Partition/Diagram Algebras#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_ak#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_bk#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_generic#
Bases:
IndexedFreeModuleElement
- class sage.combinat.partition_algebra.PartitionAlgebraElement_pk#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_prk#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_rk#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_sk#
- class sage.combinat.partition_algebra.PartitionAlgebraElement_tk#
- class sage.combinat.partition_algebra.PartitionAlgebra_ak(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_ak(QQ, 3, 1) sage: p == loads(dumps(p)) True
- class sage.combinat.partition_algebra.PartitionAlgebra_bk(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_bk(QQ, 3, 1) sage: p == loads(dumps(p)) True
- class sage.combinat.partition_algebra.PartitionAlgebra_generic(R, cclass, n, k, name=None, prefix=None)#
Bases:
CombinatorialFreeModule
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: s = PartitionAlgebra_sk(QQ, 3, 1) sage: TestSuite(s).run() sage: s == loads(dumps(s)) True
- one_basis()#
Return the basis index for the unit of the algebra.
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: s = PartitionAlgebra_sk(ZZ, 3, 1) sage: len(s.one().support()) # indirect doctest 1
- product_on_basis(left, right)#
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: s = PartitionAlgebra_sk(QQ, 3, 1) sage: t12 = s(Set([Set([1,-2]),Set([2,-1]),Set([3,-3])])) sage: t12^2 == s(1) #indirect doctest True
- class sage.combinat.partition_algebra.PartitionAlgebra_pk(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_pk(QQ, 3, 1) sage: p == loads(dumps(p)) True
- class sage.combinat.partition_algebra.PartitionAlgebra_prk(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_prk(QQ, 3, 1) sage: p == loads(dumps(p)) True
- class sage.combinat.partition_algebra.PartitionAlgebra_rk(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_rk(QQ, 3, 1) sage: p == loads(dumps(p)) True
- class sage.combinat.partition_algebra.PartitionAlgebra_sk(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_sk(QQ, 3, 1) sage: p == loads(dumps(p)) True
- class sage.combinat.partition_algebra.PartitionAlgebra_tk(R, k, n, name=None)#
Bases:
PartitionAlgebra_generic
EXAMPLES:
sage: from sage.combinat.partition_algebra import * sage: p = PartitionAlgebra_tk(QQ, 3, 1) sage: p == loads(dumps(p)) True
- sage.combinat.partition_algebra.SetPartitionsAk(k)#
Return the combinatorial class of set partitions of type \(A_k\).
EXAMPLES:
sage: A3 = SetPartitionsAk(3); A3 Set partitions of {1, ..., 3, -1, ..., -3} sage: A3.first() #random {{1, 2, 3, -1, -3, -2}} sage: A3.last() #random {{-1}, {-2}, {3}, {1}, {-3}, {2}} sage: A3.random_element() #random {{1, 3, -3, -1}, {2, -2}} sage: A3.cardinality() 203 sage: A2p5 = SetPartitionsAk(2.5); A2p5 Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block sage: A2p5.cardinality() 52 sage: A2p5.first() #random {{1, 2, 3, -1, -3, -2}} sage: A2p5.last() #random {{-1}, {-2}, {2}, {3, -3}, {1}} sage: A2p5.random_element() #random {{-1}, {-2}, {3, -3}, {1, 2}}
- class sage.combinat.partition_algebra.SetPartitionsAk_k(k)#
Bases:
SetPartitions_set
- Element#
alias of
SetPartitionsXkElement
- class sage.combinat.partition_algebra.SetPartitionsAkhalf_k(k)#
Bases:
SetPartitions_set
- Element#
alias of
SetPartitionsXkElement
- sage.combinat.partition_algebra.SetPartitionsBk(k)#
Return the combinatorial class of set partitions of type \(B_k\).
These are the set partitions where every block has size 2.
EXAMPLES:
sage: B3 = SetPartitionsBk(3); B3 Set partitions of {1, ..., 3, -1, ..., -3} with block size 2 sage: B3.first() #random {{2, -2}, {1, -3}, {3, -1}} sage: B3.last() #random {{1, 2}, {3, -2}, {-3, -1}} sage: B3.random_element() #random {{2, -1}, {1, -3}, {3, -2}} sage: B3.cardinality() 15 sage: B2p5 = SetPartitionsBk(2.5); B2p5 Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and with block size 2 sage: B2p5.first() #random {{2, -1}, {3, -3}, {1, -2}} sage: B2p5.last() #random {{1, 2}, {3, -3}, {-1, -2}} sage: B2p5.random_element() #random {{2, -2}, {3, -3}, {1, -1}} sage: B2p5.cardinality() 3
- class sage.combinat.partition_algebra.SetPartitionsBk_k(k)#
Bases:
SetPartitionsAk_k
- cardinality()#
Return the number of set partitions in \(B_k\) where \(k\) is an integer.
