Cartesian products of Posets#
AUTHORS:
Daniel Krenn (2015)
- class sage.combinat.posets.cartesian_product.CartesianProductPoset(sets, category, order=None, **kwargs)#
Bases:
CartesianProduct
A class implementing Cartesian products of posets (and elements thereof). Compared to
CartesianProduct
you are able to specify an order for comparison of the elements.INPUT:
sets
– a tuple of parents.category
– a subcategory ofSets().CartesianProducts() & Posets()
.order
– a string or function specifying an order less or equal. It can be one of the following:'native'
– elements are ordered by their native ordering, i.e., the order the wrapped elements (tuples) provide.'lex'
– elements are ordered lexicographically.'product'
– an element is less or equal to another element, if less or equal is true for all its components (Cartesian projections).A function which performs the comparison \(\leq\). It takes two input arguments and outputs a boolean.
Other keyword arguments (
kwargs
) are passed to the constructor ofCartesianProduct
.EXAMPLES:
sage: P = Poset((srange(3), lambda left, right: left <= right)) sage: Cl = cartesian_product((P, P), order='lex') sage: Cl((1, 1)) <= Cl((2, 0)) True sage: Cp = cartesian_product((P, P), order='product') sage: Cp((1, 1)) <= Cp((2, 0)) False sage: def le_sum(left, right): ....: return (sum(left) < sum(right) or ....: sum(left) == sum(right) and left[0] <= right[0]) sage: Cs = cartesian_product((P, P), order=le_sum) sage: Cs((1, 1)) <= Cs((2, 0)) True
See also
- le(left, right)#
Test whether
left
is less than or equal toright
.INPUT:
left
– an element.right
– an element.
OUTPUT:
A boolean.
Note
This method uses the order defined on creation of this Cartesian product. See
CartesianProductPoset
.EXAMPLES:
sage: P = posets.ChainPoset(10) sage: def le_sum(left, right): ....: return (sum(left) < sum(right) or ....: sum(left) == sum(right) and left[0] <= right[0]) sage: C = cartesian_product((P, P), order=le_sum) sage: C.le(C((1, 6)), C((6, 1))) True sage: C.le(C((6, 1)), C((1, 6))) False sage: C.le(C((1, 6)), C((6, 6))) True sage: C.le(C((6, 6)), C((1, 6))) False
- le_lex(left, right)#
Test whether
left
is lexicographically smaller or equal toright
.INPUT:
left
– an element.right
– an element.
OUTPUT:
A boolean.
EXAMPLES:
sage: P = Poset((srange(2), lambda left, right: left <= right)) sage: Q = cartesian_product((P, P), order='lex') sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] sage: for a in T: ....: for b in T: ....: assert(Q.le(a, b) == (a <= b)) ....: print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = True (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
- le_native(left, right)#
Test whether
left
is smaller or equal toright
in the order provided by the elements themselves.INPUT:
left
– an element.right
– an element.
OUTPUT:
A boolean.
EXAMPLES:
sage: P = Poset((srange(2), lambda left, right: left <= right)) sage: Q = cartesian_product((P, P), order='native') sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] sage: for a in T: ....: for b in T: ....: assert(Q.le(a, b) == (a <= b)) ....: print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = True (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
- le_product(left, right)#
Test whether
left
is component-wise smaller or equal toright
.INPUT:
left
– an element.right
– an element.
OUTPUT:
A boolean.
The comparison is
True
if the result of the comparison in each component isTrue
.EXAMPLES:
sage: P = Poset((srange(2), lambda left, right: left <= right)) sage: Q = cartesian_product((P, P), order='product') sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] sage: for a in T: ....: for b in T: ....: assert(Q.le(a, b) == (a <= b)) ....: print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = False (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True