde1 = de1.laplace("t","s"); lde1
2*((-%at('diff(x(t),t,1),t = 0))+s^2*'laplace(x(t),t,s)-x(0)*s) -2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s)
O resultado é um pouco difícil de ler, mas diz que
(onde a transformada de Laplace de uma função em letra minúscula \(x(t)\) é a função em letra maiúscula \(X(s)\)). Agora, calcule a transformada de Laplace da segunda equação:
sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")
sage: lde2 = de2.laplace("t","s"); lde2
(-%at('diff(y(t),t,1),t = 0))+s^2*'laplace(y(t),t,s) +2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s) -y(0)*s
O resultado significa que
Em seguida, substitua a condição inicial para \(x(0)\), \(x'(0)\), \(y(0)\), e \(y'(0)\), e resolva as equações resultantes:
sage: var('s X Y')
(s, X, Y)
sage: eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s]
sage: solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]
Agora calcule a transformada de Laplace inversa para obter a resposta:
sage: var('s t')
(s, t)
sage: inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t)
cos(2*t) + 2*cos(t)
sage: inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
-cos(2*t) + 4*cos(t)
Portanto, a solução é
Ela pode ser representada em um gráfico parametricamente usando os comandos
sage: t = var('t')
sage: P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),
....: (t, 0, 2*pi), rgbcolor=hue(0.9))
sage: show(P)
As componentes individuais podem ser representadas em gráfico usando
sage: t = var('t')
sage: p1 = plot(cos(2*t) + 2*cos(t), (t,0, 2*pi), rgbcolor=hue(0.3))
sage: p2 = plot(4*cos(t) - cos(2*t), (t,0, 2*pi), rgbcolor=hue(0.6))
sage: show(p1 + p2)
Leia mais sobre gráficos em Gráficos. Veja a seção 5.5 de [NagleEtAl2004] (em inglês) para mais informações sobre equações diferenciais.
Método de Euler para Sistemas de Equações Diferenciais#
No próximo exemplo, vamos ilustrar o método de Euler para EDOs de primeira e segunda ordem. Primeiro, relembramos a ideia básica para equações de primeira ordem. Dado um problema de valor inicial da forma
queremos encontrar o valor aproximado da solução em \(x=b\) com \(b>a\).
Da definição de derivada segue que
onde \(h>0\) é um número pequeno. Isso, juntamente com a equação diferencial, implica que \(f(x,y(x))\approx \frac{y(x+h)-y(x)}{h}\). Agora resolvemos para \(y(x+h)\):
Se chamarmos \(h f(x,y(x))\) de “termo de correção”, \(y(x)\) de “valor antigo de y”, e \(y(x+h)\) de “novo valor de y”, então essa aproximação pode ser reescrita como
Se dividirmos o intervalo de a até b em n partes, de modo que \(h=\frac{b-a}{n}\), então podemos construir a seguinte tabela.
\(x\) |
\(y\) |
\(hf(x,y)\) |
---|---|---|
\(a\) |
\(c\) |
\(hf(a,c)\) |
\(a+h\) |
\(c+hf(a,c)\) |
… |
\(a+2h\) |
… |
|
… |
||
\(b=a+nh\) |
??? |
… |
O objetivo é completar os espaços em branco na tabela, em uma linha por vez, até atingirmos ???, que é a aproximação para \(y(b)\) usando o método de Euler.
A ideia para sistemas de EDOs é semelhante.
Exemplo: Aproxime numericamente \(z(t)\) em \(t=1\) usando 4 passos do método de Euler, onde \(z''+tz'+z=0\), \(z(0)=1\), \(z'(0)=0\).
Devemos reduzir a EDO de segunda ordem a um sistema de duas EDOs de primeira ordem (usando \(x=z\), \(y=z'\)) e aplicar o método de Euler:
sage: t,x,y = PolynomialRing(RealField(10),3,"txy").gens()
sage: f = y; g = -x - y * t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
t x h*f(t,x,y) y h*g(t,x,y)
0 1 0.00 0 -0.25
1/4 1.0 -0.062 -0.25 -0.23
1/2 0.94 -0.12 -0.48 -0.17
3/4 0.82 -0.16 -0.66 -0.081
1 0.65 -0.18 -0.74 0.022
Portanto, \(z(1)\approx 0.65\).
Podemos também representar em um gráfico os pontos \((x,y)\) para
obter uma figura da solução aproximada. A função
eulers_method_2x2_plot
fará isso; para usá-la, precisamos definir
funções f e g que recebam um argumento com três coordenadas (t,
x, y).
sage: f = lambda z: z[2] # f(t,x,y) = y
sage: g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x)
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
A esta altura, P
armazena dois gráficos: P[0]
, o gráfico de
x versus t, e P[1]
, o gráfico de y versus t. Podemos
visualizar os dois gráficos da seguinte forma:
sage: show(P[0] + P[1])
(Para mais sobre gráficos, veja Gráficos.)
Funções Especiais#
Diversos polinômios ortogonais e funções especiais estão implementadas, usando tanto o PARI [GP] como o Maxima [Max]. Isso está documentado nas seções apropriadas (“Orthogonal polynomials” and “Special functions”, respectivamente) do manual de referência do Sage (em inglês).
sage: x = polygen(QQ, 'x')
sage: chebyshev_U(2,x)
4*x^2 - 1
sage: bessel_I(1,1).n(250)
0.56515910399248502720769602760986330732889962162109200948029448947925564096
sage: bessel_I(1,1).n()
0.56515910399248...
sage: bessel_I(2,1.1).n() # last few digits are random
0.16708949925104...
No momento, essas funções estão disponíveis na interface do Sage apenas para uso numérico. Para uso simbólico, use a interface do Maxima diretamente, como no seguinte exemplo:
sage: maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
sage: maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'