This is given by (2k)!! = (2k-1)*(2k-3)*…*5*3*1.
EXAMPLES:
sage: SetPartitionsBk(3).cardinality() 15 sage: SetPartitionsBk(2).cardinality() 3 sage: SetPartitionsBk(1).cardinality() 1 sage: SetPartitionsBk(4).cardinality() 105 sage: SetPartitionsBk(5).cardinality() 945
- class sage.combinat.partition_algebra.SetPartitionsBkhalf_k(k)#
Bases:
SetPartitionsAkhalf_k
- cardinality()#
- sage.combinat.partition_algebra.SetPartitionsIk(k)#
Return the combinatorial class of set partitions of type \(I_k\).
These are set partitions with a propagating number of less than \(k\). Note that the identity set partition \(\{\{1, -1\}, \ldots, \{k, -k\}\}\) is not in \(I_k\).
EXAMPLES:
sage: I3 = SetPartitionsIk(3); I3 Set partitions of {1, ..., 3, -1, ..., -3} with propagating number < 3 sage: I3.cardinality() 197 sage: I3.first() #random {{1, 2, 3, -1, -3, -2}} sage: I3.last() #random {{-1}, {-2}, {3}, {1}, {-3}, {2}} sage: I3.random_element() #random {{-1}, {-3, -2}, {2, 3}, {1}} sage: I2p5 = SetPartitionsIk(2.5); I2p5 Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and propagating number < 3 sage: I2p5.cardinality() 50 sage: I2p5.first() #random {{1, 2, 3, -1, -3, -2}} sage: I2p5.last() #random {{-1}, {-2}, {2}, {3, -3}, {1}} sage: I2p5.random_element() #random {{-1}, {-2}, {1, 3, -3}, {2}}
- class sage.combinat.partition_algebra.SetPartitionsIk_k(k)#
Bases:
SetPartitionsAk_k
- cardinality()#
- class sage.combinat.partition_algebra.SetPartitionsIkhalf_k(k)#
Bases:
SetPartitionsAkhalf_k
- cardinality()#
- sage.combinat.partition_algebra.SetPartitionsPRk(k)#
Return the combinatorial class of set partitions of type \(PR_k\).
EXAMPLES:
sage: SetPartitionsPRk(3) Set partitions of {1, ..., 3, -1, ..., -3} with at most 1 positive and negative entry in each block and that are planar
- class sage.combinat.partition_algebra.SetPartitionsPRk_k(k)#
Bases:
SetPartitionsRk_k
- cardinality()#
- class sage.combinat.partition_algebra.SetPartitionsPRkhalf_k(k)#
Bases:
SetPartitionsRkhalf_k
- cardinality()#
- sage.combinat.partition_algebra.SetPartitionsPk(k)#
Return the combinatorial class of set partitions of type \(P_k\).
These are the planar set partitions.
EXAMPLES:
sage: P3 = SetPartitionsPk(3); P3 Set partitions of {1, ..., 3, -1, ..., -3} that are planar sage: P3.cardinality() 132 sage: P3.first() #random {{1, 2, 3, -1, -3, -2}} sage: P3.last() #random {{-1}, {-2}, {3}, {1}, {-3}, {2}} sage: P3.random_element() #random {{1, 2, -1}, {-3}, {3, -2}} sage: P2p5 = SetPartitionsPk(2.5); P2p5 Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and that are planar sage: P2p5.cardinality() 42 sage: P2p5.first() #random {{1, 2, 3, -1, -3, -2}} sage: P2p5.last() #random {{-1}, {-2}, {2}, {3, -3}, {1}} sage: P2p5.random_element() #random {{1, 2, 3, -3}, {-1, -2}}
- class sage.combinat.partition_algebra.SetPartitionsPk_k(k)#
Bases:
SetPartitionsAk_k
- cardinality()#
- class sage.combinat.partition_algebra.SetPartitionsPkhalf_k(k)#
Bases:
SetPartitionsAkhalf_k
- cardinality()#
- sage.combinat.partition_algebra.SetPartitionsRk(k)#
Return the combinatorial class of set partitions of type \(R_k\).
EXAMPLES:
sage: SetPartitionsRk(3) Set partitions of {1, ..., 3, -1, ..., -3} with at most 1 positive and negative entry in each block
- class sage.combinat.partition_algebra.SetPartitionsRk_k(k)#
Bases:
SetPartitionsAk_k
- cardinality()#
- class sage.combinat.partition_algebra.SetPartitionsRkhalf_k(k)#
Bases:
SetPartitionsAkhalf_k
- cardinality()#
- sage.combinat.partition_algebra.SetPartitionsSk(k)#
Return the combinatorial class of set partitions of type \(S_k\).
There is a bijection between these set partitions and the permutations of \(1, \ldots, k\).
EXAMPLES:
sage: S3 = SetPartitionsSk(3); S3 Set partitions of {1, ..., 3, -1, ..., -3} with propagating number 3 sage: S3.cardinality() 6 sage: S3.list() #random [{{2, -2}, {3, -3}, {1, -1}}, {{1, -1}, {2, -3}, {3, -2}}, {{2, -1}, {3, -3}, {1, -2}}, {{1, -2}, {2, -3}, {3, -1}}, {{1, -3}, {2, -1}, {3, -2}}, {{1, -3}, {2, -2}, {3, -1}}] sage: S3.first() #random {{2, -2}, {3, -3}, {1, -1}} sage: S3.last() #random {{1, -3}, {2, -2}, {3, -1}} sage: S3.random_element() #random {{1, -3}, {2, -1}, {3, -2}} sage: S3p5 = SetPartitionsSk(3.5); S3p5 Set partitions of {1, ..., 4, -1, ..., -4} with 4 and -4 in the same block and propagating number 4 sage: S3p5.cardinality() 6 sage: S3p5.list() #random [{{2, -2}, {3, -3}, {1, -1}, {4, -4}}, {{2, -3}, {1, -1}, {4, -4}, {3, -2}}, {{2, -1}, {3, -3}, {1, -2}, {4, -4}}, {{2, -3}, {1, -2}, {4, -4}, {3, -1}}, {{1, -3}, {2, -1}, {4, -4}, {3, -2}}, {{1, -3}, {2, -2}, {4, -4}, {3, -1}}] sage: S3p5.first() #random {{2, -2}, {3, -3}, {1, -1}, {4, -4}} sage: S3p5.last() #random {{1, -3}, {2, -2}, {4, -4}, {3, -1}} sage: S3p5.random_element() #random {{1, -3}, {2, -2}, {4, -4}, {3, -1}}
- class sage.combinat.partition_algebra.SetPartitionsSk_k(k)#
Bases:
SetPartitionsAk_k
- cardinality()#
Return k!.
- class sage.combinat.partition_algebra.SetPartitionsSkhalf_k(k)#
Bases:
SetPartitionsAkhalf_k
- cardinality()#
- sage.combinat.partition_algebra.SetPartitionsTk(k)#
Return the combinatorial class of set partitions of type \(T_k\).
These are planar set partitions where every block is of size 2.
EXAMPLES:
sage: T3 = SetPartitionsTk(3); T3 Set partitions of {1, ..., 3, -1, ..., -3} with block size 2 and that are planar sage: T3.cardinality() 5 sage: T3.first() #random {{1, -3}, {2, 3}, {-1, -2}} sage: T3.last() #random {{1, 2}, {3, -1}, {-3, -2}} sage: T3.random_element() #random {{1, -3}, {2, 3}, {-1, -2}} sage: T2p5 = SetPartitionsTk(2.5); T2p5 Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and with block size 2 and that are planar sage: T2p5.cardinality() 2 sage: T2p5.first() #random {{2, -2}, {3, -3}, {1, -1}} sage: T2p5.last() #random {{1, 2}, {3, -3}, {-1, -2}}
- class sage.combinat.partition_algebra.SetPartitionsTk_k(k)#
Bases:
SetPartitionsBk_k
- cardinality()#
- class sage.combinat.partition_algebra.SetPartitionsTkhalf_k(k)#
Bases:
SetPartitionsBkhalf_k
- cardinality()#
- class sage.combinat.partition_algebra.SetPartitionsXkElement(parent, s, check=True)#
Bases:
SetPartition
An element for the classes of
SetPartitionXk
whereX
is some letter.- check()#
Check to make sure this is a set partition.
EXAMPLES:
sage: A2p5 = SetPartitionsAk(2.5) sage: x = A2p5.first(); x {{-3, -2, -1, 1, 2, 3}} sage: x.check() sage: y = A2p5.next(x); y {{-3, 3}, {-2, -1, 1, 2}} sage: y.check()
- sage.combinat.partition_algebra.identity(k)#
Return the identity set partition 1, -1, …, k, -k
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: pa.identity(2) {{2, -2}, {1, -1}}
- sage.combinat.partition_algebra.is_planar(sp)#
Return
True
if the diagram corresponding to the set partition is planar; otherwise, it returnsFalse
.EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: pa.is_planar( pa.to_set_partition([[1,-2],[2,-1]])) False sage: pa.is_planar( pa.to_set_partition([[1,-1],[2,-2]])) True
- sage.combinat.partition_algebra.pair_to_graph(sp1, sp2)#
Return a graph consisting of the disjoint union of the graphs of set partitions
sp1
andsp2
along with edges joining the bottom row (negative numbers) ofsp1
to the top row (positive numbers) ofsp2
.The vertices of the graph
sp1
appear in the result as pairs(k, 1)
, whereas the vertices of the graphsp2
appear as pairs(k, 2)
.EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]]) sage: sp2 = pa.to_set_partition([[1,-2],[2,-1]]) sage: g = pa.pair_to_graph( sp1, sp2 ); g Graph on 8 vertices
sage: g.vertices(sort=False) #random [(1, 2), (-1, 1), (-2, 2), (-1, 2), (-2, 1), (2, 1), (2, 2), (1, 1)] sage: g.edges(sort=False) #random [((1, 2), (-1, 1), None), ((1, 2), (-2, 2), None), ((-1, 1), (2, 1), None), ((-1, 2), (2, 2), None), ((-2, 1), (1, 1), None), ((-2, 1), (2, 2), None)]
Another example which used to be wrong until trac ticket #15958:
sage: sp3 = pa.to_set_partition([[1, -1], [2], [-2]]) sage: sp4 = pa.to_set_partition([[1], [-1], [2], [-2]]) sage: g = pa.pair_to_graph( sp3, sp4 ); g Graph on 8 vertices sage: g.vertices(sort=True) [(-2, 1), (-2, 2), (-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2)] sage: g.edges(sort=True) [((-2, 1), (2, 2), None), ((-1, 1), (1, 1), None), ((-1, 1), (1, 2), None)]
- sage.combinat.partition_algebra.propagating_number(sp)#
Return the propagating number of the set partition
sp
.The propagating number is the number of blocks with both a positive and negative number.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]]) sage: sp2 = pa.to_set_partition([[1,2],[-2,-1]]) sage: pa.propagating_number(sp1) 2 sage: pa.propagating_number(sp2) 0
- sage.combinat.partition_algebra.set_partition_composition(sp1, sp2)#
Return a tuple consisting of the composition of the set partitions sp1 and sp2 and the number of components removed from the middle rows of the graph.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]]) sage: sp2 = pa.to_set_partition([[1,-2],[2,-1]]) sage: pa.set_partition_composition(sp1, sp2) == (pa.identity(2), 0) True
- sage.combinat.partition_algebra.to_graph(sp)#
Return a graph representing the set partition
sp
.EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: g = pa.to_graph( pa.to_set_partition([[1,-2],[2,-1]])); g Graph on 4 vertices sage: g.vertices(sort=False) #random [1, 2, -2, -1] sage: g.edges(sort=False) #random [(1, -2, None), (2, -1, None)]
- sage.combinat.partition_algebra.to_set_partition(l, k=None)#
Convert a list of a list of numbers to a set partitions.
Each list of numbers in the outer list specifies the numbers contained in one of the blocks in the set partition.
If k is specified, then the set partition will be a set partition of 1, …, k, -1, …, -k. Otherwise, k will default to the minimum number needed to contain all of the specified numbers.
EXAMPLES:
sage: import sage.combinat.partition_algebra as pa sage: pa.to_set_partition([[1,-1],[2,-2]]) == pa.identity(2) True